17th INTERNATIONAL CONFERENCE & EXHIBITION ON LIQUEFIED NATURAL GAS (LNG 17)

Refrigeration Compressor Driver Selection and Technology Qualification Enhances Value for the Wheatstone Project

By: Pankaj Shah, Chevron (presenter)

Co Authors:
Mark Weatherwax, Chevron
Meredith Chapeaux, Chevron
Karl Masani, ConocoPhillips Company
Cyrus Meher-Homji, Bechtel Corporation

17 April 2013

Topics

- Project background
- Driver alternatives
- Driver selection
- Technology qualification
- Conclusions

Project background

Wheatstone Project

Plant location

- Ashburton North Strategic Industrial Area
- Located about 12 km SW of Onslow
 - Population about 450, increasing to 650 in winter
 - Primary industries agriculture (sheep), salt (Onslow Salt) and fishing

Onshore facilities

- 2 x 4.45 mtpa LNG trains; Condensate and domestic gas production
- ConocoPhillips Optimized Cascade[®] process
- Modular construction strategy
- 2x150,000 cum FC LNG tanks
- USD 29 billion investment
- Planned expansion to 25 mtpa of LNG

Driver alternatives

Evolution of drivers in LNG industry

© Chevron 2013 8

First application of gas turbines

First application of LM2500 Aero Derivative Turbines

Driver selection

Project specific factors influencing driver selection

Key project specific factors influencing driver study

- ✓ Fixed feed stream flow limiting ability to utilize excess driver power
- ✓ Compositional uncertainty with regards to feed stream nitrogen content requiring flexibility with available power
- ✓ Site ambient conditions; ambient temperature ranging from 13°C to 40°C (extremes 5°C to 47°C)
- ✓ Other criteria for selection include emissions, total installed cost, LNG Production, operating cost, technical/operational/schedule risk, etc

Driver study alternatives

- i. 6 x LM2500+G4 with mechanical refrigeration for inlet air chilling (IAC)
- ii. 6 x LM2500+G4 with Inlet Air Humidification (IAH)
- iii. 7 x LM2500+G4 with no power augmentation
- iv. 6 x LM6000PF with IAH
- v. $7 \times LM2500 + G4$ with IAH
- vi. 7 x LM2500+G4 with IAH and HRSG and steam turbine power generation
- vii. 2 x Frame 7EA and 2 x Frame 5D

Selected driver - LM6000PF

- 6 x LM6000PF with IAH was the selected based on a combination of low TIC, attractive NPV and DPI
- Technical risk managed via a technology qualification plan

Technical qualification

Chevron Technology Qualification Process

- Formal methodology and toolbox of resources
- Joint effort between Chevron, Bechtel, GE and CoP
- Identified systems/sub-systems for qualification
- LM6000 TQP completed in December 2009

Major TQP Activities/Findings

- Dynamic Simulations
 - Train shut-down and startup simulation by Bechtel
 - ✓ The compressor train takes over 20 seconds to decelerate to approximately 1800 rpm
 - LM6000PF engine simulation during train shut-down by GE using their engine simulator
 - ✓ Gas turbine can stop in less than 5 seconds without stall occurring within the axial turbine.
- Compressor selections for the base case design operating conditions
- Compressor capable of full pressure restart
- Train Torsional Analysis for the Methane compressor train

Conclusion

Technology Qualification Conclusions

- All major TQP risks and open action items have been addressed and closed
 - Design review
 - Modeling and Simulations
 - Quality control/inspections
 - Testing at Supplier Facilities
 - Field inspection and testing
 - Gas Turbine Performance Testing
 - Full load string testing
- LM6000PF acceptable mechanical drive option for Wheatstone

Questions

Ambient temperature impact on gas turbine performance

© Chevron 2013 21

High ambient temperature operation options

- Overfiring of gas turbines
- High purity refrigerant propane
- Add sprint to propane LM6000 gas turbine
- Inlet mechanical chillers
- LiBr chiller package
- Helper motor for propane compressor gas turbine
- Compressor impellor technology with higher turndown capability