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We propose nonparametric estimators of the occupation measure
and its density of the diffusion coefficient (stochastic volatility) of
a discretely observed Itô semimartingale on a fixed interval when
the mesh of the observation grid shrinks to zero asymptotically. In a
first step we estimate the volatility locally over blocks of shrinking
length and then in a second step we use these estimates to construct a
sample analogue of the volatility occupation time and a kernel-based
estimator of its density. We prove the consistency of our estimators
and further derive bounds for their rates of convergence. We use these
results to estimate nonparametrically the quantiles associated with
the volatility occupation measure. Annals of Statistics: forthcoming.

1. Introduction. Continuous-time Itô semimartingales are used widely
to model stochastic processes in various areas such as finance. The general
Itô semimartingale process is given by

(1.1) Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs + Jt,

where bt and σt are processes with càdlàg paths, Wt is a Brownian motion
and Jt is a jump process; formal conditions are given in the next section.
Inference for the model (1.1) in the general case (either in a parametric or
a nonparametric context) is quite complicated because of the many “layers
of latency”, e.g., as typical in financial applications, σt and Jt can have
randomness not captured by Xt.

When X is sampled at discrete times but with the mesh of the observa-
tion grid shrinking to zero, i.e., high-frequency data of X are available, the
distinct pathwise behavior of the components in (1.1) can be used to non-
parametrically separate them. Indeed, various techniques have been already
proposed to estimate nonparametrically the integrated variance

∫ T
0 σ2

sds over
a specific interval [0, T ], see e.g., [3] and [13], and more generally integrated

variance measures of the form
∫ T
0 g(σ2

s)ds, where g(·) is a continuous func-
tion with polynomial growth (and there are more smoothness requirements

AMS 2000 subject classifications: Primary 62F12, 62M05; secondary 60H10, 60J75.
Keywords and phrases:Occupation time, local approximation, stochastic volatility, spot

variance, quantiles, nonparametric estimation, high-frequency data

1



2 JIA LI, VIKTOR TODOROV AND GEORGE TAUCHEN

on g(·) for determining the rate of convergence); see Theorems 3.4.1 and
9.4.1 in [10] and the recent work of [12].

This paper extends the existing literature on high-frequency nonparamet-
ric volatility estimation by developing a nonparametric jump-robust estima-
tor of the occupation time of the latent volatility process (Vt)t≥0 ≡ (σ2

t )t≥0

where the volatility occupation time is defined by

(1.2) Ft(x) =

∫ t

0
1{Vs≤x}ds, ∀x > 0, t ∈ [0, T ] .

Evidently, the right-hand side of (1.2) is of the form
∫ t
0 g(Vs)ds with g(v) =

1{v≤x}, which unlike earlier work is a discontinuous function.
If Ft (·) is absolutely continuous with respect to the Lebesgue measure, its

derivative ft (·), i.e. the volatility occupation density, is well-defined. By the
Lebesgue differentiation theorem, the occupation density can be equivalently
defined as

(1.3) ft(x) = lim
ϵ↓0

1

2ϵ
(Ft(x+ ϵ)− Ft(x− ϵ)) .

In addition to estimating Ft(x), in this paper we also develop a consistent
estimator for the volatility occupation density ft(x) using the high-frequency
record of X.

The occupation measure of the volatility process “summarizes” in a con-
venient way the information regarding the volatility behavior over the given
time interval. Indeed, for any bounded (or non-negative) Borel function g(·),
see e.g., Theorem 6.4 of [8], we have

(1.4)

∫ t

0
g(Vs)ds =

∫
R+

g(x)ft(x)dx =

∫
R+

g(x)dFt(x).

Thus, the occupation time and its density can be considered as the pathwise
analogues of the cumulative distribution function and its density.

Our interest in occupation times stems from the fact that they are natural
measures of risk, particularly in nonstationary settings where invariant dis-
tributions do not exist, see e.g., the discussion in [1]. Indeed, there has been
a significant interest (both theoretically and in practice) in pricing options
based on the occupation times of an underlying asset, see e.g., [4] and [19]
and references therein. Here, we show how to measure nonparametrically
occupation times associated with the volatility risk of the price process. As
a by-product, we also estimate the corresponding quantiles of the actual
path of the volatility process over the fixed time interval. Since the pathwise
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volatility quantiles are preserved under monotone transformations, they pro-
vide a convenient way of studying the variability of the volatility and the
relationship of the latter with the volatility process itself.

We summarize our estimation procedure as follows. We first split the
fixed time interval into blocks of decreasing length and form local estimates
of the unobserved stochastic variance over each of the blocks. The volatility
estimates over the blocks are truncated variations (see e.g., [13] and [10]) and
we further allow for adaptive choice of the truncation level that makes use of
some preliminary estimate of the stochastic variance. Then, our estimator of
the volatility occupation time is simply the empirical cumulative distribution
function of the local volatility estimates over the blocks. Analogously, we
estimate the volatility occupation density from the local volatility estimates
using kernel smoothing.

Our estimation problem can be compared with the recent work of [12].

[12] show that an estimator of
∫ T
0 g(σ2

s)ds, for g(·) a C3 function, formed by
plugging in local variance estimates formed over blocks of decreasing length,

can achieve the efficient ∆
−1/2
n rate of convergence (for ∆n being the length

of the high-frequency intervals). Similar to [12], our estimator here is formed
by plugging local variance estimates in our function of interest.

The main difference between the current work and [12] is that in our
case the function g(·) in (1.4) is discontinuous. As a result, the precision
of estimating the volatility occupation time depends on the uniform rate of
recovering the volatility process outside of the times of the “big” volatility
jumps (with the size of the “big” jumps shrinking asymptotically to zero).
Therefore, in the basic case whenX and V are continuous, the rate of conver-

gence of the volatility occupation time estimator is (almost) ∆
−1/4
n which, as

we show in the paper, is the optimal uniform rate for recovering the volatil-
ity trajectory from high-frequency observations. By contrast, [12] derive a

central limit theorem for the convergence of their estimator to
∫ T
0 g(σ2

s)ds
by making use of the assumed smoothness of g and applying second-order
Taylor expansion of the function g evaluated at the local volatility estimator
in their bias-correction and asymptotic negligibility arguments.

Finally, our inference for the volatility occupation time and its density
can be compared with the estimation of occupation time and density of a
recurrent Markov diffusion process from discrete observations of the pro-
cess, see e.g., [7] and [1]. The main difference is that here the state vector,
and therefore the stochastic volatility, is not fully observed. Hence, we first
need to recover nonparametrically the unobserved volatility trajectory, and
the error associated with recovering the volatility trajectory determines the
asymptotic behavior of our estimators.
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The paper is organized as follows. In Section 2 we introduce the formal
setup and state our assumptions. In Section 3 we develop our estimator of
the volatility occupation measure and prove its consistency. In Section 4
we derive bounds for the rate of convergence of the volatility occupation
time estimator. Section 5 derives a consistent estimator for the volatility
occupation density. Section 6 reports results from a Monte Carlo study of
our estimation technique. Section 7 concludes. Section 8 contains all proofs.

2. Setup and assumptions. We start with introducing the formal
setup and stating our assumptions aboutX. The processX in (1.1) is defined
on a filtered space (Ω,F , (Ft)t≥0,P) with bt and σt being adapted to the
filtration. Further, the jump component Jt is defined as

(2.1)
Jt =

∫ t

0

∫
R
δ (s, z) 1{|δ(s,z)|≤1} (µ− ν) (ds, dz)

+

∫ t

0

∫
R
δ (s, z) 1{|δ(s,z)|>1}µ (ds, dz) ,

where µ is a Poisson measure on R+ × R with compensator ν of the form
ν (dt, dz) = dt⊗λ (dz) for some σ-finite measure λ on R and δ : Ω×R+×R 7→
R is a predictable function. Regularity conditions on Xt are collected below.

Assumption A. Let r ∈ [0, 2] be a constant. The process X is an Itô
semimartingale given by (1.1) and (2.1), with bt locally bounded and σt
càdlàg. Moreover |δ (ω, t, z)| ∧ 1 ≤ Γm (z) for all (ω, t, z) with t ≤ τm (ω),
where (τm) is a localizing sequence of stopping times and each function Γm

on R satisfies
∫
R Γm (z)r λ (dz) < ∞.

Assumption A can be viewed as a regularity type condition. The coeffi-
cient r in Assumption A controls the degree of activity of the jump com-
ponent J and will play an important role in the rate of convergence of our
estimator. We note that r provides an upper bound for the (generalized)
Blumenthal-Getoor index of Jt, see e.g., Lemma 3.2.1 in [10]. We next state
our assumption for the volatility occupation time.

Assumption B. Fix x ≥ 0. We have FT (·) a.s. differentiable with derivative
fT (·) in a neighborhood Nx containing x. Moreover, supz∈Nx

E[fT (z)] < ∞.

Assumption B is mainly concerned with the pathwise smoothness of the
occupation time. The differentiability condition amounts to the existence of
occupation density fT (·), which is not a strong requirement (see e.g., [8]
and [14]). The condition supz∈Nx

E[fT (z)] < ∞ only requires the temporal
average (over [0, T ]) of the probability density of Vt uniformly bounded in
the neighborhood Nx, which is satisfied by most stochastic volatility models.
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This condition is of course much weaker than requiring E[ supz∈Nx
fT (z)] <

∞, as the latter would demand more on the pathwise regularity of the oc-
cupation density.

Example. Let Vt solve the following stochastic differential equation

dVt = aVt dt+ s(Vt)dW
V
t + dJV

t ,

where aVt is a locally bounded process, W V
t is a Brownian motion, JV

t is a
finite-variational jump process and s (·) has twice continuously differentiable
reciprocal. Assume further that V has an invariant distribution which is
C1 in a neighborhood of x. Then Assumption B holds. This follows from
an application of Itô’s formula and Theorem IV.75 in [14]. This example
includes many parametric models of interest like the square-root diffusion
model and the more general constant elasticity of variance model.

For some of the results we will need a stronger condition on the volatility
occupation density, mainly its continuity which we state formally in the next
assumption.

Assumption B’. FT (·) is a.s. continuously differentiable on R with deriva-
tive fT (·).

Assumption B’ is harder to verify than Assumption B. Necessary and
sufficient conditions for the continuity of the occupation density (local time)
of a Borel right Markov process are discussed in [6].

We finally state a slightly stronger condition on the volatility process that
we will need for deriving the rate of convergence of our estimator.

Assumption C. The process σt is an Itô semimartingale with the form

σt = σ0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs +

∫ t

0
σ̃′
sdW

′
s +

∫ t

0

∫
R
δ̃ (s, z) (µ− ν) (ds, dz) ,

where the processes b̃, σ̃, σ̃′ are locally bounded and adapted, W ′ is a Brow-
nian motion orthogonal to W , and δ̃ (·) is a predictable function. Moreover
|δ̃ (ω, t, z) | ∧ 1 ≤ Γ̃m (z) for all (ω, t, z) with t ≤ τm (ω), where (τm) is a
localizing sequence of stopping times and for some r̃ ∈ (0, 2], each function
Γ̃m on R satisfies

∫
R Γ̃m (z)r̃ λ (dz) < ∞.

Assumption C assumes that σt is an Itô semimartingale, an assumption
that is satisfied by most stochastic volatility models. We impose no restric-
tion on the activity of the volatility jumps as well as the dependence between
σt and Xt, a generality that is important in practical applications (particu-
larly in finance).
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3. The estimator and its consistency. We next introduce our esti-
mator of the volatility occupation time and derive its consistency. We sup-
pose that the process Xt is observed at discrete times i∆n, i = 0, 1, .... on
[0, T ] for a fixed T > 0 with the time lag ∆n → 0 when n → ∞. The assump-
tion for equidistant observations is merely for simplicity and the theoretical
results that follow (except Theorem 3) will continue to hold in the case of
irregular (but non-random) sampling with ∆n replaced by the mesh of the
irregular observation grid. In what follows the high-frequency increment of
any process Y is denoted as ∆n

i Y = Yi∆n − Y(i−1)∆n
.

Our strategy of estimating FT (·) is to first form an approximation of the
volatility trajectory and then use the latter to form a sample analogue of
FT (·). To recover the volatility trajectory we construct local approximations
for the spot variance process V over blocks of shrinking length. To this end,
let kn be a sequence of integers with kn → ∞ and kn∆n → 0. Henceforth
we use the shorthand notation un = kn∆n. We also set a truncation process
vn,t verifying the following assumption, which is maintained throughout the
paper without further mention.

Assumption D. We have vn,t = αn,t∆
ϖ
n , whereϖ ∈ (0, 1/2) is constant and

αn,t is a strictly positive real-valued process such that for some localizing
sequence of stopping times (τm), (supt∈[0,T ](αn,t∧τm ∨ α−1

n,t∧τm))n≥1 is tight
for each m ≥ 1.

With these notations, for each i = 0, . . . , ⌊T/∆n⌋ − kn, we set

(3.1)


V̂ ∗
i∆n

= 1
un

∑kn
j=1

(
∆n

i+jX
)2

,

V̂i∆n = 1
un

∑kn
j=1

(
∆n

i+jX
)2

1{|∆n
i+jX|≤vn,i∆n}.

Here, V̂ ∗
i∆n

is a local approximation of Vi∆n when X is continuous, while

V̂i∆n serves the same purpose but is robust to the presence of jumps in
X. As a generalization to the standard truncation-based methods, see e.g.,
chapter 9 of [10], we allow explicitly the truncation parameter αn,t to be
time-varying and depend on {Xi∆n}i=1,...,⌊T/∆n⌋. For example, one conve-
nient and commonly used choice is to set αn,t = cσn, where c is a con-
stant (typically in the range (3, 5)) and σn is a preliminary estimate of
the average volatility over [0, T ]. Assumption D is verified as soon as σn

and σ−1
n are tight. Another possibility is to make αn,t adaptive by setting

αn,t = cσ̂i for t ∈ [(i − 1)un, iun), where σ̂i is a preliminary estimate for
the volatility in the local window [(i − 1)un, iun). For example, one may
take σ̂i to be a localized version of the Bipower Variation estimator of [2]:
σ̂i = ((π/2)u−1

n

∑kn
j=1 |∆n

i+jX||∆n
i+j+1X|)1/2. The tightness requirement in
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Assumption D can be easily fulfilled by replacing σ̂i with (σ̂i∨(1/C))∧C for
some pre-specified regularization constant C ≥ 1. Finally, in the above two
examples for αn,t, we can further replace the constant c with a deterministic
sequence cn increasing at a logarithmic rate as ∆n → 0.

We will use V̂ ∗
i∆n

and V̂i∆n to approximate for the volatility trajectory
within the block. That is for 0 ≤ i ≤ ⌊T/un⌋ − 1,

(3.2)

{
V̂ ∗
t = V̂ ∗

iun
and V̂t = V̂iun , t ∈ [iun, (i+ 1)un),

V̂ ∗
t = V̂ ∗

(⌊T/un⌋−1)un
and V̂t = V̂(⌊T/un⌋−1)un

, ⌊T/un⌋un ≤ t ≤ T.

Remark 3.1. We can alternatively define local estimators of volatility
for each i = 1, ..., ⌊T/∆n⌋ by averaging the kn past squared increments below
the threshold. All the results in the paper, except for Theorem 3 below, will
hold for this alternative way of recovering the spot volatility.

Using V̂ ∗
t and V̂t, our proposed estimators of FT (·) are defined as

F̂ ∗
n,T (x) =

∫ T

0
1{V̂ ∗

s ≤x}ds, F̂n,T (x) =

∫ T

0
1{V̂s≤x}ds, x ∈ R.

We first consider the pointwise consistency of F̂ ∗
n,T (x) and F̂n,T (x). As

a matter of fact, it is not much harder to prove a more general result as
follows.

Lemma 1. Let g : R+ 7→ [0, 1] be a measurable function and Dg be the
collection of discontinuity points of g. Suppose

(i) Assumption A holds for r = 2;
(ii) for Lebesgue a.e. t ∈ [0, T ], P (Vt ∈ Dg) = 0.
Then we have
(a)

(3.3)

∫ T

0
g(V̂s)ds

P−→
∫ T

0
g (Vs) ds;

(b) if, in addition, X is continuous, then (3.3) also holds when replacing
V̂ with V̂ ∗.

Lemma 1 extends Theorem 9.4.1 in [10] by allowing for discontinuities in
the test function g (·). For fixed x ≥ 0, the pointwise consistency of F̂n,T (x),

and F̂ ∗
n,T (x) if X is continuous, follows immediately (with g (·) = 1{ ·≤x})

provided that P (Vt = x) = 0 for Lebesgue a.e. t ∈ [0, T ]. The uniform con-
sistency of F̂ ∗

n,T (·) and F̂n,T (·) is available if the occupation time FT (·) is
a.s. continuous, as shown below.
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Theorem 1. Suppose Assumption A holds for r = 2 and FT (·) is a.s.
continuous. We have

(a) supx∈R |F̂n,T (x)− FT (x) | P−→ 0;
(b) if, in addition, X is continuous, then (a) still holds when replacing

F̂n,T with F̂ ∗
n,T .

Analogous to the classical notion of quantile for cumulative distribution
functions, the quantile of the occupation time FT (·) is naturally defined
as the left-continuous functional inverse of FT (·): for α ∈ (0, T ), we set
QT (α) = inf{x ∈ R : FT (x) ≥ α}. A natural estimator for QT (α) is
Q̂n,T (α) = inf{x ∈ R : F̂n,T (x) ≥ α} and Q̂∗

n,T (α) can be defined analo-

gously for F̂ ∗
n,T (·). The consistency of the quantile estimators is given by

the next corollary.

Corollary 1. Suppose Assumption A holds for r = 2 and FT (·) is a.s.
continuous. Let Q ≡{α ∈ (0, T ) : QT (·) is continuous at α a.s.}. We have
for each α ∈ Q,

(a) Q̂n,T (α)
P−→ QT (α);

(b) if, in addition, X is continuous, then Q̂∗
n,T (α)

P−→ QT (α).

4. Rate of convergence of F̂n,T . We next study the rate of conver-

gence of F̂n,T (x). We first consider in Section 4.1 the case when V is continu-
ous and then the general case with discontinuous V is studied in Section 4.2,
where the uniform rate of convergence of F̂n,T (·) is also considered.

4.1. The continuous volatility case and the uniform approximation of V .
In the continuous volatility case we can link the rate of convergence of our
volatility occupation time estimators with the rate of convergence of V̂ ∗

t and
V̂t towards Vt on the space of càdlàg functions equipped with the uniform
norm. We denote the latter as

η∗n = sup
t∈[0,T ]

∣∣∣V̂ ∗
t − Vt

∣∣∣ , ηn = sup
t∈[0,T ]

∣∣∣V̂t − Vt

∣∣∣ .
The rate of convergence of F̂n,T and Q̂n,T is then related with ηn through

Lemma 2 below; an analogous result holds for F̂ ∗
n,T , Q̂

∗
n,T and η∗n, but is

omitted here for brevity.

Lemma 2. (a) For any x ≥ 0 and α ∈ (0, T ), we have |F̂n,T (x) −
FT (x) | ≤ FT (x+ ηn)− FT (x− ηn) and |Q̂n,T (α)−QT (α)| ≤ ηn.

(b) Suppose Assumption B and ηn = Op (an) for some non-random se-

quence an → 0. Then F̂n,T (x)− FT (x) = Op (an).
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In view of Lemma 2, bounding the rate of convergence of the occupation
time estimators boils down to establishing the asymptotic order of magni-
tude of ηn and η∗n. Our main result concerning the uniform approximation
of the V process is given by the following theorem.

Theorem 2. Suppose Assumptions A and C with ∆Vs = 0 for s ∈ [0, T ].
Let kn ≍ ∆−γ

n for some γ ∈ (rϖ + (1 ∨ r)(1 − 2ϖ), 1), ϖ ∈ ((1 ∨ r −
1)/(2 (1 ∨ r)− r), 1/2) and ι > 0 be arbitrarily small but fixed. We have

(a) ηn = Op (an), where

(4.1) an =


∆

γ−1+(2−r)ϖ
n ∨∆

γ/2−ι
n ∨∆

(1−γ)/2−ι
n if r ≤ 1

∆
γ/r−(1−ϖ)−ι
n ∨∆

γ/2−ι
n ∨∆

(1−γ)/2−ι
n if r > 1

∆
γ/2−ι
n ∨∆

(1−γ)/2−ι
n if X is continuous;

(b) if X is continuous, we also have η∗n = Op (an).

When X is continuous, the terms ∆
γ/2−ι
n and ∆

(1−γ)/2−ι
n capture respec-

tively the sampling variability and the discretization bias in the approxima-
tion of the spot variance. WhenX is discontinuous, an contains an additional
term arising from the elimination of jumps, which of course depends on the
concentration of “small” jumps through r (recall Assumption A). The con-
ditions on ϖ and γ imply an → 0. In particular, when r is close to 2, ϖ and
γ need to be chosen close to 1/2 and 1 respectively to ensure that an → 0,
rendering the rate of convergence arbitrarily slow. Nonetheless, if X is dis-
continuous, ηn still has the same rate of convergence as in the continuous

case, i.e., ∆
1/4−ι
n , provided r ∈ (0, 1/2). This rate can be achieved by setting

ϖ ∈ (3/ (8− 4r) , 1/2) and γ = 1/2.
Of course Theorem 2 provides only a bound for the rate of convergence of

ηn and η∗n. The following theorem however establishes the exact asymptotic
distributions of ηn and η∗n in a simple model with constant volatility.

Theorem 3. Suppose
(i) Assumption A holds with Vt constant and bt = 0 on [0, T ];
(ii) r < 1/2 and ϖ ∈ (3/(8− 4r), 1/2).
Then

(4.2)
√
log(⌊T/un⌋)

(√
knηn −

√
2V mn

)
L−→ V × Λ,

provided kn ≍ ∆
−1/2
n and where Λ is a random variable with cdf exp(−2 exp(−x)),

and

(4.3) mn =
√

2 log(⌊T/un⌋)−
log(log(⌊T/un⌋)) + log(4π)√

2 log(⌊T/un⌋)
.
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If we further assume (iii) Xt is continuous, then (4.2) still holds with ηn
replaced by η∗n.

Remark 4.1. Theorem 3 shows that the rates given in (4.1) are almost
optimal when the jumps of Xt are not very active (r < 1/2). To be precise,

we observe that (4.1) suggests ηn = Op(∆
1/4−ι
n ) for ι > 0 fixed but arbitrarily

small, while the optimal rate in Theorem 3 provides a slightly sharper bound

ηn = Op(∆
1/4
n log(⌊T∆−1/2

n ⌋)1/2).

The rate of convergence of our volatility occupation time estimators and
their quantiles is a direct corollary of Lemma 2 and Theorem 2; the proof is
omitted for brevity.

Corollary 2. Let x ≥ 0 and α ∈ (0, T ). Suppose Assumption B and the
same setting as in Theorem 2. Then F̂n,T (x)−FT (x) and Q̂n,T (α)−QT (α)

are Op (an). If X is continuous and kn ≍ ∆
−1/2
n , then F̂n,T (x) − FT (x),

F̂ ∗
n,T (x)− FT (x), Q̂n,T (α)−QT (α) and Q̂∗

n,T (α)−QT (α) are Op(∆
1/4−ι
n )

for ι > 0 arbitrary small but fixed.

We should point out that in the trivial cases when x < inft∈[0,T ] Vt or
x > supt∈[0,T ] Vt on a given path, the error in recovering the occupation
time will become identically zero for n sufficiently high (up to taking a
subsequence).

Remark 4.2. More generally, we can use Theorem 2 to show in the
setting of the theorem that if L : D([0, T ]) → R, where D([0, T ]) is the space
of càdlàg functions on the interval [0, T ] equipped with the uniform topology,

is a continuous function, we have L(V̂ )
P−→ L(V ). If further |L(f)−L(g)| ≤

K sups∈[0,T ] |fs − gs| for any elements f, g ∈ D([0, T ]) and some positive

constant K, then the rate of convergence of L(V̂ ) to L(V ) is bounded by the
order of magnitude of ηn (under the conditions of Theorem 2). An example
of such a function is L(f) = sups∈[0,T ] fs.

4.2. The discontinuous volatility case. We now turn to the general case
when the volatility process contains jumps. When V is discontinuous, bound-
ing the rate of convergence of the volatility occupation time estimators is
much less straightforward. Lemma 2 is still valid, however, the uniform ap-
proximation error ηn no longer vanishes asymptotically, due to the disconti-
nuity in V . This is true even if we consider the ideal case where V̂iun = Viun ,
i.e. perfect pointwise approximation is available. Indeed, the lack of uniform
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approximation for a discontinuous process with its discretized version is well
known in the study of convergence of processes.

Our strategy of bounding the rate of convergence of F̂n,T (x) and F̂ ∗
n,T (x)

is to pick out the “big” jumps in the V process and then consider the uniform
rate of approximation to the “remainder” process. The idea is best illustrated
in the basic case where the jumps in V is finitely active. In this case, the
volatility jumps only occur within finitely many time blocks with the form
[iun, (i+ 1)un) and hence their total effect on the estimation is Op (un). On
time blocks not containing the jumps of V , V is continuous, so Theorem 2
can be used to provide uniform bound. The situation becomes considerably
more complicated when V has infinitely active, or even infinite variational,
jumps. In this case, one needs to compute the trade-off between picking out
a smaller number of big jumps with less accurate uniform approximation to
the remainder process, and picking out a larger number of big jumps with
more accurate uniform approximation to the remainder process. The end
result of this calculation is Theorem 4 below.

Theorem 4. Suppose Assumptions A, B and C. Let kn ≍ ∆−γ
n for some

γ ∈ (rϖ+(1∨ r)(1−2ϖ), 1), ϖ ∈ ((1∨ r−1)/(2 (1 ∨ r)− r), 1/2) and ι > 0
be arbitrarily small but fixed. We have

(a) F̂n,T (x) − FT (x) = Op (dn), where dn = an ∨ ∆
(1−γ)/(1+r̃)−ι
n and an

is given by (4.1);
(b) if X is continuous, we also have F̂ ∗

n,T (x)− FT (x) = Op (dn).

Theorem 4 establishes an upper bound for the pointwise rate of conver-
gence of the occupation time estimators. We remind the reader that the
rate dn depends on r through an; recall (4.1) and the discussion following
Theorem 2. Whether the rate is optimal or not is an open question. The
rate optimality for jump-robust estimation of the integrated variance, i.e.∫ T
0 Vsds =

∫∞
0 xFT (dx), is studied by [11].

In order to establish a uniform bound, we invoke the stronger Assumption
B’ which assumes continuity of the volatility occupation density.

Theorem 5. Consider the same setting as in Theorem 4 except with
Assumption B’ replacing Assumption B. Then (a) and (b) in Theorem 4
hold uniformly in x ∈ R. Moreover, for α ∈ (0, T ) with fT (QT (α)) > 0 a.s.,
we have |Q̂n,T (α) − QT (α)| = Op (dn) and, if X is continuous, |Q̂∗

n,T (α) −
QT (α)| = Op (dn).

Theorem 5 establishes a bound for the uniform rate of convergence of the
occupation time estimators; the rate of convergence of the quantiles follows
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as a consequence.

5. Estimation of the volatility occupation density. We now turn
to estimating the volatility occupation density fT (x). Clearly, the uniform
convergence of the occupation time (Theorem 1) does not directly lead to
valid estimation for the occupation density. While the focus of the cur-
rent paper is on the occupation time, we consider the estimation of fT (·)
theoretically complementary and empirically relevant. Our occupation den-
sity estimator is based on the local volatility estimates V̂t and V̂ ∗

t and ker-
nel smoothing. In particular, we propose the following kernel estimator of
Nadaraya-Watson type:

f̂n,T (x) ≡
∫ T

0

1

hn
κ
( V̂s − x

hn

)
ds,

where hn → 0 is a bandwidth sequence and the kernel function κ : R 7→ R+

is bounded C1 with bounded derivative and
∫
R κ (x) dx = 1. We can define

f̂∗
n,T (x) similarly but with V̂ ∗

s replacing V̂s.

Below, we consider a weight function w : R 7→ R+ with
∫
Rw (x) dx < ∞.

For generic real-valued functions g1 and g2 on R, we denote

∥g1 − g2∥w ≡
∫
R
|g1 (x)− g2 (x)|w (x) dx.

Theorem 6. Suppose
(i) Assumptions A, B’ and C;
(ii) r ∈ (0, 2) and ϖ ∈ ((1 ∨ r − 1)/(2(1 ∨ r)− r), 1/2);
(iii) kn ≍ ∆−γ

n for some γ ∈ (0, 1);
(iv) V −1

t is locally bounded;
(v) for some β ∈ (0, 1] and any compact K ⊂ (0,∞), there exists a con-

stant CK > 0, such that for all x, y ∈ K, E|fT (x)− fT (y)| ≤ CK|x− y|β;
(vi)

∫
R κ (z) |z|β dz < ∞.

We set

ā∗n ≡ ∆γ/2
n ∨∆(1−γ)/2

n , ān ≡ ā∗n ∨∆
1−rϖ−θ

1∨r
−(1−2ϖ)

n ,

where θ = 0 when r ≤ 1 and θ > 0 is arbitrarily fixed when r > 1. Then for
each x ≥ 0, we have

(a) f̂n,T (x)− fT (x) and ∥f̂n,T − fT ∥w are Op(h
−2
n ān ∨ hβn);

(b) if X is continuous, f̂n,T (x)−fn,T (x) and ∥f̂n,T−fT ∥w are Op(h
−2
n ā∗n∨

hβn) and moreover, the results still hold with f̂n,T (·) replaced by f̂∗
n,T (·).
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Remark 5.1. Condition (v) in Theorem 6 requires the occupation den-
sity of Vt to be Hölder continuous on compacta with exponent β under the
L1-norm. We preclude the analysis for cases in which fT (·) is differentiable,
or in a Hölder class of higher order, because occupation densities of semi-
martingales in general do not enjoy such higher-order smoothness; recall
from Assumption C that Vt is a semimartingale. For example, the occupa-
tion density of a one-dimensional Brownian motion is Hölder continuous in
L1 with exponent β = 1/2; see Exercise VI.1.32 in [15]. That being said,
occupation densities of other processes, such as certain Gaussian processes
(see, e.g. Table 2 in [8]), may enjoy higher-order smoothness. Such models
have rarely been studied in the analysis of high-frequency financial data and
are not directly compatible with Assumption C, so we do not pursue fur-
ther results here. Notice that the rate ā∗n is optimized by setting γ = 1/2,

resulting in ā∗n = ∆
1/4
n . Furthermore, when X is continuous, the estimation

error of the occupation density is Op(∆
β/4(2+β)
n ), which is achieved by set-

ting hn ≍ ∆
1/4(2+β)
n . Not surprisingly, the smoother the occupation density

(larger β), the faster the rate of convergence.

Remark 5.2. Theorem 6(a) implies f̂n,T (x)− fT (x)
P−→ 0 and ∥f̂n,T −

fT ∥w
P−→ 0, provided that hn → 0 and h−2

n ān → 0. These results can be
shown directly without conditions (iv)-(vi) using a very similar proof; the
details are omitted for brevity. A similar comment applies to Theorem 6(b).

6. Monte Carlo. We test the performance of our nonparametric proce-
dures on two popular stochastic volatility models. The first is the square-root
diffusion volatility model, given by

(6.1) dXt =
√

VtdWt, dVt = 0.03(1.0− Vt)dt+ 0.2
√

VtdBt,

Wt and Bt are two independent Brownian motions. Our second model is a
jump-diffusion volatility model in which the log-volatility is a Lévy-driven
Ornstein-Uhlenbeck (OU) process, i.e.,

(6.2) dXt = eVt−1dWt, dVt = −0.03Vtdt+ dLt,

where Lt is a Lévy martingale uniquely defined by the marginal law of
Vt which in turn has a selfdecomposable distribution (see Theorem 17.4
of [16]) with characteristic triplet (Definition 8.2 of [16]) of (0, 1, ν) for

ν(dx) = 2.33e−2.0|x|

|x|1+0.5 1{x>0}dx with respect to the identity truncation function.

The mean and persistence of both volatility specifications are calibrated real-
istically to observed financial data and the two models differ in the presence
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of volatility jumps as well as in the modeling of the volatility of volatility:
for model (6.1), the transformation

√
Vt is with constant diffusion coefficient

while for (6.2) this is the case for the transformation log Vt.
In the Monte Carlo we fix the time span to T = 22 days (our unit of

time is a day), equivalent to one calendar month, and we consider n = 80
and n = 400, which correspond to 5-minute and 1-minute, respectively,
of intraday observations of X in a 6.5-hour trading day. We set kn = 20
for n = 80 and we increase it to kn = 40 when n = 400, which respec-
tively correspond to 4 and 10 blocks per unit of time. We finally set the
truncation process at vn,t = 3

√
BVj∆

0.49
n for t ∈ [j − 1, j) and where

BVj = π
2

∑⌊j/∆n⌋
i=⌊(j−1)/∆n⌋+2 |∆

n
i−1X||∆n

i X| is the Bipower Variation on the

unit interval [j− 1, j). For each realization we compute the 25-th, 50-th and
75-th volatility qunatiles over the interval [0, T ]. The results from the Monte
Carlo are summarized in Table 1. Overall, the performance of our volatility
quantile estimator is satisfactory. The highest bias arises for the square-root
diffusion volatility model when volatility was started from a high value (the
75-th quantile of its invariant distribution). Intuitively, in this case volatility
drifts towards its unconditional mean and this results in its larger variation
over [0, T ], which in turn is more difficult to accurately disentangle from
the Gaussian noise in the price process, i.e., the Brownian motion Wt in
Xt. Consistent with our asymptotic results, the biases and the mean abso-
lute deviations of all volatility quantiles shrink as we increase the sampling
frequency from n = 80 to n = 400 in all considered scenarios.

7. Conclusion. In this paper we propose nonparametric estimators of
the volatility occupation time and its density from discrete observations of
the process over a fixed time interval with asymptotically shrinking mesh of
the observation grid. We derive the asymptotic properties of our volatility
occupation time estimator and further invert it to estimate the correspond-
ing quantiles of the volatility path over the fixed time interval. Monte Carlo
shows satisfactory performance of the proposed estimation techniques.

8. Proofs. This section contains all proofs. Throughout the proof, we
denote by K a generic constant that may change from line to line. We
sometimes emphasize its dependence on some parameter p by writing Kp.
As is typical in this kind of problems, by a standard localization procedure,
Assumptions A, C and D can be strengthened into the following stronger
versions without loss of generality.

Assumption SA. We have Assumption A. The processes bt and σt are
bounded, and for some bounded nonnegative function Γ on R, |δ(ω, t, z)| ≤
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Γ(z) and
∫
R Γ (z)r λ (dz) < ∞.

Assumption SC. We have Assumption C. The processes b̃t, σ̃t and σ̃′
t are

bounded, and for some bounded nonnegative function Γσ on R, |δ̃(ω, t, z)| ≤
Γσ(z) and

∫
R Γσ (z)

r̃ λ (dz) < ∞.

Assumption SD. We have Assumption D. Moreover, αn,t and α−1
n,t are

uniformly bounded for all n, t.

8.1. Proofs in Section 3. Proof of Lemma 1. (a) We set V̂ +
t = V̂iun

for t ∈ [(i− 1)un, iun). Denote the left-hand side of (3.3) by Sn and Tn =
⌊T/un⌋un. We have

Sn =

∫ (⌊T/un⌋−1)un

0
g(V̂ +

s )ds+

∫ un

0
g(V̂s)ds+

∫ T

Tn

g(V̂s)ds.

Since g is bounded,

(8.1) E
∣∣∣∣Sn −

∫ T

0
g (Vs) ds

∣∣∣∣ ≤ Kun +

∫ (⌊T/un⌋−1)un

0
E
∣∣∣g(V̂ +

s )− g(Vs)
∣∣∣ ds.

Observe that for each s ∈ [0, (⌊T/un⌋ − 1)un), V̂
+
s

P−→ Vs. To see this,
we recall from Assumption SD that αn,t ∈ [α, α] for some constant α ≥
α > 0. Let V̂ +

s (α) and V̂ +
s (α) be defined as V̂ +

s except with αn,t replaced
respectively by α and α. By Theorem 9.3.2 in [10], the right continuity of
V and un → 0, V̂ +

s (α) and V̂ +
s (α) converge in probability to Vs. The claim

then follows V̂ +
s (α) ≤ V̂ +

s ≤ V̂ +
s (α).

Hence, by condition (ii) and bounded convergence, for Lebesgue a.e. s ∈
[0, T ], E|g(V̂ +

s )−g(Vs)| = E|(g(V̂ +
s )−g(Vs))1{Vs /∈Dg}| → 0.Applying bounded

convergence on (8.1), we readily obtain (3.3). Part (b) can be shown simi-
larly. 2

Proof of Theorem 1. (a) For each x ≥ 0, FT (x) = FT (x−) a.s. by the
continuity of FT (·). Hence,∫ T

0
P (Vs = x) ds = E [FT (x)− FT (x−)] = 0.

Therefore, P (Vs = x) = 0 for Lebesgue a.e. s ∈ [0, T ]. By Lemma 1 with

g (·) = 1{ ·≤x}, F̂n,T (x)
P−→ FT (x). Since F̂n,T (·) and FT (·) are increasing,

and FT (·) is continuous, this convergence also holds locally uniformly. Since
V is càdlàg, V̄ ≡ supt∈[0,T ] Vt = Op (1). For any η > 0, there exists some
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M > 0, such that P
(
V̄ > M

)
< η, yielding P (T ̸= FT (M)) < η. Hence, for

any ε > 0,

lim sup
n→∞

P
(
sup
x∈R

∣∣∣F̂n,T (x)− FT (x)
∣∣∣ > ε

)
≤ lim sup

n→∞
P

(
sup

0≤x≤M

∣∣∣F̂n,T (x)− FT (x)
∣∣∣ > ε

)

+ lim sup
n→∞

P

(
sup
x≥M

∣∣∣F̂n,T (x)− FT (x)
∣∣∣ > ε

)
≤ lim sup

n→∞
P
(∣∣∣F̂n,T (M)− FT (M)

∣∣∣ > ε/2
)
+ P (T − FT (M) > ε/2)

< η.

Sending η → 0, we readily derive the assertion in part (a). Part (b) can be
proved similarly. 2

Proof of Corollary 1. By Theorem 1, F̂n,T (·) P−→ FT (·) uniformly. By

a subsequence argument, we can then assume F̂n,T (·) a.s.−→ FT (·) uniformly
without loss. The assertion in part (a) then follows Lemma 21.2 of [18]. The
proof of part (b) is similar. 2

8.2. Proofs in Section 4.1. Proof of Lemma 2. (a) Observe

(8.2)
FT (x− ηn) =

∫ T

0
1{Vs≤x−ηn}ds

≤ F̂n,T (x) ≤
∫ T

0
1{Vs≤x+ηn}ds = FT (x+ ηn) .

Since FT (x− ηn) ≤ FT (x) ≤ FT (x+ ηn), the first assertion in part (a)
readily follows. Now consider the quantiles. By definition, F̂n,T (Q̂n,T (α)) ≥
α. By (8.2), FT (Q̂n,T (α) + ηn) ≥ α. Therefore, QT (α) ≤ Q̂n,T (α) + ηn. For

any ε > 0, by (8.2), we have FT (Q̂n,T (α)−ηn− ε) ≤ F̂n,T (Q̂n,T (α)− ε) < α.

Hence, Q̂n,T (α)− ηn − ε < QT (α). Since ε > 0 is arbitrary, Q̂n,T (α)− ηn ≤
QT (α). The second assertion of part (a) is then obvious.

(b) Fix some ε > 0. There exists M > 0 such that P (ηn ≥ Man) < ε/2
for n sufficiently large. Since an → 0, [x− ηn, x+ ηn] is contained in Nx

with probability approaching one (w.p.a.1) and by part (a),∣∣∣F̂n,T (x)− FT (x)
∣∣∣ ≤ ∫ x+ηn

x−ηn

fT (z) dz.
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Let M ′ = 4M supz∈Nx
E [fT (z)] /ε. We have for n sufficiently large,

P
(∫ x+ηn

x−ηn

fT (z) dz > M ′an

)
≤ P

(∫ x+Man

x−Man

fT (z) dz > M ′an

)
+ P (ηn ≥ Man)

<
2M supz∈Nx

E [fT (z)]

M ′ + ε/2

≤ ε.

Hence,
∫ x+ηn
x−ηn

fT (z) dz = Op (an). The assertion in part (b) then readily
follows. 2

We now prove Theorem 2, starting with two lemmas. Below, ∥ · ∥p denotes
the Lp norm.

Lemma 3. Let p ≥ 1 be a constant and kn ≍ ∆−γ
n for some γ ∈ (0, 1).

Suppose Assumption SA holds with X continuous and Assumption SD. Then
for each 0 ≤ i ≤ ⌊T/un⌋ − 1,

(8.3)
∣∣∣V̂ ∗

iun
− Viun

∣∣∣∨ ∣∣∣V̂iun − Viun

∣∣∣ ≤ ξn,i + sup
s∈[iun,(i+1)un)

|Vs − Viun | ,

where the variable ξn,i satisfies ∥ξn,i∥p ≤ Kpk
−1/2
n . If we further have As-

sumption SC with ∆Vs = 0 for s ∈ [0, T ], then the majorant side of the

above can be bounded by Kp(k
−1/2
n + u

1/2
n ) in Lp.

Proof. By Itô’s formula, V̂ ∗
iun

− Viun = ζ ′n,i + ζ ′′n,i, where

ζ ′n,i =
2

un

∫ (i+1)un

iun

(Xs −Xn,s) dXs

ζ ′′n,i =
1

un

∫ (i+1)un

iun

(Vs − Viun) ds,

and Xn,s is the discretized process given by Xn,s = Xiun+(j−1)∆n
when

s ∈ [iun + (j − 1)∆n, iun + j∆n). By classical estimates (note that X is
continuous),

E

∣∣∣∣∣ 2un
∫ (i+1)un

iun

(Xs −Xn,s) bsds

∣∣∣∣∣
p

≤ Kp∆
p/2
n ,

E

∣∣∣∣∣ 2un
∫ (i+1)un

iun

(Xs −Xn,s)σsdWs

∣∣∣∣∣
p

≤ Kpk
−p/2
n .



VOLATILITY OCCUPATION TIMES 19

Since kn = o
(
∆−1

n

)
, we have ∥ζ ′n,i∥p ≤ Kpk

−1/2
n by Minkowski’s inequality.

We also observe |ζ ′′n,i| ≤ sups∈[iun,(i+1)un) |Vs − Viun |.
Now note that V̂ ∗

iun
−V̂iun = k−1

n

∑kn
j=1(∆

n
ikn+jX/∆

1/2
n )21{|∆n

ikn+jX|>vn,iun}.

Under Assumption SD, αn,t ≥ α for some constant α > 0. Hence, vn,t ≥ vn ≡
α∆ϖ

n . Since X is continuous, for any q ≥ 0,

∥∥∥(∆n
ikn+jX/∆1/2

n )21{|∆n
ikn+jX|>vn,iun}

∥∥∥
p

≤

E
∣∣∣∆n

ikn+jX/∆
1/2
n

∣∣∣2p+q(
vn/∆

1/2
n

)q


1/p

≤ Kp,q∆
q(1/2−ϖ)/p
n .

Since ϖ ∈ (0, 1/2), when q is taken sufficiently large, terms in the above dis-

play can be further bounded by Kpk
−1/2
n . Hence, ∥V̂ ∗

iun
− V̂iun∥p ≤ Kpk

−1/2
n .

The first assertion then readily follows by setting ξn,i = |ζ ′n,i|+ |V̂ ∗
iun

− V̂iun |.
Now, suppose Assumption SC together with V being continuous. By stan-

dard estimates, for each p ≥ 1, the second term on the right-hand side of

(8.3) can be bounded by Kpu
1/2
n in Lp. The second assertion of the lemma

is then obvious. 2

Under Assumption SA, we set

X ′
t = Xt −X ′′

t

X ′′
t =

{ ∫ t
0

∫
R δ (s, z)µ (ds, dz) if r ≤ 1∫ t

0

∫
R δ (s, z) (µ− ν) (ds, dz) if r > 1.

We define V̂ ′ as V̂ ∗ in (3.1) but with X ′ in place of X; in particular, V̂ ′
iun

≡
u−1
n

∑kn
j=1(∆

n
ikn+jX

′)2.

Lemma 4. Suppose that Assumption SA holds with some r ∈ (0, 2) and

Assumption SD. Let p ≥ r ∨ 1 and ϖ ∈
(

p−1
2p−r ,

1
2

)
. Let θ ∈ (0,∞) be

arbitrarily fixed if r > 1 and θ = 0 if r ≤ 1. We have for each i,∥∥∥V̂iun − V̂ ′
iun

∥∥∥
p
≤ Kp∆

1−rϖ−θ
p

−(1−2ϖ)
n .

Proof. Under Assumption SD, αn,t ∈ [α, α] for constants α ≥ α > 0. We set
v̄n = α∆ϖ

n and vn = α∆ϖ
n . By applying Lemma 13.2.6 in [10] (with s = 1,
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s′ = 2, m = p, p′ = 1, k = 1, F (x) = x2), we have

E
∣∣∣ (∆n

ikn+jX/∆1/2
n

)2
1{|∆n

ikn+jX|≤v̄n}

−
(
∆n

ikn+jX
′/∆1/2

n

)2
1{|∆n

ikn+jX
′|≤v̄n}

∣∣∣p
≤ Kp∆

2−r
2

−θ
n +Kp∆

1−rϖ−p(1−2ϖ)−θ
n

≤ Kp∆
1−rϖ−p(1−2ϖ)−θ
n .

By a similar argument as in the proof of Lemma 3,∥∥∥(∆n
ikn+jX

′/∆1/2
n )21{|∆n

ikn+jX
′|>v̄n}

∥∥∥
p
≤ Kp,q∆

q(1/2−ϖ)/p
n

for any q ≥ 0. Taking q sufficiently large, we then derive

(8.4)

∥∥∥∥(∆n
ikn+jX/∆1/2

n

)2
1{|∆n

ikn+jX|≤v̄n} −
(
∆n

ikn+jX
′/∆1/2

n

)2∥∥∥∥
p

≤ Kp∆
1−rϖ

p
−(1−2ϖ)− θ

p
n .

By a similar argument, we can derive (8.4) when v̄n is replaced with vn.
Since vn ≤ vn,iun ≤ v̄n, (8.4) also holds when v̄n is replaced with vn,iun . The
assertion of the lemma then follows from Minkowski’s inequality. 2

Proof of Theorem 2. Step 1. We first suppose X is continuous. Observe
that

ηn ≤ sup
0≤i≤⌊T/un⌋−1

∣∣∣V̂iun − Viun

∣∣∣+ 2 sup
0≤i≤⌊T/un⌋

sup
s∈[iun,(i+1)un)

|Vs − Viun | .

Since V is continuous, ∥ sups∈[iun,(i+1)un) |Vs − Viun | ∥p ≤ Kpu
1/2
n for any

p ≥ 1 by standard estimates. By Lemma 3 and the maximal inequality (e.g.

Lemma 2.2.2 in [17]), for any p ≥ 1, ∥ηn∥p ≤ Kpu
−1/p
n (k

−1/2
n + u

1/2
n ). Since

kn ≍ ∆−γ
n by assumption, we derive ∥ηn∥p ≤ K∆

(γ∧(1−γ))/2−ι
n by taking p

sufficiently large. The same argument yields ∥η∗n∥p ≤ K∆
(γ∧(1−γ))/2−ι
n . This

finishes the proof of part (a) with X continuous, as well as part (b).
Step 2. We now consider part (a) allowing X to be discontinuous. Let V̂ ′

be defined as in Lemma 4. Observe that

ηn ≤ sup
0≤i≤⌊T/un⌋−1

∣∣∣V̂iun − V̂ ′
iun

∣∣∣+ η′n, where

η′n = sup
0≤i≤⌊T/un⌋−1

∣∣∣V̂ ′
iun

− Viun

∣∣∣+ 2 sup
0≤i≤⌊T/un⌋

sup
s∈[iun,(i+1)un)

|Vs − Viun | .



VOLATILITY OCCUPATION TIMES 21

A similar argument as in part (a) yields η′n = Op(∆
(γ∧(1−γ))/2−ι
n ). By the

maximal inequality and Lemma 4 for p = 1 ∨ r,∥∥∥∥∥ sup
0≤i≤⌊T/un⌋−1

∣∣∣V̂iun − V̂ ′
iun

∣∣∣∥∥∥∥∥
p

≤ Ku−1/p
n ∆

1−rϖ−θ
p

−(1−2ϖ)
n

≤ K∆
γ−rϖ−θ

p
−(1−2ϖ)

n

≤

{
K∆

γ−rϖ−(1−2ϖ)
n if r ≤ 1

K∆
(γ−θ)/r−(1−ϖ)
n if r > 1.

Taking θ sufficiently small in the r > 1 case, we readily derive the assertion
in part (a). 2

Proof of Theorem 3. Step 1. We first prove the assertion on η∗n, so con-
dition (iii) is in force. In the constant volatility setting of the theorem, we
have

√
knη

∗
n =

√
2V ×Mn, where we denote

(8.5)

Mn = sup
i=0,...,⌊T/un⌋−1

|Zn
i | , Zn

i =

√
kn√
2V

(
V̂ ∗
iun

− V
)
, i = 0, ..., ⌊T/un⌋ − 1.

Under our constant volatility assumption {Zn
i }i are independent and iden-

tically distributed with distribution which is approximately standard nor-
mal. Therefore, we can use Edgeworth expansion of the cdf together with
extreme value theory to pin down the limit distribution of Mn. To this end,
we set

(8.6)

{
cn = (2 log(bn))

−1/2, mn =
√

2 log(bn)− log(log(bn))+log(4π)√
2 log(bn)

,

τn(x) = cnx+mn, bn = ⌊T/un⌋, x ∈ R+.

Note that τn(x) ≍
√

2 log(bn) and hence increases to infinity as the number
of blocks increases to infinity for every fixed x.

Using second-order Edgeworth expansion and denoting with Φ(·) the cdf
of standard normal random variable, see Theorem 2.2 and Lemma 5.4 of [9],
we have

(8.7) P (|Zn
i | ≤ τn(x)) = Φ(τn(x))−Φ(−τn(x))+

(log(bn))
4

bn
√
kn

K(x)+o

(
1

kn

)
,

for any x where K(x) is a polynomial of x. Then we have

(8.8) lim
n→∞

[
P (|Zn

i | ≤ τn(x))

Φ(τn(x))− Φ(−τn(x))

]bn
= 1,
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provided kn ≍ ∆
−1/2
n . This assumption on the rate of growth of kn guaran-

tees that the distribution of Zn
i is “sufficiently close” to standard normal.

Now we can use (8.8) to get
(8.9)
P(c−1

n (Mn −mn) ≤ x) = [P (|Zn
i | ≤ τn(x))]

bn ∼ [Φ(τn(x))− Φ(−τn(x))]
bn ,

as n → ∞. From here, using the results for the maximum domain of attrac-
tion of the Gumbel distribution (see e.g., Example 1.1.7 of [5]), we have
(8.10)
[Φ(τn(x))− Φ(−τn(x))]

bn = [2Φ(τn(x))− 1]bn −→ exp(−2 exp(−x)), ∀x,

and hence

(8.11) c−1
n (Mn −mn)

L−→ Λ,

for Λ being a random variable with cdf exp(−2 exp(−x)). From here the
result in (4.2) (with ηn replaced by η∗n) follows.

Step 2. We now prove (4.2) with condition (iii) relaxed. Let η′∗n be defined
as η∗n but with V̂ ∗

t replaced by V̂ ′
t . By step 1, (4.2) holds with ηn replaced

by η′∗n . It remains to show that

(8.12) log(⌊T/un⌋)1/2∆−1/4
n (ηn − η′∗n ) = op(1).

Note that |ηn − η′∗n | ≤ sup0≤i≤⌊T/un⌋−1 |V̂iun − V̂ ′
iun

| = Op(∆
(2−r)ϖ−1/2
n ),

where the stochastic order is shown in step 2 of the proof of Theorem 2.
(8.12) then follows condition (ii). This finishes the proof. 2

8.3. Proofs in Section 4.2. Under Assumption C, by Itô’s formula, we
can represent V as

Vt = V0 +

∫ t

0
b̃V,sds+

∫ t

0
σ̃V,sdWs +

∫ t

0
σ̃′
V,sdW

′
s

+

∫ t

0

∫
R
δ̃V (s, z) (µ− ν) (ds, dz) ,

where, by localization, we can assume without loss that the coefficients b̃V ,
σ̃V , σ̃

′
V are bounded, and |δ̃V (ω, s, z) | ≤ Γ̃ (z) for any (ω, s, z), where Γ̃ (·)

is bounded and deterministic, and satisfies
∫
R Γ̃ (z)r̃ λ (dz) < ∞.
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We consider the following decomposition: for q > 0,

Vt = V ′
t (q) + V ′′

t (q) , where

V c
t = V0 +

∫ t

0
b̃V,sds+

∫ t

0
σ̃V,sdWs +

∫ t

0
σ̃′
V,sdW

′
s

V ′
t (q) = V c

t +

∫ t

0

∫
{z:Γ̃(z)≤q}

δ̃V (s, z) (µ− ν) (ds, dz)

−
∫ t

0

∫
{z:Γ̃(z)>q}

δ̃V (s, z) ν (ds, dz)

V ′′
t (q) =

∫ t

0

∫
{z:Γ̃(z)>q}

δ̃V (s, z)µ (ds, dz) .

Denote I (n, i) = [iun, (i+ 1)un). We also set In (q) = {0 ≤ i ≤ ⌊T/un⌋−1 :
µ(I (n, i) × {z : Γ̃ (z) > q}) = 0} and Tn (q) =

∪
i∈In(q) I (n, i). Here, In (q)

collects indices of intervals not containing “big” jumps. We can decompose
F̂n,T (x) = F̂n,T (x; q) + R̂n,T (x; q) where

F̂n,T (x; q) = un
∑

i∈In(q)

1{V̂iun≤x}, R̂n,T (x; q) =

∫
[0,T ]\Tn(q)

1{V̂s≤x}ds.

Analogously, we have FT (x) = Fn,T (x; q) +Rn,T (x; q), where

Fn,T (x; q) =

∫
Tn(q)

1{Vs≤x}ds, Rn,T (x; q) =

∫
[0,T ]\Tn(q)

1{Vs≤x}ds.

Finally, we set

η̂n (q) = sup
i∈In(q)

∣∣∣V̂iun − Viun

∣∣∣
η′n (q) = sup

0≤i≤⌊T/un⌋
sup

s∈[iun,(i+1)un)

∣∣V ′
s (q)− V ′

iun
(q)
∣∣

ηn (q) = η̂n (q) + η′n (q) .

We now generalize Lemma 2 as follows.

Lemma 5. Suppose ηn (qn) = Op (wn) for some nonrandom sequences
qn → 0 and wn → 0 and Assumption SA with r = 2. Then (a) under
Assumption B, F̂n,T (x) − FT (x) = Op (wn) + Op

(
unq

−r̃
n

)
; (b) under As-

sumption B’, the assertion in (a) holds uniformly in x ∈ R and moreover
(c) |Q̂n,T (α)−QT (α)| ≤ ξn supx∈R |F̂n,T (x)−FT (x)| for some tight sequence
of variables ξn, provided fT (QT (α)) > 0 a.s..
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Proof. (a) Observe that E[
∫
[0,T ]\Tn(qn) ds] ≤ Kunq

−r̃
n , yielding

(8.13) sup
x∈R

Rn,T (x; qn) = Op

(
unq

−r̃
n

)
, sup

x∈R
R̂n,T (x; qn) = Op

(
unq

−r̃
n

)
.

By definition, F̂n,T (x; qn) =
∫
Tn(qn) 1{V̂s≤x}ds. Note that over Tn (qn), the

process V ′′
t (qn) is identically zero. Hence, supt∈Tn(qn) |V̂t − Vt| ≤ ηn (qn). By

a similar argument as in (8.2), we deduce

(8.14)

∣∣∣F̂n,T (x; qn)− Fn,T (x; qn)
∣∣∣

≤ Fn,T (x+ ηn (qn) ; qn)− Fn,T (x− ηn (qn) ; qn)
≤ FT (x+ ηn (qn))− FT (x− ηn (qn)) .

By an argument similar to part (b) of Lemma 2, we derive FT (x+ ηn (qn))−
FT (x− ηn (qn)) = Op (wn). The assertion of part (a) then follows (8.13) and
(8.14).

(b) By localization, we can suppose that V is bounded and thus fT (·) is
compactly supported. Since fT (·) is continuous, supx∈R fT (x) = Op (1). By
(8.14),

(8.15) sup
x∈R

|F̂n,T (x; qn)− Fn,T (x; qn) | ≤ 2ηn (qn) sup
z∈R

fT (z) .

The assertion then readily follows (8.13) and (8.15).
(c) Observe that F̂n,T (Q̂n,T (α)) ≥ α = FT (QT (α)), where the inequality

follows the definition of quantiles and the equality is due to the continuity
of FT (·). Hence,

(8.16)
FT (QT (α))− FT (Q̂n,T (α)) ≤ F̂n,T (Q̂n,T (α))− FT (Q̂n,T (α))

≤ sup
x∈R

∣∣∣F̂n,T (x)− FT (x)
∣∣∣ .

For any ε > 0, F̂n,T (Q̂n,T (α)− ε) < α = FT (QT (α)), yielding

FT (Q̂n,T (α)− ε)− FT (QT (α)) < FT (Q̂n,T (α)− ε)− F̂n,T (Q̂n,T (α)− ε)

≤ sup
x∈R

∣∣∣F̂n,T (x)− FT (x)
∣∣∣ .

Since FT (·) is continuous, by sending ε ↓ 0 we deduce

(8.17) FT (Q̂n,T (α))− FT (QT (α)) ≤ sup
x∈R

∣∣∣F̂n,T (x)− FT (x)
∣∣∣ .
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Let Kn,T (α) be the closed interval with end points QT (α) and Q̂n,T (α). Set
ξn ≡ supx∈Kn,T (α) f

−1
T (x). By a mean-value expansion,

(8.18)
∣∣∣FT (Q̂n,T (α))− FT (QT (α))

∣∣∣ ≥ inf
x∈Kn,T (α)

fT (x)
∣∣∣Q̂n,T (α)−QT (α)

∣∣∣ .
Since fT (QT (α)) > 0 a.s., Q̂n,T (α)

P−→ QT (α) by Corollary 1. Since fT (·)
is continuous, infx∈Kn,T (α) fT (x)

P−→ fT (QT (α)) > 0; hence ξn is tight. The
assertion then follows (8.16), (8.17) and (8.18). 2

Proof of Theorem 4. Step 1. We first consider η′n (qn). For each i,

sup
s∈[iun,(i+1)un)

∣∣V ′
s (qn)− V ′

iun
(qn)

∣∣ ≤ ζn,i + ζ ′n,i + ζ ′′n,i, where

ζn,i = sup
s∈[iun,(i+1)un)

∣∣∣∣∣
∫ s

iun

∫
{z:Γ̃(z)>qn}

δ̃V (s, z) ν (ds, dz)

∣∣∣∣∣
ζ ′n,i = sup

s∈[iun,(i+1)un)

∣∣∣∣∣
∫ s

iun

∫
{z:Γ̃(z)≤qn}

δ̃V (s, z) (µ− ν) (ds, dz)

∣∣∣∣∣
ζ ′′n,i = sup

s∈[iun,(i+1)un)

∣∣V c
s − V c

iun

∣∣ .
For ζn,i, observe that
(8.19)∣∣∣∣∣ sup

0≤i≤⌊T/un⌋
ζn,i

∣∣∣∣∣ ≤ sup
0≤i≤⌊T/un⌋

∫ (i+1)un

iun

∫
{z:Γ̃(z)>qn}

Γ̃ (z) ν (ds, dz)

≤ Kunq
(1−r̃)∧0
n .

Now turn to ζ ′n,i. Let p ≥ 2. For each i ≥ 0, by Lemma 2.1.5 in [10],

E
∣∣ζ ′n,i∣∣p ≤ Kpun

∫
{z:Γ̃(z)≤qn}

Γ̃ (z)p λ (dz)

+Kpu
p/2
n

(
1

un

∫
I(n,i)

ds

∫
{z:Γ̃(z)≤qn}

Γ̃ (z)2 λ (dz)

)p/2

≤ Kpunq
p−r̃
n +Kpu

p/2
n q(2−r̃)p/2

n .

Hence, ∥ζ ′n,i∥p ≤ Kpu
1/p
n q

1−r̃/p
n + Kpu

1/2
n q

1−r̃/2
n . By the maximal inequality

(Lemma 2.2.2 in [17]),

(8.20)

∥∥∥∥∥ sup
0≤i≤⌊T/un⌋

ζ ′n,i

∥∥∥∥∥
p

≤ Kpq
1−r̃/p
n +Kpu

1/2−1/p
n q1−r̃/2

n .
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Since V c is continuous, by a standard estimate for ζ ′′n,i and the maximal
inequality,

(8.21)

∥∥∥∥∥ sup
0≤i≤⌊T/un⌋

ζ ′′n,i

∥∥∥∥∥
p

≤ Kpu
1/2−1/p
n .

Combining (8.19), (8.20) and (8.21), we derive for p ≥ 2, ∥η′n(qn)∥p ≤
Kpa

′
n,p, where

a′n,p ≡ unq
(1−r̃)∧0
n ∨ q1−r̃/p

n ∨ u1/2−1/p
n .

Step 2. Observe that

(8.22) η̂n (qn) ≤ sup
i∈In(qn)

∣∣∣V̂iun − V̂ ′
iun

∣∣∣+ sup
i∈In(qn)

∣∣∣V̂ ′
iun

− Viun

∣∣∣ .
By Lemma 3, for i ∈ In (qn), for some ξn,i with ∥ξn,i∥p ≤ Kpk

−1/2
n ,∣∣∣V̂ ′

iun
− Viun

∣∣∣ ≤ ξn,i + sup
s∈[iun,(i+1)un)

∣∣V ′
s (qn)− V ′

iun
(qn)

∣∣ .
Therefore, by a similar argument as in step 1,

(8.23)

∥∥∥∥∥ sup
i∈In(qn)

∣∣∣V̂ ′
iun

− Viun

∣∣∣∥∥∥∥∥
p

≤ Kpu
−1/p
n k−1/2

n +Kpa
′
n,p.

Similarly as in step 2 of the proof of Theorem 2, (recall that θ = 0 if r ≤ 1
and θ ∈ (0,∞) can be arbitrarily fixed when r > 1)

(8.24) sup
i∈In(qn)

∣∣∣V̂iun − V̂ ′
iun

∣∣∣ = Op

(
∆

γ−rϖ−θ
1∨r

−(1−2ϖ)
n

)
.

Combining (8.22)-(8.24), we derive η̂n (qn) = Op (wn,p) for p ≥ 2, where

wn,p ≡ ∆
γ−rϖ−θ

1∨r
−(1−2ϖ)

n ∨ u−1/p
n k−1/2

n ∨ a′n,p.

By step 1, we further derive ηn (qn) = Op (wn,p).
By Lemma 5(a), we have

F̂n,T (x)− FT (x)

= Op (wn,p) +Op

(
unq

−r̃
n

)
= Op

(
∆

γ−rϖ−θ
1∨r

−(1−2ϖ)
n ∨ u−1/p

n k−1/2
n ∨ q1−r̃/p

n ∨ u1/2−1/p
n ∨ unq

−r̃
n

)
.
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Taking qn = u
1/(1+r̃−r̃/p)
n and recalling kn ≍ ∆−γ

n , we have

F̂n,T (x)− FT (x)

= Op

(
∆

γ−rϖ−θ
1∨r

−(1−2ϖ)
n ∨∆

γ
2
− 1−γ

p
n ∨∆

(1−γ)( 1
2
− 1

p
)

n ∨∆
(1−γ)(1−r̃/p)

1+r̃−r̃/p
n

)
and by taking p sufficiently large,

F̂n,T (x)− FT (x)

= Op

(
∆

γ−rϖ−θ
1∨r

−(1−2ϖ)
n ∨∆γ/2−ι

n ∨∆(1−γ)/2−ι
n ∨∆(1−γ)/(1+r̃)−ι

n

)
.

The discontinuous case in part (a) then readily follows the definitions of
θ, an (see (4.1)) and dn. The continuous case in part (a), as well as part (b),
can be proved in a similar (but simpler) way. 2

Proof of Theorem 5. We first show that supx∈R |F̂n,T (x) − FT (x)| =
Op(dn). The proof is similar as that of Theorem 4, except in step 2 of the

proof, we use Lemma 5(b) instead of Lemma 5(a). The result for F̂ ∗
n,T can be

proved similarly. The assertion concerning Q̂n,T (α) then follows from Lemma

5(c). The assertion on Q̂∗
n,T (α) can be proved in a similar (but simpler) way;

the details are omitted for brevity. 2

8.4. Proofs in Section 5. Proof of Theorem 6. (a) By localization
and condition (iv), we can assume that Vt takes value in some compact K ⊂
(0,∞), and thus fT (·) is supported onK. We set fn,T (x) =

∫ T
0 h−1

n κ(h−1
n (Vs−

x))ds. For each x ∈ R,

E
∣∣∣f̂n,T (x)− fn,T (x)

∣∣∣ ≤ E

[
h−1
n

∫ T

0

∣∣∣∣∣κ( V̂s − x

hn

)
− κ
(Vs − x

hn

)∣∣∣∣∣ ds
]

≤ Kh−2
n E

[∫ T

0

∣∣∣V̂s − Vs

∣∣∣ ds] .
By Lemmas 3 and 4, E|V̂s − Vs| ≤ Kān. Hence,

(8.25) E
∣∣∣f̂n,T (x)− fn,T (x)

∣∣∣ ≤ Kh−2
n ān, E

[
∥f̂n,T − fn,T ∥w

]
≤ Kh−2

n ān,

whereK does not depend on x. Now observe that fn,T (x) =
∫
R h−1

n κ(h−1
n (y−

x))fT (y)dy. By a change of variable, fn,T (x) =
∫
R κ (z) fT (x+hnz)dz. Hence,

E |fn,T (x)− fT (x)| ≤
∫
R
κ (z)E |fT (x+ hnz)− fT (x)| dz

≤ Khβn

∫
R
κ (z) |z|β dz ≤ Khβn,
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which further implies E[∥fn,T − fT ∥w] ≤ Khβn. Combining these estimates
with (8.25) concludes the proof of part (a). Part (b) can be proved in a
similar way. 2
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