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Chapter 1
Introduction to Forecasting

1.1 Introduction

What would happen if we could know more about the future? Forecasting is very
important for:

• Business. Forecasting sales, prices, inventories, new entries.
• Finance. Forecasting financial risk, volatility forecasts. Stock prices?
• Economics. Unemployment, GDP, growth, consumption, investment.
• Governments. Tax revenues, population, infrastructure.

Use of data to forecast and types of data:

• Cross-section.
• Time series.
• Panel data.

Time-series data is a structure where observations of a variable or several vari-
ables are ordered in time (e.g., stock prices, money supply, consumer price index).
Unlike cross-section data, observations are related. For example, knowing some-
thing about the GDP in the past can tell you something about the GDP in the future.

Data Frequency: Daily / weekly / monthly / quarterly / annually

Seasonal Patterns: Sales during Christmas / agricultural data.

Forecasting Methods: Before forecasting we need to build a statistical model.

Statistical Model. Describes the relationship between variables. It’s parameters
are estimated using historical data.
Forecasting Model. Characterization of what we expect on the present, condi-
tional on the past. It can be used to infer about the future.

1



2 1 Introduction to Forecasting

Table 1.1 Data for Texas
Observation Year Unemployment Rate GDP Population

1 1951 6.7% 543 8.11
2 1952 7.2% 549 8.21
3 1953 7.5% 551 8.27
4 1954 6.8% 556 8.31
...

...
...

...
...

65 2016 4.4% 1,498 26.91
66 2017 4.7% 1,524 27.22
67 2018 4.0% 1,547 28.35
68 2019 3.4% 1,581 28.74

GDP in Billions of US$. Population in millions.

Components of a time series model:

Trend. Long-term movement.
Seasonal. Movement that repeats every season.
Cycle. Irregular dynamic behavior.



Chapter 2
Main Statistical Concepts

2.1 Random Variables

Goals:

• Working with data.
• Become familiar with the data in hand.

Random Experiment: Process leading to two or more possible outcomes, with
uncertainty as to which outcome will occur.

· Flip a coin.→ 2 outcomes. Head (H) or Tail (T).
· Flip two coins.→ 4 outcomes. (HH, HT, TH, TT).

Random Variable: Variable that takes numerical values determined by the out-
come or a random experiment.

Random variable Y : Number of tails observed when flipping two coins.

Y : Random variable.
y: Realizations of the random variable.
y = 0,1,2.

Event: Subset of outcomes.

Sample Space: Sample space S is the set of all outcomes of the random experi-
ment.

Probability: Given a random experiment, we want to determine the probability
that a particular event will occur.

Probability is measured from 0 to 1.
0→ the event will not occur.

3



4 2 Main Statistical Concepts

1→ the event is certain.

When all events are equally likely, the probability of event A is:

P(A) =
1
N

(2.1)

where N is the number of outcomes in the sample space S.

Example 1) Flip a coin:

Define event A: “Head”, then:

P(A) =
1
2

(2.2)

where N = 2 is the number of outcomes “Head” or “Tail”.
Example 2) Winning the lottery:

Define event B: Winning the lottery.

You buy 2 tickets from a total of 1,000 existing tickets. Then:

P(B) =
2

1,000
= 0.002 (2.3)

There is a 1/500 chance that you win the lottery.

If A is an event in the sample space S,

0≤ P(A)≤ 1 (2.4)

Probability distribution function: f (·). The probability distribution function
(p.d.f.) assigns a probability to each of the realizations of a random variable.

Example 3) Flip two coins: (HH, HT, TH, TT).

Define the random variable Y as the number of Tails. Hence:

y = 0,1,2.

f (Y = 0) = 0.25
f (Y = 1) = 0.5
f (Y = 2) = 0.25

Example 4) Toss a die.
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Fig. 2.1 Probability Density Function.

Define the random variable X as the number resulting from tossing a die. Hence:

x = 1,2,3,4,5,6.

f (Y = 1) = 1/6
f (Y = 2) = 1/6

...
f (Y = 6) = 1/6

Properties of the p.d.f.:

1) 0≤ P(xi)≤ 1 for any x
2) ∑i P(xi) = 1

p.d.f. graph, P(X = x), see Figure 2.1.

Mean of a random variable:

E(y) = ∑
i

piyi = ∑
i

P(yi)yi (2.5)

where pi = P(Y = yi).

Example) Toss a die.

E(X) =
1
6
·1+ 1

6
·2+ 1

6
·3+ 1

6
·4+ 1

6
·5+ 1

6
·6 = 3.5



6 2 Main Statistical Concepts

µ = E(X) is a measure of central tendency.

Variance of a random variable:

σ
2 =Var(Y ) = E(y−µ)2 (2.6)

σ2 =Var(Y ) is a measure of dispersion.

Example) Toss a die.

Var(X) = ∑
i
(xi−µ)2 p(xi)

= (1−3.5)2 · 1
6
+(2−3.5)2 · 1

6
+ · · ·+(6−3.5)2 · 1

6
= 2.916

Standard deviation of a random variable: It is simply the square root of the
variance.

σ =
√

Var(Y ) =
√

E(y−µ)2 (2.7)

2.2 Multivariate Random Variables

What if instead of observing a single random variable X , we now jointly observe
two random variables X and Y .

f (X ,Y )→ denotes the joint distribution of X and Y . It gives you the probability
associated with each possible pair x and y.

Covariance: How are these two variables associated?

Cov(X ,Y ) = E[(yt −µy)(xt −µx)] (2.8)

Cov(X ,Y )> 0 move together.
Cov(X ,Y )< 0 move in opposite directions.

Correlation: Units-free measure of the association between variables.

Corr(X ,Y ) =
Cov(X ,Y )

σxσy
(2.9)

where σx and σy are the standard deviations of X and Y respectively.

−1≤Corr(X ,Y )≤ 1
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Conditional distribution: What is the distribution of Y conditional on observing
X?

f (Y |X) =
f (X ,Y )

f (X)
(2.10)

2.3 Statistics

Note that we do not know the true f (X), f (X ,Y ), f (Y |X).

We have the sample {yt}T
t=1 ∼ f (Y ), where T is the sample size.

From these data we can obtain the following.

Sample mean:

µ̂y = ȳ =
1
T

T

∑
t=1

yt (2.11)

Sample variance:

σ̂
2 =

1
T

T

∑
t=1

(yt − ȳ)2 (2.12)

s2 =
1

T −1

T

∑
t=1

(yt − ȳ)2 (2.13)

2.4 Regression Analysis

2.5 Simple Regression Model

Two variables: X and Y . See Figure 2.2.

X : Education.

Y : Wage.

The regression equation holds for every observation t:

yt = β0 +β1xt + εt (2.14)

β0 and β1 are unknown parameters.
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Fig. 2.2 Fitted regression line.
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Fig. 2.3 Intercept and slope.

We need to estimate β0 and β1 from the data. See Figure 2.3.

The regression fitted values are given by:

ŷt = β̂0 + β̂1xt (2.15)

Figure 2.4 illustrates the actual and the fitted values.

et = yt − ŷt (2.16)
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Fig. 2.4 Estimating β0 and β1.

where:
et : residuals or in-sample forecast errors.
yt : actual values / true values.
ŷt : fitted values or in-sample forecast.

Ordinary Least Squares: obtains β̂0 and β̂1 by minimizing:

min
β0,β1

T

∑
t=1

(
yt −β0−β1xt

)2 (2.17)

In this simple case where there is a single right-hand side variable, the slope coeffi-
cient is obtained using:

β̂1 =
∑

T
t=1
(
xt − x̄

)(
yt − ȳ

)
∑

T
t=1
(
xt − x̄

)2 (2.18)

and the constant is obtained from:

β̂0 = ȳ− β̂1x̄. (2.19)

Keep in mind that:

β0 and β1
}

are the true unknown parameters.

β̂0 and β̂1
}

are the estimators of β0 and β1.

Specific values of β̂0 and β̂1 are called estimates (these are the ones obtained using
econometrics software).
β̂0 and β̂1 are random variables and depend on the sample.
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Hence, β̂0 and β̂1 have standard errors.

2.6 Multiple Regression Model

In the multiple regression model we have more than one right-hand side variables.
In a model with two regressors x and z we have:

yt = β0 +β1xt +β2zt + εt . (2.20)

Then the fitter values are:
ŷt = β̂0 + β̂1xt + β̂2zt . (2.21)

The error terms are assumed to be independent and identically distributed with mean
zero and variance σ2

ε :

εt
iid∼ (0,σ2

ε ) (2.22)

The β̂ j in a multiple regression model can easily be obtained with econometrics
software.

t-statistics: Provides a test that the true, but unknown, parameter β is equal to
zero. That is: H0 : β = 0.

t-statistic =
Coefficient

Standard Error
=

β̂

Std.Error
(
β̂
) (2.23)

Then you would need to compare it with the t-distribution.

Probability value: The p-value comes from comparing the t-statistics with the
table t-distribution. It is the minimum confidence level at which the null H0 : β = 0
is rejected.

Interpretation of β : Consider the following example. Here, wagei is the hourly
wage in US$, while educi is the number of years of formal education.

wagei = β̂0 + β̂1educi + εi

β̂0: This is the hourly wage of an individual with no formal education. That is, when
educi = 0.
β̂1: This is the marginal effect of educi on wagei. For every additional year of edu-
cation, the hourly wage increases by β̂1.

Sum of Squared Residuals: (SSR) the amount of variance in the dependent vari-
able (y) that is not explained by a regression model:
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SSR =
T

∑
t=1

e2
t

where
et = yt − ŷt .

We can add and subtract ȳ from the right-hand side to get:

et = yt − ȳ− (ŷt − ȳ).

We then square and sum across all observations in the sample to obtain:

T

∑
t−1

e2
t =

T

∑
t−1

(yt − ȳ)2−
T

∑
t−1

(ŷt − ȳ)2 +0

Rearranging terms:
T

∑
t−1

(yt − ȳ)2 =
T

∑
t−1

e2
t +

T

∑
t−1

(ŷt − ȳ)2 (2.24)

we have that:

∑
T
t−1(yt − ȳ)2: is the Total Sum of Squares (TSS).

∑
T
t−1 e2

t : is the Sum of Square Residuals (SSR).

∑
T
t−1(ŷt − ȳ)2: is the Model Sum of Squares (MSS).

From Equation 2.24 we can observe that the total variation (TSS) on the left-hand
side variable can be broken down into variation not explained by the more (SSR)
and the variation that is explained by the model (MSS). This is also illustrated in
Figure 2.5.

R-squared: Captures the proportion of the variation in y that is explained by the
model:

R2 =
∑

T
t−1(ŷt − ȳ)2

∑
T
t−1(yt − ȳ)2

= 1− ∑
T
t−1 e2

t

∑
T
t−1(yt − ȳ)2

Of course, 0≤ R2 ≤ 1.

Adjusted R-squared: Adjusted the R2 to account for the degrees of freedom
used in fitting the model:

R̄2 = 1−
1

T−k ∑
T
t−1 e2

t
1

T−1 ∑
T
t−1(yt − ȳ)2
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Fig. 2.5 Variation in the dependent variable y.

As more variables are included in the model, the R2 will always increase. However,
the R̄2 can either increase or decrease. Both, the R2 and R̄2, are used as measures of
the model fit.

Akaike Information Criterion: (AIC) it is effectively an estimate of the out-of-
sample forecast variance. It has a high penalty for degrees of freedom:

AIC = e
2k
T

∑
T
t−1 e2

t

T
.

Schwarz Information Criterion: (SIC) it is an alternative to the AIC, but has
an even harsher degrees-of-freedom penalty:

SIC = T
k
T

∑
T
t−1 e2

t

T
.

F-statistic: The most popular F-statistic is to test if all the slope coefficients are
jointly equal to zero. That is, H0 : β1 = β2 = · · ·= β j = 0.

F =

(
SSRrestricted−SSR

)
/(k−1)

SSR/(T − k)

where T is the total number of observations, k is the number of slope coefficients,
and SSR is the Sum of Squared Residuals. This F-statistic has also an associated
p-value. Its interpretation is similar to the p-value of the t-statistic.
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Dependent Variable: Y
Method: Least Squares
Sample: 1 50
Included observations: 50

Variable Coefficient Std. Error t-Statistic Prob.  

X -5.515772 1.147782 -4.805594 0.0000
Z 11.18922 0.416949 26.83592 0.0000

R-squared 0.926941     Mean dependent var 885.0800
Adjusted R-squared 0.925419     S.D. dependent var 407.7874
S.E. of regression 111.3649     Akaike info criterion 12.30268
Sum squared resid 595303.0     Schwarz criterion 12.37916
Log likelihood -305.5670     Hannan-Quinn criter. 12.33180
Durbin-Watson stat 0.176587

Fig. 2.6 EViews regression output.

Consider the example presented in Figure 2.6. This computer output shows how
the econometrics software will help us to quickly obtain all the statistics needed for
the analysis.





Chapter 3
EViews: Basics

This chapter will cover the following points:

1. To get you familiar with EViews basics.
2. Learn how to import data to EViews.
3. Learn some basic commands to obtain summary statistics, line graphs, his-

tograms.

3.1 Simple and multiple regression

EViews is a general purpose statistical software package. It is relatively easy for
beginners who are starting with econometrics/time-series, but has some many more
advance built-in procedures you may want to consider studying in the future.1

Once you open EViews, you will get the following screen:

1 These include time series analysis, panel data models, survival analysis, nonparametric methods,
limited dependent variables and many more.

15
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This screen is basically divided into two windows. The upper white portion is to
type the commands and the lower portion of the screen is for the output and where
you will see the data.

How to create a Workfile.

Before you are able to perform any operation, you need to create an EViews
“Workfile.”

Recall the types of data econometricians work with? (1) Cross-section, (2) Time-
series, and (3) Panel data. This class is all about time-series data, so you have to
select “Dated - regular frequency.”2 For this example, we will be working with 21
yearly observations from 1985 to 2005.

You should then have the following screen:

2 Different versions of EViews may have a different outlay, but they should all perform these
operations.
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In order to create a new series, let’s say GDP, you need to go to “Object” and
select “New Object.”

On a second screen you have to select “Series” as the type of object and select a
name. In this case we decide the new name will be GDP.

If you click twice in the newly created series you will be able to see its content.
Editing the series is simple and can be done by simply clicking the icon “edit.”
Then, typical features like “copy” and “paste” will be allowed, making it very easy
to import data from any web page or, for example, MS Excel.
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Let’s get some real data! The Bureau of Economic Analysis website has a MS
Excel file with real GDP data since the Great Depression. You can get the file di-
rectly from the following link:

http://www.bea.gov/national/xls/gdplev.xls.

Save the Excel file on your computer to be able to import it with EViews. To get
the GDP series into EViews go to “File”, then to “Import” and select “Import from
file...”

After selecting the Excel file from your computer you will be able to select the
cells where the data starts and finishes.

http://www.bea.gov/national/xls/gdplev.xls
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Then select the names of the series.

To finally tell EViews where the data starts. In this example, we selected it to
start in 1985. Make sure you always correctly match the starting cell in Excel with
the correct starting date.
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Note that there are various ways to successfully import data from an external
source. We just described one way to do it. I encourage you to try other options to
make sure you understand the steps.

Once your data is in EViews, playing with the options is very intuitive. For ex-
ample, if you want a time-series graph of the GDP series, you just need to open the
series and then select “View”, then “Graphs...”, and click OK on the default settings.
You should be getting the following graph:

One easy way to obtain the sample descriptive statistics is to go to “View”, then
“Descriptive Statistics & Tests”, and select “Histogram and Stats”. The resulting is
the following:
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From this output you can see the sample (1985-2005), number of observations,
and some simple statistics such as the mean, median, standard deviation, minimum
and maximum.





Chapter 4
EViews: Estimating a Regression Equation

This chapter will cover the following points:

1. Scatter plots.
2. Linear regressions.

4.1 Scatter plots

We will be using the data set under Handout 3 from the class website. The data set
is already formatted for EViews (or gretl) and contains three variables: x, y and z:

Open variables x and y as a group:
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Then select “View,” “Graph...,” “Scatter,” and then select the “Scatter” with “Re-
gression Line” options.

You will then obtain the following figure. This one shows the data points in the
sample along with the linear regression of y as a function of x.

4.2 Regression output

How is the linear regression line obtained? This is done easily by typing the follow-
ing command:

LS Y C X Z

This is basically telling EViews to run a linear regression using Least Squares (LS)
with y as the dependent variable and on a constant and on variables x and z. The
regression output is as follows:
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Dependent Variable: Y
Method: Least Squares
Sample: 1 48
Included observations: 48

Variable Coefficient Std. Error t-Statistic Prob.

C 9.884732 0.190297 51.94359 0.0000
X 1.073140 0.150341 7.138031 0.0000
Z −0.638011 0.172499 −3.698642 0.0006

R-squared 0.552928 Mean dependent var 10.08241
Adjusted R-squared 0.533059 S.D. dependent var 1.908842
S.E. of regression 1.304371 Akaike info criterion 3.429780
Sum squared resid 76.56223 Schwarz criterion 3.546730
Log likelihood −79.31472 Hannan-Quinn criter. 3.473976
F-statistic 27.82752 Durbin-Watson stat 1.506278
Prob(F-statistic) 0.000000





Chapter 5
Considerations to Successful Forecasting

5.1 Decision Environment and Loss Function

· Forecasts are made to guide decisions.
· Getting the wrong answer is costly.

Example: Forecast airline demand.

· The seller needs to select between two aircrafts (big vs. small).
· There are two states of the demand (high vs. low).

High Demand Low Demand
100-seat aircraft $0 $10,000
80-seat aircraft $10,000 $0

Need to forecast the demand to decide whether to schedule the 100-seat aircraft
or the 80-seat aircraft.

In this example there are only two demand states. What if we have a continuous
range of values? Then, we need to consider:

et = yt − ŷt (5.1)

where:

· et : forecast error.
· yt : actual value.
· ŷt : forecast.

Loss function: L(e), a function of the forecast errors (e) that gives us the loss
associated to forecasting.

We want three conditions for L(e):

1. L(0) = 0: Perfect forecast gives us zero loss.
2. L(e) is a continuous function.

27
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3. L(e) should punish (+) as well as (−) deviations.

Quadratic loss: L(e) = e2. Large errors are penalized more.

Absolute loss: L(e) = |e|. All errors are penalized equally.

In general L(y, ŷ). For example, in financial assets returns:

L(y, ŷ) =
{

0 if sign(∆y) = sign(∆ ŷ)
1 if sign(∆y) 6= sign(∆ ŷ)

No loss if the sign is forecasted correctly (Note that ∆y = yt − yt−1).

5.2 Forecast Object

a) Event outcome forecast. An event is certain but the outcome is uncertain.

Example: Event − Sunday weather. Outcome − rain / shine.

b) Event timing forecast. En event is certain and the outcome is known, but the
timing is uncertain.

Example: It is not raining today and we know it will rain in the future, but we do
not know when. Forecast when it will rain.

c) Time-series forecast. Project future values of a series.

Example: Forecast the amount of rain each month for the next 12 months given
that we have historical data.

5.3 Forecast Statement

a) Point forecast. Forecast a single number.

Example: The inflation rate next month is forecasted at 0.3%

b) Interval forecast. A range in which we expect the realized value to fall.

Example: The 95% confidence interval forecast for the GDP growth rate is
[−2.6%,4.7%].
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c) Density forecast. Forecast the probability distribution.

Example:

1 2 3 4 5 6 7 8 9

P
ro

b
a

b
il

it
y

 D
e

n
si

ty

Density forecast

Point forecastLower bound

5% 5%

90%

Upper bound

Fig. 5.1 Interval forecast and forecasting the probability distribution.

d) Probability forecast. Forecasts a probability (number between 0 and 1) of an
event.

Example: Forecast the probability that it will rain on Sunday.

5.4 Forecast Horizon

The data set goes from t = 1,2, . . . ,T .

The forecast could be for one period: T +1 (1 step), or for two periods: T +2 (2
steps).

h-step-ahead forecast is the forecast at period T +h (only period T +h).
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h-step-ahead extrapolation forecast is for h periods up until T +h (all steps from
1 to h).

5.5 Information Set

Forecasts are conditional of the information set.

To forecast yT+1 we can use:

a) Univariate information set:

Ω
Univariate = {yT ,yT−1, . . . ,y2,y1} (5.2)

a) Multivariate information set:

Ω
Multivariate = {xT ,xT−1, . . . ,x2,x1,yT ,yT−1, . . . ,y2,y1} (5.3)

5.6 Methods and Complexity

Key: Use the correct tool for the task in hand.

Parsimony principle: Simpler models are preferred. They are easier to estimate
and interpret.

Shrinkage principle: Imposing restrictions on the forecast usually improves per-
formance.



Chapter 6
EViews: In-sample Forecast

This chapter will cover the following points:

1. Simple and multiple regression.
2. In-sample forecast.
3. In-sample forecast errors.

6.1 Simple and multiple regression

We will be using the data set under Handout 4 from the class website. The data set
is already formatted for EViews and contains for key components of U.S. real GDP:
Manufacturing, retail, services, and agriculture. The series correspond to annual data
from 1960 to 2001 measured in millions of dollars.

We want to estimate the following model to see how the agricultural GDP has
been changing over the years:

agriculturet = β0 +β1yeart + εt (6.1)

The variable yeart takes the value of the corresponding year: 1960, 1961, ..., 2001.
To generate the variable year you have to type the following command:

genr year = @year

Now, to estimate the model in Equation 6.1, you have to type the command:

LS agriculture c year

to obtain the following regression output: Notice that the interpretation of the slope
coefficient β1 is the same as before: If year increases by one unit, then the agricul-
tural GDP (aGDP) will increase by 3.12 million dollars. This means that in a given
year the aGDP is about 3.12 million dollars greater than the aGDP the year before.
The p-value indicates that the variable yeart is statistically significant and the R2

shows that time (yeart ) explains 97% of the variation in aGDP.
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Dependent Variable: AGRICULTURE
Method: Least Squares
Sample: 1960 2001
Included observations: 42

Variable Coefficient Std. Error t-Statistic Prob.

C −6119.273 165.4182 −36.99275 0.0000
YEAR 3.126007 0.083522 37.42740 0.0000

R-squared 0.972238 Mean dependent var 71.78352
Adjusted R-squared 0.971544 S.D. dependent var 38.89304
S.E. of regression 6.560855 Akaike info criterion 6.646567
Sum squared resid 1721.793 Schwarz criterion 6.729313
Log likelihood −137.5779 Hannan-Quinn criter. 6.676897
F-statistic 1400.810 Durbin-Watson stat 1.298698
Prob(F-statistic) 0.000000

What happened in the year zero? The aGDP is estimated to be negative 6,119
million dollars. Does that make sense? No! That’s why you have to be very careful
in using these type of models to predict out-of-sample values.

6.2 In-sample Forecast

Let’s obtain the in-sample forecasted values for aGDP (agriculture):

̂agriculturet = β̂0 + β̂1yeart (6.2)

̂agriculturet = 6,119.273+3.126yeart

This can be done by simply selecting the “Forecast” icon while keeping the default
options:
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EViews will obtain:

and more importantly, EViews generated the variable “agricurturf” that contains
the in-sample forecasted values. The difference between ”agriculture” and ”agricul-
turf” corresponds to the forecasting errors and this variable is automatically stored
under “resid.” You can obtain a graph of all these three components (actual value
= agriculture, fitted value = agriculturf, forecasting error = resid) by selecting the
following option:
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To obtain:



Chapter 7
EViews: Importance of Graphics for Forecasting

This chapter will show the importance of using graphical tool before engaging into
sophisticated statistical forecasting.

Consider the following variables, available under Handout 5 on the class website:

In these data you have four pairs of y and x variables. Let’s estimate the following
model:

yi = β0 +β1xi + εi (7.1)

Using any of the different y and x pairs, you will obtain the following output:
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Dependent Variable: Y1
Method: Least Squares
Sample: 1 11
Included observations: 11

Variable Coefficient Std. Error t-Statistic Prob.

C 3.000091 1.124747 2.667348 0.0257
X1 0.500091 0.117906 4.241455 0.0022

R-squared 0.666542 Mean dependent var 7.500909
Adjusted R-squared 0.629492 S.D. dependent var 2.031568
S.E. of regression 1.236603 Akaike info criterion 3.425579
Sum squared resid 13.76269 Schwarz criterion 3.497924
Log likelihood −16.84069 Hannan-Quinn criter. 3.379976
F-statistic 17.98994 Durbin-Watson stat 3.212290
Prob(F-statistic) 0.002170

That corresponds to the following estimated equation:

ŷ1i = 3+0.5x1i

which holds for any pair. That is:

ŷ2i = 3+0.5x2i ŷ3i = 3+0.5x3i ŷ4i = 3+0.5x4i

Moreover, you will also get the same R2 as well as the same standard errors, t-
statistics and p-values.

What’s the problem with this? There doesn’t seem to be any problem, you may
think, as different pairs of x and y can give exactly the same regression equation.
The problem becomes clear when you graph the data:
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Chapter 8
Modeling and Forecasting Trend

8.1 Modeling Trend

Trend: Long-run evolution in a variable.

The dynamics of a series can be broadly separated into a trend, a seasonal com-
ponent, and the cyclical component.

Deterministic Trend: It is a predicable trend.

Linear Trend.
Tt = β0 +β1T IMEt , (8.1)

where β0 is the intercept and β1 is the slope (so we can have an increasing or
decreasing series).

Quadratic Trend.
Tt = β0 +β1T IMEt +β2T IME2

t . (8.2)

It is a local approximation of a “U-shaped” trend.
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Fig. 8.1 Quadratic trend with β2 > 0.
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Fig. 8.2 Quadratic trend with β2 > 0

Cubic Trend.

Tt = β0 +β1T IMEt +β2T IME2
t +β3T IME3

t . (8.3)

Exponential of Log-linear Trend. Economic variables sometimes grow at a con-
stant rate β1.

Tt = β0eβ1T IMEt , (8.4)

where the trend is a exponential function of time. Taking natural logarithms of
both sides we have:
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log(Tt) = log(β0)+β1 log(eT IMEt ) (8.5)
log(Tt) = log(β0)+β1T IMEt (8.6)

as log(e) = 1.

8.2 Estimating Trend Models

We can easily fit various trend models using ordinary least squares. Any computer
software should be able to estimate:

θ̂ = argmin
θ

T

∑
t=1

(
yt −Tt(θ)

)2
, (8.7)

where θ is just the set of parameters to be estimated. For example, in the quadratic
trend of Equation 8.2, θ = (β0,β1,β2). In this case the computer will find:

(
β̂0, β̂1, β̂2

)
= argmin

β0,β1,β2

T

∑
t=1

(
yt −β0−β1T IMEt −β2T IME2

t
)2
. (8.8)

8.3 Forecasting Trend

Consider the following linear trend model:

yt = β0 +β1T IMEt + εt , (8.9)

which holds for any time t. Hence, for time T +h in the future we have:

yT+h = β0 +β1T IMET+h + εT+h. (8.10)

After obtaining estimates of β0 and β1 via least squares, on the right-hand side of
this equation we have:

T IMET+h → known at time T .
εT+h → unknown at time T .

We replace εT+h with 0 in Equation 8.10 as it has expected value zero.

Point Forecast: We can use the following point forecast:

ŷT+h,T = β̂0 + β̂1T IMET+h. (8.11)
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where the subscript “T +h,T ” on ŷT+h,T just emphasizes that the forecast of period
T +h is done at period T .

Interval Forecast: If we assume that the trend regression disturbance is normally
distributed, in which case a 95% interval forecast is:

yT+h,T ±1.96σ , (8.12)

where σ is the standard deviation of the disturbance term. To make this operational
we use:

ŷT+h,T ±1.96σ̂ , (8.13)

with σ̂ being an estimate of σ .

Density Forecast: Under the assumption that the trend regression is normally
distributed, the density forecast is given by:

N
(
ŷT+h,T , σ̂

2) (8.14)

8.4 Model Selection Criteria

How do we select between competing models? Minimizing the Mean Squared Error
(MSE):

MSE =
∑

T
t=1 e2

t

T
, (8.15)

is the same as maximizing the R2:

R2 = 1− ∑
T
t=1 e2

t

∑
T
t=1
(
yt − ȳ

)2 (8.16)

Moreover, improving the “fit” of historical data usually does not help in improv-
ing the out-of-sample forecasting. Hence, alternative involve the adjusted R2 (R̄2),
which adjusts for the degrees of freedom.

We can use the Akaike Information Criterion (AIC):

AIC = e
2k
T

∑
T
t−1 e2

t

T
,

and the Schwarz Information Criterion (SIC):

SIC = T
k
T

∑
T
t−1 e2

t

T
.

where k is the number of parameters to be estimated and (2k/T ) and (k/T ) work as
penalty factors. The idea is to select the model that gives the smallest AIC or SIC.



Chapter 9
EViews: Modeling and Forecasting Trend

This chapter will compare models with different trend structures and illustrate the
use of the AIC and the SIC as two forms of selection criteria.

9.1 Comparing Trend Models

The variable of interest is the volume on the New York Stock Exchange.

Linear trend: Type and run the command:

ls nysevol c @trend

To obtain:

Dependent Variable: NYSEVOL
Method: Least Squares
Sample: 1950M01 1994M12
Included observations: 540

Variable Coefficient Std. Error t-Statistic Prob.

C −6311.367 227.6358 −27.72572 0.0000
@TREND 8.592274 0.257692 33.34316 0.0000

R-squared 0.673893 Mean dependent var 1159.615
Adjusted R-squared 0.673287 S.D. dependent var 1633.118
S.E. of regression 933.4706 Akaike info criterion 16.51939
Sum squared resid 4.69E +08 Schwarz criterion 16.53529
Log likelihood −4458.236 Hannan-Quinn criter. 16.52561
F-statistic 1111.766 Durbin-Watson stat 0.113092
Prob(F-statistic) 0.000000
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Quadratic trend: Type and run the command:

ls nysevol c @trend @trendˆ2

To obtain:

Dependent Variable: NYSEVOL
Method: Least Squares
Sample: 1950M01 1994M12
Included observations: 540

Variable Coefficient Std. Error t-Statistic Prob.

C 21239.88 656.3047 32.36284 0.0000
@TREND −56.88488 1.543046 −36.86532 0.0000

@TRENDˆ2 0.037652 0.000884 42.56987 0.0000

R-squared 0.925456 Mean dependent var 1159.615
Adjusted R-squared 0.925178 S.D. dependent var 1633.118
S.E. of regression 446.7168 Akaike info criterion 15.04727
Sum squared resid 1.07E +08 Schwarz criterion 15.07111
Log likelihood −4059.762 Hannan-Quinn criter. 15.05659
F-statistic 3333.379 Durbin-Watson stat 0.493887
Prob(F-statistic) 0.000000
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Cubic trend: Type and run the command:

ls nysevol c @trend @trendˆ2 @trendˆ3

To obtain:

Dependent Variable: NYSEVOL
Method: Least Squares
Sample: 1950M01 1994M12
Included observations: 540

Variable Coefficient Std. Error t-Statistic Prob.

C −37461.26 3141.303 −11.92539 0.0000
@TREND 153.9406 11.19722 13.74810 0.0000

@TRENDˆ2 −0.209583 0.013074 −16.03063 0.0000
@TRENDˆ3 9.48E−05 5.01E−06 18.93661 0.0000

R-squared 0.955336 Mean dependent var 1159.615
Adjusted R-squared 0.955086 S.D. dependent var 1633.118
S.E. of regression 346.1037 Akaike info criterion 14.53873
Sum squared resid 64206230 Schwarz criterion 14.57052
Log likelihood −3921.458 Hannan-Quinn criter. 14.55117
F-statistic 3821.611 Durbin-Watson stat 0.823825
Prob(F-statistic) 0.000000
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Fourth power trend: Type and run the command:

ls nysevol c @trend @trendˆ2 @trendˆ3 @trendˆ4

To obtain:

Dependent Variable: NYSEVOL
Method: Least Squares
Sample: 1950M01 1994M12
Included observations: 540

Variable Coefficient Std. Error t-Statistic Prob.

C −40938.43 19576.47 −2.091206 0.0370
@TREND 170.6429 93.48719 1.825307 0.0685

@TRENDˆ2 −0.239225 0.165235 −1.447789 0.1483
@TRENDˆ3 0.000118 0.000128 0.919407 0.3583
@TRENDˆ4 −6.63E−09 3.68E−08 −0.179956 0.8573

R-squared 0.955339 Mean dependent var 1159.615
Adjusted R-squared 0.955005 S.D. dependent var 1633.118
S.E. of regression 346.4165 Akaike info criterion 14.54238
Sum squared resid 64202344 Schwarz criterion 14.58211
Log likelihood −3921.442 Hannan-Quinn criter. 14.55792
F-statistic 2861.042 Durbin-Watson stat 0.823879
Prob(F-statistic) 0.000000
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Comparing the fit of different models for the trend we have:

The R-squared will always increase as we include more variables into the model,
hence does not work as a model selection criterion.

The Adjusted R-squared and the Standard Error of the regression do penalize
for the inclusion of more variables into the model (which decreases the degrees of
freedom), but the penalty is not severe enough. They can increase or decrease as
more variables are included.

The AIC and the SIC can increase or decrease as more variables are included.
The selected model should be the one that has the smallest AIC and SIC. When they
do not select the same model, the parsimonious model should be selected. That is,
the one with the least number of estimated parameters and this will be given by the
SIC. In the models above, AIC selects the fifth specification, but SIC selects the
cubic specification. We pick the parsimonious model: the cubic trend model.

9.2 Forecasting

With the cubic trend as our selected model we now aim at getting the out-of-sample
point forecast values. After estimating the equation, just click on “Forecast” and
make sure the “Forecasting sample” contains some values into the future:
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To obtain:

The dotted red lines are the one standard deviation confidence intervals. Notice
that the forecast spans for an additional year (the twelve months of 1995). Moreover,
remember that the variable NYSEVOLF contains the values of the point forecasts.



Chapter 10
Modeling and Forecasting Seasonality

10.1 Nature and Sources of Seasonality

Seasonality: A seasonal pattern is one that repeats itself every year (or season,
week, month).

Deterministic Seasonality: The annual repetition can be exact. This is different
from stochastic seasonality in which the repetition is approximate. This chapter fo-
cuses on deterministic seasonality.

Examples:

· Retail sales are usually higher during the Christmas season.
· More travelers fly during weekends.
· Tax collection peaks in April.
· Weather→ Summer / winter.
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Fig. 10.1 Seasonality in air ticket sales.

10.2 Modeling Seasonality

Regression using seasonal dummies.

Dummy variable = 1 during some periods (e.g., weekends).
Dummy variable = 0 the rest of the time.

Consider the following example.

Table 10.1 Quarterly Sales Data

Observation Sales Quarter Year D1 D2 D3 D4
1 58 1 2017 1 0 0 0
2 63 2 2017 0 1 0 0
3 72 3 2017 0 0 1 0
4 53 4 2017 0 0 0 1
5 57 1 2018 1 0 0 0
6 62 2 2018 0 1 0 0
7 75 3 2018 0 0 1 0
8 58 4 2018 0 0 0 1
...

...
...

...
...

...
...

...
Sales in thousands of $.

The dummies will capture the deterministic seasonal effect.

Salest = γ1D1t + γ2D2t + γ3D3t + γ4D4t + εt (10.1)

The pure seasonal dummy model is:
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yt =
s

∑
t=1

γiDit + εt (10.2)

Hence, for s = 4, Equation 10.2 reduces to Equation 10.1 as ∑
s
i=1 γiDit = γ1D1t +

γ2D2t + γ3D3t + γ4D4t . Note that we can modify Equation 10.2 to additionally in-
clude a trend:

yt = β1T IMEt +
s

∑
i=1

γiDit + εt (10.3)

Holiday variation: Dummies for specific holidays. For example,

HD = 1: if Thanksgiving.
HD = 0: otherwise.

10.3 Forecasting Seasonal Series

Consider the model:

yt = β1T IMEt +
s

∑
i=1

γiDit +
v

∑
i=1

δiHDit + εt (10.4)

where T IMEt is the linear time trend, ∑
s
i=1 γiDit captures the seasonal variation, and

∑
v
i=1 δiHDit captures the holiday variation. εt is the remaider stochastic term.

Equation 10.4 holds for every time t, so at time T +h we have:

yT+h = β1T IMET+h +
s

∑
i=1

γiDi,T+h +
v

∑
i=1

δiHDi,T+h + εT+h (10.5)

At time T (i.e., the moment we forecast), we have:

T IMET+h → known at time T .
Di,T+h → known at time T .
HDi,T+h → known at time T .
εT+h → unknown at time T .

We replace εT+h with 0 in Equation 10.4 as it has expected value zero.

The forecast of yT+h made at time T is:

ŷT+h,T = β̂1T IMET+h +
s

∑
i=1

γ̂iDi,T+h +
v

∑
i=1

δ̂iHDi,T+h (10.6)

where β̂1, γ̂i, and δ̂i denote the estimates obtained via ordinary least squares using
historical data.





Chapter 11
EViews: Modeling and Forecasting Seasonality

This chapter will show the use of dummy variables to model and forecast seasonal-
ity.

Let the variable of interest be the monthly total number of air passengers trans-
ported in U.S. domestic and international flights. We have data from August, 2009
up until June, 2019. This is a typical variable that has seasonal fluctuations in addi-
tion to a potential trend.

The following time series graph of illustrates the importance of seasonal compo-
nent in this variable:

This variable is contained in the EViews file “passengers.wf1” along with some
dummy variables. Part of the data showing the dummy variables is as follows:
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Note the 0/1 nature of the dummy variables. For example, D2 is equal to one
when the month is February, zero otherwise.

11.1 Failing to Model Seasonality

If we estimate a naive econometric model that just accounts for a linear trend we
would type:

ls airpass c @trend

To obtain:

Dependent Variable: AIRPASS
Method: Least Squares
Sample: 2009M08 2019M06
Included observations: 119

Variable Coefficient Std. Error t-Statistic Prob.

C 62547562 1341965. 46.60894 0.0000
@TREND 190748.7 19656.29 9.704206 0.0000

R-squared 0.445948 Mean dependent var 73801737
Adjusted R-squared 0.441213 S.D. dependent var 9853554.
S.E. of regression 7365736. Akaike info criterion 34.47924
Sum squared resid 6.35E +15 Schwarz criterion 34.52595
Log likelihood −2049.515 Hannan-Quinn criter. 34.49821
F-statistic 94.17161 Durbin-Watson stat 0.982941
Prob(F-statistic) 0.000000

This regression model yields the following actual, fitted and residuals graph:
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This model allows controlling for the trend, but it still misses to account for the
systematic fluctuations that appear every year.

11.2 Modeling Seasonality with Dummies

The econometric model that accounts for the seasonal variation is:

ls airpass d01 d02 d03 d04 d05 d06 d07 d08 d09 d10 d11 d12

With the regression output given by:
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Dependent Variable: AIRPASS
Method: Least Squares
Sample: 2009M08 2019M06
Included observations: 119

Variable Coefficient Std. Error t-Statistic Prob.

D01 66392856 2222332. 29.87530 0.0000
D02 60738127 2222332. 27.33080 0.0000
D03 76392041 2222332. 34.37472 0.0000
D04 73361346 2222332. 33.01097 0.0000
D05 78099360 2222332. 35.14297 0.0000
D06 83312966 2222332. 37.48898 0.0000
D07 86113225 2342544. 36.76056 0.0000
D08 82046928 2222332. 36.91929 0.0000
D09 69226001 2222332. 31.15016 0.0000
D10 72449763 2222332. 32.60078 0.0000
D11 67211336 2222332. 30.24360 0.0000
D12 71508042 2222332. 32.17702 0.0000

R-squared 0.538753 Mean dependent var 73801737
Adjusted R-squared 0.491335 S.D. dependent var 9853554.
S.E. of regression 7027632. Akaike info criterion 34.46398
Sum squared resid 5.28E +15 Schwarz criterion 34.74423
Log likelihood −2038.607 Hannan-Quinn criter. 34.57778
Durbin-Watson stat 0.035139

Table 11.1 Regression model of air passengers transported as a function of seasonal dummies.

In this Table 11.1 we can see how the coefficients of the dummy variables explain
about 53.9% of the total variation in air passengers. Note that we not include a
constant to avoid having a problem of multicollinearity.



11.3 Forecasting Seasonality 57

The actual, fitted, and residual graph below shows that while the model accounts
for the seasonal variation, there is still a trend that needs to be modeled. The code
on EViews to jointly estimate a model with seasonal dummies and a quadratic trend
is:1

ls airpass @trend @trendˆ2 d01 d02 d03 d04 d05 d06 d07 d08 d09 d10 d11 d12

We omit the regression output as it is similar to the one reported in Table 11.1.
Both coefficients on @trend and @trendˆ2 are statistically significant, and
the R2 of the model is 98.8%.

The actual, fitted, and residual graph is:

In this graph we can observe how the fitted values (green line), follow very
closely the actual values (red line). Moreover the residuals measured on the left-
hand side do not appears to have any remaining seasonal pattern or trend.

11.3 Forecasting Seasonality

To be able to obtain the out-of-sample forecast, we need to first increase the workfile
size to be able to include observations beyond period T . To do this, go to “Proc” and
then “Structure/Resize Current Page”.

1 You still need to select between competing models to assess whether the linear, quadratic or a
different trend model better explains the data.
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To then select some date in the future (i.e., beyond “T ”). In this case se use June,
2020 given that out data stops at June, 2019.

For the forecasting graph and the forecasting series, we follow the steps in the
previous handouts to obtain:

11.4 How to Create Dummy Variables

If the dummy variables d1, d2, ..., d12 are not readily available in the data set, they
can easily be created using the following command:

genr dum1 = @seas(1)

This generates the dummy for the first month. You have to repeat this for all 12
months in the sample: genr dum2 = @seas(2)... until genr dum12 = @seas(12).



Chapter 12
Characterizing Cycles

Cycles: Any sort of dynamics not captured by the trend or seasonality.

· Only need some persistence.
· Are more sophisticated than the trend and seasonal components.

12.1 Covariance Stationary Time Series

Consider the following realizations of a time series:

{. . .y−3,y−2,y−1,y0,y1,y2,y3, . . .}

which are ordered in time.
We only observed a sample path:

{y1,y2,y3, . . . ,yT}

To forecast we need:

· That the probabilistic structure of the series be the same in the future.
· At the minimum we want the covariance structure to be stable over time (we
call this covariance stationary).

Covariance Stationary: We want the mean and the covariance structure of the
series to be stable.

For the mean to be stable we need:

E(yt) = µ (12.1)

where µ does not have a t subscript as it is constant over time.
To assess if the covariance structure is stable we will use the autocovariance func-

tion, the autocorrelation function, and the partial autocorrelation function.
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Autocovariance Function: It is defined as the covariance between yt and yt−τ

at different values of the displacement τ . Formally, the autocovariance function is
given by

γ(t,τ) = cov(yt ,yt−τ) (12.2)

where τ is the displacement, and cov(yt ,yt−τ) is just the covariance between yt and
yt−τ .

If the autocovariance is stable it should depend only on τ , not on t. That is,

γ(t,τ) = γ(τ) for all t. (12.3)

The autocovariance is symmetric:

γ(τ) = γ(−τ) (12.4)

Moreover, the autocovariance at displacement zero, τ = 0, is equal to the vari-
ance,

γ(0) = var(yt) (12.5)

where var(yt) denotes the variance of yt .

Autocorrelation Function: For practical purposes is it better to focus on the
autocorrelation function, which is units free and defined as:

ρ(τ) =
γ(τ)

γ(0)
for τ = 0,1,2, . . . (12.6)

where γ(0) is the variance of yt , and γ(τ) is the autocovariance at displacement τ .
We can view ρ(τ) as the correlation coefficient between yt and yt−τ .
Note that at displacement zero, ρ(0) = γ(0)

γ(0) = 1.

Partial Autocorrelation Function: It is denoted by p(τ) and measures the asso-
ciation between yt and yt−τ after controlling for yt−1,yt−2, . . . ,yt−τ+1.

It is obtained by regressing yt on yt−1,yt−2, . . . ,yt−τ . Then p(τ) is the slope co-
efficient on yt−τ .

yt = β0 +β1yt−1 +β2yt−2 + · · ·+βτ yt−τ + εt (12.7)

where in this model p(τ) = βτ .
The partial autocorrelation function contrasts with the autocorrelation function,

which does not control for other lags.
The covariance stationary processes that we will study have autocorrelation and

partial autocorrelation functions that approach to 0.
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12.2 White Noise

Suppose that:
yt = εt (12.8)

where εt ∼ (0,σ2). There are no dynamics in the process.

We say that εt is serially uncorrelated. That is, we cannot predict εt based on its
past observations, εt−1,εt−2, . . .

We say that yt is a white noise process when:

yt
iid∼ (0,σ2) or yt ∼WN(0,σ2).

where iid means independent and identically distributed. Figure 12.1 illustrates the
dynamics of a white-noise process.
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Fig. 12.1 White-noise process yt
iid∼ (0,σ2) or yt ∼WN(0,σ2).

A Gaussian white noise process is:

yt
iid∼ N(0,σ2)

where N(0,σ2) just denotes the normal (or Gaussian) distribution so that the mean
and variance are given by:

E(yt) = 0

var(yt) = σ
2

The autocovariance function for a white noise process is:
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γ(τ) = σ2 for τ = 0
= 0 for τ ≥ 1

The autocorrelation function for a white noise process is:

ρ(τ) = 1 for τ = 0
= 0 for τ ≥ 1

Because yt−1,yt−2,yt−3, . . . have no information to predict yt , the partial autocor-
relation function of a white noise process is:

ρ(τ) = 1 for τ = 0
= 0 for τ ≥ 1

The conditional mean and variances are:

E(yt |Ωt−1) = 0
var(yt |Ωt−1) = σ2

12.3 Lag Operator

Lmyt = yt−m (12.9)
L1yt = yt−1 (12.10)
L2yt = yt−2

B(L) = b0 +b1L+b2L2 +b3L3 + · · ·+bnLn =
∞

∑
i=0

biLi.

12.4 Wold’s Theorem

What model should we use after controlling for the trend and seasonal components?
Let {yt} be a zero-mean and covariance-stationary process. Then {yt} can be

written in its Wold representation form:

yt =
∞

∑
i=0

biLi; b0 = 1;
∞

∑
i=0

b2
i < 0; and εt =WN(0,σ2) (12.11)

or

yt = b0 +b1εt−1 +b2εt−2 +b3εt−3 + · · · (12.12)
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In summary, the Wold’s Theorem indicates that any stationary process has this seem-
ingly special representation of Equation 12.12. As we will see later on, this is called
the moving average representation of a covariance-stationary process.

12.5 Estimation of µ , ρ(τ), and p(τ)

For µ , we use the sample mean:

µ̂ = ȳ =
1
T

T

∑
t=1

yt . (12.13)

For the autocorrelation ρ(τ), we use sample autocorrelation function:

ρ̂(τ) =
∑

T
t=τ+1(yt − ȳ)(yt−τ − ȳ)

∑
T
t=1(yt − ȳ)2

. (12.14)

What if we are interested in knowing if the series is a good approximation of a
white noise process? This is an important question to assess the quality of a fore-
casting model. Once we select a forecasting model, the regression residuals need to
be a good approximation of a white noise process. A simple test would be to assess
if the all the autocorrelations are zero. For example, we can plot the sample auto-
correlations along their two-standard-error bands and assess if 95% of the sample
autocorrelations fall within this band. If so, the series can be said to be white noise.

Box-Pierce Q-statistic: It is a formal test that yt is white noise.

QBP = T
m

∑
τ=1

ρ̂
2(τ)∼ χ

2
m, (12.15)

where m is the number of autocorrelations, which is also equal to the number of
degrees of freedom. Moreover, “∼” means that the QBP approximates a chi-squared
distribution with m degrees of freedom (χ2

m). We reject the null hypothesis of white
noise if the p-value is less than α (e.g., α = 0.05).

The Box-Pierce Q-statistic is essentially a test that all autocorrelations are zero.
If we fail to reject the null hypothesis of yt being white noise, then we can conclude
that the series yt is unpredictable.

Ljung-Pierce Q-statistic: In small samples, we use the Ljung-Pierce Q-statistic
instead of the Box-Pierce Q-statistic. This is because the Ljung-Pierce Q-statistic
presents a small sample correction.

QLP = T (T +2)
m

∑
τ=1

( 1
T − τ

ρ̂
2(τ)

)
χ

2
m. (12.16)
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For the partial autocorrelation function p(τ), we use:

ŷt = ĉ+ β̂1yt−1 + · · ·+ β̂τ yt−τ , (12.17)

where p̂(τ)≡ β̂τ .



Chapter 13
EViews: Characterizing Cycles

This chapter will show how to obtain the correlogram.

13.1 Unemployment Rate

Figure 13.1 presents the U.S. monthly unemployment rate between January 2000
and September 2019. The data comes from the Bureau of Labor Statistics.1 This
variable is contained in the EViews file “unemploymentrate.wf1”

1 It considers individuals who are 16 years old and over.
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13.2 Correlogram of a Series

The correlogram of this unemployment rate is obtained on EViews by opening the
series and then selecting “View” and “Correlogram...”

Then the we need to have “Level” (the default option) and select the lags to
include. The default is 12, but for this example we use 18.2

The resulting correlogram is:

2 Given the persistence of the series, a selection of lags 36 (3 years) would have been more appro-
priate. We selected 18 for space purposes.
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There are various important elements in this computer output:

· The numbers that go from 1 to 18 on the unlabeled column are the different
displacements τ that we introduced on Chapter 12.

· The bars under “Autocorrelation” along the autocorrelation point estimates under
“AC” are obtained using Equation 12.14 at different displacements τ .

· The bars under “Partial Correlation” along with the partial autocorrelations point
estimates under “PAC” follow Equation 12.17 for different displacements τ .

· The column “Q-Stat” is reporting the Ljung-Pierce Q-statistic from Equation 12.16
at different displacements τ . This statistic serves to test the null hypothesis that
the underlying series follows a white-noise process. The p-values reported under
“Prob” provide strong empirical evidence that the U.S. unemployment rate is not
a white-noise process. That is, we reject the null at different τs.





Chapter 14
Modeling Cycles: MA, AR and ARMA Models

There are three approximation of the Wold representation of a covariance-
stationary series yt :

MA: Moving average.
AR: Autoregressive.
ARMA: Autoregressive moving average.

We will use ρ(τ), p(τ), AIC, and BIC to select the model.

14.1 Moving Average (MA) Models

14.1.1 The MA(1) Process

MA(1) process:
yt = εt +θεt−1, (14.1)

where,
εt ∼WN(0,σ2).

That is, the shocks εt follow a white noise process with mean zero and variance σ2.
Equation 14.1 shows how a shock affects the series yt contemporaneously, and

then again after one period.
The idea in MA models is that yt is modeled as a function of current and lagged

values of the unobserved shocks.

Expected Value:
E(yt) = 0 (14.2)

Variance:
Var(yt) = σ

2(1+θ
2) (14.3)
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Autocorrelation:

ρ(τ) = θ

1+θ 2 if τ = 1

ρ(τ) = 0 if τ > 1

Note that the MA(1) process:

yt = εt +θεt−1,

holds for every t, hence we can write:

yt−1 = εt−1 +θεt−2

yt−2 = εt−2 +θεt−3

yt−3 = εt−3 +θεt−4

and so forth. We can then substitute backwards in the MA(1) process to obtain:

yt = εt +θyt−1−θ
2yt−2 +θ

3yt−3−·· · , (14.4)

which is essentially yt as a function of its own lags and the contemporaneous shock
εt .

To illustrate the role of θ in the dynamics of an MA(1) process, consider the
following two MA(1) processes:

yt = εt +0.08εt−1,

xt = εt +0.98εt−1.

Both of these processes are illustrated in Figure 14.1. Note that consistent with
Equation 14.3, the variance of xt is higher than the variance of yt as the xt process
has a higher θ .
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Fig. 14.1 Two MA(1) processes: yt = εt +0.08εt−1 and xt = εt +0.98εt−1.

14.1.2 The MA(q) Process

The MA(q) process is a finite order moving average process of order q. It can be
written as:

yt = εt +θ1εt−1 +θ2εt−2 + · · ·+θqεt−q, (14.5)

where,
εt ∼WN(0,σ2).

We can see from Equation 14.5 that a shock affects the series for q periods. MA(1)
is a special case where q = 1.

14.2 Autoregressive (AR) Models

14.2.1 The AR(1) Process

AR(1) process:
yt = φyt−1 + εt , (14.6)

where,
εt ∼WN(0,σ2).

In Equation 14.6 shows how in an AR(1) process, the current value of a series lin-
early depends on the past values plus a random shock.
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Expected Value:
E(yt) = 0 (14.7)

Variance:

Var(yt) =
σ2

1−φ 2 (14.8)

Autocorrelation:
ρ(τ) = φ

τ for τ = 0,1,2, . . .

Partial autocorrelation:

p(τ) = φ if τ = 1
p(τ) = 0 if τ > 1

Note that the AR(1) process:

yt = φyt−1 + εt ,

holds for every t, hence we can write:

yt−1 = φyt−2 + εt−1

yt−2 = φyt−3 + εt−2

yt−3 = φyt−4 + εt−3

and so forth. We can then substitute backwards for lagged y’s on the right-hand side
of the AR(1) process to obtain:

yt = εt +φεt−1 +φ
2
εt−2 +φ

3
εt−3 + · · · , (14.9)

which is essentially an AR(1) represented as an MA(∞). This representation is con-
venient if and only if |φ |< 1. This is the condition for covariance stationarity in an
AR(1) process.

To illustrate the role of φ in the dynamics of an AR(1) process, consider the
following two AR(1) processes:

yt = 0.2yt−1 + εt ,

xt = 0.9xt−1 + εt .

Both of these processes are illustrated in Figure 14.2. Note that consistent with
Equation 14.8, the variance of xt is higher than the variance of yt as the xt process
has a higher φ .
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Fig. 14.2 Two AR(1) processes: yt = 0.2yt−1 + εt and xt = 0.9xt−1 + εt .

14.2.2 The AR(p) Process

The AR(q) process is a finite order autoregressive process of order p. It can be
written as:

yt = φ1yt−1 +φ2yt−2 +φ3yt−3 + · · ·+φpyt−p + εt , (14.10)

where,
εt ∼WN(0,σ2).

We can see from Equation 14.10 that yt is a function of its own lagged values for p
periods. AR(1) is a special case where p = 1.

14.3 Autoregressive Moving Average (ARMA) Models

14.3.1 The ARMA(1,1) Process

ARMA(1,1) process:
yt = φyt−1 + εt +θεt−1, (14.11)

where,
εt ∼WN(0,σ2).

In Equation 14.11 we can see that an ARMA(1,1) process is just the combination
on an AR(1) and an MA(1) process.
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14.3.2 The ARMA(p,q) Process

ARMA(p,q) process:

yt = φ1yt−1 +φ2yt−2 + · · ·+φpyt−p + εt +θ1εt−1 +θ2εt−2 + · · ·+θqεt−q, (14.12)

where,
εt ∼WN(0,σ2).

In Equation 14.12 we can see that an ARMA(p,q) process is just the combination
on an AR(p) and an MA(q) process. The ARMA(1,1) is just a special case of an
ARMA(p,q) where p = q = 1.



Chapter 15
EViews: MA, AR and ARMA Models

This chapter will show how to obtain the correlogram.

15.1 Climate Change

Consider the following time series information on Global Land and Ocean January-
December Temperature anomalies. These are global and hemispheric anomalies
with respect to the 20th century average. They are measured in oC. The data is
in the EViews file “Temperatures.”

The correlogram of the series for a twenty year period shows:
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From the Ljung-Pierce Q-statistics we can say that this series it not White Noise.
Moreover, the autocorrelations at various displacements τ show important dynam-
ics.

Consider estimating the following quadratic trend model:

T EMPt = β0 +β1T RENDt +β2T REND2
t + εt (15.1)

where the regression output is:

with the corresponding actual, fitted and residuals:
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Moreover, note that as soon as you run a regression, EViews will generate the
series resid that corresponds to the estimated regression residuals ε̂t from Equa-
tion 15.1. The correlogram of those residuals for a window of up to ten displace-
ments is given by:

Based on these results you reject the null hypothesis of White Noise error terms.
This is because the autocorrelation and the partial autocorrelation for various values
of the displacement fall outside the two-standard deviation bands. Moreover, the
Q-statistic (Ljung-Box Q-statistic) which is the weighted sum of squared autocorre-
lations has large values when compared to the χ2 distribution with the correspond-
ing degrees of freedom (the p-values are below α = 0.05). Hence, the model of a
quadratic trend still leaves some elements in the residuals ε̂t of Equation 15.1 that
can be forecasted.

Consider estimating the following quadratic trend models with an MA(1), an
AR(1), and ARMA(1,1) components:
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T EMPt = β0 +β1T RENDt +β2T REND2
t +θεt−1 + εt (15.2)

T EMPt = β0 +β1T RENDt +β2T REND2
t +φT EMPt−1 + εt (15.3)

T EMPt = β0 +β1T RENDt +β2T REND2
t +φT EMPt−1 +θεt−1 + εt (15.4)

These equations are estimated in EViews with the following commands:

ls temp c @trend @trendˆ2 ma(1)

ls temp c @trend @trendˆ2 ar(1)

ls temp c @trend @trendˆ2 ar(1) ma(1)

The regression output for the ARMA(1,1) model is:

and the correlogram of the residuals is:
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which shows that the regression residuals of Equation 15.4 are White Noise.
Hence in this model there is nothing left in the error term that can be forecasted.
The orders of p and q in Equation 14.12 need to be selected based on the AIC and
BIC. After the selection of the model, the regression residual needs to be White
Noise.

15.2 MA(1) Simulated Processes

To simulate a process the first step is to create a workfile. Please review Section 6.1
on how to to this. On your workfile you are free to select any time frequency, just
make sure you have about 100 observations. In this example we selected to have
121 yearly observations from 1900 to 2020. Now, it we want to generate a White
Noise process ε with mean zero and variance one, the command is:

genr epsilon=nrnd

If we graph this ε sequence, we obtain:



80 15 EViews: MA, AR and ARMA Models

Fig. 15.1 White-noise process εt
iid∼ (0,1) or εt ∼WN(0,1).

which is equivalent to the one presented in Figure 12.1.
Based on this εt sequence, we can type the following commands in EViews to

generate three different MA(1) processes:

genr Y1=epsilon+0.08*epsilon(-1)
genr Y2=epsilon+0.98*epsilon(-1)
genr Y3=epsilon-0.98*epsilon(-1)

A graph of Y 1 and Y 2 shows that Y 2 is more volatile than Y 1, consistent with the
variance formula for an MA(1) process. This was shown in Figure 14.1.

To further study the dynamics of these three series, we obtain their autocorrela-
tion and the partial autocorrelation functions as presented in Figures 15.2, 15.2, 15.2
below.

For the MA(1) process Y 1t = εt +0.08εt−1, we can see that because θ = 0.08 is
very small, we cannot statistically distinguish it from a White Noise process. The
Ljung-Pierce Q-statistic show p-values greater than 0.05. Moreover, most of the
correlation and partial correlation estimates are within the 95% confidence bands
and there is really no distinguishable pattern on these estimates.
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Fig. 15.2 MA(1) process: Y 1t = εt +0.08εt−1 with εt
iid∼ (0,1).

For the MA(1) process Y 2t = εt + 0.98εt−1, we can see that with a positive and
relatively large θ = 0.98, the The Ljung-Pierce Q-statistics clearly reject the null
hypothesis of White Noise. The first autocorrelation is positive, while the partial
autocorrelations flip from positive to negative. This is always the case when θ > 0.

Note that for this Y 2, from the theoretical formula we have that ρ(τ = 1) =
θ

1+θ 2 = 0.98
1+0.982 = 0.499. The simulated series gives as a ρ̂(τ = 1) = 0.469, which is

very close to the theoretical value. The theory also predicts that ρ(τ) = 0 for τ > 1,
which also appears to hold in these estimates.

Fig. 15.3 MA(1) process: Y 2t = εt +0.98εt−1 with εt
iid∼ (0,1).

For the MA(1) process Y 3t = εt −0.98εt−1, we can see that with a negative and
relatively large θ =−0.98, the The Ljung-Pierce Q-statistics also clearly reject the
null hypothesis of White Noise. The first autocorrelation is negative, and the partial
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autocorrelations are also all negative and decrease in magnitude as we increase the
displacement τ .

Ones again, note that from the theoretical formula we have that ρ(τ = 1) =
θ

1+θ 2 = −0.98
1+(−0.98)2 =−0.499. In this case the simulated series gives as a ρ̂(τ = 1) =

−0.457, which is again very close to the theoretical value. Moreover, as predicted
by the theory, the rest of the correlations are not distinguishable from zero.

Fig. 15.4 MA(1) process: Y 3t = εt −0.98εt−1 with εt
iid∼ (0,1).

15.3 AR(1) Simulated Processes

Let’s now generate some artificial AR(1) processes. As before, we first need to gen-
erate the random variable ε . Then, we create the following series:

genr Z1 = 0
genr Z2 = 0
genr Z3 = 0
genr Z4 = 0

Next, we need to modify the sample to get rid of the first observation.
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Now, proceed to general the series:

genr Z1 = +0.90*Z1(-1) + epsilon
genr Z2 = +0.20*Z2(-1) + epsilon
genr Z3 = -0.90*Z3(-1) + epsilon
genr Z4 = -0.20*Z4(-1) + epsilon

To see how a simple difference in the sign and the magnitude (size) of the autore-
gressive coefficient φ can have important differences in the series, let’s graph Z1
and Z2:

Fig. 15.5 AR(1) processes: Z1t = 0.9 ·Z1t−1 + εt and Z2t = 0.2 ·Z2t−1 + εt with εt
iid∼ (0,1).

And we can also graph Z3 and Z4:
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Fig. 15.6 AR(1) processes: Z3t =−0.9 ·Z3t−1 + εt and Z4t =−0.2 ·Z4t−1 + εt with εt
iid∼ (0,1).

We can easily get three important insights from these Figures 15.3 and 15.3. First,
series Z1 and Z2, which have a positive autoregressive coefficient (φ > 0) are more
likely to have longer periods of consecutive negative and positive values. Second,
the series Z3 and Z4, which have a negative autoregressive coefficient (φ < 0) are
constantly switching from negative to positive and vice versa. Third, the larger the
magnitude of the autoregressive coefficient, |φ |, the more volatile the series (higher
variance, var(Z)).

From the autocorrelations and the partial autocorrelations presented in Fig-
ure 15.3 for the simulated process Z1t =+0.9 ·Z1t−1+εt , we can that AR(1) models
with a high φ have a long memory. In this particular example it takes up to 26 pe-
riods for a shock to dissipate. Of course, the Ljung-Pierce Q-statistics clearly reject
the null of White Noise.
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Fig. 15.7 AR(1) process: Z1t =+0.9 ·Z1t−1 + εt with εt
iid∼ (0,1).

For the Z2t =+0.2 ·Z2t−1+εt process presented in Figure 15.3, we observe that
a low φ means the series is close to a White Noise. Only for τ < 3 we fail to reject
the null of White Noise at a 10% significance level (see the p-values on last column).
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Fig. 15.8 AR(1) process: Z2t =+0.2 ·Z2t−1 + εt with εt
iid∼ (0,1).

Figure 15.3 presents the simulated process Z3t = −0.9 ·Z3t−1 + εt . A negative
φ (here φ = −0.9) shows that autocorrelations flip between positive and negative
while they slowly decrease in magnitude. This is consistent with Figure 15.3.

Fig. 15.9 AR(1) process: Z3t =−0.9 ·Z3t−1 + εt with εt
iid∼ (0,1).
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Lastly, Figure 15.3 presents the process Z4t = −0.2 ·Z4t−1 + εt . Due to a rela-
tively small (and negative) φ , it is hard to distinguish this series from a White Noise.
The Ljung-Pierce Q-statistic fails to reject the null of White Noise for all displace-
ments except the first.

Fig. 15.10 AR(1) process: Z4t =−0.2 ·Z4t−1 + εt with εt
iid∼ (0,1).





Chapter 16
Forecasting Cycles

Information set at time T :

ΩT = {yT ,yT−1,yT−2, . . .} (16.1)

Can be expressed in terms of current and past shocks:

ΩT = {εT ,εT−1,εT−2, . . .} (16.2)

Hence, ΩT can be written as:

ΩT = {yT ,yT−1,yT−2, . . . ,εT ,εT−1,εT−2, . . .} (16.3)

Based on ΩT we want the optimal forecast of y at time T + h. This is the same as
saying that we want the smallest loss. The forecast can be expressed as:

E(yT+h|ΩT ) (16.4)

We will use the linear projection:

P(yT+h|ΩT ) (16.5)

If errors are normally distributed:

E(yT+h|ΩT ) = P(yT+h|ΩT ) (16.6)

16.1 Forecasting an MA Process

16.1.1 Optimal Point Forecasts

Consider the following finite order MA process:

89
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MA(2): yt = εt +θ1εt−1 +θ2εt−2 (16.7)

εt =WN(0,σ2)

At time T +1 (one step ahead):

yT+1 = εT+1 +θ1εT +θ2εT−1 (16.8)

εT+1: Unknown.
θ1εT : Known.
θ2εT−1: Known.

So we can write the forecast of yT+1 forecasted at time T as,

yT+1,T =+θ1εT +θ2εT−1 (16.9)

At time T +2 (two steps ahead):

yT+2 = εT+2 +θ1εT+1 +θ2εT (16.10)

εT+2: Unknown.
θ1εT+1: Unknown.
θ2εT : Known.

So we can write the forecast of yT+2 forecasted at time T as,

yT+2,T = θ2εT (16.11)

At time T +3 (three steps ahead):

yT+3 = εT+3 +θ1εT+2 +θ2εT+1 (16.12)

εT+3: Unknown.
θ1εT+2: Unknown.
θ2εT+1: Unknown.

So we can write the forecast of yT+3 forecasted at time T as,

yT+3,T = 0 (16.13)

For all h > 0 we have yT+h = 0.
An MA(q) process is not forecastable more than q steps ahead.

· The forecast errors increase with h.

· The forecast error variance also increases with h.

Infinite order MA process, q = ∞. The Wold representation of yt is:
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yt =
∞

∑
i=0

biεt−i (16.14)

εt =WN(0,σ2)

b0 = 1 and σ
2

∞

∑
i=0

b2
i < ∞

We can first write out the process at the future times of interest, T +h:

yT+h = εT+h +b1εT+h−1 +b2εT+h−2 + · · ·+bhεT +bh+1εT−1 + · · · (16.15)

The first terms on the left-hand side of the equation are unknown, but the last terms
are known.

Hence, we can see that the process can be forecasted:

yT+h,T = bhεT +bh+1εT−1 + · · · (16.16)

16.1.2 Interval and Density Forecasts

For an MA(2):
yt = εt +θ1εt−1 +θ2εt−2 (16.17)

εt =WN(0,σ2)

The 95% interval forecast:

yT+1,T = (θ1εT +θ2εT−1)±1.96σ (16.18)

which assumes normality of the forecast.
The density forecast is:

N(θ1εT +θ2εT−1,σ
2) (16.19)

which also assumes normality.

16.2 Forecasting an AR Process

Consider the following AR(1) process:

yt = φ1yt−1 + εt (16.20)

εt =WN(0,σ2)
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16.2.1 Optimal Point Forecasts

To construct the 1-step-ahead forecast, we can write out the process for time T +1:

yT+1 = φ1yT + εT+1 (16.21)

Then, projecting the right-hand side on the time-T information set:

yT+1,T = φ1yT + εT+1, (16.22)

where εT+1 has an expected value of zero. We can write the process for time T +2:

yT+2 = φ1yT+1 + εT+2

to then project directly on the time-T information set:

yT+2,T = φ1yT+1,T .

As before, future shocks are replaced by 0. The process for time T +3:

yT+3 = φ1yT+2 + εT+3

than when projected on the time-T information set, we obtain:

yT+3,T = φ1yT+2,T .

with the required 2-step-ahead forecast already constructed.
If we keep dong this we can forecast any of the future periods. This is called

the “chair rule of forecasting.” For an AR(1) process, only the most recent lag of yt
is used to obtain the optimal forecast. For a general AR(p) process, we need the p
most recent values.

Consider obtaining the 2-step-ahead point forecast of the following ARMA(1,1)
process.

yt = φyt−1 + εt +θεt−1. (16.23)

εt =WN(0,σ2)

The one-step ahead forecast is given by:

yT+1 = φyT + εT+1 +θεT . (16.24)

φyT : Known.
εT+1: Unknown.
θεT : Known.

and the 2-step ahead forecast is:

yT+2 = φyT+1 + εT+2 +θεT+1. (16.25)
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φyT+1: Known.
εT+2: Unknown.
θεT+1: Unknown.

Replacing yT+1 from Equation 16.24 on Equation 16.25:

yT+2,T = φ(φyT +θεT )

= φ
2yT +φθεT (16.26)

16.2.2 Interval and Density Forecasts

The chair-rule helps to simplify the point forecasts. However, for density forecasts
we require the h-step-ahead forecast of the error variance as well. We can obtain it
from the moving average representation on an AR process. It is written as:

σ
2
h = σ

2
h−1

∑
i=0

b2
i . (16.27)

Because we do not know the values for the parameters σ2 and bi, we need to use the
following instead:

σ̂
2
h = σ̂

2
h−1

∑
i=0

b̂2
i . (16.28)

While there are many bis that we would need to estimate via the MA representa-
tion of the process, the good news is that we only estimate an AR and then solve
backward to solve for as many bs as needed.

Consider again the following example of an ARMA(1,1) process:

yt = φyt−1 + εt +θεt−1. (16.29)

We want to construct its 2-step-ahead 95% interval forecast. The 2-step-ahead point
forecast was already presented in Equation 16.26, but we additionally need to con-
struct the 2-step-ahead forecast error variance. From Equation 16.29, we substitute
backward to get:

yt = φ(φyt−2 + εt−1 +θεt−2)+ εt +θεt−1. (16.30)
= εt +(φ +θ)εt−1 + · · · . (16.31)

We do not need to move back any further, because the 2-step-ahead forecast error
variance is σ2

2 = σ2(1+ b2
1), where b1 is the coefficient on εt−1 in the moving av-

erage representation of the ARMA(1,1) process. In this case this is just (φ + θ).
Hence, the 2-step-ahead interval forecast is:
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yT+2,T ±1.96σ2, (16.32)

or
(φ 2yT +φθεT )±1.96σ

√
1+(φ +θ)2. (16.33)

Assuming normality, the density forecast is:

N
(
φ

2yT +φθεT ,σ
2(1+(φ +θ)2)

)
. (16.34)



Chapter 17
EViews: Forecasting Cycles

This chapter will cover an empirical application on how to forecast cycles.
The variable we want to forecast is the Canadian employment.

17.1 Moving Average Models

Before we estimate the models, lets make sure we all have the same sample:

smpl 1962q1 1993q4

The preferred MA model is an MA(4), so the E-Views command is:

ls caemp c ma(1) ma(2) ma(3) ma(4)

95
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Dependent Variable: CAEMP
Method: ARMA Maximum Likelihood (BFGS)
Sample: 1962Q1 1993Q4
Included observations: 128
Convergence achieved after 20 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.

C 100.6692 1.043603 96.46314 0.0000
MA(1) 1.640307 0.067239 24.39506 0.0000
MA(2) 1.734850 0.110991 15.63054 0.0000
MA(3) 1.245124 0.117703 10.57857 0.0000
MA(4) 0.523848 0.078383 6.683164 0.0000

SIGMASQ 3.599362 0.479745 7.502664 0.0000

R-squared 0.935493 Mean dependent var 101.0176
Adjusted R-squared 0.932849 S.D. dependent var 7.499163
S.E. of regression 1.943291 Akaike info criterion 4.241168
Sum squared resid 460.7184 Schwarz criterion 4.374857
Log likelihood −265.4347 Hannan-Quinn criter. 4.295486
F-statistic 353.8540 Durbin-Watson stat 1.674683
Prob(F-statistic) 0.000000

The simplest way to forecast the values between the first quarter of 1994 and the
fourth quarter of 1994 is to go to click on the icon “forecast” and then choose the
correct forecast sample:

This will yield the forecast presented in the following figure:
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A second more interesting way to obtain the same forecast is to follow these
steps:

1. Select the sample to estimate the model:

smpl 1962q1 1993q4

2. Estimate the model:

equation ma4.ls caemp c ma(1) ma(2) ma(3) ma(4)

3. Generate a variable with the historical values:

genr history = caemp

4. Modify the your sample to include the period you want to forecast:

smpl 1994:1 1996:4

5. Forecast your values (stored in yhat) and the standard errors (stored in se):

ma4.forecast yhat se

6. Generate the variable that will store the forecasted values:

genr fcst=yhat

7. Generate the 95% confidence intervals:

genr yhatplus=yhat+1.96*se
genr yhatminus=yhat-1.96*se

8. Modify the sample to include what you want to see in the graph:

smpl 1990:1 1994:4

9. Open the history, the forecast and the lower and upper limits all in one group:

group group01 history fcst yhatplus yhatminus
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10. Just open the group and graph them all together:

What if we want to forecast all the values until the fourth quarter of 1996?
11. Just select the sample for your graph:

smpl 1990:1 1996:4

12. Open the group you produced in step (9) and graph it.

Note that the forecast becomes flat after when forecasting beyond the fourth pe-
riod. This is because MA models have a short memory and in this MA(4) case,
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beyond the fourth period the estimated equation just does not have any informa-
tion to forecast. We covered this in detail in the previous chapter for an MA(2).
What if you want to compare the actual values with the forecast? Remember that
we do have the data for the following years.

13. Modify the sample again to cover the periods of the forecast and where we have
actual data:

smpl 1990:1 1994:4

14. Create another group. This time with the actual data (caemp) instead of the his-
tory.

group group02 caemp fcst yhatplus yhatminus

15. Then open the group and graph:

17.2 Autoregressive Models

Before we start, let’s make sure we have the correct sample we will use to estimate
the model:

smpl 1962:1 1993:4

Based on different model selection criteria, our preferred AR model was an AR(2)
model:

ls caemp c ar(1) ar(2)
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Dependent Variable: CAEMP
Method: ARMA Maximum Likelihood (BFGS)
Sample: 1962Q1 1993Q4
Included observations: 128
Convergence achieved after 7 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.

C 98.03049 3.812684 25.71167 0.0000
AR(1) 1.448340 0.064717 22.37973 0.0000
AR(2) −0.476697 0.064966 −7.337611 0.0000

SIGMASQ 2.088639 0.166810 12.52109 0.0000

R-squared 0.962568 Mean dependent var 101.0176
Adjusted R-squared 0.961662 S.D. dependent var 7.499163
S.E. of regression 1.468337 Akaike info criterion 3.666458
Sum squared resid 267.3458 Schwarz criterion 3.755584
Log likelihood −230.6533 Hannan-Quinn criter. 3.702671
F-statistic 1062.889 Durbin-Watson stat 2.054328
Prob(F-statistic) 0.000000

The simplest way to forecast the values between the first quarter of 1994 and the
fourth quarter of 1994 is to go to click on the icon “forecast” and then choose the
correct forecast sample:

This will yield the following forecast:
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A second more interesting way to obtain the same forecast is to follow these
steps:

1. Select the sample you want to use for your model:

smpl 1962:1 1993:4

2. Estimate the AR(2) model and store your estimation under the name ar2:

equation ar2.ls caemp c ar(1) ar(2)

3. Select the sample you want to include in your forecast:

smpl 1994:1 2010:4

4. Generate the forecast and the standard error of the forecast:

ar2.forecast yhat se

5. Generate the variable that will store the forecasted values:

genr fcst2=yhat

6. Generate the upper and lower levels for your 95% confidence intervals:

genr yhatplus2=yhat+1.96*se
genr yhatminus2=yhat-1.96*se

7. Select the sample you want to see in your forecast graph:

smpl 1990:1 1994:4

8. Create a group of all the variables you want to include in your graph:

group group03 history fcst2 yhatplus2 yhatminus2

9. Open the group and graph all variables together:
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If you want to see the forecast all the way until the end of 1996, just modify the
sample size:

smpl 1990:1 1996:4

10. For the forecast that includes the values until 2010.

smpl 1990:1 2010:4
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11. If you want to include the actual values in the forecast, select the sample that
contains actual values first:

smpl 1990:1 1994:4

12. Then create a group with the actual values (caempl), the forecast and the 95%
upper and lower confidence intervals:

group group04 caemp fcst2 yhatplus2 yhatminus2

13. Finally, open the group and generate the line graph will all the variables:

Notice that the forecast lies very close to the actual values. This AR(2) model ap-
pears to be a better forecasting model than the MA(4) model presented earlier.





Chapter 18
Forecasting with Trend, Seasonal, and Cyclical
Components

18.1 Structure

Consider the following model:

yt = Tt(β )+
s

∑
i=1

γiDit +
v

∑
i=1

δiHDit +νt (18.1)

where Tt(β ) is the trend, ∑
s
i=1 γiDit +∑

v
i=1 δiHDit is the seasonal component, and νt

is the cycle and it is given by:

νt = φ1νt−1 +φ2νt−2 + · · ·+φpνt−p + εt

+θ1εt−1 +θ2εt−2 + · · ·+θqεt−q

εt =WN(0,σ2)

The time trend can be modeled, for example, as:

Tt(β ) = β1T IMEt , or
Tt(β ) = β1T IMEt +β2T IME2

t

The h-step ahead forecast (at time T +h) is:

yT+h = TT+h(β )+
s

∑
i=1

γiDi,T+h +
v

∑
i=1

δiHDi,T+h +νT+h (18.2)

TT+h(β ): Known.
∑

s
i=1 γiDi,T+h: Known.

∑
v
i=1 δiHDi,T+h: Known.

νT+h: Known/unknown.
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Consider the following AR(1) example to understand the difference between dy-
namic and static forecasts:

yt = φyt−1 + εt (18.3)

The 2-step-ahead forecast, made at time T is:

yT+2,T = φyt+1 (18.4)

Dynamic forecast: Uses the forecasted values for yt+1, obtained from the one-
step-ahead forecast.

Static forecast: Uses the actual values for yt+1.

18.2 Recursive Estimation Procedures for Diagnosing and
Selecting Forecasting Models

Recursive estimation:

· Beginning with a small sample→ estimate the model.
· Add one observation→ estimate the model again.
· Repeat until the whole sample is used.

Why is this useful?

· Stability assessment.
· Model selection.

To assess the stability of a model, we use the recursive residuals.
We assumed that the parameters β , γ , δ , φ , and θ in Equation 18.1 are stable

(i.e., they do not change over time).
What if they are not stable? The model will provide a poor forecast.

Recursive Parameter Estimation: Consider the following model:

yt = β0 +β1xt + εt (18.5)

εt =WN(0,σ2)

for t = 1,2, . . . ,T

· Start with two observations→ estimate β0 and β1.
· Use three observations→ estimate β0 and β1 again.
· Obtain the sequence of T −1 estimates of β0 and β1.

Recursive Residuals: Each time we estimate β0 and β1, we compute the 1-step-
ahead forecast ŷt+1,t = β̂0 + β̂1xt+1, to then compute the residuals:

ε̂t+1,t = yt+1− ŷt+1,t (18.6)
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The ε̂t+1,t in Equation 18.6 are the recursive residuals. After obtaining the residuals:

· Plot the residuals with two standard error bands.
· If many of the residuals fall outside the bands → one or more parameters are

unstable.

CUSUM: Cumulative sum of standardized recursive residuals.

CUSUMt ≡
t

∑
τ=2

wτ+1,τ for t = 2,3, . . . ,T −1 (18.7)

wt+1,t
iid∼ N(0,1)

· Plot the wt+1,t with the 95% probability bounds.
· If violated the bounds→ evidence of parameter inestability.





Chapter 19
EViews: Forecasting with Trend, Seasonal, and
Cyclical Components

This chapter will cover an example on how to forecast a model with trend, seasonal
component, and cyclical component.

19.1 Forecasting Sales

The variable we will use is monthly U.S. liquor sales from January 1968 until De-
cember 1993. We use the sample

smpl 1967m1 1993m12

The time series graph of the series is:

Because the variance seems to be larger for larger values of sales, we will work
with the variable in logarithms:
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smpl 1967m1 1998m12
genr logliquor = log(liquor)

The time series graph of the logarithm of liquor is:

The series shows a strong seasonal component with sales being higher in Decem-
ber. As a first step, let’s estimate the model with a quadratic trend:

smpl 1968m1 1993m12
ls logliquor c @trend @trendˆ2

That yields the following regression output:

Dependent Variable: LOGLIQUOR
Method: Least Squares
Sample: 1968M01 1993M12
Included observations: 312

Variable Coefficient Std. Error t-Statistic Prob.

C 6.237356 0.024496 254.6267 0.0000
@TREND 0.007690 0.000336 22.91552 0.0000

@TRENDˆ2 −1.14E−05 9.74E−07 −11.72695 0.0000

R-squared 0.892394 Mean dependent var 7.112383
Adjusted R-squared 0.891698 S.D. dependent var 0.379308
S.E. of regression 0.124828 Akaike info criterion −1.314196
Sum squared resid 4.814823 Schwarz criterion −1.278206
Log likelihood 208.0146 Hannan-Quinn criter. −1.299812
F-statistic 1281.296 Durbin-Watson stat 1.752858
Prob(F-statistic) 0.000000
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with the following in-sample forecast, forecast errors:

The seasonal component (and any potential cyclical component) is still in the
error term. Let’s look at the autocorrelation and the partial autocorrelation function
for various values of the displacement:
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Notice the seasonal displacements at 12 and 24 and some evidence of cyclical
dynamics. If we estimate the model with the monthly dummies we have:

ls logliquor @trend @trendˆ2 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

Dependent Variable: LOGLIQUOR
Method: Least Squares
Sample: 1968M01 1993M12
Included observations: 312

Variable Coefficient Std. Error t-Statistic Prob.

@TREND 0.007656 0.000123 62.35882 0.0000
@TRENDˆ2 −1.14E−05 3.56E−07 −32.06823 0.0000

D1 6.147456 0.012340 498.1699 0.0000
D2 6.088653 0.012353 492.8890 0.0000
D3 6.174127 0.012366 499.3008 0.0000
D4 6.175220 0.012378 498.8970 0.0000
D5 6.246086 0.012390 504.1398 0.0000
D6 6.250387 0.012401 504.0194 0.0000
D7 6.295979 0.012412 507.2402 0.0000
D8 6.268043 0.012423 504.5509 0.0000
D9 6.203832 0.012433 498.9630 0.0000
D10 6.229197 0.012444 500.5968 0.0000
D11 6.259770 0.012453 502.6602 0.0000
D12 6.580068 0.012463 527.9819 0.0000

R-squared 0.986111 Mean dependent var 7.112383
Adjusted R-squared 0.985505 S.D. dependent var 0.379308
S.E. of regression 0.045666 Akaike info criterion −3.291086
Sum squared resid 0.621448 Schwarz criterion −3.123131
Log likelihood 527.4094 Hannan-Quinn criter. −3.223959
Durbin-Watson stat 0.586187

The graph with the in-sample forecasting errors is:
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and the correlogram of the residuals:

The seasonality disappeared, but there is still a strong cyclical component. With
an AR(3) model for the cycle we have:

ls logliquor @trend @trendˆ2 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 AR(1) AR(2) AR(3)
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Dependent Variable: LOGLIQUOR
Method: ARMA Maximum Likelihood (BFGS)
Sample: 1968M01 1993M12
Included observations: 312
Convergence achieved after 6 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.

@TREND 0.007780 0.000706 11.01819 0.0000
@TRENDˆ2 −1.21E−05 1.91E−06 −6.344009 0.0000

D1 6.148880 0.056367 109.0868 0.0000
D2 6.090196 0.056318 108.1392 0.0000
D3 6.175964 0.056660 109.0008 0.0000
D4 6.177579 0.056817 108.7283 0.0000
D5 6.248742 0.056660 110.2840 0.0000
D6 6.253401 0.056659 110.3694 0.0000
D7 6.299354 0.057039 110.4397 0.0000
D8 6.271793 0.056571 110.8657 0.0000
D9 6.207966 0.057248 108.4392 0.0000
D10 6.233549 0.057165 109.0456 0.0000
D11 6.264644 0.055956 111.9571 0.0000
D12 6.585369 0.056719 116.1046 0.0000

AR(1) 0.272320 0.051777 5.259525 0.0000
AR(2) 0.236852 0.048599 4.873586 0.0000
AR(3) 0.391816 0.052596 7.449559 0.0000

SIGMASQ 0.000712 5.39E−05 13.22494 0.0000

R-squared 0.995032 Mean dependent var 7.112383
Adjusted R-squared 0.994745 S.D. dependent var 0.379308
S.E. of regression 0.027496 Akaike info criterion −4.288442
Sum squared resid 0.222271 Schwarz criterion −4.072500
Log likelihood 686.9970 Hannan-Quinn criter. −4.202137
Durbin-Watson stat 1.887695

The in-sample forecasting errors are:
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Where the residuals appear to be White Noise. The corresponding correlogram
of the residuals is:

The Ljung-Pierce Q-statistic fails to reject the null hypothesis of White Noise for
displacements below 10.
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To obtain the forecast we need first to modify the sample to be able to include
the forecasted values:

smpl 1968m1 1994m12

1) The dynamic forecast:

2) The static forecast:



19.1 Forecasting Sales 117

As explained before, the difference between the dynamic and the static forecast is
that the dynamic forecast uses previously forecasted values of the lagged dependent
variables in forming forecasts of the current value. The static forecast calculates the
sequence of one-step ahead forecasts, using actual, rather than forecasted values for
lagged dependent variables, if available.

A step-by-step approach to obtain the static forecast is:

smpl 1966:1 1993:12
genr lhistory=logliquor
smpl 1994:1 1998:12
forecast yhat se
genr lfcst=yhat
genr fcst=@exp(yhat)
genr upper = yhat + 1.96*se
genr lower = yhat - 1.96*se
smpl 1992:1 1994:12
group group01 lhistory lfcst upper lower
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group group02 logliquor lfcst upper lower

For the details behind these steps, please refer to Chapter 17.

19.2 Recursive Estimation Procedures

Recursive estimation procedures can only be estimated when the model was esti-
mated by ordinary least squares. Usual estimation of ARMA models use nonlinear
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least squares or maximum likelihood procedures that are not compatible with recur-
sive estimation procedures.

To be able to work with our model, estimate it again, but use the lag operators
rather than the AR(1) notation:

smpl 1966:1 1993:12
ls logliquor @trend @trendˆ2 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12
logliquor(-1) logliquor(-2) logliquor(-3)

Go to “View,” then “Stability Diagnostics,” and finally “Recursive Estimates.”

You will obtain the following menu:

The options we discussed in Chapter 18 are (1) Recursive residuals, (2) CUSUM
test, and (3) Recursive coefficients.

(1) Recursive residuals.
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(2) CUSUM test.

(3) Recursive coefficients, where we selected to have the results only for C(1),
the first coefficient in the regression table results.
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Chapter 20
Forecasting with Regression Models

20.1 Conditional Forecasting Models

So far we have been focusing on univariate models. However, other variables (e.g.,
xt ) can help predict future values of yt . For example,

yt = β0 +β1xt + εt (20.1)

εt ∼WN(0,σ2) (20.2)

The idea in conditional forecasting models is to generate the forecast of y condi-
tional on an assumed future value of x (scenario analysis).

Let x∗T+h be the h-step ahead forecast of x. Then, the h-step-ahead forecast of y
given x∗T+h is:

yT+h,T |x∗T+h = β0 +β1x∗T+h (20.3)

Parameter Uncertainty:

· Specification Uncertainty: Our model is a simplification of the real world.
· Innovation Uncertainty: Future shocks εt are unknown when the forecast is made.
· Parameter Uncertainty: The parameters in our models θ , φ , β are unknown.

Hence, the coefficients we use are just estimates θ̂ , φ̂ , β̂ , which are subject to
sample variability.

20.2 Unconditional Forecasting Models

When using the following model to forecast yT+h,

yT+h,T = β0 +β1xT+h,T (20.4)

123
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we face the problem that we do not have the value for xT+h,T . How about forecast
it with an ARMA model? Perhaps it is easier to just to forecast y with an ARMA
model.

A feasible model is:
yt = β0 +β1xt−1 + εt (20.5)

where we use the lagged known value of xt . This is good for a 1-step=ahead forecast.
x may be perfectly deterministic, e.g., trend or seasonal components.

20.3 Vector Autoregressions

AR(p): Univariate autoregression of order p.
VAR(p): Vector (mutivariate) autoregression of order p.

· N variables.
· N equations.
· p lags on every other variable.
· Allows for cross-variable dynamics.

Example: 2 variable VAR(p), y1,t and y2,t , with p = 1:

y1,t = φ11y1,t−1 +φ12y2,t−1 + ε1,t (20.6)
y2,t = φ21y1,t−1 +φ22y2,t−1 + ε2,t (20.7)

ε1,t ∼WN(0,σ2
1 )

ε2,t ∼WN(0,σ2
2 )

cov(ε1,t ,ε2,t) = σ12

Model selection: How do we select p? With multivariate versions of the AIC and
SIC.

Forecasting: Same as the AR→ use the chair rule of forecasting.

Predictive Causality: It has two principles:

1. Cause should occur before effect.
2. A causal series should contain information not available in other series.

Unrestricted VAR: Everything causes everything.
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20.4 Impulse-Response Functions

The Impulse-Response Function (IRF) helps us learn about the dynamics of a vari-
able.

How does a unit innovation to a series affects it now and in the future?

Unit shock = one standard deviation of εt .

Consider the VAR(1) model of Equations 20.6 and 20.7. Remember from previ-
ous chapters that the AR had an MA representation. Same works for a VAR. The
moving average representation of the VAR(1)of Equations 20.6 and 20.7 is:

y1,t = ε1,t +φ11ε1,t−1 +φ12ε2,t−1 + · · · (20.8)
y2,t = ε2,t +φ21ε1,t−1 +φ22ε2,t−1 + · · · (20.9)

Cholesky Decomposition: Need to decide the order of the variables “cause and ef-
fect.”

If y1 is ordered first. That is, y1 occurs first (y1 causes y2):

y1,t = b0
11ε ′1,t +b1

11ε
′
1,t−1 +b1

12ε
′
2,t−1 + · · · (20.10)

y2,t = b0
21ε ′1,t +b0

22ε ′2,t +b1
21ε
′
1,t−1 +b1

22ε
′
2,t−1 + · · · (20.11)

where b are normalized coefficients, and

ε
′
1,t ∼WN(0,1)

ε
′
2,t ∼WN(0,1)

cov(ε ′1,t ,ε
′
2,t) = 0

What Equations 20.10 and 20.11 basically say is that shocks (unexpected changes)
to y1 or y2 affect the path of both y1 and y2. The only restriction is that at time t, y2
does not affect y1.

Four different Impulse-Response Functions:

· IRF of y1 to a a shock in y1, ε ′1: {b0
11,b

1
11,b

2
11, . . .}

· IRF of y1 to a a shock in y2, ε ′2: {b1
12,b

2
12,b

3
13, . . .}

· IRF of y2 to a a shock in y1, ε ′1: {b0
21,b

1
21,b

2
21, . . .}

· IRF of y2 to a a shock in y2, ε ′2: {b0
22,b

1
22,b

2
22, . . .}

We will obtain a graphical representation of these IRFs in the following chapter.





Chapter 21
EViews: Vector Autoregressions

This chapter covers the computer commands for the estimation of Vector Autore-
gressions (VAR), forecasting with regression models, and Impulse-response func-
tions (IRF).

21.1 Estimation of Vector Autoregressions

The data we will use includes two variables: (1) the seasonally adjusted housing
starts and (2) housing completions. These are monthly observations from January
1968 through June 1996. A graph of both variables can be obtained with:

group both starts comps
both.line(d)

To obtain:
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We will use the data from January 1968 through December 1991 for model esti-
mation and the forecast will be done for the period from January 1992 through June
1996.

The correlograms for both variables are:

Both show a strong cyclical component.
The cross-correlation function shows the correlation between a variable and the

lags of another variable. To obtain it open both variables as a group, then go to
“view” and then “cross-correlation” to obtain:
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This cross-correlation shows there is a strong correlation between the lags and
leads of these variables. This is evidence of dynamic interaction between the two
that can be modeled with a vector autoregression model.

The VAR(4) as presented in Equations 20.6 and 20.7 can be estimated using
EViews in two different ways: (1) Equation by equation and (2) jointly. Equation by
equation can we simply type the following command:

smpl 1968m01 1991m12
ls starts c starts(-1) starts(-2) starts(-3) starts(-4) comps(-1) comps(-2) comps(-3) comps(-4)
ls comps c starts(-1) starts(-2) starts(-3) starts(-4) comps(-1) comps(-2) comps(-3) comps(-4)

That give us the following estimation output:
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Dependent Variable: STARTS
Method: Least Squares
Sample (adjusted): 1968M05 1991M12
Included observations: 284 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.146871 0.044235 3.320264 0.0010
STARTS(-1) 0.659939 0.061242 10.77587 0.0000
STARTS(-2) 0.229632 0.072724 3.157587 0.0018
STARTS(-3) 0.142859 0.072655 1.966281 0.0503
STARTS(-4) 0.007806 0.066032 0.118217 0.9060
COMPS(-1) 0.031611 0.102712 0.307759 0.7585
COMPS(-2) −0.120781 0.103847 −1.163069 0.2458
COMPS(-3) −0.020601 0.100946 −0.204078 0.8384
COMPS(-4) −0.027404 0.094569 −0.289779 0.7722

R-squared 0.895566 Mean dependent var 1.574771
Adjusted R-squared 0.892528 S.D. dependent var 0.382362
S.E. of regression 0.125350 Akaike info criterion −1.284241
Sum squared resid 4.320952 Schwarz criterion −1.168605
Log likelihood 191.3622 Hannan-Quinn criter. −1.237880
F-statistic 294.7796 Durbin-Watson stat 1.991908
Prob(F-statistic) 0.000000

Dependent Variable: COMPS
Method: Least Squares
Sample (adjusted): 1968M05 1991M12
Included observations: 284 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.045347 0.025794 1.758045 0.0799
STARTS(-1) 0.074724 0.035711 2.092461 0.0373
STARTS(-2) 0.040047 0.042406 0.944377 0.3458
STARTS(-3) 0.047145 0.042366 1.112805 0.2668
STARTS(-4) 0.082331 0.038504 2.138238 0.0334
COMPS(-1) 0.236774 0.059893 3.953313 0.0001
COMPS(-2) 0.206172 0.060554 3.404742 0.0008
COMPS(-3) 0.120998 0.058863 2.055593 0.0408
COMPS(-4) 0.156729 0.055144 2.842160 0.0048

R-squared 0.936835 Mean dependent var 1.547958
Adjusted R-squared 0.934998 S.D. dependent var 0.286689
S.E. of regression 0.073093 Akaike info criterion −2.362995
Sum squared resid 1.469205 Schwarz criterion −2.247359
Log likelihood 344.5453 Hannan-Quinn criter. −2.316634
F-statistic 509.8375 Durbin-Watson stat 2.013370
Prob(F-statistic) 0.000000
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For the correlogram of the residuals we have:

From the different reported Q-statistics, we see both series are White Noise. This
is evidence to validate our VAR(4) model.

The actual, fitted, and residuals graphs are:
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The graphs from the residuals are consistent White Noise processes.

21.2 Impulse Response Functions

To estimate both equations of the VAR(4) at the same time we need to type the
following command:

var bookfigure.ls 1 4 starts comps

This estimates both equations and stores the VAR(4) in the workfile under the
name “bookfigure.” The output is the following:
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Vector Autoregression Estimates
Sample (adjusted): 1968M05 1991M12
Included observations: 284 after adjustments
Standard errors in ( ) & t-statistics in [ ]

STARTS COMPS

STARTS(-1) 0.659939 0.074724
(0.06124) (0.03571)

STARTS(-2) 0.229632 0.040047
(0.07272) (0.04241)

STARTS(-3) 0.142859 0.047145
(0.07265) (0.04237)

STARTS(-4) 0.007806 0.082331
(0.06603) (0.03850)

COMPS(-1) 0.031611 0.236774
(0.10271) (0.05989)

COMPS(-2) −0.120781 0.206172
(0.10385) (0.06055)

COMPS(-3) −0.020601 0.120998
(0.10095) (0.05886)

COMPS(-4) −0.027404 0.156729
(0.09457) (0.05514)

C 0.146871 0.045347
(0.04423) (0.02579)

R-squared 0.895566 0.936835
Adj. R-squared 0.892528 0.934998
Sum sq. resids 4.320952 1.469205
S.E. equation 0.125350 0.073093
F-statistic 294.7796 509.8375
Log likelihood 191.3622 344.5453
Akaike AIC −1.284241 −2.362995
Schwarz SC −1.168605 −2.247359
Mean dependent 1.574771 1.547958
S.D. dependent 0.382362 0.286689

Determinant resid covariance (dof adj.) 8.11E−05
Determinant resid covariance 7.61E−05
Log likelihood 540.7183
Akaike information criterion −3.681115
Schwarz criterion −3.449842
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Notice that this is exactly the same result we obtained before. The benefit from
this second approach is that the impulse-response functions can then be easily esti-
mated by going to “View”’ and then “Impulse Response”:

To obtain:
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For example, from upper left quadrant we see that starts responds positively to
starts. A one standard deviation shock in starts has a positive effect on starts that
lasts about 23 months. The marginal effect is given by the blue line, while the red
bands are approximately the 95% confidence intervals. Once the intervals include
zero, the effect is no longer statistically significant.

On the lower left quadrant we see that completions responds positively to starts.
A one standard deviation shock in starts has a positive (and increasing, at the begin-
ning) effect on completions. The effects last for about 30 months.

21.3 Forecasting with Regression Models

For forecasting using the estimated VAR(4) we need to do the following:

bookfigure.makemodel(varmod) @prefix s_
smpl 1992m01 1996m06
varmod.solveopt(s=d, d=d)
solve varmod
smpl 1968m01 1996m06
varmod.makegraph(g=v) finalfigure starts

Alternatively, one can use the VAR(4) and obtain forecasts equation by equation
using the same tools described in previous handouts. Just go to “Forecast”’ right
after the estimation of each of the VAR equations.
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