Diego Escobari

The University of Texas Rio Grande Valley
http://faculty.utrgv.edu/diego.escobari

Business and Economics Forecasting

Class Notes

ECON 3342

November 19, 2019

Contents

1 Introduction to Forecasting 1
1.1 Introduction 1
2 Main Statistical Concepts 3
2.1 Random Variables 3
2.2 Multivariate Random Variables 6
2.3 Statistics 7
2.4 Regression Analysis 7
2.5 Simple Regression Model 7
2.6 Multiple Regression Model 10
3 EViews: Basics 15
3.1 Simple and multiple regression 15
4 EViews: Estimating a Regression Equation 23
4.1 Scatter plots 23
4.2 Regression output 24
5 Considerations to Successful Forecasting 27
5.1 Decision Environment and Loss Function 27
5.2 Forecast Object 28
5.3 Forecast Statement 28
5.4 Forecast Horizon 29
5.5 Information Set 30
5.6 Methods and Complexity 30
6 EViews: In-sample Forecast 31
6.1 Simple and multiple regression 31
6.2 In-sample Forecast 32
7 EViews: Importance of Graphics for Forecasting 35
8 Modeling and Forecasting Trend 39
8.1 Modeling Trend 39
8.2 Estimating Trend Models 41
8.3 Forecasting Trend 41
8.4 Model Selection Criteria 42
9 EViews: Modeling and Forecasting Trend 43
9.1 Comparing Trend Models 43
9.2 Forecasting 47
10 Modeling and Forecasting Seasonality 49
10.1 Nature and Sources of Seasonality 49
10.2 Modeling Seasonality 50
10.3 Forecasting Seasonal Series 51
11 EViews: Modeling and Forecasting Seasonality 53
11.1 Failing to Model Seasonality 54
11.2 Modeling Seasonality with Dummies 55
11.3 Forecasting Seasonality 57
11.4 How to Create Dummy Variables 58
12 Characterizing Cycles 59
12.1 Covariance Stationary Time Series 59
12.2 White Noise 61
12.3 Lag Operator 62
12.4 Wold's Theorem 62
12.5 Estimation of $\mu, \rho(\tau)$, and $p(\tau)$ 63
13 EViews: Characterizing Cycles 65
13.1 Unemployment Rate 65
13.2 Correlogram of a Series 66
14 Modeling Cycles: MA, AR and ARMA Models 69
14.1 Moving Average (MA) Models 69
14.1.1 The MA(1) Process 69
14.1.2 The MA (q) Process 71
14.2 Autoregressive (AR) Models 71
14.2.1 The AR(1) Process 71
14.2.2 The $\operatorname{AR}(p)$ Process 73
14.3 Autoregressive Moving Average (ARMA) Models 73
14.3.1 The ARMA(1,1) Process 73
14.3.2 The ARMA (p, q) Process 74
Contents vii
15 EViews: MA, AR and ARMA Models 75
15.1 Climate Change 75
15.2 MA(1) Simulated Processes 79
15.3 AR(1) Simulated Processes 82
16 Forecasting Cycles 89
16.1 Forecasting an MA Process 89
16.1.1 Optimal Point Forecasts 89
16.1.2 Interval and Density Forecasts 91
16.2 Forecasting an AR Process 91
16.2.1 Optimal Point Forecasts 92
16.2.2 Interval and Density Forecasts 93
17 EViews: Forecasting Cycles 95
17.1 Moving Average Models 95
17.2 Autoregressive Models 99
18 Forecasting with Trend, Seasonal, and Cyclical Components 105
18.1 Structure 105
18.2 Recursive Estimation Procedures for Diagnosing and Selecting Forecasting Models 106
19 EViews: Forecasting with Trend, Seasonal, and Cyclical Components 109
19.1 Forecasting Sales 109
19.2 Recursive Estimation Procedures 118
20 Forecasting with Regression Models 123
20.1 Conditional Forecasting Models 123
20.2 Unconditional Forecasting Models 123
20.3 Vector Autoregressions 124
20.4 Impulse-Response Functions 125
21 EViews: Vector Autoregressions 127
21.1 Estimation of Vector Autoregressions 127
21.2 Impulse Response Functions 132
21.3 Forecasting with Regression Models 135

Chapter 1
 Introduction to Forecasting

1.1 Introduction

What would happen if we could know more about the future? Forecasting is very important for:

- Business. Forecasting sales, prices, inventories, new entries.
- Finance. Forecasting financial risk, volatility forecasts. Stock prices?
- Economics. Unemployment, GDP, growth, consumption, investment.
- Governments. Tax revenues, population, infrastructure.

Use of data to forecast and types of data:

- Cross-section.
- Time series.
- Panel data.

Time-series data is a structure where observations of a variable or several variables are ordered in time (e.g., stock prices, money supply, consumer price index). Unlike cross-section data, observations are related. For example, knowing something about the GDP in the past can tell you something about the GDP in the future.

Data Frequency: Daily / weekly / monthly / quarterly / annually

Seasonal Patterns: Sales during Christmas / agricultural data.
Forecasting Methods: Before forecasting we need to build a statistical model.

Statistical Model. Describes the relationship between variables. It's parameters are estimated using historical data.
Forecasting Model. Characterization of what we expect on the present, conditional on the past. It can be used to infer about the future.

Table 1.1 Data for Texas

Observation	Year	Unemployment Rate	GDP	Population
1	1951	6.7%	543	8.11
2	1952	7.2%	549	8.21
3	1953	7.5%	551	8.27
4	1954	6.8%	556	8.31
\vdots	\vdots	\vdots	\vdots	\vdots
65	2016	4.4%	1,498	26.91
66	2017	4.7%	1,524	27.22
67	2018	4.0%	1,547	28.35
68	2019	3.4%	1,581	28.74

GDP in Billions of US\$. Population in millions.

Components of a time series model:

Trend. Long-term movement.
Seasonal. Movement that repeats every season.
Cycle. Irregular dynamic behavior.

Chapter 2
 Main Statistical Concepts

2.1 Random Variables

Goals:

- Working with data.
- Become familiar with the data in hand.

Random Experiment: Process leading to two or more possible outcomes, with uncertainty as to which outcome will occur.

- Flip a coin. $\rightarrow 2$ outcomes. Head (H) or Tail (T).
- Flip two coins. $\rightarrow 4$ outcomes. (HH, HT, TH, TT).

Random Variable: Variable that takes numerical values determined by the outcome or a random experiment.

Random variable Y : Number of tails observed when flipping two coins.
Y : Random variable.
y : Realizations of the random variable.
$y=0,1,2$.
Event: Subset of outcomes.
Sample Space: Sample space S is the set of all outcomes of the random experiment.

Probability: Given a random experiment, we want to determine the probability that a particular event will occur.

Probability is measured from 0 to 1 .
$0 \rightarrow$ the event will not occur.
$1 \rightarrow$ the event is certain.
When all events are equally likely, the probability of event A is:

$$
\begin{equation*}
P(A)=\frac{1}{N} \tag{2.1}
\end{equation*}
$$

where N is the number of outcomes in the sample space S.
Example 1) Flip a coin:
Define event A : "Head", then:

$$
\begin{equation*}
P(A)=\frac{1}{2} \tag{2.2}
\end{equation*}
$$

where $N=2$ is the number of outcomes "Head" or "Tail".
Example 2) Winning the lottery:

Define event B : Winning the lottery.
You buy 2 tickets from a total of 1,000 existing tickets. Then:

$$
\begin{equation*}
P(B)=\frac{2}{1,000}=0.002 \tag{2.3}
\end{equation*}
$$

There is a $1 / 500$ chance that you win the lottery.

If A is an event in the sample space S,

$$
\begin{equation*}
0 \leq P(A) \leq 1 \tag{2.4}
\end{equation*}
$$

Probability distribution function: $f(\cdot)$. The probability distribution function (p.d.f.) assigns a probability to each of the realizations of a random variable.

Example 3) Flip two coins: (HH, HT, TH, TT).
Define the random variable Y as the number of Tails. Hence:

$$
y=0,1,2 .
$$

$f(Y=0)=0.25$
$f(Y=1)=0.5$
$f(Y=2)=0.25$
Example 4) Toss a die.

Fig. 2.1 Probability Density Function.

Define the random variable X as the number resulting from tossing a die. Hence: $x=1,2,3,4,5,6$.
$f(Y=1)=1 / 6$
$f(Y=2)=1 / 6$
\vdots
$f(Y=6)=1 / 6$
Properties of the p.d.f.:

1) $0 \leq P\left(x_{i}\right) \leq 1$ for any x
2) $\sum_{i} P\left(x_{i}\right)=1$
p.d.f. graph, $P(X=x)$, see Figure 2.1.

Mean of a random variable:

$$
\begin{equation*}
E(y)=\sum_{i} p_{i} y_{i}=\sum_{i} P\left(y_{i}\right) y_{i} \tag{2.5}
\end{equation*}
$$

where $p_{i}=P\left(Y=y_{i}\right)$.
Example) Toss a die

$$
E(X)=\frac{1}{6} \cdot 1+\frac{1}{6} \cdot 2+\frac{1}{6} \cdot 3+\frac{1}{6} \cdot 4+\frac{1}{6} \cdot 5+\frac{1}{6} \cdot 6=3.5
$$

$\mu=E(X)$ is a measure of central tendency.
Variance of a random variable:

$$
\begin{equation*}
\sigma^{2}=\operatorname{Var}(Y)=E(y-\mu)^{2} \tag{2.6}
\end{equation*}
$$

$\sigma^{2}=\operatorname{Var}(Y)$ is a measure of dispersion.
Example) Toss a die

$$
\begin{aligned}
\operatorname{Var}(X) & =\sum_{i}\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right) \\
& =(1-3.5)^{2} \cdot \frac{1}{6}+(2-3.5)^{2} \cdot \frac{1}{6}+\cdots+(6-3.5)^{2} \cdot \frac{1}{6} \\
& =2.916
\end{aligned}
$$

Standard deviation of a random variable: It is simply the square root of the variance.

$$
\begin{equation*}
\sigma=\sqrt{\operatorname{Var}(Y)}=\sqrt{E(y-\mu)^{2}} \tag{2.7}
\end{equation*}
$$

2.2 Multivariate Random Variables

What if instead of observing a single random variable X, we now jointly observe two random variables X and Y.
$f(X, Y) \rightarrow$ denotes the joint distribution of X and Y. It gives you the probability associated with each possible pair x and y.

Covariance: How are these two variables associated?

$$
\begin{array}{ll}
\quad \operatorname{Cov}(X, Y)=E\left[\left(y_{t}-\mu_{y}\right)\left(x_{t}-\mu_{x}\right)\right] \tag{2.8}\\
\operatorname{Cov}(X, Y)>0 & \text { move together. } \\
\operatorname{Cov}(X, Y)<0 & \text { move in opposite directions. }
\end{array}
$$

Correlation: Units-free measure of the association between variables.

$$
\begin{equation*}
\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{x} \sigma_{y}} \tag{2.9}
\end{equation*}
$$

where σ_{x} and σ_{y} are the standard deviations of X and Y respectively.

$$
-1 \leq \operatorname{Corr}(X, Y) \leq 1
$$

Conditional distribution: What is the distribution of Y conditional on observing X ?

$$
\begin{equation*}
f(Y \mid X)=\frac{f(X, Y)}{f(X)} \tag{2.10}
\end{equation*}
$$

2.3 Statistics

Note that we do not know the true $f(X), f(X, Y), f(Y \mid X)$.
We have the sample $\left\{y_{t}\right\}_{t=1}^{T} \sim f(Y)$, where T is the sample size.
From these data we can obtain the following.
Sample mean:

$$
\begin{equation*}
\hat{\mu}_{y}=\bar{y}=\frac{1}{T} \sum_{t=1}^{T} y_{t} \tag{2.11}
\end{equation*}
$$

Sample variance:

$$
\begin{gather*}
\hat{\sigma}^{2}=\frac{1}{T} \sum_{t=1}^{T}\left(y_{t}-\bar{y}\right)^{2} \tag{2.12}\\
s^{2}=\frac{1}{T-1} \sum_{t=1}^{T}\left(y_{t}-\bar{y}\right)^{2} \tag{2.13}
\end{gather*}
$$

2.4 Regression Analysis

2.5 Simple Regression Model

Two variables: X and Y. See Figure 2.2.
X : Education.
Y : Wage.
The regression equation holds for every observation t :

$$
\begin{equation*}
y_{t}=\beta_{0}+\beta_{1} x_{t}+\varepsilon_{t} \tag{2.14}
\end{equation*}
$$

β_{0} and β_{1} are unknown parameters.

Fig. 2.2 Fitted regression line.

Fig. 2.3 Intercept and slope.

We need to estimate β_{0} and β_{1} from the data. See Figure 2.3.
The regression fitted values are given by:

$$
\begin{equation*}
\hat{y}_{t}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{t} \tag{2.15}
\end{equation*}
$$

Figure 2.4 illustrates the actual and the fitted values.

$$
\begin{equation*}
e_{t}=y_{t}-\hat{y}_{t} \tag{2.16}
\end{equation*}
$$

Fig. 2.4 Estimating β_{0} and β_{1}.
where:
e_{t} : residuals or in-sample forecast errors.
y_{t} : actual values / true values.
\hat{y}_{t} : fitted values or in-sample forecast.
Ordinary Least Squares: obtains $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ by minimizing:

$$
\begin{equation*}
\min _{\beta_{0}, \beta_{1}} \sum_{t=1}^{T}\left(y_{t}-\beta_{0}-\beta_{1} x_{t}\right)^{2} \tag{2.17}
\end{equation*}
$$

In this simple case where there is a single right-hand side variable, the slope coefficient is obtained using:

$$
\begin{equation*}
\hat{\beta}_{1}=\frac{\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)\left(y_{t}-\bar{y}\right)}{\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}} \tag{2.18}
\end{equation*}
$$

and the constant is obtained from:

$$
\begin{equation*}
\hat{\beta}_{0}=\bar{y}-\hat{\beta_{1}} \bar{x} . \tag{2.19}
\end{equation*}
$$

Keep in mind that:

$$
\begin{array}{lll}
\beta_{0} & \text { and } & \left.\beta_{1}\right\}
\end{array} \quad \text { are the true unknown parameters. }
$$

Specific values of $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are called estimates (these are the ones obtained using econometrics software).
$\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are random variables and depend on the sample.

Hence, $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ have standard errors.

2.6 Multiple Regression Model

In the multiple regression model we have more than one right-hand side variables. In a model with two regressors x and z we have:

$$
\begin{equation*}
y_{t}=\beta_{0}+\beta_{1} x_{t}+\beta_{2} z_{t}+\varepsilon_{t} \tag{2.20}
\end{equation*}
$$

Then the fitter values are:

$$
\begin{equation*}
\hat{y}_{t}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{t}+\hat{\beta}_{2} z_{t} . \tag{2.21}
\end{equation*}
$$

The error terms are assumed to be independent and identically distributed with mean zero and variance σ_{ε}^{2} :

$$
\begin{equation*}
\varepsilon_{t} \stackrel{\mathrm{iid}}{\sim}\left(0, \sigma_{\varepsilon}^{2}\right) \tag{2.22}
\end{equation*}
$$

The $\hat{\beta}_{j}$ in a multiple regression model can easily be obtained with econometrics software.
t-statistics: Provides a test that the true, but unknown, parameter β is equal to zero. That is: $H_{0}: \beta=0$.

$$
\begin{equation*}
\mathrm{t} \text {-statistic }=\frac{\text { Coefficient }}{\text { Standard Error }}=\frac{\hat{\beta}}{\operatorname{Std} . \operatorname{Error}(\hat{\beta})} \tag{2.23}
\end{equation*}
$$

Then you would need to compare it with the t-distribution.
Probability value: The p -value comes from comparing the t -statistics with the table t -distribution. It is the minimum confidence level at which the null $H_{0}: \beta=0$ is rejected.

Interpretation of β : Consider the following example. Here, wage ${ }_{i}$ is the hourly wage in US\$, while educ ${ }_{i}$ is the number of years of formal education.

$$
\text { wage }_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} \text { educ }_{i}+\varepsilon_{i}
$$

$\hat{\beta}_{0}$: This is the hourly wage of an individual with no formal education. That is, when $\operatorname{educ}_{i}=0$.
$\hat{\beta}_{1}$: This is the marginal effect of educ $_{i}$ on wage ${ }_{i}$. For every additional year of education, the hourly wage increases by $\hat{\beta}_{1}$.

Sum of Squared Residuals: (SSR) the amount of variance in the dependent variable (y) that is not explained by a regression model:

$$
\mathrm{SSR}=\sum_{t=1}^{T} e_{t}^{2}
$$

where

$$
e_{t}=y_{t}-\hat{y}_{t} .
$$

We can add and subtract \bar{y} from the right-hand side to get:

$$
e_{t}=y_{t}-\bar{y}-\left(\hat{y}_{t}-\bar{y}\right) .
$$

We then square and sum across all observations in the sample to obtain:

$$
\sum_{t-1}^{T} e_{t}^{2}=\sum_{t-1}^{T}\left(y_{t}-\bar{y}\right)^{2}-\sum_{t-1}^{T}\left(\hat{y}_{t}-\bar{y}\right)^{2}+0
$$

Rearranging terms:

$$
\begin{equation*}
\sum_{t-1}^{T}\left(y_{t}-\bar{y}\right)^{2}=\sum_{t-1}^{T} e_{t}^{2}+\sum_{t-1}^{T}\left(\hat{y}_{t}-\bar{y}\right)^{2} \tag{2.24}
\end{equation*}
$$

we have that:
$\sum_{t-1}^{T}\left(y_{t}-\bar{y}\right)^{2}$: is the Total Sum of Squares (TSS).
$\sum_{t-1}^{T} e_{t}^{2}$: is the Sum of Square Residuals (SSR).
$\sum_{t-1}^{T}\left(\hat{y}_{t}-\bar{y}\right)^{2}$: is the Model Sum of Squares (MSS).
From Equation 2.24 we can observe that the total variation (TSS) on the left-hand side variable can be broken down into variation not explained by the more (SSR) and the variation that is explained by the model (MSS). This is also illustrated in Figure 2.5.
\mathbf{R}-squared: Captures the proportion of the variation in y that is explained by the model:

$$
R^{2}=\frac{\sum_{t-1}^{T}\left(\hat{y}_{t}-\bar{y}\right)^{2}}{\sum_{t-1}^{T}\left(y_{t}-\bar{y}\right)^{2}}=1-\frac{\sum_{t-1}^{T} e_{t}^{2}}{\sum_{t-1}^{T}\left(y_{t}-\bar{y}\right)^{2}}
$$

Of course, $0 \leq R^{2} \leq 1$.
Adjusted R-squared: Adjusted the R^{2} to account for the degrees of freedom used in fitting the model:

$$
\bar{R}^{2}=1-\frac{\frac{1}{T-k} \sum_{t-1}^{T} e_{t}^{2}}{\frac{1}{T-1} \sum_{t-1}^{T}\left(y_{t}-\bar{y}\right)^{2}}
$$

Fig. 2.5 Variation in the dependent variable y.

As more variables are included in the model, the R^{2} will always increase. However, the \bar{R}^{2} can either increase or decrease. Both, the R^{2} and \bar{R}^{2}, are used as measures of the model fit.

Akaike Information Criterion: (AIC) it is effectively an estimate of the out-ofsample forecast variance. It has a high penalty for degrees of freedom:

$$
\mathrm{AIC}=e^{\frac{2 k}{T}} \frac{\sum_{t-1}^{T} e_{t}^{2}}{T}
$$

Schwarz Information Criterion: (SIC) it is an alternative to the AIC, but has an even harsher degrees-of-freedom penalty:

$$
\mathrm{SIC}=T^{\frac{k}{T}} \frac{\sum_{t-1}^{T} e_{t}^{2}}{T}
$$

F-statistic: The most popular F-statistic is to test if all the slope coefficients are jointly equal to zero. That is, $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{j}=0$.

$$
F=\frac{\left(\mathrm{SSR}_{\text {restricted }}-S S R\right) /(k-1)}{\operatorname{SSR} /(T-k)}
$$

where T is the total number of observations, k is the number of slope coefficients, and SSR is the Sum of Squared Residuals. This F-statistic has also an associated p -value. Its interpretation is similar to the p -value of the t -statistic.

Dependent Variable: Y				
Method: Least Squares				
Sample: 1 50				
Included observations: 50				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
X	-5.515772	1.147782	-4.805594	0.0000
Z	11.18922	0.416949	26.83592	0.0000
R-squared	0.926941	Mean dependent var	885.0800	
Adjusted R-squared	0.925419	S.D. dependent var	407.7874	
S.E. of regression	111.3649	Akaike info criterion	12.30268	
Sum squared resid	595303.0	Schwarz criterion	12.37916	
Log likelihood	-305.5670	Hannan-Quinn criter.	12.33180	
Durbin-Watson stat	0.176587			

Fig. 2.6 EViews regression output.

Consider the example presented in Figure 2.6. This computer output shows how the econometrics software will help us to quickly obtain all the statistics needed for the analysis.

Chapter 3

EViews: Basics

This chapter will cover the following points:

1. To get you familiar with EViews basics.
2. Learn how to import data to EViews.
3. Learn some basic commands to obtain summary statistics, line graphs, histograms.

3.1 Simple and multiple regression

EViews is a general purpose statistical software package. It is relatively easy for beginners who are starting with econometrics/time-series, but has some many more advance built-in procedures you may want to consider studying in the future. ${ }^{1}$

Once you open EViews, you will get the following screen:

[^0]This screen is basically divided into two windows. The upper white portion is to type the commands and the lower portion of the screen is for the output and where you will see the data.

How to create a Workfile.

Before you are able to perform any operation, you need to create an EViews "Workfile."

Recall the types of data econometricians work with? (1) Cross-section, (2) Timeseries, and (3) Panel data. This class is all about time-series data, so you have to select "Dated - regular frequency." ${ }^{2}$ For this example, we will be working with 21 yearly observations from 1985 to 2005.

You should then have the following screen:

[^1]| Workfile: ECON3342 - (c:\users\nicoldocumentslecon3342.wf1) | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| View | Proc | Object | Save | Freeze | Details $+/$ - | Show | Fetch | Store | Delete | Genr | Sample |
| Range: 19852005 -- 21 obs
 Sample: 19852005 - 21 obs | | | | | | | | | | | Filter: * |
| | | | | | | | | | | Order: | Name |
| $\begin{aligned} & \beta \text { c } \\ & \sim \text { resid } \end{aligned}$ | | | | | | | | | | | |
| 1 Untitled New Page | | | | | | | | | | | |

In order to create a new series, let's say GDP, you need to go to "Object" and select "New Object."

On a second screen you have to select "Series" as the type of object and select a name. In this case we decide the new name will be GDP.

If you click twice in the newly created series you will be able to see its content. Editing the series is simple and can be done by simply clicking the icon "edit." Then, typical features like "copy" and "paste" will be allowed, making it very easy to import data from any web page or, for example, MS Excel.

Let's get some real data! The Bureau of Economic Analysis website has a MS Excel file with real GDP data since the Great Depression. You can get the file directly from the following link:
http://www.bea.gov/national/xls/gdplev.xls.

B65		$\vdots \quad \times$	\checkmark
4	A	B	C
64	1984	4,040.7	7,285.0
65	1985	4,346.7	7,593.8
66	1986	4,590.2	7,860.5
67	1987	4,870.2	8,132.6
68	1988	5,252.6	8,474.5
69	1989	5,657.7	8,786.4
70	1990	5,979.6	8,955.0

Save the Excel file on your computer to be able to import it with EViews. To get the GDP series into EViews go to "File", then to "Import" and select "Import from file..."

After selecting the Excel file from your computer you will be able to select the cells where the data starts and finishes.

\square Read series by row (transpose incoming data)

Then select the names of the series.

To finally tell EViews where the data starts. In this example, we selected it to start in 1985. Make sure you always correctly match the starting cell in Excel with the correct starting date.

Note that there are various ways to successfully import data from an external source. We just described one way to do it. I encourage you to try other options to make sure you understand the steps.

Once your data is in EViews, playing with the options is very intuitive. For example, if you want a time-series graph of the GDP series, you just need to open the series and then select "View", then "Graphs...", and click OK on the default settings. You should be getting the following graph:

One easy way to obtain the sample descriptive statistics is to go to "View", then "Descriptive Statistics \& Tests", and select "Histogram and Stats". The resulting is the following:

From this output you can see the sample (1985-2005), number of observations, and some simple statistics such as the mean, median, standard deviation, minimum and maximum.

Chapter 4

EViews: Estimating a Regression Equation

This chapter will cover the following points:

1. Scatter plots.
2. Linear regressions.

4.1 Scatter plots

We will be using the data set under Handout 3 from the class website. The data set is already formatted for EViews (or gretl) and contains three variables: x, y and z :

Open variables x and y as a group:

Then select "View," "Graph...," "Scatter," and then select the "Scatter" with "Regression Line" options.

You will then obtain the following figure. This one shows the data points in the sample along with the linear regression of y as a function of x.

4.2 Regression output

How is the linear regression line obtained? This is done easily by typing the following command:

```
LS Y C X Z
```

This is basically telling EViews to run a linear regression using Least Squares (LS) with y as the dependent variable and on a constant and on variables x and z. The regression output is as follows:

Dependent Variable: Y
Method: Least Squares
Sample: 148
Included observations: 48

Variable	Coefficient Std. Error	t-Statistic	Prob.	
C	9.884732	0.190297	51.94359	0.0000
X	1.073140	0.150341	7.138031	0.0000
Z	-0.638011	0.172499	-3.698642	0.0006
R-squared				
Adjusted R-squared	0.552928 Mean dependent var	10.08241		
S.E. of regression	1.304371 Akaike info criterion			
Sum squared resid	76.56223 Schwarz criterion	3.546730		
Log likelihood	-79.31472 Hannan-Quinn criter.	3.473976		
F-statistic	27.82752 Durbin-Watson stat	1.506278		
Prob(F-statistic)	0.000000			

Chapter 5

Considerations to Successful Forecasting

5.1 Decision Environment and Loss Function

- Forecasts are made to guide decisions.
- Getting the wrong answer is costly.

Example: Forecast airline demand.

- The seller needs to select between two aircrafts (big vs. small).
- There are two states of the demand (high vs. low).

	High Demand	Low Demand
100-seat aircraft	$\$ 0$	$\$ 10,000$
80-seat aircraft	$\$ 10,000$	$\$ 0$

Need to forecast the demand to decide whether to schedule the 100 -seat aircraft or the 80 -seat aircraft.

In this example there are only two demand states. What if we have a continuous range of values? Then, we need to consider:

$$
\begin{equation*}
e_{t}=y_{t}-\hat{y}_{t} \tag{5.1}
\end{equation*}
$$

where:

- e_{t} : forecast error.
- y_{t} : actual value.
- \hat{y}_{t} : forecast.

Loss function: $L(e)$, a function of the forecast errors (e) that gives us the loss associated to forecasting.

We want three conditions for $L(e)$:

1. $L(0)=0$: Perfect forecast gives us zero loss.
2. $L(e)$ is a continuous function.
3. $L(e)$ should punish $(+)$ as well as $(-)$ deviations.

Quadratic loss: $L(e)=e^{2}$. Large errors are penalized more.
Absolute loss: $L(e)=|e|$. All errors are penalized equally.
In general $L(y, \hat{y})$. For example, in financial assets returns:

$$
L(y, \hat{y})=\left\{\begin{array}{lll}
0 & \text { if } & \operatorname{sign}(\Delta y)=\operatorname{sign}(\Delta \hat{y}) \\
1 & \text { if } & \operatorname{sign}(\Delta y) \neq \operatorname{sign}(\Delta \hat{y})
\end{array}\right.
$$

No loss if the sign is forecasted correctly (Note that $\Delta y=y_{t}-y_{t-1}$).

5.2 Forecast Object

a) Event outcome forecast. An event is certain but the outcome is uncertain.

Example: Event - Sunday weather. Outcome - rain / shine.
b) Event timing forecast. En event is certain and the outcome is known, but the timing is uncertain.

Example: It is not raining today and we know it will rain in the future, but we do not know when. Forecast when it will rain.
c) Time-series forecast. Project future values of a series.

Example: Forecast the amount of rain each month for the next 12 months given that we have historical data.

5.3 Forecast Statement

a) Point forecast. Forecast a single number.

Example: The inflation rate next month is forecasted at 0.3%
b) Interval forecast. A range in which we expect the realized value to fall.

Example: The 95\% confidence interval forecast for the GDP growth rate is [$-2.6 \%, 4.7 \%]$.
c) Density forecast. Forecast the probability distribution.

Example:

Fig. 5.1 Interval forecast and forecasting the probability distribution.
d) Probability forecast. Forecasts a probability (number between 0 and 1) of an event.

Example: Forecast the probability that it will rain on Sunday.

5.4 Forecast Horizon

The data set goes from $t=1,2, \ldots, T$.
The forecast could be for one period: $T+1$ (1 step), or for two periods: $T+2$ (2 steps).
h-step-ahead forecast is the forecast at period $T+h(\operatorname{only}$ period $T+h)$.
h-step-ahead extrapolation forecast is for h periods up until $T+h$ (all steps from 1 to h).

5.5 Information Set

Forecasts are conditional of the information set.

To forecast y_{T+1} we can use:
a) Univariate information set:

$$
\begin{equation*}
\Omega^{\text {Univariate }}=\left\{y_{T}, y_{T-1}, \ldots, y_{2}, y_{1}\right\} \tag{5.2}
\end{equation*}
$$

a) Multivariate information set:

$$
\begin{equation*}
\Omega^{\text {Multivariate }}=\left\{x_{T}, x_{T-1}, \ldots, x_{2}, x_{1}, y_{T}, y_{T-1}, \ldots, y_{2}, y_{1}\right\} \tag{5.3}
\end{equation*}
$$

5.6 Methods and Complexity

Key: Use the correct tool for the task in hand.
Parsimony principle: Simpler models are preferred. They are easier to estimate and interpret.

Shrinkage principle: Imposing restrictions on the forecast usually improves performance.

Chapter 6
 EViews: In-sample Forecast

This chapter will cover the following points:

1. Simple and multiple regression.
2. In-sample forecast.
3. In-sample forecast errors.

6.1 Simple and multiple regression

We will be using the data set under Handout 4 from the class website. The data set is already formatted for EViews and contains for key components of U.S. real GDP: Manufacturing, retail, services, and agriculture. The series correspond to annual data from 1960 to 2001 measured in millions of dollars.

We want to estimate the following model to see how the agricultural GDP has been changing over the years:

$$
\begin{equation*}
\text { agriculture }_{t}=\beta_{0}+\beta_{1} \text { year }_{t}+\varepsilon_{t} \tag{6.1}
\end{equation*}
$$

The variable year ${ }_{t}$ takes the value of the corresponding year: 1960, 1961, $\ldots, 2001$.
To generate the variable year you have to type the following command:

```
genr year = @year
```

Now, to estimate the model in Equation 6.1, you have to type the command:

```
LS agriculture c year
```

to obtain the following regression output: Notice that the interpretation of the slope coefficient β_{1} is the same as before: If year increases by one unit, then the agricultural GDP (aGDP) will increase by 3.12 million dollars. This means that in a given year the aGDP is about 3.12 million dollars greater than the aGDP the year before. The p -value indicates that the variable year $_{t}$ is statistically significant and the R^{2} shows that time (year $_{t}$) explains 97% of the variation in aGDP.

Dependent Variable: AGRICULTURE
Method: Least Squares
Sample: 19602001
Included observations: 42

Variable	Coefficient Std. Error	t-Statistic	Prob.	
C	-6119.273	165.4182	-36.99275	0.0000
YEAR	3.126007	0.083522	37.42740	0.0000
R-squared				
Adjusted R-squared	0.972238 Mean dependent var	71.78352		
S.E. of regression	6.560855 Akaike info criterion	6.646567		
Sum squared resid	1721.793 Schwarz criterion	6.729313		
Log likelihood	-137.5779 Hannan-Quinn criter.	6.676897		
F-statistic	1400.810 Durbin-Watson stat	1.298698		
Prob(F-statistic)	0.000000			

What happened in the year zero? The aGDP is estimated to be negative 6,119 million dollars. Does that make sense? No! That's why you have to be very careful in using these type of models to predict out-of-sample values.

6.2 In-sample Forecast

Let's obtain the in-sample forecasted values for aGDP (agriculture):

$$
\begin{gather*}
\text { agriculture }_{t}=\hat{\beta}_{0}+\hat{\beta}_{1} \text { year }_{t} \tag{6.2}\\
\text { agriculture }_{t}=6,119.273+3.126 \text { year }_{t}
\end{gather*}
$$

This can be done by simply selecting the "Forecast" icon while keeping the default options:

EViews will obtain:

and more importantly, EViews generated the variable "agricurturf" that contains the in-sample forecasted values. The difference between "agriculture" and "agriculturf" corresponds to the forecasting errors and this variable is automatically stored under "resid." You can obtain a graph of all these three components (actual value $=$ agriculture, fitted value $=$ agriculturf, forecasting error $=$ resid) by selecting the following option:

To obtain:

Chapter 7
 EViews: Importance of Graphics for Forecasting

This chapter will show the importance of using graphical tool before engaging into sophisticated statistical forecasting.

Consider the following variables, available under Handout 5 on the class website:

	X1	X2	X3	X4	Y1	Y2	Y3	Y4
1	10.00000	10.00000	10.00000	8.000000	8.040000	9.140000	7.460000	6.580000
2	8.000000	8.000000	8.000000	8.000000	6.950000	8.140000	6.770000	5.760000
3	13.00000	13.00000	13.00000	8.000000	7.580000	8.740000	12.74000	7.710000
4	9.000000	9.000000	9.000000	8.000000	8.810000	8.770000	7.110000	8.840000
5	11.00000	11.00000	11.00000	8.000000	8.330000	9.260000	7.810000	8.470000
6	14.00000	14.00000	14.00000	8.000000	9.960000	8.100000	8.840000	7.040000
7	6.000000	6.000000	6.000000	8.000000	7.240000	6.130000	6.080000	5.250000
8	4.000000	4.000000	4.000000	19.00000	4.260000	3.100000	5.390000	12.50000
9	12.00000	12.00000	12.00000	8.000000	10.84000	9.130000	8.150000	5.560000
10	7.000000	7.000000	7.000000	8.000000	4.820000	7.260000	6.420000	7.910000
11	5.000000	5.000000	5.00000	8.000000	5.680000	4.740000	5.730000	6.890000

In these data you have four pairs of y and x variables. Let's estimate the following model:

$$
\begin{equation*}
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i} \tag{7.1}
\end{equation*}
$$

Using any of the different y and x pairs, you will obtain the following output:

Dependent Variable: Y1
Method: Least Squares
Sample: 111
Included observations: 11

Variable	Coefficient Std. Error	t-Statistic	Prob.	
C	3.000091	1.124747	2.667348	0.0257
X 1	0.500091	0.117906	4.241455	0.0022
R-squared				
Adjusted R-squared	0.666542 Mean dependent var	7.500909		
S.E. of regression	1.236603 Akaike info criterion	3.425579		
Sum squared resid	13.76269 Schwarz criterion	3.497924		
Log likelihood	-16.84069 Hannan-Quinn criter. 3.379976			
F-statistic	17.98994 Durbin-Watson stat	3.212290		
Prob(F-statistic)	0.002170			

That corresponds to the following estimated equation:

$$
\hat{y 1}_{i}=3+0.5 x 1_{i}
$$

which holds for any pair. That is:

$$
\hat{y 2}_{i}=3+0.5 x 2_{i} \quad \hat{y 3_{i}}=3+0.5 x 3_{i} \quad \hat{y 4_{i}}=3+0.5 x 4_{i}
$$

Moreover, you will also get the same R^{2} as well as the same standard errors, t statistics and p-values.

What's the problem with this? There doesn't seem to be any problem, you may think, as different pairs of x and y can give exactly the same regression equation. The problem becomes clear when you graph the data:

Chapter 8
 Modeling and Forecasting Trend

8.1 Modeling Trend

Trend: Long-run evolution in a variable.
The dynamics of a series can be broadly separated into a trend, a seasonal component, and the cyclical component.

Deterministic Trend: It is a predicable trend.

Linear Trend.

$$
\begin{equation*}
T_{t}=\beta_{0}+\beta_{1} T I M E_{t} \tag{8.1}
\end{equation*}
$$

where β_{0} is the intercept and β_{1} is the slope (so we can have an increasing or decreasing series).

Quadratic Trend.

$$
\begin{equation*}
T_{t}=\beta_{0}+\beta_{1} T I M E_{t}+\beta_{2} T I M E_{t}^{2} \tag{8.2}
\end{equation*}
$$

It is a local approximation of a " U-shaped" trend.

Fig. 8.1 Quadratic trend with $\beta_{2}>0$.

Fig. 8.2 Quadratic trend with $\beta_{2}>0$

Cubic Trend.

$$
\begin{equation*}
T_{t}=\beta_{0}+\beta_{1} T I M E_{t}+\beta_{2} T I M E_{t}^{2}+\beta_{3} T I M E_{t}^{3} \tag{8.3}
\end{equation*}
$$

Exponential of Log-linear Trend. Economic variables sometimes grow at a constant rate β_{1}.

$$
\begin{equation*}
T_{t}=\beta_{0} e^{\beta_{1} T I M E_{t}}, \tag{8.4}
\end{equation*}
$$

where the trend is a exponential function of time. Taking natural logarithms of both sides we have:

$$
\begin{align*}
& \log \left(T_{t}\right)=\log \left(\beta_{0}\right)+\beta_{1} \log \left(e^{\text {TIME }} E_{t}\right. \tag{8.5}\\
& \log \left(T_{t}\right)=\log \left(\beta_{0}\right)+\beta_{1} \text { TIME } E_{t} \tag{8.6}
\end{align*}
$$

as $\log (e)=1$.

8.2 Estimating Trend Models

We can easily fit various trend models using ordinary least squares. Any computer software should be able to estimate:

$$
\begin{equation*}
\hat{\theta}=\underset{\theta}{\operatorname{argmin}} \sum_{t=1}^{T}\left(y_{t}-T_{t}(\theta)\right)^{2} \tag{8.7}
\end{equation*}
$$

where θ is just the set of parameters to be estimated. For example, in the quadratic trend of Equation 8.2, $\theta=\left(\beta_{0}, \beta_{1}, \beta_{2}\right)$. In this case the computer will find:

$$
\begin{equation*}
\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}\right)=\underset{\beta_{0}, \beta_{1}, \beta_{2}}{\operatorname{argmin}} \sum_{t=1}^{T}\left(y_{t}-\beta_{0}-\beta_{1} \text { TIME }_{t}-\beta_{2} \text { TIME }_{t}^{2}\right)^{2} \tag{8.8}
\end{equation*}
$$

8.3 Forecasting Trend

Consider the following linear trend model:

$$
\begin{equation*}
y_{t}=\beta_{0}+\beta_{1} \text { TIME }_{t}+\varepsilon_{t} \tag{8.9}
\end{equation*}
$$

which holds for any time t. Hence, for time $T+h$ in the future we have:

$$
\begin{equation*}
y_{T+h}=\beta_{0}+\beta_{1} T I M E_{T+h}+\varepsilon_{T+h} . \tag{8.10}
\end{equation*}
$$

After obtaining estimates of β_{0} and β_{1} via least squares, on the right-hand side of this equation we have:

TIME $_{T+h} \rightarrow$ known at time T.
$\varepsilon_{T+h} \rightarrow$ unknown at time T.
We replace ε_{T+h} with 0 in Equation 8.10 as it has expected value zero.
Point Forecast: We can use the following point forecast:

$$
\begin{equation*}
\hat{y}_{T+h, T}=\hat{\beta}_{0}+\hat{\beta}_{1} T I M E_{T+h} . \tag{8.11}
\end{equation*}
$$

where the subscript " $T+h, T$ " on $\hat{y}_{T+h, T}$ just emphasizes that the forecast of period $T+h$ is done at period T.

Interval Forecast: If we assume that the trend regression disturbance is normally distributed, in which case a 95% interval forecast is:

$$
\begin{equation*}
y_{T+h, T} \pm 1.96 \sigma \tag{8.12}
\end{equation*}
$$

where σ is the standard deviation of the disturbance term. To make this operational we use:

$$
\begin{equation*}
\hat{y}_{T+h, T} \pm 1.96 \hat{\sigma} \tag{8.13}
\end{equation*}
$$

with $\hat{\sigma}$ being an estimate of σ.
Density Forecast: Under the assumption that the trend regression is normally distributed, the density forecast is given by:

$$
\begin{equation*}
N\left(\hat{y}_{T+h, T}, \hat{\sigma}^{2}\right) \tag{8.14}
\end{equation*}
$$

8.4 Model Selection Criteria

How do we select between competing models? Minimizing the Mean Squared Error (MSE):

$$
\begin{equation*}
M S E=\frac{\sum_{t=1}^{T} e_{t}^{2}}{T} \tag{8.15}
\end{equation*}
$$

is the same as maximizing the R^{2} :

$$
\begin{equation*}
R^{2}=1-\frac{\sum_{t=1}^{T} e_{t}^{2}}{\sum_{t=1}^{T}\left(y_{t}-\bar{y}\right)^{2}} \tag{8.16}
\end{equation*}
$$

Moreover, improving the "fit" of historical data usually does not help in improving the out-of-sample forecasting. Hence, alternative involve the adjusted $R^{2}\left(\bar{R}^{2}\right)$, which adjusts for the degrees of freedom.

We can use the Akaike Information Criterion (AIC):

$$
\mathrm{AIC}=e^{\frac{2 k}{T}} \frac{\sum_{t-1}^{T} e_{t}^{2}}{T}
$$

and the Schwarz Information Criterion (SIC):

$$
\mathrm{SIC}=T^{\frac{k}{T}} \frac{\sum_{t-1}^{T} e_{t}^{2}}{T}
$$

where k is the number of parameters to be estimated and $(2 k / T)$ and (k / T) work as penalty factors. The idea is to select the model that gives the smallest AIC or SIC.

Chapter 9

EViews: Modeling and Forecasting Trend

This chapter will compare models with different trend structures and illustrate the use of the AIC and the SIC as two forms of selection criteria.

9.1 Comparing Trend Models

The variable of interest is the volume on the New York Stock Exchange.
Linear trend: Type and run the command:

```
ls nysevol c @trend
```

To obtain:

Dependent Variable: NYSEVOL Method: Least Squares				
Sample: 1950M01	1994M12			
Included observations: 540				
Variable	Coefficient Std. Error	t-Statistic	Prob.	
C	-6311.367	227.6358	-27.72572	0.0000
@TREND	8.592274	0.257692	33.34316	
R-squared				
Adjusted R-squared	0.673893	Mean dependent var	1159.615	
S.E. of regression	933.4706	Akaike info criterion		
Sum squared resid	$4.69 E+08$	Schwarz criterion	16.53529	
Log likelihood	-4458.236	Hannan-Quinn criter.	16.52561	
F-statistic	1111.766	Durbin-Watson stat	0.113092	
Prob(F-statistic)	0.000000			

Quadratic trend: Type and run the command:

```
ls nysevol c @trend @trend^2
```

To obtain:

Dependent Variable: NYSEVOL
Method: Least Squares
Sample: 1950M01 1994M12
Included observations: 540

Variable	Coefficient Std. Error	t-Statistic	Prob.	
C	21239.88	656.3047	32.36284	0.0000
@TREND	-56.88488	1.543046	-36.86532	0.0000
@TREND^2	0.037652	0.000884	42.56987	0.0000
R-squared				
Adjusted R-squared	0.925456 Mean dependent var	1159.615		
S.E. of regression	446.7168 Akaike info criterion			
Sum squared resid	$1.07 E+08$ Schwarz criterion	15.07111		
Log likelihood	-4059.762 Hannan-Quinn criter.	15.05659		
F-statistic	3333.379	Durbin-Watson stat	0.493887	
Prob(F-statistic)	0.000000			

Cubic trend: Type and run the command:

```
ls nysevol c @trend @trend^2 @trend^3
```

To obtain:

Dependent Variable: NYSEVOL
Method: Least Squares
Sample: 1950M01 1994M12
Included observations: 540

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-37461.26	3141.303		0.0000
@TREND	153.9406	11.19722	13.74810	0.0000
@TREND^2	-0.209583	0.013074	-16.03063	0.0000
@TREND^3	$9.48 E-05$	$5.01 E-06$	18.93661	0.0000
R-squared				
Adjusted R-squared	0.955336 Mean dependent var	1159.615		
S.E. of regression	346.1037		14.53873	
Sum squared resid	64206230	Schwarz criterion	14.57052	
Log likelihood	-3921.458 Hannan-Quinn criter.	14.55117		
F-statistic	3821.611	Durbin-Watson stat	0.823825	
Prob(F-statistic)	0.000000			

Fourth power trend: Type and run the command:

```
ls nysevol c @trend @trend^2 @trend^3 @trend^4
```

To obtain:

Dependent Variable: NYSEVOL
Method: Least Squares
Sample: 1950M01 1994M12
Included observations: 540

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-40938.43	19576.47	-2.091206	0.0370
@ TREND	170.6429	93.48719	1.825307	0.0685
@TREND^2	-0.239225	0.165235	-1.447789	0.1483
@ TREND^3	0.000118	0.000128	0.919407	0.3583
@TREND^4	$-6.63 E-09$	$3.68 E-08$	-0.179956	0.8573
R-squared				
Adjusted R-squared	0.955339 Mean dependent var	1159.615		
S.E. of regression	346.4165 Akaike info criterion	14.54238		
Sum squared resid	64202344	Schwarz criterion	14.58211	
Log likelihood	-3921.442	Hannan-Quinn criter.	14.55792	
F-statistic	2861.042	Durbin-Watson stat	0.823879	
Prob(F-statistic)	0.000000			

Comparing the fit of different models for the trend we have:

	Linear	Quadratic	Cubic	Four	Five
R-squared	0.6739	0.9255	0.9553	0.9553	0.9561
Adjusted R-squared	0.6733	0.9252	0.9551	0.9550	0.9557
S.E. of regression	933.4706	446.7168	346.1037	346.4165	343.6152
Akaike info criterion (AIC)	16.5194	15.0473	14.5387	14.5424	14.5280
Schwarz critetion (SIC)	16.5353	15.0711	14.5705	14.5821	14.5757

The R-squared will always increase as we include more variables into the model, hence does not work as a model selection criterion.

The Adjusted R-squared and the Standard Error of the regression do penalize for the inclusion of more variables into the model (which decreases the degrees of freedom), but the penalty is not severe enough. They can increase or decrease as more variables are included.

The AIC and the SIC can increase or decrease as more variables are included. The selected model should be the one that has the smallest AIC and SIC. When they do not select the same model, the parsimonious model should be selected. That is, the one with the least number of estimated parameters and this will be given by the SIC. In the models above, AIC selects the fifth specification, but SIC selects the cubic specification. We pick the parsimonious model: the cubic trend model.

9.2 Forecasting

With the cubic trend as our selected model we now aim at getting the out-of-sample point forecast values. After estimating the equation, just click on "Forecast" and make sure the "Forecasting sample" contains some values into the future:

To obtain:

The dotted red lines are the one standard deviation confidence intervals. Notice that the forecast spans for an additional year (the twelve months of 1995). Moreover, remember that the variable NYSEVOLF contains the values of the point forecasts.

Chapter 10
 Modeling and Forecasting Seasonality

10.1 Nature and Sources of Seasonality

Seasonality: A seasonal pattern is one that repeats itself every year (or season, week, month).

Deterministic Seasonality: The annual repetition can be exact. This is different from stochastic seasonality in which the repetition is approximate. This chapter focuses on deterministic seasonality.

Examples:

- Retail sales are usually higher during the Christmas season.
- More travelers fly during weekends.
- Tax collection peaks in April.
- Weather \rightarrow Summer / winter.

Fig. 10.1 Seasonality in air ticket sales.

10.2 Modeling Seasonality

Regression using seasonal dummies.

Dummy variable $=1$ during some periods (e.g., weekends).
Dummy variable $=0$ the rest of the time.
Consider the following example.

Table 10.1 Quarterly Sales Data

Observation	Sales	Quarter	Year	D_{1}	D_{2}	D_{3}	D_{4}
1	58	1	2017	1	0	0	0
2	63	2	2017	0	1	0	0
3	72	3	2017	0	0	1	0
4	53	4	2017	0	0	0	1
5	57	1	2018	1	0	0	0
6	62	2	2018	0	1	0	0
7	75	3	2018	0	0	1	0
8	58	4	2018	0	0	0	1
\vdots							

Sales in thousands of \$.

The dummies will capture the deterministic seasonal effect.

$$
\begin{equation*}
\text { Sales }_{t}=\gamma_{1} D_{1 t}+\gamma_{2} D_{2 t}+\gamma_{3} D_{3 t}+\gamma_{4} D_{4 t}+\varepsilon_{t} \tag{10.1}
\end{equation*}
$$

The pure seasonal dummy model is:

$$
\begin{equation*}
y_{t}=\sum_{t=1}^{s} \gamma_{i} D_{i t}+\varepsilon_{t} \tag{10.2}
\end{equation*}
$$

Hence, for $s=4$, Equation 10.2 reduces to Equation 10.1 as $\sum_{i=1}^{s} \gamma_{i} D_{i t}=\gamma_{1} D_{1 t}+$ $\gamma_{2} D_{2 t}+\gamma_{3} D_{3 t}+\gamma_{4} D_{4 t}$. Note that we can modify Equation 10.2 to additionally include a trend:

$$
\begin{equation*}
y_{t}=\beta_{1} T I M E_{t}+\sum_{i=1}^{s} \gamma_{i} D_{i t}+\varepsilon_{t} \tag{10.3}
\end{equation*}
$$

Holiday variation: Dummies for specific holidays. For example,
$H D=1$: if Thanksgiving.
$H D=0$: otherwise.

10.3 Forecasting Seasonal Series

Consider the model:

$$
\begin{equation*}
y_{t}=\beta_{1} T I M E_{t}+\sum_{i=1}^{s} \gamma_{i} D_{i t}+\sum_{i=1}^{v} \delta_{i} H D_{i t}+\varepsilon_{t} \tag{10.4}
\end{equation*}
$$

where TIME_{t} is the linear time trend, $\sum_{i=1}^{s} \gamma_{i} D_{i t}$ captures the seasonal variation, and $\sum_{i=1}^{v} \delta_{i} H D_{i t}$ captures the holiday variation. ε_{t} is the remaider stochastic term.

Equation 10.4 holds for every time t, so at time $T+h$ we have:

$$
\begin{equation*}
y_{T+h}=\beta_{1} \text { TIME }_{T+h}+\sum_{i=1}^{s} \gamma_{i} D_{i, T+h}+\sum_{i=1}^{v} \delta_{i} H D_{i, T+h}+\varepsilon_{T+h} \tag{10.5}
\end{equation*}
$$

At time T (i.e., the moment we forecast), we have:
TIME $_{T+h} \rightarrow$ known at time T.
$D_{i, T+h} \rightarrow$ known at time T.
$H D_{i, T+h} \rightarrow$ known at time T.
$\varepsilon_{T+h} \rightarrow$ unknown at time T.
We replace ε_{T+h} with 0 in Equation 10.4 as it has expected value zero.
The forecast of y_{T+h} made at time T is:

$$
\begin{equation*}
\hat{y}_{T+h, T}=\hat{\beta}_{1} T I M E_{T+h}+\sum_{i=1}^{s} \hat{\gamma}_{i} D_{i, T+h}+\sum_{i=1}^{v} \hat{\delta}_{i} H D_{i, T+h} \tag{10.6}
\end{equation*}
$$

where $\hat{\beta}_{1}, \hat{\gamma}_{i}$, and $\hat{\delta}_{i}$ denote the estimates obtained via ordinary least squares using historical data.

Chapter 11

EViews: Modeling and Forecasting Seasonality

This chapter will show the use of dummy variables to model and forecast seasonality.

Let the variable of interest be the monthly total number of air passengers transported in U.S. domestic and international flights. We have data from August, 2009 up until June, 2019. This is a typical variable that has seasonal fluctuations in addition to a potential trend.

The following time series graph of illustrates the importance of seasonal component in this variable:

This variable is contained in the EViews file "passengers.wf1" along with some dummy variables. Part of the data showing the dummy variables is as follows:

| | AIRPASS | D01 | D02 | D03 | D04 | D05 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2009M08 | 73607921 | 0 | 0 | 0 | 0 | 0 |
| 2009M09 | 60512481 | 0 | 0 | 0 | 0 | 0 |
| 2009M10 | 63325757 | 0 | 0 | 0 | 0 | 0 |
| 2009M11 | 58170882 | 0 | 0 | 0 | 0 | 0 |
| 2009M12 | 62377082 | 0 | 0 | 0 | 0 | 0 |
| 2010M01 | 58655574 | 1 | 0 | 0 | 0 | 0 |
| 2010M02 | 52438942 | 0 | 1 | 0 | 0 | 0 |
| 2010M03 | 67304853 | 0 | 0 | 1 | 0 | 0 |
| 2010M04 | 64062751 | 0 | 0 | 0 | 1 | 0 |
| 2010M05 | 67970934 | 0 | 0 | 0 | 0 | 1 |

Note the $0 / 1$ nature of the dummy variables. For example, $D 2$ is equal to one when the month is February, zero otherwise.

11.1 Failing to Model Seasonality

If we estimate a naive econometric model that just accounts for a linear trend we would type:

```
ls airpass c @trend
```

To obtain:

Dependent Variable: AIRPASS
Method: Least Squares
Sample: 2009M08 2019M06
Included observations: 119

Variable	Coefficient Std. Error	t-Statistic	Prob.	
C	62547562	1341965.	46.60894	0.0000
@TREND	190748.7	19656.29	9.704206	0.0000
R-squared				
Adjusted R-squared	0.445948 Mean dependent var	73801737		
S.E. of regression	7365736 . Akaike info criterion			
Sum squared resid	6.35E + 15 Schwarz criterion	34.52595		
Log likelihood	-2049.515 Hannan-Quinn criter.	34.49821		
F-statistic	94.17161	Durbin-Watson stat	0.982941	
Prob(F-statistic)	0.000000			

This regression model yields the following actual, fitted and residuals graph:

This model allows controlling for the trend, but it still misses to account for the systematic fluctuations that appear every year.

11.2 Modeling Seasonality with Dummies

The econometric model that accounts for the seasonal variation is:
ls airpass d01 d02 d03 d04 d05 d06 d07 d08 d09 d10 d11 d12
With the regression output given by:

Dependent Variable: AIRPASS Method: Least Squares Sample: 2009M08 2019M06				
Included observations: 119				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
D01	66392856	2222332.	29.87530	0.0000
D02	60738127	2222332.	27.33080	0.0000
D03	76392041	2222332.	34.37472	0.0000
D04	73361346	2222332.	33.01097	0.0000
D05	78099360	2222332.	35.14297	0.0000
D06	83312966	2222332.	37.48898	0.0000
D07	86113225	2342544.	36.76056	0.0000
D08	82046928	2222332.	36.91929	0.0000
D09	69226001	2222332.	31.15016	0.0000
D10	72449763	2222332.	32.60078	0.0000
D11	67211336	2222332.	30.24360	0.0000
D12	71508042	2222332.	32.17702	0.0000
R-squared	0.538753	Mean dependent var	73801737	
Adjusted R-squared	0.491335	S.D. dependent var	9853554.	
S.E. of regression	7027632.	Akaike info criterion	34.46398	
Sum squared resid	$5.28 E+15$	Schwarz criterion	34.74423	
Log likelihood	-2038.607	Hannan-Quinn criter.	34.57778	
Durbin-Watson stat	0.035139			

Table 11.1 Regression model of air passengers transported as a function of seasonal dummies.

In this Table 11.1 we can see how the coefficients of the dummy variables explain about 53.9% of the total variation in air passengers. Note that we not include a constant to avoid having a problem of multicollinearity.

The actual, fitted, and residual graph below shows that while the model accounts for the seasonal variation, there is still a trend that needs to be modeled. The code on EViews to jointly estimate a model with seasonal dummies and a quadratic trend is: ${ }^{1}$

```
ls airpass @trend @trend^2 d01 d02 d03 d04 d05 d06 d07 d08 d09 d10 d11 d12
```

We omit the regression output as it is similar to the one reported in Table 11.1. Both coefficients on @trend and @trend^2 are statistically significant, and the R^{2} of the model is 98.8%.

The actual, fitted, and residual graph is:

In this graph we can observe how the fitted values (green line), follow very closely the actual values (red line). Moreover the residuals measured on the lefthand side do not appears to have any remaining seasonal pattern or trend.

11.3 Forecasting Seasonality

To be able to obtain the out-of-sample forecast, we need to first increase the workfile size to be able to include observations beyond period T. To do this, go to "Proc" and then "Structure/Resize Current Page".

[^2]| Workfile: PASSENGERS - (zilutrgviteachinglecor | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| View | Proc | Object | Save | Freeze | Details $+/$ - | Show |
| Ranc Sam | | Set Sample... | | | | |
| V | | Structure/Resize Current Page... | | | | |
| 包 | | Append to Current Page... | | | | |
| - | | Contract Current Page... | | | | |
| 会 | | Reshape Current Page | | | | |

To then select some date in the future (i.e., beyond " T "). In this case se use June, 2020 given that out data stops at June, 2019.

For the forecasting graph and the forecasting series, we follow the steps in the previous handouts to obtain:

11.4 How to Create Dummy Variables

If the dummy variables $\mathrm{d} 1, \mathrm{~d} 2, \ldots, \mathrm{~d} 12$ are not readily available in the data set, they can easily be created using the following command:

```
genr dum1 = @seas(1)
```

This generates the dummy for the first month. You have to repeat this for all 12 months in the sample: genr dum $2=@$ seas(2)... until genr dum12 = @seas(12).

Chapter 12
 Characterizing Cycles

Cycles: Any sort of dynamics not captured by the trend or seasonality.

- Only need some persistence.
- Are more sophisticated than the trend and seasonal components.

12.1 Covariance Stationary Time Series

Consider the following realizations of a time series:

$$
\left\{\ldots y_{-3}, y_{-2}, y_{-1}, y_{0}, y_{1}, y_{2}, y_{3}, \ldots\right\}
$$

which are ordered in time.
We only observed a sample path:

$$
\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{T}\right\}
$$

To forecast we need:

- That the probabilistic structure of the series be the same in the future.
- At the minimum we want the covariance structure to be stable over time (we call this covariance stationary).

Covariance Stationary: We want the mean and the covariance structure of the series to be stable.

For the mean to be stable we need:

$$
\begin{equation*}
E\left(y_{t}\right)=\mu \tag{12.1}
\end{equation*}
$$

where μ does not have a t subscript as it is constant over time.
To assess if the covariance structure is stable we will use the autocovariance function, the autocorrelation function, and the partial autocorrelation function.

Autocovariance Function: It is defined as the covariance between y_{t} and $y_{t-\tau}$ at different values of the displacement τ. Formally, the autocovariance function is given by

$$
\begin{equation*}
\gamma(t, \tau)=\operatorname{cov}\left(y_{t}, y_{t-\tau}\right) \tag{12.2}
\end{equation*}
$$

where τ is the displacement, and $\operatorname{cov}\left(y_{t}, y_{t-\tau}\right)$ is just the covariance between y_{t} and $y_{t-\tau}$.

If the autocovariance is stable it should depend only on τ, not on t. That is,

$$
\begin{equation*}
\gamma(t, \tau)=\gamma(\tau) \quad \text { for all } t \tag{12.3}
\end{equation*}
$$

The autocovariance is symmetric:

$$
\begin{equation*}
\gamma(\tau)=\gamma(-\tau) \tag{12.4}
\end{equation*}
$$

Moreover, the autocovariance at displacement zero, $\tau=0$, is equal to the variance,

$$
\begin{equation*}
\gamma(0)=\operatorname{var}\left(y_{t}\right) \tag{12.5}
\end{equation*}
$$

where $\operatorname{var}\left(y_{t}\right)$ denotes the variance of y_{t}.
Autocorrelation Function: For practical purposes is it better to focus on the autocorrelation function, which is units free and defined as:

$$
\begin{equation*}
\rho(\tau)=\frac{\gamma(\tau)}{\gamma(0)} \quad \text { for } \tau=0,1,2, \ldots \tag{12.6}
\end{equation*}
$$

where $\gamma(0)$ is the variance of y_{t}, and $\gamma(\tau)$ is the autocovariance at displacement τ. We can view $\rho(\tau)$ as the correlation coefficient between y_{t} and $y_{t-\tau}$.
Note that at displacement zero, $\rho(0)=\frac{\gamma(0)}{\gamma(0)}=1$.
Partial Autocorrelation Function: It is denoted by $p(\tau)$ and measures the association between y_{t} and $y_{t-\tau}$ after controlling for $y_{t-1}, y_{t-2}, \ldots, y_{t-\tau+1}$.

It is obtained by regressing y_{t} on $y_{t-1}, y_{t-2}, \ldots, y_{t-\tau}$. Then $p(\tau)$ is the slope coefficient on $y_{t-\tau}$.

$$
\begin{equation*}
y_{t}=\beta_{0}+\beta_{1} y_{t-1}+\beta_{2} y_{t-2}+\cdots+\beta_{\tau} y_{t-\tau}+\varepsilon_{t} \tag{12.7}
\end{equation*}
$$

where in this model $p(\tau)=\beta_{\tau}$.
The partial autocorrelation function contrasts with the autocorrelation function, which does not control for other lags.

The covariance stationary processes that we will study have autocorrelation and partial autocorrelation functions that approach to 0 .

12.2 White Noise

Suppose that:

$$
\begin{equation*}
y_{t}=\varepsilon_{t} \tag{12.8}
\end{equation*}
$$

where $\varepsilon_{t} \sim\left(0, \sigma^{2}\right)$. There are no dynamics in the process.
We say that ε_{t} is serially uncorrelated. That is, we cannot predict ε_{t} based on its past observations, $\varepsilon_{t-1}, \varepsilon_{t-2}, \ldots$

We say that y_{t} is a white noise process when:

$$
y_{t} \stackrel{\text { iid }}{\sim}\left(0, \sigma^{2}\right) \quad \text { or } \quad y_{t} \sim W N\left(0, \sigma^{2}\right) .
$$

where iid means independent and identically distributed. Figure 12.1 illustrates the dynamics of a white-noise process.

Fig. 12.1 White-noise process $y_{t} \stackrel{\mathrm{iid}}{\sim}\left(0, \sigma^{2}\right)$ or $y_{t} \sim W N\left(0, \sigma^{2}\right)$.

A Gaussian white noise process is:

$$
y_{t} \stackrel{\mathrm{idd}}{\sim} N\left(0, \sigma^{2}\right)
$$

where $N\left(0, \sigma^{2}\right)$ just denotes the normal (or Gaussian) distribution so that the mean and variance are given by:

$$
\begin{aligned}
E\left(y_{t}\right) & =0 \\
\operatorname{var}\left(y_{t}\right) & =\sigma^{2}
\end{aligned}
$$

The autocovariance function for a white noise process is:

$$
\begin{array}{rlrl}
\gamma(\tau)=\sigma^{2} & \text { for } & \tau=0 \\
& =0 & & \text { for }
\end{array} \quad \tau \geq 1
$$

The autocorrelation function for a white noise process is:

$$
\begin{aligned}
\rho(\tau) & =1 & \text { for } & \tau=0 \\
& =0 & & \text { for }
\end{aligned} \quad \tau \geq 1
$$

Because $y_{t-1}, y_{t-2}, y_{t-3}, \ldots$ have no information to predict y_{t}, the partial autocorrelation function of a white noise process is:

$$
\begin{array}{rlrl}
\rho(\tau) & =1 & \text { for } & \tau=0 \\
& =0 & \text { for } & \\
\tau \geq 1
\end{array}
$$

The conditional mean and variances are:

$$
\begin{gathered}
E\left(y_{t} \mid \Omega_{t-1}\right)=0 \\
\operatorname{var}\left(y_{t} \mid \Omega_{t-1}\right)=\sigma^{2}
\end{gathered}
$$

12.3 Lag Operator

$$
\begin{align*}
L^{m} y_{t} & =y_{t-m} \tag{12.9}\\
L^{1} y_{t} & =y_{t-1} \tag{12.10}\\
L^{2} y_{t} & =y_{t-2} \\
B(L) & =b_{0}+b_{1} L+b_{2} L^{2}+b_{3} L^{3}+\cdots+b_{n} L^{n}=\sum_{i=0}^{\infty} b_{i} L^{i} .
\end{align*}
$$

12.4 Wold's Theorem

What model should we use after controlling for the trend and seasonal components?
Let $\left\{y_{t}\right\}$ be a zero-mean and covariance-stationary process. Then $\left\{y_{t}\right\}$ can be written in its Wold representation form:

$$
\begin{equation*}
y_{t}=\sum_{i=0}^{\infty} b_{i} L^{i} ; \quad b_{0}=1 ; \quad \sum_{i=0}^{\infty} b_{i}^{2}<0 ; \quad \text { and } \quad \varepsilon_{t}=W N\left(0, \sigma^{2}\right) \tag{12.11}
\end{equation*}
$$

or

$$
\begin{equation*}
y_{t}=b_{0}+b_{1} \varepsilon_{t-1}+b_{2} \varepsilon_{t-2}+b_{3} \varepsilon_{t-3}+\cdots \tag{12.12}
\end{equation*}
$$

In summary, the Wold's Theorem indicates that any stationary process has this seemingly special representation of Equation 12.12. As we will see later on, this is called the moving average representation of a covariance-stationary process.

12.5 Estimation of $\mu, \rho(\tau)$, and $p(\tau)$

For μ, we use the sample mean:

$$
\begin{equation*}
\hat{\mu}=\bar{y}=\frac{1}{T} \sum_{t=1}^{T} y_{t} \tag{12.13}
\end{equation*}
$$

For the autocorrelation $\rho(\tau)$, we use sample autocorrelation function:

$$
\begin{equation*}
\hat{\rho}(\tau)=\frac{\sum_{t=\tau+1}^{T}\left(y_{t}-\bar{y}\right)\left(y_{t-\tau}-\bar{y}\right)}{\sum_{t=1}^{T}\left(y_{t}-\bar{y}\right)^{2}} \tag{12.14}
\end{equation*}
$$

What if we are interested in knowing if the series is a good approximation of a white noise process? This is an important question to assess the quality of a forecasting model. Once we select a forecasting model, the regression residuals need to be a good approximation of a white noise process. A simple test would be to assess if the all the autocorrelations are zero. For example, we can plot the sample autocorrelations along their two-standard-error bands and assess if 95% of the sample autocorrelations fall within this band. If so, the series can be said to be white noise.

Box-Pierce Q-statistic: It is a formal test that y_{t} is white noise.

$$
\begin{equation*}
Q_{B P}=T \sum_{\tau=1}^{m} \hat{\rho}^{2}(\tau) \sim \chi_{m}^{2} \tag{12.15}
\end{equation*}
$$

where m is the number of autocorrelations, which is also equal to the number of degrees of freedom. Moreover, " \sim " means that the $Q_{B P}$ approximates a chi-squared distribution with m degrees of freedom $\left(\chi_{m}^{2}\right)$. We reject the null hypothesis of white noise if the p -value is less than α (e.g., $\alpha=0.05$).

The Box-Pierce Q-statistic is essentially a test that all autocorrelations are zero. If we fail to reject the null hypothesis of y_{t} being white noise, then we can conclude that the series y_{t} is unpredictable.

Ljung-Pierce Q-statistic: In small samples, we use the Ljung-Pierce Q-statistic instead of the Box-Pierce Q-statistic. This is because the Ljung-Pierce Q-statistic presents a small sample correction.

$$
\begin{equation*}
Q_{L P}=T(T+2) \sum_{\tau=1}^{m}\left(\frac{1}{T-\tau} \hat{\rho}^{2}(\tau)\right) \chi_{m}^{2} \tag{12.16}
\end{equation*}
$$

For the partial autocorrelation function $p(\tau)$, we use:

$$
\begin{equation*}
\hat{y}_{t}=\hat{c}+\hat{\beta}_{1} y_{t-1}+\cdots+\hat{\beta}_{\tau} y_{t-\tau}, \tag{12.17}
\end{equation*}
$$

where $\hat{p}(\tau) \equiv \hat{\beta}_{\tau}$.

Chapter 13

EViews: Characterizing Cycles

This chapter will show how to obtain the correlogram.

13.1 Unemployment Rate

Figure 13.1 presents the U.S. monthly unemployment rate between January 2000 and September 2019. The data comes from the Bureau of Labor Statistics. ${ }^{1}$ This variable is contained in the EViews file "unemploymentrate.wf1"
U.S. Unemployment Rate

[^3]
13.2 Correlogram of a Series

The correlogram of this unemployment rate is obtained on EViews by opening the series and then selecting "View" and "Correlogram..."

Series: EMPL Workfile: UNEMPLOYME					
View	Proc	Object]	Properties]	Print]	Nam
SpreadSheet					
Graph...					
Descriptive Statistics \& Tests					
One-Way Tabulation...					
Correlogram...					
Long-run Variance...					
Unit Root Test...					
Breakpoint Unit Root Test...					
Variance Ratio Test...					
BDS Independence Test...					
Forecast Evaluation...					
Label					

Then the we need to have "Level" (the default option) and select the lags to include. The default is 12 , but for this example we use $18 .{ }^{2}$

The resulting correlogram is:

[^4]| Sample:
 Included observations: 237 |
| :--- |
| Autocorrelation |
| Partial Correlation |

There are various important elements in this computer output:

- The numbers that go from 1 to 18 on the unlabeled column are the different displacements τ that we introduced on Chapter 12.
- The bars under "Autocorrelation" along the autocorrelation point estimates under "AC" are obtained using Equation 12.14 at different displacements τ.
. The bars under "Partial Correlation" along with the partial autocorrelations point estimates under "PAC" follow Equation 12.17 for different displacements τ.
- The column "Q-Stat" is reporting the Ljung-Pierce Q-statistic from Equation 12.16 at different displacements τ. This statistic serves to test the null hypothesis that the underlying series follows a white-noise process. The p-values reported under "Prob" provide strong empirical evidence that the U.S. unemployment rate is not a white-noise process. That is, we reject the null at different $\tau \mathrm{s}$.

Chapter 14
 Modeling Cycles: MA, AR and ARMA Models

There are three approximation of the Wold representation of a covariancestationary series y_{t} :

MA: Moving average.
AR: Autoregressive.
ARMA: Autoregressive moving average.
We will use $\rho(\tau), p(\tau)$, AIC, and BIC to select the model.

14.1 Moving Average (MA) Models

14.1.1 The MA(1) Process

MA(1) process:

$$
\begin{equation*}
y_{t}=\varepsilon_{t}+\theta \varepsilon_{t-1} \tag{14.1}
\end{equation*}
$$

where,

$$
\varepsilon_{t} \sim W N\left(0, \sigma^{2}\right)
$$

That is, the shocks ε_{t} follow a white noise process with mean zero and variance σ^{2}.
Equation 14.1 shows how a shock affects the series y_{t} contemporaneously, and then again after one period.

The idea in MA models is that y_{t} is modeled as a function of current and lagged values of the unobserved shocks.

Expected Value:

$$
\begin{equation*}
E\left(y_{t}\right)=0 \tag{14.2}
\end{equation*}
$$

Variance:

$$
\begin{equation*}
\operatorname{Var}\left(y_{t}\right)=\sigma^{2}\left(1+\theta^{2}\right) \tag{14.3}
\end{equation*}
$$

Autocorrelation:

$$
\begin{array}{lll}
\rho(\tau)=\frac{\theta}{1+\theta^{2}} & \text { if } & \tau=1 \\
\rho(\tau)=0 & \text { if } & \tau>1
\end{array}
$$

Note that the MA(1) process:

$$
y_{t}=\varepsilon_{t}+\theta \varepsilon_{t-1}
$$

holds for every t, hence we can write:

$$
\begin{aligned}
y_{t-1} & =\varepsilon_{t-1}+\theta \varepsilon_{t-2} \\
y_{t-2} & =\varepsilon_{t-2}+\theta \varepsilon_{t-3} \\
y_{t-3} & =\varepsilon_{t-3}+\theta \varepsilon_{t-4}
\end{aligned}
$$

and so forth. We can then substitute backwards in the MA(1) process to obtain:

$$
\begin{equation*}
y_{t}=\varepsilon_{t}+\theta y_{t-1}-\theta^{2} y_{t-2}+\theta^{3} y_{t-3}-\cdots, \tag{14.4}
\end{equation*}
$$

which is essentially y_{t} as a function of its own lags and the contemporaneous shock ε_{t}.

To illustrate the role of θ in the dynamics of an $\mathrm{MA}(1)$ process, consider the following two $\mathrm{MA}(1)$ processes:

$$
\begin{aligned}
& y_{t}=\varepsilon_{t}+0.08 \varepsilon_{t-1}, \\
& x_{t}=\varepsilon_{t}+0.98 \varepsilon_{t-1} .
\end{aligned}
$$

Both of these processes are illustrated in Figure 14.1. Note that consistent with Equation 14.3, the variance of x_{t} is higher than the variance of y_{t} as the x_{t} process has a higher θ.

Fig. 14.1 Two $\mathrm{MA}(1)$ processes: $y_{t}=\varepsilon_{t}+0.08 \varepsilon_{t-1}$ and $x_{t}=\varepsilon_{t}+0.98 \varepsilon_{t-1}$.

14.1.2 The MA(q) Process

The MA (q) process is a finite order moving average process of order q. It can be written as:

$$
\begin{equation*}
y_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\cdots+\theta_{q} \varepsilon_{t-q} \tag{14.5}
\end{equation*}
$$

where,

$$
\varepsilon_{t} \sim W N\left(0, \sigma^{2}\right)
$$

We can see from Equation 14.5 that a shock affects the series for q periods. MA(1) is a special case where $q=1$.

14.2 Autoregressive (AR) Models

14.2.1 The AR(1) Process

$\mathrm{AR}(1)$ process:

$$
\begin{equation*}
y_{t}=\phi y_{t-1}+\varepsilon_{t} \tag{14.6}
\end{equation*}
$$

where,

$$
\varepsilon_{t} \sim W N\left(0, \sigma^{2}\right)
$$

In Equation 14.6 shows how in an $\operatorname{AR}(1)$ process, the current value of a series linearly depends on the past values plus a random shock.

Expected Value:

$$
\begin{equation*}
E\left(y_{t}\right)=0 \tag{14.7}
\end{equation*}
$$

Variance:

$$
\begin{equation*}
\operatorname{Var}\left(y_{t}\right)=\frac{\sigma^{2}}{1-\phi^{2}} \tag{14.8}
\end{equation*}
$$

Autocorrelation:

$$
\rho(\tau)=\phi^{\tau} \quad \text { for } \quad \tau=0,1,2, \ldots
$$

Partial autocorrelation:

$$
\begin{array}{lll}
p(\tau)=\phi & \text { if } & \tau=1 \\
p(\tau)=0 & \text { if } & \tau>1
\end{array}
$$

Note that the $\mathrm{AR}(1)$ process:

$$
y_{t}=\phi y_{t-1}+\varepsilon_{t}
$$

holds for every t, hence we can write:

$$
\begin{aligned}
y_{t-1} & =\phi y_{t-2}+\varepsilon_{t-1} \\
y_{t-2} & =\phi y_{t-3}+\varepsilon_{t-2} \\
y_{t-3} & =\phi y_{t-4}+\varepsilon_{t-3}
\end{aligned}
$$

and so forth. We can then substitute backwards for lagged y 's on the right-hand side of the $\mathrm{AR}(1)$ process to obtain:

$$
\begin{equation*}
y_{t}=\varepsilon_{t}+\phi \varepsilon_{t-1}+\phi^{2} \varepsilon_{t-2}+\phi^{3} \varepsilon_{t-3}+\cdots, \tag{14.9}
\end{equation*}
$$

which is essentially an $\operatorname{AR}(1)$ represented as an $\operatorname{MA}(\infty)$. This representation is convenient if and only if $|\phi|<1$. This is the condition for covariance stationarity in an $\mathrm{AR}(1)$ process.

To illustrate the role of ϕ in the dynamics of an $\operatorname{AR}(1)$ process, consider the following two $\mathrm{AR}(1)$ processes:

$$
\begin{aligned}
& y_{t}=0.2 y_{t-1}+\varepsilon_{t}, \\
& x_{t}=0.9 x_{t-1}+\varepsilon_{t} .
\end{aligned}
$$

Both of these processes are illustrated in Figure 14.2. Note that consistent with Equation 14.8, the variance of x_{t} is higher than the variance of y_{t} as the x_{t} process has a higher ϕ.

Fig. 14.2 Two AR(1) processes: $y_{t}=0.2 y_{t-1}+\varepsilon_{t}$ and $x_{t}=0.9 x_{t-1}+\varepsilon_{t}$.

14.2.2 The AR(p) Process

The $\operatorname{AR}(q)$ process is a finite order autoregressive process of order p. It can be written as:

$$
\begin{equation*}
y_{t}=\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\phi_{3} y_{t-3}+\cdots+\phi_{p} y_{t-p}+\varepsilon_{t} \tag{14.10}
\end{equation*}
$$

where,

$$
\varepsilon_{t} \sim W N\left(0, \sigma^{2}\right)
$$

We can see from Equation 14.10 that y_{t} is a function of its own lagged values for p periods. $\operatorname{AR}(1)$ is a special case where $p=1$.

14.3 Autoregressive Moving Average (ARMA) Models

14.3.1 The ARMA(1,1) Process

ARMA(1,1) process:

$$
\begin{equation*}
y_{t}=\phi y_{t-1}+\varepsilon_{t}+\theta \varepsilon_{t-1}, \tag{14.11}
\end{equation*}
$$

where,

$$
\varepsilon_{t} \sim W N\left(0, \sigma^{2}\right)
$$

In Equation 14.11 we can see that an $\operatorname{ARMA}(1,1)$ process is just the combination on an $\operatorname{AR}(1)$ and an $\mathrm{MA}(1)$ process.

14.3.2 The ARMA (p, q) Process

$\operatorname{ARMA}(p, q)$ process:

$$
y_{t}=\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\cdots+\phi_{p} y_{t-p}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\cdots+\theta_{q} \varepsilon_{t-q},
$$

where,

$$
\varepsilon_{t} \sim W N\left(0, \sigma^{2}\right)
$$

In Equation 14.12 we can see that an $\operatorname{ARMA}(p, q)$ process is just the combination on an $\operatorname{AR}(p)$ and an $\operatorname{MA}(q)$ process. The $\operatorname{ARMA}(1,1)$ is just a special case of an $\operatorname{ARMA}(p, q)$ where $p=q=1$.

Chapter 15

EViews: MA, AR and ARMA Models

This chapter will show how to obtain the correlogram.

15.1 Climate Change

Consider the following time series information on Global Land and Ocean JanuaryDecember Temperature anomalies. These are global and hemispheric anomalies with respect to the 20th century average. They are measured in ${ }^{\circ} \mathrm{C}$. The data is in the EViews file "Temperatures."

Global Land and Ocean
January-December Temperature Anomalies

The correlogram of the series for a twenty year period shows:

Sample: 18802018
Included observations: 139

Autocorrelation	Partial Correlation

From the Ljung-Pierce Q-statistics we can say that this series it not White Noise. Moreover, the autocorrelations at various displacements τ show important dynamics.

Consider estimating the following quadratic trend model:

$$
\begin{equation*}
T E M P_{t}=\beta_{0}+\beta_{1} T R E N D_{t}+\beta_{2} T R E N D_{t}^{2}+\varepsilon_{t} \tag{15.1}
\end{equation*}
$$

where the regression output is:

Dependent Variable: TEMP Method: Least Squares Sample: 1880 Included observations: 139				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-0.201013	0.030103	-6.677582	0.0000
@TREND	-0.003403	0.001008	-3.376312	0.0010
@TREND^2	$7.79 \mathrm{E}-05$	$7.07 \mathrm{E}-06$	11.01747	0.0000
R-squared	0.875870	Mean dependent var	0.060360	
Adjusted R-squared	0.874045	S.D. dependent var	0.338144	
S.E. of regression	0.120008	Akaike info criterion	-1.381174	
Sum squared resid	1.958655	Schwarz criterion	-1.317840	
Log likelihood	98.99156	Hannan-Quinn criter.	-1.355436	
F-statistic	479.8136	Durbin-Watson stat	0.850351	
Prob(F-statistic)	0.000000			

with the corresponding actual, fitted and residuals:

Moreover, note that as soon as you run a regression, EViews will generate the series resid that corresponds to the estimated regression residuals $\hat{\varepsilon}_{t}$ from Equation 15.1. The correlogram of those residuals for a window of up to ten displacements is given by:

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
\square	$1 \longmapsto$	1	0.573	0.573	46.641	0.000
$1 \square$	121	2	0.291	-0.056	58.732	0.000
$1 ص$	$1 \square$	3	0.237	0.140	66.842	0.000
$1 \square$	1	4	0.261	0.117	76.755	0.000
$1 \square$	$1{ }^{1}$	5	0.139	-0.114	79.590	0.000
$1 \square$	1	6	0.133	0.120	82.177	0.000
$1 \square$	11	7	0.137	-0.001	84.955	0.000
19	111	8	0.133	0.028	87.612	0.000
18	101	9	0.057	-0.051	88.096	0.000
1	$1{ }^{1}$	10	0.079	0.062	89.033	0.000

Based on these results you reject the null hypothesis of White Noise error terms. This is because the autocorrelation and the partial autocorrelation for various values of the displacement fall outside the two-standard deviation bands. Moreover, the Q-statistic (Ljung-Box Q-statistic) which is the weighted sum of squared autocorrelations has large values when compared to the χ^{2} distribution with the corresponding degrees of freedom (the p-values are below $\alpha=0.05$). Hence, the model of a quadratic trend still leaves some elements in the residuals $\hat{\varepsilon}_{t}$ of Equation 15.1 that can be forecasted.

Consider estimating the following quadratic trend models with an MA(1), an AR(1), and ARMA $(1,1)$ components:

$$
\begin{aligned}
& \text { TEMP }_{t}=\beta_{0}+\beta_{1} \text { TREND }_{t}+\beta_{2} \text { TREND }_{t}^{2}+\theta \varepsilon_{t-1}+\varepsilon_{t} \\
& \text { TEMP }_{t}=\beta_{0}+\beta_{1} \text { TREND }_{t}+\beta_{2} \text { TREND }_{t}^{2}+\phi T E M P_{t-1}+\varepsilon_{t} \\
& \text { TEMP }_{t}=\beta_{0}+\beta_{1} \text { TREND }_{t}+\beta_{2} \text { TREND }_{t}^{2}+\phi T E M P_{t-1}+\theta \varepsilon_{t-1}+\varepsilon_{t}
\end{aligned}
$$

These equations are estimated in EViews with the following commands:

```
ls temp c @trend @trend^2 ma(1)
ls temp c @trend @trend^2 ar(1)
ls temp c @trend @trend^2 ar(1) ma(1)
```

The regression output for the $\operatorname{ARMA}(1,1)$ model is:

Dependent Variable: Method: ARMA Maxim Sample: 18802018 Included observations: Convergence achieve Coefficient covariance	Likelihood (B 39 ter 10 iteratio mputed usin	FGS) ns outer produ	gradients	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-0.196062	0.061133	-3.207166	0.0017
@TREND	-0.003551	0.001949	-1.821994	0.0707
@TREND^2	$7.88 \mathrm{E}-05$	$1.37 \mathrm{E}-05$	5.766724	0.0000
AR(1)	0.474254	0.141648	3.348114	0.0011
MA(1)	0.142941	0.170470	0.838512	0.4032
SIGMASQ	0.009401	0.001201	7.826003	0.0000
R -squared	0.917182	Mean depend	nt var	0.060360
Adjusted R-squared	0.914068	S.D. depende	t var	0.338144
S.E. of regression	0.099124	Akaike info cri	erion	-1.739765
Sum squared resid	1.306793	Schwarz crite		-1.613097
Log likelihood	126.9137	Hannan-Quin	criter.	-1.688290
F-statistic	294.5860	Durbin-Watso		2.001175
Prob(F-statistic)	0.000000			
Inverted AR Roots	. 47			
Inverted MA Roots	-. 14			

and the correlogram of the residuals is:

Sample: 18802018
Included observations: 139

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
$1{ }^{1} 1$	$1{ }^{1} 1$	$1-0.003$	-0.003	0.0010	0.975
11.1	11.1	$2-0.044$	-0.044	0.2780	0.870
111	111	30.019	0.019	0.3311	0.954
$1 \square$	$1 \square$	$4 \quad 0.215$	0.214	7.0726	0.132
151	101	$5-0.060$	-0.060	7.6055	0.179
181	1	$6 \quad 0.050$	0.070	7.9678	0.240
111	111	$7 \quad 0.040$	0.028	8.2056	0.315
1	18	80.109	0.073	9.9747	0.267
10^{1}	101	$9-0.077$	-0.055	10.870	0.285
1	1	$10 \quad 0.112$	0.098	12.773	0.237

which shows that the regression residuals of Equation 15.4 are White Noise. Hence in this model there is nothing left in the error term that can be forecasted. The orders of p and q in Equation 14.12 need to be selected based on the AIC and BIC. After the selection of the model, the regression residual needs to be White Noise.

15.2 MA(1) Simulated Processes

To simulate a process the first step is to create a workfile. Please review Section 6.1 on how to to this. On your workfile you are free to select any time frequency, just make sure you have about 100 observations. In this example we selected to have 121 yearly observations from 1900 to 2020 . Now, it we want to generate a White Noise process ε with mean zero and variance one, the command is:
genr epsilon=nrnd
If we graph this ε sequence, we obtain:

Fig. 15.1 White-noise process $\varepsilon_{t} \stackrel{\mathrm{iid}}{\sim}(0,1)$ or $\varepsilon_{t} \sim W N(0,1)$.
which is equivalent to the one presented in Figure 12.1.
Based on this ε_{t} sequence, we can type the following commands in EViews to generate three different MA(1) processes:

```
genr Y1=epsilon+0.08*epsilon(-1)
genr Y2=epsilon+0.98*epsilon(-1)
genr Y3=epsilon-0.98*epsilon(-1)
```

A graph of $Y 1$ and $Y 2$ shows that $Y 2$ is more volatile than $Y 1$, consistent with the variance formula for an MA(1) process. This was shown in Figure 14.1.

To further study the dynamics of these three series, we obtain their autocorrelation and the partial autocorrelation functions as presented in Figures 15.2, 15.2, 15.2 below.

For the $\mathrm{MA}(1)$ process $Y 1_{t}=\varepsilon_{t}+0.08 \varepsilon_{t-1}$, we can see that because $\theta=0.08$ is very small, we cannot statistically distinguish it from a White Noise process. The Ljung-Pierce Q-statistic show p-values greater than 0.05 . Moreover, most of the correlation and partial correlation estimates are within the 95% confidence bands and there is really no distinguishable pattern on these estimates.

> Sample: 19002020
> Included observations: 120

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
1	1	10.086	0.086	0.9077	0.341
101	101	$2-0.071$	-0.079	1.5373	0.464
101	101	$3-0.071$	-0.058	2.1613	0.540
11	111	$4 \quad 0.024$	0.030	2.2324	0.693
1 ■	1	50.137	0.125	4.6313	0.463
101	181	$6-0.043$	-0.068	4.8640	0.561
11	111	$7-0.006$	0.025	4.8691	0.676
$1 \square$	$1 \square$	$8 \quad 0.191$	0.207	9.6541	0.290
101	181	9-0.034	-0.089	9.8047	0.367
151	151	$10-0.096$	-0.085	11.036	0.355
11	18	11-0.152	-0.104	14.121	0.226
111	111	120.036	0.036	14.294	0.282

Fig. 15.2 $\mathrm{MA}(1)$ process: $Y 1_{t}=\varepsilon_{t}+0.08 \varepsilon_{t-1}$ with $\varepsilon_{t} \stackrel{\mathrm{iid}}{\sim}(0,1)$.

For the $\mathrm{MA}(1)$ process $Y 2_{t}=\varepsilon_{t}+0.98 \varepsilon_{t-1}$, we can see that with a positive and relatively large $\theta=0.98$, the The Ljung-Pierce Q -statistics clearly reject the null hypothesis of White Noise. The first autocorrelation is positive, while the partial autocorrelations flip from positive to negative. This is always the case when $\theta>0$.

Note that for this $Y 2$, from the theoretical formula we have that $\rho(\tau=1)=$ $\frac{\theta}{1+\theta^{2}}=\frac{0.98}{1+0.98^{2}}=0.499$. The simulated series gives as a $\hat{\rho}(\tau=1)=0.469$, which is very close to the theoretical value. The theory also predicts that $\rho(\tau)=0$ for $\tau>1$, which also appears to hold in these estimates.

Fig. 15.3 $\mathrm{MA}(1)$ process: $Y 2_{t}=\varepsilon_{t}+0.98 \varepsilon_{t-1}$ with $\varepsilon_{t} \stackrel{\mathrm{iid}}{\sim}(0,1)$.

For the $\mathrm{MA}(1)$ process $Y 3_{t}=\varepsilon_{t}-0.98 \varepsilon_{t-1}$, we can see that with a negative and relatively large $\theta=-0.98$, the The Ljung-Pierce Q -statistics also clearly reject the null hypothesis of White Noise. The first autocorrelation is negative, and the partial
autocorrelations are also all negative and decrease in magnitude as we increase the displacement τ.

Ones again, note that from the theoretical formula we have that $\rho(\tau=1)=$ $\frac{\theta}{1+\theta^{2}}=\frac{-0.98}{1+(-0.98)^{2}}=-0.499$. In this case the simulated series gives as a $\hat{\rho}(\tau=1)=$ -0.457 , which is again very close to the theoretical value. Moreover, as predicted by the theory, the rest of the correlations are not distinguishable from zero.

> Sample: 19002020
> Included observations: 120

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
।			1	-0.457	-0.457	25.703

Fig. 15.4 $\mathrm{MA}(1)$ process: $Y 3_{t}=\varepsilon_{t}-0.98 \varepsilon_{t-1}$ with $\varepsilon_{t} \stackrel{\text { iid }}{\sim}(0,1)$.

15.3 AR(1) Simulated Processes

Let's now generate some artificial $\mathrm{AR}(1)$ processes. As before, we first need to generate the random variable ε. Then, we create the following series:

```
genr Z1 = 0
genr Z2 = 0
genr z3 = 0
genr z4=0
```

Next, we need to modify the sample to get rid of the first observation.

Now, proceed to general the series:

```
genr Z1 = +0.90*Z1(-1) + epsilon
genr Z2 = +0. 20*Z2(-1) + epsilon
genr Z3 = -0.90*Z3(-1) + epsilon
genr Z4 = -0.20*Z4(-1) + epsilon
```

To see how a simple difference in the sign and the magnitude (size) of the autoregressive coefficient ϕ can have important differences in the series, let's graph $Z 1$ and $Z 2$:

Fig. 15.5 $\mathrm{AR}(1)$ processes: $Z 1_{t}=0.9 \cdot Z 1_{t-1}+\varepsilon_{t}$ and $Z 2_{t}=0.2 \cdot Z 2_{t-1}+\varepsilon_{t}$ with $\varepsilon_{t} \stackrel{\mathrm{iid}}{\sim}(0,1)$.

And we can also graph $Z 3$ and $Z 4$:

Fig. 15.6 $\mathrm{AR}(1)$ processes: $Z 3_{t}=-0.9 \cdot Z 3_{t-1}+\varepsilon_{t}$ and $Z 4_{t}=-0.2 \cdot Z 4_{t-1}+\varepsilon_{t}$ with $\varepsilon_{t} \stackrel{\text { iid }}{\sim}(0,1)$.

We can easily get three important insights from these Figures 15.3 and 15.3. First, series $Z 1$ and $Z 2$, which have a positive autoregressive coefficient $(\phi>0)$ are more likely to have longer periods of consecutive negative and positive values. Second, the series $Z 3$ and $Z 4$, which have a negative autoregressive coefficient $(\phi<0)$ are constantly switching from negative to positive and vice versa. Third, the larger the magnitude of the autoregressive coefficient, $|\phi|$, the more volatile the series (higher variance, $\operatorname{var}(Z)$).

From the autocorrelations and the partial autocorrelations presented in Figure 15.3 for the simulated process $Z 1_{t}=+0.9 \cdot Z 1_{t-1}+\varepsilon_{t}$, we can that $\operatorname{AR}(1)$ models with a high ϕ have a long memory. In this particular example it takes up to 26 periods for a shock to dissipate. Of course, the Ljung-Pierce Q-statistics clearly reject the null of White Noise.

> Sample: 19012020
> Included observations: 120

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
\square	$1 \square$	1	0.902	0.902	99.994	0.000
$1 \square$	1	2	0.811	-0.007	181.68	0.000
1	181	3	0.744	0.075	251.01	0.000
1	1 1	4	0.700	0.092	312.83	0.000
1	11	5	0.657	0.005	367.82	0.000
1	181	6	0.594	-0.108	413.12	0.000
$1 \square$	181	7	0.548	0.066	452.02	0.000
$1 \square$		8	0.512	0.017	486.28	0.000
$1 \square$	$\square 1$	9	0.441	-0.217	511.88	0.000
$1 \square$	111	10	0.380	0.029	531.12	0.000
$1 \square$	181	11	0.341	0.070	546.71	0.000
1	1 -	12	0.335	0.121	561.97	0.000
$1 \square$	11	13	0.327	0.002	576.56	0.000
1 -	111	14	0.308	0.041	589.67	0.000
$1 \square$	101	15	0.285	-0.035	601.02	0.000
1 ' $ص$	151	16	0.256	-0.082	610.24	0.000
$1 \square$	181	17	0.236	0.045	618.16	0.000
$1 \square$	10.1	18	0.210	-0.048	624.50	0.000
$1 \boxminus$		19	0.193	0.004	629.91	0.000
$1 \square$	101	20	0.178	-0.040	634.53	0.000
$1 \square$	1	21	0.173	0.091	638.94	0.000
\square	10^{1}	22	0.157	-0.054	642.61	0.000
-	101	23	0.127	-0.042	645.05	0.000
1 1	181	24	0.088	-0.060	646.24	0.000
111	\square^{1}	25	0.035	-0.170	646.43	0.000
11	111	26	0.001	0.028	646.43	0.000
11	111	27	-0.018	0.029	646.48	0.000
101	151	28	-0.049	-0.070	646.86	0.000
	$1 \square$	29	-0.044	0.174	647.18	0.000
15	11	30	-0.055	-0.019	647.67	0.000
15	$\square 1$	31	-0.098	-0.226	649.27	0.000
'1	11	32	-0.138	0.014	652.44	0.000
51	151	33	-0.184	-0.077	658.16	0.000
\square^{1}	151	34	-0.203	-0.068	665.21	0.000
$\square 1$	11	35	-0.218	-0.008	673.38	0.000
$\square 1$	181	36	-0.233	0.053	682.82	0.000

Fig. 15.7 $\mathrm{AR}(1)$ process: $Z 1_{t}=+0.9 \cdot Z 1_{t-1}+\varepsilon_{t}$ with $\varepsilon_{t} \stackrel{\mathrm{iid}}{\sim}(0,1)$.

For the $Z 2_{t}=+0.2 \cdot Z 2_{t-1}+\varepsilon_{t}$ process presented in Figure 15.3, we observe that a low ϕ means the series is close to a White Noise. Only for $\tau<3$ we fail to reject the null of White Noise at a 10% significance level (see the p-values on last column).

Sample: 19012020
Included observations: 120

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
$1 \square$	$1 \square$	10.196	0.196	4.7027	0.030
101	101	$2-0.037$	-0.078	4.8726	0.087
101	111	$3-0.064$	-0.043	5.3879	0.146
111	181	$4 \quad 0.030$	0.052	5.5051	0.239
1 ■	1 1 1	$5 \quad 0.132$	0.114	7.7131	0.173
11	181	$6-0.019$	-0.073	7.7608	0.256
11	171	$7 \quad 0.014$	0.051	7.7854	0.352
$1 \square$	$1 \square$	$8 \quad 0.180$	0.190	12.027	0.150
11	1	$9-0.024$	-0.124	12.106	0.207
101	101	$10-0.110$	-0.088	13.713	0.187
11	101	$11-0.154$	-0.086	16.901	0.111
111	1 p	120.024	0.050	16.981	0.150

Fig. 15.8 $\mathrm{AR}(1)$ process: $Z 2_{t}=+0.2 \cdot Z 2_{t-1}+\varepsilon_{t}$ with $\varepsilon_{t} \stackrel{\mathrm{iid}}{\sim}(0,1)$.

Figure 15.3 presents the simulated process $Z 3_{t}=-0.9 \cdot Z 3_{t-1}+\varepsilon_{t}$. A negative ϕ (here $\phi=-0.9$) shows that autocorrelations flip between positive and negative while they slowly decrease in magnitude. This is consistent with Figure 15.3.

Sample: 19012020
Included observations: 120

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
1	1	$1-0.893$	-0.893	98.125	0.000
1	11	20.801	0.016	177.70	0.000
$\square 1$	101	$3-0.732$	-0.067	244.69	0.000
1	11.	40.659	-0.045	299.44	0.000
$\square 1$	11	$5-0.594$	-0.006	344.30	0.000
$1 \square$	$1 \square$	60.568	0.157	385.73	0.000
$\square 1$	$1 \square^{1}$	$7-0.562$	-0.117	426.71	0.000
1	18	80.561	0.070	467.83	0.000
1	$1 \square$	$9-0.524$	0.156	503.99	0.000
1	101	$10 \quad 0.476$	-0.080	534.13	0.000
$=1$	101	$11-0.450$	-0.092	561.36	0.000
	1	120.397	-0.102	582.70	0.000
1	111	13-0.336	0.051	598.16	0.000
	11	$14 \quad 0.295$	-0.024	610.19	0.000
$\square 1$	1	$\begin{array}{lll}15 & -0.250\end{array}$	0.097	618.88	0.000
$1 \square$	181	$\begin{array}{lll}16 & 0.218\end{array}$	0.051	625.58	0.000
$\square 1$		$17-0.195$	-0.015	630.96	0.000
$1 \square$	11	180.175	0.013	635.38	0.000
81	111	19-0.159	0.026	639.05	0.000
1		$20 \quad 0.143$	0.007	642.05	0.000
181	101	21-0.134	-0.091	644.71	0.000
1 -	1 1	220.145	0.109	647.83	0.000
1-1	111	23-0.136	0.037	650.63	0.000
1 \square^{\prime}	$1{ }^{1} 1$	$24 \quad 0.138$	0.064	653.54	0.000

Fig. 15.9 $\mathrm{AR}(1)$ process: $Z 3_{t}=-0.9 \cdot Z 3_{t-1}+\varepsilon_{t}$ with $\varepsilon_{t} \stackrel{\mathrm{iid}}{\sim}(0,1)$.

Lastly，Figure 15.3 presents the process $Z 4_{t}=-0.2 \cdot Z 4_{t-1}+\varepsilon_{t}$ ．Due to a rela－ tively small（and negative）ϕ ，it is hard to distinguish this series from a White Noise． The Ljung－Pierce Q－statistic fails to reject the null of White Noise for all displace－ ments except the first．

Sample： 19012020
Included observations： 120

Autocorrelation	Partial Correlation	AC	PAC	Q－Stat	Prob
$\square 1$	$\square 1$	$1-0.177$	－0．177	3.8406	0.050
11	101	$2-0.017$	－0．050	3.8773	0.144
101	101	$3-0.057$	－0．071	4.2829	0.232
11	101	$4-0.004$	－0．029	4.2847	0.369
1 －	1 口	50.146	0.141	7.0057	0.220
151	11	$6-0.070$	－0．023	7.6290	0.267
101	101	$7-0.042$	－0．052	7.8568	0.345
$1 \square$	$1 \square$	80.205	0.216	13.370	0.100
151	11	$9-0.077$	－0．014	14.160	0.117
101	101	$10-0.033$	－0．071	14.302	0.160
成1	吅1	$11-0.144$	－0．132	17.076	0.106
1 pl	1）1	120.058	0.013	17.538	0.130

Fig．15．10 $\mathrm{AR}(1)$ process：$Z 4_{t}=-0.2 \cdot Z 4_{t-1}+\varepsilon_{t}$ with $\varepsilon_{t} \stackrel{\mathrm{iid}}{\sim}(0,1)$ ．

Chapter 16
 Forecasting Cycles

Information set at time T :

$$
\begin{equation*}
\Omega_{T}=\left\{y_{T}, y_{T-1}, y_{T-2}, \ldots\right\} \tag{16.1}
\end{equation*}
$$

Can be expressed in terms of current and past shocks:

$$
\begin{equation*}
\Omega_{T}=\left\{\varepsilon_{T}, \varepsilon_{T-1}, \varepsilon_{T-2}, \ldots\right\} \tag{16.2}
\end{equation*}
$$

Hence, Ω_{T} can be written as:

$$
\begin{equation*}
\Omega_{T}=\left\{y_{T}, y_{T-1}, y_{T-2}, \ldots, \varepsilon_{T}, \varepsilon_{T-1}, \varepsilon_{T-2}, \ldots\right\} \tag{16.3}
\end{equation*}
$$

Based on Ω_{T} we want the optimal forecast of y at time $T+h$. This is the same as saying that we want the smallest loss. The forecast can be expressed as:

$$
\begin{equation*}
E\left(y_{T+h} \mid \Omega_{T}\right) \tag{16.4}
\end{equation*}
$$

We will use the linear projection:

$$
\begin{equation*}
P\left(y_{T+h} \mid \Omega_{T}\right) \tag{16.5}
\end{equation*}
$$

If errors are normally distributed:

$$
\begin{equation*}
E\left(y_{T+h} \mid \Omega_{T}\right)=P\left(y_{T+h} \mid \Omega_{T}\right) \tag{16.6}
\end{equation*}
$$

16.1 Forecasting an MA Process

16.1.1 Optimal Point Forecasts

Consider the following finite order MA process:

$$
\begin{align*}
& \mathrm{MA}(2): y_{t} \tag{16.7}\\
&=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2} \\
& \varepsilon_{t}=W N\left(0, \sigma^{2}\right)
\end{align*}
$$

At time $T+1$ (one step ahead):

$$
\begin{equation*}
y_{T+1}=\varepsilon_{T+1}+\theta_{1} \varepsilon_{T}+\theta_{2} \varepsilon_{T-1} \tag{16.8}
\end{equation*}
$$

ε_{T+1} : Unknown.
$\theta_{1} \varepsilon_{T}$: Known.
$\theta_{2} \varepsilon_{T-1}$: Known.
So we can write the forecast of y_{T+1} forecasted at time T as,

$$
\begin{equation*}
y_{T+1, T}=+\theta_{1} \varepsilon_{T}+\theta_{2} \varepsilon_{T-1} \tag{16.9}
\end{equation*}
$$

At time $T+2$ (two steps ahead):

$$
\begin{equation*}
y_{T+2}=\varepsilon_{T+2}+\theta_{1} \varepsilon_{T+1}+\theta_{2} \varepsilon_{T} \tag{16.10}
\end{equation*}
$$

ε_{T+2} : Unknown.
$\theta_{1} \varepsilon_{T+1}$: Unknown.
$\theta_{2} \varepsilon_{T}$: Known.
So we can write the forecast of y_{T+2} forecasted at time T as,

$$
\begin{equation*}
y_{T+2, T}=\theta_{2} \varepsilon_{T} \tag{16.11}
\end{equation*}
$$

At time $T+3$ (three steps ahead):

$$
\begin{equation*}
y_{T+3}=\varepsilon_{T+3}+\theta_{1} \varepsilon_{T+2}+\theta_{2} \varepsilon_{T+1} \tag{16.12}
\end{equation*}
$$

ε_{T+3} : Unknown.
$\theta_{1} \varepsilon_{T+2}$: Unknown.
$\theta_{2} \varepsilon_{T+1}$: Unknown.
So we can write the forecast of y_{T+3} forecasted at time T as,

$$
\begin{equation*}
y_{T+3, T}=0 \tag{16.13}
\end{equation*}
$$

For all $h>0$ we have $y_{T+h}=0$.
An MA (q) process is not forecastable more than q steps ahead.

- The forecast errors increase with h.

The forecast error variance also increases with h.
Infinite order MA process, $q=\infty$. The Wold representation of y_{t} is:

$$
\begin{gather*}
y_{t}=\sum_{i=0}^{\infty} b_{i} \varepsilon_{t-i} \tag{16.14}\\
\varepsilon_{t}=W N\left(0, \sigma^{2}\right) \\
b_{0}=1 \quad \text { and } \quad \sigma^{2} \sum_{i=0}^{\infty} b_{i}^{2}<\infty
\end{gather*}
$$

We can first write out the process at the future times of interest, $T+h$:

$$
\begin{equation*}
y_{T+h}=\varepsilon_{T+h}+b_{1} \varepsilon_{T+h-1}+b_{2} \varepsilon_{T+h-2}+\cdots+b_{h} \varepsilon_{T}+b_{h+1} \varepsilon_{T-1}+\cdots \tag{16.15}
\end{equation*}
$$

The first terms on the left-hand side of the equation are unknown, but the last terms are known.

Hence, we can see that the process can be forecasted:

$$
\begin{equation*}
y_{T+h, T}=b_{h} \varepsilon_{T}+b_{h+1} \varepsilon_{T-1}+\cdots \tag{16.16}
\end{equation*}
$$

16.1.2 Interval and Density Forecasts

For an MA(2):

$$
\begin{gather*}
y_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2} \tag{16.17}\\
\varepsilon_{t}=W N\left(0, \sigma^{2}\right)
\end{gather*}
$$

The 95\% interval forecast:

$$
\begin{equation*}
y_{T+1, T}=\left(\theta_{1} \varepsilon_{T}+\theta_{2} \varepsilon_{T-1}\right) \pm 1.96 \sigma \tag{16.18}
\end{equation*}
$$

which assumes normality of the forecast.
The density forecast is:

$$
\begin{equation*}
N\left(\theta_{1} \varepsilon_{T}+\theta_{2} \varepsilon_{T-1}, \sigma^{2}\right) \tag{16.19}
\end{equation*}
$$

which also assumes normality.

16.2 Forecasting an AR Process

Consider the following $\operatorname{AR}(1)$ process:

$$
\begin{align*}
& y_{t}=\phi_{1} y_{t-1}+\varepsilon_{t} \tag{16.20}\\
& \varepsilon_{t}=W N\left(0, \sigma^{2}\right)
\end{align*}
$$

16.2.1 Optimal Point Forecasts

To construct the 1-step-ahead forecast, we can write out the process for time $T+1$:

$$
\begin{equation*}
y_{T+1}=\phi_{1} y_{T}+\varepsilon_{T+1} \tag{16.21}
\end{equation*}
$$

Then, projecting the right-hand side on the time- T information set:

$$
\begin{equation*}
y_{T+1, T}=\phi_{1} y_{T}+\varepsilon_{T+1} \tag{16.22}
\end{equation*}
$$

where ε_{T+1} has an expected value of zero. We can write the process for time $T+2$:

$$
y_{T+2}=\phi_{1} y_{T+1}+\varepsilon_{T+2}
$$

to then project directly on the time- T information set:

$$
y_{T+2, T}=\phi_{1} y_{T+1, T}
$$

As before, future shocks are replaced by 0 . The process for time $T+3$:

$$
y_{T+3}=\phi_{1} y_{T+2}+\varepsilon_{T+3}
$$

than when projected on the time- T information set, we obtain:

$$
y_{T+3, T}=\phi_{1} y_{T+2, T}
$$

with the required 2 -step-ahead forecast already constructed.
If we keep dong this we can forecast any of the future periods. This is called the "chair rule of forecasting." For an $\operatorname{AR}(1)$ process, only the most recent lag of y_{t} is used to obtain the optimal forecast. For a general $\operatorname{AR}(p)$ process, we need the p most recent values.

Consider obtaining the 2-step-ahead point forecast of the following $\operatorname{ARMA}(1,1)$ process.

$$
\begin{gather*}
y_{t}=\phi y_{t-1}+\varepsilon_{t}+\theta \varepsilon_{t-1} . \tag{16.23}\\
\varepsilon_{t}=W N\left(0, \sigma^{2}\right)
\end{gather*}
$$

The one-step ahead forecast is given by:

$$
\begin{equation*}
y_{T+1}=\phi y_{T}+\varepsilon_{T+1}+\theta \varepsilon_{T} \tag{16.24}
\end{equation*}
$$

ϕy_{T} : Known.
ε_{T+1} : Unknown.
$\theta \varepsilon_{T}$: Known.
and the 2-step ahead forecast is:

$$
\begin{equation*}
y_{T+2}=\phi y_{T+1}+\varepsilon_{T+2}+\theta \varepsilon_{T+1} \tag{16.25}
\end{equation*}
$$

ϕy_{T+1} : Known.
ε_{T+2} : Unknown.
$\theta \varepsilon_{T+1}$: Unknown.
Replacing y_{T+1} from Equation 16.24 on Equation 16.25:

$$
\begin{align*}
y_{T+2, T} & =\phi\left(\phi y_{T}+\theta \varepsilon_{T}\right) \\
& =\phi^{2} y_{T}+\phi \theta \varepsilon_{T} \tag{16.26}
\end{align*}
$$

16.2.2 Interval and Density Forecasts

The chair-rule helps to simplify the point forecasts. However, for density forecasts we require the h-step-ahead forecast of the error variance as well. We can obtain it from the moving average representation on an AR process. It is written as:

$$
\begin{equation*}
\sigma_{h}^{2}=\sigma^{2} \sum_{i=0}^{h-1} b_{i}^{2} \tag{16.27}
\end{equation*}
$$

Because we do not know the values for the parameters σ^{2} and b_{i}, we need to use the following instead:

$$
\begin{equation*}
\hat{\sigma}_{h}^{2}=\hat{\sigma}^{2} \sum_{i=0}^{h-1} \hat{b}_{i}^{2} \tag{16.28}
\end{equation*}
$$

While there are many b_{i} s that we would need to estimate via the MA representation of the process, the good news is that we only estimate an AR and then solve backward to solve for as many b s as needed.

Consider again the following example of an $\operatorname{ARMA}(1,1)$ process:

$$
\begin{equation*}
y_{t}=\phi y_{t-1}+\varepsilon_{t}+\theta \varepsilon_{t-1} . \tag{16.29}
\end{equation*}
$$

We want to construct its 2-step-ahead 95% interval forecast. The 2-step-ahead point forecast was already presented in Equation 16.26, but we additionally need to construct the 2-step-ahead forecast error variance. From Equation 16.29, we substitute backward to get:

$$
\begin{align*}
y_{t} & =\phi\left(\phi y_{t-2}+\varepsilon_{t-1}+\theta \varepsilon_{t-2}\right)+\varepsilon_{t}+\theta \varepsilon_{t-1} . \tag{16.30}\\
& =\varepsilon_{t}+(\phi+\theta) \varepsilon_{t-1}+\cdots . \tag{16.31}
\end{align*}
$$

We do not need to move back any further, because the 2-step-ahead forecast error variance is $\sigma_{2}^{2}=\sigma^{2}\left(1+b_{1}^{2}\right)$, where b_{1} is the coefficient on ε_{t-1} in the moving average representation of the $\operatorname{ARMA}(1,1)$ process. In this case this is just $(\phi+\theta)$. Hence, the 2-step-ahead interval forecast is:

$$
\begin{equation*}
y_{T+2, T} \pm 1.96 \sigma_{2} \tag{16.32}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\phi^{2} y_{T}+\phi \theta \varepsilon_{T}\right) \pm 1.96 \sigma \sqrt{1+(\phi+\theta)^{2}} \tag{16.33}
\end{equation*}
$$

Assuming normality, the density forecast is:

$$
\begin{equation*}
N\left(\phi^{2} y_{T}+\phi \theta \varepsilon_{T}, \sigma^{2}\left(1+(\phi+\theta)^{2}\right)\right) . \tag{16.34}
\end{equation*}
$$

Chapter 17
 EViews: Forecasting Cycles

This chapter will cover an empirical application on how to forecast cycles. The variable we want to forecast is the Canadian employment.

17.1 Moving Average Models

Before we estimate the models, lets make sure we all have the same sample:

smpl 1962q1 1993q4

The preferred MA model is an MA(4), so the E-Views command is:

```
ls caemp c ma(1) ma(2) ma(3) ma(4)
```

Dependent Variable: CAEMP
Method: ARMA Maximum Likelihood (BFGS)
Sample: 1962Q1 1993Q4
Included observations: 128
Convergence achieved after 20 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient Std. Error	t-Statistic	Prob.	
C	100.6692	1.043603	96.46314	0.0000
MA(1)	1.640307	0.067239	24.39506	0.0000
MA(2)	1.734850	0.110991	15.63054	0.0000
MA(3)	1.245124	0.117703	10.57857	0.0000
MA(4)	0.523848	0.078383	6.683164	0.0000
SIGMASQ	3.599362	0.479745	7.502664	0.0000
R-squared	0.935493	Mean dependent var	101.0176	
Adjusted R-squared	0.932849	S.D. dependent var	7.499163	
S.E. of regression	1.943291	Akaike info criterion	4.241168	
Sum squared resid	460.7184 Schwarz criterion	4.374857		
Log likelihood	-265.4347	Hannan-Quinn criter.	4.295486	
F-statistic	353.8540	Durbin-Watson stat	1.674683	
Prob(F-statistic)	0.000000			

The simplest way to forecast the values between the first quarter of 1994 and the fourth quarter of 1994 is to go to click on the icon "forecast" and then choose the correct forecast sample:

This will yield the forecast presented in the following figure:

A second more interesting way to obtain the same forecast is to follow these steps:

1. Select the sample to estimate the model:
```
smpl 1962q1 1993q4
```

2. Estimate the model:
```
equation ma4.ls caemp c ma(1) ma(2) ma(3) ma(4)
```

3. Generate a variable with the historical values:
genr history = caemp
4. Modify the your sample to include the period you want to forecast:
```
smpl 1994:1 1996:4
```

5. Forecast your values (stored in yhat) and the standard errors (stored in se):
ma4.forecast yhat se
6. Generate the variable that will store the forecasted values:
```
genr fcst=yhat
```

7. Generate the 95% confidence intervals:
```
genr yhatplus=yhat+1.96*se
genr yhatminus=yhat-1.96*se
```

8. Modify the sample to include what you want to see in the graph:
```
smpl 1990:1 1994:4
```

9. Open the history, the forecast and the lower and upper limits all in one group:
```
group group01 history fcst yhatplus yhatminus
```

10. Just open the group and graph them all together:

What if we want to forecast all the values until the fourth quarter of 1996 ?
11. Just select the sample for your graph:

```
smpl 1990:1 1996:4
```

12. Open the group you produced in step (9) and graph it.

Note that the forecast becomes flat after when forecasting beyond the fourth period. This is because MA models have a short memory and in this MA(4) case,
beyond the fourth period the estimated equation just does not have any information to forecast. We covered this in detail in the previous chapter for an MA(2).
What if you want to compare the actual values with the forecast? Remember that we do have the data for the following years.
13. Modify the sample again to cover the periods of the forecast and where we have actual data:

```
smpl 1990:1 1994:4
```

14. Create another group. This time with the actual data (caemp) instead of the history.
group group02 caemp fcst yhatplus yhatminus
15. Then open the group and graph:

17.2 Autoregressive Models

Before we start, let's make sure we have the correct sample we will use to estimate the model:
smpl 1962:1 1993:4
Based on different model selection criteria, our preferred AR model was an AR(2) model:

```
ls caemp c ar(1) ar(2)
```

Dependent Variable: CAEMP
Method: ARMA Maximum Likelihood (BFGS)
Sample: 1962Q1 1993Q4
Included observations: 128
Convergence achieved after 7 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient Std. Error	t-Statistic	Prob.	
C	98.03049	3.812684	25.71167	0.0000
AR(1)	1.448340	0.064717	22.37973	0.0000
AR(2)	-0.476697	0.064966	-7.337611	0.0000
SIGMASQ	2.088639	0.166810	12.52109	0.0000
R-squared	0.962568 Mean dependent var		101.0176	
Adjusted R-squared	0.961662 S.D. dependent var	7.499163		
S.E. of regression	1.468337	Akaike info criterion	3.666458	
Sum squared resid	267.3458 Schwarz criterion	3.755584		
Log likelihood	-230.6533	Hannan-Quinn criter.	3.702671	
F-statistic	1062.889	Durbin-Watson stat	2.054328	
Prob(F-statistic)	0.000000			

The simplest way to forecast the values between the first quarter of 1994 and the fourth quarter of 1994 is to go to click on the icon "forecast" and then choose the correct forecast sample:

This will yield the following forecast:

A second more interesting way to obtain the same forecast is to follow these steps:

1. Select the sample you want to use for your model:
```
smpl 1962:1 1993:4
```

2. Estimate the $\mathrm{AR}(2)$ model and store your estimation under the name ar2:
```
equation ar2.ls caemp c ar(1) ar(2)
```

3. Select the sample you want to include in your forecast:
```
smpl 1994:1 2010:4
```

4. Generate the forecast and the standard error of the forecast:
```
ar2.forecast yhat se
```

5. Generate the variable that will store the forecasted values:
```
genr fcst2=yhat
```

6. Generate the upper and lower levels for your 95% confidence intervals:
```
genr yhatplus2=yhat+1.96*se
genr yhatminus2=yhat-1.96*se
```

7. Select the sample you want to see in your forecast graph:
smpl 1990:1 1994:4
8. Create a group of all the variables you want to include in your graph:
group group03 history fcst2 yhatplus2 yhatminus2
9. Open the group and graph all variables together:

If you want to see the forecast all the way until the end of 1996, just modify the sample size:
smpl 1990:1 1996:4

10. For the forecast that includes the values until 2010.
smpl 1990:1 2010:4

11. If you want to include the actual values in the forecast, select the sample that contains actual values first:

```
smpl 1990:1 1994:4
```

12. Then create a group with the actual values (caempl), the forecast and the 95% upper and lower confidence intervals:
```
group group04 caemp fcst2 yhatplus2 yhatminus2
```

13. Finally, open the group and generate the line graph will all the variables:

Notice that the forecast lies very close to the actual values. This AR(2) model appears to be a better forecasting model than the MA(4) model presented earlier.

Chapter 18

Forecasting with Trend, Seasonal, and Cyclical Components

18.1 Structure

Consider the following model:

$$
\begin{equation*}
y_{t}=T_{t}(\beta)+\sum_{i=1}^{s} \gamma_{i} D_{i t}+\sum_{i=1}^{v} \delta_{i} H D_{i t}+v_{t} \tag{18.1}
\end{equation*}
$$

where $T_{t}(\beta)$ is the trend, $\sum_{i=1}^{s} \gamma_{i} D_{i t}+\sum_{i=1}^{v} \delta_{i} H D_{i t}$ is the seasonal component, and v_{t} is the cycle and it is given by:

$$
\begin{gathered}
v_{t}=\phi_{1} v_{t-1}+\phi_{2} v_{t-2}+\cdots+\phi_{p} v_{t-p}+\varepsilon_{t} \\
+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\cdots+\theta_{q} \varepsilon_{t-q} \\
\varepsilon_{t}=W N\left(0, \sigma^{2}\right)
\end{gathered}
$$

The time trend can be modeled, for example, as:

$$
\begin{aligned}
& T_{t}(\beta)=\beta_{1} \text { TIME }_{t}, \text { or } \\
& T_{t}(\beta)=\beta_{1} \text { TIME }_{t}+\beta_{2} \text { TIME }_{t}^{2}
\end{aligned}
$$

The h-step ahead forecast (at time $T+h$) is:

$$
\begin{equation*}
y_{T+h}=T_{T+h}(\beta)+\sum_{i=1}^{s} \gamma_{i} D_{i, T+h}+\sum_{i=1}^{v} \delta_{i} H D_{i, T+h}+v_{T+h} \tag{18.2}
\end{equation*}
$$

$$
\begin{array}{ll}
T_{T+h}(\beta): & \text { Known. } \\
\sum_{i=1}^{s} \gamma_{i} D_{i, T+h}: & \text { Known. } \\
\sum_{i=1}^{v} \delta_{i} H D_{i, T+h}: & \text { Known. } \\
v_{T+h}: & \text { Known/unknown. }
\end{array}
$$

Consider the following AR(1) example to understand the difference between dynamic and static forecasts:

$$
\begin{equation*}
y_{t}=\phi y_{t-1}+\varepsilon_{t} \tag{18.3}
\end{equation*}
$$

The 2-step-ahead forecast, made at time T is:

$$
\begin{equation*}
y_{T+2, T}=\phi y_{t+1} \tag{18.4}
\end{equation*}
$$

Dynamic forecast: Uses the forecasted values for y_{t+1}, obtained from the one-step-ahead forecast.

Static forecast: Uses the actual values for y_{t+1}.

18.2 Recursive Estimation Procedures for Diagnosing and Selecting Forecasting Models

Recursive estimation:

- Beginning with a small sample \rightarrow estimate the model.
- Add one observation \rightarrow estimate the model again.
- Repeat until the whole sample is used.

Why is this useful?

- Stability assessment.
- Model selection.

To assess the stability of a model, we use the recursive residuals.
We assumed that the parameters $\beta, \gamma, \delta, \phi$, and θ in Equation 18.1 are stable (i.e., they do not change over time).

What if they are not stable? The model will provide a poor forecast.
Recursive Parameter Estimation: Consider the following model:

$$
\begin{gather*}
y_{t}=\beta_{0}+\beta_{1} x_{t}+\varepsilon_{t} \tag{18.5}\\
\varepsilon_{t}=W N\left(0, \sigma^{2}\right)
\end{gather*}
$$

for $t=1,2, \ldots, T$

- Start with two observations \rightarrow estimate β_{0} and β_{1}.
- Use three observations \rightarrow estimate β_{0} and β_{1} again.
- Obtain the sequence of $T-1$ estimates of β_{0} and β_{1}.

Recursive Residuals: Each time we estimate β_{0} and β_{1}, we compute the 1 -stepahead forecast $\hat{y}_{t+1, t}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{t+1}$, to then compute the residuals:

$$
\begin{equation*}
\hat{\varepsilon}_{t+1, t}=y_{t+1}-\hat{y}_{t+1, t} \tag{18.6}
\end{equation*}
$$

The $\hat{\varepsilon}_{t+1, t}$ in Equation 18.6 are the recursive residuals. After obtaining the residuals:

- Plot the residuals with two standard error bands.
- If many of the residuals fall outside the bands \rightarrow one or more parameters are unstable.

CUSUM: Cumulative sum of standardized recursive residuals.

$$
\begin{gather*}
C U S U M_{t} \equiv \sum_{\tau=2}^{t} w_{\tau+1, \tau} \quad \text { for } t=2,3, \ldots, T-1 \tag{18.7}\\
w_{t+1, t} \stackrel{\mathrm{iid}}{\sim} N(0,1)
\end{gather*}
$$

- Plot the $w_{t+1, t}$ with the 95% probability bounds.
- If violated the bounds \rightarrow evidence of parameter inestability.

Chapter 19

EViews: Forecasting with Trend, Seasonal, and Cyclical Components

This chapter will cover an example on how to forecast a model with trend, seasonal component, and cyclical component.

19.1 Forecasting Sales

The variable we will use is monthly U.S. liquor sales from January 1968 until December 1993. We use the sample

```
smpl 1967m1 1993m12
```

The time series graph of the series is:

Because the variance seems to be larger for larger values of sales, we will work with the variable in logarithms:

```
smpl 1967m1 1998m12
genr logliquor = log(liquor)
```

The time series graph of the logarithm of liquor is:

The series shows a strong seasonal component with sales being higher in December. As a first step, let's estimate the model with a quadratic trend:

```
smpl 1968m1 1993m12
ls logliquor c @trend @trend^2
```

That yields the following regression output:

Dependent Variable: LOGLIQUOR
Method: Least Squares
Sample: 1968M01 1993M12
Included observations: 312

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	6.237356	0.024496	254.6267	0.0000
@ TREND	0.007690	0.000336	22.91552	0.0000
@ TREND^2	$-1.14 E-05$	$9.74 E-07$	-11.72695	0.0000
R-squared				
Adjusted R-squared	0.892394	Mean dependent var	7.112383	
S.E. of regression	0.891698	S.D. dependent var	0.379308	
Sum squared resid	4.814828	Akaike info criterion	-1.314196	
Log likelihood	208.0146	Hannan-Quinn criter.	-1.299812	
F-statistic	1281.296	Durbin-Watson stat	1.752858	
Prob(F-statistic)	0.000000			

with the following in-sample forecast, forecast errors:

The seasonal component (and any potential cyclical component) is still in the error term. Let's look at the autocorrelation and the partial autocorrelation function for various values of the displacement:

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
$1 \square$	$1 \square$	10.117	0.117	4.3158	0.038
$\square 1$	$\square 1$	$2-0.149$	-0.165	11.365	0.003
41	111	$3-0.106$	-0.069	14.943	0.002
11	11	$4-0.014$	-0.017	15.007	0.005
$1 口$	$1 \square$	50.142	0.125	21.449	0.001
111	11	60.041	-0.004	21.979	0.001
$1 \square$	$1 \square$	$7 \quad 0.134$	0.175	27.708	0.000
101	151	$8-0.029$	-0.046	27.975	0.000
01	101	$9-0.136$	-0.080	33.944	0.000
\square	$\square 1$	$10-0.205$	-0.206	47.611	0.000
ומק	10	110.056	0.080	48.632	0.000
\square	$1 \square$	120.888	0.879	306.26	0.000
11	1	130.055	-0.507	307.25	0.000
51	\square^{1}	14-0.187	-0.159	318.79	0.000
-1	-1	$15-0.159$	-0.144	327.17	0.000
101	11	$16-0.059$	-0.002	328.32	0.000
19	51	$17 \quad 0.091$	-0.118	331.05	0.000
11	101	$18-0.010$	-0.055	331.08	0.000
19	141	190.086	-0.032	333.57	0.000
101	111	$20-0.066$	0.028	335.03	0.000
-1	10	$21-0.170$	0.044	344.71	0.000
\square	$1 \square$	22-0.231	0.180	362.74	0.000
11	11	230.028	0.016	363.00	0.000
$1 \longmapsto$	111	240.811	-0.014	586.50	0.000

Notice the seasonal displacements at 12 and 24 and some evidence of cyclical dynamics. If we estimate the model with the monthly dummies we have:

```
ls logliquor @trend @trend^2 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
```

Dependent Variable: LOGLIQUOR
Method: Least Squares
Sample: 1968M01 1993M12
Included observations: 312

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@ TREND	0.007656	0.000123	62.35882	0.0000
@ TREND^2	$-1.14 E-05$	$3.56 E-07$	-32.06823	0.0000
D1	6.147456	0.012340	498.1699	0.0000
D2	6.088653	0.012353	492.8890	0.0000
D3	6.174127	0.012366	499.3008	0.0000
D4	6.175220	0.012378	498.8970	0.0000
D5	6.246086	0.012390	504.1398	0.0000
D6	6.250387	0.012401	504.0194	0.0000
D7	6.295979	0.012412	507.2402	0.0000
D8	6.268043	0.012423	504.5509	0.0000
D9	6.203832	0.012433	498.9630	0.0000
D10	6.229197	0.012444	500.5968	0.0000
D11	6.259770	0.012453	502.6602	0.0000
D12	6.580068	0.012463	527.9819	0.0000
R-squared	0.986111	Mean dependent var	7.112383	
Adjusted R-squared	0.985505	S.D. dependent var	0.379308	
S.E. of regression	0.045666	Akaike info criterion	-3.291086	
Sum squared resid	0.621448	Schwarz criterion	-3.123131	
Log likelihood	527.4094	Hannan-Quinn criter.	-3.223959	
Durbin-Watson stat	0.586187			

The graph with the in-sample forecasting errors is:

and the correlogram of the residuals:

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
$1 \square$	$1 \square$	1	0.700	0.700	154.34	0.000
1	1	2	0.686	0.383	302.86	0.000
\square	1	3	0.725	0.369	469.36	0.000
1	51	4	0.569	-0.141	572.36	0.000
$1 \square$	111	5	0.569	0.017	675.58	0.000
1	19	6	0.577	0.093	782.19	0.000
$1 \square$	101	7	0.460	-0.078	850.06	0.000
$\stackrel{\square}{\square}$	18	8	0.480	0.043	924.38	0.000
$1 \square$	111	9	0.466	0.030	994.46	0.000
$1 \square$	$\square 1$	10	0.327	-0.188	1029.1	0.000
1	11	11	0.364	0.019	1072.1	0.000
\square	19	12	0.355	0.089	1113.3	0.000
1	51	13	0.225	-0.119	1129.9	0.000
1	1	14	0.291	0.065	1157.8	0.000
$1 \square$	51	15	0.211	-0.119	1172.4	0.000
$1 \square$	101	16	0.138	-0.031	1178.7	0.000
$1 \square$	11	17	0.195	0.053	1191.4	0.000
$1 \square$	101	18	0.114	-0.027	1195.7	0.000
1	101	19	0.055	-0.063	1196.7	0.000
$1 \square$	10	20	0.134	0.089	1202.7	0.000
11	111	21	0.062	0.018	1204.0	0.000
11	51	22	-0.006	-0.115	1204.0	0.000
10	19	23	0.084	0.086	1206.4	0.000
141	$\square 1$	24	-0.039	-0.124	1206.9	0.000

The seasonality disappeared, but there is still a strong cyclical component. With an AR(3) model for the cycle we have:

```
ls logliquor @trend @trend^2 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 AR(1) AR(2) AR(3)
```

Dependent Variable: LOGLIQUOR
Method: ARMA Maximum Likelihood (BFGS)
Sample: 1968M01 1993M12
Included observations: 312
Convergence achieved after 6 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@ TREND	0.007780	0.000706	11.01819	0.0000
@ TREND^2	$-1.21 E-05$	$1.91 E-06$	-6.344009	0.0000
D1	6.148880	0.056367	109.0868	0.0000
D2	6.090196	0.056318	108.1392	0.0000
D3	6.175964	0.056660	109.0008	0.0000
D4	6.177579	0.056817	108.7283	0.0000
D5	6.248742	0.056660	110.2840	0.0000
D6	6.253401	0.056659	110.3694	0.0000
D7	6.299354	0.057039	110.4397	0.0000
D8	6.271793	0.056571	110.8657	0.0000
D9	6.207966	0.057248	108.4392	0.0000
D10	6.233549	0.057165	109.0456	0.0000
D11	6.264644	0.055956	111.9571	0.0000
D12	6.585369	0.056719	116.1046	0.0000
AR(1)	0.272320	0.051777	5.259525	0.0000
AR(2)	0.236852	0.048599	4.873586	0.0000
AR(3)	0.391816	0.052596	7.449559	0.0000
SIGMASQ	0.000712	$5.39 E-05$	13.22494	0.0000
R-squared	0.995032	Mean dependent var	7.112383	
Adjusted R-squared	0.994745	S.D. dependent var	0.379308	
S.E. of regression	0.027496	Akaike info criterion	-4.288442	
Sum squared resid	0.222271	Schwarz criterion	-4.072500	
Log likelihood	686.9970	Hannan-Quinn criter.	-4.202137	
Durbin-Watson stat	1.887695			

The in-sample forecasting errors are:

Where the residuals appear to be White Noise. The corresponding correlogram of the residuals is:

The Ljung-Pierce Q-statistic fails to reject the null hypothesis of White Noise for displacements below 10 .

To obtain the forecast we need first to modify the sample to be able to include the forecasted values:

```
smpl 1968m1 1994m12
```

1) The dynamic forecast:

2) The static forecast:

As explained before, the difference between the dynamic and the static forecast is that the dynamic forecast uses previously forecasted values of the lagged dependent variables in forming forecasts of the current value. The static forecast calculates the sequence of one-step ahead forecasts, using actual, rather than forecasted values for lagged dependent variables, if available.

A step-by-step approach to obtain the static forecast is:

```
smpl 1966:1 1993:12
genr lhistory=logliquor
smpl 1994:1 1998:12
forecast yhat se
genr lfcst=yhat
genr fcst=@exp(yhat)
genr upper = yhat + 1.96*se
genr lower = yhat - 1.96*se
smpl 1992:1 1994:12
group group01 lhistory lfcst upper lower
```


group group02 logliquor lfcst upper lower

- LOGLIQUOR	- LFCST
- UPPER	-
LOWER	

For the details behind these steps, please refer to Chapter 17.

19.2 Recursive Estimation Procedures

Recursive estimation procedures can only be estimated when the model was estimated by ordinary least squares. Usual estimation of ARMA models use nonlinear
least squares or maximum likelihood procedures that are not compatible with recursive estimation procedures.

To be able to work with our model, estimate it again, but use the lag operators rather than the $\mathrm{AR}(1)$ notation:

```
smpl 1966:1 1993:12
ls logliquor @trend @trend^2 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12
    logliquor(-1) logliquor(-2) logliquor(-3)
```

Go to "View," then "Stability Diagnostics," and finally "Recursive Estimates."

[Equation: UNTITLED Workfile: DATAHANDOUT11EVIEWS:..... \square									
View	[Proc [Object]	[Print]	Name	Freeze	Estimate	Forecast	st Stats Re	Resids	
Representations									,
Estimation Output									E
Actual, Fitted, Residual									
ARMA Structure... istments									
Gradients and Derivatives					Std. Erro	or t-	t-Statistic	c Prob.	
Covariance Matrix									
Coefficient Diagnostics					$4.84 \mathrm{E}-07$	- 7 -2.	2.837314	- 0.0049	
Residual Diagnostics					0.252448		1.789409	- 0.0745	
Stability Diagnostics *					Chow Breakpoint Test...				
Label					Quandt-Andrews Breakpoint Test...				
$\begin{array}{ll}\text { DO } & \text { 0.090791 }\end{array}$					Multiple Breakpoint Test...				
					Chow Forecast Test...				
				48953					
D9 0.583381					Ramsey RESET Test...				
D10 0.612337					Recursive Estimates (OLS only) ...				
D11				62857					
				95524	Leverage Plots...				
LOGLIQUOR(-1)				74891	Influence Statistics...				
LOGLIQUOR(-2)				25063					
	LOGLIQUOR(-3)			99078	0.052952	27.536634		4.0000	
Desmiarad				a5208	Moan donandontyar 7 none78				

You will obtain the following menu:

The options we discussed in Chapter 18 are (1) Recursive residuals, (2) CUSUM test, and (3) Recursive coefficients.
(1) Recursive residuals.

(2) CUSUM test.

(3) Recursive coefficients, where we selected to have the results only for $\mathrm{C}(1)$, the first coefficient in the regression table results.

Chapter 20
 Forecasting with Regression Models

20.1 Conditional Forecasting Models

So far we have been focusing on univariate models. However, other variables (e.g., x_{t}) can help predict future values of y_{t}. For example,

$$
\begin{gather*}
y_{t}=\beta_{0}+\beta_{1} x_{t}+\varepsilon_{t} \tag{20.1}\\
\varepsilon_{t} \sim W N\left(0, \sigma^{2}\right) \tag{20.2}
\end{gather*}
$$

The idea in conditional forecasting models is to generate the forecast of y conditional on an assumed future value of x (scenario analysis).

Let x_{T+h}^{*} be the h-step ahead forecast of x. Then, the h-step-ahead forecast of y given x_{T+h}^{*} is:

$$
\begin{equation*}
y_{T+h, T} \mid x_{T+h}^{*}=\beta_{0}+\beta_{1} x_{T+h}^{*} \tag{20.3}
\end{equation*}
$$

Parameter Uncertainty:

- Specification Uncertainty: Our model is a simplification of the real world.
- Innovation Uncertainty: Future shocks ε_{t} are unknown when the forecast is made.
- Parameter Uncertainty: The parameters in our models θ, ϕ, β are unknown. Hence, the coefficients we use are just estimates $\hat{\theta}, \hat{\phi}, \hat{\beta}$, which are subject to sample variability.

20.2 Unconditional Forecasting Models

When using the following model to forecast y_{T+h},

$$
\begin{equation*}
y_{T+h, T}=\beta_{0}+\beta_{1} x_{T+h, T} \tag{20.4}
\end{equation*}
$$

we face the problem that we do not have the value for $x_{T+h, T}$. How about forecast it with an ARMA model? Perhaps it is easier to just to forecast y with an ARMA model.

A feasible model is:

$$
\begin{equation*}
y_{t}=\beta_{0}+\beta_{1} x_{t-1}+\varepsilon_{t} \tag{20.5}
\end{equation*}
$$

where we use the lagged known value of x_{t}. This is good for a 1-step=ahead forecast. x may be perfectly deterministic, e.g., trend or seasonal components.

20.3 Vector Autoregressions

$\operatorname{AR}(p)$: Univariate autoregression of order p.
$\operatorname{VAR}(p)$: Vector (mutivariate) autoregression of order p.

- N variables.
- N equations.
- p lags on every other variable.
- Allows for cross-variable dynamics.

Example: 2 variable $\operatorname{VAR}(p), y_{1, t}$ and $y_{2, t}$, with $p=1$:

$$
\begin{gather*}
y_{1, t}=\phi_{11} y_{1, t-1}+\phi_{12} y_{2, t-1}+\varepsilon_{1, t} \tag{20.6}\\
y_{2, t}=\phi_{21} y_{1, t-1}+\phi_{22} y_{2, t-1}+\varepsilon_{2, t} \tag{20.7}\\
\varepsilon_{1, t} \sim W N\left(0, \sigma_{1}^{2}\right) \\
\varepsilon_{2, t} \sim W N\left(0, \sigma_{2}^{2}\right) \\
\operatorname{cov}\left(\varepsilon_{1, t}, \varepsilon_{2, t}\right)=\sigma_{12}
\end{gather*}
$$

Model selection: How do we select p ? With multivariate versions of the AIC and SIC.

Forecasting: Same as the AR \rightarrow use the chair rule of forecasting.
Predictive Causality: It has two principles:

1. Cause should occur before effect.
2. A causal series should contain information not available in other series.

Unrestricted VAR: Everything causes everything.

20.4 Impulse-Response Functions

The Impulse-Response Function (IRF) helps us learn about the dynamics of a variable.

How does a unit innovation to a series affects it now and in the future?

Unit shock $=$ one standard deviation of ε_{t}.
Consider the VAR(1) model of Equations 20.6 and 20.7. Remember from previous chapters that the AR had an MA representation. Same works for a VAR. The moving average representation of the VAR(1)of Equations 20.6 and 20.7 is:

$$
\begin{align*}
& y_{1, t}=\varepsilon_{1, t}+\phi_{11} \varepsilon_{1, t-1}+\phi_{12} \varepsilon_{2, t-1}+\cdots \tag{20.8}\\
& y_{2, t}=\varepsilon_{2, t}+\phi_{21} \varepsilon_{1, t-1}+\phi_{22} \varepsilon_{2, t-1}+\cdots \tag{20.9}
\end{align*}
$$

Cholesky Decomposition: Need to decide the order of the variables "cause and effect."

If y_{1} is ordered first. That is, y_{1} occurs first $\left(y_{1}\right.$ causes $\left.y_{2}\right)$:

$$
\begin{array}{ll}
y_{1, t}=b_{11}^{0} \varepsilon_{1, t}^{\prime} & +b_{11}^{1} \varepsilon_{1, t-1}^{\prime}+b_{12}^{1} \varepsilon_{2, t-1}^{\prime}+\cdots \\
y_{2, t}=b_{21}^{0} \varepsilon_{1, t}^{\prime}+b_{22}^{0} \varepsilon_{2, t}^{\prime}+b_{21}^{1} \varepsilon_{1, t-1}^{\prime}+b_{22}^{1} \varepsilon_{2, t-1}^{\prime}+\cdots \tag{20.11}
\end{array}
$$

where b are normalized coefficients, and

$$
\begin{aligned}
& \varepsilon_{1, t}^{\prime} \sim W N(0,1) \\
& \varepsilon_{2, t}^{\prime} \sim W N(0,1) \\
& \operatorname{cov}\left(\varepsilon_{1, t}^{\prime}, \varepsilon_{2, t}^{\prime}\right)=0
\end{aligned}
$$

What Equations 20.10 and 20.11 basically say is that shocks (unexpected changes) to y_{1} or y_{2} affect the path of both y_{1} and y_{2}. The only restriction is that at time t, y_{2} does not affect y_{1}.

Four different Impulse-Response Functions:

- IRF of y_{1} to a a shock in $y_{1}, \varepsilon_{1}^{\prime}:\left\{b_{11}^{0}, b_{11}^{1}, b_{11}^{2}, \ldots\right\}$
- IRF of y_{1} to a a shock in $y_{2}, \varepsilon_{2}^{\prime}:\left\{b_{12}^{1}, b_{12}^{2}, b_{13}^{3}, \ldots\right\}$
- IRF of y_{2} to a a shock in $y_{1}, \varepsilon_{1}^{\prime}:\left\{b_{21}^{0}, b_{21}^{1}, b_{21}^{2}, \ldots\right\}$
- IRF of y_{2} to a a shock in $y_{2}, \varepsilon_{2}^{\prime}:\left\{b_{22}^{0}, b_{22}^{1}, b_{22}^{2}, \ldots\right\}$

We will obtain a graphical representation of these IRFs in the following chapter.

Chapter 21

EViews: Vector Autoregressions

This chapter covers the computer commands for the estimation of Vector Autoregressions (VAR), forecasting with regression models, and Impulse-response functions (IRF).

21.1 Estimation of Vector Autoregressions

The data we will use includes two variables: (1) the seasonally adjusted housing starts and (2) housing completions. These are monthly observations from January 1968 through June 1996. A graph of both variables can be obtained with:

```
group both starts comps
both.line(d)
```

To obtain:

We will use the data from January 1968 through December 1991 for model esti－ mation and the forecast will be done for the period from January 1992 through June 1996.

The correlograms for both variables are：

Sample：1968M01 19 Included observation	$\begin{aligned} & 966 \mathrm{MO6} \\ & \mathrm{~s}: 342 \end{aligned}$						Sample：1968M01 19 Included observation	$\begin{aligned} & 996 \mathrm{M06} \\ & \mathrm{~s}: 342 \end{aligned}$					
Autocorrelation	Partial Correlation		AC	PAC	Q－Stat	Prob	Autocorrelation	Partial Correlation		AC	PAC	Q－Stat	Prob
二		1	0.947	0.947	309.40	0.000	1	$1 \square$	1	0.940	0.940	304.66	0.000
	\square	2	0.939	0.406	614.29	0.000		$1 ص$	2	0.914	0.263	593.59	0.000
	1	3	0.919	0.073	907.27	0.000		17	3	0.888	0.070	866.99	0.000
	18	4	0.904	0.027	1191.5	0.000		151	4	0.853	－0．062	1120.5	0.000
	5	5	0.870	－0．196	1455.6	0.000		C	5	0.816	－0．086	1352.9	0.000
	101	6	0.848	－0．057	1707.4	0.000		161	6	0.778	－0．061	1564.7	0.000
	\square	7	0.813	－0．121	1939.8	0.000		191	7	0.737	－0．062	1755.3	0.000
	161	8	0.784	－0．061	2156.3	0.000		C	8	0.689	－0．097	1922.6	0.000
	191	9	0.748	－0．052	2354.1	0.000		11	9	0.648	－0．004	2071.0	0.000
	191	10	0.714	－0．056	2534.6	0.000		51	10	0.594	－0．120	2196.2	0.000
	5	11	0.672	－0．090	2694.9	0.000	－	18	11	0.553	0.038	2304.9	0.000
	C＇	12	0.630	－0．092	2836.6	0.000	\square	11	12	0.510	0.008	2397.6	0.000
	11	13	0.591	－0．015	2961.3	0.000	\square	12	13	0.475	0.076	2478.3	0.000
	11	14	0.549	－0．022	3069.2	0.000	，	51	14	0.422	－0．146	2542.0	0.000
	$1{ }^{1}$	15	0.511	0.050	3163.1	0.000	\square	19	15	0.375	－0．064	2592.5	0.000
$1 \square$	151	16	0.465	－0．056	3241.1	0.000	$1 \cdot$	\square	16	0.321	－0．116	2629.8	0.000
	11	17	0.427	0.010	3307.1	0.000	$1 ص$	151	17	0.268	－0．063	2655.9	0.000
，	\square	18	0.377	－0．112	3358.6	0.000	1 1ص	11	18	0.221	－0．013	2673.5	0.000
＇	101	19	0.335	－0．055	3399.4	0.000	1 日	11	19	0.174	0.017	2684.5	0.000
$1 ص$	151	20	0.287	－0．050	3429.4	0.000	$1 \square$	11	20	0.127	－0．022	2690.4	0.000
$1 \boxminus$	¢	21	0.237	－0．109	3450.1	0.000	11	11	21	0.079	－0．017	2692.7	0.000
$1 \square$	11	22	0.194	0.037	3463.9	0.000	$1{ }^{1}$	11	22	0.041	0.038	2693.3	0.000
1P	里	23	0.146	－0．060	3471.7	0.000	11	ig	23	－0．005	－0．025	2693.3	0.000
10	141	24	0.097	-0.061	3475.2	0.000	14	141	24	－0．047	－0．060	2694.1	0.000

Both show a strong cyclical component．
The cross－correlation function shows the correlation between a variable and the lags of another variable．To obtain it open both variables as a group，then go to ＂view＂and then＂cross－correlation＂to obtain：

Sample: 1968M01 1996M06 Included observations: 342 Correlations are asymptotically consistent approximations
STARTS,COMPS(-i)

This cross-correlation shows there is a strong correlation between the lags and leads of these variables. This is evidence of dynamic interaction between the two that can be modeled with a vector autoregression model.

The VAR(4) as presented in Equations 20.6 and 20.7 can be estimated using EViews in two different ways: (1) Equation by equation and (2) jointly. Equation by equation can we simply type the following command:

```
smpl 1968m01 1991m12
ls starts c starts(-1) starts(-2) starts(-3) starts(-4) comps(-1) comps(-2) comps(-3) comps(-4)
ls comps c starts(-1) starts(-2) starts(-3) starts(-4) comps(-1) comps(-2) comps(-3) comps(-4)
```

That give us the following estimation output:

Dependent Variable: STARTS
Method: Least Squares
Sample (adjusted): 1968M05 1991M12
Included observations: 284 after adjustments

Variable	Coefficient Std. Error	t-Statistic	Prob.	
C	0.146871	0.044235	3.320264	0.0010
STARTS(-1)	0.659939	0.061242	10.77587	0.0000
STARTS(-2)	0.229632	0.072724	3.157587	0.0018
STARTS(-3)	0.142859	0.072655	1.966281	0.0503
STARTS(-4)	0.007806	0.066032	0.118217	0.9060
COMPS(-1)	0.031611	0.102712	0.307759	0.7585
COMPS(-2)	-0.120781	0.103847	-1.163069	0.2458
COMPS(-3)	-0.020601	0.100946	-0.204078	0.8384
\quad COMPS(-4)	-0.027404	0.094569	-0.289779	0.7722
R-squared	0.895566	Mean dependent var	1.574771	
Adjusted R-squared	0.892528	S.D. dependent var	0.382362	
S.E. of regression	0.125350	Akaike info criterion	-1.284241	
Sum squared resid	4.320952	Schwarz criterion	-1.168605	
Log likelihood	191.3622	Hannan-Quinn criter.	-1.237880	
F-statistic	294.7796	Durbin-Watson stat	1.991908	
Prob(F-statistic)	0.000000			

Dependent Variable: COMPS
Method: Least Squares
Sample (adjusted): 1968M05 1991M12
Included observations: 284 after adjustments

Variable	Coefficient Std. Error	t-Statistic	Prob.	
C	0.045347	0.025794	1.758045	0.0799
STARTS(-1)	0.074724	0.035711	2.092461	0.0373
STARTS(-2)	0.040047	0.042406	0.944377	0.3458
STARTS(-3)	0.047145	0.042366	1.112805	0.2668
STARTS(-4)	0.082331	0.038504	2.138238	0.0334
COMPS(-1)	0.236774	0.059893	3.953313	0.0001
COMPS(-2)	0.206172	0.060554	3.404742	0.0008
COMPS(-3)	0.120998	0.058863	2.055593	0.0408
COMPS(-4)	0.156729	0.055144	2.842160	0.0048
R-squared	0.936835	Mean dependent var	1.547958	
Adjusted R-squared	0.934998	S.D. dependent var	0.286689	
S.E. of regression	0.073093	Akaike info criterion	-2.362995	
Sum squared resid	1.469205	Schwarz criterion	-2.247359	
Log likelihood	344.5453	Hannan-Quinn criter.	-2.316634	
F-statistic	509.8375	Durbin-Watson stat	2.013370	
Prob(F-statistic)	0.000000			

For the correlogram of the residuals we have:

Sample: 1968M01 1991M12 Included observations: 284					Sample: 1968M01 1991M12 Included observations: 284					
Autocorrelation	Partial Correlation	AC PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
11	11	10.0010 .001	0.0004	0.985	11	11	$1-0.009$	-0.009	0.0238	0.877
11	11	$2{ }^{2} 00.0030 .003$	0.0029	0.999	11	11	$2-0.035$	-0.035	0.3744	0.829
11	11	$\begin{array}{llll}3 & 0.006 & 0.006\end{array}$	0.0119	1.000	14	14	$3-0.037$	-0.037	0.7640	0.858
11	11	$4 \begin{array}{lll}4 & 0.023 & 0.023\end{array}$	0.1650	0.997	101	101	$4-0.088$	-0.090	3.0059	0.557
11	11	$\begin{array}{llll}5 & -0.013 & -0.013\end{array}$	0.2108	0.999	C1	C	$5-0.105$	-0.111	6.1873	0.288
11	11	$\begin{array}{llll}6 & 0.022 & 0.021\end{array}$	0.3463	0.999	11	11	60.012	-0.000	6.2291	0.398
18	18	$\begin{array}{lll}7 & 0.038 & 0.038\end{array}$	0.7646	0.998	11	111	7-0.024	-0.041	6.4047	0.493
10.	141	8-0.048-0.048	1.4362	0.994	17	11	80.041	0.024	6.9026	0.547
1	11	$90.056 \quad 0.056$	2.3528	0.985	10	111	90.048	0.029	7.5927	0.576
5	51	$10-0.114-0.116$	6.1868	0.799	1	$1{ }^{1}$	100.045	0.037	8.1918	0.610
11	11	$\begin{array}{llll}11 & -0.038 & -0.038\end{array}$	6.6096	0.830	11	11	$11-0.009$	-0.005	8.2160	0.694
10.	10	$\begin{array}{llll}12 & -0.030 & -0.028\end{array}$	6.8763	0.866	101	141	12-0.050	-0.046	8.9767	0.705
1 •	1 ص	$\begin{array}{llll}13 & 0.192 & 0.193\end{array}$	17.947	0.160	101	11	$13-0.038$	-0.024	9.4057	0.742
11	11	$\begin{array}{llll}14 & 0.014 & 0.021\end{array}$	18.010	0.206	101	111	$14-0.055$	-0.049	10.318	0.739
18	10	$\begin{array}{lll}15 & 0.063 & 0.067\end{array}$	19.199	0.205	$1 / 1$	$1 / 1$	150.027	0.028	10.545	0.784
11	11	$\begin{array}{llll}16 & -0.006 & -0.015\end{array}$	19.208	0.258	11	11	$16-0.005$	-0.020	10.553	0.836
11	111	$\begin{array}{llll}17 & -0.039 & -0.035\end{array}$	19.664	0.292	17	17	170.096	0.082	13.369	0.711
141	14	$\begin{array}{llll}18 & -0.029 & -0.043\end{array}$	19.927	0.337	11	11	180.011	-0.002	13.405	0.767
11	11	$\begin{array}{llll}19 & -0.010 & -0.009\end{array}$	19.959	0.397	10	111	190.041	0.040	13.929	0.788
11	11	$\begin{array}{lllll}20 & 0.010 & -0.014\end{array}$	19.993	0.458	17	11	200.046	0.061	14.569	0.801
15.	14	$\begin{array}{llll}21 & -0.057 & -0.047\end{array}$	21.003	0.459	15	161	$21-0.096$	-0.079	17.402	0.686
$1{ }^{1}$	11	$\begin{array}{llll}22 & 0.045 & 0.018\end{array}$	21.644	0.481	111	17	220.039	0.077	17.875	0.713
14.	11	$\begin{array}{llll}23 & -0.038 & 0.011\end{array}$	22.088	0.515	5	8	$\begin{array}{lll}23 & -0.113\end{array}$	-0.114	21.824	0.531
$\square 1$	$\square 1$	24-0.149-0.141	29.064	0.218	$\square 1$	$\square 1$	24-0.136	-0.125	27.622	0.276

From the different reported Q-statistics, we see both series are White Noise. This is evidence to validate our $\operatorname{VAR}(4)$ model.

The actual, fitted, and residuals graphs are:

The graphs from the residuals are consistent White Noise processes.

21.2 Impulse Response Functions

To estimate both equations of the $\operatorname{VAR}(4)$ at the same time we need to type the following command:

```
var bookfigure.ls 1 4 starts comps
```

This estimates both equations and stores the VAR(4) in the workfile under the name "bookfigure." The output is the following:

Vector Autoregression Estimates Sample (adjusted): 1968M05 1991M12 Included observations: 284 after adjustments Standard errors in () \& t-statistics in []		
	STARTS	COMPS
STARTS(-1)	$\begin{aligned} & 0.659939 \\ & (0.06124) \end{aligned}$	$\begin{aligned} & 0.074724 \\ & (0.03571) \end{aligned}$
STARTS(-2)	$\begin{aligned} & 0.229632 \\ & (0.07272) \end{aligned}$	$\begin{aligned} & 0.040047 \\ & (0.04241) \end{aligned}$
STARTS(-3)	$\begin{aligned} & 0.142859 \\ & (0.07265) \end{aligned}$	$\begin{aligned} & 0.047145 \\ & (0.04237) \end{aligned}$
STARTS(-4)	$\begin{aligned} & 0.007806 \\ & (0.06603) \end{aligned}$	$\begin{aligned} & 0.082331 \\ & (0.03850) \end{aligned}$
COMPS(-1)	$\begin{aligned} & 0.031611 \\ & (0.10271) \end{aligned}$	$\begin{aligned} & 0.236774 \\ & (0.05989) \end{aligned}$
COMPS(-2)	$\begin{gathered} -0.120781 \\ (0.10385) \end{gathered}$	$\begin{aligned} & 0.206172 \\ & (0.06055) \end{aligned}$
COMPS(-3)	$\begin{gathered} -0.020601 \\ (0.10095) \end{gathered}$	$\begin{aligned} & 0.120998 \\ & (0.05886) \end{aligned}$
COMPS(-4)	$\begin{gathered} -0.027404 \\ (0.09457) \end{gathered}$	$\begin{aligned} & 0.156729 \\ & (0.05514) \end{aligned}$
C	$\begin{aligned} & 0.146871 \\ & (0.04423) \end{aligned}$	$\begin{aligned} & 0.045347 \\ & (0.02579) \end{aligned}$
R-squared	0.895566	0.936835
Adj. R-squared	0.892528	0.934998
Sum sq. resids	4.320952	1.469205
S.E. equation	0.125350	0.073093
F-statistic	294.7796	509.8375
Log likelihood	191.3622	344.5453
Akaike AIC	-1.284241	-2.362995
Schwarz SC	-1.168605	-2.247359
Mean dependent	1.574771	1.547958
S.D. dependent	0.382362	0.286689

Determinant resid covariance (dof adj.) $8.11 E-05$
Determinant resid covariance
Log likelihood 540.7183

Akaike information criterion $\quad-3.681115$
Schwarz criterion $\quad-3.449842$

Notice that this is exactly the same result we obtained before. The benefit from this second approach is that the impulse-response functions can then be easily estimated by going to "View"" and then "Impulse Response":

To obtain:

Response to Cholesky One S.D. Innovations ± 2 S.E.

For example, from upper left quadrant we see that starts responds positively to starts. A one standard deviation shock in starts has a positive effect on starts that lasts about 23 months. The marginal effect is given by the blue line, while the red bands are approximately the 95% confidence intervals. Once the intervals include zero, the effect is no longer statistically significant.

On the lower left quadrant we see that completions responds positively to starts. A one standard deviation shock in starts has a positive (and increasing, at the beginning) effect on completions. The effects last for about 30 months.

21.3 Forecasting with Regression Models

For forecasting using the estimated $\operatorname{VAR}(4)$ we need to do the following:

```
bookfigure.makemodel(varmod) @prefix s_
smpl 1992m01 1996m06
varmod.solveopt (s=d, d=d)
solve varmod
smpl 1968m01 1996m06
varmod.makegraph(g=v) finalfigure starts
```


Alternatively, one can use the $\operatorname{VAR}(4)$ and obtain forecasts equation by equation using the same tools described in previous handouts. Just go to "Forecast"" right after the estimation of each of the VAR equations.

[^0]: ${ }^{1}$ These include time series analysis, panel data models, survival analysis, nonparametric methods, limited dependent variables and many more.

[^1]: ${ }^{2}$ Different versions of EViews may have a different outlay, but they should all perform these operations.

[^2]: ${ }^{1}$ You still need to select between competing models to assess whether the linear, quadratic or a different trend model better explains the data.

[^3]: ${ }^{1}$ It considers individuals who are 16 years old and over.

[^4]: ${ }^{2}$ Given the persistence of the series, a selection of lags 36 (3 years) would have been more appropriate. We selected 18 for space purposes.

