"Never Say I know" – Series Webinar no. 5

Discussing the boundaries of CCPM

By Eli Schragenheim Supporting TOC implementations worldwide

The boundaries of this discussion

- I'm not going to argue the CCPM specifications
 - Note that Rob Newbold is going to challenge the feeding buffers at the TOCICO conference in Germany 2013
- I ask: what project-oriented environments do not fit the CCPM approach?
- Managing a single project does CCPM always provide added value?
- What support outside the frame of CCPM is necessary for managing projects in a superior way?
 - Avraham Mordoch will deliver a Master Class on some of the organizational issues at the TOCICO conference in Germany 2013
 - These aspects will not be covered here
 - Performance measurements for professionals is an issue

The key assumptions behind CCPM

- 1. It is critical that the project(s) would complete on time
 - There is a meaningful wished-for-completion-date that is known at the start of the project!
 - The time element is more important than fully exploiting the capacity of critical resources
 - Meeting the due-dates is more important than early completion
- 2. At the start of the project we have a very good idea of the output of the project and what is required to achieve it
- Completing the project is only a question of time
- 4. The time required for completing a task usually includes a considerable time buffer
- 5. The time to complete a task uses 100% of the capacity of the resources involved

The objectives of CCPM

- Providing management with solid prediction of the completion time and amount of resources required for a particular project or a portfolio of projects
- 2. Providing the project manager with good tools to handle the uncertainty in the timing elements, including getting timely warnings when the completion of the project might be delayed
- Eventually CCPM leads to being able to do more projects with the same level of resources
 - But, this is LESS important than the two objectives above

The impact of the due-date on projects

- The buffering scheme of projects aims at protecting the completion date
 - What happens when we like to finish as soon as possible?
 - The project buffer protects a specific date does it encourage earlier completion?
 - What completion date would YOU give to a project you strive to finish fast?
 - One option is to get the task times, cut them aggressively, and attach the project buffer, so a reasonable due-date is achieved
 - Another option is cutting the task times without any buffer
 - Can you explain why you need a project buffer when you do not have a due-date but wish to finish ASAP?
 - What do we do when the resulting date from the CCPM planning is considerably later than the date we truly need to supply?

Between the need-date and the safe-date

- Very often there is a considerable difference between the date we need the output and the date we can reliably commit to
 - TOC assumes we look primarily to the safe-date
 - Especially as CCPM is able to promise safe-dates that are better than the current actual completion dates
- The more we get used to CCPM we go into the conflict between the due-dates
 - Can we develop a method of using the two dates?
 - Trying seriously to reach the early need-date
 - This would also mean planning the project with the best resources
 - While having the safe-date as a "worst-case" scenario

When the due-date changes

- We expect that for projects that are done for clients who manage higher level projects - many times the actual delivery can be delayed without any damage
 - When other parts of the bigger project are delayed
 - Or because changes in the economy makes the quick completion of the project undesirable
 - Question: should we re-plan?
 - What are the NBRs of (frequently) re-planning when the due-date is pushed later in time?
 - What are the NBRs if we do not re-plan keep the original due-date in place?

When the outcome of the project is **not** clear at the very start

- A true research project
 - Every step in such a project depends highly on the results of the previous step
 - How can we identify the critical chain in such a case?
- Search for oil or any other highly uncertain project that depends on the results of various tests
- We assume that a valid solution for the above is to dissect the project to smaller parts for which there is good enough information how to go on
 - Could be the small parts are not projects just one or two tasks
 - And then CCPM has very little value
- Should we plan the full set of features at the very start of the project?

Planning and execution in the TOC Way

- Planning, making decisions for later in time, should be restricted to the absolutely necessary details, done as late as possible and include buffers to protect the planning objectives
 - Isn't this what we have learned from the TOC handling of MTO and MTA in production environment?
- Execution the TOC way is given more responsibility and flexibility to manage their priorities and by that achieve the objectives
- What are the ramifications for projects that include a lot of "nice to have" features?

The ramifications on CCPM

- Projects with many "nice to have" features
 - The first objective of the CCPM planning is to assess the safe date for completion of a reasonable outcome
 - This should be done based only on the must have features
 - The minimal viable outcome
 - The set of features that without even one of them there is no product
 - We should manage a group of nice-to-have features, already expressed as a small network of tasks, and include some of those features in the project when appropriate
 - When we have the resources and it's not going to delay the project

Simplified CCPM

- James Holt presented at the TOCICO conference 2011 the topic of Simplified-CCPM
 - One buffer the project buffer
 - Priorities of only two colors: Red and Green (red and not-red)
 - Effective Fever-Chart where the Y axis is ½ of the X axis
 - Thus the scale for both X and Y are the same
 - As the buffer is 50% of the chain it protects
- This idea is inline with the principles of planning and execution when the following assumption apply:
 - The project mainly consists of one clear chain of tasks
 - So, the overall problem of synchronization of several chains running in parallel and integrating into one chain does not exist
 - Note though that all other assumptions of CCPM have to valid

When Parkinson law is not valid

- The formal verbalization of Parkinson Law:
 Work expands so as to fill the time available for its completion
- CCPM assumes Parkinson Law is valid in projects:
 - Because the professionals are measured by on-time performance
 - The project manager looks for on-time completion of every task
 - And there is a lot of uncertainty in the project's tasks
 - TOC interprets Parkinson Law as having time buffers on each task
- What happens when the professionals intentionally distort the task times, by quoting very short times, in order to make sure the project would be confirmed by management?

When Parkinson law is not valid - continued

The problem for a project that is based on a super optimistic way:

The first objective, giving management a reasonable date and amount of resources, is violated!

- More problems would emerge:
 - When the project buffer is fully penetrated then the project manager loses sight of what is going on
 - It could lead to distrust CCPM as a reliable tool!
- The only remedy is to understand the circumstances that cause this behavior and then be ready to make decisions under severe uncertainty
 - The cloud between management and the scientists and engineers who want the project must be verbalized and analyzed!

Between Projects and Manufacturing

- The key difference that impacts the scheduling:
 - Projects are NOT supposed to be on-hold without progress!
 - Because the importance of the time element, the high value of the output and the long touch times require that no work should wait for a human resource!
 - In Manufacturing the normal procedure is to have a queue of work
 - thus exploiting the capacity
 - Even under TOC we recognize that wait time is normal, even for nonconstraints
 - Good-enough due-date performance, where the lead time is much longer than the total touch time, is appropriate for manufacturing
 - Thus, CCPM looks hard on the critical chain and its progress, while critical chain is meaningless in manufacturing

Consultancy projects – inc. VV

- Do TOC implementations progress continuously?
- Do teams for solving problems progress continuously?
- If you are writing a book do you progress continuously?
- Consultancy project's tasks typically involve several people
 - For each of them it is an addition to other tasks!
 - Is it bad multi-tasking?
 - Synchronizing the time table for several people makes the total duration of the task relatively long
- With such projects in mind what is the meaning of the critical chain?
 - When the touch time is much shorter than the task duration is it clear what the CC is?

The conflict of scheduling

Key assumption of the upper leg: We plan so the lead time of an order is significantly longer than the touch time – orders wait for the resource

Manage profitable and stable organization

Maintain reasonable utilization of the key resource(s)

Plan and schedule according to load control (planned-load)

Secure fast and reliable completion of each order/project

Plan and schedule according to the CCPM

Key assumption of the bottom leg: We plan so the progress of every project is not interrupted – resources wait for their tasks

Dealing with capacity of people

- CCPM bypasses the tricky problem of measuring capacity of people
 - We assume that assessing the 50% confidence of finishing a task is a good-enough assessment of capacity of the resources involved
 - In most projects the key resources are people
 - We do not have an effective way to know whether those people can do more tasks within the same period of time
 - Most people working on projects have other things to do that are not part of the multi-project planning
 - Managing the human resources have to assess whether they are able to face the predicted, or even known, future load
 - The managerial problem is: Given the prediction for future projects are the capacity levels about right?
 - The Drum is used, along its limiting assumptions, only when good enough CCPM plans for future projects are given

Projects and capacity constraints

- Eli Goldratt said that there cannot be any true capacity constraint in a multi-project environment!
 - Because in such a case projects would wait very long time until being even started
 - I've simulated a very large multi-project environment, under certain assumptions about the use of capacity and I've found out:
 - An average load of 85% on ONE resource causes such delays that the organization would not have tolerated it
 - The ramifications are: all resources have MORE than 15% excess on the actual load of projects
- With this in mind, even 80% load of a resource might restrict the organization from running more projects
 - So, the most restricting resource could be an active CCR!

Managing the capacity of people

- Using templates to simulate the future drum:
 - This is a process that needs to be implemented very carefully
 - The time horizon required for resource management has to include all the templates of projects that are expected to start
 - Under a certain level of confidence
 - Then running the Drum on all those projects
 - The drum itself is based only on either one resource or on arbitrary number of projects in the integration phase
 - It cannot predict the emergence of another resource as a constraint
 - When we assume each resource invests 100% of its capacity on every task we can display the graph of the load versus capacity
 - Can one deduce something reasonable from such a graph?

A proposed direction

- Measuring capacity of people is too tricky to accomplish
- An insight: It is possible to note when a resource is loaded too much
 - Having too many tasks that cause the buffer to be red signals pressure, but it could be already too late for a quick fix
- Suggestion from Eli Schragenheim:
 - Watch for tasks that should have been started, but wait for a resource to be available
 - Record the number of days tasks waited for that resource
 - Pareto chart of the waiting-task-days of every resource would point to the resource that is under bigger pressure than the rest
 - Use the value of the planned-load to signal the threshold for that resource
 - Planned load: the summation of all task times the resource is planned to do divided by the number of units

Performance measurement for project professionals

- Stating the problem:
- TOC eliminates the on-time performance of tasks as a valid personal measurement, so how can management know how good a specific person is?
- Insight:
 - What is important is whether a certain person is nogood, rotten apple, a star or simply good enough
- If someone is either no-good or a rotten-apple then other people know and most of them are aware to the damage
- If someone is a star again people know
- A direction of solution: Periodical questionnaire that is target to identify those qualities

Identifying rotten-apples and stars

The basic assumption behind the questionnaire is:

People know their colleagues at work much better than any qualitative performance measurement

- So, the idea is to ask every employee to characterize the people they work with
 - The questions should reflect the wishes of Management
 - Like being ready to support the priorities of the organization
 - Being honest and caring about the organization
 - Having the required skills to do the job
- The main NBR is that when answering the questions people might consider other factors
 - Schemes that serve their self-interests
 - Human compassion for nice people without the skills

Personal measurements of professionals

- The main elimination of the NBR is by:
 - The more people are going through the questionnaire the more reliable it is
- Another NBR is that very unique people might come out as 'rotten-apples' – which requires damage control by the management
 - Special attention must be given to people who got very different reactions from their peers
- The important point is to refrain from giving marks to people who are good, but not stars and definitely not rotten-apples

The role of the project manager

- Does CCPM assume that there is a project manager?
 - There are environments where a project moves through several departments, but there is no one person managing the project
 - Very small projects might not need a project manager
 - Without an active project manager meeting that predicted duedate does not seem likely
 - Thus, indirectly we do assume that for CCPM to be effective there is a need to have a project manager in place
- How does the capacity of the project managers impact multi-project environments?
 - Real good project managers are not common
 - Thus, it could be that the capacity of the existing project managers is the constraint of certain multi-project environments

Discussion

Let's discuss the topic further using the LinkedIn discussion group:

TOC4U Theory of Constraints group

