

The Cessna 182 SAFRAN SR305-230E Compression Ignition (Diesel) Engine Conversion

By: Kurt Robertson with: Steve Phoenix

Captain Kurt Robertson, CAP Lewis County Composite Squadron (PCR-WA-110) Washington Wing

Soloy"s First Aircraft Conversion

<u>1975</u> Hiller 12D/E Engine Conversion Lycoming 540 to Allison 250C20B



1984 - Soloy Enters Fixed Wing Modification STC's

Soloy Cessna 207

Proof of Concept Projects

Beechcraft A36 Turbine Conversion

Airbus AS350B2 SD2 Conversion Kit

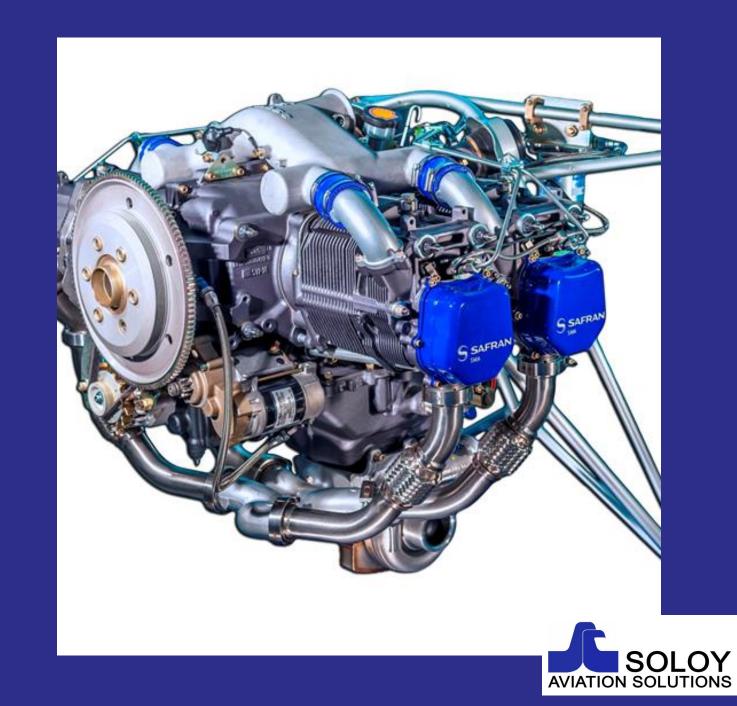
Cessna 206 MkII Conversion Kit

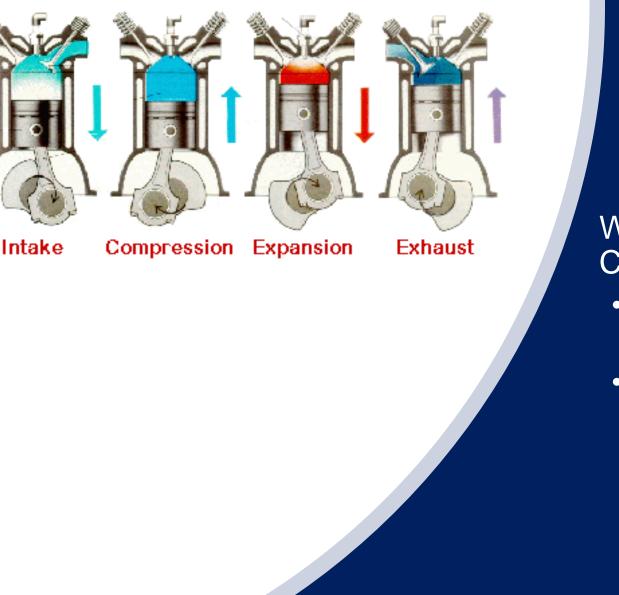
Soloy Aircraft Conversion Kits

- STC Approval Assistance
- Aerospace Engineering
- Research & Development
- Proof of Concept Development
- Prototype Production
- Integrated Manufacturing
- Flight / Static / Dynamic Testing
- Existing Aircraft Modifications
- FAA Repair Station

What will we talk about today?

What is the difference between a Compression Ignition Engine & a Diesel Engine?


> Why are we talking about Diesel engines with the Civil Air Patrol


> > The Compression Ignition Engine.

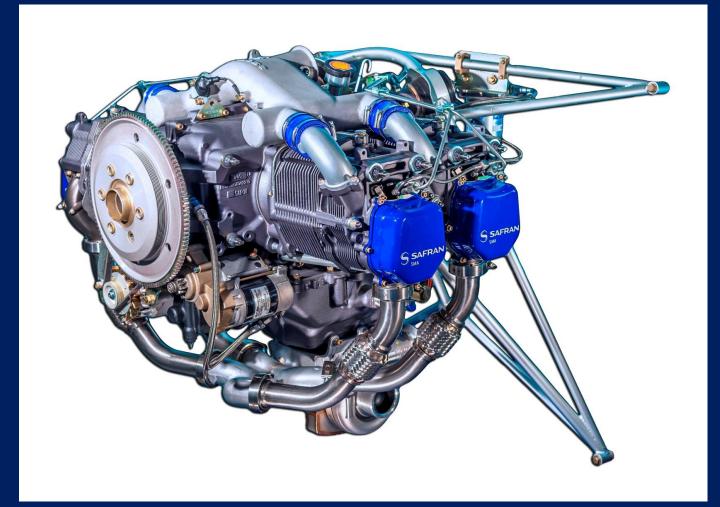
/01/

What is the difference between a Compression Ignition Engine & a Diesel Engine?

Nothing!!

We mainly want to convey that Compression Ignition (CI) engines:

- Are aviation specific engines, not redesigned automobile engines.
- Will use Jet-A, other Kerosene based fuels, or Bio fuels. NOT diesel fuel.


SAFRAN (SMA) SR305-230E Compression Ignition Engine

The same engine chosen by Cessna for the C182R.

SMA SR305-230E TECHNICAL CHARACTERISTICS

- 4 Cylinders
- Horizontally opposed
- Direct drive
- Diesel cycle
- 4 Stroke
- Direct Injection
- Turbocharged
- Air and Oil Cooled
- Single Control Lever
- Electronically controlled with a Mechanical back up

SR305-230

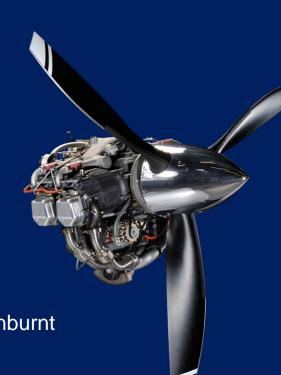
- First flew on a Socata TB-20 in March 1998.
- Introduced at the Paris Airshow in 1999.
- French approval in July 2001.
- FAA approval received in 2002.
- July 2006 a converted C-182 (F-GJET) flew from Le Bourget, France to Oshkosh, WI.
 - 4480 NM
 - 7 days
 - 9 legs
 - Avg. 7.7 gph

Compression Ignition propulsion solutions

More than a solution to avgas engines shortcomings

Operating costs

- 30-40% lower fuel burn
- lower Jet A cost
- low maintenance


Logistic

- high Jet A availability
- round trip flights w/out refueling
- large support networks

Environmental footprint

- low noise (use in urban airfields)
- no fuel used for cooling and rejected unburnt
- low emission (CO2...), no leaded fuel

Performance

- cruise at max power
- higher payload / range
- large flight envelop

Safety

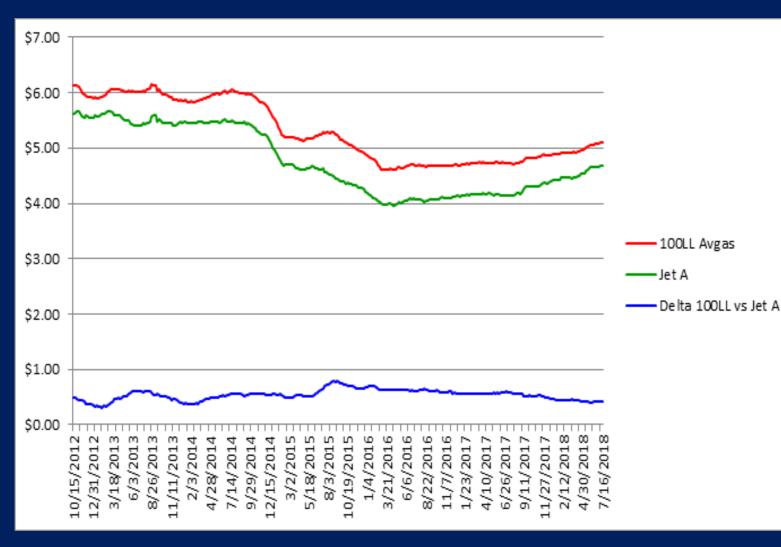
- redundant systems
- no CO risk in the cabin
- low flammability of Jet A

Comfort

- low cabin noise
- low cabin vibration
- low pilot workload

Why are we talking about Diesel Engine's with the Civil Air Patrol?

The main reasons are:



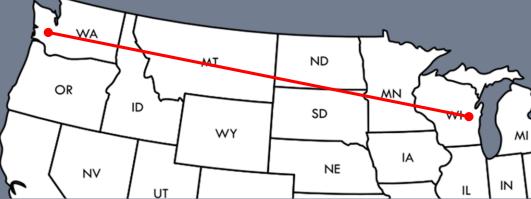
REDUCED FUEL COSTS

REDUCED MX COSTS

INCREASED PERFORMANCE

- National Fuel Prices
 - Avgas = \$5.11
 - Jet-A = \$4.69
 - Delta (∆) = \$0.42
 - As per Aug. 17, 2018
- Mx Costs
 - TBO @ 2400 Hrs. instead of @ 1500 – 2200 Hrs.
 - 50% less inspections.

Fuel Prices are National Average, as per Airnav.com


HIGH OPERATING COSTS PRESSURE

Olympia (KOLM) – Oshkosh (KOSH)

- Date: July 24, 2017
- Flight: Non-stop
- Distance: 1,485 NM
- Duration: 9:25 (8 hours + 75 min. hold)
- Fuel: Jet-A
- Fuel Use: 80 gallons
- Fuel Burn: 8.5 GPH
- Oil Burn: 1/4 quart
- Airspeed: 156 Kts. TAS
- Altitude: 17,500 ft (cruise)
- Power: 60% at cruise
- Crew: 2 (Steve +1)


The same 1485 NM flight today would offer the following fuel savings.

	O-470	SR305-230E	SAVINGS
Fuel Burned (Gal.)	122	80	42 gal.
Fuel Type	100LL	Jet-A	-
Fuel Price (/Gal)	\$5.11	\$4.69	\$0.42 (9%)
Fuel Expense	\$622.20	\$374.40	\$247.80

Fuel prices are current national average courtesy of Airnav.com.

Airport	AVGAS (U\$)	JET-A (U\$)	∆ (U\$)
Genk, Belgium	\$9.13	\$4.55	\$4.58
Middleburg, Netherlands	\$11.45	\$7.92	\$3.53
Vesthimmerlands, Denmark	\$10.92	\$6.75	\$4.17
Kampala, Uganda	\$11.40	\$2.47	\$8.93
Aswan, Egypt	\$15.14	\$2.83	\$12.31

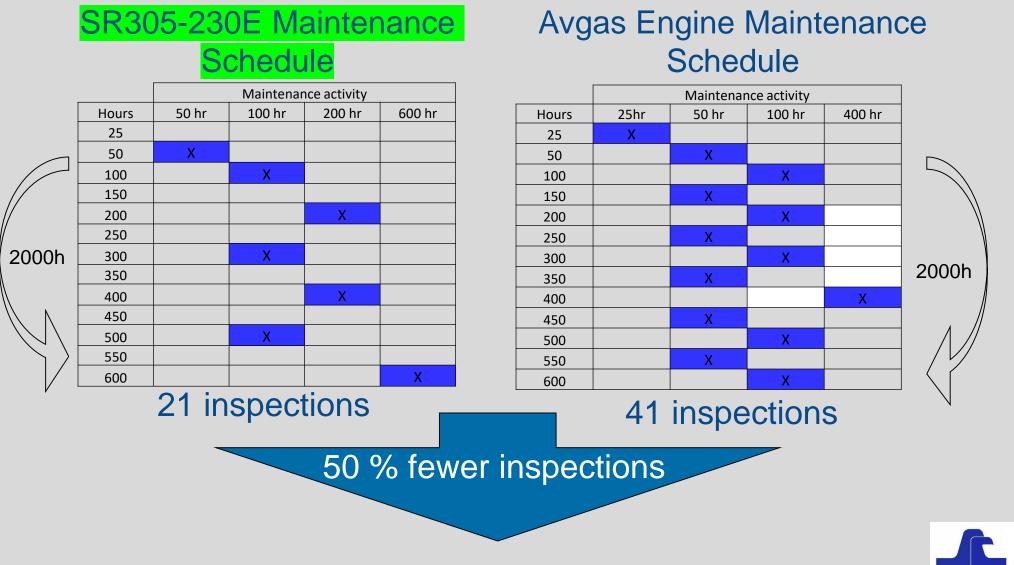
PERFORMANCE COMPARISONS

	CAP C182R (100 LL)	C182N (Jet-A)
CAP Fuel (gal.)	64	64
Fuel Burn / Hour (cruise)	13	8
Endurance	5 Hrs.	8 Hrs.
Fuel Difference (Endurance)	-25 gal.	[-40 gal.]
Cruise Speed	142 kts.	142 kts.
Range	815 NM	1140 NM
Actual Cruise Range	@ 156 kts.	1248 NM

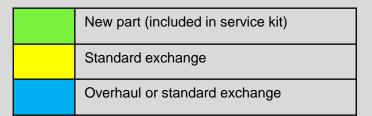
CAP C182 Utilization Info				
Total C182's	346			
Non-NavIII	~ 121			
Total C182 Hrs. (2017)	~ 64,500			
Avg. C182 Hrs./month	~ 17			
Avg. C182 Hrs./year	~ 200			
Avg. C182 DMC/year	~ \$15,000			

	C182R Utilization		
200 Hrs.	@ 13 gal./Hr.	2600 gal./yr.	
2600 gal./yr.	@ \$5.11	\$13,286	
200 Hrs.	@ 8 gal./Hr.	1600 gal./yr.	
1600 gal./yr.	@ \$4.69	\$7504	
	- 1000 gal./C182R	\$5782/acft.	
	For 81 C182R's	\$468,342	

CAP C182 Utilization Info				
Total C182's	346			
Non-NavIII	~ 121			
Total C182 Hrs. (2017)	~ 64,500			
Avg. C182 Hrs./month	17			
Avg. C182 Hrs./year	~ 200			
Avg. C182 DMC/year	~ \$15,000			



CAP 2017 Avgas vs. psbl Jet-A Useage				
64,500 Hrs./year	@ 13 gal./Hr.	838,500 gal./yr.		
838,500 gal./year	@ \$5.11/gal.	\$4,259,580 / year		
64,500 Hrs./year	@ 8 gal./Hr.	516,000 gal./yr.		
516,000 gal./yr.	@ \$4.69/gal.	\$2,399,400 / year		
		\$1,860,180		


MAINTENANCE COMPARISON

REDUCED MAINTENANCE

Visit (flight hours)	Oil filter	Oil (I)	Fuel filter	Injector	Turbo	Estimated labor (h)
50	x1	8	x1			4.0
100	x1	8				3.0
200	x1	8	x1			4.0
300	x1	8				3.0
400	x1	8	x1			4.0
500	x1	8				3.0
600	x1	8	x1	x4		8.5
700	x1	8				3.0
800	x1	8	x1			4.0
900	x1	8				3.0
1000	x1	8	x1			4.0
1100	x1	8				3.0
1200	x1	8	x1	X4	x1	10.5
1300	x1	8				3.0
1400	x1	8	x1			4.0
1500	x1	8				3.0
1600	x1	8	x1			4.0
1700	x1	8				3.0
1800	x1	8	x1	x4		8.5
1900	x1	8				3.0
2000	x1	8	x1			4.0
2100	x1	8				3.0
2200	x1	8	x1			4.0
2300	x1	8				3.0
2400	Engine overh	naul				

- Periodic inspections every 100 hrs. instead of 50 hrs.
- 8 liters = 8.45 qts.
- The inspections are essentially visual checks.
- Fewer parts than a conventional Avgas engine.
- Low engine speed and use of jet fuel results in less wear on components.
- Less parts to remove.
- High reliability of injection system.

REDUCED MAINTENANCE

	Standard Engine Run-up	First 50 hrs** & every 200 hrs or 2 years*	Perform a 100 hrs maintenance
	Check the oil consumption		Replace the engine fuel filter
	Drain engine oil		Perform Turbocharger oil valve assembly cleaning
	Replace and inspect the oil filter		Perform a 200 hrs maintenance
5	Visual checks for cracks, leaks, damages, corrosion		
Every 100 hrs or 1 year*	Check the connectors and the wires for clamping and damages	Every 600 hrs	Check the cylinder compression leak rate
	Perform anti corrosion procedure	or 4 years	Replace the fuel injectors
	Check the starter and starter ring gear for damages		Replace the turbocharger ball bearing pin as needed
-		Every 1200 hrs	Perform a 600 hrs maintenance
	Check the compressor inlet and the turbine outlet for oil leaks and damages		Remove the turbocharger for overhaul

*Whichever comes first **First 50hrs after engine new or overhaul

<u>Note:</u> This chart is a summary of the scheduled maintenance actions. Refer to the Engine Maintenance Manual for more information.

Projected Performance Numbers

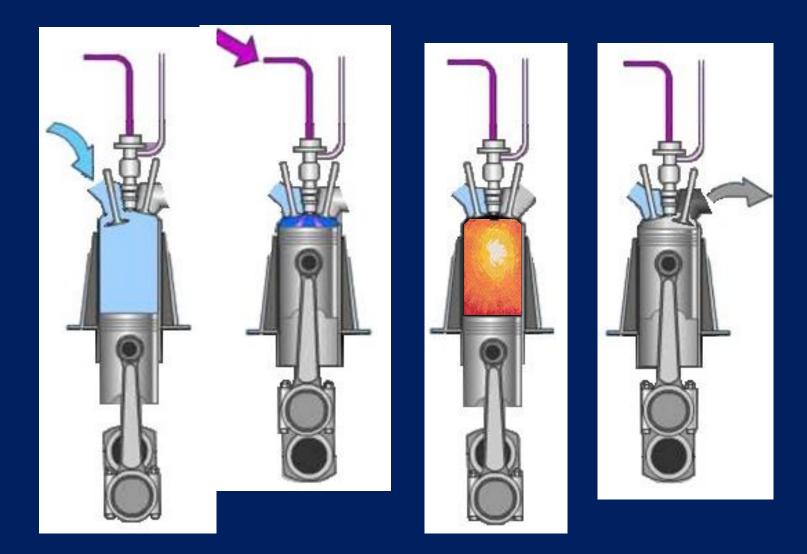
Service Ceiling: Ground Roll @ Sea Level: Landing Roll @ Sea Level: Dist. To clear 50 ft. Obstacle: Ldg. Dist. To clear a 50 ft. Obs. Max. Climb Rate @ Sea Level: Max. Speed @ 10,000 ft. Max. Range & Endurance (60% pwr / 14,000 ft.; MP 60") Max. Range & Endurance (@Cruise: 90% pwr / 14,000 ft.; MP 90")

20,000 ft. 775 ft. 590 ft. 1385 ft. 1350 ft. 1000 fpm. 156 kts / 180 mph 1480 nm / 12.3 hrs

1025 nm / 6.6 hrs

Manifold Pressure use:

- 90 inches at SL or unlimited
- 70 inches for Normal Cruise
- 60 inches for Economy Cruise



THE COMPRESSION IGNITION ENGINE

COMPRESSION IGNITION ENGINE TECHNOLOGY

The strokes of four-stroke Diesel cycle engine

COMPRESSION IGNITION ENGINE TECHNOLOGY

Advantages

Low fuel consumption (higher efficiency)

Low fuel cost (Jet-A) Fuel availability Increase range/payload Negligible CO, no Lead emission Low Propeller speed (noise) Durability Reliability Low maintenance Lower direct operating cost Lower fuel flammability Reduced pilot workload (EMS) Higher resale value

Disadvantages

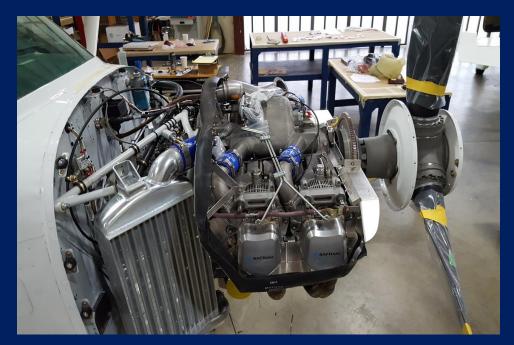
Weight (+44 lbs.; Cont. O-470-U) Cooling (drag)

TECHNICAL CHARACTERISTICS

- Power
- Displacement
- Thrust (Hartzell)
- Torque
- Fuel
- BSFC
- Efficiency (C182)
- Oil
- Propeller Speed
- Weight
- Power to weight ratio
- Recommended TBO

230 - 260 hp 5 liters / 305 cu. In. 1000 lbs 550 ft. lbs Jet A, Jet A1, JP8, #3, TS1 .35 lbs/hp/hr Less than 12 mpg Aeroshell oil diesel 2,200 rpm 456 lbs .50 2,400 hours

Standard Conversion Kit Components:


- Electronic Central Processing Unit (CPU).
- Electronic engine management / display unit.
- Newly designed cowl & baffling.
- Oil Cooler
- Intercooler
- Engine mount
- Wire Harnesses
- Complete STC documentation.
- Installation drawings, instructions, etc.
- SAFRAN SR305-230E CI Engine
- MT 3-Blade Propeller
- Can be installed by any qualified A&P.
- Anticipated kit price: \$180,000/kit with everything included.

What is left to do?

- "Last minute" Engineering work.
- Modifying the cowl & baffling to achieve the temperature limit goal of ISA + 35.
- Final Flight Testing & Modifications.
- Regulation compliance (crossing t's & dotting i's)
- We are on track for STC approvals from EASA & FAA.
- EASA before the end of this year.
- FAA during the first quarter of next year.

Soloy Aviation Solutions 450 Pat Kennedy Way SW Olympia, WA 98501 (360) 754 – 7000 sales@soloy.com www.soloy.com

Questions & Answers

Kurt Robertson Soloy Aviation Solutions kurtr@soloy.com

Steve Phoenix Soloy Aviation Solutions stevep@soloy.com