
Business Process Management Initiative (BPMI)

Business Process Modeling Notation

Working Draft (1.0) August 25, 2003

Copyright  2003, BPMI.org. All Rights Reserved

Abstract
The Business Process Modeling Notation (BPMN) specification provides a graphical
notation for expressing business processes in a Business Process Diagram (BPD). The
objective of BPMN is to support process management by both technical users and
business users by providing a notation that is intuitive to business users yet able to
represent complex process semantics. The BPMN specification also provides a mapping
between the graphics of the notation to underlying the constructs of execution languages,
particularly BPEL4WS.

Status of this Document
This document is the first working draft of the BPMN specification submitted for comments
from the public by members of the BPMI initiative on August 25, 2003. It supersedes any
previous version. It has been produced based on the work of the members of the BPMI
Notation Working Group. Comments on this document and discussions of this document
should be sent to BPMN-PublicReview@bpmi.org. This is a draft document and may be
updated, replaced, or made obsolete by other documents at any time. It is inappropriate to
refer to this document as other than “work in progress.”

http://www.bpmi.org/
mailto:bpmn-publicreview@bpmi.org

BPMN Working Draft
Acknowledgements
The author/editor of the specification:

Stephen A. White, IBM (wstephe@us.ibm.com)

The members of the BPMI Notation Working Group contributed to the development of this
specification, including those who contributed to the editing of the specification:

Ashish Agrawal, Intalio (ashish@intalio.com)
Michael Anthony, International Performance Group (manthony@ipgl.com)

Assaf Arkin, Intalio (arkin@intalio.com)
Tony Fletcher, Choreology (Tony.Fletcher@choreology.com)
Steven Forgey, SeeBeyond Technology Corporation (sforgey@seebeyond.com)
Jean-Luc Giraud, Axway Software (jlgiraud@axway.com)
George Keeling, Casewise (george@casewise.co.uk)
Brian James, Proforma (bjames@proformacorp.com)
Antoine Lonjon, Mega International (alonjon@mega.com)
Martin Owen, Popkin Software (martin.owen@popkin.co.uk)
Manfred Sturm, ITPearls AG (manfred.sturm@itpearls.com)
Steve Ball, Sterling Commerce (steve_ball@stercomm.com)
Paul Vincent, Fair, Isaac & Company (paulvincent@fairisaac.com)

The members of the BPMI Notation Working Group would like to thank SeeBeyond
Technology Corporation for their valuable support in the development of this specification.

Notice of BPMI.org Policies on Intellectual Property Rights &
Copyright

BPMI.org takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the technology
described in this document or the extent to which any license under such rights might or
might not be available; neither does it represent that it has made any effort to identify any
such rights. Information on BPMI.org's procedures with respect to rights in BPMI.org
specifications can be found at the BPMI.org website. Copies of claims of rights made
available for publication and any assurances of licenses to be made available, or the result
of an attempt made to obtain a general license or permission for the use of such proprietary
rights by implementers or users of this specification, can be obtained from the BPMI.org
Chairman.
BPMI.org invites any interested party to bring to its attention any copyrights, patents or
patent applications, or other proprietary rights, which may cover technology that may be
required to implement this specification. Please address the information to the BPMI.org
Chairman.
This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
2 / 189 Copyright  2003, BPMI.org All Rights Reserved

mailto:alonjon@mega.com
mailto:martin.owen@popkin.co.uk
mailto:ashish@intalio.com
mailto:manthony@ipgl.com
mailto:arkin@intalio.com
mailto:george@casewise.co.uk
mailto:bjames@proformacorp.com

BPMN Working Draft
prepared, copied, published and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are included on all such
copies and derivative works. However, this document itself may not be modified in any way,
such as by removing the copyright notice or references to BPMI.org, except as needed for
the purpose of developing BPMI.org specifications, in which case the procedures for
copyrights defined in the BPMI.org Intellectual Property Rights document must be followed,
or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by BPMI.org
or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and
BPMI.org DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Copyright © The Business Process Management Initiative [BPMI.org], August 25, 2003. All
Rights Reserved.
Copyright  2003, BPMI.org All Rights Reserved 3 / 189

 BPMN Working Draft
Table of Contents
Abstract...1
Status of this Document...1
Acknowledgements ..2
Notice of BPMI.org Policies on Intellectual Property Rights & Copyright2
Table of Contents ...4
List of Figures...8
List of Tables ..12
List of Examples...13
1. Introduction..14

1.1 Conventions ...15
1.1.1 Typographical and Linguistic Conventions and Style ..15

1.2 Dependency on Other Specifications...16
1.3 Conformance ...16

2. BPMN Overview ..19
2.1 BPMN Scope..20

2.1.1 Uses of BPMN ..20
2.1.2 Diagram Point of View ..23
2.1.3 Extensibility of BPMN and Vertical Domains ...24

3. Business Process Diagrams ...25
3.1 BPD Core Element Set ...25
3.2 BPD Complete Set...27
3.3 Use of Text, Color, Size, and Lines in a Diagram ..34
3.4 Flow Object Connection Rules ..35

3.4.1 Sequence Flow Rules..35
3.4.2 Message Flow Rules ...36

3.5 Diagram Attributes...37
4. Business Process Diagram Graphical Objects ..39

4.1 Common BPD Object Attributes...39
4.2 Events ...39

4.2.1 Start ...40
4.2.2 End ..44
4.2.3 Intermediate ..48

4.3 Activities ..52
4.3.1 Process ..52
4.3.2 Sub-Process...54
4.3.3 Task...60

4.4 Gateways..64
4 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft Table of Contents
4.4.1 Common Gateway Features..66
4.4.2 Exclusive Gateways (XOR)..67
4.4.3 Inclusive Gateways (OR)..75
4.4.4 Complex Gateways ...78
4.4.5 Parallel Gateways (AND) ...81

4.5 Pools and Lanes...83
4.5.1 Pool ...83
4.5.2 Lane ..86

4.6 Artifacts ...87
4.6.1 Common Artifact Attributes ...88
4.6.2 Artifact Sequence Flow Connections ...88
4.6.3 Artifact Message Flow Connections...88
4.6.4 Data Object ...88
4.6.5 Text Annotation ..90
4.6.6 Group ..91

5. Connecting Objects..93
5.1 Graphical Connecting Objects ..93

5.1.1 Sequence Flow..93
5.1.2 Message Flow ...96
5.1.3 Association..99

5.2 Sequence Flow Mechanisms...101
5.2.1 Normal Flow ...102
5.2.2 Link Events ...121
5.2.3 Exception Flow ...121
5.2.4 Ad Hoc..122

5.3 Compensation Association ...124
6. BPMN by Example ..127

6.1 The Beginning of the Process ...128
6.1.1 Mapping to BPEL4WS ...128

6.2 The First Sub-Process...133
6.2.1 Mapping to BPEL4WS ...135

6.3 The Second Sub-Process...139
6.3.1 Mapping to BPEL4WS ...141

6.4 The End of the Process ...146
6.4.1 Mapping to BPEL4WS ...147

7. Mapping to XML Languages..153
7.1 Defining Token Generation for execution Language Mapping..153
7.2 Mapping to BPEL4WS...154

7.2.1 Events..154
7.2.2 Activities ...157
7.2.3 Gateways...159
Copyright  2003, BPMI.org All Rights Reserved 5 / 189

 BPMN Working Draft
7.2.4 Pool ...161
7.2.5 Lane ..161
7.2.6 Artifacts ..161
7.2.7 Sequence Flow..161
7.2.8 Message Flow ...162
7.2.9 Association..162
7.2.10 Exception Flow ...162
7.2.11 Compensation Flow ..163

8. References...165
8.1 Normative ..165
8.2 Non-Normative..165

9. Open Issues ...169
Appendix A: E-Mail Voting Process BPEL4WS ..171
Appendix B: Glossary..179
6 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft Table of Contents
Copyright  2003, BPMI.org All Rights Reserved 7 / 189

 BPMN Working Draft
List of Figures
Figure 1: A Business Process Diagram with Two Points of View ...23
Figure 2: A Start Event ...40
Figure 3: End Event...44
Figure 4: Intermediate Event..48
Figure 5: Task with an Intermediate Event attached to its boundary..49
Figure 6: Collapsed Sub-Process ..54
Figure 7: Expanded Sub-Process..54
Figure 8: Expanded Sub-Process used as a “parallel box”..55
Figure 9: Collapsed Sub-Process Markers ..55
Figure 10: An Example of a Transaction Expanded Sub-Process ..58
Figure 11: A Task Object ..61
Figure 12: Task Markers ..61
Figure 13: A Gateway..65
Figure 14: The Different types of Gateways..66
Figure 15: An Exclusive Data-Based Decision (Gateway) Example without the Internal Indicator
68
Figure 16: A Data-Based Exclusive Decision (Gateway) Example with the Internal Indicator.68
Figure 17: An Exclusive Merge (Gateway) (without the Internal Indicator)...............................69
Figure 18: Uncontrolled Merging of Sequence Flow..70
Figure 19: Exclusive Gateway that merges Sequence Flow prior to an Parallel Gateway70
Figure 20: An Event-Based Decision (Gateway) Example Using Receive Tasks73
Figure 21: An Event-Based Decision (Gateway) Example Using Message Events73
Figure 22: An Inclusive Decision using Conditional Sequence Flow ..76
Figure 23: An Inclusive Decision using an OR Gateway ...76
Figure 24: An Inclusive Gateway Merging Sequence Flow ...77
Figure 25: A Complex Decision (Gateway) ...79
Figure 26: A Complex Merge (Gateway)...79
Figure 27: A Parallel Gateway ...81
Figure 28: Joining – the joining of parallel paths ...82
Figure 29: A Pool ...83
Figure 30: Message Flow connecting to the boundaries of two Pools ...84
Figure 31: Message Flow connecting to flow objects within two Pools...85
Figure 32: Main (Internal) Pool without boundaries ...85
Figure 33: Two Lanes in a Pool ..87
Figure 34: A Data Object ..89
Figure 35: A Data Object associated with a Sequence Flow..89
8 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft List of Figures
Figure 36: Data Objects shown as inputs and outputs ...90
Figure 37: A Text Annotation...91
Figure 38: A Group Artifact ...91
Figure 39: A Group around activities in different Pools..92
Figure 40: A Sequence Flow ...93
Figure 41: A Conditional Sequence Flow ..94
Figure 42: A Default Sequence Flow..94
Figure 43: A Message Flow ...96
Figure 44: Message Flow connecting to the boundaries of two Pools ...96
Figure 45: Message Flow connecting to flow objects within two Pools...97
Figure 46: Message Flow connecting to boundary of Sub-Process and Internal objects............98
Figure 47: An Association ...99
Figure 48: A directional Association..100
Figure 49: An Association of Text Annotation..100
Figure 50: An Association connecting a Data Object with a Flow..100
Figure 51: Workflow Pattern #1: Sequence ..102
Figure 52: A Process with Normal flow ...102
Figure 53: A Process with Expanded Sub-Process without a Start Event and End Event103
Figure 54: A Process with Expanded Sub-Process with a Start Event and End Event Internal ...
104
Figure 55: A Process with Expanded Sub-Process with a Start Event and End Event Attached to
Boundary ..104
Figure 56: Workflow Pattern #2: Parallel Split -- Version 1 ...105
Figure 57: Workflow Pattern #2: Parallel Split -- Version 2 ...105
Figure 58: The Creation of Parallel Paths with a Gateway ...106
Figure 59: The Creation of Parallel Paths with Equivalent Conditions106
Figure 60: Workflow Pattern #2: Parallel Split -- Version 3 ...107
Figure 61: Workflow Pattern #3: Synchronization -- Version 1 ...107
Figure 62: Workflow Pattern #3: Synchronization -- Version 2 ...108
Figure 63: The Fork-Join Relationship is not Fixed...108
Figure 64: A Data-Based Decision Example -- Workflow Pattern #4 -- Exclusive Choice109
Figure 65: Workflow Pattern #6 -- Multiple Choice -- Version 1..110
Figure 66: Workflow Pattern #6 -- Multiple Choice -- Version 2..110
Figure 67: A Complex Decision (Gateway) ...111
Figure 68: An Event-Based Decision Example..111
Figure 69: Workflow Pattern #5 -- Simple Merge – Version 1..112
Figure 70: Workflow Pattern #7 -- Multiple Merge ...113
Figure 71: Workflow Pattern #5 -- Simple Merge – Version 2..113
Copyright  2003, BPMI.org All Rights Reserved 9 / 189

 BPMN Working Draft
Figure 72: Workflow Pattern #8 -- Discriminator ..114
Figure 73: Workflow Pattern #9 -- Synchronizing Join ...114
Figure 74: Workflow Pattern #8 -- N out of M Join ...115
Figure 75: The Split-Merge Relationship is not Fixed ...115
Figure 76: A Task and a Collapsed Sub-Process with a Loop Marker117
Figure 77: A Task with a Parallel Marker ..117
Figure 78: An Expanded Sub-Process with a Loop Marker..117
Figure 79: Workflow Pattern #16 -- Arbitrary Cycle...118
Figure 80: An Until Loop ..118
Figure 81: A While Loop...118
Figure 82: Example of Sub-Process ...119
Figure 83: Potentially a dead-locked model ..120
Figure 84: Improper Looping...120
Figure 85: A Task with Exception Flow (Interrupts Event Context) ...121
Figure 86: A Sub-Process with Exception Flow (Interrupts Event Context)122
Figure 87: A Collapsed Ad Hoc Sub-Process ..123
Figure 88: An Expanded Ad Hoc Sub-Process ...123
Figure 89: An Ad Hoc Process for Writing a Book Chapter ...123
Figure 90: A Task with an Associated Compensation Activity ...124
Figure 91: Compensation Shown in the context of a Transaction ..125
Figure 92: E-Mail Voting Process ..127
Figure 93: The Start of the Process ..128
Figure 94: The Ongoing Starter Process ...129
Figure 95: “Discussion Cycle” Sub-Process Details..133
Figure 96: “Collect Votes” Sub-Process Details..140
Figure 97: The last segment of the E-Mail Voting Process ..146
Figure 98: Message Flow connected to a Start Event...154
Figure 99: Process Instantiation through Message Receiving Task..155
Figure 100: Message Flow leaving an End Event ...155
Figure 101: Message Flow from Task that precedes the End Event...156
10 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft List of Figures
Copyright  2003, BPMI.org All Rights Reserved 11 / 189

BPMN Working Draft

12 / 189 Copyright  2003, BPMI.org All Rights Reserved

List of Tables
Table 1: BPD Core Element Set ...26
Table 2: BPD Complete Element Set ...34
Table 3: Sequence Flow Connection Rules..36
Table 4: Message Flow Connection Rules ...37
Table 5: Business Process Diagram Attributes ...37
Table 6: Common Object Attributes ...39
Table 7: Start Event Types ...42
Table 8: Start Event Attributes ..43
Table 9: End Event Types ...46
Table 10: End Event Attributes..47
Table 11: Intermediate Event Types ..50
Table 12: Intermediate Event Attributes...51
Table 13: Process Attributes ...53
Table 14: Sub-Process Attributes ...57
Table 15: Task Attributes ...63
Table 16: Common Gateway Attributes ..66
Table 17: Data-Based Exclusive Gateway Attributes...71
Table 18: Event-Based Exclusive Gateway Attributes ...74
Table 19: Inclusive Gateway Attributes ..77
Table 20: Complex Gateway Attributes ..80
Table 21: Parallel Gateway Attributes ..82
Table 22: Pool Attributes ..86
Table 23: Lane Attributes ...87
Table 24: Common Artifact Attributes..88
Table 25: Data Object Attributes ...90
Table 26: Text Annotation Attributes..91
Table 27: Sequence Flow Attributes ..95
Table 28: Message Flow Attributes ..99
Table 29: Association Attributes ..101

BPMN Working Draft

Copyright  2003, BPMI.org All Rights Reserved 13 / 189

List of Examples
Example 1: BPEL4WS Sample for Beginning of E-Mail Voting Process133
Example 2: BPEL4WS Sample of “Discussion Cycle” Sub-Process Details139
Example 3: BPEL4WS Sample that sets up the Access for the Second Sub-Process142
Example 4: BPEL4WS Sample of the Second Sub-Process ...145
Example 5: Sample BPEL4WS code for the last section of the Process150
Example 6: Sample BPEL4WS code for derived process for repeated elements151

BPMN Working Draft
1. Introduction
The Business Process Management Initiative (BPMI) has developed a standard
Business Process Modeling Notation (BPMN). The primary goal of BPMN is to provide a
notation that is readily understandable by all business users, from the business analysts
that create the initial drafts of the processes, to the technical developers responsible for
implementing the technology that will perform those processes, and finally, to the business
people who will manage and monitor those processes. Thus, BPMN creates a standardized
bridge for the gap between the business process design and process implementation.

Another goal, but no less important, is to ensure that XML languages designed for the
execution of business processes, such as BPEL4WS (Business Process Execution
Language for Web Services), can be visualized with a common notation.

This specification defines the notation and semantics of a Business Process Diagram
(BPD) and represents the amalgamation of best practices within the business modeling
community. The intent of BPMN is to standardize a business process modeling notation in
the face of many different modeling notations and viewpoints. In doing so, BPMN will
provide a simple means of communicating process information to other business users,
process implementers, customers, and suppliers. The membership of the BPMI Notation
Working Group has brought forth expertise and experience with the many existing notations
and has sought consolidate the best ideas from these divergent notations into a single
standard notation. Examples of other notations or methodologies that were reviewed are
UML Activity Diagram, UML EDOC Business Processes, IDEF, ebXML BPSS, Activity-
Decision Flow (ADF) Diagram, RosettaNet, LOVeM, and Event-Process Chains (EPCs).

The BPMN specification defines a mapping from BPMN to BPEL4WS and is comprised of
the following topics:

BPMN Overview provides an introduction to BPMN, its requirements, and discusses the
range of modeling purposes that BPMN can convey.

Business Process Diagrams provides a summary of the BPMN graphical elements and
their relationships.

Business Process Diagram Graphical Objects details the graphical representation and the
semantics of the behavior of BPMN Diagram elements.

Connecting Objects defines the graphical objects used to connect two objects together (i.e.,
the connecting lines of the Diagram) and how flow progresses through a Process (i.e.,
through a straight sequence or through the creation of parallel or alternative paths).

BPMN by Example provides a walkthrough of a sample Process using BPMN.

Mapping to XML Languages provides the formal mechanism for converting a BPMN
Diagram to a BPEL4WS document.

References provides a list of normative and non-normative references.

Open Issues provides a list of issues that will affect the future of the BPMN specification.

Appendix A: E-Mail Voting Process BPEL4WS provides a full sample of BPEL4WS code
based on the example business process described in the “BPMN by Example” section.

Appendix B: Glossary presents an alphabetical index of terms that are relevant to
practitioners of BPMN.
Copyright  2003, BPMI.org All Rights Reserved 14 / 189

BPMN Working Draft 1. Introduction
1.1 Conventions
The section introduces the conventions used in this document. This includes (text)
notational conventions and notations for schema components. Also included are
designated namespace definitions.

1.1.1 Typographical and Linguistic Conventions and Style
This specification incorporates the following conventions:

• The keywords “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,”
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this
document are to be interpreted as described in RFC-2119.

• A term is a word or phrase that has a special meaning. When a term is defined, the
term name is highlighted in bold typeface.

• A reference to another definition, section, or specification is highlighted with underlined
typeface and provides a link to the relevant location in this specification.

• A reference to an element, attribute, or BPMN construct is highlighted with a
capitalized word (e.g., Sub-Process).

• A reference to a BPEL4WS element, attribute, or construct is highlighted with an italic
lower-case word, usually preceded by the word “BPEL4WS” (e.g., BPEL4WS pick).

• Non-normative examples are set of in boxes and accompanied by a brief explanation.

• XML and pseudo text is highlighted with mono-spaced typeface.

• The cardinality of any content part is specified using the following operators:

• (none) — exactly once

• ? — 0 or 1

• * — 0 or more

• + — 1 or more

• Properties separated by | and grouped within (and) — alternative values

• : <value> — default value
Copyright  2002, BPMI.org All Rights Reserved 15 / 189

1.2 Dependency on Other Specifications BPMN Working Draft
1.2 Dependency on Other Specifications
The BPMN specification supports for the following specifications is a normative part of the
BPMN specification: BPEL4WS.

The following abbreviations may be used throughout this document:

This abbreviation Refers to

BPEL4WS Business Process Execution Language for Web Services (see
BPEL4WS). This abbreviation refers specifically to version 1.1 of the
specification, but is intended to support future versions of the
BPEL4WS specification.

WSDL Web Service Description Language (see WSDL). This abbreviation
refers specifically to the W3C Technical Note, 15 March 2001, but is
intended to support future versions of the WSDL specification.

1.3 Conformance
A BPMN implementation is responsible to perform one or more duties, as outlined below,
based on the information contained in this specification.

There are four main aspects of conformance to the BPMN Specification:

• The visual appearance of the BPMN graphical elements. A key element of BPMN is the
choice of shapes and icons used for the graphical elements identified in this
specification. The intent is to create a standard visual language that all process
modelers will recognize and understand, regardless of the source of the Diagram. Any
tool that is used to create BPMN Diagrams MUST conform to the shapes and markers
as defined in this specification. Note that there is flexibility in the size, color, line style,
and text positions of the defined graphical elements. Extensions to a BPD are allowed
as follows:

• Extensions can be made to the Diagram elements by way of new markers or
indicators associated with the current graphical elements. These markers or
indicators could be used to highlight a specific attribute of an activity or to create a
new type of Event, for example. In addition, Extensions could also include coloring
an object or changing a line style of an object, with the condition that change MAY
NOT conflict with any current BPMN defined line style.

• Extensions MAY NOT change the basic shape of the defined graphical elements
and markers (e.g., changing a square into a triangle, or changing rounded corners
into squared corners, etc.).

• Any number of Artifacts, consisting of a variety of shapes, can be added to a
Diagram, with the condition that the Artifact shape MAY NOT conflict with any
current object shape or defined marker.

• The semantics of the BPMN elements. This specification also defines how the graphical
elements will interact with each other, including conditional interactions based on
attributes that create behavioral variations of the elements. A conformant tool MUST
16 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 1. Introduction
adhere to these semantic definitions.

• Throughout the document, specific BPMN semantic definitions will be identified
through a special diamond-shaped bulleted paragraph, as shown in the following
example:

A Task MAY be a target for a Sequence Flow; it can have multiple incoming
Flows. Incoming Flow MAY be from an alternative path and/or a parallel paths.

• The mapping of a BPMN Diagram to BPEL4WS. This draft of the specification will not
have completed the mapping. When such a mapping has been completed, a
conformant tool MUST adhere to the mapping rules defined in the section entitled
“Mapping to XML Languages” on page 153. This conformance only applies to tools that
generate BPEL4WS from BPMN Diagrams.

• The exchange of BPMN Diagrams between conformant tools. This draft of the
specification will not contain a standard mechanism for Diagram exchange. The nature
of this mechanism has not been defined yet. It could involve the development of a
BPMN XML schema that is layered upon the BPEL4WS XML schema or it could involve
the use of standard Diagram interchange formats, such a XMI. When an exchange
mechanism has been defined, a conformant tool MUST be able to import and export
BPMN Diagrams in the specified format.

A conformant implementation is not required to process any non-normative extension
elements or attributes, or any BPMN document that contains them.
Copyright  2002, BPMI.org All Rights Reserved 17 / 189

BPMN Working Draft
Copyright  2003, BPMI.org All Rights Reserved 18 / 189

BPMN Working Draft 2. BPMN Overview
2. BPMN Overview
There has been much activity in the past two or three years in developing web service-
based XML execution languages for Business Process Management (BPM) systems.
Languages such as BPEL4WS provide a formal mechanism for the definition of business
processes. The key element of such languages is that they are optimized for the operation
and inter-operation of BPM Systems. The optimization of these languages for software
operations renders them less suited for direct use by humans to design, manage, and
monitor business processes. BPEL4WS has both graph and block structures and utilizes
the principles of formal mathematical models, such as pi-calculus1. This technical
underpinning provides the foundation for business process execution to handle the
complex nature of both internal and B2B interactions and take advantage of the benefits of
Web services. Given the nature of BPEL4WS, a complex business process could be
organized in a potentially complex, disjointed, and unintuitive format that is handled very
well by a software system (or a computer programmer), but would be hard to understand by
the business analysts and managers tasked to develop, manage, and monitor the process.
Thus, there is a human level of “inter-operability” or “portability” that is not addressed by
these web service-based XML execution languages.

Business people are very comfortable with visualizing business processes in a flow-chart
format. There are thousands of business analysts studying the way companies work and
defining business processes with simple flow charts. This creates a technical gap between
the format of the initial design of business processes and the format of the languages, such
as BPEL4WS, that will execute these business processes. This gap needs to be bridged
with a formal mechanism that maps the appropriate visualization of the business processes
(a notation) to the appropriate execution format (a BPM execution language) for these
business processes.

Inter-operation of business processes at the human level, rather than the software engine
level, can be solved with standardization of the Business Process Modeling Notation
(BPMN). BPMN provides a Business Process Diagram (BPD), which is a Diagram
designed for use by the people who design and manage business processes. BPMN also
provides a formal mapping to an execution language of BPM Systems (BPEL4WS). Thus,
BPMN would provide a standard visualization mechanism for business processes defined
in an execution optimized business process language.

BPMN will provide businesses with the capability of understanding their internal business
procedures in a graphical notation and will give organizations the ability to communicate
these procedures in a standard manner. Currently, there are scores of process modeling
tools and methodologies. Given that individuals will move from one company to another
and that companies will merge and diverge, it is likely that business analysts are required to
understand multiple representations of business processes--potentially different
representations of the same process as it moves through its lifecycle of development,
implementation, execution, monitoring, and analysis. Therefore, a standard graphical
notation will facilitate the understanding of the performance collaborations and business
transactions within and between the organizations. This will ensure that businesses will
understand themselves and participants in their business and will enable organizations to

1.See Milner, 1999, “Communicating and Mobile Systems: the Π-Calculus,” Cambridge University Press. ISBN
0 521 64320 1 (hc.) ISBN 0 521 65869 1 (pbk.)
Copyright  2002, BPMI.org All Rights Reserved 19 / 189

2.1 BPMN Scope BPMN Working Draft
adjust to new internal and B2B business circumstances quickly. To do this, BPMN will follow
the tradition of flowcharting notations for readability; yet still provide the mapping to the
executable constructs. BPMI is using the experience of the business process notations that
have preceded BPMN to create the next generation notation that combines readability,
flexibility, and expandability.

BPMN will also advance the capabilities of traditional business process notations by
inherently handling B2B business process concepts, such as public and private processes
and choreographies, as well as advanced modeling concepts, such as exception handling
and transaction compensation.

2.1 BPMN Scope
BPMN will be constrained to support only the concepts of modeling that are applicable to
business processes. This means that other types of modeling done by organizations for
business purposes will be out of scope for BPMN. For example, the modeling of the
following will not be a part of BPMN:

• Organizational structures

• Functional breakdowns

• Data models

In addition, while BPMN will show the flow of data (messages), and the association of data
artifacts to activities, it is not a data flow Diagram.

2.1.1 Uses of BPMN
Business process modeling is used to communicate a wide variety of information to a wide
variety of audiences. BPMN is designed to cover this wide range of usage and allows
modeling of end-to-end business processes to allow the viewer of the Diagram to be able to
easily differentiate between sections of a BPMN Diagram.

There are three basic types of sub-models within an end-to-end BPMN model:

• Private (internal) business processes

• Abstract (public) processes

• Collaboration (global) Processes

Note: The terminology used to describe the different types of processes has not
been standardized. Definitions of these terms are in flux. There is work being done
in the World Wide Web Consortium (W3C) and in the Organization for the
Advancement of Structured Information Standards (OASIS) that will hopefully
consolidate these terms.

Some BPMN specification terms regarding the use of swimlanes (e.g., Pools and Lanes)
are used in the descriptions below. Refer to the section entitled “Pools and Lanes” on
page 83 for more details on how these elements are used in a BPD.
20 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 2. BPMN Overview
Private (Internal) Business Processes
Private business processes are those internal to a specific organization and are the types
of processes that have been generally called workflow or BPM processes. A single private
business process will map to a single BPEL4WS document.

If swimlanes are used then a private business process will be contained within a single
Pool. The Sequence Flow of the Process is therefore contained within the Pool and cannot
cross the boundaries of the Pool. Message Flow can cross the Pool boundary to show the
interactions that exist between separate private business processes. Thus, a single BPMN
Diagram may show multiple private business processes, each mapping to a separate
BPEL4WS process.

Abstract (Public) Processes
This represents the interactions between a private business process and another process
or participant. Only those activities that are used to communicate outside the private
business process are included in the abstract process. All other “internal” activities of the
private business process are not shown in the abstract process. Thus, the abstract process
shows to the outside world the sequence of messages that are required to interact with that
business process. A single abstract process may be mapped to a single BPEL4WS
abstract process (however, this mapping will not be done in this specification).

Abstract processes are contained within a Pool and can be modeled separately or within a
larger BPMN Diagram to show the Message Flow between the abstract process activities
and other entities. If the abstract process is in the same Diagram as its corresponding
private business process, then the activities that are common to both processes can be
associated.

Collaboration (Global) Processes
A collaboration process depicts the interactions between two or more business entities.
These interactions are defined as a sequence of activities that represent the message
exchange patterns between the entities involved. A single collaboration process may be
mapped to various collaboration languages, such as ebXML BPSS, RosettaNet, or the
resultant specification from the W3C Choreography Working Group (however, these
mappings are considered as future directions for BPMN).

Collaboration processes may be contained within a Pool and the different participant
business interactions are shown as Lanes within the Pool. In this situation, each Lane
would represent two participants and a direction of travel between them. They may also be
shown as two or more Abstract Processes interacting through Message Flow (as described
in the previous section). These processes can be modeled separately or within a larger
BPMN Diagram to show the Associations between the collaboration process activities and
other entities. If the collaboration process is in the same Diagram as one of its
corresponding private business process, then the activities that are common to both
processes can be associated.
Copyright  2002, BPMI.org All Rights Reserved 21 / 189

2.1 BPMN Scope BPMN Working Draft
Types of BPD Diagrams
Within and between these three BPMN sub-models, many types of Diagrams can be
created. The following are the types of business processes that can be modeled with
BPMN (those with asterisks may not map to an executable language):

• High-level private process activities (not functional breakdown)*

• Detailed private business process

• As-is or old business process*

• To-be or new business process

• Detailed private business process with interactions to one or more external entities (or
“Black Box” processes)

• Two or more detailed private business processes interacting

• Detailed private business process relationship to Abstract Process

• Detailed private business process relationship to Collaboration Process

• Two or more Abstract Processes*

• Abstract Process relationship to Collaboration Process*

• Collaboration Process only (e.g., ebXML BPSS or RosettaNet)*

• Two or more detailed private business processes interacting through their Abstract
Processes

• Two or more detailed private business processes interacting through a Collaboration
Process

• Two or more detailed private business processes interacting through their Abstract
Processes and a Collaboration Process

BPMN is designed to allow all the above types of Diagrams. However, it should be
cautioned that if too many types of sub-models are combined, such as three or more
private processes with message flow between each of them, then the Diagram may
become too hard for someone to understand. Thus, we recommend that the modeler pick a
focused purpose for the BPD, such as a private process, or a collaboration process.

BPMN mappings
Since BPMN covers such a wide range of usage, it will map to more than one lower-level
specification language:

• BPEL4WS are the primary languages that BPMN will map to, but they only cover a
single executable private business process. If a BPMN Diagram depicts more than one
internal business process, then there will a separate mapping for each on the internal
business processes.

• The abstract sections of a BPMN Diagram will be mapped to Web service interfaces
specifications, such as the abstract processes of BPEL4WS.

• The Collaboration model sections of a BPMN will be mapped Collaboration models
such as ebXML BPSS, RosettaNet, and the W3C Choreography Working Group
22 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 2. BPMN Overview
Specification (when it is completed).

This specification will only cover the mappings to BPEL4WS. Mappings to other
specifications will have to be a separate effort, or perhaps a future direction of BPMN
(beyond Version 1.0 of the BPMN specification). It is hard to predict which mappings will be
applied to BPMN at this point, since process language specifications is a volatile area of
work, with many new offerings and mergings.

A BPD is not designed to graphically convey all the information required to execute a
business process. Thus, the graphic elements of BPMN will be supported by attributes that
will supply the additional information required to enable a mapping to BPEL4WS.

2.1.2 Diagram Point of View
Since a BPMN Diagram may depict the Processes of different Participants, each
Participant may view the Diagram differently. That is, the Participants have different points
of view regarding how the Processes will behave. Some of the activities will be internal to
the Participant (meaning performed by or under control of the Participant) and other
activities will be external to the Participant. Each Participant will have a different
perspective as to which are internal and external. At runtime, the difference between
internal and external activities is important in how a Participant can view the status of the
activities or trouble-shoot any problems. However, the Diagram itself remains the same.
Figure 1 displays a simple Business Process that has two points of view. One point of view
is of a Patient, the other is of the Doctor’s office. The Diagram shows the activities of both
participants in the Process, but when the Process is actually being performed, each
Participant will really have control over their own activities.

Figure 1 A Business Process Diagram with Two Points of View

Pa
tie

nt
R

ec
ep

tio
ni

st
/

D
oc

to
r

Send Doctor
Request

1) I want to see doctor

Illness
Occurs

Send Appt.

Receive Appt.

5) Go see doctor

Send
Symptoms

Receive
Symptoms

6) I feel sick

Receive
Prescription

Pickup

8) Pickup your medicine
and you can leave

Send Medicine
Request

Receive
Medicine
Request

9) need my medicine

Receive
Medicine

10) Here is your medicine

Receive
Doctor

Request
Send Medicine

Send
Prescription

Pickup
Copyright  2002, BPMI.org All Rights Reserved 23 / 189

2.1 BPMN Scope BPMN Working Draft
Although the Diagram point of view is important for a viewer of the Diagram to understand
how the behavior of the Process will relate to that viewer, BPMN will not currently specify
any graphical mechanisms to highlight the point of view. It is open to the modeler or
modeling tool vendor to provide any visual cues to emphasize this characteristic of a
Diagram.

2.1.3 Extensibility of BPMN and Vertical Domains
BPMN is intended to be extensible by modelers and modeling tools. This extensibility
allows modelers to add non-standard elements or artifacts to satisfy a specific need, such
as the unique requirements of a vertical domain. While extensible, BPMN Diagrams should
still have the basic look-and-feel so that a Diagram by any modeler should be easily
understood by any viewer of the Diagram. Thus the footprint of the basic flow elements
(Events, activities, and Gateways) should not be altered. Nor should any new flow elements
be added to a BPD, since there is no specification as to how Sequence and Message Flow
will connect to any new flow object. In addition, mappings to execution languages may be
affected if new flow elements are added. To satisfy additional modeling concepts that are
not part of the basic set of flow elements, BPMN provides the concept of Artifacts that can
be linked to the existing flow objects through Associations. Thus, Artifacts do not affect the
basic Sequence or Message Flow, nor do they affect mappings to execution languages.

The graphical elements of BPMN are designed to be open to allow specialized markers to
convey specialized information. For example, the three types of Events all have open
centers for the markers that BPMN standardizes as well as user-defined markers.
24 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft
3. Business Process Diagrams
This section provides a summary of the BPMN graphical objects and their relationships.
More details on the concepts will be provided in “Business Process Diagram Graphical
Objects” on page 39 and “Connecting Objects” on page 93.

One of the goals of BPMN is that the notation be simple and adoptable by business
analysts. Also, there is a potentially conflicting requirement that BPMN provide the power to
depict complex business processes and map to BPM execution languages. To help
understand how BPMN can manage both requirements, the list of BPMN graphic elements
is presented in two groups.

First, there is the list of core elements that will support the requirement of a simple notation.
These are the elements that define the basic look-and-feel of BPMN. Most business
processes will be modeled adequately with these elements. Second, there is the entire list
of elements, including the core elements, which will help support requirement of a powerful
notation to handle more advanced modeling situations. And further, the graphical elements
of the notation will be supported by non-graphical attributes that will provide the remaining
information necessary to map to an execution language or other business modeling
purposes.

3.1 BPD Core Element Set
It should be emphasized that one of the drivers for the development of BPMN is to create a
simple mechanism for creating business process models. Of the core element set, there
are three primary modeling elements (flow objects):

• Events

• Activities

• Gateways

There are three ways of connecting the primary modeling elements:

• Sequence Flow

• Message Flow

• Association

There are two ways of grouping the primary modeling elements through “Swimlanes:”

• Pools

• Lanes
Copyright  2003, BPMI.org All Rights Reserved 25 / 189

3.1 BPD Core Element Set BPMN Working Draft

Table 1 displays a list of the core modeling elements that are depicted by the notation:

Table 1 BPD Core Element Set

Element Description Notation
Event An event is something that “happens” during

the course of a business process. These
events affect the flow of the process and
usually have a cause (trigger) or an impact
(result). Events are circles with open centers
to allow internal markers to differentiate
different triggers or results. There are three
types of Events, based on when they affect
the flow: Start, Intermediate, and End.

Activity An activity is a generic term for work that
company performs. An activity can be
atomic or non-atomic (compound). The
types of activities that are a part of a
Process Model are: Process, Sub-Process,
and Task. Tasks and Sub-Processes are
rounded rectangles. Processes are either
unbounded or a contained within a Pool.

Gateway A Gateway is used to control the divergence
and convergence of Sequence Flow. Thus, it
will determine branching, forking, merging,
and joining of paths. Internal Markers will
indicate the type of behavior control.

Sequence Flow A Sequence Flow is used to show the order
that activities will be performed in a Process.

Message Flow A Message Flow is used to show the flow of
messages between two entities that are
prepared to send and receive them. In
BPMN, two separate Pools in the Diagram
will represent the two entities (participants).

Association An Association is used to associate
information with flow objects. Text and
graphical non-flow objects can be
associated with the flow objects.

Pool A Pool is a “swimlane” and a graphical
container for partitioning a set of activities
from other Pools, usually in the context of
B2B situations.

Lane A Lane is a sub-partition within a Pool and
will extend the entire length of the Pool,
either vertically or horizontally. Lanes are
used to organize and categorize activities.

N
am

e
N

am
e N
am

e
N

am
e

26 / 189 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft 3. Business Process Diagrams

3.2 BPD Complete Set
Table 2 displays a more extensive list of the business process concepts that could be
depicted through a business process modeling notation.

Element Description Notation
Event An event is something that “happens”

during the course of a business
process. These events affect the flow
of the process and usually have a
cause (trigger) or an impact (result).
There are three types of Events,
based on when they affect the flow:
Start, Intermediate, and End.

Flow Dimension (e.g.,
Start, Intermediate, End)

Start (None,
Message, Timer,
Rule, Link, Multiple)

Intermediate (None,
Message, Timer,
Exception, Cancel,
Compensation, Rule,
Link, Multiple,
Branching)

End (None, Message,
Exception, Cancel,
Compensation, Link,
Terminate, Multiple)

As the name implies, the Start Event
indicates where a particular process
will start.
Intermediate Events occur between a
Start Event and an End Event. It will
affect the flow of the process, but will
not start or (directly) terminate the
process.

As the name implies, the End Event
indicates where a process will end.

Start

Intermediate

End

Type Dimension (e.g.,
Message, Timer,
Exception, Cancel,
Compensation, Rule,
Link, Multiple, Terminate)

Start and Intermediate Events have
“Triggers” that define the cause for the
event. There are multiple ways that
these events can be triggered. End
Events may define a “Result” that is a
consequence of a Sequence Flow
ending.

Name or
Source

Message

Timer

Exception

Compensation

Rule

Link

Multiple

Cancel

Terminate
Copyright  2003, BPMI.org All Rights Reserved 27 / 189

3.2 BPD Complete Set BPMN Working Draft

Task (Atomic) A Task is an atomic activity that is
included within a Process. A Task is
used when the work in the Process is
not broken down to a finer level of
Process Model detail.

Process/Sub-Process (non-
atomic)

A Sub-Process is a compound activity
that is included within a Process. It is
compound in that it can be broken
down into a finer level of detail (a
Process) through a set of sub-
activities.

See Next Two Figures

Collapsed Sub-Process The details of the Sub-Process are not
visible in the Diagram. A “plus” sign in
the lower-center of the shape
indicates that the activity is a Sub-
Process and has a lower-level of
detail.

Expanded Sub-Process The boundary of the Sub-Process is
expanded and the details (a Process)
are visible within its boundary.
Note that Sequence Flow cannot
cross the boundary of a Sub-Process.

Gateway A Gateway is used to control the
divergence and convergence of
multiple Sequence Flow. Thus, it will
determine branching, forking,
merging, and joining of paths.

Gateway Control Types Icons within the diamond shape will
indicate the type of flow control
behavior. The types of control include:

• XOR -- exclusive decision and
merging. Both Data-Based and
Event-Based. Data-Based can be
shown with or without the “X”
marker.

• OR -- inclusive decision

• Complex -- complex conditions
and situations (e.g., 3 out of 5)

• AND -- forking and joining

Each type of control affects both the
incoming and outgoing Flow.

Name

Parallel (AND)

Exclusive (XOR)

Complex

Data-Based

Event-Based

Inclusive (OR)

Xor
28 / 189 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft 3. Business Process Diagrams

Sequence Flow A Sequence Flow is used to show the
order that activities will be performed
in a Process.

See next seven figures

Normal flow Normal Sequence Flow refers to the
flow that originates from a Start Event
and continues through activities via
alternative and parallel paths until it
ends at an End Event.

Uncontrolled flow Uncontrolled flow refers to flow that is
not affected by any conditions or does
not pass through a Gateway. The
simplest example of this is a single
Sequence Flow connecting two
activities. This can also apply to
multiple Sequence Flow that converge
on or diverge from an activity. For
each uncontrolled Sequence Flow a
“Token” will flow from the source
object to the target object.

Conditional flow Sequence Flow can have condition
expressions that are evaluated at
runtime to determine whether or not
the flow will be used. If the conditional
flow is outgoing from an activity, then
the Sequence Flow will have a mini-
diamond at the beginning of the line
(see figure to the right). If the
conditional flow is outgoing from a
Gateway, then the line will not have a
mini-diamond (see figure in the row
above).

Default flow For Data-Based Exclusive Decisions,
one type of flow is the Default
condition flow. This flow will be used
only if all the other outgoing
conditional flow is not true at runtime.
These Sequence Flow will have a
diagonal slash will be added to the
beginning of the line (see the figure to
the right). Note that it is an Open Issue
whether Default Conditions will be
used for Inclusive Decision situations.

Name, Condition,
Code, or Message

Name, Condition,
Code, or Message

Name, Condition,
 or Code

Name or
Default
Copyright  2003, BPMI.org All Rights Reserved 29 / 189

3.2 BPD Complete Set BPMN Working Draft

Exception flow Exception flow occurs outside the
normal flow of the Process and is
based upon an Intermediate Event
that occurs during the performance of
the Process.

Message Flow A Message Flow is used to show the
flow of messages between two entities
that are prepared to send and receive
them. In BPMN, two separate Pools in
the Diagram will represent the two
entities.

Compensation Association Compensation Association occurs
outside the normal flow of the Process
and is based upon an event (a Cancel
Intermediate Event) that is triggered
through the failure of a Transaction or
a Compensate Event. The target of
the Association must be marked as a
Compensation Activity.

Data Object Data Objects are considered artifacts
because they do not have any direct
affect on the Sequence Flow or
Message Flow of the Process, but
they do provide information about
what the Process does.

Fork (AND-Split) BPMN uses the term “fork” to refer to
the dividing of a path into two or more
parallel paths (also known as an AND-
Split). It is a place in the Process
where activities can be performed
concurrently, rather than serially.
There are two options:
Multiple Outgoing Sequence Flow can
be used (see figure top-right). This
represents “uncontrolled” flow is the
preferred method for most situations.
A Parallel (AND) Gateway can be
used (see figure bottom-right). This
will be used rarely, usually in
combination with other Gateways.

Exception
Flow

Name or
Message

Compensation
Association

Name
30 / 189 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft 3. Business Process Diagrams

Join (AND-Join) BPMN uses the term “join” to refer to
the combining of two or more parallel
paths into one path (also known as an
AND-Join or synchronization).
A Parallel (AND) Gateway is used to
show the joining of multiple flows.

Decision, Branching Point;
(OR-Split)

Decisions are Gateways within a
business process where the flow of
control can take one or more
alternative paths.

See next five rows.

Exclusive An Exclusive Gateway (XOR) restricts
the flow such that only one of a set of
alternatives may be chosen during
runtime. There are two types of
Exclusive Gateways: Data-based and
Event-based.

Data-Based This Decision represents a branching
point where Alternatives are based on
conditional expressions contained
within the outgoing Sequence Flow.
Only one of the Alternatives will be
chosen.

Event-Based This Decision represents a branching
point where Alternatives are based on
an Event that occurs at that point in
the Process. The specific Event,
usually the receipt of a Message,
determines which of the paths will be
taken. Other types of Events can be
used, such as Timer. Only one of the
Alternatives will be chosen.
There are two options for receiving
Messages:
Tasks of Type Receive can be used
(see figure top-right).
Intermediate Events of Type Message
can be used (see figure bottom-right).

Data-Based

Event-Based

Xor

Default

Condition 1

[Type:
Receive]

[Type:
Receive]
Copyright  2003, BPMI.org All Rights Reserved 31 / 189

3.2 BPD Complete Set BPMN Working Draft

Inclusive This Decision represents a branching
point where Alternatives are based on
conditional expressions contained
within the outgoing Sequence Flow.
In some sense it is a grouping of
related independent Binary (Yes/No)
Decisions. Since each path is
independent, all combinations of the
paths may be taken, from zero to all.
However, it should be designed so
that at least one path is taken.
There are two versions of this type of
Decision:
The first uses a collection of
conditional Sequence Flow, marked
with mini-diamonds (see top-right
figure).
The second uses an OR Gateway,
usually in combination with other
Gateways (see bottom-right picture).

Merging (OR-Join) BPMN uses the term “merge” to refer
to the exclusive combining of two or
more paths into one path (also known
as an a OR-Join).
A Merging (XOR) Gateway is used to
show the merging of multiple flows.
If all the incoming flow is alternative,
then a Gateway is not needed. That is,
uncontrolled flow provides the same
behavior.

Looping BPMN provides 2 (two) mechanisms
for looping within a Process.

See Next Two Figures

Activity Looping The properties of Tasks and Sub-
Processes will determine if they are
repeated or performed once. There
are two types of loops: Standard and
Multi-Instance. A small looping
indicator will be displayed at the
bottom-center of the activity.

Condition 1

Condition 2

Condition 2

Condition 1
32 / 189 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft 3. Business Process Diagrams

Sequence Flow Looping Loops can be created by connecting a
Sequence Flow to an “upstream”
object. An object is considered to be
upstream if that object has an
outgoing Sequence Flow that leads to
a series of other Sequence Flows, the
last of which is an incoming Sequence
Flow for the original object.

Multiple Instances The attributes of Tasks and Sub-
Processes will determine if they are
repeated or performed once. A small
parallel indicator will be displayed at
the bottom-center of the activity.

Process Break (something
out of the control of the
process makes the process
pause)

A Process Break is a location in the
Process that shows where an
expected delay will occur within a
Process. An Intermediate Event is
used to show the actual behavior (see
top-right figure). In addition, a Process
Break artifact, as designed by a
modeler or modeling tool, can be
associated with the Event to highlight
the location of the delay within the
flow.

Transaction A transaction is an activity, either a
Task or a Sub-Process, that is
supported by special protocol that
insures that all parties involved have
complete agreement that the activity
should be completed or cancelled.
The attributes of the activity will
determine if the activity is a
transaction. A double-lined boundary
indicates that the activity is a
Transaction.

Nested Sub-Process (Inline
Block)

A nested Sub-Process is an activity
that shares the same set of data as its
parent process. This is opposed to a
Sub-Process that is independent, re-
usable, and referenced from the
parent process. Data needs to be
passed to the referenced Sub-
Process, but not to the nested Sub-
Process.

There is no special indicator for nested
Sub-Processes

=

Copyright  2003, BPMI.org All Rights Reserved 33 / 189

3.3 Use of Text, Color, Size, and Lines in a Diagram BPMN Working Draft

Table 2 BPD Complete Element Set

3.3 Use of Text, Color, Size, and Lines in a Diagram
Text Annotation objects can be used by the modeler to display additional information about
a Process or attributes of the objects within the Process.

Flow objects and Flows MAY have labels (e.g., its name and/or other attributes) placed
inside the shape, or above or below the shape, in any direction or location, depending
on the preference of the modeler or modeling tool vendor.

The fills that are used to for the graphical elements MUST be white or clear.

The notation MAY be extended to use other fill colors to suit the purpose of the
modeler or tool (e.g., to highlight the value of an object attribute).

Group (a box around a
group of objects for
documentation purposes)

A grouping of activities that does not
affect the Sequence Flow. The
grouping can be used for
documentation or analysis purposes.
Groups can also be used to identify
the activities of a distributed
transaction that is shown across
Pools.

Off-Page Connector Generally used for printing, this object
will show where the Sequence Flow
leaves one page and then restarts on
the next page. A Link Intermediate
Event can be used as an Off-Page
Connector.

Association An Association is used to associate
information with flow objects. Text and
graphical non-flow objects can be
associated with the flow objects.

Text Annotation (attached
with an Association)

Text Annotations are a mechanism for
a modeler to provide additional
information for the reader of a BPMN
Diagram.

Pool A Pool is a “swimlane” and a graphical
container for partitioning a set of
activities from other Pools, usually in
the context of B2B situations.

Lanes A Lane is a sub-partition within a Pool
and will extend the entire length of the
Pool, either vertically or horizontally.
Lanes are used to organize and
categorize activities within a Pool.

Descriptive Text Here

N
am

e
N

am
e N
am

e
N

am
e

34 / 189 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft 3. Business Process Diagrams
3.4.1 Sequence Flow Rules
Flow objects and markers MAY be of any size that suits the purposes of the modeler or
modeling tool.

The lines that are used to draw the graphical elements MUST be black.

The notation MAY be extended to use other line colors to suit the purpose of the
modeler or tool (e.g., to highlight the value of an object attribute).

The notation MAY be extended to use other line styles to suit the purpose of the
modeler or tool (e.g., to highlight the value of an object attribute) with the condition
that the line style MAY NOT conflict with any current BPMN defined line style.

3.4 Flow Object Connection Rules
An incoming Sequence Flow can connect to any location on a flow object (left, right, top, or
bottom). Likewise, an outgoing Sequence Flow can connect from any location on a flow
object (left, right, top, or bottom). Message Flows also have this capability. BPMN allows
this flexibility, however, we also recommend that modelers use judgment or best practices
in how flow objects should be connected so that readers of the Diagrams will find the
behavior clear and easy to follow. This is even more important when a Diagram contains
Sequence Flows and Message Flows. In these situations it is best to pick a direction of
Sequence Flow, either left to right or top to bottom, and then direct the Message Flow at a
90° angle to the Sequence Flow. The resulting Diagrams will be much easier to understand.

3.4.1 Sequence Flow Rules
Table 3 displays the BPMN flow objects and shows how these objects can connect to one
another through Sequence Flows. The symbol indicates that the object listed in the row
can connect to the object listed in the column. The quantity of connections into and out of
an object is subject to various configuration dependencies are not specified here. Refer to
the sections in the next chapter for each individual object for more detailed information on
the appropriate connection rules. Note that if a sub-process has been expanded within a
Diagram, the objects within the sub-process cannot be connected to objects outside of the
sub-process. Nor can Sequence Flows cross a Pool boundary.
Copyright  2003, BPMI.org All Rights Reserved 35 / 189

3.4 Flow Object Connection Rules BPMN Working Draft
3.4.2 Message Flow Rules
Table 3 Sequence Flow Connection Rules

Note: Only those objects that can have incoming and/or outgoing Sequence Flow
are shown in the table. Thus, Pool, Lane, Data Object, and Text Annotation are not
listed in the table.

3.4.2 Message Flow Rules
Table 4 displays the BPMN modeling objects and shows how these objects can connect to
one another through Message Flows. The symbol indicates that the object listed in the
row can connect to the object listed in the column. The quantity of connections into and out
of an object is subject to various configuration dependencies are not specified here. Refer
to the sections in the next chapter for each individual object for more detailed information
on the appropriate connection rules. Note that Message Flows cannot connect to objects
that are within the same Participant Lane boundary.

From\To
+

Name Name

+
Name

Name
36 / 189 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft 3. Business Process Diagrams
3.4.2 Message Flow Rules
Table 4 Message Flow Connection Rules

Note: Only those objects that can have incoming and/or outgoing Message Flow
are shown in the table. Thus, Lane, Gateway, Data Object, and Text Annotation are
not listed in the table.

3.5 Diagram Attributes
The following are attributes of a Business Process Diagram:

Table 5 Business Process Diagram Attributes

From\To

Attribute Description
ID: String This is a unique ID that distinguishes the Diagram from other

Diagrams.

Name: String Name is an attribute that is text description of the Diagram.

Version: String This defines the Version number of the Diagram.

Author: String This holds the name of the author of the Diagram.

Language: String This holds the name of the language in which text is written.

CreationDate: Date This defines the date on which the Diagram was create (for this
Version).

Process *: ProcessID A BPD SHALL contain zero or more Processes.

Pool +: PoolID A BDP SHALL contain one or more Pools. The boundary of one
of the Pools MAY be invisible (especially if there is only one Pool
in the Diagram).

Documentation ?: String The modeler MAY add optional text documentation about the
Diagram.

N
am

e (Pool)
+

Name Name

N
am

e (Pool)

+
Name

Name
Copyright  2003, BPMI.org All Rights Reserved 37 / 189

3.5 Diagram Attributes BPMN Working Draft
3.4.2 Message Flow Rules
38 / 189 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft
4. Business Process Diagram Graphical
Objects

This section details the graphical representation and the semantics of the behavior of
Business Process Diagram graphical elements. Refer to the section entitled “Mapping to
XML Languages” on page 153 for more information about how these elements map to
execution languages.

4.1 Common BPD Object Attributes
The following table displays a set of common attributes for BPMN objects (specifically
Events, Activities, and Gateways):

Table 6 Common Object Attributes

4.2 Events
An Event is something that “happens” during the course of a business process. These
Events affect the flow of the Process and usually have a cause or an impact. The term
“event” is general enough to cover many things in a business process. The start of an
activity, the end of an activity, the change of state of a document, a message that arrives,
etc., all could be considered events. However, BPMN has restricted the use of events to
include only those types of events that will affect the sequence or timing of activities of a
process. BPMN further categorizes Events into three main types: Start, Intermediate, and
End.

Start and Intermediate Events have “Triggers” that define the cause for the event. There are
multiple ways that these events can be triggered (refer to the section entitled “Start Event
Triggers” on page 42 and “Intermediate Event Triggers” on page 49). End Events may
define a “Result” that is a consequence of a Sequence Flow ending. There are multiple
types of Results that can be defined (refer to the section entitled “End Event Results” on
page 46).

Attributes Description
Id: String This is a unique ID that identifies the object from other objects

within the Diagram.

Name: String Name is an attribute that is text description of the object.
Assign *: Expression Zero or more assignments MAY be made for the object. The

expressions SHALL be evaluated when the flow of the Process
(the Token) arrives at the object.

Pool: PoolName A PoolName MUST be added to the object to identify its location.
Lane *: LaneName If the Pool has more than one Lane, then a LaneName MUST be

added. There MAY be multiple Lanes listed if the Lanes are
organized in matrix or overlap in a non-nested manner.

Documentation ?: String The modeler MAY add optional text documentation about the
object.
Copyright  2003, BPMI.org All Rights Reserved 39 / 189

4.2 Events BPMN Working Draft
4.2.1 Start
All Events share the same shape footprint, a small circle. Different line styles, as shown
below, distinguish the three types of flow Events. All Events also have an open center so
that BPMN-defined and modeler-defined icons can be included within the shape to help
identify the Trigger or Result of the Event.

4.2.1 Start
As the name implies, the Start Event indicates where a particular Process will start. In terms
of Sequence Flow, the Start Event starts the flow of the Process, and thus, will not have any
incoming Sequence Flows—no Sequence Flows can connect to a Start Event.

The Start Event shares the same basic shape of the Intermediate Event and End Event, a
circle with an open center so that markers can be placed within the circle to indicate
variations of the Event.

A Start Event is a circle that MUST be drawn with a single thin c line, and MUST have a
white or clear fill. (see Figure 2).

The use of text, color, size, and lines for a Start Event MUST follow the rules defined
in section 3.3 on page 34 with the exception that:

Extensions to a Start Event MAY use alternative line color, fill color, or line style,
with the condition that the thickness of the line remain thin so that the Start
Event may be distinguished from the Intermediate and End Events.

Figure 2 A Start Event

Throughout this document, we will discuss how Sequence Flow proceeds within a Process.
To facilitate this discussion, we will employ the concept of a “Token” that will traverse the
Sequence Flows and pass through the flow objects in the Process. The behavior of the
Process can be described by tracking the path(s) of the Token through the Process. A
Token will have a unique identity, called a TokenID set, that can be used to distinguish
multiple Tokens that may exist because of concurrent Process instances or the dividing of
the Token for parallel processing within a single Process instance. The parallel dividing of a
Token creates a lower level of the TokenID set. The set of all levels of TokenID will identify a
Token. The TokenID set for a Token will be in the following format: “TokenID.TokenID. …
TokenID,” each level being separated by a dot.

A Start Event generates a Token that must eventually be consumed at an End Event (which
may be implicit if not graphically displayed). The path of Tokens MUST be explicitly traced
through the network of Sequence Flow with a Process. There CANNOT be any implicit flow
during the course of normal Sequence Flow. Tokens can also be consumed through
exception handling Intermediate Events, which act like a forced end to a Process level.
Note: A Token does not traverse the Message Flows since it is a Message that is passed
down those Flows (as the name implies).

Semantics of the Start Event include:

A Start Event is OPTIONAL: a Process level—a top-level Process or an expanded Sub-
Process—MAY (is not required to) have a Start Event:
40 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.2.1 Start
Note: A BPD may have more than one Process level (i.e., it can include Expanded
Sub-Processes). The use of Start and End Events is independent for each level of
the Diagram.

If a Process is complex and/or the starting conditions are not obvious, then it is
RECOMMENDED that a Start Event be used.

If there is an End Event, then there MUST be at least one Start Event.

If the Start Event is used, then there SHALL NOT be other flow elements that do not
have incoming Sequence Flow—all other flow objects MUST be a target of at least
one Sequence Flow.

An exception to this are activities that are defined as being Compensation
activities (have the Compensation Marker). Compensation activities SHALL
NOT have any incoming Sequence Flow, even if there is a Start Event in the
Process level. Refer to the section entitled “Compensation Association” on
page 124 for more informations on Compensation activities.

An exception to this is the Intermediate Event, which MAY be without an
incoming Sequence Flow (when attached to an activity boundary).

If the Start Event is not used, then all flow objects that do not have an incoming
Sequence Flow (i.e., are not a target of a Sequence Flow) SHALL be instantiated
when the Process is instantiated. There is an assumption that there is only one
implicit Start Event, meaning that all the starting flow objects will start at the same
time.

An exception to this are activities that are defined as being Compensation
activities (have the Compensation Marker). Compensation Activities are not
considered a part of the normal flow and SHALL NOT be instantiated when the
Process is instantiated.

There MAY be multiple Start Events for a given Process level.

Each Start Event is an independent event. That is, a Process Instance SHALL be
generated when the Start Event is triggered.

Note: The behavior of Process may be harder to understand if there are multiple
Start Events. It is RECOMMENDED that this feature be used sparingly and that the
modeler be aware that other readers of the Diagram may have difficulty
understanding the intent of the Diagram.

When the trigger for a Start Event occurs, Tokens will be generated for each outgoing
Sequence Flow from that event. The TokenID set for each of the Tokens will be established
such that it can be identified that the Tokens are all from the same parallel Fork (AND-Split)
and the number of Tokens in the group. These Tokens will begin their flow and not wait for
any other Start Event to be triggered.

If there is a dependency for more than one Event to happen before a Process can start
(e.g., two messages are required to start), then the Start Events must flow to the same
activity within that Process. The attributes of the activity would specify when the activity
Copyright  2003, BPMI.org All Rights Reserved 41 / 189

4.2 Events BPMN Working Draft
4.2.1 Start
could begin. If the attributes specify that the activity must wait for all inputs, then all Start
Events will have to be triggered before the Process begins (refer to the section entitled
“Attributes” on page 56 (for sub-processes) and “Attributes” on page 62 (for Tasks) for more
information about activity attributes). In addition, a correlation mechanism will be required
so that different triggered Start Events will apply to the same process instance. Correlation
will likely be handled through Event attributes, but this an open issue will be addressed in a
later version of the specification. Refer to the section entitled “Open Issues” on page 169
for a complete list of the issues open for BPMN.

Start Event Triggers
There are many ways that can business process can be started (instantiated). The Trigger
for a Start Event is designed to show the general mechanism that will instantiate that
particular Process. There are six types of Start Events in BPMN: None, Message, Timer,
Rule, Link, and Multiple.

Table 7 displays the types of Triggers and the graphical marker that will be used for each:

Table 7 Start Event Types

Trigger Description Marker
None The modeler does not display the type of Event. It is

also used for a Sub-Process that starts when the flow
is triggered by its Parent Process.

Message A message arrives from a participant and triggers the
start of the Process.

Timer A specific time-date or a specific cycle (e.g., every
Monday at 9am) can be set that will trigger the start of
the Process.

Rule This type of event is triggered when the conditions for
a rule such as “S&P 500 changes by more than 10%
since opening,” or “Temperature above 300C” become
true.

Link A Link is a mechanism for connecting the end (Result)
of one Process to the start (Trigger) of another.
Typically, these are two Sub-Processes within the
same parent Process.

Multiple This means that there are multiple ways of triggering
the Process. Only one of them will be required to start
the Process. The attributes of the Start Event will
define which of the other types of Triggers apply.
42 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.2.1 Start
Attributes
The following are attributes of a Start Event, which extends the set of common object
elements (see Table 6):

Table 8 Start Event Attributes

Sequence Flow Connections
Refer to the section entitled “Sequence Flow Rules” on page 35 for the entire set of objects
and how they may be source or targets of Sequence Flows.

A Start Event SHALL NOT be a target for a Sequence Flow; it MUST NOT have
incoming Sequence Flows.

A Start Event MUST be a source for a Sequence Flow.

Multiple Sequence Flows MAY originate from a Start Event. For each Sequence Flow
that has the Start Event as a source, a new parallel path SHALL be generated.

The Condition Attribute for all outgoing Sequence Flow MUST be set to None.

When a Start Event is not used, then all flow objects that do not have an incoming
Sequence Flow SHALL be the start of a separate parallel path.

Each path will have a separate unique Token that will traverse the Sequence Flow.

Message Flow Connections
Refer to the section entitled “Message Flow Rules” on page 36 for the entire set of objects
and how they may be source or targets of Sequence Flows.

Note: All Message Flows must connect two separate Pools. They can connect to
the Pool boundary or to flow objects within the Pool boundary. They cannot connect
two objects within the same Pool.

Attribute Description
Trigger (None | Message |
Timer | Rule | Link | Multiple) :
None

Trigger is an attribute (default None) that defines the type of
trigger expected for that Start.
The Trigger list MAY be extended to include new types.

Message: MessageName If the Trigger is a Message, then the name of the Message MUST
be supplied.

Timer: (Timedate |
TimeCycle): Timedate

If the Trigger is a Timer, then a timedate or a timedatecycle
MUST be entered.

Rule: RuleExpression If the Trigger is a Rule, then an expression MUST be entered.
Link: LinkName If the Trigger is a Link, then the name of the Link MUST be

supplied.
Multiple: Trigger +
(except Multiple)

If the Trigger is a Multiple, then a list of the Triggers MUST have
the appropriate data (as defined above).
Copyright  2003, BPMI.org All Rights Reserved 43 / 189

4.2 Events BPMN Working Draft
4.2.2 End
A Start Event MAY be the target for Message Flows; it can have 0 (zero) or more
incoming Message Flows. Each Message Flow arriving at a Start Event represents an
instantiation mechanism (a Trigger) for the process. Only one of the Triggers is required
to start a new Process.

The trigger attribute of the Start Event MUST be set to “Message” or “Multiple” if
there are any incoming Message Flows.

A Start Event SHALL NOT be a source for a Message Flow; it MUST NOT have
outgoing Message Flows.

4.2.2 End
As the name implies, the End Event indicates where a process will end. In terms of
Sequence Flow, the End Event ends the flow of the Process, and thus, will not have any
outgoing Sequence Flows—no Sequence Flows can connect from an End Event.

The End Event shares the same basic shape of the Start Event and Intermediate Event, a
circle with an open center so that markers can be placed within the circle to indicate
variations of the Event.

An End Event is a circle that MUST be drawn with a single thick black line, and MUST a
white or clear fill. (see Figure 3).

The use of text, color, size, and lines for an End Event MUST follow the rules
defined in section 3.3 on page 34 with the exception that:

Extensions to an End Event MAY use alternative line color, fill color, or line style,
with the condition that the thickness of the line remain thick so that the End
Event may be distinguished from the Intermediate and Start Events.

Figure 3 End Event

To continue discussing how flow proceeds throughout the process, an End Event
consumes a Token that had been generated from a Start Event within the same level of
Process. If parallel Sequence Flows target the End Event, then the Tokens will be
consumed as they arrive. All the Tokens that were generated from the Start Events or
through forking during the Process must be consumed before the Process has been
completed.

Semantics of the End Event include:

There MAY be multiple End Events within a single level of a process.

This shape is OPTIONAL: a given Process level—a top-level Process or an expanded
Sub-Process—MAY (is not required to) have this shape:

If there is a Start Event, then there MUST be at least one End Event.

If an End Event is used, then there SHALL NOT be other flow elements that do not
have any outgoing Sequence Flows—all other flow objects MUST be a source of at
least one Sequence Flow.
44 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.2.2 End
An exception to this are activities that are defined as being Compensation
activities (have the Compensation Marker). Compensation Activities SHALL
NOT have any outgoing Sequence Flow, even if there is an End Event in the
Process level. Refer to the section entitled “Compensation Association” on
page 124 for more information on Compensation activities.

If the End Event is not used, then all flow objects that do not have any outgoing
Sequence Flows (i.e., are not a source of a Sequence Flow) mark the end of the
Process. However, the process SHALL NOT end until all parallel paths have
completed.

An exception to this are activities that are defined as being Compensation
activities (have the Compensation Marker). Compensation Activities are not
considered a part of the normal flow and SHALL NOT mark the end of the
Process.

Note: A BPD may have more than one Process level (i.e., it can include Expanded
Sub-Processes). The use of Start and End Events is independent for each level of
the Diagram.

A Token entering the path-ending flow objects will be consumed when the processing
performed by those objects are completed (when the path has completed). When all
Tokens for a given instance of the Process are consumed, then the Process will reach a
state of being completed. However, a Process may be given attributes to control how
Tokens moves back up to a higher-level Process. This is an open issue. Refer to the
section entitled “Open Issues” on page 169 for a complete list of the issues open for BPMN.
Copyright  2003, BPMI.org All Rights Reserved 45 / 189

4.2 Events BPMN Working Draft
4.2.2 End
End Event Results
A BPMN modeler can define the consequence of reaching an End Event. This will be
referred to as the End Event Result.

Table 9 displays the types of Results and the graphical marker that will be used for each:

Table 9 End Event Types

Result Description Marker
None The modeler does not display the type of Event. It is

also used for a Sub-Process that end and the flow
goes back to its Parent Process.

Message This type of End indicates that a message is sent to a
participant at the conclusion of the Process.

Exception This type of End indicates that a named Error should
be generated. This Error will be caught by an
Intermediate Event within the Event Context.

Cancel This type of End is used within a Transaction Sub-

Process. It will indicate that the Transaction should be
cancelled and will trigger a Cancel Intermediate Event
attached to the Sub-Process boundary. In addition, it
will indicate that a Transaction Protocol Cancel
message should be sent to any Entities involved in the
Transaction.

Compensation This type of End will indicate that a Compensation is
necessary. This Compensation identifier will be used
by an Intermediate Event when the Process is rolling
back.

Link A Link is a mechanism for connecting the end (Result)
of one Process to the start (Trigger) of another.
Typically, these are two Sub-Processes within the
same parent Process.

Terminate This type of End indicates that there is a fatal error and
that all activities in the Process should be immediately
ended. The Process is ended without compensation or
event handling. Note that the marker for this Event is
an Open Issue.

Multiple This means that there are multiple consequences of
ending the Process. All of them will occur (e.g., there
might be multiple messages sent). The attributes of the
End Event will define which of the other types of
Results apply.
46 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.2.2 End
Attributes
The following are attributes of a End Event, which extends the set of common object
elements (see Table 6):

Table 10 End Event Attributes

Sequence Flow Connections
Refer to the section entitled “Sequence Flow Rules” on page 35 for the entire set of objects
and how they may be source or targets of Sequence Flows.

An End Event MUST be a target for a Sequence Flow.

An End Event MAY have multiple incoming Sequence Flows.

The Flows MAY come from either alternative or parallel paths. For modeling convenience,
each path MAY connect to a separate End Event object. The End Event is used as a Sink
for all Tokens that arrive at the Event. All Tokens that are generated at the Start Event for
that Process must eventually arrive at an End Event. The Process will be in a running state
until all Tokens are consumed.

An End Event SHALL NOT be a source for a Sequence Flow; that is, there SHALL NOT
be outgoing Sequence Flows.

Attribute Description
Result: (None | Message |
Exception | Cancel |
Compensation | Rule | Link |
Terminate | Return | Multiple) :
None

Result is an attribute (default None) that defines the type of result
expected for that End.
The Cancel Result MAY NOT be used unless the Event is used
within a Process that is a Transaction.
The Result list MAY be extended to include new types.

Message: MessageName If the Result is a Message, then the name of the Message MUST
be supplied.

Exception: ErrorCode If the Result is an Exception, then the error code MAY be
supplied.

Compensation:
ActivityName; ActivityID

If the Result is a Compensation, then the name of the Activity that
needs to be compensated MAY be supplied.The ActivityID of that
activity MUST be supplied.

Link: LinkName If the Result is a Link, then the name of the Link MUST be
supplied.

Multiple: Trigger +
(except Multiple)

If the Result is a Multiple, then each Result on the list MUST have
the appropriate data as specified for the above attributes.
Copyright  2003, BPMI.org All Rights Reserved 47 / 189

4.2 Events BPMN Working Draft
4.2.3 Intermediate
Message Flow Connections
Refer to the section entitled “Message Flow Rules” on page 36 for the entire set of objects
and how they may be source or targets of Sequence Flows.

Note: All Message Flows must connect two separate Pools. They can connect to
the Pool boundary or to flow objects within the Pool boundary. They cannot connect
two objects within the same Pool.

An End Event MUST NOT be the target for Message Flows; it can have no incoming
Message Flows.

An End Event MAY be a source for a Message Flow; it can have one or more outgoing
Message Flow.

4.2.3 Intermediate
Intermediate Events occur between a Start Event and an End Event. This is an event that
occurs after a Process has been started. It will affect the flow of the process, but will not
start or (directly) terminate the process. Intermediate Events can be used to:

• Show where messages or delays are expected within the Process,

• Disrupt the normal flow through exception handling, or

• Show the extra work required for compensation.

The Intermediate Event shares the same basic shape of the Start Event and End Event, a
circle with an open center so that markers can be placed within the circle to indicate
variations of the Event.

An Intermediate Event is a circle that MUST drawn with a double thin black line, and
MUST have a white or clear fill. (see Figure 3).

The use of text, color, size, and lines for an Intermediate Event MUST follow the
rules defined in section 3.3 on page 34 with the exception that:

Extensions to an Intermediate Event MAY use alternative line color, fill color, or
line style, with the condition that the thickness of the line remain double so that
the Intermediate Event may be distinguished from the Start and End Events.

Figure 4 Intermediate Event

One use of Intermediate Events is to represent exception or compensation handling. This
will be shown by placing the Intermediate Event on the boundary of a Task or Sub-Process
(either collapsed or expanded). Figure 5 displays an example of an Intermediate Event
attached to a Task. The Intermediate Event can be attached to any location of the activity
boundary and the outgoing Sequence Flow can flow in any direction. However, in the
interest of clarity of the Diagram, we recommend that the modeler choose a consistent
location on the boundary. For example, if the Diagram orientation is horizontal, then the
Intermediate Events can be attached to the bottom of the activity and the Sequence Flow
directed down and then to the right. If the Diagram orientation is vertical, then the
48 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.2.3 Intermediate
Intermediate Events can be attached to the left or right side of the activity and the
Sequence Flow directed to the left or right and then down.

Figure 5 Task with an Intermediate Event attached to its boundary

Intermediate Event Triggers
There are eight types of Intermediate Events in BPMN: Message, Timer, Exception,
Compensation, Cancel, Rule, Link, and Multiple. These Event types indicate the different
ways that a Process may be interrupted or delayed after it has started. Each type of
Intermediate Event will have a different icon placed in the center of the Intermediate Event
shape to distinguish one from another.

Review Status of
Discussion

Moderate E-mail
Discussion

7 Days
Copyright  2003, BPMI.org All Rights Reserved 49 / 189

4.2 Events BPMN Working Draft
4.2.3 Intermediate
Table 11 displays the types of Triggers and the graphical marker that will be used for each:

Table 11 Intermediate Event Types

Trigger Description Marker
None This is valid for only Intermediate Events that are in the

main flow of the Process. The modeler does not
display the type of Event. It is used for modeling
methodologies that use Events to indicate some
change of state in the Process.

Message A message arrives from a participant and triggers the
Event. This causes the Process to continue if it was
waiting for the message, or changes the flow for
exception handling.

Timer A specific time-date or a specific cycle (e.g., every
Monday at 9am) can be set that will trigger the Event.
If used within the main flow it acts as a delay
mechanism. If used for exception handling it will
change the normal flow into an exception flow.

Exception This is used for exception handling--both to set (throw)
and to react to (catch) exceptions. It sets an exception
if the Event is part of a normal flow. It reacts to a
named exception, or to any exception if a name is not
specified, when attached to the boundary of an activity.

Cancel This type of Intermediate Event is used within a
Transaction Sub-Process. This type of Event MUST be
attached to the boundary of a Sub-Process. It SHALL
be triggered if a Cancel End Event is reached within
the Transaction Sub-Process. It also SHALL be
triggered if a Transaction Protocol “Cancel” message
has been received while the Transaction is being
performed.

Compensation This is used for compensation handling--both setting
and performing compensation. It call for compensation
if the Event is part of a normal flow. It reacts to a
named compensation call when attached to the
boundary of an activity.

Rule This is only used for exception handling. This type of
event is triggered when a named Rule becomes true.
A Rule is an expression that evaluates some Process
data.

Link A Link is a mechanism for connecting the end (Result)
of one Process to the start (Trigger) of Event-Based
Exclusive Decision.

Multiple This means that there are multiple ways of triggering
the Event. Only one of them will be required. The
attributes of the Intermediate Event will define which of
the other types of Triggers apply.
50 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.2.3 Intermediate
Attributes
The following are attributes of an Intermediate Event, which extends the set of common
object elements (see Table 6):

Table 12 Intermediate Event Attributes

Sequence Flow Connections
Refer to the section entitled “Sequence Flow Rules” on page 35 for the entire set of objects
and how the may be source or targets of Sequence Flows.

Intermediate Events MAY be attached directly to the boundary of an Activity.

To be attached to the boundary of an Activity, an Intermediate Event MUST be one
of the following Triggers: Message, Timer, Exception, Cancel, Compensation, Rule,
and Multiple.

An Intermediate Event with a Cancel Trigger MAY be attached to an Activity
boundary only if the Transaction attribute of the Activity is set to TRUE.

Attribute Description
Trigger: (None | Message |
Timer | Exception | Cancel |
Compensation | Rule |
Multiple) : Message

Trigger is an attribute (default Message) that defines the type of
trigger expected for that Intermediate Event.
The None and Link Trigger MAY NOT be used when the Event is
attached to the boundary of an Activity. The Multiple, Rule, and
Cancel Triggers MAY NOT be used when the Event is part of the
normal flow of the Process. The Cancel Trigger MAY NOT be
used when the Event is attached to the boundary of an Activity
that is not a Transaction or if the Event is not contained within a
Process that is a Transaction.
The Trigger list MAY be extended to include new types.

Message: MessageName If the Trigger is a Message, then the name of the Message must
be supplied.

Timer: (Timedate |
TimeCycle): Timedate

If the Trigger is a Timer, then a timedate or a timecycle must be
entered.

Exception: (ErrorCode |
None): ErrorCode

If the Trigger is an Exception, then the error code MAY be
supplied. If there is no error code, then any Error SHALL trigger
the Event. If there is an error code, then only an Error that
matches the error code SHALL trigger the Event.

Compensation:
ActivityName; ActivityID

If the Trigger is a Compensation, then the name of the Activity
needs to be compensated MAY be supplied.The ActivityID of that
activity MUST be supplied.

Rule: RuleName If the Trigger is a Rule, then an expression MUST be entered.
Link: LinkName If the Trigger is a Link, then the name of the Link MUST be

supplied.
Multiple: Trigger +
(except Multiple and
Compensation)

If the Trigger is a Multiple, then each Trigger on the list MUST
have the appropriate data as specified for the above attributes.
Copyright  2003, BPMI.org All Rights Reserved 51 / 189

4.3 Activities BPMN Working Draft
4.3.1 Process
If the Intermediate Event is attached to the boundary of an activity, then it MAY NOT be
a target for a Sequence Flow; it cannot have an incoming Flow.

If the Intermediate Event is not attached to the boundary of an activity; that is, it is within
normal flow, then it MAY be a target for a Sequence Flow. It MAY have one (and only
one) incoming Flow.

Intermediate Event of the following types MAY be a target of a Sequence Flow:
None, Message, Timer, Exception, Link, and Compensation.

An Intermediate Event with a Link Trigger MAY only be a target of a Sequence
Flow if the source is an Event-Based Exclusive Gateway.

An Intermediate Event MUST be a source for a Sequence Flow; it can have one (and
only one) outgoing Sequence Flow.

An exception to this: an Intermediate Event with a Compensation Trigger MUST
NOT have an outgoing Sequence Flow (it MAY have an outgoing Association).

Message Flow Connections
Refer to the section entitled “Message Flow Rules” on page 36 for the entire set of objects
and how the may be source or targets of Sequence Flows.

Note: All Message Flows must connect two separate Pools. They can connect to
the Pool boundary or to flow objects within the Pool boundary. They cannot connect
two objects within the same Pool.

An Intermediate Event of type Message MAY be the target for Message Flows; it can
have one incoming Message Flows.

An Intermediate Event MAY NOT be a source for a Message Flow; it can have no
outgoing Message Flows.

4.3 Activities
An activity is work that is performed within a business process. An activity can be atomic or
non-atomic (compound). The types of activities that are a part of a Process Model are:
Process, Sub-Process, and Task. The following sections will detail how these activities are
modeled with BPMN.

4.3.1 Process
A Process is an activity performed within a company or organization. In BPMN a Process
is depicted as a graph of flow objects, which are a set of other activities and the controls
that sequence them. The concept of process is intrinsically hierarchical. Processes may be
defined at any level from enterprise-wide processes to processes performed by a single
person. Low-level processes may be grouped together to achieve a common business
goal.

Note that BPMN defines the term Process fairly specifically and defines a Business
Process more generically as a set of activities that are performed within an organization or
across organizations. Thus a Business Process, as shown in a Business Process Diagram,
52 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.3.1 Process
may contain more than one separate Process. Each Process may have its own Sub-
Processes and would be contained within a Pool (refer to the section entitled “Pool” on
page 83). The individual Processes would be independent in terms of Sequence Flow, but
could have Message Flow connecting them.

Attributes
The following are attributes of a Process, which extends the set of common object
elements (see Table 6):

Table 13 Process Attributes

Attribute Description
Property *: Modeler-defined Properties MAY be added to a Process. These

Properties are “local” to the Process. All Tasks, Sub-Process
objects, and Sub-Processes that are embedded SHALL have
access to these Properties. The fully delineated name of these
properties are “<process name>.<property name>” (e.g., “Add
Customer.Customer Name”). If a process is embedded within
another Process, then the fully delineated name SHALL also be
preceded by the Parent Process name for as many Parents there
are until the top level Process.

Name: Each Property has a Name (e.g., name=”Customer Name”).
Type: Each Property has a Type (e.g., type=”String”).

AdHoc: (True | False): False AdHoc is a Boolean attribute, which has a default of False. This
specifies whether the Process is Ad Hoc or not. The activities
within an Ad Hoc Process are not controlled or sequenced in a
particular order, there performance is determined by the
performers of the activities.

CompletionCondition:
Expression

If the Process is Ad Hoc, then a Completion Condition MUST be
included, which defines the conditions when the Process will end.
The Ad Hoc marker SHALL be placed at the bottom center of the
Process or the Sub-Process shape for Ad Hoc Processes.

PassThrough: (True | False):
False

The definition of the PassThrough attribute is an open issue that
will be handled in a later version of the specification. Refer to the
section entitled “Open Issues” on page 169 for a complete list of
the issues open for BPMN.

AssignTime: (Start | End):
Start

Each Assignment Expression will have AssignTime.
A value of Start means that the assignment SHALL occur at the
start of the Process.
A value of End means that the assignment SHALL occur at the
end of the Process.
Copyright  2003, BPMI.org All Rights Reserved 53 / 189

4.3 Activities BPMN Working Draft
4.3.2 Sub-Process
4.3.2 Sub-Process
A Sub-Process is a compound activity in that it has detail that is defined as a flow of other
activities. A Sub-Process is a graphical object within a Process Flow, but it also references
another Process (either embedded or independent). A Sub-Process shares the same
shape as the Task, which is a rectangle.

A Sub-Process is a rounded corner rectangle that MUST be drawn with a single thin
black line, and MUST have a white or clear fill.

The use of text, color, size, and lines for a Sub-Process MUST follow the rules
defined in section 3.3 on page 34.

The Sub-Process can be in a collapsed view that hides its details (see Figure 6) or a Sub-
Process can be in an expanded view that shows its details within the view of the Process in
which it is contained (see Figure 7). In the collapsed form, the Sub-Process object uses a
marker to distinguish it as a Sub-Process, rather than a Task.

The Sub-Process marker MUST be a small square with a plus sign (+) inside. The
square MUST be positioned at the bottom center of the shape.

Figure 6 Collapsed Sub-Process

Figure 7 Expanded Sub-Process

Expanded Sub-Process may be used for multiple purposes. They can be used to “flatten” a
hierarchical process so that all detail can be shown at the same time. They are used to
create a context for exception handling that applies to a group of activities (Refer to the
section entitled “Exception Flow” on page 121 for more details). Compensations can be
handled the similarly (Refer to the section entitled “Compensation Association” on
page 124 for more details).

Expanded Sub-Process may be used as a mechanism for showing a group of parallel
activities in a less-cluttered, more compact way. In Figure 8, activities “C” and “D” are
enclosed in an unlabeled Expanded Sub-Process. These two activities will be performed in
parallel. Notice that the Expanded Sub-Process does not include a Start Event or an End
Event and the Sequence Flow to/from these Events. This usage of Expanded Sub-
Processes for “parallel boxes” is the motivation for having Start and End Events being
optional objects.

+

54 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.3.2 Sub-Process
Figure 8 Expanded Sub-Process used as a “parallel box”

BPMN specifies five types of standard markers for Sub-Processes. The (Collapsed) Sub-
Process Marker, seen in Figure 6, can be combined with four other markers: a Loop Marker
or a Parallel Marker, a Compensation Marker, and an Ad Hoc Marker. A Sub-Process may
have one to three of these other markers, in all combinations except that Loop and Multiple
Instance cannot be shown at the same time (see Figure 9).

The marker for a Sub-Process that loops MUST be a small line with an arrowhead that
curls back upon itself.

The Loop Marker MAY be used in combination with any of the other markers except
the Multiple Instance Marker.

The marker for a Sub-Process that has multiple instances MUST be a pair of vertical
lines in parallel.

The Multiple Instance Marker MAY be used in combination with any of the other
markers except the Loop Marker.

The marker for a Sub-Process that is Ad Hoc MUST be a “tilde” symbol.

The Ad-Hoc Marker MAY be used in combination with any of the other markers.

The marker for a Sub-Process that is used for compensation MUST be a pair of left
facing triangles (like a tape player “rewind” button).

The Compensation Marker MAY be used in combination with any of the other
markers.

All the markers that are present MUST be grouped and the whole group centered at the
bottom of the shape.

Figure 9 Collapsed Sub-Process Markers

A

C

D

E

+ +=

Loop Multiple Instance Ad-Hoc

+ ~ +

Compensation
Copyright  2003, BPMI.org All Rights Reserved 55 / 189

4.3 Activities BPMN Working Draft
4.3.2 Sub-Process
Attributes
The following are attributes of a Sub-Process, which extends the set of common object
elements (see Table 6):

Attributes Description
SubProcessType:
(Embedded | Independent):
Embedded

SubProcessType is an attribute that defines whether the Sub-
Process details are embedded within the higher level Process or
refers to another, re-usable Process. The default is Embedded.

ProcessRef: ProcessID If the SubProcessType is Independent, then the ID of the
referenced Process MUST be included.

Process: ProcessName If the SubProcessType is Independent, then the name of the
referenced Process MUST be included. The ProcessRef attribute
(above) is also included since more than one Process may share
the same name.

InputMap +: Expression For Independent, multiple input mappings MAY be made
between Parent Process properties and the properties of the
referenced Process. These mappings are in the form of an
expression (although a modeling tool can present this to a
modeler in any number of ways).

OutputMap +: Expression For Independent, multiple output mappings MAY be made
between Parent Process properties and the properties of the
referenced Process. These mappings are in the form of an
expression (although a modeling tool can present this to a
modeler in any number of ways).

Property * Modeler-defined Properties MAY be added to a Sub.Process.
These Properties are “local” to the Sub-Process object—not the
Process that the Sub-Process object represents. These
Properties are only for use within the processing of the Sub-
Process object. The fully delineated name of these properties are
“<process name>.<sub-process name>.<property name>” (e.g.,
“Add Customer.Review Credit.Status”).

Name: String Each Property has a Name (e.g., name=”Customer Name”).
Type Each Property has a Type (e.g., type=”Text”).

Transaction: (True | False):
False

Transaction is a Boolean attribute, which has a default of False.

TransactionID: String This is ID identifies the Transaction. Transactions that are in
different Pools and are connected through Message Flow MUST
have the same TransactionID.

TransactionProtocol:
String

This identifies the Protocol (e.g., WS-Transaction or BTP) that
will be used to control the transactional behavior of the Sub-
Process.

TransactionMethod
(Compensate | Store |
Image) : Compensate

TransactionMethod is an attribute that defines the technique
that will be used to undo a Transaction that has been cancelled.
The default is Compensate, but the attribute MAY be set to Store
or Image.

LoopType: (None | Standard |
MultiInstance) : None

LoopType is an attribute and is by default None, but MAY be set
to Standard or MultiInstance. If so, the Loop marker SHALL be
placed at the bottom center of the Sub-Process shape.
56 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.3.2 Sub-Process
Table 14 Sub-Process Attributes

LoopCondition: Expression Standard and MultiInstance Loops MUST have an expression to
be evaluated, plus the timing when the expression SHALL be
evaluated.

Counter: Number The Counter attribute is used at runtime to count the number of
loops.

Maximum ?: Number For Standard Loops, the Maximum an optional attribute that
provides is a simple way to add a cap to the number of loops.
This SHALL be added to the expression when mapped to
BPEL4WS.

TestTime: (Before | After) :
After

This applies to only Standard Loops. The expressions evaluated
Before the Sub-Process begins are while loops and expressions
evaluated After the Sub-Process finishes are while loops for
BPEL4WS.

InstanceGeneration: (Serial
| Parallel) : Serial

This applies to only MultiInstance Loops. The
InstanceGeneration attribute defines whether the loop instances
will be performed serially or in parallel. A serial MultiInstance is a
more traditional loop. A parallel MultiInstance is equivalent to
multi-instance specifications that other notations, such as UML
Activity Diagrams use. If set to Parallel, the Parallel marker
SHALL replace the Loop Marker at the bottom center of the Sub-
Process shape.

LoopFlowCondition:
(One | All | Complex): All

This applies only to Parallel MultiInstance Loops. It is equivalent
to using a Gateway to control the flow past a set of parallel paths.
A LoopFlowCondition of One is the same as a Joining Gateway
and means that the Token SHALL continue past the Sub-Process
after only one of the Sub-Process instances has completed. The
Sub-Process will continue its other instances, but additional
Tokens SHALL NOT be passed from the Sub-Process.
A LoopFlowCondition of All is the same as uncontrolled flow (no
Gateway) and means that all Sub-Process instances SHALL
generate a token that will continue when that instance is
completed.
A LoopFlowCondition of Complex is the same as a Complex
Gateway. The ComplexExpression Attribute will determine the
Token flow.

Complex ?: Expression A complex Loop Flow Condition MAY be set by the modeler. This
will consist of an expression that MAY reference Process data.
The expression SHALL determine when and how many Tokens
will continue past the Sub-Process.

AssignTime: (Start | End):
Start

(the Assign attribute is part of the set of common BPD object
attributes. Refer to Table 6 for the complete list of common
attributes)
Each Assignment Expression will have AssignTime.
A value of Start means that the assignment SHALL occur at the
start of the Sub-Process.
A value of End means that the assignment SHALL occur at the
end of the Sub-Process.

Attributes Description
Copyright  2003, BPMI.org All Rights Reserved 57 / 189

4.3 Activities BPMN Working Draft
4.3.2 Sub-Process
Sub-Process Behavior as a Transaction
A Sub-Process, either collapse or expanded, can be set as being a Transaction, which will
have a special behavior that is controlled through a transaction protocol (such as BTP or
WS-Transaction). The boundary of the activity will be double-lined to indicate that it is a
Transaction (see Figure 10).

Figure 10 An Example of a Transaction Expanded Sub-Process

There are three basic outcomes of a Transaction:

• Successful completion: this will be shown as a normal Sequence Flow that leaves the
Sub-Process.

• Failed completion (Cancel): When a Transaction is cancelled, then the activities inside
the Transaction will be subjected to the cancellation actions, which could include rolling
back the process and compensation for specific activities. Note that other mechanisms
for interrupting a Sub-Process will not cause Compensation (e.g., Exception, Timer, and
anything for a non-Transaction activity). A Cancel Intermediate Event, attached to the
boundary of the activity, will direct the flow after the Transaction has been rolled back
and all compensation has been completed. The Cancel Intermediate Event can only be

Bookings

Book Flight

Book Hotel

Send
Unavailability

Notice

Cancel Flight

Send Hotel
Cancellation

Transaction

Successful
Bookings

Failed
Bookings

Exceptions
(Hazards)

Charge
Buyer

Handle through
Customer Service
58 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.3.2 Sub-Process
used when attached to the boundary of a Transaction activity. It cannot be used in any
normal flow and cannot be attached to a non-Transaction activity. There are two
mechanisms that can signal the cancellation of a Transaction:

• A Cancel End Event is reached within the Transaction Sub-Process. A Cancel End
Event can only be used within a Sub-Process that is set to a Transaction.

• A Cancel Message can be received via the Transaction Protocol that is supporting
the execution of the Sub-Process.

• Hazard: This means that something went terribly wrong and that a normal success or
cancel is not possible. We are using an Exception to show Hazards. When a Hazard
happens, the activity is interrupted (without Compensation) and the flow will continue
from the Exception Intermediate Event.

The behavior at the end of a successful Transaction Sub-Process is slightly different than
that of a normal Sub-Process. When each path of the Transaction Sub-Process reaches a
non-Cancel End Event(s), the flow does not immediately move back up to the higher-level
Parent Process, as does a normal Sub-Process. First, the transaction protocol must verify
that all the participants have successfully completed their end of the Transaction. Most of
the time this will be true and the flow will then move up to the higher-level Process. But it is
possible that one of the participants may end up with a problem that causes a Cancel or a
Hazard. In this case, the flow will then move to the appropriate Intermediate Event, even
though it had apparently finished successfully.

Note: The exact behavior and notation for defining Transactions is still an Open
Issue. Refer to the section entitled “Open Issues” on page 169 for a complete list of
the issues open for BPMN.

Sequence Flow Connections
Refer to the section entitled “Sequence Flow Rules” on page 35 for the entire set of objects
and how the may be source or targets of Sequence Flows.

A Sub-Process MAY be a target for a Sequence Flow; it can have multiple incoming
Flows. Incoming Flow MAY be from an alternative path and/or a parallel paths.

Note: If the Sub-Process has multiple incoming Sequence Flows, then this is
considered uncontrolled flow. This means that when a Token arrives from one of the
Paths, the Sub-Process will be instantiated. It will not wait for the arrival of Tokens
from the other paths. If another Token arrives from the same path or another path,
then a separate instance of the Sub-Process will be created. If the flow needs to be
controlled, then the flow should converge on a Gateway that precedes the Sub-
Process (Refer to the section entitled “Gateways” on page 64 for more information
on Gateways).

If the Sub-Process does not have an incoming Sequence Flow, and there is no Start
Event for the Process, then the Sub-Process MUST be instantiated when the
process is instantiated.
Copyright  2003, BPMI.org All Rights Reserved 59 / 189

4.3 Activities BPMN Working Draft
4.3.3 Task
An exception to this are Sub-Processes that are defined as being Compensation
activities (have the Compensation Marker). Compensation Sub-Processes are
not considered a part of the normal flow and SHALL NOT be instantiated when
the Process is instantiated.

A Sub-Process MAY be a source for a Sequence Flow; it can have multiple outgoing
Flows. If there are multiple outgoing Sequence Flows, then this means that a separate
parallel path is being created for each Flow.

Tokens will be generated for each outgoing Sequence Flow from Sub-Process. The
TokenIDs for each of the Tokens will be set such that it can be identified that the Tokens are
all from the same parallel Fork (AND-Split) and the number of Tokens in the group

If the Sub-Process does not have an outgoing Sequence Flow, and there is no End
Event for the Process, then the Sub-Process marks the end of one or more paths in
the Process. When the Sub-Process ends and there are no other parallel paths
active, then the Process MUST be completed.

An exception to this are Sub-Processes that are defined as being Compensation
activities (have the Compensation Marker). Compensation Sub-Processes are
not considered a part of the normal flow and SHALL NOT mark the end of the
Process.

Message Flow Connections
Refer to the section entitled “Message Flow Rules” on page 36 for the entire set of objects
and how the may be source or targets of Sequence Flows.

Note: All Message Flows must connect two separate Pools. They can connect to
the Pool boundary or to flow objects within the Pool boundary. They cannot connect
two objects within the same Pool.

A Sub-Process MAY be the target for Message Flows; it can have zero or more
incoming Message Flows.

A Sub-Process MAY be a source for a Message Flow; it can have zero or more
outgoing Message Flows.

4.3.3 Task
A Task is an atomic activity that is included within a Process. A Task is used when the work
in the Process is not broken down to a finer level of Process Model detail. Generally, an
end-user and/or an application are used to perform the Task when it is executed.

A Task object shares the same shape as the Sub-Process, which is a rectangle that has
rounded corners (see Figure 11).

A Task is a rounded corner rectangle that MUST be drawn with a single thin black line,
and MUST have a white or clear fill.

The use of text, color, size, and lines for a Task MUST follow the rules defined in
section 3.3 on page 34.
60 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.3.3 Task
Figure 11 A Task Object

BPMN specifies three types of markers for Task: a Loop Marker or a Multiple Instance
Marker and an Ad Hoc Marker. A Task may have one or two of these markers (see Figure
12).

The marker for a Task that loops MUST be a small line with an arrowhead that curls
back upon itself.

The Loop Marker MAY be used in combination with the Compensation Marker.

The marker for a Task that has multiple instances MUST be a pair of vertical lines in
parallel.

The Multiple Instance Marker MAY be used in combination with the Compensation
Marker.

The marker for a Task that is used for compensation MUST be a pair of left facing
triangles (like a tape player “rewind” button).

The Compensation Marker MAY be used in combination with the Loop Marker or the
Multiple Instance Marker.

All the markers that are present MUST be grouped and the whole group centered at the
bottom of the shape.

All the markers that are present will be grouped and the whole group will be centered at the
bottom of the shape.

Figure 12 Task Markers

Loop

=

Multiple Instance Compensation
Copyright  2003, BPMI.org All Rights Reserved 61 / 189

4.3 Activities BPMN Working Draft
4.3.3 Task
Attributes
The following are attributes of a Task, which extends the set of common object elements
(see Table 6):

Attributes Description
TaskType (Service | Receive |
Send | User | Script | Abstract
| Manual | None): Service

TaskType is an attribute that has a default of Service, but MAY be
set to Send, Receive, User, Script, Abstract, Manual, or None.
The TaskType will be impacted by the Message Flows to and/or
from the Task, if Message Flows are used. A TaskType of
Receive SHALL NOT have an outgoing Message Flow. A
TaskType of Send SHALL NOT have an incoming Message Flow.
A TaskType of Script, Manual, or None SHALL NOT have an
incoming or an outgoing Message Flow. Note that additional
attributes supporting the different TaskTypes is an Open Issue.
Refer to the section entitled “Open Issues” on page 169 for a
complete list of the issues open for BPMN.
The TaskType list MAY be extended to include new types.

(Receive) Instantiate (True |
False): False

Receive Tasks can be defined as the instantiation mechanism for
the Process with the Instantiate attribute. This attribute MAY be
set to true if the Task is the first activity after the Start Event or a
starting Task if there is no Start Event. Multiple Tasks MAY have
this attribute set to True.

(Abstract) AbstractType:
String

Abstract Tasks are used exclusively in Pools of PoolType
Abstract or Collaboration.

Property * Modeler-defined Properties MAY be added to a Task. These
Properties are “local” to the Task object. These Properties are
only for use within the processing of the Task object. The fully
delineated name of these properties are “<process name>.<task
name>.<property name>” (e.g., “Add Customer.Review Credit
Report.Score”).

Name:String Each Property has a Name (e.g., name=”Customer Name”).
Type: String Each Property has a Type (e.g., type=”Text”).
Correlation: Boolean Some Properties can be used correlate incoming messages with

the proper Process Instance.

Input *: Attribute Input is an optional attribute that defines which of the Parent
Process attributes are used as either an input for or an output
from the Task.

Output *: Attribute Output is an optional attribute that defines which of the Parent
Process attributes are used as either an input for or an output
from the Task.

LoopType: (None | Standard |
MultiInstance) : None

LoopType is an attribute and is by default None, but MAY be set
to Standard or MultiInstance. If so the Loop marker SHALL be
placed at the bottom center of the Task shape.

LoopCondition: Expression Standard and MultiInstance Loops MUST have an expression to
be evaluated, plus the timing when the expression will be
evaluated.

Counter: Number The Counter attribute SHALL be used at runtime to count the
number of loops.
62 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.3.3 Task
Table 15 Task Attributes

Sequence Flow Connections
Refer to the section entitled “Sequence Flow Rules” on page 35 for the entire set of objects
and how the may be source or targets of Sequence Flows.

A Task MAY be a target for a Sequence Flow; it can have multiple incoming Flows.
Incoming Flow MAY be from an alternative path and/or a parallel paths.

Note: If the Task has multiple incoming Sequence Flows, then this is considered
uncontrolled flow. This means that when a Token arrives from one of the Paths, the

Maximum ?: Number For Standard Loops, the Maximum attribute is a simple way to
add a cap to the number of loops. This SHALL be added to the
expression when mapped to BPEL4WS.

TestTime: (Before | After) :
After

Standard Loop expressions evaluated Before the Task begins are
while loops and expressions evaluated After the Task finishes are
while loops for BPEL4WS.

InstanceGeneration: (Serial
| Parallel) : Serial

The InstanceGeneration attribute defines whether the
MultiInstance instances will be performed serially or in parallel. A
parallel MultiInstance is equivalent to multi-instance
specifications that other notations, such as UML Activity
Diagrams use.

LoopFlowCondition:
(One | All | Complex): All

This applies only to Parallel MultiInstance Loops. It is equivalent
to using a Gateway to control the flow past a set of parallel paths.
A LoopFlowCondition of One is the same as a Joining Gateway
and means that the Token SHALL continue past the Task after
only one of the Task instances has completed. The Task will
continue its other instances, but additional Tokens SHALL NOT
be passed from the Task.
A LoopFlowCondition of All is the same as uncontrolled flow (no
Gateway) and means that all Task instances SHALL generate a
token that will continue when that instance is completed.
A LoopFlowCondition of Complex is the same as a Complex
Gateway. The ComplexExpression Attribute will determine the
Token flow.

Complex ?: Expression A complex Loop Flow Condition MAY be set by the modeler. This
will consist of an expression that can reference Process data.
The expression SHALL determine when and how many Tokens
will continue past the Task.

AssignTime: (Start | End):
Start

(the Assign attribute is part of the set of common BPD object
attributes. Refer to Table 6 for the complete list of common
attributes)
Each Assign Expression will have AssignTime.
A value of Start means that the assignment SHALL occur at the
start of the Task.
A value of End means that the assignment SHALL occur at the
end of the Task.

Attributes Description
Copyright  2003, BPMI.org All Rights Reserved 63 / 189

4.4 Gateways BPMN Working Draft
4.3.3 Task
Task will be instantiated. It will not wait for the arrival of Tokens from the other paths.
If another Token arrives from the same path or another path, then a separate
instance of the Task will be created. If the flow needs to be controlled, then the flow
should converge with a Gateway that precedes the Task (Refer to the section
entitled “Gateways” on page 64 for more information on Gateways).

If the Task does not have an incoming Sequence Flow, and there is no Start Event
for the Process, then the Task MUST be instantiated when the process is
instantiated.

An exception to this are Tasks that are defined as being Compensation activities
(have the Compensation Marker). Compensation Tasks are not considered a
part of the normal flow and SHALL NOT be instantiated when the Process is
instantiated.

A Task MAY be a source for a Sequence Flow; it can have multiple outgoing Flows. If
there are multiple outgoing Sequence Flows, then this means that a separate parallel
path is being created for each Flow.

Tokens will be generated for each outgoing Sequence Flow from the Task. The TokenIDs
for each of the Tokens will be set such that it can be identified that the Tokens are all from
the same parallel Fork (AND-Split) and the number of Tokens in the group

If the Task does not have an outgoing Sequence Flow, and there is no End Event for
the Process, then the Task marks the end of one or more paths in the Process.
When the Task ends and there are no other parallel paths active, then the Process
MUST be completed.

An exception to this are Tasks that are defined as being Compensation activities
(have the Compensation Marker). Compensation Tasks are not considered a
part of the normal flow and SHALL NOT mark the end of the Process.

Message Flow Connections
Refer to the section entitled “Message Flow Rules” on page 36 for the entire set of objects
and how the may be source or targets of Sequence Flows.

Note: All Message Flows must connect two separate Pools. They can connect to
the Pool boundary or to flow objects within the Pool boundary. They cannot connect
two objects within the same Pool.

A Task MAY be the target for Message Flows; it can have zero or one incoming
Message Flows.

A Task MAY be a source for a Message Flow; it can have zero or more outgoing
Message Flows.

4.4 Gateways
Gateways are modeling elements that are used to control how Sequence Flows interact as
they converge and diverge within a Process. If the flow does not need to be controlled, then
64 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.3.3 Task
a Gateway is not needed. The term “Gateway” implies that there is a gating mechanism
that either allows or disallows passage through the Gateway--that is, as Tokens arrive at a
Gateway, they can be Merged together on input and/or split apart on output as the Gateway
mechanisms are invoked. To be more descriptive, the control of the output flow a Gateway
is actually a collection of “Gates” and the behavior a particular Gateway will determine how
many of the Gates will be available for the continuation of flow. There will be one Gate for
each outgoing Sequence Flow of the Gateway.

A Gateway is a diamond (see Figure 13), which has been used in many flow chart notations
for exclusive branching and is familiar to most modelers.

A Gateway is a diamond that MUST be drawn with a single thin black line, and MUST
have a white or clear fill.

The use of text, color, size, and lines for a Gateway MUST follow the rules defined
in section 3.3 on page 34.

Figure 13 A Gateway

Note: Although the shape of a Gateway is a diamond, it is not a requirement that
incoming and outgoing Sequence Flow must connect to the corners of the diamond.
Sequence Flow can connect to any position on the boundary of the Gateway shape.

Gateways can define all the types of business process Sequence Flow behavior:
Decisions/branching (OR-Split; exclusive--XOR, inclusive--OR, and complex), merging
(OR-Join), forking (AND-Split), and joining (AND-Join). Thus, while the diamond has been
used traditionally for exclusive decisions, BPMN extends the behavior of the diamonds to
reflect any type of Sequence Flow control. Each type of Gateway will have an internal
indicator or marker to show the type of Gateway that is being used (see Figure 14).
Copyright  2003, BPMI.org All Rights Reserved 65 / 189

4.4 Gateways BPMN Working Draft
4.4.1 Common Gateway Features
Figure 14 The Different types of Gateways

The internal marker associated with the Gateway MAY be placed inside the shape, in
any size or location, depending on the preference of the modeler or modeling tool
vendor.

The Gateways will control the flow of both diverging and/or converging Sequence Flow.
That is, a particular Gateway could have multiple incoming Sequence Flow and multiple
outgoing Sequence Flow at the same time. The type of Gateway will determine the same
type of behavior for both the diverging and converging Sequence Flow. Modelers and
Modeling tools may want to enforce a best practice of a Gateway only performing one of
these functions. Thus, it would take two sequential Gateways to first converge and then
diverge the Sequence Flow.

4.4.1 Common Gateway Features

Common Gateway Attributes
The following table displays the attributes common for all types of Gateways, and which
extends the set of common object elements (see Table 6):

Table 16 Common Gateway Attributes

Attributes Description
GatewayType: (XOR | OR |
Complex | AND): XOR

GatewayType is by default XOR. The GatewayType MAY be set
to OR, Complex, or AND. The GatewayType will determine the
behavior of the Gateway, both for incoming and outgoing
Sequence Flow, and will determine the internal indicator (as
shown in Figure 14).

Parallel Fork/Join (AND)

Exclusive Decision/Merge (XOR)

Complex Decision/Merge

Data-Based

Event-Based

Inclusive Decision/Merge (OR)

Xor
66 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.4.2 Exclusive Gateways (XOR)
Common Gateway Sequence Flow Connections
This section applies to all Gateways. Additional Sequence Flow Connection rules will be
specified for each type of Gateway in the sections below. Refer to the section entitled
“Sequence Flow Rules” on page 35 for the entire set of objects and how the may be source
or targets of Sequence Flows.

A Gateway MAY be a target for a Sequence Flow; it can have zero or more incoming
Sequence Flows. An incoming Flow MAY be from an alternative path or a parallel path.

If the Gateway does not have an incoming Sequence Flow, and there is no Start
Event for the Process, then the Gateway’s divergence behavior, depending on the
GatewayType attribute (see below), SHALL be performed when the Process is
instantiated.

A Gateway MAY be a source of Sequence Flow; it can have zero or more outgoing
Flows.

A Gateway MAY have both multiple incoming and outgoing Sequence Flow.

Message Flow Connections
This section applies to both Data-Based and Event-Based Exclusive Gateways. Refer to
the section entitled “Message Flow Rules” on page 36 for the entire set of objects and how
the may be source or targets of Sequence Flows.

An Gateway MAY NOT be a target for a Message Flow.

An Gateway MAY NOT be a source for a Message Flow.

4.4.2 Exclusive Gateways (XOR)
Exclusive Gateways (Decisions) are locations within a business process where the
Sequence Flow can take two or more alternative paths. This is basically the “fork in the
road” for a process. For a given performance (or instance) of the process, only one of the
paths can be taken (this should not be confused with forking of paths—refer to the section
entitled “Forking Flow” on page 105). A Decision is not an activity from the business
process perspective, but is a type of Gateway that control the Sequence Flow between
activities. It can be thought of as a question that is asked at that point in the Process. The
question has a defined set of alternative answers (Gates). Each Decision Gate is
associated with a condition expression found within an outgoing Sequence Flow. When an
Gate is chosen during the performance of the Process, the corresponding Sequence Flow
is then chosen. A Token arriving at the Decision would be directed down the appropriate
path, based on the chosen Gate.

The Exclusive Decision has two or more outgoing Sequence Flows, but only one of them
may be taken during the performance of the Process. Thus, the Exclusive Decision defines
a set of alternative paths for the Token to take as it traverses the Flows. There are two
types of Exclusive Decisions: Data-Based and Event-Based.

Data-Based
The Data-Based Exclusive Gateways are the most commonly used type of Gateways. The
set of Gates for Data-Based Exclusive Decisions are based on the boolean expression
Copyright  2003, BPMI.org All Rights Reserved 67 / 189

4.4 Gateways BPMN Working Draft
4.4.2 Exclusive Gateways (XOR)
contained ConditionExpression attribute of the outgoing Sequence Flow of the Gateway.
These expressions use the values of process data to determine which path should be taken
(hence the name Data-Based).

Note: BPMN does not specify the format of the expressions used in Gateways or
any other BPMN element that uses expressions.

The Data-Based Exclusive Gateway MAY use a marker that is shaped like an “X” and is
placed within the Gateway diamond (see Figure 16) to distinguish it from other
Gateways. This marker is not required (see Figure 15).

A Diagram SHOULD be consistent in the use of the “X” internal indicator. That is, a
Diagram SHOULD NOT have some Gateways with an indicator and some
Gateways without an indicator.

Figure 15 An Exclusive Data-Based Decision (Gateway) Example without the Internal Indicator

Figure 16 A Data-Based Exclusive Decision (Gateway) Example with the Internal Indicator

The conditions for the alternative Gates should be evaluated in a specific order. The first
one that evaluates as TRUE will determine the Sequence Flow that will be taken. Since the
behavior of this Gateway is exclusive, any other conditions that may actually be TRUE will
be ignored--only one Gate can be chosen. One of the Gates may be “default” (or

Default
Alternative

Alternative 2

Alternative 1

Default
Alternative

X Alternative 2

Alternative 1
68 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.4.2 Exclusive Gateways (XOR)
otherwise), and is the last Gate considered. This means that if none of the other Gates are
chosen, then the default Gate will be chosen—along with its associated Sequence Flow.

The default Gate is not mandatory for a Gateway. This means that if it is not used, then it is
up to the modeler to insure that at least one Gate be valid at runtime. BPMN does not
specify what will happen if there are no valid Gates. However, BPMN does specify that
there SHALL NOT be implicit flow and that all normal flow of a Process must be expressed
through Sequence Flow. This would mean that a Process Model that has a Gateway that
potentially does not have a valid Gate at runtime is an invalid model.

Figure 17 An Exclusive Merge (Gateway) (without the Internal Indicator)

Exclusive Gateways can also be used as a merge (see Figure 17), although it is rarely
required for the modeler to use them this way. The merging behavior of the Gateway can
also be modeled as seen in Figure 18. The behavior of Figure 17 and Figure 18 are the
same if all the incoming flow are alternative. This is true because when a Token arrives at
an activity, that activity will be instantiated. The Exclusive Gateway merely merges the
Sequence Flow into a single Sequence Flow, but it does not restrict the flow of Tokens
through the Gateway. That is, if there happens to be some parallel incoming Sequence
Flow for the Gateway, each Token that traverses the Sequence Flow into the Gateway will
immediate pass through without waiting for any other potential Token that may come along.
If another Token happens through the Gateway, it will also continue through without being
restricted by any previous or future Tokens that may also pass through. Thus, it is not
necessary to have the Sequence Flow merge through the Gateway prior to the activity.
Copyright  2003, BPMI.org All Rights Reserved 69 / 189

4.4 Gateways BPMN Working Draft
4.4.2 Exclusive Gateways (XOR)
Figure 18 Uncontrolled Merging of Sequence Flow

There are certain situations where an Exclusive Gateway is required to act as a merging
object. In Figure 20 an Exclusive Gateway (labeled “Merge”) merges two alternative
Sequence Flow that were generated by an upstream Decision. The alternative Sequence
Flow are merged in preparation for an Parallel Gateway that synchronizes a set of parallel
Sequence Flow that were generated even further upstream. If the merging Gateway was
not used, then there would have been four incoming Sequence Flow into the Parallel
Gateway. However, only three of the four Sequence Flow would ever pass a Token at one
time. Thus, the Gateway would be waiting for a fourth Token that would never arrive. Thus,
the Process would be stuck at the point of the Parallel Gateway.

Figure 19 Exclusive Gateway that merges Sequence Flow prior to an Parallel Gateway

In simple situations, Exclusive Gateways need not be used for merging Sequence Flow, but
there are more complex situations where they are required. Thus, a modeler should always
be aware of the behavior of a situation where Sequence Flow are uncontrolled. Some

MergeDecision
70 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.4.2 Exclusive Gateways (XOR)
modelers or modeling tools may, in fact, require that Exclusive Gateways be used in all
situations as a matter of Best Practice.

Attributes
The following table displays the attributes for an Data-Based Exclusive Gateway. These
attributes only apply if the GatewayType attribute is set to XOR. The following attributes
extend the set of common Gateway elements (see Table 16):

Table 17 Data-Based Exclusive Gateway Attributes

Sequence Flow Connections
This section extends the basic Gateway Sequence Flow connection rules as defined in the
section entitled “Common Gateway Sequence Flow Connections” on page 67. Refer to the
section entitled “Sequence Flow Rules” on page 35 for the entire set of objects and how the
may be source or targets of Sequence Flows.

To define the exclusive nature of this Gateway’s behavior for converging Sequence Flow:

Attributes Description
XORType: (Data | Event):
Data

XORType is by default Data. The XORType MAY be set to Event.
Since Data-Based XOR Gateways is the subject of this section,
the attribute MUST be set to Data for the attributes and behavior
defined in this section to apply to the Gateway.

MarkerVisible: (True | False):
False

This attribute determines if the XOR Marker in the center of the
Gateway diamond (an “X”). The marker is displayed if the
attribute is True and it is not displayed if the attribute is False (by
default).

Gate *: GateID There MAY be zero or more Gates. Zero Gates are allowed if the
Gateway is last object in a Process flow and there are no Start or
End Events for the Process.
If there are zero or only one incoming Sequence Flow (i.e, the
Gateway is acting as a Decision), then there MUST be at least
one Gate. In this case, if there is no DefaultGate, then there
MUST be at least two Gates.

OutgoingSequenceFlow:
SequenceFlowID

Each Gate MUST have an associated Sequence Flow. The
Sequence Flow MUST have its Condition attribute set to
Expression and MUST have a valid ConditionExpression.
If there is only one Gate (i.e., the Gateway is acting only as a
Merge), then Sequence Flow MUST have its Condition set to
None.

Assign *: Expression Zero or more assignments MAY be made for each Gate.

DefaultGate ?: GateID A Default Gate MAY be specified.
OutgoingSequenceFlow:
SequenceFlowID

If there is a DefaultGate, the it MUST have an associated
Sequence Flow. The Sequence Flow SHALL have the Default
Indicator (see Figure 15). The Sequence Flow MUST have its
Condition attribute set to Default.

Assign *: Expression Zero or more assignments MAY be made for the DefaultGate.
Copyright  2003, BPMI.org All Rights Reserved 71 / 189

4.4 Gateways BPMN Working Draft
4.4.2 Exclusive Gateways (XOR)
If there are multiple incoming Sequence Flows, all of them will be used to continue the
flow of the Process (as if there were no Gateway). That is,

Process flow SHALL continue when a signal (a Token) arrives from any of a set of
Sequence Flows.

Signals from other Sequence Flow within that set may arrive at other times and
the flow will continue when they arrive as well, without consideration or
synchronization of signals that have arrived from other Sequence Flow.

To define the exclusive nature of this Gateway’s behavior for diverging Sequence Flow:

If there are multiple outgoing Sequence Flow, then only one Gate (or the
DefaultGate) SHALL be selected during performance of the Process.

The Gate SHALL be chosen based on the result of evaluating the
ConditionExpression that is defined for the Sequence Flow associated with the
Gate.

The Conditions associated with the Gates SHALL be evaluated in the order
in which the Gates appear on the list for the Gateway.

If a ConditionExpression is evaluated as “TRUE,” then that Gate SHALL be
chosen and any Gates remaining on the list SHALL NOT be evaluated.

If none of the ConditionExpressions for the Gates are evaluated as “TRUE,”
then the DefaultGate SHALL be chosen.

Note: If the Gateway does not have a DefaultGate and none of the Gate
ConditionExpressions are evaluated as “TRUE,” then the Process is considered to
have an invalid model.

Event-Based
The inclusion of Event-Based Exclusive Gateways is the result of recent developments in
the handling of distributed systems (e.g., with pi-calculus) and will map to the BPEL4WS
pick. On the input side, their behavior is the same as a Data-Based Exclusive Gateway
(refer to the section entitled “Data-Based” on page 67 above). On the output side, the basic
idea is that this Decision represents a branching point in the process where the alternatives
are based on an events that occurs at that point in the Process, rather than the evaluation
of expressions using process data. A specific event, usually the receipt of a message,
determines which of the paths will be taken. For example, if a company is waiting for a
response from a customer, they will perform one set of activities if the customer responds
“Yes” and another set of activities if the customer responds “No.” The customer’s response
determines which path is taken. The identity of the Message determines which path is
taken. That is, the “Yes” Message and the “No” message are different messages—they are
not the same message with different values within a property of the Message. The receipt
of the message can be modeled with a Task of TaskType Receive or an Intermediate Event
with a Message Trigger. In addition to Messages, other Triggers for Intermediate Events
can be used, such as Timers and Exceptions.
72 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.4.2 Exclusive Gateways (XOR)
The Event-Based Exclusive Gateway MUST use a marker that is the same as the
Multiple Intermediate Event and is placed within the Gateway diamond (see Figure 20
and Figure 21) to distinguish it from other Gateways.

The Event-Based Exclusive Decisions are configured by having outgoing Sequence
Flows target a Task of TaskType Receive or an Intermediate Event (see Figure 20 and
Figure 21).

All of the outgoing Sequence Flows must have this type of target; there cannot be a
mixing of condition expressions and Intermediate Events for a given Decision.

Figure 20 An Event-Based Decision (Gateway) Example Using Receive Tasks

Figure 21 An Event-Based Decision (Gateway) Example Using Message Events

To relate the Event-Based Exclusive Gateway to BPEL4WS, the Gateway diamond marks
the location of a BPEL4WS pick and the Intermediate Events that follow the Decision
become the event handlers of the pick or choice. The activities that follow the Intermediate
Events become the contents of the activity sets for the event handlers. The boundaries of
the activity sets is actually determined by the configuration of the process; that is, the
boundaries extend to where all the alternative paths are finally joined together (which could
be the end of the Process).

Because this Gateway is an Exclusive Gateway, the merging functionality for the Event-
Based Exclusive Gateway is the same as the Data-Based Exclusive Gateway described in
the previous section.

[Type
Receive]

[Type
Receive]
Copyright  2003, BPMI.org All Rights Reserved 73 / 189

4.4 Gateways BPMN Working Draft
4.4.2 Exclusive Gateways (XOR)
Attributes
The following table displays the attributes for an Event-Based Exclusive Gateway. These
attributes only apply if the GatewayType attribute is set to XOR. The following attributes
extend the set of common Gateway elements (see Table 16):

Table 18 Event-Based Exclusive Gateway Attributes

Sequence Flow Connections
This section extends the basic Gateway Sequence Flow connection rules as defined in the
section entitled “Common Gateway Sequence Flow Connections” on page 67. Refer to the
section entitled “Sequence Flow Rules” on page 35 for the entire set of objects and how the
may be source or targets of Sequence Flows.

To define the exclusive nature of this Gateway’s behavior for converging Sequence Flow:

If there are multiple incoming Sequence Flows, all of them will be used to continue the
flow of the Process (as if there were no Gateway). That is,

Process flow SHALL continue when a signal (a Token) arrives from any of a set of
Sequence Flows.

Signals from other Sequence Flow within that set may arrive at other times and
the flow will continue when they arrive as well, without consideration or
synchronization of signals that have arrived from other Sequence Flow.

To define the exclusive nature of this Gateway’s behavior for diverging Sequence Flow:

Only one Gate SHALL be selected during performance of the Process.

The Gate SHALL be chosen based on the Target of the Gate’s Sequence Flow.

Attributes Description
XORType: (Data | Event):
Event

XORType is by default Data. The XORType MAY be set to Event.
Since Event-Based XOR Gateways is the subject of this section,
the attribute MUST be set to Event for the attributes and behavior
defined in this section to apply to the Gateway.

Gate 2+: GateID There MUST be two or more Gates. (Note that this type of
Gateway does not act only as a Merge--it is always a Decision, at
least.)

OutgoingSequenceFlow:
SequenceFlowID

Each Gate MUST have an associated Sequence Flow. The
Sequence Flow MUST have its Condition attribute set to None
(there is not an evaluation of a condition expression).

Target: ObjectID The targets of the Sequence flow MUST be an Intermediate
Event or a Task of TaskType Receive.
Intermediate Events with Trigger Compensation, Multiple, or
Branching SHALL NOT be allowed as a Target.
If a Receive Task is the Target for one Alterative, then a Message
Intermediate Event SHALL NOT be allowed for Targets of other
Gates.

Assign *: Expression Zero or more assignments MAY be made for each Gate.
74 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.4.3 Inclusive Gateways (OR)
If a Target is instantiated (e.g., a message is received or a time is exceeded),
then that Gate SHALL be chosen and the remaining Gates SHALL NOT be
evaluated (i.e., their Targets will be disabled).

The outgoing Sequence Flow Condition attribute MUST be set to None.

The Target of the Gateway’s outgoing Sequence Flows MUST be one of the following
objects:

Task with the TaskType attribute set to Receive.

Intermediate Event with the Trigger attribute set to Message, Timer, Rule,
Exception, or Link.

If one Gate Target is a Task, then an Intermediate Event with a Trigger Message
MAY NOT be used as a Target for another Gate. That is, messages MUST be
received by only Receive Tasks or only Message Events, but not a mixture of
both for a given Gateway.

4.4.3 Inclusive Gateways (OR)
This Decision represents a branching point where Alternatives are based on conditional
expressions contained within outgoing Sequence Flow. However, in this case, the True
evaluation of one condition expression does not exclude the evaluation of other condition
expressions. All Sequence Flow with a True evaluation will be traversed by a Token. In
some sense it like is a grouping of related independent Binary (Yes/No) Decisions--and can
be modeled that way. Since each path is independent, all combinations of the paths may be
taken, from zero to all. However, it should be designed so that at least one path is taken.

Note: If none of the Inclusive Decision Gate ConditionExpressions are evaluated as
“TRUE,” then the Process is considered to have an invalid model.

There are two mechanism for modeling this type of Decision:

The first method for modeling Inclusive Decision situations does not actually use an
Inclusive Gateway, but instead uses a collection of conditional Sequence Flow, marked with
mini-diamonds--the Gates without the Gateway (see Figure 22). Conditional Sequence
Flow have their Condition attribute set to Expression and the ConditionExpression attribute
set to a boolean mathematical expression based on information available to the Process.
These Sequence Flow are indicated by a “mini-diamond” marker at the start of the
Sequence Flow line.

Condition 1

Condition 2
Copyright  2003, BPMI.org All Rights Reserved 75 / 189

4.4 Gateways BPMN Working Draft
4.4.3 Inclusive Gateways (OR)
Figure 22 An Inclusive Decision using Conditional Sequence Flow

There are some restrictions in using the conditional Sequence Flow (with mini-diamonds):

• The source object MUST NOT be an Event. The source object MAY a Gateway, but the
mini-diamond SHALL NOT be displayed in this case. The source object MAY be an
activity (Task or Sub-Process) and the mini-diamond SHALL be displayed in this case.

• A source Gateway MUST NOT be of type AND (Parallel).

• If a conditional Sequence Flow is used from a source activity, then there MUST be at
least one other outgoing Sequence Flow from that activity

• The additional Sequence Flow(s) MAY also be conditional, but it is not required that
are conditional.

The second method for modeling Inclusive Decision situations uses an OR Gateway (see
Figure 23), sometimes in combination with other Gateways. A marker will be placed in the
center of the Gateway to indicate that the behavior of the Gateway is inclusive.

The Inclusive Gateway MUST use a marker that is in the shape of a circle or an “O” and
is placed within the Gateway diamond (see Figure 23) to distinguish it from other
Gateways.

Figure 23 An Inclusive Decision using an OR Gateway

The behavior of the model depicted in Figure 22 is equivalent to the behavior of the model
depicted in Figure 23. Again, it is up to the modeler to insure that at least one of the
conditions will be TRUE when the Process is performed.

When the Inclusive Gateway is used as a Merge, it will wait for (synchronize) all Tokens
that have been produced upstream. It does not require that all incoming Sequence Flow
produce a Token (as the Parallel Gateway does). It requires that all Sequence Flow that
were actually produced by an upstream (by an Inclusive OR situation, for example). If an
upstream Inclusive OR produces two out of a possible three Tokens, then a downstream
Inclusive OR will synchronize those two Tokens and not wait for another Token, even
though there are three incoming Sequence Flow (see Figure 24).

Condition 2

Condition 1
76 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.4.3 Inclusive Gateways (OR)
Figure 24 An Inclusive Gateway Merging Sequence Flow

Attributes
The following table displays the attributes for an Inclusive Gateway1. These attributes only
apply if the GatewayType attribute is set to OR. The following attributes extend the set of
common Gateway elements (see Table 16):

Table 19 Inclusive Gateway Attributes

Sequence Flow Connections
This section extends the basic Gateway Sequence Flow connection rules as defined in the
section entitled “Common Gateway Sequence Flow Connections” on page 67. Refer to the
section entitled “Sequence Flow Rules” on page 35 for the entire set of objects and how the
may be source or targets of Sequence Flows.

1.Inclusive Gateways may be updated to include a DefaultGate attribute. This is currently an Open Issue.

Attributes Description
Gate *: GateID There MAY be zero or more Gates. Zero Gates are allowed if the

Gateway is last object in a Process flow and there are no Start or
End Events for the Process.
If there are zero or only one incoming Sequence Flow (i.e, the
Gateway is acting as a Decision), then there MUST be at least
two Gates.

OutgoingSequenceFlow:
SequenceFlowID

Each Gate MUST have an associated Sequence Flow. The
Sequence Flow MUST have its Condition attribute set to
Expression and MUST have a valid ConditionExpression. The
ConditionExpression MUST be unique for all the Gates within the
Gateway.
If there is only one Gate (i.e., the Gateway is acting only as a
Merge), then Sequence Flow MUST have its Condition attribute
set to None.

Assign *: Expression Zero or more assignments MAY be made for each Gate.
Copyright  2003, BPMI.org All Rights Reserved 77 / 189

4.4 Gateways BPMN Working Draft
4.4.4 Complex Gateways
To define the inclusive nature of this Gateway’s behavior for converging Sequence Flow:

If there are multiple incoming Sequence Flows, one or more of them will be used to
continue the flow of the Process. That is,

Process flow SHALL continue when the signals (Tokens) arrive from all of the
incoming Sequence Flow that are expecting a signal based on the upstream
structure of the Process (e.g., an upstream Inclusive Decision).

Some of the incoming Sequence Flow will not have signals and the pattern of
which Sequence Flow will have signals may change for different instantiations of
the Process.

Note: Incoming Sequence Flow that have a source that is a downstream activity
(that is, is part of a loop) will be treated differently than those that have an upstream
source. They will be considered as part of a different set of Sequence Flow from
those Sequence Flow that have a source that is an upstream activity.

To define the inclusive nature of this Gateway’s behavior for diverging Sequence Flow:

One or more Gates SHALL be selected during performance of the Process.

The Gates SHALL be chosen based on the Condition expression that is defined for
the Sequence Flow associated with the Gates.

The Condition associated with all Gates SHALL be evaluated.

If a Condition is evaluated as “TRUE,” then that Gate SHALL be chosen,
independent of what other Gates have or have not been chosen.

4.4.4 Complex Gateways
BPMN includes a Complex Gateway to handle situations that are not easily handled
through the other types of Gateways. Complex Gateways can also be used to combine a
set of linked simple Gateways into a single, more compact situation. Modelers can provide
complex expressions that determine the merging and/or splitting behavior of the Gateway.

The Complex Gateway MUST use a marker that is in the shape of an asterisk and is
placed within the Gateway diamond (see Figure 25) to distinguish it from other
Gateways.

When the Gateway is used as a Decision (see Figure 25), then there will be an expression
that will determine which of the outgoing Sequence Flow will be chosen for the Process to
continue. The expression may refer to process data and the status of the incoming
Sequence Flow. For example, an expression may evaluate Process data and then select
different sets of outgoing Sequence Flow, based on the results of the evaluation. However,
The expression should be designed so that at least one of the outgoing Sequence Flow will
be chosen.
78 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.4.4 Complex Gateways
Figure 25 A Complex Decision (Gateway)

When the Gateway is used as a Merge (see Figure 26), then there will be an expression
that will determine which of the incoming Sequence Flow will be required for the Process to
continue. The expression may refer to process data and the status of the incoming
Sequence Flow. For example, an expression may specify that any 3 out of 5 incoming
Tokens will continue the Process. Another example would be an expression that specifies
that a Token is required from Sequence Flow “a” and that a Token from either Sequence
Flow “b” or “c” is acceptable. However, the expression should be designed so that the
Process is not stalled at that location.

Figure 26 A Complex Merge (Gateway)

Alternative 2

 Alternative 1

Alternative 3

 Alternative 4
Copyright  2003, BPMI.org All Rights Reserved 79 / 189

4.4 Gateways BPMN Working Draft
4.4.4 Complex Gateways
Attributes
The following table displays the attributes for a Complex Gateway. These attributes only
apply if the GatewayType attribute is set to Complex. The following attributes extend the set
of common Gateway elements (see Table 16):

Table 20 Complex Gateway Attributes

Sequence Flow Connections
This section extends the basic Gateway Sequence Flow connection rules as defined in the
section entitled “Common Gateway Sequence Flow Connections” on page 67. Refer to the
section entitled “Sequence Flow Rules” on page 35 for the entire set of objects and how the
may be source or targets of Sequence Flows.

To define the complex nature of this Gateway’s behavior for converging Sequence Flow:

If there are multiple incoming Sequence Flows, one or more of them will be used to
continue the flow of the Process. The exact combination of incoming Sequence Flows
will be determined by the Gateway’s IncomingCondition expression.

Process flow SHALL continue when the appropriate number of signals (Tokens)
arrives from appropriate incoming Sequence Flows.

Signals from other Sequence Flow within that set MAY arrive, but they SHALL NOT
be used to continue the flow of the Process.

Attributes Description
Gate *: GateID There MAY be zero or more Gates. Zero Gates are allowed if the

Gateway is last object in a Process flow and there are no Start or
End Events for the Process.
If there are zero or only one incoming Sequence Flow, then there
MUST be at least two Gates.

OutgoingSequenceFlow:
SequenceFlowID

Each Gate MUST have an associated Sequence Flow. Each
Gate MUST have an associated Sequence Flow. The Sequence
Flow MUST have its Condition attribute set to None.
If there is only one Gate (i.e., the Gateway is acting only as a
Merge), then Sequence Flow MUST have its Condition attribute
set to None.

Assign *: Expression Zero or more assignments MAY be made for each Gate.

IncomingCondition ?:
Expression

If there are Multiple incoming Sequence Flow, an
IncomingCondition expression MUST be set by the modeler. This
will consist of an expression that can reference Sequence Flow
names and or Process Properties (Data). More TBD

OutgoingCondition ?:
Expression

If there are Multiple outgoing Sequence Flow, an
OutgoingCondition expression MUST be set by the modeler. This
will consist of an expression that can reference (outgoing)
Sequence Flow IDs and or Process Properties (Data).
80 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.4.5 Parallel Gateways (AND)
Note: Incoming Sequence Flow that have a source that is a downstream activity
(that is, is part of a loop) will be treated differently than those that have an upstream
source. They will be considered as part of a different set of Sequence Flow from
those Sequence Flow that have a source that is an upstream activity.

To define the inclusive nature of this Gateway’s behavior for diverging Sequence Flow:

One or more Gates SHALL be selected during performance of the Process.

The Gates SHALL be chosen based on the Gateway’s OutgoingCondition
expression.

4.4.5 Parallel Gateways (AND)
Parallel Gateways provide a mechanism to synchronize parallel flow and to create parallel
flow. These Gateways are not required to create parallel flow, but they can be used to
clarify the behavior of complex situations where a string of Gateways are used and parallel
flow is required. In addition, some modelers may wish to create a “best practice” where
Parallel Gateways are always used for creating parallel paths. This practice will create an
extra modeling element where one is not required, but will provide a balanced approach
where forking and joining elements can be paired up.

The Parallel Gateway MUST use a marker that is in the shape of an plus sign and is
placed within the Gateway diamond (see Figure 27) to distinguish it from other
Gateways.

Figure 27 A Parallel Gateway

Parallel Gateways are required for synchronizing parallel flow. Synchronization

B

C

A

Parallel Split
Forking

Gateway
Copyright  2003, BPMI.org All Rights Reserved 81 / 189

4.4 Gateways BPMN Working Draft
4.4.5 Parallel Gateways (AND)
Figure 28 Joining – the joining of parallel paths

Attributes
The following table displays the attributes for a Parallel Gateway. These attributes only
apply if the GatewayType attribute is set to AND (Parallel). The following attributes extend
the set of common Gateway elements (see Table 16):

Table 21 Parallel Gateway Attributes

Sequence Flow Connections
This section extends the basic Gateway Sequence Flow connection rules as defined in the
section entitled “Common Gateway Sequence Flow Connections” on page 67. Refer to the
section entitled “Sequence Flow Rules” on page 35 for the entire set of objects and how the
may be source or targets of Sequence Flows.

To define the parallel nature of this Gateway’s behavior for converging Sequence Flow:

If there are multiple incoming Sequence Flows, all of them will be used to continue the
flow of the Process--the flow will be synchronized. That is,

Process flow SHALL continue when a signal (a Token) has arrived from all of a set
of Sequence Flows (i.e., the process will wait for all signals to arrive before it can
continue).

Attributes Description
Gate *: GateID There MAY be zero or more Gates. Zero Gates are allowed if the

Gateway is last object in a Process flow and there are no Start or
End Events for the Process.
If there are zero or only one incoming Sequence Flow (i.e, the
Gateway is acting as a fork), then there MUST be at least two
Gates.

OutgoingSequenceFlow:
SequenceFlowID

Each Gate MUST have an associated Sequence Flow. The
Sequence Flow MUST have its Condition attribute set to None.

Assign *: Expression Zero or more assignments MAY be made for each Gate.

C

D

F

82 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.5.1 Pool
Note: Incoming Sequence Flow that have a source that is a downstream activity
(that is, is part of a loop) will be treated differently than those that have an upstream
source. They will be considered as part of a different set of Sequence Flow from
those Sequence Flow that have a source that is an upstream activity.

To define the parallel nature of this Gateway’s behavior for diverging Sequence Flow:

All Gates SHALL be selected during performance of the Process.

4.5 Pools and Lanes
BPMN has a larger scope than BPEL4WS, and this scope is expressed in different
dimensions. The dimension discussed in this section has to with defining business
processes in a collaborative B2B environment. BPMN uses the concept known as
“swimlanes” to help partition and/organize activities.

BPEL4WS is focused on a specific private process that is internal to a given Participant
(i.e., a company or organization). BPEL4WS also can define an abstract process, but from
the point of view of a single participant. It is possible that a BPMN Diagram may depict
more than one private process, as well as the processes that show the collaboration
between private processes or Participants. If so, then each private business process will be
considered as being performed by different Participants. Graphically, each Participant will
be partitioned; that is, will be contained within a rectangular box call a “Pool.” Pools can
have sub-swimlanes that are called, simply, “Lanes.”

The section entitled “Uses of BPMN” on page 20 describes the uses of BPMN for modeling
private processes and the interactions of processes in B2B scenarios. Pools and Lanes are
designed to support these uses of BPMN.

4.5.1 Pool
A Pool (also referred to as a “swimlane”) is a graphical container for partitioning a set of
activities from other Pools, when modeling business-to-business situations.

A Pool is a square-cornered rectangle that MUST be drawn with a solid single black line
(as seen in Figure 29), and MUST have a white or clear fill.

The use of text, color, size, and lines for a Pool MUST follow the rules defined in
section 3.3 on page 34.

Figure 29 A Pool

To help with the clarity of the Diagram, A Pool will extend the entire length of the Diagram,
either horizontally or vertically. However, there is no specific restriction to the size and/or

N
am

e

Copyright  2003, BPMI.org All Rights Reserved 83 / 189

4.5 Pools and Lanes BPMN Working Draft
4.5.1 Pool
positioning of a Pool. Modelers and modeling tools can use Pools (and Lanes) in a flexible
manner in the interest of conserving the “real estate” of a Diagram on a screen or a printed
page.

A Pool acts as the container for the Sequence Flow between activities. The Sequence Flow
can cross the boundaries between Lanes of a Pool, but cannot cross the boundaries of a
Pool. The interaction between Pools, e.g., in a B2B context, is shown through Message
Flows.

Another aspect of Pools is whether or not there is any activity detailed within the Pool.
Thus, a given Pool may be shown as a “White Box,” with all details exposed, or as a “Black
Box,” with all details hidden. No Sequence Flow is associated with a “Black Box” Pool, but
Message Flows can attach to its boundaries (see Figure 30).

Figure 30 Message Flow connecting to the boundaries of two Pools

For a “White Box” Pool, the activities within are organized by Sequence Flows. Message
Flows can cross the Pool boundary to attach to the appropriate activity (see Figure 31).

M
an

uf
ac

tu
re

r
Fi

na
nc

ia
l

In
st

itu
tio

n

Credit ResponseCredit Request
84 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.5.1 Pool
Figure 31 Message Flow connecting to flow objects within two Pools

All BPDs contain at least one Pool. In most cases, a BPD that consists of a single Pool will
only display the activities of the Process and not display the boundaries of the Pool.
Furthermore, many BPDs may show the “main” Pool without boundaries. That is, the
activities that represent the work performed from the point of view of the modeler or the
modeler’s organization are considered “internal” activities and may not be surrounded by
the boundaries of a Pool, while the other Pools in the Diagram will have their boundary.
(see Figure 32)

Figure 32 Main (Internal) Pool without boundaries

+

Credit Card
Authorization

Fi
na

nc
ia

l
In

st
itu

tio
n

Authorize
Payment

Pack Goods Ship Goods

Process Order

+

D
is

tri
bu

tio
n

Sa
le

s

Su
pp

lie
r

Authorize
Payment Pack Goods Ship GoodsProcess Order

+

Financial Institution
Copyright  2003, BPMI.org All Rights Reserved 85 / 189

4.5 Pools and Lanes BPMN Working Draft
4.5.2 Lane
Attributes
The following table displays the identified attributes of a Pool (Note that this is the complete
set and it does not extend the set of common object attributes):

Table 22 Pool Attributes

4.5.2 Lane
A Lane is a sub-partition within a Pool and will extend the entire length of the Pool, either
vertically or horizontally (see Figure 33). Text associated with the Lane (e.g., its name and/
or any attribute) can be placed inside the shape, in any direction or location, depending on
the preference of the modeler or modeling tool vendor. Our examples place the name as a
banner on the left side (for horizontal Pools) or at the top (for vertical Pools) on the other
side of the line that separates the Pool name, however, this is not a requirement.

Attribute Description
ID: String This is a unique ID that identifies the Pool from other objects

within the Diagram.

Name: String Name is an attribute that is text description of the Pool. If the Pool
is the only one in the Diagram, it will share the name of the
Diagram.

PoolType (Private | Abstract |
Collaboration): Private

PoolType is an attribute that provides information about which
lower-level language the Pool will be mapped. The default
PoolType is Private which MAY be mapped to BPEL4WS. An
Abstract Pool is also called the public interface of a process (or
other web services) and MAY be mapped to languages such as
WSCI. A Collaboration Pool will have two Lanes that represent
business roles (e.g., buyer or seller) and will show the
interactions between these roles. These pools MAY be mapped
to languages such as ebXML.

Owner ?: String Owner is an optional attribute that will help identify the point-of-
view of the Diagram. If the PoolType is Collaboration, then there
is no specific Owner.

Lane +: LaneName There can be one or more Lanes within a Pool. If there is only
one Lane, then that Lane shares the name of the Pool and only
the Pool name is displayed. If there is more than one Lane, then
each Lane has to have its own name and all names are
displayed.

BoundaryVisible: (True |
False): True

This attribute defines if the rectangular boundary for the Pool is
visible. Only one Pool in the Diagram MAY have the attribute set
to False.
86 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.5.2 Lane
Figure 33 Two Lanes in a Pool

Lanes are used to organize and categorize activities within a Pool. The meaning of the
Lanes is up to the modeler. BPMN does not specify the usage of Lanes. Lanes are often
used for such things as internal roles (e.g., Manager, Associate), systems (e.g., an
enterprise application), an internal department (e.g., shipping, finance), etc. In addition,
Lanes can be nested or defined in a matrix. For example, there could be an outer set of
Lanes for company departments and then an inner set of Lanes for roles within each
department.

Attributes
The following table displays the identified attributes of a Lane:

Table 23 Lane Attributes

4.6 Artifacts
BPMN provides modelers with the capability of showing additional information about a
Process that is not directly related to the Sequence Flow or Message Flow of the Process.

At this point, BPMN provides three standard artifacts: A Data Object, a Group, and an
Annotation. Additional standard Artifacts may be added to the BPMN specification in later
versions. A modeler or modeling tool may extend a BDP and add new types of Artifacts to a
Diagram. Any new Artifact must follow the Sequence Flow and Message Flow connection
rules (listed below). Associations can be used to link Artifacts to flow objects (refer to the
section entitled “Association” on page 99).

Attribute Description
ID: String This is a unique ID that identifies the Lane from other objects

within the Diagram.

Name: String Name is an attribute that is text description of the Lane. If the
Lane is the only one in the Pool, it will share the name of the
Pool.

ParentPool: PoolName The Parent Pool MUST be specified. There can be only one
Parent.

ParentLane ?: LaneName ParentLane is an optional attribute that is used if the Lane is
nested within another Lane. Nesting can be multi-level, but only
the immediate parent is specified.

Documentation ?: String The modeler can add optional text documentation about the
Lane.

N
am

e N
am

e
N

am
e

Copyright  2003, BPMI.org All Rights Reserved 87 / 189

4.6 Artifacts BPMN Working Draft
4.6.1 Common Artifact Attributes
4.6.1 Common Artifact Attributes
The following table displays the identified attributes of a Data Object (Note that this is the
complete set and it does not extend the set of common object attributes):

Table 24 Common Artifact Attributes

4.6.2 Artifact Sequence Flow Connections
Refer to the section entitled “Sequence Flow Rules” on page 35 for the entire set of objects
and how the may be source or targets of Sequence Flows.

An Artifact cannot be a target for a Sequence Flow.

An Artifact cannot be a source for a Sequence Flow.

4.6.3 Artifact Message Flow Connections
Refer to the section entitled “Message Flow Rules” on page 36 for the entire set of objects
and how the may be source or targets of Sequence Flows.

A Artifact cannot be a target for a Message Flow.

A Artifact cannot be a source for a Message Flow.

4.6.4 Data Object
In BPMN, a Data Object is considered an artifacts and not a flow object. They are
considered an artifact because they do not have any direct affect on the Sequence Flow or
Message Flow of the Process, but they do provide information about what the Process
does. That is, how documents, data, and other objects are used and updated during the
Process. While the name “Data Object” may imply an electronic document, they can be
used to represent many different types of objects, both electronic and physical.

In general, BPMN will not standardize many modeling artifacts. These will mainly be up to
modelers and modeling tool vendors to create for their own purposes. However,
equivalents of the BPMN Data Object are used by Document Management oriented
workflow systems and many other process modeling methodologies. Thus, this object is
used enough that it is important to standardize its shape and behavior.

Attribute Description
ArtifactType: (DataObject |
Group | Annotation)

The ArtifactType MAY be set to DataObject, Group, or
Annotation.
The ArtifactType list MAY be extended to include new types.

Id: String This is a unique ID that identifies the object from other objects
within the Diagram.

Name: String Name is an attribute that is text description of the object.

Documentation ?: String The modeler MAY add optional text documentation about the
object.
88 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.6.4 Data Object
A Pool is a portrait-oriented rectangle that has its upper-right corner folded over that
MUST be drawn with a solid single black line (as seen in Figure 34), and MUST have a
white or clear fill.

The use of text, color, size, and lines for a Data Object MUST follow the rules
defined in section 3.3 on page 34.

Figure 34 A Data Object

As an artifact, Data Objects generally will be associated with flow objects. An Association
will be used to make the connection between the Data Object and the flow object. This
means that the behavior of the Process can be modeled without Data Objects for modelers
who want to reduce clutter. The same Process can be modeled with Data Objects for
modelers who want to include more information without changing the basic behavior of the
Process.

In some cases, the Data Object will be shown being sent from one Process to another, via
a Sequence Flow (see Figure 35). Data Objects will also be associated with Message
Flows. They are not to be confused with the message itself, but could be though of as the
“payload” or content of some messages.

Figure 35 A Data Object associated with a Sequence Flow

In other cases, the same Data Object will be shown as being an input, then an output of a
Process (see Figure 36). Directionality added to the Association will show whether the Data
Object is an input or an output. Also, the state attribute of the Data Object can change to
show the impact of the Process on the Data Object.

Name
[State]

Invoice
[Approved]

Send Invoice Make Payment
Copyright  2003, BPMI.org All Rights Reserved 89 / 189

4.6 Artifacts BPMN Working Draft
4.6.5 Text Annotation
Figure 36 Data Objects shown as inputs and outputs

Attributes
The following table displays the attributes for Data Objects, and which extends the set of
common Artifact elements (see Table 24). These attributes only apply if the ArtifactType
attribute is set to DataObject:

Table 25 Data Object Attributes

4.6.5 Text Annotation
Text Annotations are a mechanism for a modeler to provide additional information for the
reader of a BPMN Diagram.

A Pool is an open rectangle that MUST be drawn with a solid single black line (as seen
in Figure 37), and MUST have a white or clear fill.

The use of text, color, size, and lines for a Text Annotation MUST follow the rules
defined in section 3.3 on page 34.

The Text Annotation object can be connected to a specific object on the Diagram with an
Association (see Figure 37). Text associated with the Annotation can be placed within the
bounds of the open rectangle.

Attribute Description
State ? State is an optional attribute that indicates the impact the Process

has had on the Data Object. Multiple Data Objects with the same
name MAY share the same state within one Process.

Property * Modeler-defined Properties MAY be added to a Data Object. The
fully delineated name of these properties are “<process
name>.<task name>.<property name>” (e.g., “Add
Customer.Review Credit Report.Score”).

Name:String Each Property has a Name (e.g., name=”Customer Name”).
Type: String Each Property has a Type (e.g., type=”Text”).

Pool ?: PoolName If Pools are used, then the PoolName MUST be added to the
object to identify its location.

Lane *: LaneName If the Pool has more than one Lane, then a LaneName MUST be
added. There MAY be multiple Lanes listed if the Lanes are
organized in matrix or overlap in a non-nested manner.

Approve Purchase
Order

Purchase Order
[Complete]

Purchase Order
[Approved]
90 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 4. Business Process Diagram Graphical Objects
4.6.6 Group
Figure 37 A Text Annotation

Text Annotations do not affect the flow of the Process and do not map to any BPEL4WS
elements.

Attributes
The following table displays the attributes for Annotations, and which extends the set of
common Artifact elements (see Table 24). These attributes only apply if the ArtifactType
attribute is set to Annotation:

Table 26 Text Annotation Attributes

4.6.6 Group
The Group object is an artifact that provides a visual mechanism to group elements of a
Process informally.

A Pool is a rounded corner rectangle that MUST be drawn with a solid dashed black line
(as seen in Figure 38), and MUST have a white or clear fill.

The use of text, color, size, and lines for a Group MUST follow the rules defined in
section 3.3 on page 34.

Figure 38 A Group Artifact

As an Artifact, a Group is not an activity or any flow object, and, therefore, cannot connect
to Sequence Flow or Message Flow. In addition, Groups are not constrained by restrictions
of Pools and Lanes. This means that a Group can stretch across the boundaries of a Pool
to surround Diagram elements (see Figure 39), often to identify activities that exist within a
distribute business-to-business transaction.

Attribute Description
Text: String Text is an attribute that is text that the modeler wishes to

communicate to the reader of the Diagram.

Text Annotation Allows
a Modeler to provide
additional Information
Copyright  2003, BPMI.org All Rights Reserved 91 / 189

4.6 Artifacts BPMN Working Draft
4.6.6 Group
Figure 39 A Group around activities in different Pools

Groups are often used to highlight certain sections of a Diagram without adding additional
constraints for performance--as a Sub-Process would. The highlighted (grouped) section of
the Diagram can be separated for reporting and analysis purposes. Groups do not affect
the flow of the Process and do not map to any BPEL4WS elements.
92 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft
5. Connecting Objects
This section defines the graphical objects used to connect two objects together (i.e., the
connecting lines of the Diagram) and how the flow progresses through a Process (i.e.,
through a straight sequence or through the creation of parallel or alternative paths).

5.1 Graphical Connecting Objects
There are two ways of connecting objects in BPMN: a Flow, either sequence or message,
and an Association. Sequence Flows and Message Flows, to a certain extent, represent
orthogonal aspects of the business processes depicted in a model, although they both
affect the performance of activities within a Process. In keeping with this, Sequence Flows
will generally flow in a single direction (either left to right, or top to bottom) and Message
Flows will flow at a 90° from the Sequence Flows. This will help clarify the relationships for
a Diagram that contains both Sequence Flows and Message Flows. However, BPMN does
not restrict this relationship between the two types of Flows. A modeler can connect either
type of Flow in any direction at any place in the Diagram.

The next three sections will describe how these types of connections function in BPMN.

5.1.1 Sequence Flow
A Sequence Flow is used to show the order that activities will be performed in a Process.
Each Flow has only one source and only one target. The source and target must be from
the set of the following flow objects: Events (Start, Intermediate, and End), Activities (Task
and Sub-Process), and Gateways. During performance (or simulation) of the process, a
Token will leave the source flow object, traverse down the Sequence Flow, and enter the
target flow object.

A Sequence Flow is line with a solid arrowhead that MUST be drawn with a solid single
black line (as seen in Figure 40).

The use of text, color, size, and lines for a Sequence Flow MUST follow the rules
defined in section 3.3 on page 34.

Figure 40 A Sequence Flow

BPMN does not use the term “Control Flow” when referring the lines represented by
Sequence Flow or Message Flow. The start of an activity is “controlled” not only by
Sequence Flow (the order of activities), but also by Message Flow (a message arriving), as
well as other process factors, such as scheduled resources. Artifacts can be Associated
with activities to show some of these other factors. Thus, we are using a more specific
term, “Sequence Flow,” since these lines mainly illustrate the sequence that activities will
be performed.

A Sequence Flow MAY have a conditional expression attribute, depending on its source
object.
Copyright  2002, BPMI.org All Rights Reserved 93 / 189

5.1 Graphical Connecting Objects BPMN Working Draft
5.1.1 Sequence Flow
This means that the condition expression must be evaluated before a Token can be
generated and then leave the source object to traverse the Flow. The conditions are usually
associated with Decision Gateways, but can also be used with activities.

If the source of the Sequence Flow is an activity, rather than Gateway, then a
Conditional Marker, shaped as a “mini-diamond”,” MUST be used at the beginning of
the Sequence Flow (see Figure 41).

The diamond shape is used to relate the behavior to a Gateway (also a diamond) that
controls the flow within a Process. More information about how conditional Sequence Flow
are used can be found in in the section entitled “Splitting Flow” on page 109.

Figure 41 A Conditional Sequence Flow

A Sequence Flow that has an Exclusive Data-Based Gateway as its source can also be
defined with a condition expression of Default. Such Sequence Flow will have a marker to
show that is a Default flow.

The Default Marker MUST be a backslash near the beginning of the line (see Figure
42).

Figure 42 A Default Sequence Flow

Attributes
The following are attributes of a Sequence Flow (Note that this is the complete set and it
does not extend the set of common object attributes):

Attribute Description
Id: String This is a unique ID that identifies the object from other objects

within the Diagram.

Name: String Name is an attribute that is text description of the object.

Source: FlowObjectId Source is an attribute that identifies which flow object the
Sequence Flow is connected from; i.e., the Sequence Flow is an
outgoing flow from that object.
The Source MUST be from the set of the following flow objects:
Start Event, Intermediate Event, End Event, Task, Sub-Process,
and Decision.

Target: FlowObjectID Target is an attribute that identifies which flow object the
Sequence Flow is connected to; i.e., the Sequence Flow is an
incoming flow to that object.
The Target MUST be from the set of the following flow objects:
Start Event, Intermediate Event, End Event, Task, Sub-Process,
and Decision.
94 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 5. Connecting Objects
5.1.1 Sequence Flow
Table 27 Sequence Flow Attributes

Condition: (None |
Expression | Default): None

By default, the Condition of a Sequence Flow is None. This
means that there is no evaluation at runtime to determine
whether or not the Sequence Flow will be used. Once a Token is
ready to traverse the Sequence Flow (i.e., the Source is an
activity that has completed), then the Token will do so. The
normal, uncontrolled use of Sequence Flow, in a sequence of
activities, will have a None Condition (see Figure 51). A None
Condition SHALL NOT be used if the Source of the Sequence
Flow is an Exclusive Data-Based or Inclusive Gateway.
The Condition attribute MAY be set to Expression if the Source of
the Sequence Flow is a Task, a Sub-Process, or a Gateway of
type Exclusive-Data-Based or Inclusive.
If the Condition attribute is set to Expression, then a condition
marker SHALL be added to the line if the Sequence Flow is
outgoing from an activity (see Figure 41). However, a condition
indicator SHALL NOT be added to the line if the Sequence Flow
is outgoing from a Gateway.
A Condition SHALL NOT be used if the Source of the Sequence
Flow is an Event-Based Exclusive Gateway, a Complex Gateway,
a Parallel Gateway, a Start Event, or an Intermediate Event. In
addition, a Condition SHALL NOT be used if the Sequence Flow
is associated with the Default Gate of a Gateway.
The Condition attribute MAY be set to Default only if the Source
of the Sequence Flow is an activity or an Exclusive Data-Based
Gateway. If the Condition is Default, then the Default marker
SHALL be displayed (see Figure 42).

ConditionExpression:
Expression

If the Condition attribute is set to Expression, then the
ConditionExpression attribute MUST be defined as a valid
expression. The expression will be evaluated at runtime. If the
result of the evaluation is TRUE, then a Token will be generated
and will traverse the Sequence--Subject to any constraints
imposed by a Source that is a Gateway

Documentation ?: String The modeler MAY add optional text documentation about the
Sequence Flow.

Attribute Description
Copyright  2003, BPMI.org All Rights Reserved 95 / 189

5.1 Graphical Connecting Objects BPMN Working Draft
5.1.2 Message Flow
5.1.2 Message Flow
A Message Flow is used to show the flow of messages between two entities that are
prepared to send and receive them. In BPMN, two separate Pools in the Diagram will
represent the two entities. Thus,

Message Flow MUST connect two Pools, either to the Pools themselves or to flow
objects within the Pools. They cannot connect two objects within the same Pool.

A Message Flow is line with a open arrowhead that MUST be drawn with a dashed
single black line (as seen in Figure 43).

The use of text, color, size, and lines for a Message Flow MUST follow the rules
defined in section 3.3 on page 34.

Figure 43 A Message Flow

The Message Flow can connect directly to the boundary of a Pool (See Figure 44),

especially if the Pool does not have any process details within (e.g., is a “Black Box”).

Figure 44 Message Flow connecting to the boundaries of two Pools

M
an

uf
ac

tu
re

r
Fi

na
nc

ia
l

In
st

itu
tio

n

Credit ResponseCredit Request
96 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 5. Connecting Objects
5.1.2 Message Flow
A Message Flow can also cross the boundary of a Pool and connect to a flow object within
that Pool (see Figure 45).

Figure 45 Message Flow connecting to flow objects within two Pools

+

Credit Card
Authorization

Fi
na

nc
ia

l
In

st
itu

tio
n

Authorize
Payment

Pack Goods Ship Goods

Process Order

+

D
is

tri
bu

tio
n

Sa
le

s

Su
pp

lie
r

Copyright  2003, BPMI.org All Rights Reserved 97 / 189

5.1 Graphical Connecting Objects BPMN Working Draft
5.1.2 Message Flow
If there is an Expanded Sub-Process in one of the Pools, then the message flow can be
connected to either the boundary of the Sub-Process or to objects within the Sub-Process.
If the Message Flow is connected to the boundary to the Expanded Sub-Process, then this
is equivalent to connecting to the Start Event for incoming Message Flows or the End Event
for outgoing Message Flows (see Figure 46).

Figure 46 Message Flow connecting to boundary of Sub-Process and Internal objects

C
us

to
m

er

Credit Response

Credit Report

Type of
Customer?

Default
(New)

Established with
good Credit

Established with
poor Credit

Include Apology
Text

Include History of
Transactions

Include Standard
TextReceive Credit

Report

Check Credit

S
up

pl
ie

r

Recieve Request

Credit Request

C
re

di
t

A
ge

nc
y

No

Approve?

Default
(Yes)

Continue Order...
98 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 5. Connecting Objects
5.1.3 Association
Attributes
The following table displays the identified attributes of a Message Flow (Note that this is the
complete set and it does not extend the set of common object attributes):

Table 28 Message Flow Attributes

5.1.3 Association
An Association is used to associate information and artifacts with flow objects. Text and
graphical non-flow objects can be associated with the flow objects and flows. An
Association is also used to show the activities used to compensate for an activity. More
information about compensation can be found in the section entitled “Compensation
Association” on page 124.

A Message Flow is line that MUST be drawn with a dotted single black line (as seen in
Figure 47).

The use of text, color, size, and lines for a Message Flow MUST follow the rules
defined in section 3.3 on page 34.

Figure 47 An Association

If there is a reason to put directionality on the association then:

A line arrowhead MAY be added to the Association line. (see Figure 48).

Attribute Description
Id: String This is a unique ID that identifies the Message Flow from other

objects within the Diagram.

Name ?: String Name is an optional attribute that is text description of the
Message Flow.

Message ?: MessageName Message is an optional attribute that identifies the Message that
is being sent.

Source: ObjectId Source is an attribute that identifies the object the Message Flow
is connected from; i.e., the Message Flow is an outgoing flow
from that object. The Message Flow MAY originate from the
boundary of the Pool or an object within the Pool. If the source is
an object within the Pool, then the ObjectName MUST identify
the Pool and the Object.

Target: ObjectId Target is an attribute that identifies the object the Message Flow
is connected to; i.e., the Message Flow is an incoming flow to
that object. The Message Flow MAY target the boundary of the
Pool or an object within the Pool. If the target is an object within
the Pool, then the ObjectName MUST identify the Pool and the
Object.

Documentation ? The modeler MAY add optional text documentation about the
Message Flow.
Copyright  2003, BPMI.org All Rights Reserved 99 / 189

5.1 Graphical Connecting Objects BPMN Working Draft
5.1.3 Association
A directional Association is often used with Data Objects to show that a Data Object is
either an input to or an output from an activity.

Figure 48 A directional Association

An Association is used to connect user-defined text (an Annotation) with a flow object (see
Figure 49).

Figure 49 An Association of Text Annotation

An Association is also used to associate Data Objects with other objects (see Figure 50). A
Data Object is used to show how documents are used throughout a Process. Refer to the
section entitled “Data Object” on page 88 for more information on Data Objects.

Figure 50 An Association connecting a Data Object with a Flow

Announce
Issues for
Discussion

Allow 1 week for the
discussion of the Issues

— through e-mail or
calls

Review Issue
List

Receive Issue
List

Issue List
100 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 5. Connecting Objects
5.1.3 Association
Attributes
The following table displays the identified attributes of a Association (Note that this is the
complete set and it does not extend the set of common object attributes):

Table 29 Association Attributes

5.2 Sequence Flow Mechanisms
The Sequence Flow mechanisms described in the following sections are divided into four
types: Normal, Exception, Link Events, and Ad Hoc (no flow). Within these types of flow,
BPMN can be related to specific “Workflow Patterns1.” These patterns began as
development work by Wil van der Aalst2, a professor at the Eindhoven University of
Technology, and Arthur ter Hofstede3, an associate professor at the Queensland University
of Technology. Twenty-one patterns have been defined as a way to document specific
behavior that can be executed by a BPM system. These patterns range from very simple
behavior to very complex business behavior. These patterns are useful in that they provide
a comprehensive checklist of behavior that should be accounted for by BPM system.
Therefore, some of these patterns will be illustrated with BPMN in the following sections to
show how BPMN can handle the simple and complex requirements for Business Process
Modeling.

Attribute Description
Id: String This is a unique ID that identifies the Association from other

objects within the Diagram.

Name ?: String Name is an optional attribute that is text description of the
Association.

Source: ObjectId Source is an attribute that identifies which object the Association
is connected from. The set of objects that an Association MAY
connect to are: Pool, Lane, all Events, Task, Sub-Process,
Gateway, Sequence Flow, and Message Flow.

Target: ObjectId Target is an attribute that identifies which object the Association
is connected to. Associations MUST only connect to Artifacts or
Compensation Activities.

Direction (None | To | From |
Both): None

Direction is an attribute that defines whether or not the
Association shows any directionality with an arrowhead. The
default is None (no arrowhead). A value of To means that the
arrowhead SHALL be at the Source object. A value of From
means that the arrowhead SHALL be at the Target artifact. A
value of Both means that there SHALL be an arrowhead at both
ends of the Association line.

Documentation ? The modeler MAY add optional text documentation about the
Association.

1.http://tmitwww.tm.tue.nl/research/patterns/
2.http://tmitwww.tm.tue.nl/staff/wvdaalst/
3.http://sky.fit.qut.edu.au/~terhofst/
Copyright  2003, BPMI.org All Rights Reserved 101 / 189

5.2 Sequence Flow Mechanisms BPMN Working Draft
5.2.1 Normal Flow
5.2.1 Normal Flow
Normal Sequence Flow refers to the flow that originates from a Start Event and continues
through activities via alternative and parallel paths until it ends at an End Event. The
simplest type of flow within a Process is a sequence, which defines a dependencies of
order for a series of activities that will be performed (serially). A sequence is also Workflow
Pattern #1 -- Sequence1 (see Figure 51).

Figure 51 Workflow Pattern #1: Sequence

As stated previously, the normal Sequence Flow should be completely exposed and no flow
behavior hidden. This means that a viewer of a BPMN Diagram will be able to trace through
a series of flow objects and Sequence Flows, from the beginning to the end of a given level
of the Process without any gaps or hidden “jumps” (see Figure 52). In this figure, Sequence
Flows connect all the objects in the Diagram, from the Start Event to the End Event. The
behavior of the Process shown will reflect the connections as shown and not skip any
activities or “jump” to the end of the Process.

Figure 52 A Process with Normal flow

As the Process continues through the series of Sequence Flows, control mechanisms may
divide or combine the Sequence Flows as a means of describing complex behavior. There
are control mechanisms for dividing (forking and splitting) and for combining (joining and
merging) Sequence Flows. Gateways and conditional Sequence Flow are used to
accomplish the dividing and combining of flow. It is possible that there may be gaps in the
Sequence Flow if Gateways and/or conditional Sequence Flow are not configured to cover
all performance possibilities. In this case, a model that violates the flow traceability
requirement will be considered an invalid model. Presumably, process development
software or BPM test environments will be able to test a process model to ensure that the
model is valid.

A casual look at the definitions of the English terms for these mechanisms (e.g., forking and
splitting) would indicate that each pair of terms mean basically the same thing. However,

1. http://tmitwww.tm.tue.nl/research/patterns/sequence.htm

A B C

Ship Order

Send Invoice Make Payment

Receive Order

Fill Order

Accepted or
Rejected?

Accepted

Accept Payment

Close Order

Rejected
102 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 5. Connecting Objects
5.2.1 Normal Flow
their effect on the behavior of a Process is quite different. We will continue to use these
English terms but will provide specific definitions about how they affect the performance of
the process in the next few sections of this specification. In addition, we will relate these
BPMN terms to the terms OR-Split (for split), Or-Join (for merge), AND-Split (for fork), and
AND-Join (for join), as defined by the Workflow Management Coalition.1

The use of an expanded Sub-Process in a Process (see Figure 53), which is the inclusion
of one level of the Process within another Level of the Process, can sometimes break the
traceability of the flow through the lines of the Diagram. The Sub-Process is not required to
have a Start Event and an End Event. This means that the series of Sequence Flows will be
disrupted from border of the Expanded Sub-Process to the first object within the Expanded
Sub-Process. The flow will “jump” to the first object within the Expanded Sub-Process.
Expanded Sub-Processes will often be used, as seen in the figure, to include exception
handling. A requirement that modelers always include a Start Event and End Event within
Expanded Sub-Processes would mainly add clutter to the Diagram without necessarily
adding to the clarity of the Diagram. Thus, BPMN does not require the use of Start Events
and End Events to satisfy the traceability of a Diagram that contains multiple levels.

Figure 53 A Process with Expanded Sub-Process without a Start Event and End Event

Of course, the Start and End Events for an Expanded Sub-Process can be included and
placed entirely within the its boundaries (see Figure 54). This type of model will also have a
break from a completely traceable Sequence Flow as the flow continues from one Process
level to another.

1. The Workflow Management Coalition Terminology & Glossary. The Workflow Management Coalition. Document
Number WFMC-TC-1011. April 1999.

Receive Quote Add QuoteSend RFQ

Any
Suppliers?

Yes

Find Optimal
Quote

No Send “No
Suppliers”

Repeat for Each Supplier

Time Limit Exceeded

From
Upstream
Activities

To
Downstream

Activities

To
Downstream

Activities
Copyright  2003, BPMI.org All Rights Reserved 103 / 189

5.2 Sequence Flow Mechanisms BPMN Working Draft
5.2.1 Normal Flow
Figure 54 A Process with Expanded Sub-Process with a Start Event and End Event Internal

However, a modeler may want to ensure the traceability of a Diagram and can use a Start
Event and End Event in an Expanded Sub-Process. One way to do this would be to attach
these events to the boundary of the Expanded Sub-Process (see Figure 55). The incoming
Sequence Flow to the Sub-Process can be attached directly to the Start Event instead of
the boundary of the Sub-Process. Likewise, the outgoing Sequence Flow from the Sub-
Process can connect from the End Event instead of the boundary of the Sub-Process.
Doing this, the Normal flow can be traced throughout a multi-level Process.

Figure 55 A Process with Expanded Sub-Process with a Start Event and End Event Attached to Boundary

When dealing with Exceptions and Compensation, the traceability requirement is also
relaxed (refer to the section entitled “Exception Flow” on page 121 and “Compensation
Association” on page 124).

Any
Suppliers?

Yes

Find Optimal
Quote

No Send “No
Suppliers”

Time Limit Exceeded

From
Upstream
Activities

To
Downstream

Activities

To
Downstream

Activities

Repeat for Each Supplier

Receive Quote Add QuoteSend RFQ

Any
Suppliers?

Yes

Find Optimal
Quote

No Send “No
Suppliers”

Time Limit Exceeded

From
Upstream
Activities

To
Downstream

Activities

To
Downstream

Activities

Receive Quote Add QuoteSend RFQ

Repeat for Each Supplier
104 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 5. Connecting Objects
5.2.1 Normal Flow
Forking Flow
BPMN uses the term forking to refer to the dividing of a path into two or more parallel paths
(also known as an AND-Split). It is a mechanism that will allow activities to be performed
concurrently, rather than serially. This is also Workflow Pattern #2 -- Parallel Split1. BPMN
provides three configurations that provide forking.

The first mechanism to create a fork is simple: a flow object can have two or more outgoing
Sequence Flows (see Figure 56). A special flow control object is not used to fork the path in
this case, since it is considered uncontrolled flow; that is, flow will proceed down each path
without any dependencies or conditions--there is no Gateway that controls the flow. Forking
Sequence Flow can be generated from a Task, Sub-Process, or a Start Event.

Figure 56 Workflow Pattern #2: Parallel Split -- Version 1

The second mechanism uses a Parallel Gateway (see Figure 60). For situations as shown
in the Figure 57, a Gateway is not needed, since the same behavior can be created through
multiple outgoing Sequence Flow, as in Figure 56. However, some modelers and modeling
tools may use a forking Gateway as a “best practice.” Refer to the section entitled “Parallel
Gateways (AND)” on page 81 for more information on Parallel Gateways.

Figure 57 Workflow Pattern #2: Parallel Split -- Version 2

Even when not required as a “best practice,” there are situations were the Parallel Gateway
provides a useful indicator of the behavior of the Process. Figure 58 shows how a forking
Gateway is used when the output of an Exclusive Decision requires that multiple activities
will be performed based on one condition (Gate).

1. http://tmitwww.tm.tue.nl/research/patterns/parallel_split.htm

B

C

A

Parallel Split
Uncontrolled Flow

B

C

A

Parallel Split
Forking

Gateway
Copyright  2003, BPMI.org All Rights Reserved 105 / 189

5.2 Sequence Flow Mechanisms BPMN Working Draft
5.2.1 Normal Flow
Figure 58 The Creation of Parallel Paths with a Gateway

While multiple conditional Sequence Flow, each with the exact same condition expression
(see Figure 59), could be used with an Inclusive Gateway to create the behavior, the use of
a forking Gateway makes the behavior much more obvious.

Figure 59 The Creation of Parallel Paths with Equivalent Conditions

This third version of the forking mechanism uses an Expanded Sub-Process to group a set
of activities to be performed in parallel (see Figure 60). The Sub-Process does not include
a Start and End Event and displays the activities “floating” within. A configuration like this
can be called a “parallel box” and can be a compact and less cluttered way of showing
parallelism in the Process. The capability to model in this way is the reason that Start and
End Events are optional in BPMN.

C

D

B

A

C

D

B

A

Condition 2

Condition 2

Condition 1
106 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 5. Connecting Objects
5.2.1 Normal Flow
Figure 60 Workflow Pattern #2: Parallel Split -- Version 3

Most of the time, the paths that have been divided with a fork are combined back together
through a join (refer to the next section) and synchronized before the flow will continue.
However, BPMN provides the flexibility for advanced methods to handle complex process
situations. Thus, the exact behavior will be determined by the configuration of the
Sequence Flow and the Gateways that are used.

Joining Flow
BPMN uses the term joining to refer to the combining of two or more parallel paths into one
path (also known as an AND-Join). A Parallel Gateway is used to synchronize two or more
incoming Sequence Flows (see Figure 61). In general, this means that Tokens created at a
fork will travel down parallel paths and then meet at the Parallel Gateway. From there, only
one Token will continue. This is also Workflow Pattern #3 -- Synchronization1. Refer to the
section entitled “Parallel Gateways (AND)” on page 81 for more information on Parallel
Gateways.

Figure 61 Workflow Pattern #3: Synchronization -- Version 1

Another mechanism for synchronization is the completion of a Sub-Process (see Figure
62). If there are parallel paths within the Sub-Process that are not synchronized with an
Parallel Gateway, then they will eventually reach an End Event (even if the End Event is
implied). The default behavior of a Sub-Process is to wait until all activity within has been
completed before the flow will move back up to a higher level Process. Thus, the
completion of a Sub-Process is a synchronization point.

1. http://tmitwww.tm.tue.nl/research/synchronization.htm

B

C

A

Parallel Split
Uncontrolled Flow

Applies to Start
Events

C

D

F

Copyright  2003, BPMI.org All Rights Reserved 107 / 189

5.2 Sequence Flow Mechanisms BPMN Working Draft
5.2.1 Normal Flow
Figure 62 Workflow Pattern #3: Synchronization -- Version 2

There is no specific correlation between the joining of a set of parallel paths and the forking
that created the parallel paths. For example, a an activity may have three outgoing
Sequence Flows, which creates a fork of three parallel paths, but these three paths do not
need to be joined at the same object. Figure 63 shows that two of three parallel paths are
joined at Task “F.” All of the paths eventually will be joined, but this can happen through any
combination of objects, including lone End Events. In fact, each path could end with a
separate End Event, and then be synchronized as mentioned above.

Figure 63 The Fork-Join Relationship is not Fixed

Thus, for parallel flow, BPMN contrasts with BPEL4WS, which is mainly block structured. A
BPEL4WS flow, which map to a set of BPMN parallel activities, is a specific block structure
that has a well-defined boundary. While there are no obvious boundaries to the parallel
paths created by a fork, the appropriate boundaries can be derived by an evaluation of the
configuration of Sequence Flows that follow the fork. The locations in the Process where
Tokens of the same TokenID and all the appropriate SubTokenIDs are joined with through
multiple incoming Sequence Flows will determine the boundaries for a specific block of
parallel activities. The boundary may in fact be the end of the Process. More detail on the
evaluation of BPEL4WS element boundaries can be found in the section entitled “Mapping
to XML Languages” on page 153.

A

B

D

Synchronization
Applies to End

Events

B

C

D

F

E

A

108 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 5. Connecting Objects
5.2.1 Normal Flow
Splitting Flow
BPMN uses the term splitting to refer to the dividing of a path into two or more alternative
paths (also known as an OR-Split). It is a place in the Process where a question is asked,
and the answer determines which of a set of paths is taken. It is the “fork in the road” where
a traveler, in this case a Token, can take only one of the forks (not to be confused with
forking—see below).

The general concept of splitting the flow is usually referring to as a Decision. In traditional
flow charting methodologies, Decisions are depicted as diamonds and usually are
exclusive. BPMN also uses a diamond to leverage the familiarity of the shape, but extends
the use of the diamond to handle the complex behavior of business processes (which
cannot be handled by traditional flow charts). The diamond shape is used in both Gateways
and the beginning of a conditional Sequence Flow (when exiting an activity). Thus, when
readers of BPD sees a diamond, they know that the flow will be controlled in some way and
will not just pass from one activity to another. The location of the mini-diamond and the
internal indicators within the Gateways will indicate how the flow will be controlled.

There are multiple configurations to split the flow within BPMN so that different types of
complex behavior can be modeled. Conditional Sequence Flow and three types of
Gateways (Exclusive, Inclusive, and Complex) are used to split the flow. Refer to the
section entitled “Sequence Flow” on page 93 for details on conditional Sequence Flow.
Refer to the section entitled “Gateways” on page 64 for details on the Gateways.

There are two basic mechanism for making the Decision during the performance of the
Process: the first is an evaluation of a condition expression. There are three variations of
this mechanism: Exclusive, Inclusive, and Complex. The first variation, an Exclusive
Decision, is the same as Workflow Pattern #4 -- Exclusive Choice1 (see Figure 64). Refer
to the section entitled “Data-Based” on page 67 for more information on Data-Based
Exclusive Gateways.

Figure 64 A Data-Based Decision Example -- Workflow Pattern #4 -- Exclusive Choice

1. http://tmitwww.tm.tue.nl/research/patterns/exclusive_choice.htm

Default
Condition

Condition 2

Condition 1
Copyright  2003, BPMI.org All Rights Reserved 109 / 189

5.2 Sequence Flow Mechanisms BPMN Working Draft
5.2.1 Normal Flow
The second type of expression evaluation is the Inclusive Decision, which is also Workflow
Pattern #6 -- Multiple Choice1. There are two configurations of the Inclusive Decision. The
first type of Inclusive Decisions uses conditional Sequence Flow from an Activity (see
Figure 65).

Figure 65 Workflow Pattern #6 -- Multiple Choice -- Version 1

The second type of Inclusive Decisions uses an Inclusive Gateway to control the flow (see
Figure 66). Refer to the section entitled “Inclusive Gateways (OR)” on page 75 for more
information on Inclusive Gateways.

Figure 66 Workflow Pattern #6 -- Multiple Choice -- Version 2

The third type of expression evaluation is the Complex Decision (see Figure 67). Refer to
the section entitled “Complex Gateways” on page 78 for more information on Inclusive
Gateways.

1. http://tmitwww.tm.tue.nl/research/patterns/multiple_choice.htm

Condition 1

Condition 2

Condition 2

Condition 1
110 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 5. Connecting Objects
5.2.1 Normal Flow
Figure 67 A Complex Decision (Gateway)

The second mechanism for making a Decision is the occurrence of a particular event, such
as the receipt of a message (see Figure 68). Refer to the section entitled “Event-Based” on
page 72 for more information on Event-Based Exclusive Gateways.

Figure 68 An Event-Based Decision Example

Merging Flow
BPMN uses the term merging to refer to the combining of two or more alternative paths into
one path (also known as an a OR-Join). It is a place in the process where two or more
alternative paths begin to traverse activities that are common to each of the paths.
Theoretically, each alternative path can be modeled separately to a completion (an End
Event). However, merging allows the paths to overlap and avoids the duplication of
activities that are common to the separate paths. For a given instance of the Process, a

Alternative 2

 Alternative 1

Alternative 3

 Alternative 4

Decision
OR-Split

Message 1

Message 2

A

B

C

D

1 Day
Copyright  2003, BPMI.org All Rights Reserved 111 / 189

5.2 Sequence Flow Mechanisms BPMN Working Draft
5.2.1 Normal Flow
Token would actually only see the sequence of activities that exist in one of the paths as if it
were modeled separately to completion.

Since there are multiple ways that Sequence Flow can be forked and split, there are
multiple ways that Sequence Flow can be merged. There are five different Workflow
Patterns that can be demonstrated with merging.

The first Workflow Pattern, Simple Merge1, The graphical mechanism to merge alternative
paths is simple: there are two or more incoming Sequence Flows to a flow object (see
Figure 69). In general, this means that a Token will travel down one of the alternative paths
(for a given Process instance) and will continue from there. For that instance, Tokens will
never arrive down the other alternative paths. BPMN provides two versions of a Simple
Merge.

The first version is shown in Figure 69. The two incoming Sequence Flow for activity “D”
are uncontrolled. Since the two Sequence Flow are at the end of two alternative paths,
created through the upstream exclusive Gateway, only one Token will reach activity “D” for
any given instance of the Process.

Figure 69 Workflow Pattern #5 -- Simple Merge – Version 1

If the multiple incoming Sequence Flow are actually parallel instead of alternative, then the
end result is different, even though the merging configuration is the same as Figure 69. In
Figure 70, the upstream behavior is parallel. Thus, there will be two Tokens arriving (at
different times) at activity “D.” Since the flow into activity “D” in uncontrolled, each Token
arriving at activity “D” will cause a new instance of that activity. This is an important concept
for modelers of BPMN should understand. In addition, this type of merge is the Workflow
Pattern Multiple Merge2.

1. http://tmitwww.tm.tue.nl/research/patterns/simple_merge.htm
2. http://tmitwww.tm.tue.nl/research/patterns/multiple_merge.htm

B

C

D

Simple Merge
Uncontrolled Flow

A

Exclusive Choice
Decision Gateway
112 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 5. Connecting Objects
5.2.1 Normal Flow
Figure 70 Workflow Pattern #7 -- Multiple Merge

The second version of the Simple Merge is shown in Figure 71. The two incoming
Sequence Flow for activity “D” are controlled through the Exclusive Gateway. Since the two
Sequence Flow are at the end of two alternative paths, created through the upstream
exclusive Gateway, only one Token will reach the Gateway for any given instance of the
Process. The Token will then immediately proceed to activity “D.”

Figure 71 Workflow Pattern #5 -- Simple Merge – Version 2

Again, if the multiple incoming Sequence Flow are actually parallel instead of alternative,
then the end result is different, even though the merging configuration is the same as
Figure 71. In the model shown in Figure 72, there will be two Tokens arriving (at different
times) at the Exclusive Gateway preceding activity “D.” In this situation, the Gateway will
accept the first Token and immediately pass it on through to the activity. When the second
Token arrives, it will be excluded from the remainder of the flow. This means that the Token
will not be passed on to the activity, but will be consumed. This type of merge is the
Workflow Pattern Discriminator1.

1. http://tmitwww.tm.tue.nl/research/patterns/discriminator.htm

D

Multiple Merge
Uncontrolled Flow

B

C

A

Parallel Split
Uncontrolled Flow

B

C

D

Simple Merge
Merging
Gateway

Version 2

A

Exclusive Choice
Decision Gateway
Copyright  2003, BPMI.org All Rights Reserved 113 / 189

5.2 Sequence Flow Mechanisms BPMN Working Draft
5.2.1 Normal Flow
Figure 72 Workflow Pattern #8 -- Discriminator

The fourth type of Workflow Pattern merge is called a Synchronizing Join1. This is a
situation when the merging location does not know ahead of time how many Tokens will be
arriving at the Gateway. In some Process instances, there may be only one Token. In other
Process instances, there may be more than one Token arriving. This type of situation is
created when an Inclusive Decision is made up stream (see Figure 73). To handle this, an
Inclusive Gateway can be used to merge the appropriate number of Tokens for each
Process instance. The Gateway, following the pattern Synchronizing Join, will wait for all
expected Tokens before the flow will continue to the next activity. Refer to the section
entitled “Inclusive Gateways (OR)” on page 75 for more information on Inclusive Gateways.

Figure 73 Workflow Pattern #9 -- Synchronizing Join

1. http://tmitwww.tm.tue.nl/research/patterns/synchronizing_join.htm

B

C

A

Parallel Split
Uncontrolled Flow

D

Discriminator
Merging
Gateway

B

C

D

Synchronizing Merge
Merging Gateway

A

Multi-Choice
Inclusive Decision

Gateway
114 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 5. Connecting Objects
5.2.1 Normal Flow
The fourth type of Workflow Pattern merge is called a N out of M Join1. This type of
situation is more complex and can be handled through a Complex Gateway (see Figure
74). The Gateway will receive Tokens from its incoming Sequence Flow and evaluate an
expression to determine whether or not the flow should proceed. Once the condition has
been satisfied, if additional Tokens arrive, then will be excluded (much like the Discriminator
Pattern from Figure 72). Refer to the section entitled “Complex Gateways” on page 78 for
more information on Inclusive Gateways.

Figure 74 Workflow Pattern #8 -- N out of M Join

There is no specific correlation between the merging of a set of paths and the splitting that
occurs through a Gateway object. For example, a Decision may split a path into three
separate paths, but these three paths do not need to be merged at the same object. Figure
75 shows that two of three alternative paths are merged at Task “F.” All of the paths
eventually will be merged, but this can happen through any combination of objects,
including lone End Events. In fact, each path could end with a separate End Event.

Figure 75 The Split-Merge Relationship is not Fixed

1. http://tmitwww.tm.tue.nl/research/patterns/n_out_of_m_join.htm

B1

B3

A

Parallel Split
Uncontrolled Flow

B2 C

N out of M Join
Complex
Gateway

BCondition 1

[Default]

A C

D

Condition 2

E

F

Copyright  2003, BPMI.org All Rights Reserved 115 / 189

5.2 Sequence Flow Mechanisms BPMN Working Draft
5.2.1 Normal Flow
Thus, for alternative flow, BPMN contrasts with BPEL4WS, which are mainly block
structured. A BPEL4WS switch and pick, which map to the BPMN Decision, are specific
block structures that have well-defined boundaries. While there are no obvious boundaries
to the alternative paths created by a decision in BPMN, the appropriate boundaries can be
derived by an evaluation of the configuration of Sequence Flows that follow the decision.
The locations in the Process where Tokens of the same identity are merged through
multiple incoming Sequence Flows will determine the boundaries for a specific decision.
The boundary may in fact be the end of the Process. More detail on the evaluation of
BPEL4WS element boundaries can be found in the section entitled “Mapping to XML
Languages” on page 153.

Looping
BPMN provides 2 (two) mechanisms for looping within a Process. The first involves the use
of attributes of activities to define the loop. The second involves the connection of
Sequence Flows to “upstream” objects.

Activity Looping
The attributes of Tasks and Sub-Processes will determine if they are repeated as a loop.
There are two types of loops that can be specified: Standard and Multi-Instance.

For Standard Loops:

• If the loop condition is evaluated before the activity, this is generally referred to as a
“while” loop. This means that the activities will be repeated as long as the condition is
true. The activities may not be performed at all (if the condition is false the first time) or
performed many times.

• If the loop condition is evaluated after the activity, this is generally referred to as an
“until” loop. This means that the activities will be repeated until a condition becomes
true. The activities will be performed at least once or performed many times.

For Multi-Instance Loops:

• If the InstanceGeneration is serial, then this becomes much like a while loop with a set
number of iterations the loop will go through. These are often used in processes where
a specific type of item will have a set number of sub-items or line items. A Multi-Instance
loop will be used to process each of the line items.

• If the InstanceGeneration is parallel, this is generally referred to as a multiple instance
of the activities. An example of this type of feature would be used in a process to write a
book, there would be a Sub-Process to write a chapter. There would be as many copies
or instances of the Sub-Process as there are chapters in the book. All the instances
could begin at the same time.

Those activities that are repeated (looped) will have a loop marker placed in the bottom
center of the activity shape (see Figure 76). Those activities that are Parallel Multi-Instance
will have a parallel marker placed in the bottom center of the activity shape (see Figure 77)
116 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 5. Connecting Objects
5.2.1 Normal Flow
Figure 76 A Task and a Collapsed Sub-Process with a Loop Marker

Figure 77 A Task with a Parallel Marker

Expanded Sub-Processes also can have a loop marker placed at the bottom center of the
Sub-Process rectangle (see Figure 78). The entire contents of the Sub-Process will be
repeated as defined in the attributes.

Figure 78 An Expanded Sub-Process with a Loop Marker

Sequence Flow Looping
Loops can also be created by connecting a Sequence Flow to an “upstream” object. An
object is considered to be upstream if that object has an outgoing Sequence Flow that
leads to a series of other Sequence Flows, the last of which turns out to be an incoming
Sequence Flow to the original object. That is, that object produces a Token and that Token
traverses a set of Sequence Flows until the Token reaches the same object again.
Sequence Flow looping is the same as Workflow Pattern #16 -- Arbitrary Cycle1 (see Figure
64).

1. http://tmitwww.tm.tue.nl/research/patterns/arbitrary_cycle.htm

Receive Vote Discussion Cycle

Request Quotes

Discussion Cycle (Until Discussion Over)

E-Mail Discussion
Deadline Warning

Delay 6 days from
Announcement

Announce Issues
for Discussion

Review Status of
Discussion

Moderate E-mail
Discussion

7 Days
Copyright  2003, BPMI.org All Rights Reserved 117 / 189

5.2 Sequence Flow Mechanisms BPMN Working Draft
5.2.1 Normal Flow
Figure 79 Workflow Pattern #16 -- Arbitrary Cycle

Usually these connections follow a Decision so that the loop is not infinite (see Figure 80). If
the Sequence Flow goes directly from a Decision to an upstream object, this is an “until”
loop. The set of looped activities will occur until a certain condition is true.

Figure 80 An Until Loop

A while loop is created by making the decision first and then performing the repeating
activities or moving on in the Process (see Figure 81). The set of looped activities may not
occur or may occur many times.

Figure 81 A While Loop

?

ßa B

C DA

E

F GDefault
Default

Default

No

Configure Product Test Product Package ProductPass Test? Yes

Yes Fix Errors Test Fixes

Package Product

Any Errors?

No
118 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 5. Connecting Objects
5.2.1 Normal Flow
Passing the Sequence Flow to and from Sub-Processes
If a Process is used within another Process, then it is a Sub-Process. The Sequence Flow
will start at the parent Process and then pass to the Sub-Process and then will pass back to
the parent process (see Figure 82). Most of the time the flow (a Token) will reach a Sub-
Process, get transferred to the Start Event of the Sub-Process, traverse the Sequence
Flows of the Sub-Process, reach the End Event of the Sub-Process, and, finally, get
transferred back to the parent Process to continue. If the Sub-Process contains parallel
flows, then all the flows must complete before the Token is transferred back to the parent
Process. This functionality treats the Sub-Process as a self-contained “box” of activities.

Figure 82 Example of Sub-Process

Avoiding Illegal Models and Unexpected Behavior
BPMN, being a graph-structured Diagram, rather than having a block-structures like
BPEL4WS, provides a great flexibility for depicting complex process behavior in a fairly
compact form. However, the free-form nature of BPMN can create modeling situations that
cannot be executed or will behave in a manner that is not expected by the modeler. These
types of modeling problems can occur because there is not a tight relationship between
forks and joins or splits and merges. A block structure provides these tight relationships, but
a graph-structure allows these flow control mechanisms to be mixed and matched at the
discretion of the modeler. Some combinations of these control elements will create
Processes that cannot be executed or will create behavior that was not intended by the
modeler. The situation where alternative paths cross the implicit boundary of a group of
parallel paths can cause an invalid model.

Figure 83 shows such a model. Task “D” is an activity that has two incoming Sequence
Flows; one from a forked path (after a split path) and one from a split path. This can create
a problem at the Parallel Gateway that precedes Task “E,” which also has multiple incoming
Sequence Flows. The Sequence Flow from Task “B” is crossing the implicit boundary of the
fork created after Task “A.” As a result, if the “Yes” Sequence Flow is taken from the
Decision in the Diagram (Variation 1), then Task “E” can expect two Tokens to arrive—one
from Task “C” and one from Task “D.” However, if the “No” Sequence Flow is taken from the
Decision (Variation 2), the Parallel Gateway will receive only one Token—one from Task

Include History of
Transactions

Include Standard
Text

Receive Credit
Report

Check Credit

Recieve Request

No

Approve?

Continue Order...
Yes
Copyright  2003, BPMI.org All Rights Reserved 119 / 189

5.2 Sequence Flow Mechanisms BPMN Working Draft
5.2.1 Normal Flow
“D.” Since the Gateway expects two Tokens, the Process will be dead-locked at that
position.

Figure 83 Potentially a dead-locked model

Another type of problem occurs with looping back to upstream activities. If the loop
Decision is made within the implicit boundaries of a set of parallel paths, then the behavior
of the loop becomes ambiguous (see Figure 84), since it is unclear whether Task “E” was
intended to be repeated based on the loop or what would happen if Task “E” was still active
when the loop reached that Task again.

Figure 84 Improper Looping

In general, the analysis of how Tokens will flow through the model will help find models that
cannot be executed properly. This Token flow analysis will be used to create some of the
mappings to BPEL4WS. Since BPEL4WS is properly executable, if the Token flow analysis
cannot create a valid BPEL4WS process, then the model is not structured correctly. This is
an open issue that will be resolved in a later version of the specification. The section
entitled “Defining Token Generation for execution Language Mapping” on page 153 will
detail the Token flow analysis. Refer to the section entitled “Open Issues” on page 169 for a
complete list of the issues open for BPMN.

A

B

C

D

EA

B

C

D

EYes

No

default

BA C

E

D ?

F

GYes
120 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 5. Connecting Objects
5.2.2 Link Events
5.2.2 Link Events
Start, Intermediate, and End Events can all be defined as being a Trigger Link. Link Events
are used to coordinate specific paths of a Process that are separated by a graphical
distance or by differing levels of the Process. Link Events could be used for “off-page
connectors.”

A full description of how Link Events are used within BPMN is an open issue that will be
handled in a later version of the specification. Refer to the section entitled “Open Issues” on
page 169 for a complete list of the issues open for BPMN.

5.2.3 Exception Flow
Exception flow occurs outside the normal flow of the Process and is based upon an event
(an Intermediate Event) that occurs during the performance of the Process. Intermediate
Events can be included in the normal flow to set delays or breaks to wait for a message.
However, exception flow is created by attaching the Intermediate Event to the boundary of
an activity, either a Task or a Sub-Process (see Figure 85). Multiple Intermediate Events
can be attached to the boundary of an activity.

Figure 85 A Task with Exception Flow (Interrupts Event Context)

By doing this, the modeler is creating an Event Context. The Event Context will respond to
specific Triggers to interrupt the activity and redirect the flow through the Intermediate
Event. The Event Context will only respond if it is active (running) at the time of the Trigger.
If the activity has completed, then the Trigger may occur with no response.

If there are a group of Tasks that the modeler wants to include in an Event Context, then an
Expanded Sub-Process can be added to encompass the Tasks and to handle any events
by having them attached to its boundary (see Figure 86).

Review Status of
Discussion

Moderate E-mail
Discussion

7 Days
Copyright  2003, BPMI.org All Rights Reserved 121 / 189

5.2 Sequence Flow Mechanisms BPMN Working Draft
5.2.4 Ad Hoc
Figure 86 A Sub-Process with Exception Flow (Interrupts Event Context)

Two Triggers for Intermediate Event are used by Event Contexts at the level of the
execution language (BPEL4WS): Message, and Exception (fault). A Message Event occurs
when a message, with the exact identity as specified in the Intermediate Event, is received
by the Process. An Exception Event occurs when the Process detects an Exception. If an
Error Code is specified in the Intermediate Event, then the code of the detected Error must
match for the Event Context to respond. If the Intermediate Event does not specify an Error
Code, then any Exception will trigger a response from the Event Context. Other BPMN
Triggers, such as a Timer, must be converted into a BPEL4WS configuration that will
generate the appropriate Message or Exception.

If this event does not occur while the Event Context is ready, then the Process will continue
through the normal flow as defined through the Sequence Flows.

Mapping to Execution Languages
Refer to the section entitled “Exception Flow” on page 162 for more information about how
Exception Flow maps to execution languages.

5.2.4 Ad Hoc
An Ad Hoc Process is a group of activities that have no pre-definable sequence
relationships. A set of activities can be defined for the Process, but the sequence and
number of performances for the activities is completely determined by the performers of the
activities and cannot be defined beforehand.

A Sub-Process is marked as being an Ad Hoc with a “tilde” symbol placed at the bottom
center of the Sub-Process shape (see Figure 87 and Figure 88). Activities within the
Process are disconnected from each other. During execution of the Process, any one or
more of the activities may be active and they can be performed in almost any order or
frequency.

Receive Quote Add QuoteSend RFQ

Any
Suppliers?

Yes

Find Optimal
Quote

No Send “No
Suppliers”

Repeat for Each Supplier

Time Limit Exceeded
122 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 5. Connecting Objects
5.2.4 Ad Hoc
Figure 87 A Collapsed Ad Hoc Sub-Process

Figure 88 An Expanded Ad Hoc Sub-Process

The performers determine when activities will start, when they will end, what the next
activity will be, and so on. Examples of the types of Processes that are Ad Hoc include
computer code development (at a low level), sales support, and writing a book chapter. If
we look at the details of writing a book chapter, we could see that the activities within this
Process include: researching the topic, writing text, editing text, generating graphics,
including graphics in the text, organizing references, etc. (see Figure 89). There may be
some dependencies between Tasks in this Process, such as writing text before editing text,
but there is not necessarily any correlation between an instance of writing text to an
instance of editing text. Editing may occur infrequently and based on the text of many
instances of the writing text Task.

Figure 89 An Ad Hoc Process for Writing a Book Chapter

It is a challenge for a BPM engine to monitor the status of Ad Hoc Processes, usually these
kind of processes are handled through groupware applications (such as e-mail), but BPMN
allows modeling of Processes that are not necessarily executable and should provide the
mechanisms for those BPM engines that can follow an Ad Hoc Process. Given this, at
some point, the Process will have completed and this can be determined by evaluating a

+~
Name

 Name

~

Wrting a Book Chapter

researching
the topic writing text editing text

generating
graphics

including
graphics in

text

organizing
references

~

Copyright  2003, BPMI.org All Rights Reserved 123 / 189

5.3 Compensation Association BPMN Working Draft
5.2.4 Ad Hoc
Completion Condition that evaluates Process attributes that will have been updated by an
activity in the Process.

Mapping to Execution Languages
The Mapping to Execution Languages for Ad Hoc Processes is an open issue has not been
determined for this version of the specification. Refer to the section entitled “Open Issues”
on page 169 for a complete list of the issues open for BPMN.

5.3 Compensation Association
Some activities produce complex effects or specific outputs. If the outcome is determined to
be undesirable by some specified criteria (such as an order being cancelled), then it will be
necessary to “undo” the activities. There are three ways this can be done:

• Restoring of a copy of the initial values for data, thereby overwriting any changes.

• Doing nothing (if nothing has be changed because the changes have been set aside
until a confirmation).

• Invoking activities that undo the effects--also known as compensation.

An activity that might require compensation could be, for example, one that charges a
buyer for some service and debits a credit card to do so. These types of activities usually
need a separate activity to counter the effects of the initial activity. Often, a record of both
activities is required, so this is another reason that the activity is not “undone.” An
Intermediate Event of type Compensation is attached to the boundary of an activity to
indicate that compensation may be necessary for that activity.

One of the three mechanisms for “undo” activities, Compensation, requires specific
notation and is a special circumstance that occurs outside the normal flow of the Process.
For this reason, the Compensation Intermediate Event does not have an outgoing
Sequence Flow, but instead has an outgoing directed Association (see Figure 90).

Figure 90 A Task with an Associated Compensation Activity

The target of this Association is the activity that will compensate for the work done in the
source activity, and will be referred to as the Compensation Activity. The Compensation
Activity is special in that it does not follow the normal Sequence Flow rules--as mentioned,
it is outside the normal flow of the Process. This activity cannot have any incoming or
outgoing Sequence Flow. The Compensation marker (as is in the Compensation
Intermediate Event) will be displayed in the bottom center of the Activity to show this status

Charge
Buyer

Credit Buyer
124 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 5. Connecting Objects
5.2.4 Ad Hoc
of the activity (see the “Credit Buyer” Task in Figure 90). Note that there can be only one
target activity for compensation. There cannot be a sequence of activities shown. If the
compensation does require more than one activity, then these activities must be put inside
a single Sub-Process that is the target of the Association. The Sub-Process can be
collapsed or expanded. If the Sub-Process is expanded, then only the Sub-Process itself
requires the Compensation marker--the activities inside the Sub-Process do not require this
marker.

Only activities that have been completed can be compensated. The compensation of an
activity can be triggered in two ways:

• The activity is inside a Transaction Sub-Process that is cancelled (see Figure 91). In
this situation, the whole Sub-Process will be “rewound” or rolled back--the Process flow
will go backwards and any activity that requires compensation will be compensated.
This is why the Compensation marker for Events looks like a “rewind” symbol for a tape
player. After the compensation has been completed, the Process will continue its
rollback.

• A downstream Intermediate or End Event of type Compensation “throws” a
compensation identifier that is “caught” by the Intermediate Event attached to the
boundary of the activity.

Figure 91 Compensation Shown in the context of a Transaction

Bookings

Book Flight

Book Hotel

Send
Unavailability

Notice

Cancel Flight

Send Hotel
Cancellation

Transaction

Successful
Bookings

Failed
Bookings

Exceptions
(Hazards)

Charge
Buyer

Handle through
Customer Service
Copyright  2003, BPMI.org All Rights Reserved 125 / 189

5.3 Compensation Association BPMN Working Draft
5.2.4 Ad Hoc
126 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft
6. BPMN by Example
This section will provide an example of a business process modeled with BPMN. The
process that will be described is a process that BPMI has been using to develop this
notation. It is a process for resolving issues through e-mail votes (see Figure 92). This
Process is small, but fairly complex and will provide examples for many of the features of
BPMN. There are some unusual features of this business process, such as infinite loops.
Although not a typical process, it will help illustrate that BPMN can handle simple and
unusual business processes and still be easily understandable for readers of the Diagram.
The sections below will isolate segments of the Process and highlight the modeling
features as the workings of the Process is described. In addition, samples of BPEL4WS
code are provided to demonstrate how a BPMN Diagram maps to BPEL4WS.

Figure 92 E-Mail Voting Process

The Process has a point of view that is from the perspective of the manager of the Issues
List and the discussion around this list. From that point of view, the voting members of the

Yes

Yes

2nd
Time?

Issues w/o
Majority?

Did Enough
Members

Vote?

Have the
members

been warned?

E-Mail Results
of Vote

Reduce number of
Voting Members
and Recalculate

Vote

Re-announce
Vote with

warning to voting
members

Timed Out
[1 week]

Voting Members

Vote

Vote Results

Vote announcment
with warning

Vote
Announcement

Yes

Yes

Reduce to
Two Solutions

E-Mail Voters
that have to

Change VotesPrepare
Results

Announce
Issues for Vote

Any issues
ready?

Review Issue
List

Start on
Friday

Post Results
on Web Site

Receive Issue
List

Discussion
Cycle Collect Votes

Issue
Announcement

Deadline
Warning

Deadline
Warning

Change Vote
Message

No

Yes

No

No

No

No
Copyright  2003, BPMI.org All Rights Reserved 127 / 189

6.1 The Beginning of the Process BPMN Working Draft
6.1.1 Mapping to BPEL4WS
working group are considered as external Participants who will be communicated with by
messages (shown as Message Flow).

6.1 The Beginning of the Process
The Process starts with Timer Start Event that is set to trigger the Process every Friday
(see Figure 93).

Figure 93 The Start of the Process

The Issue List Manager will review the list and determine if there are any issues that are
ready for going through the discussion and voting cycle. Then a Decision must be made. If
there are no issues ready, then the Process is over for that week--to be taken up again the
following week. If there are issues ready, then the Process will continue with the discussion
cycle. The “Discussion Cycle” Sub-Process is the first activity after the “Any issues ready?”
Decision and this Sub-Process has two incoming Sequence Flows, one of which originates
from a downstream Decision and is thus part of a loop. It is one of a set of five complex
loops that exist in the Process. The contents of the “Discussion Cycle” Sub-Process and
the activities that follow will be described below.

6.1.1 Mapping to BPEL4WS
BPEL4WS processes must begin with a receive activity for instantiation (i.e., it “bootstraps”
itself). The “E-Mail Voting Process” is scheduled to start every Friday as shown by the
Timer Start Event. Therefore, an additional Process will have to be created and
implemented that will run indefinitely and will send a starting message with the list of Issues
to the “E-Mail Voting Process” every Friday. Figure 94 shows this Process as starting that
the beginning of the Working Group and continuing until the end of the Working Group.
Even this Process needs a message to be sent to it to signal the start of the Working
Group. There may be another Process defined that sends that message, but that Process
is not shown here. In addition, the mapping from the Starter Process to BPEL4WS is not
shown here.

Yes

+

Discussion
Cycle

Any issues
ready?

Review Issue
List

To Task:
"Announce Issues

for Vote"

A Loop:
From "Yes"

Alternative of the
"2nd Time?"

DecisionUser Activity

Collapsed
Sub-Process

Receive Issue
List

No

Issue List

Start on
Friday

Issue Voting List
[0 to 5 Issues]
128 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 6. BPMN by Example
6.1.1 Mapping to BPEL4WS
Figure 94 The Ongoing Starter Process

• Within the main Process (see Figure 93), the “Receive Issue List” Task will map to a
BPEL4WS receive that has its createInstance attribute set to “yes.” This will receive
starting message and start the process.

• This receive will be placed inside a sequence since other activities follow the activity.
The message to be received will contain all the variable parts that will be used in the
process and their initialized values.

Note: the names of BPD objects have all non-alphanumeric characters stripped
from them when they are mapped to BPEL4WS name elements to match the
BPEL4WS element restrictions.

The modeler-defined properties of the Process will be placed in a BPEL4WS variables
element named “processData.” The same variables element will be used in all derived
processes in this example.

• The “Review Issue List” Task will map to a BPEL4WS invoke. This TaskType is User,
which means that the invoke will be synchronous and an outputVariable included.

Mapping an Exclusive Gateway (Decision)
• The “Any Issues Ready?” Exclusive Gateway (Decision) will map to a BPEL4WS

switch.

• The Gate for the “No” Sequence Flow will map to the otherwise case of the switch. This
otherwise will only contain an empty activity since there is nothing to do and the
Process is over.

Note that empty does not have any corresponding activity in the BPMN Diagram, but is
derived through the Diagram configuration.

• The Gate for the “Yes” Sequence Flow will map to other case for the switch. This case

Friday at 6
PM Pacific

Time

Yes

Working
Group Still

Active?

No

Check Status of
Working Group

[Send]
Send Current

Issue List

Working
Group
Active

Issue List
Copyright  2003, BPMI.org All Rights Reserved 129 / 189

6.1 The Beginning of the Process BPMN Working Draft
6.1.1 Mapping to BPEL4WS
will have a condition that checks the number of issues that are ready. This case will
handle the remainder of the Process that is shown in Figure 92.

This is done because the switch is a block structure and needs a definitive ending point and
since the otherwise is connected to the end of the Process, then the end of the Process is
the ending point that the case must use. The actual activities that make up the rest of the
Process will be distributed among a set of BPEL4WS processes instead of all being within
the case. The case will only contain an invoke that will call another process (as a web
service). The distribution of the Process activities is due to the overall Diagram
configuration that includes three upstream Sequence Flow that define some interleaving
loops.

The Impact of Complex Loops
If the loop shown in this section of the model were merely a simple loop, and perhaps the
only loop, then a BPEL4WS while would be used to handle the loop. In this situation,
though, the looping is handled through a set of derived processes that are accessed by
invoking them (as a web service). There would no specific Diagram element to represent
these derived processes; indeed, a modeler would not want to create a set of related
Processes to handle complex looping. While an execution engine can easily handle a
complex set of language documents and elements, a business person developing and
monitoring this process will want to see the Process in an easy-to-read format (such as
BPMN) that contains the information in a more comprehensive, less distributed format. In
this example, all derived processes will be named “DerivedProcess<number>” and the
number will be incremented as they are created. Any naming scheme will work as long as
all the processes have unique names.

• Thus, to handle the rest of the Process, a derived nested process named
“DerivedProcess1” is created and then

• A BPEL4WS invoke is used to access this process from the “Yes” case of the “Any
issues ready?” switch.

We shall see that later in the Process the same process is accessed through another
invoke, marking the source of the loop.

Note: All the derived processes in the BPEL4WS samples are accessed through an
asynchronous invoke. That is, the invoke uses a one-way WSDL operation and the
outputVariable element is not used in the invoke. Thus, the “calling” process will not
wait until the “called” process completes. This type of invoking may also be called
spawning.

All the sub-processes and derived processes in the BPEL4WS documents must be started
with the receipt of a message.

• This means that a receive will be the first activity inside a sequence that will be the main
activity of these processes. These receive activities will have the createInstance
attribute set to “Yes.” A partnerLink named “internal,” a portType name “processPort”
will be created to support all of these process to process communications. The WSDL
operations that will support these communications will all be named “call<process
name>” (as noted above, the processes are actually spawned).
130 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 6. BPMN by Example
6.1.1 Mapping to BPEL4WS
The “Discussion Cycle” Sub-Process shown in Figure 93 will continue the sequence (after
the instantiating receive) for the “DerivedProcess1” process.

• Since “Discussion Cycle” is a Sub-Process it will map to a separate BPEL4WS process
that is access through an invoke (in this case synchronously, since we don’t want to
continue the Process until the Sub-Process has completed).

Mapping an Activity Loop Condition
The “Discussion Cycle” Process has a loop marker. In this situation, the looping mechanism
is simple. The attributes of the Sub-Process will tell us the details. The “Discussion Cycle”
Sub-Process’s relevant attributes are: LoopType = “Standard”; LoopCondition =
DiscussionOver = “FALSE”; TestTime = “After.”

• This means that the invoke that calls the process will be enclosed within a while activity
when the BPEL4WS is derived.

• All variations of LoopType will map to a BPEL4WS while. The LoopCondition of the
Process (as shown above) will map to the “DiscussionOver = False” will be the
condition for the while.

The default value for the “DiscussionOver” property is False, thus an activity within the Sub-
Process will have to change it to True before the while loop is over. The logical opposite of
the expression that is shown in the Sub-Process attributes is used since the
EvaluationCondition property is “after.” However, a while will test the condition prior to
running the activity within. This means that to insure that the activity is always performed at
least once (to mimic the behavior of an “until”) a LoopCounter variable will always be added
to a the while condition for an BPMN activity that has its TestTime attribute set to “After.”

• The LoopCounter will be initialized to zero, and an assign will be automatically added
as a part of variable.

• The activity of the while will be changed to a sequence, with the invoke for the Sub-
Process, which is

• Followed by an assign that will increment the LoopCounter variable, inside the
sequence.

We will look into the details of the “Discussion Cycle” Sub-Process in the section entitled
“The First Sub-Process” on page 133.
Copyright  2003, BPMI.org All Rights Reserved 131 / 189

6.1 The Beginning of the Process BPMN Working Draft
6.1.1 Mapping to BPEL4WS
BPEL4WS Sample for the Beginning of the Process
 displays some sample BPEL4WS code that reflects the portion of the Process that was just
discussed and is shown in Figure 93.

<process name="EMailVotingProcess">
<!-- The Process data is defined first-->
<sequence>
<!--This starts the beginning of the Process. The process that sends the

 starting message every Friday is related to the Timer Start Event and is
 not shown here.-->

<receive partnerLink="Internal" portType="tns:processPort"
 operation="receiveIssueList" variable="processData"
 createInstance="Yes"/>

<invoke name="ReviewIssueList" partnerLink="Internal"
 portType="tns:internalPort" operation="sendIssueList"
 inputVariable="processData" outputVariable="processData"/>

<switch name="Anyissuesready">
<!-- name="Yes" -->
<case condition="bpws:getVariableProperty(ProcessData,NumIssues)>0">
<!--A chunk of this process is separated into a derived process so
that it can be called from a complex loop. Thus, it is called from
here and from ”Collect Votes” as part of a loop-->
<invoke name="DerivedProcess1" partnerLink="Internal"

 portType="tns:processPort" operation="callDerivedProcess1"
 inputVariable="processData"/>

</case>
<!--name="No" -->
<otherwise>
<!--This is one of the two ways to the end of the Process-->
<empty/>

</otherwise>
</switch>

</sequence>
</process>

<process name="DerivedProcess1">
<!-- The Process data is defined first-->
<sequence>
<receive partnerLink="Internal" portType="tns:processPort"

 operation="callDerivedProcess1" variable="processData"
 createInstance="Yes"/>

<!--The first Sub-Process has a loop condition, so it is within a while-->
<while condition="bpws:getVariableProperty(ProcessData,DiscussionOver)

=false" andbpws:getVariableProperty(ProcessData,loopCounter) > 0">
<!--This calls the first Sub-Process-->
<sequence>
<invoke process="DiscussionCycle" partnerLink="Internal"

 portType="tns:processPort operation="callDiscussionCycle"
 inputVariable="processData" outputVariable="processData"/>
132 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 6. BPMN by Example
6.1.1 Mapping to BPEL4WS
Example 1 BPEL4WS Sample for Beginning of E-Mail Voting Process

6.2 The First Sub-Process
Figure 95 shows the details of the “Discussion Cycle” as an Expanded Sub-Process.

Figure 95 “Discussion Cycle” Sub-Process Details

The Sub-Process starts of with a Task for the Issue List Manager to send an e-mail to the
working group that a set of Issues are now open for discussion through the working group’s
message board. Since this Task sends a message to an outside Participant (the working

<assign>
<copy>
<from expression=

"bpws:getVariableProperty(ProcessData,LoopCounter)+1"/>
<to variable="processData" part="LoopCounter"/>

</copy>
</assign>

</sequence>
</while>
<!--This calls the first another derived process to handle the rest of the

work-->
<invoke name="DerivedProcess2" partnerLink="Internal"

portType="tns:processPort"
operation="callDerivedProcess2" inputVariable="processData"/>

</sequence>
</process>
<!--A lot of other activity follows (not shown)-->

7 Days

Yes

E-Mail
Discussion
Deadline
WarningDelay 6 days from

Announcement

Announce
Issues for
Discussion

Moderate
Conference Call

Discussion

Conference
Call in

Discussion
Week?

Wait until
Thursday, 9am

Check Schedule
for Conference

Call

Evaluate
Discussion
Progress

Moderate E-mail
Discussion

Discussion Cycle

Allow 1 week for the
discussion of the Issues —

through e-mail or calls

This Task returns
the value of the

DiscussionOver to
True or False

The Sub-Process will repeat
of the DiscussionOver

variable is False

No

Issue Voting List
[0 to 5 Issues]

Working Group
Schedule
Copyright  2003, BPMI.org All Rights Reserved 133 / 189

6.2 The First Sub-Process BPMN Working Draft
6.1.1 Mapping to BPEL4WS
group members), an outgoing Message Flow is seen from the “Discussion Cycle” Sub-
Process to the “Voting Members” Pool in Figure 92. Basically, the working group will be
discussing the issues for one week and proposing additional solutions to the issues. After
the first Task, three separate parallel paths are followed, which are synchronized
downstream. This is shown by the three outgoing Sequence Flow for that activity.

The top parallel path in the figure starts with a long-running Task, “Moderate E-mail
Discussion,” that has a Timer Intermediate Event attached to its boundary. Although the
“Moderate E-Mail Discussion” Task will never actually be completed normally in this model,
there must be an outgoing Sequence Flow for the Task since Start and End Events are
being used within the Process. This Sequence Flow will merged with the Sequence Flow
that comes from the Timer Intermediate Event. A merging Exclusive Gateway is used in this
situation because the next object is a joining Parallel Gateway (the diamond with the cross
in the center) that is used to synchronize the three parallel paths. If the merging Gateway
was not used and both Sequence Flow connected to the joining Gateway, the Process
would have been stuck at the joining Gateway that would wait for a Token to arrive from
each of the incoming Sequence Flow.

The middle parallel path of the fork contains an Intermediate Event and a Task. A Timer
Intermediate Event used in the middle of the Process flow (not attached to the boundary of
an activity) will cause a delay. This delay is set to 6 days. The “E-Mail Discussion Deadline
Warning” Task will follow. Again, since this Task sends a message to an outside Participant,
an outgoing Message Flow is seen from the “Discussion Cycle” Sub-Process to the “Voting
Members” Pool in Figure 92.

The bottom parallel path of the fork contains more than one object, first of which is Task
where the issue list manager checks the calendar to see if there is a conference call this
week. The output of the Task will be an update to the variable “ConCall,” which will be true
or false. After the Task, an Exclusive Gateway with its two Gates follows. The Gate for
labeled “default” flows directly to an merging Exclusive Gateway, for the same reason as in
the top parallel path. The Gate for the “Yes” Sequence Flow will have a condition that
checks the value of the “ConCall” variable (set in the previous Task) to see if there will be a
conference call during the coming week. If so, the Timer Intermediate Event indicates
delay, since all conference calls for the working group start at 9am PDT on Thursdays. The
Task for moderating the conference call follows the delay, which is followed the merging
Gateway.

The merging Gateways in the top and bottom paths and the “E-Mail Discussion Deadline
Warning” Task all flow into a joining Gateway. This Gateway waits for all three paths to
complete before the Process flows to the next Task, “Evaluate Discussion Progress.” The
issue list manager will review the status of the issues and the discussions during the past
week and decide if the discussions are over. The DiscussionOver variable will be set to
TRUE or FALSE, depending on this evaluation. If the variable is set to FALSE, then the
whole Sub-Process will be repeated, since it has looping set and the loop condition will test
the DiscussionOver variable.
134 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 6. BPMN by Example
6.2.1 Mapping to BPEL4WS
6.2.1 Mapping to BPEL4WS
• The “Discussion Cycle” Sub-Process itself maps to a BPEL4WS process.

Because it is a Sub-Process within a higher-level Process (the “E-Mail Voting” Process), it
is invoked from the higher-level Process. The invoke sends a message from one (higher-
level) BPEL4WS process to the other (lower-level) process for instantiation.

• This means that the process being instantiated must have a receive to start it off.

The receive is not actually shown in the BPMN Diagram, but it is derived from this invoke-
receive relationship of “Discussion Cycle” Process being a Sub-Process to the “E-Mail
Voting” Process.

• Given this, the activity of the BPEL4WS process will be a sequence with the derived
receive as the first activity.

The Diagrams elements of Figure 95 will determine the remaining activity(ies) of the
sequence.

• The Sub-Process starts off with a Task, which maps to a BPEL4WS invoke (which is
after the automatically generated receive that starts the process).

• After the first Task, three separate parallel paths are followed. The forking of the flow
marks the start of a BPEL4WS flow. The flow will extend until the Parallel Gateway,
which joins the three paths.

The Upper Parallel Path
In the upper parallel path of the fork, the Task, “Moderate E-mail Discussion,” has a Timer
Intermediate Event attached to its boundary. Because of this,

• the Task is placed in its own scope with a faultHandler.

• The Task itself is mapped to a BPEL4WS invoke (synchronous), and will be placed in a
lower-level flow, for reasons described below.

The lower-level flow will be listed in the higher-level flow without a source sub-element.
This means that the lower-level flow will be instantiated when the higher-level flow begins
since it has no dependencies on any other activity. The Timer Intermediate Event must be
set up to create a fault at the appropriate time. To do this,

• a lower-level flow is created that contains the above invoke plus a sequence that
contains a wait.

• The wait is set to the duration that is defined in the Timer Intermediate Event.

• After the wait, a throw creates a fault name after the Intermediate Event with “_fault”
appended.

The catch of the faultHandler will be triggered by the fault generated by the above throw.
Since the Timer Intermediate Event leads direction to the Exclusive Gateway, there is no
specific activity that must be performed in response the to time-out. The main purpose is to
exit the Task. Thus,

• the catch will contain an empty activity.
Copyright  2003, BPMI.org All Rights Reserved 135 / 189

6.2 The First Sub-Process BPMN Working Draft
6.2.1 Mapping to BPEL4WS
The Middle Parallel Path
The middle parallel path of the fork has a string of two objects.

• Even though this series of objects appears in the middle of a BPEL4WS flow, they will
be place within a sequence element.

In these situations, the sequence will continue until there is a location in the Diagram where
there are multiple incoming Sequence Flow. When more than one Sequence Flow
converge it marks the end of a BPEL4WS structure (as determined by structures that have
been created by upstream objects). In this case, the Parallel Gateway also marks the end
of the higher-level flow. The sequence will be listed in the higher-level flow without a source
sub-element. This means that the sequence will be instantiated when the higher-level flow
begins since it has no dependencies on any other activity. The sequence will have two
activities:

• First, the Timer Intermediate Event used in this situation will map to a BPEL4WS wait
(set to 6 days).

• Second, the “E-Mail Discussion Deadline Warning” Task will map to an invoke that
follows the wait. In addition, this invoke can be asynchronous since a response is not
required. This means that the outputVariable will not be included.

This middle path of the fork could have been configured in BPEL4WS without a sequence
and with links instead. This is an example of a situation where a BPMN configuration may
derive two possible BPEL4WS configurations. Since both BPEL4WS configurations will
handle the appropriate behavior, it is up to the implementation of the BPMN to BPEL4WS
derivation to determine which configuration will be used. BPMN does not provide any
specific recommendation in these situations. However, the lower parallel path of the
Process can also be modeled with a sequence or with links, and, to show how links would
be used, this section of the Process will be mapped to elements in a flow that have
dependencies specified by links.

The Lower Parallel Path
The lower parallel path of the fork has a number of objects and, as just described above,
will be mapped to BPEL4WS elements connected with links. The path also contains a
Decision, which can map to a switch, as will happen later in the process, but in this situation
the Decision is mapped to links controlled by transitionConditions.

• The first object is a Task, which will map to an invoke (synchronous) that has two target
elements referring to two of the links. There are two Target links because the Task is
followed by the Gateway with its two Gates. This is done instead of a switch with a case
and an otherwise.

• The ConditionExpression for the Gate labeled “Yes” will map to the target element’s
transitionCondition. The expression checks the value of the “ConCall” property (set
in the previous Task) to see if there will be a conference call during the coming
week.

• The Gate labeled “No” has a condition of default. For a switch, this would map to the
otherwise element. However, since a switch is not being used, the target element’s
transitionCondition must be the inverse of all the other transitionConditions for the
activity. The expression of the other target will be placed inside a “not” function.
136 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 6. BPMN by Example
6.2.1 Mapping to BPEL4WS
The invoke will be listed in the higher-level flow without a source sub-element. This means
that the invoke will be instantiated when the higher-level flow begins since it has no
dependencies on any other activity. The remaining elements of the higher-level flow will
have a source element. Thus, they will not be instantiated until the source of the link has
completed.

• The “Yes” Gate from the Gateway leads to a Timer Intermediate Event, which will map
to a wait.

• The for element of the wait will set to for 9am PDT on the next Thursday.

• This wait will have a source element that corresponds to the target element from the
previous invoke.

• The wait will also have a target element to link to the following invoke.

• The “No” Gate from the Gateway leads to a merging Exclusive Gateway, which means
that nothing is expected to happen down this path. Thus, this will map to an empty.

• This empty will have a source element that corresponds to the target element from
the previous invoke.

• The Task for moderating the conference call follows the wait, which will map to an
invoke (synchronous).

• This invoke will have a source element that corresponds to the target element from
the previous wait.

There are three link elements in the flow:

• One link will have a source of the first invoke and a target of the wait.

• One link will have a source of the first invoke and a target of the empty.

• One link will have a source of the first wait and a target of the last invoke.

As mentioned above, the Parallel Gateway marks the end of the flow.

After the Parallel Paths are Joined
The Task “Evaluate Discussion Progress” is intended to occur only when all the parallel
paths have completed, and thus, it will

• Map to an invoke that follows the closing of the flow.
Copyright  2003, BPMI.org All Rights Reserved 137 / 189

6.2 The First Sub-Process BPMN Working Draft
6.2.1 Mapping to BPEL4WS
BPEL4WS Sample for the First Sub-Process
Example 2 displays some sample BPEL4WS code that reflects the portion of the Process
as described above and shown in Figure 95.

<process name="DiscussionCycle">
<!-- The Process data is defined first-->
<sequence>
<receive partnerLink="Internal" portType="tns:processPort"

 operation="callDiscussionCycle" variable="processData"
 createInstance="Yes"/>

<invoke name="AnnounceIssuesforDiscussion" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendDiscussionAnnouncement"
InputVariable="processData"/>

<flow>
<links>
<link name="CheckCalendarforConferenceCalltoWaituntilThursday,9am"/>
<link name="CheckCalendarforConferenceCalltoEmpty"/>
<link name="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</links>
<!-- This is the first of the three paths of the fork. -->
<scope>
<flow>
<invoke name="ModerateEmailDiscussion" partnerLink="internal"

portType="tns:internalPort" operation="sendDiscussion"
InputVariable="processData"
outputVariable="processData"/>

<sequence>
<wait name="7days" for="tns:OneWeek"/>
<throw faultName="7days_fault"/>

</sequence>
</flow>
<faultHander>
<catch faultName="7days_fault">
<empty/>

</catch>
</faultHander>

</scope>
<!-- This is the second of the three paths of the fork. -->
<sequence>
<wait name="Delay6daysfromDiscussionAnnouncement" for="P6D"/>
<invoke name="EMailDiscussionDeadlineWarning" partnerLink="WGVoter"

 portType="tns:emailPort" operation="sendDiscussionWarning"
 InputVariable="processData">

</invoke>
</sequence>
138 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 6. BPMN by Example
6.2.1 Mapping to BPEL4WS
Example 2 BPEL4WS Sample of “Discussion Cycle” Sub-Process Details

6.3 The Second Sub-Process
Figure 96 shows the next section of the Process, which includes the expanded details of
the “Collect Votes” Sub-Process.

<!-- This is the third of the three paths of the fork. -->
<invoke name="CheckCalendarforConferenceCall" partnerLink="internal"

portType="tns:internalPort" operation="receiveCallSchedule"
InputVariable="processData" outputVariable="processData">

<target linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am"
 transitionCondition="bpws:getVariableProperty(processData,conCall)

=true"/>
<target linkName="CheckCalendarforConferenceCalltoEmpty"

transitionCondition="not(bpws:getVariableProperty(processData,
conCall)=true)"/>

</invoke>
<!-- name="Yes" -->
<wait name="WaituntilThursday9am" for="P6DT9H">
<source linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am">
<target linkName="WaituntilThursday9amtoModerateConferenceCall

 Discussion"/>
</wait>
<invoke name="ModerateConferenceCallDiscussion" partnerLink="internal"

 portType="tns:internalPort" operation="sendConCall"
 InputVariable="processData" outputVariable="processData">

<source linkName="WaituntilThursday9amtoModerateConferenceCall
 Discussion"/>

</invoke>
<!-- name="otherwise" -->
<empty>
<source linkName="CheckCalendarforConferenceCalltoEmpty"/>

</empty>
</flow>
<invoke name="EvaluateDiscussionProgress" partnerLink="internal"

portType="tns:internalPort"
operation="receiveDiscussionStatus"
InputVariable="processData"
outputVariable="processData"/>

</sequence>
</process>
Copyright  2003, BPMI.org All Rights Reserved 139 / 189

6.3 The Second Sub-Process BPMN Working Draft
6.2.1 Mapping to BPEL4WS

Figure 96 “Collect Votes” Sub-Process Details

This part of the process starts out with a Task for the issue list manager to send out an e-
mail to announce to the working group, and the voting members in particular, which lets
them know that the issues are now ready for voting. Since this Task sends a message to an
outside Participant (the working group members), an outgoing Message Flow is seen from
the “Announce Issues for Vote” Task to the “Voting Members” Pool in Figure 92. This Task
is also a target for one of the complex loops in the Process.

The “Collect Votes” Sub-Process follows the Task, and is also a target of one of the looping
Sequence Flows. This Sub-Process is basically a set of four parallel paths that extend from
the beginning to the end of the Sub-Process.

The first branch of the fork leads to a Decision that determines whether or not a conference
call will occur during the upcoming week, after the Working Group’s schedule has been
checked. Basically, if there was a call last week, then there will not be a call this week and
vice versa. The appropriate variable that was updated in the “Discussion Cycle” Process
will be used again.

Announce
Issues for Vote

Yes

Prepare
Results

E-Mail Results
of Vote

Moderate E-mail
Discussion

Increment TallyReceive Vote

Conference
Call in Voting

Week?

Moderate
Conference Call

Discussion

E-Mail Vote
Deadline Warning

Delay 6 Days

A Loop:
From Unnamed

Sub-Process
(parallel box)

A Loop:
From Task:

"Re-announce Vote with
warning to voting members"

To Decision:
"Did Enough

Members Vote?"

From Sub-Process:
"Discussion Cycle"

Collect Votes

Timed Out
[1 week]

Issue Votes

Wait until
Thursday, 9am

No

Vote Vote Tally

Check Schedule
for Conference

Call

Working Group
Schedule
140 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 6. BPMN by Example
6.3.1 Mapping to BPEL4WS
The second and third branches forks work the same way as the similar activities in the
“Discussion Cycle” Sub-Process, except that the “Moderate E-Mail Discussion” Task does
not have a Timer Intermediate Event attached. This is not necessary since the whole Sub-
Process is interrupted after 7 days through the Intermediate Event attached to the Sub-
Process boundary. The “E-Mail Vote Deadline Warning” Task sends a message to an
outside Participant (the working group members), thus, an outgoing Message Flow is seen
from the “Collect Votes” Sub-Process to the “Voting Members” Pool in Figure 92.

The fourth branch of the fork is rather unique in that the Diagram uses a loop that does not
utilize a Decision. Thus, it is, as it is intended to be, an infinite loop. The policy of the
working group is that voting members can vote more than once on an issue; that is, they
can change their mind as many times as they want throughout the entire week. The first
Task in the loop receives a message from the outside Participant (the working group
members), thus, an incoming Message Flow is seen from the “Voting Members” Pool to the
“Collect Votes” Sub-Process in Figure 92. The Timer Intermediate Event attached to the
boundary of the Sub-Process is the mechanism that will end the infinite loop, since all work
inside the Sub-Process will be ended when the time-out is triggered. All the remaining work
of the Process is conducted after the time-out and flows from the Timer Intermediate Event.

Figure 96 shows that there are Two Tasks that follow the time-out. First, a Task will prepare
all the voting results, then a Task will send the results to the voting members. A Document
Object, “Issue Votes,” is shown in the Diagram to illustrate how one might be used, but it
will not map to anything in the execution languages. The remaining activities of the Process
will be described in the next section.

6.3.1 Mapping to BPEL4WS

The Loops Cause Derived Sub-Processes
• The first Task of this section of the Process is also a target for one of the complex loops

in the Process, thus, it will map to an invoke (asynchronous) that is placed inside
another derived process (“DerivedProcess2”).

• This derived process will be invoked from “DerivedProcess1,” after the “Discussion
Cycle” process has been completed, as part of the normal flow and then from another
part of the Process as part of the looping flow.

• Thus, “DerivedProcess2” will require a (instantiation) receive to accept the message
from “DerivedProcess1” and from “DerivedProcess4” (as we shall see later).

• The “Collect Votes” Sub-Process follows the Task, but is also a target of one of the
looping Sequence Flows. Thus, it will also be set inside a derived process
(“DerivedProcess3”).

• In addition, “DerivedProcess3” will require a (instantiation) receive to accept the
message from “DerivedProcess2” and from the fault handler of “Collect Votes” (as
we shall see later).

• The “Collect Votes” Sub-Process will map to an invoke (asynchronous) and the details
will be in a process referenced through the invoke.
Copyright  2003, BPMI.org All Rights Reserved 141 / 189

6.3 The Second Sub-Process BPMN Working Draft
6.3.1 Mapping to BPEL4WS
The BPEL4WS Sample of the Derived Sub-Processes
Example 3 shows sample BPEL4WS code that defines the two derived processes.

Example 3 BPEL4WS Sample that sets up the Access for the Second Sub-Process

The Paths of the Sub-Process
The “Collect Votes Sub-Process is basically a set of four parallel paths that extend from the
beginning to the end of the Sub-Process.

• Thus, the activity for the process will be a flow.

The Upper Parallel Path
The first branch of this Sub-Process is basically the same as the upper parallel of the
previous Sub-Process. An invoke, a wait, and an empty will be created. In addition, three
links will be created to handle the dependencies between the elements, including the
branching created by the Exclusive Gateway. Refer to the section entitled “The Lower
Parallel Path” on page 136 for the details of the mappings.

<process name="DerivedProcess2">
<!-- This starts the middle section of the Process and is call from

the first time and then from “Collect Votes” during a loop-->
<!-- The Process data is defined first-->
<sequence>
<receive partnerLink="Internal" portType="tns:processPort"

operation="callDerivedProcess2" variable="processData"
createInstance="Yes"/>

<invoke name="AnnounceIssuesforVote" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendVoteAnnouncement"
InputVariable="processData"/>

<invoke name="DerivedProcess3" partnerLink="Internal"
portType="tns:processPort" operation="callDerivedProcess3"
InputVariable="processData"/>

</sequence>
</process>

<process name="DerivedProcess3">
<!-- this calls the second Sub-Process and then continues. It is also

 called from “Collect Votes” as part of a loop-->
<!-- The Process data is defined first-->
<sequence>
<receive partnerLink="Internal" portType="tns:processPort"

 operation="callDerivedProcess3" variable="processData"
 createInstance="Yes"/>

<invoke name="CollectVotes" partnerLink="Internal"
 portType="tns:processPort" operation="callCollectVotes"
 InputVariable="processData"/>

</sequence>
</process>
142 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 6. BPMN by Example
6.3.1 Mapping to BPEL4WS
The Middle Two Parallel Paths
The second and third branches of the fork are rather straightforward mappings of:

• Two Tasks to invokes (one synchronous and one asynchronous), and

• A Timer Intermediate Event to a delay.

• In addition, one link is created so that one of the invokes will wait for the delay.

The Lower Parallel Path
The fourth branch of the fork is the location the infinite loop.

• This loop will map to a BPEL4WS while with a condition of “1!=0,” which will always be
false.

• Inside the while is a sequence of two invokes (one synchronous and one
asynchronous), which are mapped from the two Tasks in the loop.

Exiting the Second Sub-Process
To exit out of the infinite loop and the whole “Collect Votes” Sub-Process,

• a scope will be wrapped around the main flow of the process, which will include a
faultHandler.

The Timer Intermediate Event must be set up to create a fault at the appropriate time. To do
this,

• A higher-level flow is created that contains the activities of the Sub-Process with the
addition of a sequence.

• The sequence contains a wait. The wait is set to the duration that is defined in the
Timer Intermediate Event.

• After the wait, a throw creates a fault name after the Intermediate Event with “Fault”
appended.

The catch element of the faultHandler will be triggered by the fault generated by the above
throw.

• The activity for the catch will be a sequence and will be the source of all the remaining
activities of the Process, since all the remaining Sequence Flow begins from the Timer
Intermediate Event.

• The first two Tasks, as shown in the figure, will map to invokes (one synchronous
and the other asynchronous).

The Document Object shown in the figure is not mapped into BPEL4WS. The remainder of
the Process will be described in the next section.
Copyright  2003, BPMI.org All Rights Reserved 143 / 189

6.3 The Second Sub-Process BPMN Working Draft
6.3.1 Mapping to BPEL4WS
BPEL4WS Sample for the Second Sub-Process
Example 4 shows sample BPEL4WS code that defines the “Collect Votes” Sub-Process.

<process name="CollectVotes">
<!--This is a nested process for the E-Mail Voting collection. It consists of

an all and a faultHandler (for a timeout). The all will never complete
normally since there is an infinite loop inside. The timeout is intended to
be the normal way of ending the process-->

<sequence>
<receive partnerLink="Internal" portType="tns:processPort"

operation="callCollectVotes" variable="processData"
createInstance="Yes"/>

<scope>
<flow>
<sequence>
<wait name="7days" for="P7D"/>
<throw faultName="7daysFault"/>

</sequence>
<flow>
<links>
<link name="Delay6daysfromVoteAnnouncementtoEMailVote

DeadlineWarning"/>
<link name="CheckCalendarforConferenceCalltoWaituntilThursday9am"/>
<link name="CheckCalendarforConferenceCalltoEmpty"/>
<link name="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</links>
<!--This is the first of the four paths of the fork. -->
<invoke name="CheckCalendarforConferenceCall" partnerLink="internal"

portType="tns:internalPort" operation="receiveCallSchedule"
InputVariable="processData" outputVariable="processData">

<target linkName="CheckCalendarforConferenceCalltoWait
untilThursday9am"

 transitionCondition="bpws:getVariableProperty(processData,
conCall)=true"/>

<target linkName="CheckCalendarforConferenceCalltoEmpty"
transitionCondition="not(bpws:getVariableProperty(processData,

conCall)=true)"/>
</invoke>
<!-- name="Yes" -->
<wait name="WaituntilThursday9am" for="P6DT9H">
<source linkName=

"CheckCalendarforConferenceCalltoWaituntilThursday9am">
<target linkName="WaituntilThursday9amtoModerateConferenceCall

 Discussion"/>
</wait>
<invoke name="ModerateConferenceCallDiscussion" partnerLink="internal"

 portType="tns:internalPort" operation="sendConCall"
 InputVariable="processData" outputVariable="processData">

<source linkName="WaituntilThursday9amtoModerateConferenceCall
 Discussion"/>

</invoke>
<!-- name="otherwise" -->
144 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 6. BPMN by Example
6.3.1 Mapping to BPEL4WS
Example 4 BPEL4WS Sample of the Second Sub-Process

<empty>
<source linkName="CheckCalendarforConferenceCalltoEmpty"/>

</empty>
<!-- This is the second of the four paths of the fork. -->
<invoke name="ModerateEMailDiscussion" partnerLink="internal"

 portType="tns:internalPort" operation="sendDiscussion"
 InputVariable="processData"
 outputVariable="processData"/>

<!--This is the third of the four paths of the fork.-->
<wait name="Delay6daysfromVoteAnnouncement" for="P6D">
<target linkName="Delay6daysfromVoteAnnouncementtoEMailVote

 DeadlineWarning"/>
</wait>
<invoke name="EMailVoteDeadlineWarning" partnerLink="WGVoter"

 portType="tns:emailPort" operation="sendVoteWarning"
 InputVariable="processData">

<source linkName="Delay6daysfromVoteAnnouncementtoEMailVote
 DeadlineWarning"/>

</invoke>
<!--This is the fourth of the four paths of the fork. This branch of the

all is intended to be an infinite loop that is eventually
interrupted by the Time Out. This is necessary since any voter can
change their vote until the deadline. -->

<while condition="1!=0">
<sequence>
<receive name="ReceiveVote" partnerLink="WGVoter"

 portType="tns:emailPort" operation="receiveVote"
 variable="processData"/>

<invoke name="IncrementTally" partnerLink="internal"
 portType="tns:internalPort" operation="sendReceiveTotal"
 InputVariable="processData" outputVariable="processData"/>

</sequence>
</while>

</flow>
</flow>
<faultHander>
<catch faultName="7 days_fault">
<!-- The BPMN Diagram shows that the Timer Intermediate Event connects

directly to the rest of the Process. Thus, they will show up in
this activity set. -->

<sequence>
<invoke name="PrepareResults" partnerLink="internal"

portType="tns:internalPort" operation="sendReceiveResults"
InputVariable="processData" outputVariable="processData"/>

<invoke name="EMailResultsofVote" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendVotingResults"
InputVariable="processData"/>

<!--the rest of the process is not shown-->
</faultHander>

</scope>
</sequence>

</process>
Copyright  2003, BPMI.org All Rights Reserved 145 / 189

6.4 The End of the Process BPMN Working Draft
6.3.1 Mapping to BPEL4WS
6.4 The End of the Process
Figure 97 shows the last section of the Process, which includes a complex set of Decisions
and loops.

Figure 97 The last segment of the E-Mail Voting Process

This segment of the Process continues from where the last segment left off (as described in
the section above). It contains four Decisions that interact with each other and create loops
to upstream activities.

Yes

No

Yes

2nd
Time?

Issues w/o
Majority?

Reduce to
Two Solutions

E-Mail Voters
that have to

Change Votes

Did Enough
Members

Vote?

Have the
members

been warned?

Reduce number of
Voting Members
and Recalculate

Vote

Re-announce
Vote with

warning to voting
members

From Task:
"E-Mail Results of

Vote"

To Sub-Process:
"Collect Votes"

To Sub-Process:
"Discussion Cycle"

To Task:
"Announce Issues

for Vote"

No

Yes No

No
146 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 6. BPMN by Example
6.4.1 Mapping to BPEL4WS
The first Decision, “Did Enough Members Vote?,” is necessary since two-thirds of the
voting members are required to approve any solution to an issue. If less than two-thirds of
the voting members cast votes, which sometimes happens, the issues can’t be resolved.
This Decision flows to another Decision for both of its Alternatives. The “No” Alternative is
followed by the “Have the Members been Warned?” Decision. If a voting member misses a
vote, they are warned. If they miss a second vote, they lose their status as a voting member
and the voting percentages are recalculate through a Task (“Reduce number of Voting
Members and Recalculate Vote”). If they haven’t yet been warned, then a warning is sent
and the voting week is repeated.

If all issues are resolved, then the Process is done. If not, then another Decision is
required. The voting is given two chances before it goes back to another cycle of
discussion. The first time will see a reduction of the number of solutions to the two most
popular based on the vote (more if there are ties). Some voting members will have to
change their votes just because their solution is no longer valid. These two activities are
placed in a Sub-Process to show how a Sub-Process without Start and End Events can be
used to create a simple set of parallel activities. Informally, this is called a “parallel box.” It is
not a special object, but another use of Sub-Processes. For simple situations, it can be
used to show a set of parallel activities without the extra clutter of a lot of Sequence Flows.
In actuality, these two Tasks cannot actually be done in parallel, but they are modeled this
way to highlight the optional use of Start and End Events.

After the parallel box, the flow loops back to the “Collect Votes” Sub-Process. If there
already has been two cycles of voting, then the process flows back to the “Decision Cycle”
Sub-Process.

6.4.1 Mapping to BPEL4WS
As mentioned above, the entire contents of this segment follow a Timer Intermediate Event,
which means they are contained in the faultHandler of the scope within the “Collect Votes”
process.

• Each of the Decisions in this section will map to a BPEL4WS switch.

The First Decision
The first Decision, “Did Enough Members Vote?,” flows to another Decision for both of its
Alternatives.

• Thus, each of the switch cases will contain another switch.

The “No” Alternative is followed by the “Have the Members been Warned?” Decision.

• Each Alternative from this Decision is followed by a Task, which maps to Invokes (one
synchronous and the other asynchronous).

The “No (default)” Alternative leads to a loop.

• This looping is handled by using an invoke (asynchronous) to the “DerivedProcess3”
process, which was created just for the purpose of this loop (since it is in the context of
a more complex looping situation).

Notice that the “Issues w/o Majority?” Decision can be reached through the alternative
paths from two different Decisions. This creates a situation that has two impacts on the
Mapping to Execution Languages. First, it creates a section of the Process in which the
Copyright  2003, BPMI.org All Rights Reserved 147 / 189

6.4 The End of the Process BPMN Working Draft
6.4.1 Mapping to BPEL4WS
Alternatives from two Decisions overlap. This is possible in a graph-structured Diagram like
BPMN, but in a block-structured (and acyclic) language like BPEL4WS, these two sections
cannot overlap because they have different block boundaries. This means that this section
must be repeated in some way in both of the appropriate switch case activities. All these
elements could be actually duplicated or they can be separated into a derived process and
then invoked from the appropriate place. The later method was used in this example (see
Example 5 and Example 6).

Note: At this point, BPMN does not specify whether a reused section of a BPMN
Diagram should map to a derived process that is invoked from each location of
duplication, or whether the section should remain intact and be duplicated in each
appropriate location. This is left up to the specific implementation of BPMN since
both solutions will behave equivalently.

The second impact of the multiple incoming Sequence Flows into the “Issues w/o Majority?”
Decision has to do with how the three visible loops are created (actually there are five
loops). Normally, Sequence Flow loops will map to a BPEL4WS while. If there are multiple
loops in the Process they have to be physically separated or completely nested because of
the block-structured nature of the BPEL4WS looping elements. The alternative paths of the
Decisions cannot be mixed and still maintain the BPEL4WS blocks they way that the end of
the “E-mail Voting” Process mixes the paths.

A different type of looping mechanism is required. This method requires the creation of a
set of derived processes that can reference each other and also themselves. In this way, a
block-structured language can simulate a set of interleaving loops (as seen in a graph-
structured Diagram).

• Thus, in this BPMN example, derived processes were created to mark places where
loops can be targeted within the BPEL4WS code from the “downstream” elements.

• A BPEL4WS invoke (asynchronous) is used to re-perform activities that had already
been executed in the process.

Note: A synchronous invoke could also be used to access the processes to perform
the loop. With a synchronous invoke, the source process would remain active until
the target process (and any other loops that follow) have been completed before it
also completes. With an asynchronous invoke, the source process would complete
immediately, reducing the number of active BPM system resources. At this point,
BPMN does not specify whether an asynchronous invoke or a synchronous invoke
should be used in this situation.
148 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 6. BPMN by Example
6.4.1 Mapping to BPEL4WS
BPEL4WS Sample for the End of the Process
Example 5 displays the BPEL4WS code for first part of the end of the “E-Mail Voting
Process.”

<!--This segment of the code is within the context of the “Collect
Votes” nested process-->

<catch property="tns:OneWeek" type="duration">
<!--The BPMN Diagram shows that the Timer Intermediate Event connects

directly to the rest of the Process. Thus, they will show up in this
activity set-->

<!--The first two actions are not shown-->
<sequence>
<invoke name="PrepareResults" partnerLink="internal"

 portType="tns:internalPort" operation="sendReceiveResults"
 InputVariable="processData" outputVariable="processData"/>

<invoke name="EMailResultsofVote" partnerLink="WGVoter"
 portType="tns:emailPort" operation="sendVotingResults"
 InputVariable="processData"/>

<switch name="DidEnoughMembersVote">
<!-- name="No" -->
<case condition="bpws:getVariableProperty(ProcessData,NumVoted)>

(.7)*(bpws:getVariableProperty(ProcessData,NumVWGM))">
<switch name="Havethemembersbeenwarned">
<!-- name="Yes" -->
<case condition="bpws:getVariableProperty(ProcessData,VotersWarned)

=true">
<sequence>
<invoke name="ReducenumberofVotingMembersandRecalculateVote"

 partnerLink="internal" portType="tns:internalPort"
 operation="sendReceiveNumVoters"
 InputVariable="processData"
 outputVariable="processData"/>

<!--Some elements of the process were separated into a derived
 process since they would have been repeated. They would have
 been repeated because they are arrived by alternative paths that
 do not close a set of alternative paths. -->

<invoke name="DerivedProcess4" partnerLink="Internal"
portType="tns:processPort" operation="callDerivedProcess4"
InputVariable="processData"/>

</sequence>
</case>
<!-- name="No (otherwise)" -->
<otherwise>
<sequence>
<invoke name="ReannounceVotewithwarningtovotingmembers"

partnerLink="WGVoter" portType="tns:emailPort"
operation="sendReannounceVote" InputVariable="processData"
outputVariable="processData"/>
Copyright  2003, BPMI.org All Rights Reserved 149 / 189

6.4 The End of the Process BPMN Working Draft
6.4.1 Mapping to BPEL4WS
Example 5 Sample BPEL4WS code for the last section of the Process

Example 6 shows the BPEL4WS code for the Process from the “Issues w/o Majority?”
Decision until the end of the Process or loops.

• The mappings are a fairly straightforward set of switches.

If all issues are resolved, then the Process is done. If not, then another Decision is
required.

• The “parallel box,” as is any forking situation, will map to a BPEL4WS flow.

After the parallel box, the flow loops back to the “Collect Votes” Sub-Process.

• This looping is handled by using an invoke (asynchronous) to the “DerivedProcess2”
process, which was created just for the purpose of this loop.

If there has already been two cycles of voting, then the process flows back to the “Decision
Cycle” Sub-Process.

• This looping is handled by using an invoke (asynchronous) to the “DerivedProcess1”
process, which was created just for the purpose of this loop.

<invoke name="DerivedProcess3" partnerLink="Internal"
portType="tns:processPort" operation="callDerivedProcess3"
InputVariable="processData"/>

</sequence>
</otherwise>

</switch>
</case>
<!-- name="Yes (otherwise)" -->
<otherwise>
<!-- Some elements of the process were separated into a derived process

since they would have been repeated. They would have been repeated
because they are arrived by alternative paths that do not close a
set of alternative paths. -->

<invoke process="DerivedProcess4" partnerLink="Internal"
portType="tns:processPort" operation="callDerivedProcess4"
InputVariable="processData"/>

</otherwise>
</switch>

</sequence>
</catch>
150 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 6. BPMN by Example
6.4.1 Mapping to BPEL4WS
Example 6 Sample BPEL4WS code for derived process for repeated elements

<process name="DerivedProcess4">
<sequence>
<receive partnerLink="Internal" portType="tns:processPort"

 operation="callDerivedProcess4" variable="processData"
 createInstance="Yes"/>

<switch name="IssueswoMajority">
<case name="Yes" condition="NoMajority=true">
<switch name="2ndTime">
<!-- name="Yes" -->
<case condition="bpws:getVariableProperty(ProcessData,VotedOnce)

=true">
<!--This is done to do the complex looping situation. -->
<invoke name="DerivedProcess1" partnerLink="Internal"

portType="tns:processPort" operation="callDerivedProcess1"
InputVariable="processData"/>

</case>
<!-- name="No (otherwise)"-->
<otherwise>
<sequence>
<flow>
<invoke name="ReducetoTwoSolutions" partnerLink="internal"

portType="tns:internalPort"
operation="sendReceiveSolutions"
InputVariable="processData"
outputVariable="processData"/>

<invoke name="EMailVotersthathavetoChangeVotes"
partnerLink="WGVoter" portType="tns:emailPort"
operation="sendVoteWarning" InputVariable="processData"/>

</flow>
<invoke process="DerivedProcess2" partnerLink="Internal"

portType="tns:processPort" operation="callDerivedProcess2"
InputVariable="processData"/>

</sequence>
</otherwise>

</switch>
</case>
<otherwise name="Nootherwise">
<!-- This is one of the two ways to the end of the Process. -->
<empty/>

</otherwise>
</switch>

</sequence>
</process>
Copyright  2003, BPMI.org All Rights Reserved 151 / 189

6.4 The End of the Process BPMN Working Draft
6.4.1 Mapping to BPEL4WS
152 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft
7. Mapping to XML Languages
This section will cover the mappings to BPEL4WS that are derived by analyzing the
relationships between the elements described in the above sections. For example, a
Decision object marks the beginning of a switch, but the end of the switch will have to be
determined by tracing the alternative paths from the Decision and finding the point in the
Process where all the alternative paths have merged, which may be the end of the Process.
The strings of activities that lie between the Decision and the merging point will comprise
the activity sets for each of the switch cases. The location of the final merging point could
be complicated by the inclusion of intermediary Decisions and/or parallel sections of the
Process. BPMN does not include a specific merging object that will be tied one-to-one with
a specific Decision object that will allow the quick identification of the merging point.
Likewise, BPMN does not have paired objects to mark the beginning and end of parallel
activities that would fit into the BPEL4WS flow element. Furthermore, BPMN is cyclical in
that it allows Sequence Flows to connect to upstream objects so that a modeler can easily
visualize looping situations. The exact configuration of these loops will determine how they
are mapped to BPM execution constructions, some of which are acyclic.

To determine the appropriate merging and joining points that are needed to construct
execution language elements such as switch, the configuration of the Process needs to be
analyzed. The mechanism we are proposing is called Token Analysis. This involves the
creation of a conceptual Token that will “traverse” all the Sequence Flows of the Process.
The Token will have a hierarchical TokenID set that will expand/or contract based on the
forking and joining and/or splitting and merging that occurs throughout the Process. By
matching the TokenID set of Tokens that arrive at objects that have multiple incoming
Sequence Flows, it will be possible to determine the boundaries of execution language
structured activities.

Editor’s Note: the finalization of the Mapping to Execution Languages through
Token Analysis is an open issue and will be developed further in a later version of
the specification. Refer to the section entitled “Open Issues” on page 169 for a
complete list of the issues open for BPMN.

7.1 Defining Token Generation for execution
Language Mapping

<for parallel> This means a separate Token will be generated to traverse each of the paths.
Each Token will have two aspects to its identity. The first aspect, called the TokenID, has to
with the single path that is being forked—this identity will be common to all the new Tokens.
The second aspect, called the SubTokenID, which is a TokenID nested with a higher-level
TokenID, will be unique for each the new paths. The start of a business process will have a
single Token with a TokenID. Multiple levels of SubTokenIDs will be created as forks occur
through the Process. The number of SubTokenIDs for each fork will be known. The
TokenID sets will be used to join the Tokens from a given fork back together.
Copyright  2003, BPMI.org All Rights Reserved 153 / 189

7.2 Mapping to BPEL4WS BPMN Working Draft
7.2.1 Events
7.2 Mapping to BPEL4WS
7.2.1 Events

Start Event
If the Start Event has an expression for the assign attribute, then this will map to a
BPEL4WS assign.

Each type of Start Event Trigger will have a different mapping to BPEL4WS:

None: this does not map to any BPEL4WS element.

Message: A receive will be associated with the message defined with the Message
Flow that arrives at the Start Event (see Figure 98).

TBD: add mappings to receive elements.

Figure 98 Message Flow connected to a Start Event

If there is more than one connected to the Start Event, then a BPEL4WS pick will be
required to process the messages with a separate receive for each message. This
means that a single instance of the process will be instantiated when the first
message received through the pick receives arrives.

Note: The modeler does not need to connect the Message Flows to the Start Event
to model this behavior, however. The receipt of the messages could be spelled out
through the modeling of the receiving Tasks as graphical objects (see Figure 99)
and using a None Start Event.

Verify Payment
Type is OK

Order

Approve?

Travel Order
Request
154 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 7. Mapping to XML Languages
7.2.1 Events

Figure 99 Process Instantiation through Message Receiving Task

Timer: TBD.

Rule: TBD.

Link: this will map to the receive element.

Multiple: this will map to a combination of receive elements.

End Event
If the End Event has an expression for the assign attribute, then this will map to a
BPEL4WS assign.

The assign will precede any other BPEL4WS elements that are the result of other
End Event attributes (see below).

Each type of End Event Result will have a different mapping to BPEL4WS:

None: this does not map to any BPEL4WS element. However, it marks the end of a
path within the Process and will be used to define the boundaries of complex
BPEL4WS elements.

Message: A BPEL4WS reply will be associated with the message defined with the
Message Flow that leaves the End Event (see Figure 100).

Figure 100 Message Flow leaving an End Event

Verify Payment
Type is OK

Order

Travel Order
Request

Receive Request Approve?

Default
(New)

Established with
good Credit

Established with
poor Credit

Include Apology
Text

Include History of
Transactions

Include Standard
Text

Rejection
Response

Type of
Customer?

Rejection
Message
Copyright  2003, BPMI.org All Rights Reserved 155 / 189

7.2 Mapping to BPEL4WS BPMN Working Draft
7.2.1 Events
Note: The modeler does not need to connect the Message Flows from the End
Event to model this behavior, however. The sending of the messages could be
modeled through the modeling of the sending Tasks as graphical objects (see
Figure 101)

Figure 101 Message Flow from Task that precedes the End Event

Exception: this will map to a throw element.

Compensation: this will map to a compensate element.

Link: this will map to the invoke element. <more here>

Terminate: this will map to the terminate element.

Return: this does not map a specific BPEL4WS element, but it does mark the end of
the activities that exist within a compensation handler.

Multiple: this will map to a combination of invoke, throw, fault, and compensation
elements.

Intermediate Event
If the Intermediate Event has an expression for the assign attribute, then this will map to
a BPEL4WS assign.

Each type of Intermediate Event Trigger will have a different mapping to BPEL4WS:

Message:

If the Intermediate Event is within the normal flow of the Process: this will map to a
receive.

If the Intermediate Event is attached to the boundary of an activity: this will map to
an onMessage element within a scope.

Timer:

If the Intermediate Event is within the normal flow of the Process: this will map to a
wait.

The TimeDate attribute maps to the until attribute of the wait.

Default
(New)

Established with
good Credit

Established with
poor Credit

Include Apology
Text

Include History of
Transactions

Include Standard
Text

Rejection
Message

Send Rejection
Response

Type of
Customer?
156 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 7. Mapping to XML Languages
7.2.2 Activities
The TimeCycle attribute maps to the for attribute of the wait.

If the Intermediate Event is attached to the boundary of an activity: this will map to a
wait element, followed by a throw. A flow with a scope will also be created to contain
the elements generated from the activity and the Intermediate Event so that they
run in parallel. The scope will have a catch to correspond with the throw. The throw
will also follow the elements generate from the activity so that the flow will end.

Exception: this will map to a catch element within a scope.

Compensation (must be attached to the boundary of an activity): this will map to an
compensationHandler element within a scope.

Rule (must be attached to the boundary of an activity): TBD.

Link (must follow a Decision): this will map to the onMessage element of a pick.

Multiple (must be attached to the boundary of an activity): this will map to a
combination of onMessage, onAlarm, compensationHandler, onSignal, throw, catch,
and wait elements within a context.

7.2.2 Activities

Sub-Process
There are four possibilities, depending on the Message Flows that attach to the Sub-
Process boundary:

A Sub-Process that has no Message Flows attached to its boundary will map to the
BPEL4WS invoke. This will invoke another web service, which is another process.

A Sub-Process that has an incoming Message Flow attached to its boundary will map to
a BPEL4WS receive followed by a BPEL4WS invoke.

A Sub-Process that has an outgoing Message Flow attached to its boundary will map to
the BPEL4WS invoke followed by a BPEL4WS reply.

A Sub-Process that has both an incoming and an outgoing Message Flow attached to
its boundary will map to a BPEL4WS receive followed by a BPEL4WS invoke followed
by a BPEL4WS reply.

Sub-Process properties will map as follows:

For an Independent SubProcessType the modeler will have to create the referenced
Process independently (with a different name) and then assign the Process to the Sub-
Process object. The referenced process will be called with the BPEL4WS invoke.

InputMap will be mapped to an assign that will precede the invoke.

OutputMap will be mapped to an assign that will follow the invoke.

The mapping for the Transaction attribute is TBD.

If the LoopType is Standard then the Sub-Process will be wrapped by a BPEL4WS
while.

A Before TestTime will map to the BPEL4WS while.
Copyright  2003, BPMI.org All Rights Reserved 157 / 189

7.2 Mapping to BPEL4WS BPMN Working Draft
7.2.3 Gateways
An After TestTime will map to the BPEL4WS while. However, to ensure that the
Sub-Process is performed at least once, the activity(s) appropriate for the
SubProcessType will be performed first in a sequence, which will be followed by the
while.

Any value in Maximum will be appended to the LoopCondition. For example with a
LoopCondition of “x < 0” and Maximum of 5 (loops), the final expression would be
“(x < 0) and (<Sub-ProcessName>.Counter <= 5).” An BPEL4WS assign will be
used to update the Counter attribute.

A LoopType of MultiInstance will map to the BPEL4WS while.

Editor’s Note: We have not determined how the Ad Hoc Sub-Process will be
mapped to BPEL4WS.

Task
A Receive TaskType will be mapped to a BPEL4WS receive.

The Instantiate attribute will be mapped to the createInstance element of the receive
element. True will be mapped to yes and False will be mapped to no.

A Send TaskType will be mapped to a BPEL4WS reply or a BPEL4WS invoke (with only
the InputVariable specified)

A Service TaskType will be mapped to a BPEL4WS invoke (with both the InputVariable
and outputVariable specified)

A User TaskType will not have any Message Flows and will map TBD:

The mapping for the Transaction attribute is TBD.

If the LoopType is Standard then the Task will be wrapped by a BPEL4WS while or until.

A Before TestTime will map to the BPEL4WS while.

An After TestTime will map to the BPEL4WS while. However, to insure that the Task
is performed at least once, the activity appropriate for the TaskType will be
performed first in a sequence, followed by the while.

Any value in Maximum will be appended to the LoopCondition. For example with a
LoopCondition of “x < 0” and Maximum of 5 (loops), the final expression would be
“(x < 0) and (<TaskName>.Counter <= 5).” A BPEL4WS assign will be used to
update the Counter attribute.

A LoopType of MultiInstance will be mapped to the BPEL4WS while.

7.2.3 Gateways

Exclusive

Data-Based
A Data-Based Exclusive Decision will map to a BPEL4WS switch.

Each Gate will map to a switch case.
158 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 7. Mapping to XML Languages
7.2.3 Gateways
The Condition for the Sequence Flow associated with the Gate will map to the
condition for a switch case.

The Default Gate will map to the Switch otherwise case.

The activities that follow the conditions will be included within the activity (usually a
sequence) for that condition. The exact content of the activity will depend on the
configuration of the Process. Details of how the configuration will be mapped to the
activity set can be found in the section entitled “Mapping to XML Languages” on
page 153.

Event-Based
An Event-Based Exclusive Gateway will map to a BPEL4WS pick.

A Receive Task, which is the Target of a Sequence Flow associated with the Gate,
will map to an onMessage element within the pick.

The Attributes of the Receive Task will map to the appropriate elements of the
onMessage, such as operation and portType.

A Message Intermediate Event, which is the Target of a Sequence Flow associated
with the Gate, will map to an onMessage element within the pick.

The Attributes of the Message Intermediate Event will map to the appropriate
elements of the onMessage, such as operation and portType.

A Timer Intermediate Event, which is the Target of a Sequence Flow associated with
the Gate, will map to an onAlarm element within the pick.

The Timedate attribute of the Event will map to the until element of the onAlarm
element.

The Timecycle attribute of the Event will map to the for element of the onAlarm
element.

An Exception Intermediate Event, which is the Target of a Sequence Flow
associated with the Gate, will map to TBD.

A Link Intermediate Event, which is the Target of a Sequence Flow associated with
the Gate, will map to TBD.

A Rule Intermediate Event, which is the Target of a Sequence Flow associated with
the Gate, will map to TBD.

The activities that follow Targets of the Gate’s Sequence Flow, will be included
within the activity (usually a sequence) for that pick element. The exact content of
the activity will depend on the configuration of the Process. Details of how the
configuration will be mapped to the activity can be found in the section entitled
“Mapping to XML Languages” on page 153.
Copyright  2003, BPMI.org All Rights Reserved 159 / 189

7.2 Mapping to BPEL4WS BPMN Working Draft
7.2.3 Gateways
Inclusive
A Data-Based Exclusive Decision will map to a BPEL4WS switch. Each
ConditionExpression will map to the condition for a switch case. The Default condition
will map to the Switch otherwise case.

The activities that follow the conditions will be included within the activity (usually a
sequence) for that condition. The exact content of the activity will depend on the
configuration of the Process. Details of how the configuration will be mapped to the
activity set can be found in the section entitled “Mapping to XML Languages” on
page 153.

An Event-Based Exclusive Decision will map to a BPEL4WS pick. Each of the target
Intermediate Events will map to the message handlers within the pick.

The activities that follow the Intermediate Events will be included within the activity
(usually a sequence) for that message handler. The exact content of the activity will
depend on the configuration of the Process. Details of how the configuration will be
mapped to the activity set can be found in the section entitled “Mapping to XML
Languages” on page 153. If the Intermediate Event is of Trigger Message, then the
first activity of the activity will be a receive.

Complex
A Data-Based Exclusive Decision will map to a BPEL4WS switch. Each
ConditionExpression will map to the condition for a switch case. The Default condition
will map to the Switch otherwise case.

The activities that follow the conditions will be included within the activity (usually a
sequence) for that condition. The exact content of the activity will depend on the
configuration of the Process. Details of how the configuration will be mapped to the
activity set can be found in the section entitled “Mapping to XML Languages” on
page 153.

An Event-Based Exclusive Decision will map to a BPEL4WS pick. Each of the target
Intermediate Events will map to the message handlers within the pick.

The activities that follow the Intermediate Events will be included within the activity
(usually a sequence) for that message handler. The exact content of the activity will
depend on the configuration of the Process. Details of how the configuration will be
mapped to the activity set can be found in the section entitled “Mapping to XML
Languages” on page 153. If the Intermediate Event is of Trigger Message, then the
first activity of the activity will be a receive.

Parallel
A Data-Based Exclusive Decision will map to a BPEL4WS switch. Each
ConditionExpression will map to the condition for a switch case. The Default condition
will map to the Switch otherwise case.

The activities that follow the conditions will be included within the activity (usually a
sequence) for that condition. The exact content of the activity will depend on the
configuration of the Process. Details of how the configuration will be mapped to the
160 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 7. Mapping to XML Languages
7.2.4 Pool
activity set can be found in the section entitled “Mapping to XML Languages” on
page 153.

An Event-Based Exclusive Decision will map to a BPEL4WS pick. Each of the target
Intermediate Events will map to the message handlers within the pick.

The activities that follow the Intermediate Events will be included within the activity
(usually a sequence) for that message handler. The exact content of the activity will
depend on the configuration of the Process. Details of how the configuration will be
mapped to the activity set can be found in the section entitled “Mapping to XML
Languages” on page 153. If the Intermediate Event is of Trigger Message, then the
first activity of the activity will be a receive.

7.2.4 Pool
Pools do not have any specific Mapping to Execution Languages. However, a Pool is
associated with a mapping to a specific lower level language. For example, one Pool may
encompass a BPEL4WS document while another Pool might encompass an ebXML BPSS
document.

7.2.5 Lane
Lanes do not have any specific Mapping to Execution Languages. They are designed to
help organize and communicate how activities are grouped in a business process.

7.2.6 Artifacts
As a general rule, Artifacts do not map to BPEL4WS elements. They provide detailed
information about how data will interact with the flow objects and flows of Processes.

However, Text Annotations can map to the documentation element of BPM execution
languages. If the Annotation is associated with a flow object and that object has a straight-
forward mapping to a BPM execution language element, then the text of the Annotation will
be placed in the documentation element of that object. If there is no straight-forward
mapping to a BPM execution language element, then the text of the Annotation will be
appended to the documentation element of the process.

For any new Artifact that is added to a BDP through a modeling tool, it will have to be
determined whether or not that Artifact maps to any BPEL4WS element.W

7.2.7 Sequence Flow
A Sequence Flow may not have a specific mapping to a BPEL4WS in most situations.
However, when there is a section of the Diagram that contains parallel activities, then
Sequence Flow may map to the link element. Details of this mapping are TBD. In general,
the set of Sequence Flows within a Pool will determine how BPEL4WS elements are
derived and the boundaries of those elements.

7.2.8 Message Flow
A Message Flow does not have a specific mapping to a BPEL4WS element. It represents a
message that is send through a WSDL operation that is referenced in a BPEL4WS receive,
reply, or invoke.
Copyright  2003, BPMI.org All Rights Reserved 161 / 189

7.2 Mapping to BPEL4WS BPMN Working Draft
7.2.9 Association
7.2.9 Association
An Association does not have a specific mapping to an execution language element. These
objects and the artifacts they connect to provide additional information for the reader of the
BPMN Diagram, but do not directly affect the execution of the Process.

7.2.10 Exception Flow
For an activity with an Intermediate Event attached to its boundary:

The activity will be placed inside a scope.

A faultHandler element will be defined for the scope.

If an Intermediate Event is of Trigger Exception and no name has been specified for
the error, then a catchAll element will be added to the faultHandler element.

If an Intermediate Event is of Trigger Exception and a name has been specified for
the error, then a catch element will be added to the faultHandler element with the
name of the error placed in the faultName attribute.

If an Intermediate Event is of Trigger Message, then:

The source activity will be placed inside a flow (which is inside the scope)

 A sequence will also be placed within the flow

The first element of the sequence will be a receive that will wait for the message
identified in the Intermediate Event.

The next element of the sequence will be a throw that will have a faultName with
a name that is constructed from the Message Name with “Fault” appended.

A catch element will be added to the faultHandler element (within the scope)
with the “<message name>Fault” error placed in the faultName attribute.

If the Intermediate Event is of Trigger Timer, then:

The source activity will be placed inside a flow (which is inside the scope)

 A sequence will also be placed within the flow

The first element of the sequence will be a wait that will use the time information
identified in the Intermediate Event.

The next element of the sequence will be a throw that will have a faultName with
a name that is constructed from the Intermediate Event Name with “Fault”
appended.

A catch element will be added to the faultHandler element (within the scope)
with the “<Intermediate Event name>Fault” error placed in the faultName
attribute.

If there is only one activity that flows from the Intermediate Event, then the
appropriate mapping for this activity will be used as the activity for the faultHandler.

A sequence will be used as the activity for the faultHandler if the mapping is
complex or there are more than one activity that follows the Intermediate Event.
162 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 7. Mapping to XML Languages
7.2.11 Compensation Flow
7.2.11 Compensation Flow
For an activity with a Compensation Intermediate Event attached to its boundary:

The activity will be placed inside a scope.

A compensationHandler element will be defined for the scope.

If there is only one activity that flows from the Intermediate Event, then the
appropriate mapping for this activity will be used as the activity for the
compensationHandler.

A sequence will be used as the activity for the compensationHandler if the
mapping is complex or there are more than one activity that follows the
Intermediate Event.
Copyright  2003, BPMI.org All Rights Reserved 163 / 189

7.2 Mapping to BPEL4WS BPMN Working Draft
7.2.11 Compensation Flow
164 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft 8. References

8. References
8.1 Normative

RFC-2119
Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, IETF RFC 2119,
March 1997

http://www.ietf.org/rfc/rfc2119.txt

BPEL4WS
(BPEL4WS) 1.1, IBM/Microsoft/BEA/SAP/Siebel, May, 2003

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

8.2 Non-Normative

Activity Service
Additional Structuring Mechanism for the OTS specification, OMG, June 1999

http://www.omg.org

J2EE Activity Service for Extended Transactions (JSR 95), JCP

http://www.jcp.org/jsr/detail/95.jsp

Business Process Modeling
Jean-Jacques Dubray, “A Novel Approach for Modeling Business Process Definitions,”
2002

http://www.ebpml.org/ebpml2.2.doc

Business Transaction Protocol
OASIS BTP Technical Committee, June, 2002

http://www.oasis-open.org/committees/download.php/1184/2002-06-
03.BTP_cttee_spec_1.0.pdf

BPML
(BPML) 1.0, BPMI, January 2003

http://www.BPMI.org

Dublin Core Meta Data
Dublin Core Metadata Element Set, Dublin Core Metadata Initiative

http://dublincore.org/documents/dces/
Copyright  2003, BPMI.org All Rights Reserved 165 / 189

http://www.ietf.org/rfc/rfc2119.txt
http://www.BPMI.org
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.ebpml.org/ebpml2.2.doc
http://www.omg.org
http://www.jcp.org/jsr/detail/95.jsp
http://dublincore.org/documents/dces/

8.2 Non-Normative BPMN Working Draft

ebXML BPSS
Jean-Jacques Dubray, “A new model for ebXML BPSS Multi-party Collaborations and Web
Services Choreography,” 2002

http://www.ebpml.org/ebpml.doc

OMG UML
Unified Modeling Language Specification, OMG, June 1999

http://www.omg.org

Open Nested Transactions
Concepts and Applications of Multilevel Transactions and Open Nested Transactions,
Gerhard Weikum, Hans-J. Schek, 1992

http://citeseer.nj.nec.com/weikum92concepts.html

RDF
RDF Vocabulary Description Language 1.0: RDF Schema, W3C Working Draft

http://www.w3.org/TR/rdf-schema/

SOAP 1.2
SOAP Version 1.2 Part 1: Messaging Framework, W3C Working Draft

http://www.w3.org/TR/soap12-part1/

SOAP Version 1.2 Part21: Adjuncts, W3C Working Draft

http://www.w3.org/TR/soap12-part2/

UDDI
Universal Description, Discovery and Integration, Ariba, IBM and Microsoft, UDDI.org.

http://www.uddi.org

URI
Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L.
Masinter, IETF RFC 2396, August 1998

http://www.ietf.org/rfc/rfc2396.txt

WfMC Glossary
Workflow Management Coalition Terminology and Glossary.

http://www.wfmc.org/standards/docs.htm
166 / 189 Copyright  2003, BPMI.org All Rights Reserved

http://www.ietf.org/rfc/rfc2396.txt
http://www.ebpml.org/ebpml.doc
http://www.omg.org
http://citeseer.nj.nec.com/weikum92concepts.html
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.uddi.org
http://www.wfmc.org/standards/docs.htm

BPMN Working Draft 8. References

Web Services Transaction
(WS-Transaction) 1.0, IBM/Microsoft/BEA, August, 2002

http://www-106.ibm.com/developerworks/webservices/library/ws-transpec/

WSDL
Web Services Description Language (WSDL) 1.1, W3C Note, 15 March 2001

http://www.w3.org/TR/wsdl.html

XML 1.0 (Second Edition)
Extensible Markup Language (XML) 1.0, Second Edition, Tim Bray et al., eds., W3C, 6
October 2000

http://www.w3.org/TR/REC-xml

XML-Namespaces
Namespaces in XML, Tim Bray et al., eds., W3C, 14 January 1999

http://www.w3.org/TR/REC-xml-names

XML-Schema
XML Schema Part 1: Structures, Henry S. Thompson, David Beech, Murray Maloney, Noah
Mendelsohn, W3C, 2 May 2001

http://www.w3.org/TR/xmlschema-1//

XML Schema Part 2: Datatypes, Paul V. Biron and Ashok Malhotra, eds., W3C, 2 May 2001

http://www.w3.org/TR/xmlschema-2/

XPath
XML Path Language (XPath) 1.0, James Clark and Steve DeRose, eds., W3C, 16
November 1999

http://www.w3.org/TR/xpath
Copyright  2003, BPMI.org All Rights Reserved 167 / 189

http://www.w3.org/TR/wsdl.html
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/xmlschema-1//
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xpath

8.2 Non-Normative BPMN Working Draft

168 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft
9. Open Issues
The following elements or features of BPMN are not fully defined in this version of the
specification:

• The internal Marker for a Terminate End Event.

• Default Conditions for Sequence Flow outgoing from Inclusive Gateways and Activities.

• The behavior and notation of Transactions.

• Use of Link Start and End Events (to dynamically pass Tokens between levels of a
Process).

• Use of the PassThrough property for End Events. This is related to the Link Start and
End Events and to the attribute of a Process.

• The set of attributes for flow objects may be updated, including:

• A more formal mechanism for defining extensions to the graphical elements.

• Attributes of a Service Task, perhaps defining different types of services (e.g., web
service, client applications, etc.).

• Attributes of a User Task (workflow attributes).

• Attributes of a Task relating to choreography business processes (e.g, Abstract
Tasks).

• Attributes of a Complex Gateway.

• A more scalable BPMN configuration for handling the Workflow Pattern: Interleaved
Parallel Routing1.

• Completed Mapping to Languages for executable business processes (BPEL4WS)

• Mapping to Languages for abstract business processes (BPEL4WS).

• Mapping to Languages for choreography businesses processes (e.g., ebXML BPSS).

• Specification of BPMN as an XML language layer above BPM execution languages
(BPEL4WS).

1. http://tmitwww.tm.tue.nl/research/patterns/interleaved_parallell_routing.htm
Copyright  2002, BPMI.org All Rights Reserved 169 / 189

8.2 Non-Normative BPMN Working Draft

170 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft
Appendix A: E-Mail Voting Process
BPEL4WS

This appendix provides the complete BPEL4WS code for the example BPMN business
process that is described in the section entitled “BPMN by Example” on page 127.

<!-- The Main Process -->
<process name="EMailVotingProcess">
<variables>
<variable name="processData" messageType="processDataMessage"/>
<!--processDataMessage will be received with the following parts:

 NumIssues (set to the number of unresolved Issues)
 NoMajority (set to false)
 VotedOnce (set to false)
 NumVoted (set to false)
 VotersWarned (set to false)
 LoopCounter (set to 0)

 starting message every Friday is not shown here.-->
</variables>
<sequence>
<!--This starts the beginning of the Process. The process that sends the

 starting message every Friday is not shown here.-->
<receive partnerLink="Internal" portType="tns:processPort"

 operation="receiveIssueList" variable="processData"
 createInstance="Yes"/>

<invoke name="ReviewIssueList" partnerLink=“Internal"
portType="tns:internalPort" operation="sendIssueList"
InputVariable="processData" outputVariable="processData"/>

<switch name="AnyIssuesReady">
<!--name="Yes" -->
<case condition="bpws:getVariableProperty(ProcessData,NumIssues)>0">
<!-- A chunk of this process is separated into a derived process so that

it can be called from a complex loop. -->
<invoke name="DerivedProcess1" partnerLink="Internal"

 portType="tns:processPort" operation="callDerivedProcess1"
 InputVariable="processData"/>

</case>
<!--name="No" -->
<otherwise>
<!--This is one of the two ways to the end of the Process.-->
<empty/>

</otherwise>
</switch>

</sequence>
<!-- A Derived Process -->
<process name="DerivedProcess1">
<variables>
<variable name="processData" messageType="processDataMessage"/>

</variables>
<sequence>
Copyright  2003, BPMI.org All Rights Reserved 171 / 189

 Appendix A: E-Mail Voting Process BPEL4WS BPMN Working Draft
<receive partnerLink="Internal" portType="tns:processPort"
operation="callDerivedProcess1" variable="processData"
createInstance="Yes"/>

<!--The first Sub-Process has a loop condition, so it is within a while-->
<while condition="bpws:getVariableProperty(ProcessData,DiscussionOver)

=false" andbpws:getVariableProperty(ProcessData,loopCounter) > 0">
<!--This calls the first Sub-Process-->
<sequence>
<invoke process="DiscussionCycle" partnerLink="Internal"

 portType="tns:processPort operation="callDiscussionCycle"
 inputVariable="processData" outputVariable="processData"/>

<assign>
<copy>
<from expression=

"bpws:getVariableProperty(ProcessData,LoopCounter)+1"/>
<to variable="processData" part="LoopCounter"/>

</copy>
</assign>

</sequence>
</while>
<!--This calls the first another derived process to handle the rest of the

work-->
<invoke name="DerivedProcess2" partnerLink="Internal"

 portType="tns:processPort" operation="callDerivedProcess2"
 InputVariable="processData"/>

</sequence>
</process>
</process>
<!-- A Derived Process -->
<process name="DerivedProcess2">
<!-- This starts the middle section of the process. -->
<variables>
<variable name="processData" messageType="processDataMessage"/>

</variables>
<sequence>
<receive partnerLink="Internal" portType="tns:processPort"

operation="callDerivedProcess2" variable="processData"
createInstance="Yes"/>

<invoke name="AnnounceIssuesforVote" partnerLink="WGVoter"
 portType="tns:emailPort" operation="sendVoteAnnouncement"
 InputVariable="processData"/>

<invoke name="DerivedProcess3" partnerLink="Internal"
 portType="tns:processPort" operation="callDerivedProcess3"
 InputVariable="processData"/>

</sequence>
</process>
<!-- A Derived Process -->
<process name="DerivedProcess3">
<!--this calls the second Sub-Process. After the Collect Votes Sub-Process

times out, the rest of the process will be in the fault handler
of that process. Calls from there will loop back into other processes.-->

<variables>
<variable name="processData" messageType="processDataMessage"/>

</variables>
172 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft Appendix A: E-Mail Voting Process BPEL4WS
<sequence>
<receive partnerLink="Internal" portType="tns:processPort"

 operation="callDerivedProcess3" variable="processData"
 createInstance="Yes"/>

<invoke name="CollectVotes" partnerLink="Internal"
 portType="tns:processPort" operation="callCollectVotes"
 InputVariable="processData"/>

</sequence>
</process>
<!-- A Derived Process -->
<process name="DerivedProcess4">
<variables>
<variable name="processData" messageType="processDataMessage"/>

</variables>
<sequence>
<receive partnerLink="Internal" portType="tns:processPort"

 operation="callDerivedProcess4" variable="processData"
 createInstance="Yes"/>

<switch name="IssueswoMajority">
<case name="Yes"

condition="bpws:getVariableProperty(ProcessData,NoMajority)=true">
<switch name="2ndTime">
<!-- name="Yes" -->
<case condition="bpws:getVariableProperty(ProcessData,VotedOnce)

=true">
<!--This is done to do the complex looping situation. -->
<invoke name="DerivedProcess1" partnerLink="Internal"

portType="tns:processPort" operation="callDerivedProcess1"
InputVariable="processData"/>

</case>
<!-- name="No (otherwise)" -->
<otherwise>
<sequence>
<flow>
<invoke name="ReducetoTwoSolutions" partnerLink="internal"

portType="tns:internalPort"
operation="sendReceiveSolutions"
InputVariable="processData"
outputVariable="processData"/>

<invoke name="EMail Voters that have to Change Votes"
 partnerLink="WGVoter" portType="tns:emailPort"
 operation="sendVoteWarning" InputVariable="processData"/>

</flow>
<invoke process="DerivedProcess2" partnerLink="Internal"

 portType="tns:processPort" operation="callDerivedProcess2"
 InputVariable="processData"/>

</sequence>
</otherwise>

</switch>
</case>
<otherwise name="Nootherwise">
<!-- This is one of the two ways to the end of the Process. -->
<empty/>

</otherwise>
Copyright  2003, BPMI.org All Rights Reserved 173 / 189

 Appendix A: E-Mail Voting Process BPEL4WS BPMN Working Draft
</switch>
</sequence>

</process>
<!-- A User Built Process -->
<process name="DiscussionCycle">
<!--This defines the first Sub-Process. -->
<variables>
<variable name="processData" messageType="processDataMessage"/>

</variables>
<sequence>
<receive partnerLink="Internal" portType="tns:processPort"

operation="callDiscussionCycle" variable="processData"
createInstance="Yes"/>

<invoke name="AnnounceIssuesforDiscussion" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendDiscussionAnnouncement"
InputVariable="processData"/>

<flow>
<links>
<link name="CheckCalendarforConferenceCalltoWaituntilThursday9am"/>
<link name="CheckCalendarforConferenceCalltoEmpty"/>
<link name="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</links>
<!-- This is the first of the three paths of the fork. -->
<scope>
<flow>
<invoke name="ModerateEmailDiscussion" partnerLink="internal"

portType="tns:internalPort" operation="sendDiscussion"
InputVariable="processData"
outputVariable="processData"/>

<sequence>
<wait name="7days" for="P7D"/>
<throw faultName="7days_fault"/>

</sequence>
</flow>
<faultHander>
<catch faultName="7days_fault">
<invoke name="ReviewStatusofDiscussion" partnerLink="internal"

portType="tns:internalPort"
operation="receiveDiscussionStatus"
InputVariable="processData" outputVariable="processData"/>

</catch>
</faultHander>

</scope>
<!-- This is the second of the three paths of the fork. -->
<sequence>
<wait name="Delay6daysfromDiscussionAnnouncement" for="P6D"/>
<invoke name="EMailDiscussionDeadlineWarning" partnerLink="WGVoter"

 portType="tns:emailPort" operation="sendDiscussionWarning"
 InputVariable="processData">

</invoke>
</sequence>
174 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft Appendix A: E-Mail Voting Process BPEL4WS
<!-- This is the third of the three paths of the fork. -->
<invoke name="CheckCalendarforConferenceCall" partnerLink="internal"

portType="tns:internalPort" operation="receiveCallSchedule"
InputVariable="processData" outputVariable="processData">

<target linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am"
 transitionCondition="bpws:getVariableProperty(processData,conCall)

=true"/>
<target linkName="CheckCalendarforConferenceCalltoEmpty"

transitionCondition="not(bpws:getVariableProperty(processData,
conCall)=true)"/>

</invoke>

<!-- name="Yes" -->
<wait name="WaituntilThursday9am" for="P6DT9H">
<source linkName=

"CheckCalendarforConferenceCalltoWaituntilThursday9am">
<target linkName="WaituntilThursday9amtoModerateConferenceCall

 Discussion"/>
</wait>
<invoke name="ModerateConferenceCallDiscussion" partnerLink="internal"

 portType="tns:internalPort" operation="sendConCall"
 InputVariable="processData" outputVariable="processData">

<source linkName="WaituntilThursday9amtoModerateConferenceCall
 Discussion"/>

</invoke>
<!-- name="otherwise" -->
<empty>
<source linkName="CheckCalendarforConferenceCalltoEmpty"/>

</empty>
</flow>

</sequence>
</process>
<!-- A User Built Process -->
<process name="CollectVotes">
<!--This is a process for the E-Mail Voting collection. It consists of an all

and a timeout event handler. The all will never complete normally since
there is an infinite loop inside. The timeout is intended to be the normal
way of ending the process. -->

<variables>
<variable name="processData" messageType="processDataMessage"/>

</variables>
<sequence>
<receive partnerLink="Internal" portType="tns:processPort"

operation="callCollectVotes" variable="processData"
createInstance="Yes"/>

<scope>
<flow>
<sequence>
<wait name="7days" for="P7D"/>
<throw faultName="7days_fault"/>

</sequence>
Copyright  2003, BPMI.org All Rights Reserved 175 / 189

 Appendix A: E-Mail Voting Process BPEL4WS BPMN Working Draft
<flow>
<links>
<link name="Delay6daysfromVoteAnnouncementtoEMailVoteDeadline

Warning"/>
</links>
<!--This is the first of the four paths of the fork. -->
<invoke name="CheckCalendarforConferenceCall" partnerLink="internal"

portType="tns:internalPort" operation="receiveCallSchedule"
InputVariable="processData" outputVariable="processData">

<target linkName="CheckCalendarforConferenceCalltoWait
untilThursday9am"

 transitionCondition="bpws:getVariableProperty(processData,
conCall)=true"/>

<target linkName="CheckCalendarforConferenceCalltoEmpty"
transitionCondition="not(bpws:getVariableProperty(processData,

conCall)=true)"/>
</invoke>
<!-- name="Yes" -->
<wait name="WaituntilThursday9am" for="P6DT9H">
<source linkName=

"CheckCalendarforConferenceCalltoWaituntilThursday9am">
<target linkName="WaituntilThursday9amtoModerateConferenceCall

 Discussion"/>
</wait>
<invoke name="ModerateConferenceCallDiscussion" partnerLink="internal"

 portType="tns:internalPort" operation="sendConCall"
 InputVariable="processData" outputVariable="processData">

<source linkName="WaituntilThursday9amtoModerateConferenceCall
 Discussion"/>

</invoke>
<!-- name="otherwise" -->
<empty>
<source linkName="CheckCalendarforConferenceCalltoEmpty"/>

</empty>
<!-- This is the second of the four paths of the fork. -->
<invoke name="ModerateEMailDiscussion" partnerLink="internal"

 portType="tns:internalPort" operation="sendDiscussion"
 InputVariable="processData"
 outputVariable="processData"/>

<!--This is the third of the four paths of the fork.-->
<wait name="Delay6daysfromVoteAnnouncement" for="P6D">
<target linkName="Delay6daysfromVoteAnnouncementtoEMailVote

 DeadlineWarning"/>
</wait>
<invoke name="EMailVoteDeadlineWarning" partnerLink="WGVoter"

 portType="tns:emailPort" operation="sendVoteWarning"
 InputVariable="processData">

<source linkName="Delay6daysfromVoteAnnouncementtoEMailVote
 DeadlineWarning"/>

</invoke>
176 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft Appendix A: E-Mail Voting Process BPEL4WS
<!--This is the fourth of the four paths of the fork. This branch of the
all is intended to be an infinite loop that is eventually
interrupted by the Time Out. This is necessary since any voter can
change their vote until the deadline. -->

<while condition="1!=0">
<sequence>
<receive name="ReceiveVote" partnerLink="WGVoter"

 portType="tns:emailPort" operation="receiveVote"
 variable="processData"/>

<invoke name="IncrementTally" partnerLink="internal"
 portType="tns:internalPort" operation="sendReceiveTotal"
 InputVariable="processData" outputVariable="processData"/>

</sequence>
</while>

</flow>
</flow>
<faultHander>
<catch faultName="7days_fault">
<!-- The BPMN Diagram shows that the Timer Intermediate Event connects

directly to the rest of the Process. Thus, they will show up in
this activity set. -->

<sequence>
<invoke name="PrepareResults" partnerLink="internal"

portType="tns:internalPort" operation="sendReceiveResults"
InputVariable="processData" outputVariable="processData"/>

<invoke name="EMailResultsofVote" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendVotingResults"
InputVariable="processData"/>

<switch name="DidEnoughMembersVote">
<!-- name="No" -->
<case condition="bpws:getVariableProperty(ProcessData,NumVoted)>

 (.7)*(bpws:getVariableProperty(ProcessData,NumVWGM))">
<switch name="Havethemembersbeenwarned">
<!-- name="Yes" -->
<case condition="bpws:getVariableProperty(ProcessData,

VotersWarned)=true">
<sequence>
<invoke name="ReducenumberofVotingMembersandRecalculateVote"

partnerLink="internal" portType="tns:internalPort"
operation="sendReceiveNumVoters"
InputVariable="processData"
outputVariable="processData"/>

<!--Some elements of the process were separated into a
 derived process since they would have been repeated. They
would have been repeated because they are arrived by
alternativepaths that do not close a set of alternative
paths. -->

<invoke name="DerivedProcess4" partnerLink="Internal"
PortType="tns:processPort"
operation="callDerivedProcess4"
InputVariable="processData"/>

</sequence>
</case>
Copyright  2003, BPMI.org All Rights Reserved 177 / 189

 Appendix A: E-Mail Voting Process BPEL4WS BPMN Working Draft
<!-- name="No (otherwise)" -->
<otherwise>
<sequence>
<invoke name="ReannounceVotewithwarningtovotingmembers"

partnerLink="WGVoter" portType="tns:emailPort"
operation="sendReannounceVote"
InputVariable="processData"
outputVariable="processData"/>

<invoke name="DerivedProcess3" partnerLink="Internal"
portType="tns:processPort"
operation="callDerivedProcess3"
InputVariable="processData"/>

</sequence>
</otherwise>

</switch>
</case>
<!-- name="Yes (otherwise)" -->
<otherwise>
<!-- Some elements of the process were separated into a derived

process since they would have been repeated. They would
have been repeated because they are arrived by alternative
that do not close a set of alternative paths. -->

<invoke process="DerivedProcess4" partnerLink="Internal"
 portType="tns:processPort" operation="callDerivedProcess4"
 InputVariable="processData"/>

</otherwise>
</switch>

</sequence>
</catch>

</faultHander>
</scope>

</sequence>
</process>
178 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft
Appendix B: Glossary
A, C, D, E, F, I, J, L, M, N, O, P, R, S, T, U

A
Activity: An activity is a generic term for work that company or

organization performs via business processes. An
activity can be atomic or non-atomic (compound). The
types of activities that are a part of a Process Model
are: Process, Sub-Process, and Task.

Abstract Process: An Abstract Process represents the interactions
between a private business process and another
process or participant.

AND-Join: (from the WfMC Glossary1) An AND-Join is a point in
the Process where two or more parallel executing
activities converge into a single common thread of
Sequence Flow. See “Join.”

AND-Split: (from the WfMC Glossary2) An AND-Split is a point in
the Process where a single thread of Sequence Flow
splits into two or more threads which are executed in
parallel within the Process, allowing multiple activities
to be executed simultaneously. See “Fork.”

Arbitrary Cycles: (From the Workflow Patterns Initiative2). Pattern #11: A
point in a workflow process when one or more activities
can be done repeatedly3.

Artifact: An artifact is a graphical object that provides supporting
information about the Process or elements within the
Process. However, it does not directly affect the flow of
the Process. BPMN has standardized the shape of a
Data Object. Other examples of artifacts include critical
success factors and milestones.

Association: An Association is a dotted graphical line that is used to
associate information and artifacts with flow objects.
Text and graphical non-flow objects can be associated
with the flow objects and flows.

1. The underlined terms in this definition were changed from the original definition. “Process” is used in place of
“workflow.” “Sequence Flow” is used in place of “control.”

2. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
3. http://tmitwww.tm.tue.nl/research/patterns/arbitrary_cycles.htm
Copyright  2003, BPMI.org All Rights Reserved 179 / 189

 Appendix B: Glossary BPMN Working Draft
Atomic Activity: An atomic activity is an activity not broken down to a
finer level of Process Model detail. It is a leaf in the tree-
structure hierarchy of Process activities. Graphically it
will appear as a Task in BPMN.

B
Business Analyst: A Business Analyst is an individual within an

organization who defines, manages, or monitors
Business Processes. They are usually distinguished
from the IT specialists or programmers who implement
the Business Process within a BPMS.

Business Process: A Business Process is displayed within a Business
Process Diagram (BPD). A Business Process contains
one or more Processes.

Business Process Diagram: A Business Process Diagram (BPD) is the diagram that
is specified by BPMN. A BPD uses the graphical
elements and that semantics that support these
elements as defined in this specification.

Business Process Management: Business Process Management (BPM) encompasses
the discovery, design, and deployment of business
processes. In addition, BPM includes the executive,
administrative, and supervisory control of those
processes1.

BPM System: The technology that enables BPM.

C
Cancel Activity: (From the Workflow Patterns Initiative2). Pattern #20:

An enabled activity is disabled, i.e. a thread waiting for
the execution of an activity is removed3.

Cancel Case: (From the Workflow Patterns Initiative2). Pattern #21: A
case, i.e.workflow instance, is removed completely4.

Choreography: Choreography is an ordered sequence of B2B message
exchanges.

Collaboration: Collaboration is the act of sending messages between
any two Participants in a BPMN model. The two
Participants represent two separate BPML processes.

Collaboration Process: A Collaboration Process depicts the interactions
between two or more business entities.

1. From “Business Process Management: the Third Wave,” by Howard Smith and Peter Fingar, pg 4. 2003, Meghan-
Kiffer Press. ISBN 0-929652-33-9

2. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
3. http://tmitwww.tm.tue.nl/research/patterns/cancel_activity.htm
4. http://tmitwww.tm.tue.nl/research/patterns/cancel_case.htm
180 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft Appendix B: Glossary
Collapsed Sub-Process: A Collapsed Sub-Process is a Sub-Process that hides
its flow details. The Collapsed Sub-Process object uses
a marker to distinguish it as a Sub-Process, rather than
a Task. The marker is a small square with a plus sign
(+) inside.

Compensation Flow: Compensation Flow is defines the set of activities that
are performed during the roll-back of a transaction to
compensate for activities that were performed during
the normal flow of the Process. Compensation can also
be called from a Compensate End or Intermediate
Event.

Compound Activity: A compound activity is an activity that has detail that is
defined as a flow of other activities. It is a branch (or
trunk) in the tree-structure hierarchy of Process
activities. Graphically, it will appear as a Process or
Sub-Process in BPMN.

Controlled Flow: Flow that proceeds from one Flow Object to another,
via a Sequence Flow link, but is subject to either
conditions or dependencies from other flow as defined
by a Gateway. Typically, this is seen as a Sequence
flow between two activities, with a conditional indicator
(mini-diamond) or a Sequence Flow connected to a
Gateway.

D
Decision: Decisions are locations within a business process

where the Sequence Flow can take two or more
alternative paths. This is basically the “fork in the road”
for a process. For a given performance (or instance) of
the process, only one of the forks can be taken. A
Decision is a type of Gateway. See “Or-Split.”

Deferred Choice: (From the Workflow Patterns Initiative1). Pattern #17: A
point in the workflow process where one of several
branches is chosen. In contrast to the XOR-split, the
choice is not made explicitly (e.g. based on data or a
decision) but several alternatives are offered to the
environment. However, in contrast to the AND-split,
only one of the alternatives is executed. This means
that once the environment activates one of the
branches the other alternative branches are withdrawn.
It is important to note that the choice is delayed until the
processing in one of the alternative branches is actually
started, i.e. the moment of choice is as late as
possible2.

1. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
2. http://tmitwww.tm.tue.nl/research/patterns/deferred_choice.htm
Copyright  2003, BPMI.org All Rights Reserved 181 / 189
189

 Appendix B: Glossary BPMN Working Draft
Discriminator: (From the Workflow Patterns Initiative1). Pattern #8:
The discriminator is a point in a workflow process that
waits for a number of incoming branches to complete
before activating the subsequent activity. From that
moment on it waits for all remaining branches to
complete and “ignores'' them. Once all incoming
branches have been triggered, it resets itself so that it
can be triggered again1.

E
End Event: As the name implies, the End Event indicates where a

process will end. In terms of Sequence Flow, the End
Event ends the flow of the Process, and thus, will not
have any outgoing Sequence Flows. An End Event can
have a specific Result that will appear as a marker
within the center of the End Event shape. End Event
Results are Message, Exception, Compensation, Link,
and Multiple. The End Event shares the same basic
shape of the Start Event and Intermediate Event, a
circle, but is drawn with a thick single line

Event Context: An Event Context is the set of activities that can be
interrupted by an exception (Intermediate Event). This
can be one activity or a group of activities in an
expanded Sub-Process.

Exception: An Exception is an event that occurs during the
performance of the process that causes normal flow of
the process to be diverted exclusively from normal flow.
Exceptions can be generated by a time out, fault,
message, etc.

Exception Flow: Exception Flow is a set of Sequence Flow that
originates from an Intermediate Event that is attached
to the boundary of an activity. The Process will not
traverse this flow unless an Exception occurs during the
performance of that activity (through an Intermediate
Event).

Exclusive Choice: (From the Workflow Patterns Initiative2). Pattern #4: A
point in the workflow process where, based on a
decision or workflow control data, one of several
branches is chosen3.

1. http://tmitwww.tm.tue.nl/research/patterns/discriminator.htm
2. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
3. http://tmitwww.tm.tue.nl/research/patterns/exclusive_choice.htm
182 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft Appendix B: Glossary
Expanded Sub-Process: An Expanded Sub-Process is a Sub-Process that
exposes its flow detail within the context of its Parent
Process. It will maintain its rounded rectangle shape,
but will be enlarged to a size sufficient to display the
flow objects within.

F
Flow: A Flow is a graphical line connecting two objects in a

BPD. There are two types of Flow: Sequence Flow and
Message Flow, each with their own line style. Flow is
also used in a generic sense (and lowercase) to
describe how Tokens will traverse Sequence Flow from
the Start Event to an End Event.

Flow Object: A flow object is one of the set of following graphical
objects: Events, Activities, and Gateways.

Fork: A fork is a point in the Process where a single flow is
divided into two or more flows. It is a mechanism that
will allow activities to be performed concurrently, rather
than serially. BPMN uses multiple outgoing Sequence
Flow or an Parallel Gateway to perform a Fork. See
“AND-Split.”

I
Implicit Termination: (From the Workflow Patterns Initiative1). Pattern #12: A

given subprocess should be terminated when there is
nothing else to be done. In other words, there are no
active activities in the workflow and no other activity can
be made active (and at the same time the workflow is
not in deadlock)2.

Interleaved Parallel Routing: (From the Workflow Patterns Initiative1). Pattern #18: A
set of activities is executed in an arbitrary order: Each
activity in the set is executed, the order is decided at
run-time, and no two activities are executed at the
same moment (i.e.no two activities are active for the
same workflow instance at the same time)3.

1. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
2. http://tmitwww.tm.tue.nl/research/patterns/implicit_termination.htm
3. http://tmitwww.tm.tue.nl/research/patterns/interleaved_parallel_routing.htm
Copyright  2003, BPMI.org All Rights Reserved 183 / 189
189

 Appendix B: Glossary BPMN Working Draft
Intermediate Event: An Intermediate Event is an event that occurs after a
Process has been started. It will affect the flow of the
process, but will not start or (directly) terminate the
process. An Intermediate Event will show where
messages or delays are expected within the Process,
disrupt the normal flow through exception handling, or
show the extra flow required for compensating a
transaction. The Intermediate Event shares the same
basic shape of the Start Event and End Event, a circle,
but is drawn with a thin double line.

J
Join: A Join is a point in the Process where two or more

parallel Sequence Flows are combined into one
Sequence Flow. BPMN uses an Parallel Gateway to
perform a Join. See “AND-Join.”

L
Lane: An Lane is a sub-partition within a Pool and will extend

the entire length of the Pool, either vertically or
horizontally. Lanes are used to organize and categorize
activities within a Pool. The meaning of the Lanes is up
to the modeler.

M
Merge: A Merge is a point in the process where two or more

alternative Sequence Flows are combined into one
Sequence Flow. BPMN uses multiple incoming
Sequence Flow or an XOR Gateway to perform a
Merge. See “OR-Join.”

Message: A Message is the object that is transmitted through a
Message Flow. The Message will have an identity that
can be used for alternative branching of a Process
through the Event-Based Exclusive Gateway.

Message Flow: A Message Flow is a dashed line that is used to show
the flow of messages between two entities that are
prepared to send and receive them. In BPMN, two
separate Pools in the Diagram will represent the two
entities.
184 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft Appendix B: Glossary
Milestone: (From the Workflow Patterns Initiative1). Pattern #19:
The enabling of an activity depends on the case being
in a specified state, i.e.the activity is only enabled if a
certain milestone has been reached which did not
expire yet. Consider three activities A, B, and C. Activity
A is only enabled if activity B has been executed and C
has not been executed yet, i.e.A is not enabled before
the execution B and A is not enabled after the execution
C2.

Multiple Choice: (From the Workflow Patterns Initiative1). Pattern #6: A
point in the workflow process where, based on a
decision or workflow control data, one or more
branches are chosen3.

Multiple Instances: (From the Workflow Patterns Initiative1). Patterns #13-
16: There are four defined patterns. 1. For one case an
activity is enabled multiple times. The number of
instances of a given activity for a given case is known at
design time. 2. For one case an activity is enabled
multiple times. The number of instances of a given
activity for a given case is variable and may depend on
characteristics of the case or availability of resources,
but is known at some stage during runtime, before the
instances of that activity have to be created. 3. For one
case an activity is enabled multiple times. The number
of instances of a given activity for a given case is not
known during design time, nor it is known at any stage
during runtime, before the instances of that activity
have to be created. 4 For one case an activity is
enabled multiple times. The number of instances may
not be known at design time. After completing all
instances of that activity another activity has to be
started4.

Multiple Merge: (From the Workflow Patterns Initiative1). Pattern #7:
Multi-merge is a point in a workflow process where two
or more branches reconverge without synchronization.
If more than one branch gets activated, possibly
concurrently, the activity following the merge is started
once for every incoming branch that gets
activated5.

1. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
2. http://tmitwww.tm.tue.nl/research/patterns/milestone.htm
3. http://tmitwww.tm.tue.nl/research/patterns/multiple_choice.htm
4. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
5. http://tmitwww.tm.tue.nl/research/patterns/multiple_merge.htm
Copyright  2003, BPMI.org All Rights Reserved 185 / 189
189

 Appendix B: Glossary BPMN Working Draft
N
N-out-of-M-Join: (From the Workflow Patterns Initiative1). Pattern #9: N-

out-of-M Join is a point in a workflow process where M
parallel paths converge into one. The subsequent
activity should be activated once N paths have
completed. Completion of all remaining paths should be
ignored. Similarly to the discriminator, once all incoming
branches have “fired”, the join resets itself so that it can
fire again1.

Normal Flow: Normal Flow is the flow that originates from a Start
Event and continues through activities via alternative
and parallel paths until it ends at an End Event.

O
OR-Join: (from the WfMC Glossary2) An Or-Join is a point in the

Process where two or more alternative activity(s)
Process branches re-converge to a single common
activity as the next step within the Process. (As no
parallel activity execution has occurred at the join point,
no synchronization is required.) See “Merge.”

OR-Split: (from the WfMC Glossary1) An OR-Split is a point in the
Process where a single thread of Sequence Flow
makes a decision upon which branch to take when
encountered with multiple alternative Process
branches. See “Decision.”

P
Parallel Split: (From the Workflow Patterns Initiative3). Pattern #2:

Parallel split is required when two or more activities
need to be executed in parallel. Parallel split is easily
supported by most workflow engines except for the
most basic scheduling systems that do not require any
degree of concurrency4.

Parent Process: A Parent Process is the Process that holds a Sub-
Process within its boundaries.

1. http://tmitwww.tm.tue.nl/research/patterns/n-out-of-m_join.htm
2. The underlined terms in this definition were changed from the original definition. “Process” is used in place of

“workflow.” “Sequence Flow” is used in place of “control.”
3. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
4. http://tmitwww.tm.tue.nl/research/patterns/parallel_split.htm
186 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft Appendix B: Glossary
Participant: A Participant is a business entity, usually a company,
company division, or a customer, which controls or is
responsible for a business process. If Pools are used,
then a Participant would be associated with one Pool.

Pool: A Pool is a “swimlane” and a graphical container for
partitioning a set of activities from other Pools, usually
in the context of B2B situations. It is a square-cornered
rectangle that is drawn with a solid single line. A Pool
acts as the container for the Sequence Flow between
activities. The Sequence Flow can cross the
boundaries between Lanes of a Pool, but cannot cross
the boundaries of a Pool. The interaction between
Pools, e.g., in a B2B context, is shown through
Message Flows.

Private Business Process: A private business process is internal to a specific
organization and is the type of process that has been
generally called a workflow or BPM process. A single
private business process will map to a single BPML
document.

Process: A Process is any activity performed within a company
or organization. In BPMN a Process is depicted as a
network of flow objects, which are a set of other
activities and the controls that sequence them.

R
Result: A Result is consequence of reaching an End Event.

Results can be of different types, including: Message,
Exception, Compensation, Link, and Multiple.

S
Sequence: (From the Workflow Patterns Initiative1). Pattern #1:

Sequence is the most basic workflow pattern. It is
required when there is a dependency between two or
more tasks so that one task cannot be started
(scheduled) before another task is finished2.

Sequence Flow: A Sequence Flow is a solid graphical line that is used to
show the order that activities will be performed in a
Process. Each Flow has only one source and only one
target.

1. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
2. http://tmitwww.tm.tue.nl/research/patterns/sequence.htm
Copyright  2003, BPMI.org All Rights Reserved 187 / 189
189

 Appendix B: Glossary BPMN Working Draft
Simple Merge: (From the Workflow Patterns Initiative1). Pattern #5: A
point in the workflow process where two or more
alternative branches come together without
synchronization. In other words the merge will be
triggered once any of the incoming transitions are
triggered1.

Start Event: A Start Event indicates where a particular Process will
start. In terms of Sequence Flow, the Start Event starts
the flow of the Process, and thus, will not have any
incoming Sequence Flows. A Start Event can have a
Trigger that indicates how the Process starts: Message,
Timer, Rule, Link, or Multiple. The Start Event shares
the same basic shape of the Intermediate Event and
End Event, a circle, but is drawn with a single thin line

Sub-Process: A Sub-Process is Process that is included within
another Process. The Sub-Process can be in a
collapsed view that hides its details. A Sub-Process can
be in an expanded view that shows its details within the
view of the Process in which it is contained. A Sub-
Process shares the same shape as the Task, which is a
rectangle that has rounded corners.

Swimlane: A swimlane is a graphical container for partitioning a set
of activities from other activities. BPMN has two
different types of swimlanes. See “Pool” and “Lane.”

Synchronizing Join: (From the Workflow Patterns Initiative2). Pattern #10: A
point in the workflow process where multiple paths
converge into one single thread. If more than one path
is taken, synchronization of the active threads needs to
take place. If only one path is taken, the alternative
branches should reconverge without synchronization3.

Synchronization: (From the Workflow Patterns Initiative1). Pattern #3:
Synchronization is required when an activity can be
started only when two parallel threads complete4.

1. http://tmitwww.tm.tue.nl/research/patterns/simple_merge.htm
2. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
3. http://tmitwww.tm.tue.nl/research/patterns/synchronizing_join.htm
4. http://tmitwww.tm.tue.nl/research/patterns/synchronization.htm
188 / 189 Copyright  2003, BPMI.org All Rights Reserved

BPMN Working Draft Appendix B: Glossary
T
Task: A Task is an atomic activity that is included within a

Process. A Task is used when the work in the Process
is not broken down to a finer level of Process Model
detail. Generally, an end-user and/or an application are
used to perform the Task when it is executed. A Task
object shares the same shape as the Sub-Process,
which is a rectangle that has rounded corners.

Token: A Token is a descriptive construct used to describe how
the flow of a process will proceed at runtime. By
tracking how the Token traverses the flow objects, gets
diverted through alternative paths, and gets split into
parallel paths, the normal Sequence Flow should be
completely definable.A Token will have a unique identity
that can be used to separate multiple Tokens that may
exist because of concurrent process instances or the
splitting of the Token for parallel processing within a
single process instance.

Transaction: A Transaction is a set of coordinated activities carried
out by independent, loosely-coupled systems in
accordance with a contractually defined business
relationship. This coordination leads to an agreed,
consistent, and verifiable outcome across all
participants.

Trigger: A Trigger is a mechanism that signals the start of a
business process. Triggers are associated with a Start
Events and Intermediate Events and can be of the type:
Message, Timer, Rule, Link, and Multiple.

U
Uncontrolled Flow: Flow that proceeds, unrestricted, from one Flow Object

to another, via a Sequence Flow link, without any
dependencies on another flow or any conditional
expressions. Typically, this is seen as a Sequence flow
between two activities, without a conditional indicator
(mini-diamond) or any intervening Gateway.
Copyright  2003, BPMI.org All Rights Reserved 189 / 189
189

	Abstract
	Status of this Document
	Acknowledgements
	Notice of BPMI.org Policies on Intellectual Property Rights & Copyright
	Table of Contents
	List of Figures
	List of Tables
	List of Examples
	1. Introduction
	1.1 Conventions
	1.1.1 Typographical and Linguistic Conventions and Style

	1.2 Dependency on Other Specifications
	1.3 Conformance

	2. BPMN Overview
	2.1 BPMN Scope
	2.1.1 Uses of BPMN
	2.1.2 Diagram Point of View
	Figure 1 A Business Process Diagram with Two Points of View

	2.1.3 Extensibility of BPMN and Vertical Domains

	3. Business Process Diagrams
	3.1 BPD Core Element Set
	Table 1 BPD Core Element Set

	3.2 BPD Complete Set
	Table 2 BPD Complete Element Set

	3.3 Use of Text, Color, Size, and Lines in a Diagram
	3.4 Flow Object Connection Rules
	3.4.1 Sequence Flow Rules
	Table 3 Sequence Flow Connection Rules

	3.4.2 Message Flow Rules
	Table 4 Message Flow Connection Rules

	3.5 Diagram Attributes
	Table 5 Business Process Diagram Attributes

	4. Business Process Diagram Graphical Objects
	4.1 Common BPD Object Attributes
	Table 6 Common Object Attributes

	4.2 Events
	4.2.1 Start
	Figure 2 A Start Event
	Table 7 Start Event Types
	Table 8 Start Event Attributes

	4.2.2 End
	Figure 3 End Event
	Table 9 End Event Types
	Table 10 End Event Attributes

	4.2.3 Intermediate
	Figure 4 Intermediate Event
	Figure 5 Task with an Intermediate Event attached to its boundary
	Table 11 Intermediate Event Types
	Table 12 Intermediate Event Attributes

	4.3 Activities
	4.3.1 Process
	Table 13 Process Attributes

	4.3.2 Sub-Process
	Figure 6 Collapsed Sub-Process
	Figure 7 Expanded Sub-Process
	Figure 8 Expanded Sub-Process used as a “parallel box”
	Figure 9 Collapsed Sub-Process Markers
	Table 14 Sub-Process Attributes
	Figure 10 An Example of a Transaction Expanded Sub-Process

	4.3.3 Task
	Figure 11 A Task Object
	Figure 12 Task Markers
	Table 15 Task Attributes

	4.4 Gateways
	Figure 13 A Gateway
	Figure 14 The Different types of Gateways
	4.4.1 Common Gateway Features
	Table 16 Common Gateway Attributes

	4.4.2 Exclusive Gateways (XOR)
	Figure 15 An Exclusive Data-Based Decision (Gateway) Example without the Internal Indicator
	Figure 16 A Data-Based Exclusive Decision (Gateway) Example with the Internal Indicator
	Figure 17 An Exclusive Merge (Gateway) (without the Internal Indicator)
	Figure 18 Uncontrolled Merging of Sequence Flow
	Figure 19 Exclusive Gateway that merges Sequence Flow prior to an Parallel Gateway
	Table 17 Data-Based Exclusive Gateway Attributes
	Figure 20 An Event-Based Decision (Gateway) Example Using Receive Tasks
	Figure 21 An Event-Based Decision (Gateway) Example Using Message Events
	Table 18 Event-Based Exclusive Gateway Attributes

	4.4.3 Inclusive Gateways (OR)
	Figure 22 An Inclusive Decision using Conditional Sequence Flow
	Figure 23 An Inclusive Decision using an OR Gateway
	Figure 24 An Inclusive Gateway Merging Sequence Flow
	Table 19 Inclusive Gateway Attributes

	4.4.4 Complex Gateways
	Figure 25 A Complex Decision (Gateway)
	Figure 26 A Complex Merge (Gateway)
	Table 20 Complex Gateway Attributes

	4.4.5 Parallel Gateways (AND)
	Figure 27 A Parallel Gateway
	Figure 28 Joining - the joining of parallel paths
	Table 21 Parallel Gateway Attributes

	4.5 Pools and Lanes
	4.5.1 Pool
	Figure 29 A Pool
	Figure 30 Message Flow connecting to the boundaries of two Pools
	Figure 31 Message Flow connecting to flow objects within two Pools
	Figure 32 Main (Internal) Pool without boundaries
	Table 22 Pool Attributes

	4.5.2 Lane
	Figure 33 Two Lanes in a Pool
	Table 23 Lane Attributes

	4.6 Artifacts
	4.6.1 Common Artifact Attributes
	Table 24 Common Artifact Attributes

	4.6.2 Artifact Sequence Flow Connections
	4.6.3 Artifact Message Flow Connections
	4.6.4 Data Object
	Figure 34 A Data Object
	Figure 35 A Data Object associated with a Sequence Flow
	Figure 36 Data Objects shown as inputs and outputs
	Table 25 Data Object Attributes

	4.6.5 Text Annotation
	Figure 37 A Text Annotation
	Table 26 Text Annotation Attributes

	4.6.6 Group
	Figure 38 A Group Artifact
	Figure 39 A Group around activities in different Pools

	5. Connecting Objects
	5.1 Graphical Connecting Objects
	5.1.1 Sequence Flow
	Figure 40 A Sequence Flow
	Figure 41 A Conditional Sequence Flow
	Figure 42 A Default Sequence Flow

	5.1.2 Message Flow
	Figure 43 A Message Flow
	Figure 44 Message Flow connecting to the boundaries of two Pools
	Figure 45 Message Flow connecting to flow objects within two Pools
	Figure 46 Message Flow connecting to boundary of Sub-Process and Internal objects

	5.1.3 Association
	Figure 47 An Association
	Figure 48 A directional Association
	Figure 49 An Association of Text Annotation
	Figure 50 An Association connecting a Data Object with a Flow

	5.2 Sequence Flow Mechanisms
	5.2.1 Normal Flow
	Figure 51 Workflow Pattern #1: Sequence
	Figure 52 A Process with Normal flow
	Figure 53 A Process with Expanded Sub-Process without a Start Event and End Event
	Figure 54 A Process with Expanded Sub-Process with a Start Event and End Event Internal
	Figure 55 A Process with Expanded Sub-Process with a Start Event and End Event Attached to Boundary
	Figure 56 Workflow Pattern #2: Parallel Split -- Version 1
	Figure 57 Workflow Pattern #2: Parallel Split -- Version 2
	Figure 58 The Creation of Parallel Paths with a Gateway
	Figure 59 The Creation of Parallel Paths with Equivalent Conditions
	Figure 60 Workflow Pattern #2: Parallel Split -- Version 3
	Figure 61 Workflow Pattern #3: Synchronization -- Version 1
	Figure 62 Workflow Pattern #3: Synchronization -- Version 2
	Figure 63 The Fork-Join Relationship is not Fixed
	Figure 64 A Data-Based Decision Example -- Workflow Pattern #4 -- Exclusive Choice
	Figure 65 Workflow Pattern #6 -- Multiple Choice -- Version 1
	Figure 66 Workflow Pattern #6 -- Multiple Choice -- Version 2
	Figure 67 A Complex Decision (Gateway)
	Figure 68 An Event-Based Decision Example
	Figure 69 Workflow Pattern #5 -- Simple Merge - Version 1
	Figure 70 Workflow Pattern #7 -- Multiple Merge
	Figure 71 Workflow Pattern #5 -- Simple Merge - Version 2
	Figure 72 Workflow Pattern #8 -- Discriminator
	Figure 73 Workflow Pattern #9 -- Synchronizing Join
	Figure 74 Workflow Pattern #8 -- N out of M Join
	Figure 75 The Split-Merge Relationship is not Fixed
	Figure 76 A Task and a Collapsed Sub-Process with a Loop Marker
	Figure 77 A Task with a Parallel Marker
	Figure 78 An Expanded Sub-Process with a Loop Marker
	Figure 79 Workflow Pattern #16 -- Arbitrary Cycle
	Figure 80 An Until Loop
	Figure 81 A While Loop
	Figure 82 Example of Sub-Process
	Figure 83 Potentially a dead-locked model
	Figure 84 Improper Looping

	5.2.2 Link Events
	5.2.3 Exception Flow
	Figure 85 A Task with Exception Flow (Interrupts Event Context)
	Figure 86 A Sub-Process with Exception Flow (Interrupts Event Context)

	5.2.4 Ad Hoc
	Figure 87 A Collapsed Ad Hoc Sub-Process
	Figure 88 An Expanded Ad Hoc Sub-Process
	Figure 89 An Ad Hoc Process for Writing a Book Chapter

	5.3 Compensation Association
	Figure 90 A Task with an Associated Compensation Activity
	Figure 91 Compensation Shown in the context of a Transaction

	6. BPMN by Example
	Figure 92 E-Mail Voting Process
	6.1 The Beginning of the Process
	Figure 93 The Start of the Process
	6.1.1 Mapping to BPEL4WS
	Figure 94 The Ongoing Starter Process
	Example 1 BPEL4WS Sample for Beginning of E-Mail Voting Process

	6.2 The First Sub-Process
	Figure 95 “Discussion Cycle” Sub-Process Details
	6.2.1 Mapping to BPEL4WS
	Example 2 BPEL4WS Sample of “Discussion Cycle” Sub-Process Details

	6.3 The Second Sub-Process
	Figure 96 “Collect Votes” Sub-Process Details
	6.3.1 Mapping to BPEL4WS
	Example 3 BPEL4WS Sample that sets up the Access for the Second Sub-Process
	Example 4 BPEL4WS Sample of the Second Sub-Process

	6.4 The End of the Process
	Figure 97 The last segment of the E-Mail Voting Process
	6.4.1 Mapping to BPEL4WS
	Example 5 Sample BPEL4WS code for the last section of the Process
	Example 6 Sample BPEL4WS code for derived process for repeated elements

	7. Mapping to XML Languages
	7.1 Defining Token Generation for execution Language Mapping
	7.2 Mapping to BPEL4WS
	7.2.1 Events
	Figure 98 Message Flow connected to a Start Event
	Figure 99 Process Instantiation through Message Receiving Task
	Figure 100 Message Flow leaving an End Event
	Figure 101 Message Flow from Task that precedes the End Event

	7.2.2 Activities
	7.2.3 Gateways
	7.2.4 Pool
	7.2.5 Lane
	7.2.6 Artifacts
	7.2.7 Sequence Flow
	7.2.8 Message Flow
	7.2.9 Association
	7.2.10 Exception Flow
	7.2.11 Compensation Flow

	8. References
	8.1 Normative
	8.2 Non-Normative

	9. Open Issues
	Appendix A: E-Mail Voting Process BPEL4WS
	Appendix B: Glossary

