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Abstract

Interband optical injection and control of electron spin populations and ballistic spin currents

in bulk semiconductors.

Ravi Dinesh Rama Bhat
Doctor of Philosophy
Graduate Department of Physics

University of Toronto
2006

This thesis theoretically studies interband optical injection of spin current, carrier spin, current,
and carrier population by one-photon absorption, two-photon absorption, and the interference
of one- and two-photon absorption (“142” excitation) in cubic bulk semiconductors. Novel
effects—“1+-2" spin-current injection, “1+2” spin control, and one-photon pure spin-current
injection—are proposed and studied, and theories of previously known effects—“1+2" current
injection, “14+2” carrier-population control, and two-photon spin injection—are extended. Each
of the effects is studied phenomenologically from the point of view of crystal symmetry to
determine the polarization and crystal orientation dependence, especially for cubic materials.
The focus of the thesis is on the optical injection, rather than on the subsequent scattering,
transport, and relaxation of the nonequilibrium carrier distributions. A microscopic expression
for the injection rate of each effect is derived with the optical field treated as a perturbation. The
effects are studied with simple analytical band models, perturbative in the Bloch wave vector
k. “142” current injection and “142” spin-current injection, which are nonzero in isotropic
materials, are evaluated using the isotropic, eight-band Kane model. “142” population control,
“142” spin control, and two-photon spin injection which require a lower symmetry model, are
evaluated in the parabolic band approximation using a fourteen-band model. Each of these,
and one-photon pure spin-current injection are further calculated numerically using the fourteen
band k - p Hamiltonian. The calculation is nonperturbative in k, and hence shows the limit of
validity of the simpler models. Strain is incorporated into the fourteen-band calculation to show
that one-photon pure spin-current injection can be increased with the application of strain. It

is shown that two-photon spin injection can yield a very high degree spin polarization, but
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only due to transitions that do not conserve angular momentum. Excitonic effects on “142”
excitation are studied using the effective-mass theory of Wannier excitons and accounting for
degenerate bands. It is shown that excitonic effects cause a phase shift in the dependence of

“1+42” current injection and “14-2” spin-current injection on the optical phases, and cause an

enhancement of all four “14+2” effects.
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Chapter 1

Introduction

Semiconductors are characteristically photoconductive due to interband optical transitions
(from filled valence bands to empty conduction bands), which populate the illuminated material
with mobile carriers: electrons and holes. Early studies of interband optical transitions used
incoherent, unpolarized light sources and were insensitive to properties of the initial carrier dis-
tribution that decay on fast timescales [1]. But modern detection techniques make possible the
measurement of such properties, and modern laser systems—capable of coherent, well-tailored
light fields—make possible the selection of some interband transitions over others, so that one
can photoexcite carrier distributions with interesting and important properties. For example,
with circularly polarized light, one can photoexcite conduction band electrons that are partially
spin-polarized [2], and with a two-colour light field, one can photoexcite a k-space distribution
of carriers with polar asymmetry—i.e., an electrical current—and control the direction of the
current by adjusting the phases of the fields [3, 4]. This thesis shows theoretically that various
combinations of one- and two-photon interband transitions can generate carrier distributions
with net spin and/or a net correlation between velocity and spin, i.e. a spin current.

Spin is a fundamental and characteristic property of the electron, but it is unexploited in
typical semiconductor devices, which form the basis of modern electronics. The emerging field
of semiconductor spintronics is based on the hope that the control of electron spin in semicon-
ductors will lead to the development of new kinds of data storage and processing devices, and
perhaps to the development of a solid state quantum computer [5-8]. Though semiconductor
spintronics is mainly focussed on electrical methods of spin-current injection and spin control
[9-13], optical methods of spin injection and spin detection have played an important early role
[14-16].

The canonical bulk semiconductor for optical studies is GaAs, which is cubic and has zinc-
blende symmetry [17]. In this thesis, I focus on typical III-V semiconductors (including GaAs)

and cubic II-VI semiconductors, which have band structures similar to GaAs. They feature
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CHAPTER 1. INTRODUCTION 2

a direct band gap between s-like conduction bands, and degenerate, p-like heavy- and light-
hole valence bands. The selection rules for interband one-photon excitation with circularly
polarized light in such semiconductors, which are reviewed in Chapter 4, are often re-stated in
the literature, and are typically attributed to angular momentum conservation. They explain,
for excitation close to the band edge, the experimentally observed 3:1 ratio of spin-up to spin-
down photoexcited conduction band electrons (or stated alternately, the 50% degree of spin
polarization) [2].

This spin selectivity of interband one-photon optical transitions with circularly polarized
light has underpinned optical studies in semiconductor spintronics. But what is possible with
other types of optical excitation? The initial motivation of this thesis was to study the spin

properties of carriers excited by nonlinear optical processes.

Two-photon absorption of circularly polarized light can also excite spin-polarized electrons
in the conduction band [18], but there has been some confusion in the literature as to the
degree of spin-polarization [19]. A tempting, but erroneous application of angular momentum
conservation can lead one to conclude that carriers are fully polarized. Chapter 4 of this thesis
presents the first calculation of two-photon spin injection that goes beyond a simple spherical
model. It clarifies the selection rules for the transitions responsible for spin-polarization and
predicts conditions under which a very high degree of spin-polarization is possible. The mate-
rial of Chapter 4 was published in 2005 along with experiments on one- and two-photon spin
injection [20].

When a semiconductor is simultaneously irradiated by an optical field and its phase-coherent
second harmonic, quantum interference between one- and two-photon absorption pathways
enables excitation of carrier distributions with interesting properties. This is an example of an
“n+m” coherent-control scheme, in which a two-colour light field controls a physical or chemical
process by interference of n- and m-photon transitions [21-23]. Interference between one- and
two-photon transitions, for example, allows controllable polar asymmetry of photoelectrons in
atomic ionization [24, 25], and controllable dissociation of HD*t [26]. In semiconductors, it
has been shown that “142” excitation can generate a ballistic current, even in the absence of
an electrical bias, and that the direction and magnitude of the current can be controlled by
the phases of the optical fields [3, 4, 27-35]. This “1+4+2” current injection has been studied
in a variety of configurations: impurity-band absorption [28], free-carrier absorption [27-29],
quantum well intersubband transitions [30], asymmetric quantum well interband transitions
[31, 32], and quantum well interband transitions [33-35]. Most relevant to this thesis are the
works of Atanasov et al. and Haché et al. [3, 4], which showed that “1+42” current injection is

possible for interband transitions in bulk semiconductors.

The total density of photoexcited carriers can also be modulated by quantum interference
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CHAPTER 1. INTRODUCTION 3

in “142” excitation, but only for materials that lack a center of inversion [36]. Fraser et al.
demonstrated such carrier population control for interband transitions in bulk GaAs, which is
noncentrosymmetric (36, 37].

Results presented in Chapter 2 of this thesis, published in 2000 [38], were the first to show
that “14-2” excitation can generate spin currents. By appropriately choosing the polarization
of the fields, one can generate (i) a spin-polarized electrical current (SPEC), in which electrons
are photoexcited with a net spin and net velocity, or (ii) a pure spin current (PSC) with no
associated electrical current, in which electrons traveling in one direction have net spin up while

those traveling in the opposite direction have net spin down.

Whereas a SPEC is required for some proposed semiconductor spintronics devices [7, 8, 16,
39, 40], a PSC is somewhat of a novelty. The first observations of pure spin currents were based
on the “1+2” scheme presented in this thesis [41, 42]. Pure spin currents can also occur from
the spin Hall effect [43—46], and from spin pumping schemes [47-55]. Subsequent calculations
of “1+2” spin currents in quantum wells [33, 34, 56-58] and quantum wires [59] have also
appeared. Others have proposed that a dc electric field can drive a dissipationless PSC [60-63].
Rashba has shown that such dissipationless PSCs can exist in the ground state of low symmetry
materials, and hence a distinction should be made between them and the kind of transport PSC
that I present in this thesis [64, 65].

Results in this thesis also show that the net spin of photoexcited carriers can be modulated
by quantum interference in “1+2” excitation, but only for noncentrosymmetric materials. Re-
cent experiments have confirmed “1+2” spin control in GaAs/AlGaAs multiple quantum wells
[66, 67].

Thus, the picture has emerged over the last ten years that when a bulk semiconductor
undergoes “142” excitation, modulation of the phases of the fields can modulate: carrier pop-
ulation, ballistic currents, carrier spin, and/or ballistic spin currents. The latter two were first
proposed by work presented in this thesis. Which of these four “142” effects occur depends
on the polarization states of the fields. There have been several experimental observations of
“14-2” interband excitation in bulk semiconductors.! Such experiments have been performed
with either: (a) two fields, typically short pulses, one the generated second harmonic of the other
4, 36, 37, 41, 42, 66-76], or (b) a single ultrashort pulse having at least an octave bandwidth
[77, 78].

Previous microscopic calculations of “142” processes in bulk semiconductors fall into two
categories: ab initio density functional methods have been used for current injection [3] and

population control [36], while simple analytical band models perturbative in k (with at most

!1 include in this category experiments with heterostructures at excess energies greater than the confinement
energy, in which the confinement plays a minor role.
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CHAPTER 1. INTRODUCTION 4

eight spherical, parabolic bands) have been used for current injection [3, 79, 80]. The former are
best suited for excess energies on the order of eVs, while the latter are only valid for excitation
close to the band edge and cannot be applied to population and spin control, which vanish in

such centrosymmetric models.

This thesis presents novel calculations of the “1+42” effects. In Chapter 2, I study the effects
phenomenologically from the point of view of crystal symmetry to determine their polariza-
tion and crystal orientation dependence, and microscopically using simple analytical models,
perturbative in the Bloch wave vector k, to determine their magnitude. The band model is
perturbative in the Bloch wave vector k, and hence appropriate to excitation close to the band
edge. Current injection and spin-current injection, which are nonzero in isotropic materials,
are evaluated in Chapter 2 using the isotropic, eight-band Kane model. Population control
and spin control, which require a lower symmetry model, are evaluated in the parabolic band
approximation using a fourteen-band model in Appendix C. In Chapter 3, a numerical cal-
culation of the fourteen band k - p Hamiltonian is used for a microscopic calculation of each
“142” effect. The calculation is nonperturbative in k, and hence shows the limit of validity
of the calculations in Chapter 2 and Appendix C. Chapter 6 accounts for “excitonic effects”,
which are a consequence of the correlation between the optically excited electron and its hole
caused by their Coulomb attraction. Such correlations were neglected in previous theories of
“14-2” effects and in Chapters 2-5 of this thesis, which use the independent-particle approx-
imation. Excitonic effects are well-studied in one- and two-photon absorptions, but have not
previously been studied in “1+2” excitation. The recently published results of Chapter 6 pre-
dict a frequency-dependent phase shift in the dependence of the current and spin current on

the optical phases [81].

Figure 1.1 shows, in the red box, my calculated band structure for GaAs with the fourteen
band k- p Hamiltonian described in Chapter 3. Also shown is its relation to an ab initio band
structure calculation of GaAs.

Although this thesis is mainly focussed on electron spin properties of nonlinear optical
excitation, the finding that a pure spin current can be génerated from “142” excitation begged
the question of whether a PSC can be generated from linear excitation. Chapter 5 shows that,
in noncentrosymmetric materials, a ballistic pure spin current can indeed be generated from
one-photon absorption alone. This PSC is simpler, but more subtle than the “14+2” spin current
discussed in Chapters 2, 3, and 6. The calculation in Chapter 5 of the PSC from one-photon
absorption uses the same numerical solution to the fourteen-band k - p Hamiltonian used in
Chapters 3 and 4, but also accounts for external strain on the crystal. The calculation shows
that the PSC can be increased with the application of strain. The results of Chapter 5 were
recently published [82], and the one-photon PSC has been confirmed experimentally [83].
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Figure 1.1: Band structures for GaAs: ab initio (left) and fourteen band k-p (right) calculations.
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CHAPTER 1. INTRODUCTION 6

Electromagnetic units are discussed in Appendix A.

1.1 Assumptions and Limitations

The theoretical studies in this thesis share some common assumptions and limitations. Through-
out the thesis, I use a framework based on (i) a perturbative expansion in the optical field ampli-
tudes, and (ii) a conceptual separation of the initial carrier photoinjection from the subsequent
carrier scattering. I calculate the photoinjection rates for a zero-temperature semiconductor in
the Fermi’s golden rule (FGR) limit. Also, I use the velocity gauge coupling of light with the
material, and treat the light in the long-wavelength limit.

At the low optical intensities characteristic of our natural environment, materials respond
to light linearly. At higher intensities, experimentally accessible since the invention of the
laser, material response can be nonlinear [84]. Up to intensities of about 10* W/cm?2—typical
experiments discussed in this thesis use intensities no more than 10 GW/cm? [4, 20, 36, 41,
42, 66, 85]—one can study the material response with a perturbative expansion in the optical
fields. In fact, the expansion of the polarization in powers of the incident electric field forms
the common language of nonlinear optics [84]. The calculations in this thesis are intended for
intensities at which such a perturbative approach is valid, and for light sources that can be
treated classically.

Higher intensity optical excitation is experimentally possible, but lies in the realm of strong-
field nonlinear optics [86], which is outside the scope of this thesis. Strong-field “1+2” excitation
has been studied in atoms and small molecules [87-94]. The observation of strong-field nonlinear
optics in semiconductors, without destroying the sample, requires ultrashort optical pulses of
only a few cycles [95, 96].

The physical processes initiated by optical excitation naturally separate into distinct timescales.
Whereas interband transitions begin with the onset of the optical field, momentum relaxation
occurs on a timescale of 100 fs, and other processes—electron spin relaxation, carrier cooling,
and carrier recombination—occur on ps timescales or longer [97]. This situation lends itself to
a conceptual separation of the initial carrier photoinjection from the subsequent carrier scat-
tering and carrier transport. In this thesis, I focus on microscopic calculations of the initial
photoinjection. Thus, one should keep in mind that the effects I calculate here will relax to
a steady-state value under continuous illumination, or will decay to zero following pulsed ex-
citation as a result of carrier scattering. The relaxation and transport of the carriers after
“142” excitation has been studied with an effective circuit model [68], hydrodynamic equations
[3, 69, 70], Boltzmann transport in the relaxation time approximation [42], a non-equilibrium

Green function formalism [80], and the semiconductor Bloch equations [34, 56, 58]. The results
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CHAPTER 1. INTRODUCTION 7

in this thesis can be input into any of these methods that do not go beyond its limitations.
Even the simplest method, the effective circuit model, has given good agreement with room
temperature electrical current injection experiments [68, 72, 78], although more sophisticated
models are necessary at higher carrier density [34, 56, 58, 70]. Also, the Boltzmann transport

model gives good agreement with spin-current injection experiments as shown in Chapter 3.

A consequence of not treating photoinjection and carrier scattering on the same theoretical
level is the inability to properly model two-photon transitions that have a one-photon resonance.
Thus, the results of all but Chapter 5 of this thesis are limited to excess photon energy (2hw—Ejg)
less than the fundamental band gap E,.

I calculate the photoinjection rates of spin current, spin, current, and carrier population by
taking the Fermi’s golden rule (FGR) limit of perturbation theory. In this limit, the injection
rate (the rate of change in time) of any of these properties is constant for continuous optical
fields. Even if scattering and relaxation are neglected, taking the FGR limit eliminates contri-
butions to these properties with other time dependencies. For example, upon excitation with a
quasi-monochromatic pulse with electric-field envelope £(t), there are three distinct contribu-
tions to the current: current injection, which is proportional to [ PlEW)|? dt'; “shift” current,
which is proportional to |£(¢)|%; and rectification current, which is proportional to d|E(t)|? /dt
[98-102]. There will be analogous “shift”-like and rectification-like contributions to the effects
studied in this thesis, but they have not been studied in detail. However, the different time
dependencies of the three current contributions allow for their separate examination experi-
mentally, at least in principle. And as with the one-photon current, rough order-of-magnitude
estimates indicate that the injection contribution will always dominate unless it is forbidden by

symmetry. In this thesis, I only study the injection contribution to each effect.

Although typical semiconductor experiments are conducted at room temperature or liquid-
nitrogen temperature, in this thesis, I study ideal zero-temperature, undoped semiconductors.
At increased temperatures, electron-phonon interactions increase carrier scattering, which af-
fects the relaxation and transport of the carriers. Increased temperature also increases the
lattice constant of the material, which can in principle modify the values of all the k - p model
parameters, but significantly modifies only the band gaps [17]. For example, at zero tempera-
ture, the band gap of GaAs is 1.519 eV, but at room temperature it is 1.42 eV [17]. However,
theoretical calculations of semiconductor optical properties are commonly made with a zero
temperature crystal, and moreover I have checked that using finite temperature values for the
band gaps has little influence on the results presented in the thesis. To best aid comparison
with experiments conducted at any temperature, I present spectra as a function of excess pho-
ton energy (energy relative to the band gap) rather than absolute photon energy. Finally, for

undoped semiconductors, typical temperatures will not introduce any significant equilibrium
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CHAPTER 1. INTRODUCTION 8

concentration of free carriers.

Throughout this thesis, I use the long-wavelength limit. In this approximation, the spatial
dependence of the electric field is neglected, since it typically varies on a scale much larger than
a unit cell of the crystal. As a consequence, the propagation direction of the optical field only
matters insofar as the polarization must be perpendicular to the propagation direction. The
electric field in the equations in this thesis is the field inside the material. Typically, it is related
to the incident optical field in a straightforward manner by Fresnel reflection coefficients [103].
But for complicated material geometries, Maxwell’s equations must be solved self-consistently
with the optical-injection equations. We undertook such a task to model a “142” spin control
experiment on a (110)-grown multiple quantum well sample in which propagation effects were

important [67]. In this thesis, I neglect local-field effects.

There are two commonly used forms for the optical interaction Hamiltonian: the velocity-
and length-gauge couplings. The former takes the form H,int(t) = — (e/c) A(t)-v+e2A%/(2mc?),
where A (t) is the vector potential associated with the Maxwell electric field [E = —c~'A(t)] and
v is the velocity operator associated with the field-free Hamiltonian Hg. In the long-wavelength
limit, the position dependence of A(t) is neglected, and thus the second term in Hi.int(t) can
be neglected, since it can be absorbed in an overall time-dependent phase of the full system ket
and hence cannot cause any transitions between states of Hy. The length-gauge coupling takes
the form H,in(t) = —eE(t) - r, which is also known as the dipole Hamiltonian. The A(t) - v
coupling is typically favored for semiconductors [103, 104] since the position operator is difficult
to deal with for periodic systems [105, 106], although the E(t) - r coupling can also be used
[101, 106]. The two forms of interaction Hamiltonian are equivalent in theory, being related by
a gauge transformation. However, when a nonlocal Hamiltonian is used, there is a correction
to the velocity-gauge Hy,.int(t) to restore equivalence [106-108]. Many approximate approaches
to band structure calculation—including most pseudopotentials, and the truncation to a finite
number of bands—implicitly assume an underlying field-free Hamiltonian that is nonlocal and
hence require a nonlocal correction to the velocity gauge H,.int(t) [107]. The correction does
not affect one-photon transitions, but it does affect higher-order transitions including the two-
photon transitions studied here. However, I neglect such nonlocal corrections, which have been
found to be small for a two-band calculation of two-photon absorption [107] and for an ab initio
calculation of second-harmonic generation [109].

The issues discussed above in this section are not unique to this thesis. They also arise
in calculations of nonlinear optical susceptibilities [84]. In fact, the effects calculated in this
thesis can be related to nonlinear susceptibilities. Two-photon absorption and “1+2” current
injection are related to third-order susceptibilities X(3), and “142” population control is related

to a second-order susceptibility x(®). The spin injections—one- and two-photon spin injec-
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CHAPTER 1. INTRODUCTION 9

tion, and “142” spin control—and the spin-current injections—“1+2" spin-current injection
and one-photon spin injection—can probably be described in the context of a magneto-optical
susceptibility, although such a task has not yet been undertaken.

Thus, in a sense, this thesis studies linear and nonlinear optics of electron spin in semicon-
ductors. There are three main kinds of spin in semiconductors that can be optically excited:
electron spin, hole spin, and nuclear spin. Optical excitation of nuclear spin is indirect, occur-
ring as a result of angular momentum transfer from spin-polarized carriers to the nuclei [2];
I do not study excitation of nuclear spin in this thesis. Whereas the spins of electrons in the
conduction band relax on the order of 100 ps, the spins of holes in the heavy- and light-hole
valence bands relax on the order of 100 fs in bulk GaAs [110, 111]. The difference is due to the
degeneracy of the heavy- and light-hole bands at the I point, and the entanglement of spin and
orbital degrees of freedom, which allow the holes to lose their spins rapidly through momentum
scattering (the Elliot-Yafet spin-relaxation mechanism) [112, 113]. As a consequence, most of
the focus in semiconductor spintronics has been on electron spin rather than hole spin (8], since
electron spin lasts long enough to be more easily observed and to have more potential usability
in a spintronics device. In this thesis, I focus on electron spin. Hole spin is considered in

Chapter 2, but otherwise neglected in the rest of the thesis.

1.2 Relation to published papers

Parts of this thesis are drawn from papers published in the Physical Review [20, 38, 81, 82].
Most of Bhat and Sipe, Phys. Rev. Lett. 85, 5432 (2000) is in Secs. 2.1, 2.3.3, 2.3.4, and 2.4,
although it is corrected to a new notation that displays cubic symmetry. It is augmented in
Sec. 2.3.3 with Appendix B of Bhat and Sipe, Phys. Rev. B 72, 075205 (2005). The rest of that
paper is Chapter 6 and Appendix E. Chapter 4 and part of Appendix C is my theoretical work
from Bhat, Nemec, Kerachian, van Driel, and Sipe, Phys. Rev. B 71, 035209 (2005). Chapter
5 is my theoretical work from Bhat, Nastos, Najmaie, and Sipe, Phys. Rev. Lett. 94, 096603
(2005). It is augmented by Appendix D, which appears here for the first time. Chapter 3, Sec.
2.2, Appendix B, and parts of Appendix C will form a manuscript to be submitted to Phys.
Rev. B.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

Two-colour Quantum Interference:
Symmetries and the Parabolic Band

Approximation

Quantum interference between one- and two-photon absorption pathways allows coherent con-
trol of interband transitions in unbiased bulk semiconductors; carrier population, carrier spin
polarization, photocurrent injection, and spin-current injection can all be controlled. In this
chapter, each of the four effects is studied from two perspectives: macroscopic and microscopic.
From a macroscopic, phenomenological perspective, I show how each effect is constrained by
the symmetry of the crystal, and can be described by a handful of material-dependent con-
stants. The microscopic calculation of these material-dependent constants is divided into two
parts: first, for the effect of interest, one derives a microscopic expression, which is a function
of matrix elements and energies of the electron states; second, one uses a model Hamiltonian to
evaluate the microscopic expression. In this chapter, I use a simple model Hamiltonian, diago-
nalized using a perturbative expansion in the Bloch wave vector k, to derive expressions for the
material-dependent constants. The model features parabolic energy bands and is applicable to
excitation of electrons close to the fundamental band edge. In the next chapter, I use a more
accurate model, but within a numerical rather than an analytical approach. The microscopic
expressions derived and used in this chapter for the “1+2” effects assume that the energy bands
are doubly degenerate (that is, there is no spin-splitting). Noncentrosymmetric semiconductors
have a small but nonzero spin-splitting, but it is neglected in the parabolic band model used
in this chapter. Generalized microscopic expressions are derived in the next chapter for models

that include spin-splitting.

10
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CHAPTER 2. “142” PROCESSES: SYMMETRIES AND THE PBA 11

2.1 Microscopic expressions for “142” effects

The first microscopic expression derived for interband “1+42” current injection in bulk semi-
conductors used the independent-particle approximation, used velocity-gauge coupling (A - p)
in the long-wavelength approximation, and took the Fermi’s golden rule (FGR) limit of the
second-order perturbation in the optical fields [3]. Subsequently, Aversa and Sipe studied the
semiconductor response to “14+2” excitation using a perturbative solution to semiconductor
optical Bloch equations (SOBEs) derived using length gauge coupling (E-r) [100]. The two dif-
ferent approaches, which both used the independent-particle approximation, produce formally
equivalent microscopic expressions for “14+2” current injection, although the velocity-gauge ap-
proach requires modification for nonlocal Hamiltonians as discussed in Sec. 1.1 [100]. However,

the SOBEs obscure the quantum interference nature of the “142” effects.

Microscopic expressions for the other three “142” effects—population control, spin-current
injection, and spin control—can be easily derived by generalizing the derivation of the micro-
scopic expression for current control. In fact, this has been done for population control [36]. In
the rest of this section, I present a unified derivation of all four “142” effects. It is review for
current injection [3, 114] and population control [36], but novel for spin-current injection and

spin control.

The optical field is modeled as a superposition of monochromatic fields of frequency w and
2w:

E(t) = E, exp(—iwt) + Eg, exp(—i2wt) + c.c. (2.1)

I calculate the injection of each “142” process using microscopic expressions derived using
velocity gauge (A - v) coupling in the long-wavelength approximation, treating the field per-
turbatively in the FGR limit, and using the independent-particle approximation [3, 36].! The
initial state is an ideal semiconductor in its ground state |0), with filled valence bands v and
empty conduction bands c. The light field causes transitions to states jcvk) = al’kau,k |0),
where the creation operator a;[l,k creates an electron in the Bloch state |nk). By introduc-
ing “hole” creation operators b:r)’k, where b:r],k = a,k, one can refer to the state |cvk) as an
electron-hole state.?2 The optically injected electron and hole have the same crystal wave vector

k as a consequence of the long-wavelength approximation. I write the state of the system as

[ (t)) = co (t)|0)+3 cevk (t) levk) and calculate ¢k (t) to second order in perturbation theory,

1Some consequences of relaxing the independent-particle approximation are presented in Chapter 6.

2The notation bL’k = ay,-k is more common, since the operator a,, -k creates a hole with crystal momentum
hk, whereas the operator a, i creates a hole with crystal momentum —fk [104]. However, for the purposes of
this section, such a notation is unnecessarily cumbersome.
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CHAPTER 2. “14+2” PROCESSES: SYMMETRIES AND THE PBA 12

treating the light classically in the long-wavelength limit. The result is

exp [—it (2w + ig)]
2w — Wey (k) +ie’

1
ook (8) = [0 4c + Q8] (2.2)

where ¢ is an infinitesimally small parameter to account for the turn-on of the monochromatic

fields, and
e
leg k= ZZEsz‘” Ve (k) (2.3)
(2 _ [Ew - ven (K)] [Ew - Vi (k)]
Qc,v,k - ( ) Z W k) —w 3 (24)

where v, (k) is a velocity matrix element between Bloch states, fuvy, (k) is the energy of band
n, and wnm (k) = wp (k) — wm (k). To lowest order, the coefficient cq (t) = 1.
The four “142” effects can be generalized as the injection rate of the expectation value in

the state |1 (t)) of a one-body operator ©. In second quantized form [115]

6= Z alkamk/ (nk| 8 |mk'>, (2.5)
n,m,k,k’

where 6 is the associated single-particle operator.? For current injection, 6 = ev, where v is
the velocity operator. For population control, 8 is the projector onto ¢ bands Zc’k |ck) (ck]|,
which gives the number of electron-hole pairs. For spin control, 6 is the spin operator S. For
spin-current injection, 6 is the product v*S7. However, due to the spin-orbit part of the velocity
operator—the so-called “anomalous” velocity, discussed in Sec. 2.3.1—v and S do not commute,
and thus v*S7 is not Hermitian. Instead, one should take (vS? + S7v%)/2 as the operator for
spin-current. But since I neglect the anomalous velocity (see Appendix B), this is not necessary.

In what follows, I assume that @ is diagonal in k (i.e., (nk| 8 |mk’) = (nk| 8 |{mk) 6 ). This
property is satisfied by the four important examples of 6 above, but note that it is not satisfied
by the polarization, since the position operator is not strictly diagonal in k [105, 106].

In terms of the electron and hole operators, (2.5) becomes

5= 3 alyacbor () = 3 blurbucy () + Y (albliben () +he) + 3 0 (K),

/
c,c’ k v,k cv.k v,k

where 0, , (k) = (nk| 6 |mk). By using the basic anti-commutation relations {an,k, ain k’} =

On mOk k and {an,k, am,k/} = {aIl,k, a;rmk,} = 0, and the properties of the ground state a. x |0) =

3Here, and throughout the thesis, one can make the replacement 3, = (L3 / 871'3) f d3k, where the integral
on the right side is over the first Brillouin zone, and L? is a normalization volume.
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CHAPTER 2. “142” PROCESSES: SYMMETRIES AND THE PBA 13

by k |0) = 0, one finds

0160y = Zew(k (2.6)

(0|6 |cvk) = 91,,0 k), (2.7)

(cvk] © |dV'k) = B0 (K) v — Oyt (K) Se.cr + SerBur D B (K) - (2.8)
v,k

Note that while, in general, the expectation value of an observable operator © in the ground
state can be nonzero, the population of electron-hole pairs is zero (by definition of the ground
state), and the current density in the ground state is zero. There can be a net spin in the
ground state of a magnetic material, and there can be a net spin current in a material of
low enough symmetry to allow a nonzero second-rank pseudotensor. Rashba discussed such
equilibrium, non-transport spin currents in materials of Coop, and Cy, symmetry [64]. Neither
a net ground-state spin nor spin-current are allowed by symmetry in materials with Ty or Oy,
symmetry, which are the focus of this thesis.

Using (2.6), (2.7), and (2.8), the injection rate of the expectation value of © per unit volume

is

d . 14d
E< =Gz wle (2.9)

1d

nErT { [Co(t chvk(t)ﬂvc(k) + c.c.
(2.10)
+ Z z CZ'uk (t) Ccv'k (t) [ec,c' (k) 51;71,/ - 61,,7,, (k) 6c,c’] }
v’ cvk
= % Z Z [ec,c' (k) 61;,1}’ - ev’,v (k) 50’01] % [Cka (t) Celv'k (t)] . (211)
c'v’ cvk

In the first step, the term from |cg|? combines with the term due to the last term of (2.8) to
give |co|? + 3 |ceok|?, Which is equal to 1 and independent of time. The first term in the square
brackets in (2.10) is the coherence between the electron-hole excitation and the ground state.
Its Eo, piece gives the index of refraction, and the one-photon “shift” and rectification currents,
which are more naturally derived in the length gauge and with a density matrix approach [101].

Its injection rate vanishes in the FGR limit. Using (2.2),

d
dt C'Uk (t) Cov'k (t)

o® 0@ (2) 2¢ exp (2¢t)

N . (2.12)
= [(025) + (22.) ] {90 s+ 9200 ] B — ey (K) + i) (20 — ooy (K) —i6)"

The FGR limit is the limit ¢ — 0. In this limit, terms will only contribute when w. (k) =
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CHAPTER 2. “142” PROCESSES: SYMMETRIES AND THE PBA 14

wey (k) = 2w, for then

2e exp (2et)
e=0 [2w — wep (K)]? + €2

= 276 (2w — we (k) . (2.13)

In the parabolic band model, this only occurs when wey (k) = wy, (k) = 0.4 Taking the FGR

limit,

t ZZ cc’(k 'vv’_ v/, (k)éc,c’]

ook v/ (2.14)
(90 + (A2 ] [0+ 92, ] 62— v 1),

where the prime on the summation implies the restriction to bands for which w.s (k) =

wyy (k) = 0. Expanding the product of the two terms in square brackets,
d - . . .
E<®> = 0(1) + 0([) + 9(2), (2.15)

where

. 2 d
by = 25 DD (e (1) Sur = Burp (1) 8] (011 W) O 8w — e (), (216)

cvk c/v’

62 = L3 ZZ et (K) Syr — By (K) G| (nggk) 0P, 8 (2w —we (K),  (2.17)

cvk v’
. 2 !
by = L_Z Z Z Oc.cr (K) Gyt = Oy (K) e o] (2.18)
cvk v’ .
< [(0600) 0 s+ A (9000) T2 = e 0.

Here, 9(1) is due to one-photon absorption from the 2w beam, 9(2) is due to two-photon ab-
sorption from the w beam, and 9( 1) is the “142” interference term. Because of their different
dependencies on the electric-field amplitudes, these three terms can in principle be separated
experimentally. Each of these can be further separated into a contribution from the injected
electrons and holes, e.g. é(l) = 0'(1;6) + 9(1;h), where the electron term contains 6. . (k), and the
hole term contains 6, , (k).

Equations (2.16), (2.17), and (2.18) encompass twelve physically distinct effects. For § =
> ck 1K) (ck|, (2.16) describes one-photon absorption

Ny = (2;)%32% Veu (9128 (20 = way (K)), (2.19)

c,v.k

4When there is small spin-splitting of bands, (werys (k) — wey (K)) can be nonzero but small over a large volume
of k-space; this situation is discussed in the following chapter.
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CHAPTER 2. “142” PROCESSES: SYMMETRIES AND THE PBA 15

(2.17) describes two-photon absorption, and (2.18) describes “14+2” population control [36].
For § = ev, (2.16) describes the circular photogalvanic effect CPGE [99], (2.17) describes two-
photon current injection, and (2.18) describes “142” current injection [3]. For § = S, (2.16)
describes one-photon spin injection [2], (2.17) describes two-photon spin injection (Chapter 4),

and (2.18) describes “142” spin control S(I) = S(I;e) + S(I;h), where

. 2 ! *
S0 = 5 3 S (kISIck)Ql) P, 6 (2w — wey (K)) + cc. (2.20a)
cv,k
S = Z Z (vkIS['k) Q) L D" 5 (2w — we (K)) + c.c.. (2.20b)
cv.k v

For § = v*S7, (2.16) describes the one-photon linear PSC (Chapter 5) and the spin-polarized
CPGE [116], (2.17) describes two—photon spin-current injection, and (2.18) describes “1+2”

spin-current injection KY = =K (Z} o T K" (I:h)? where

!
E.JT o) = 7; Z Z(c'k|vi5j|ck Q(l) Qﬁ?)v*ké (2w — wey (k) + c.c. (2.21a)
cv.k
Kiin = Z Z vk’ o' K)QL) QP 6 (2w — way (K)) + c.c. (2.21b)
cuk v

2.2 Macroscopic perspective

In this section, I study the “1+2” effects from a macroscopic perspective. To motivate the
approach taken in the rest of this section, consider the right side of Eq. (2.19). It contains the

electric field amplitudes, but otherwise contains only material properties and can be rewritten

2

Ny = E3LE}, 2h)

S vl (K)o, ()6 (2 — i () | (2.22)

c,u.k

where the material properties have been isolated in square brackets. Here superscript lower-
case letters denote Cartesian components and summation over repeated indices is implied. The
separation of material properties and external fields, which is the purpose of nonlinear sus-
ceptibilities, is often useful. From a macroscopic, phenomenological perspective, one can write

one-photon absorption as

(2.23)

W

Ny = &3 B3B3
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CHAPTER 2. “142” PROCESSES: SYMMETRIES AND THE PBA 16

where fg) is a second-rank tensor satisfying {gf) = («;‘3))* so that N(l) is real.® Even though
one can compare (2.22) and (2.23) to find a microscopic expression for 521), (2.23) holds more
generally. Any microscopic expression for N(jy will have the form (2.23), even one derived
under a set of assumptions different from those in Sec. 2.1. Equation (2.23) is useful because
52{) is constrained by the symmetry of the material. If the material undergoes a point group
symmetry operation that leaves it invariant, then the result of the experiment should not change.
Specifically, 53) must be invariant under all point group symmetry operations of the material
(117].

In this section, phenomenological expressions are given for each of the “1+42” effects, tensors
describing the effects are defined, and I present the symmetry properties of the tensors for cubic

materials.

A tensor (or pseudotensor) T of rank n that is invariant under a set of point group operations
can be constructed from a completely arbitrary tensor (or pseudotensor) T' of rank n, using the

formula

Too2-0n =3~ N~ (det (Gy))" Thb2-brGh1a1GR292 Glnon, (2.24)
g biba..bn

where G4 are 3 x 3 matrices that transform a vector under the g-th point group operation, and
P is zero for tensors and one for pseudotensors. The sum over g goes over all the elements
of the point group. The invariant tensor T can be examined to find relations amongst the
tensor components imposed by symmetry constraint. Also, the number of independent tensor

components can be verified using character tables for the point group [117].

In this thesis, I am primarily concerned with materials of zinc-blende symmetry, which have
point group 7T, in the Schoenflies notation (43m in the international notation), and materials
of diamond symmetry, which have point group Oy, in the Schoenflies notation (%3% or m3m

in the international notation) [118].

For an isotropic material, since the sum over g in equation (2.24) is an infinite sum, a
different approach is preferred. Any isotropic Cartesian tensor or pseudotensor can be written
as a linear combination of products of Kronecker delta functions and Levi-Civita tensors [119].
All possible linear combinations are independent for tensors or pseudotensors of rank 2-4, or

6, but for other ranks, there are further identities that reduce this number [119].

5In the mks system of units (see Appendix A), this unconventional one-photon absorption tensor [3] is related
to the linear susceptibility x(* by 5:{) = (2/h)eo [Im (xf,l)ij) — iRe (xgl)ij)], where xgl)ij = (x(l)ij + x(l)ji) /2

and YV = (qu _ X(lm) /2.
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2.2.1 Current

Current injection in the presence of the field (2.1) can be written

Fo LR - (B BB o) e RS RO RE, G

where J is the macroscopic current density, and ng;c, 17( I) , and ngl)clm are tensors describing

the material response. The third rank tensor 77(1) describes one—photon current injection (the
circular photogalvanic effect [99, 116]), the fifth rank tensor n(2) ™ describes two-photon current
injection, and the fourth rank tensor nzjl';d describes “14-2” current injection [3]. Aversa and Sipe
showed that 77;]1’; is related to a doubly divergent part of the third-order nonlinear susceptibility

X3 [100]. In cubic materials with point group symmetry Ty, Op or O, a general fourth rank

tensor has four independent components, but due to the intrinsic symmetry nzgl nZ’;l,
7n(r) has only three independent components; there are 21 non-zero components of n¢yy in the
aaaa — bbbb _ .cccc baab _ ,abba _ ,caac _ ,acca — pbech
Stanbd:rd cuble basis: ({™ = " = Mpy s (A =M = =i = h* = (s and
211(;1 » n(g)c)c = (c};a) = ?1(;1 ce - (Cgb)b E’g’a)a (the components in parentheses can be

exchanged), where a, b, and ¢ denote components along the principal cubic axes [3]. This can

be written

kl 77B1 .. . . . . . B ..
may =it (5“5“+5*5ﬂ) + ingadils* + incsIk, (2.26)
where 69 is a Kronecker delta and the only non-isotropic part is 6%, which I define in the

principal cubic basis as 6% = 1 when i = j = k = | and zero otherwise. The three independent

components are 7p; = —2in%®, ngo = —in®e and ne = 2inte 4 jpebbe _ jpeeee Thys in a
cubic material,
Jipy = i1 (B - Boy) B +inp2 (Bu - Eu)* Eb, + inc6 "M EL'ES B, + c.c. (2.27)

This generalizes the notation we used previously for a calculation in the parabolic band ap-
proximation [38], with the connection np, = eDB/h, and ngy = eDB;/h, where D, By and
Bs are defined in Bhat and Sipe [38]. In that, or any other spherical approximation, nc = 0.

2.2.2 Population

The carrier density injected by the field (2.1) can be written

N = €] EY, (gg ENEYEE 4 cec. ) + M BN B ELEL, (2.28)

where N is the density of electron-hole pairs (equal to the density of electrons or holes), and
the tensors 5(1), §( T and 5(2) describe the material response. Spemﬁcally, 5(1) describes one-

photon absorption, 5(2) describes two-photon absorption, and §( 2 k describes “1+2” population
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CHAPTER 2. “142” PROCESSES: SYMMETRIES AND THE PBA 18
control [36]. The third-rank tensor fzjll)c, which has intrinsic symmetry §€};€ = {gl)c, can be re-
lated to the second-order nonlinear susceptibilities x(? (2w; —w, —w) and x® (—w; 2w, —w) by
considerations of energy transfer and macroscopic electrodynamics [36]. This point is discussed
further in Sec. 6.6. In centrosymmetric materials, such as those with the diamond structure
(point group Op), 52311; is identically zero; hence, population control requires a noncentrosym-
metric material. In a material with zinc-blende symmetry (point group Ty), EEJI;C has only one
: .t : ;e cabe _ ¢geab _ ¢bea _ gach _ esbac _ ¢gcha

independent component; in the standard cubic basis §( n = ﬁ( h = 5( = «S( T = §( = E( [y are
the only non-zero components, where a, b, and ¢ denote components along the principal cubic

axes.

2.2.3 Spin current

Spin-current density is quantified by a second-rank pseudotensor K*. Note that whereas I take
K% = (v'S7), some authors choose the first index to represent spin and the second index to
represent velocity [64]. The symmetry results of this section are valid for any definition of K%
that is a second-rank pseudotensor.

The spin current injected by the field (2.1) can be written

K = SN B EL + (,lg’;lmE;kE;lE;\g + c.c.) + gy " EE*ES ETEL, (2.29)
where the pseudotensors uéjil;l, ulg])clm, and ug’;lmn describe the material response. Specifi-
cally, ugl)d describes one-photon spin-current injection (see Chapter 5), ug])dmn describes two-

photon spin-current injection, and ul&])clm describes “142” spin-current injection. The fifth-

rank pseudotensor ,uz.l)clm has intrinsic symmetry on exchange of k and [ indices; specifically,
u’g,l)km = ug')clm. In an isotropic material, ,ugl)dm has three independent components, while
in a cubic material (with Ty, O, or O symmetry) uZ’;lm has six independent components.
This is contrary to our previous claim that it has four independent components [38]. The
four parameters A;, i = 1-4, that we used previously to describe spin-current injection in an
isotropic model [38] can be reduced to three independent components with identities such as
gmgkl _ giikglm o cjkmgil _ cikmgsl — 0 [119]. For a cubic material, ug’;lm has 54 non-zero
elements in the principal cubic basis, and can be written

uzl)clm :gg_l (Ejmz5ik +Ejmk5il) i % (Eimz5jk+5imk5jz) + punge ekt

(2.30)
+ HCléiklnEnjm + ucz(sjklnsnim + /‘CS% (6ijkn€nml + 5ijln€nmk) ,

where the non-isotropic tensor 6¥% has nonzero components §922¢ = §bbbd — secee — 1 where a,

b, and ¢ denote components along the principal cubic axes. The six independent components are

acaba abaac baaac

pN = 20l pne = 2ufE?, pvs = B, por = P —pn1—pNs, Ho2 = WIS~ pN2 N,
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and pc3 = Q;L‘(m)‘wb — pn1 — 2. Thus in a cubic material,

K9 =puniE5 (Bay < BLY + vz (Baw x ES) EY + unge 9 ES, (B - E3) .
+ (u016ikln5njm + MCQCSjklnsm'm) EXENER + 1ucsdiM B By x B )z +ee .

Note that the injection of (v - S) is zero in a cubic material, i.e., K% is traceless. In an isotropic
model, such as the one we used previously [38], uc1 = pe2 = pes = 0. The connection to our

previous notation is py; = D (A1 — Ay), un2 = D (A + A4), and puns = D (As + Ag) [38].

2.2.4 Spin population

The spin density injected by the field (2.1) can be written

igklm ppix pke gl pm (2.32)

8 = IVELLBY, + (CIN B BLFBY, + cc.) + (3™ BL B ELEL,

O )

where S is the macroscopic spin density (8 = (S)), and the pseudotensors C(l{;c, CZ;CI, and Cg;dm

describe the material response. Specifically, ((1) describes one—photon spin injection [2], {gflm
describes two-photon spin injection (see Chapter 4), and §( 1 ! describes “1+2” spin control.
The fourth rank pseudotensor Cg;d has intrinsic symmetry on the indices j < k. Such a
pseudotensor is zero in the presence of inversion symmetry; hence, “1+2” spin control requires
materials of lower symmetry. For zinc-blende symmetry (point group Ty), a general fourth-rank
pseudotensor has three independent parameters and 18 non-zero elements in the standard cubic

basis; forcing the j < k symmetry leaves two independent parameters

iGia = G = GiFe = Gl = ~Cof =~ = <t 233)

. — raabb __ ~ccaa __ rbbecc __ aacc __ ccbb bbaa

B =40 =6a) =40 = —¢a) =~y = S (2.33b)
= G = e = dlie = e = G =~

In the independent-particle approximation, ¢ (Z};d is purely imaginary, which can be proven using

the time-reversal properties of the Bloch states. Thus, {;4 and (;p are real.

2.3 Parabolic band approximations

Microscopic expressions for the independent tensor components governing “1+2” effects can be
found by comparing the microscopic expressions in Sec. 2.1 with the definitions in Sec. 2.2. To
evaluate them requires the one-particle energies and matrix elements of velocity, spin, and the
product of velocity and spin. This section reviews the k - p Hamiltonian and uses a solution

perturbative in the Bloch wave vector k to derive analytical expressions for the independent
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tensor components. The eight-band Kane model is used for “1+42” current- and spin-current
injection. In Appendix C, a fourteen-band model is used for “142” population and spin control.

From the macroscopic perspective of Sec. 2.2, “142” current- and spin-current injection
differ from “14+2” population and spin control in the sense that the former can be nonzero
even in isotropic materials, whereas the latter strictly vanish in any material with a center of
inversion.

One can see that difference from a microscopic perspective as well. Consider an expansion
in k about the I" point of v, m(k), which is the matrix element governing optical transitions
[(2.3) and (2.4)]. If the lowest-order term in the expansion is independent of k, the associated
one-photon transition is called “allowed”; otherwise, if the lowest-order term is proportional
to k, the associated one-photon transition is called “forbidden”. T'wo-photon transitions have
two velocity matrix elements, and thus have a hyphenated label depending on the lowest-order
terms in the expansions for each matrix element. For example, if both matrix elements are
independent of k, the two-photon transition is called “allowed-allowed”. In the eight-band
Kane model, which is isotropic, one-photon transitions are allowed, and two-photon transitions
are allowed-forbidden (one matrix element is allowed, and the other is forbidden). As a result,
the product Qg’kﬂm*

ok 15 linear in k to lowest order. But the sum over k in the microscopic

expression will only survive if the summand is even in k. Thus population and spin control
vanish in the isotropic Kane model, whereas current- and spin-current injection survive due to
the additional velocity matrix element, which is linear in k to lowest order, in their expressions.

The preceding argument is complicated by the degeneracy at the I' point, since the expansion
about the I' point of vy, m(k)—given below in (2.39) and (2.40)—is best considered as a set of
expansions in k for each direction k [120]. But nonetheless, population and spin control vanish
in the isotropic Kane model, which I have verified by explicit calculation.

Population and spin control, to lowest order, are due to the interference of allowed one-
photon transitions and allowed-allowed two-photon transitions. This point was made heuristi-
cally by Fraser and van Driel for population control [37]. Allowed-allowed two-photon tran-
sitions are present in a fourteen-band model that includes upper conduction bands. The
fourteen-band model is discussed in detail in Chapter 3, and the perturbative in k calcula-

tion of population and spin control is deferred to Appendix C.

2.3.1 Hamiltonian

The one-electron field free Hamiltonian is H = Hg + Hgo, where Hy = p?/(2m) + V, the
potential V (r) has the symmetry of the crystal, and the spin-orbit interaction Hgo is

h
350 (VV xp),

H =
S0 4dm4c
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where o is the dimensionless spin operator, & = 2S/h. Note that relativistic corrections
proportional to |0 x VV|? have been neglected [117]. The eigenstates of H are Bloch states
|nk) with energy fwy, (k). The associated spinor wave function ¢,k (r) = (r|nk) can be written
dnk (r) = upk (r) exp (¢k - r), where the spinor functions wuny (r) have the periodicity of the
crystal lattice. I use the notation |ﬁ> to denote the kets for the u-functions; i.e. upk (r) =
(r|nk). Note that lﬁ> = exp (—ik - r) |nk). The Hamiltonian for the u-function kets is [117,
118]

) . h2k2
Hk — e—zk.rHezk.r =H+ " L hk. v,
2m

where the velocity operator v = (i/h) [H, 1] is

1 h

The second term in v, the anomalous velocity, which leads to k-dependent spin-orbit coupling
in Hy, can be neglected for the processes I consider as shown in Appendix B; in the rest of this
thesis, I assume that it vanishes. The Hamiltonian Hy is known as the k - p Hamiltonian.
The states |n,k = 0) are a complete set of eigenstates for the Hamiltonian H on the space
of cell-periodic functions. Thus cell-periodic eigenstates of Hy can be expanded in the infinite

set of states |n,k = 0).

2.3.2 Isotropic Kane Model

The eight-band Kane model diagonalizes the Hamiltonian Hy in a basis of eight states |n,k = 0)
corresponding to the eight bands closest in energy to the fundamental band gap at the I" point
[121]. The truncation to eight bands of the eigenstate expansion yields a model with isotropic,
doubly-degenerate energy bands. That is, warping and spin-splitting of the bands are absent
from this model. In fact, the eight band Hamiltonian is identical for both centrosymmetric and
noncentrosymmetric semiconductors, and thus it is inadequate for the description of “1+42”
population and spin control. Nonetheless, it is a good starting point for a microscopic model
of “1+2” current and spin-current injection.

In a semiconductor of zinc-blende symmetry, the states {|n,k =0),n = 1..8} can be ex-
panded in the states {|S), | X),|Y),|Z2)}&{|1),]])}, where |S) transforms like 'y, {|X),|Y),|Z)}
transform like I'y, and {|1),|l)} are spin-1/2 states and eigenstates of S* [118, 121].6 Here, I'y
and Ty are irreducible representations of the Ty point group in the Koster notation [118]. The

only nonzero matrix elements of p amongst these states are [121]

Py = —i(h/m) (S| pe |X) = —i (h/m) (S|py|Y) = —i (R/m) (S|p: |Z) . (2.35)

5In a semiconductor of higher symmetry, basis states with higher symmetry are used, but they result in the
same eight-band H.
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The matrix elements of Hy in a basis of these states can be written in terms of only three
parameters: the fundamental band gap E,, the split-off gap Ag, and the Kane energy Ep =
2mPZ/h? [121]. Kane showed that Hy diagonalizes with ease in a basis that depends on the
direction k; in Kane’s basis, the matrix for Hy depends only on k (the magnitude of k), and the
heavy hole states decouple from the others [121]. Since the eigenstates are doubly degenerate,
I express them in a notation |m>, where n is one of {c, hh,lh, so} and s is a spin index «

or 3. The eigenstates of the eight band Hy are

7,8, k) = a; (k) |iS" |") + %bj (k) |(X'—iY") 1)+ ¢ (k)| 2" V), (2.36a)
7,0, k) = a; (k) [iS" 1) — %bj (k) |(X'+1Y") I +¢; (k)| 2" 1), (2.36b)
[y, ) = % (X! +iY") 1), (2.36¢)
|hh, B, k) = % |(xX"—4Y") "), (2.36d)

where the coefficients a; (k), b; (k), and c; (k) are given by Kane [121], and j runs over the
bands ¢, lh, and so. The prime on the I'-point basis states in (2.36) indicates the result of a
k-dependent rotation [121]. Expanding the coefficients a; (k), bj (k), and c; (k) about k = 0,
one finds that they only contain even or odd powers of k. The lowest order terms in that

expansion are:

V2 Py Py Eg+ 20
(k) = 1; be(k)= 2 — 070 k. . (k)==2"2 3 "k (23
ac (k) (k) = 3 E,(Do+ Ep) 0 € (k) E, Ey+ Ag ki (2.37a)
_.[2P,. __L _ _\ﬁ.
ajp (k) - \/;Egkv blh (k) - \/§, Clh (k) - 3’ (237b)
1 P \/5 1
aso (k) VT Egk, bso (k) 3 Cso (k) 7 (2.37¢)

Expanded about k = 0 to order k2 the four pairs of doubly-degenerate bands are parabolic,
characterized by effective masses m,. The effective masses can be expressed in terms of Eg,

Ag, and Ep:

m_1+1E (2 n 1 ) mo_ .

me 3 P E'g Eg+A0 ’ Mhuh ’ (2.38)
m __2Ep m __1_Ep '
mip N 3Eg ’ Mso 3E9+A0 '

Since the heavy hole bands do not couple with any of the other bands, their dispersion is the
same as a free electron (i.e. they have positive curvature). In typical semiconductors, however,
the heavy hole band has negative curvature. To remedy this problem, it is standard to treat the

effective masses as additional independent parameters, which effectively accounts for some of
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TN, /

\
ST

Figure 2.1: Eight band Kane model of a direct band gap semiconductor consisting of four
pairs—conduction (c), heavy hole (hh), light hole (Ih), and split-off (so)—of doubly-degenerate
bands. The fundamental gap E, and split-off gap A are shown, and one- and two-photon

transitions are indicated.

the interaction with remote bands. For typical semiconductors, m;x, mun, and mg, are negative,
whereas m, is positive, as depicted in Fig. 2.1. To recover the solution of the original isotropic

Kane model, one can use (2.38) to substitute the effective masses in subsequent expressions.

For the microscopic calculation of “142” effects in the PBA, I expand the velocity matrix
elements about k = 0 and keep the lowest order terms. In terms of the matrix elements of the

u-function kets, the matrix elements of the Bloch states are

Un,sim,s' (K) = (n, 5, k| v |m, s',k) = (n,s,k|v|m,s k) + %&Lméss/,

They can be evaluated using (2.35), (2.36), (2.37), and the rotation from the unprimed to

primed states. In terms of the orthogonal triple of unit vectors k, 1 and rh,

k = %sinfcos¢ + §sinfsin ¢ + 2 cos,
1= %coscos+ ¥ cosfsing — Zsin 6,
m = —Xsin¢ + ¥ cos ¢,
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these matrix elements are:

1 /FE
Ve sihhs = 5,/ r: [lo + itho ]s " (2.39a)
1 /E
Vesihs = -3 372 [2ka +ilo¥ — imo ]s o (2.39b)

|E
Vesiso,s = 6; [ka —ilo¥ + imo ]S " (2.39¢)

1 Ep hk
Vhh,siih,s' = \/;EP = [10 — ifho ]ss,, (2.39d)
1 EP hk 70 .

g ot = —————" " |lg" — itho® 2.39

Vhh,s;s0,s 2\/6 (AO i Eg) o [ g 1mo ]s,s’ , ( e)
1 Ephk [Ao+2E;~ o .12A0+3E; /4 .

oy = ———me — | ———k0o" — f—— (l v — * 2.39f

Vih,s;s0,s 3\/5 Eg m [Ao-{-Eg o 22 A0+Eg a mo ) oo ( )

Here, 0° is the 2 x 2 identity matrix and o are the Pauli spin matrices. Of course, for parabolic

bands, the intraband matrix elements are

Rk
Vn,sn,s’ = 6s,s'm_a (2.40)

n

where m,, is the effective mass of band n.
The microscopic calculation of “142” spin-current injection requires matrix elements of the
product of velocity and spin, ©*S7. In terms of the matrix elements of the u-function kets, the

matrix elements of the Bloch states are

(n,s,k|v'S7 [m, s k) = (n, s, k|v'S? |m, s/ k) + zm]ﬁ (n,s,k| S |m,s" k).

They can be evaluated using (2.35), the well-known action of the spin operator on {|1),|[)},
(2.36), (2.37), and the rotation from the unprimed to primed states. For the conduction band,

to lowest order in k,

- hk ki o
(e, 5, k|05 [, 8, k) = =2 [k o (k) + Z, ( i(k)k? —5”01)], (2.41)

C

where
oi(k) = l'o® + mio¥ + klo?,

and

7. = 1 E pA() mc
T 3E (Ag+ Eg) m’
is a measure of the extent to which the spin and velocity of an electron in the conduction band are
entangled; setting Z. to zero gives the expressions that would have resulted if the approximation

(csk| viS7 |cs'k) ~ (ck|v*|ck) (csk| ST |cs’k) had been made. In GaAs, Z, = 0.0612. For the
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hole bands,
i i hk h.
hh, s, k|v'S? ! — —k'ol A4
(hh, s, k|v'S |hh,s,k> mthk (k), (2.42a)
k . .
(lh,s,k|v'S7 |th, s’ k) = —h—ék‘ (3 (k) — lIcJUZ)
(2.42b)
hkhlEp I o (5 — 2 o
(so, s, k| v*S7 |s0,s" k) = E@E [kl ol (k) — 2Kk o* + AOETPEQ (ai(ﬁ)l%j —kol(k) — 5“02)} .
(2.42¢)

Notice that (2.38) was used to make clearer the connection with the velocity matrix elements
n (2.41), (2.42a), and the first term of (2.42b).

2.3.3 Current

Due to the energy denominator in the two-photon amplitude, intermediate states are generally
less important the further in energy they are from the conduction and valence band of interest.
I distinguish two types of terms: two-band terms, in which the intermediate band is the same as
either the initial or final band, and three-band terms, in which it is different. This calculation
includes all of the two-band terms, and only the three-band terms in which the intermediate
band comes from the set {lh, hh,c}. 1 sketch the derivation for the two-band terms, but for
three-band terms, I only present the results.

From the transition amplitudes (2.3) and (2.4), the microscopic expression (2.18), and the

definition of the current-injection tensor (2.25),

ikl . 7€ .
nzjf) h3w3 L3 Z Z c, c’ v v ’U:,/ﬂ, (k) 60,0')

cvk v’

{vz:f; (1), vk, (k) }
wny (k) — w

(2.43)

x vl o (K)

/ !
cw

6 (2“" — Wey (k)) ’

where {vgﬁl, Uf:v} = (vﬂ*nvn L+ vé“’;vn v) /2 ensures the intrinsic symmetry 77( I) = nz I’;l Note

that the microscopic expression (2.43) differs by a factor of two from the one given by Atanasov
et al., which accounts for doubly-degenerate bands with a factor of two rather than in the sum
over states [3]. Switching to the double band index notation, but suppressing the spin index on

energies, which are independent of the spin index,

et ; cs ns’ (k) ’ Uns’ v (k)
gl)d =1 h3w3 -I% Z z Afzv (k) Uis,vp (k) Z { Do (k) — wp } 4 (2(.4} — Wey (k)) , (2.44)

cvk s,p n,s’
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where Agy (k) = Veses (k) — Vypup (k). Then, converting the sum over k to an integral and
using (2.40),

k* m
Ukl . cv
N(r) hs 3 Z/dkg_:s Rk 6 (k — kev)

‘ (2.45)
hk* { cs ns’ ) ’ ns’ ,Up (k)}
X /dQ_mw cs Up k) Z wnv k) —w
s.p n,8
where
L ome, 2w — E for v = lh or v = hh,
kew = RV 2me | o) (2.46)

%\/fmcv (2hw — Eg — Ap) for v = so.

Two-band terms

For two-band terms, n = ¢ or n = v. Thus the term in square brackets in (2.45) is

1[1 (RESN ., . hk* .
oy (922 (B2 ) ok 00 = 20t ) () |+ G o )
sip

1 hkJ k . .
:'22@ — vvp,cs (k) vcs,vp (k) + (.7 > k) s

and thus,

n?/fl - ‘nsw4 Z 1 hk 1 / dkH Z Vup,cs (R) Uisy”” (R) G =k).

8,p

The sums over spin yield

8,8’

. ! = kil kil
th,s’;c,svc,s;lh,s' = (k k' + 5 ) ,

8,8’

E :’Uk ’Ul Ep 5k,l
1. . !/ —

- s0,8’;¢,8"c,8;80,8 3m

5,8

x L _Ep (ki _prp
thh,S’;C,svc,s;hh,s' = om (5 — K"k ) ,
E

The remaining angular integrals are
/ ik = 5
3 k)
/ AR R R = 4—” (5@1‘5“ + otk 4 6i’16j”“) :

The result is of the form (2.26) with nc = 0, and

3
€ Me,hh hh 22 [megp 2hw —Eg— Ao\ 2 20 [mc s

nB1 = =D ( \/ ) ( — 1, (2.47a)
h l: 2hw — E 3

- ED (_2 Me,hh 19 mc,lh) ’ (247b)
h m m
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where

V2 2Ep (2hw — Ey)*/?

D=
60 /m RAwA ’

(2.48)

and the last term in np; should be excluded if 2w < Ey4 + Ap. The finding that nc = 0 is a

consequence of using an isotropic (spherical) band model.

Three-band terms

I refer to the three-band terms using a notation v-n-c¢ (valence-intermediate-conduction). The
three band terms can be evaluated from (2.45) using (2.39). Since they are more tedious to
evaluate, I only present the results. I have only worked out the three-band terms hh-lh-c and

lh-hh-c. They add npy38Ts) to 81 and add npy3pTs) t0 NB2, Where

Me kb ) 3/2 mepn N1 2 fMein\3/2 Metn \ 7
Lehh 14 g—chh ) Z(Telh 1 - poth ,
m Mhpth 3\ m Mph,lh

e Ep
NB1(3BTs) = 2EDE—
g

(2.49a)
_2e _Ep Me hh\3/2 Mepn \ M ih\3/2 men \ !
NB2(3BTs) = §EDE_9 [- ( m ) (1 +mm—hhﬁ) + 4( m ) b “mhin ’
(2.49b)

and z = (2fw — E,) / (lw). T have not worked out the three-band terms hh-so-c, lh-so-c, so-
hh-c, or so-lh-c. They are discussed in Chapter 3 in the context of the numerical fourteen-band

calculation.

Discussion

Previous calculations of 7y in the PBA used simpler band models than the one I used here.
Using a two-band model (one conduction and one valence band), Atanasov et al. obtained
np1 x (2hw — Eg)?’/2 and npz = 0 [3]. Using a three-band model, but only accounting for
two-band terms, Sheik-Bahae obtained results that differ from (2.47a) and (2.47b) by material
independent factors [79].” The three-band model lacks the matrix elements V1 5 and v ia1,

and thus two-band terms for g, derived from it should differ from (2.47a).

"To make the comparison, note that Sheik-Bahae used the approximations m.;/m =~ E,/(2Ep) and
menn/m =~ Eg/Ep [cf. (2.38)].
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2.3.4 Spin Current

The spin-current injection pseudotensor, defined in (2.29) can be written as a sum of electron

O3 = pdE + pE). From (2.21) and (2.29)

and hole terms so that u

{ukr, (), 0k ()}

jki .
/’L?Ie;nz h3w3 3 ZZ<Ck|US] ICk>Ucv k)z wno (K) — 6 (2w — wew (k)
vk w
(2.50a)
3 I k= (k) Ul* /(k)
ijklm . me’ 1 n,v
'u(]I h) = _lmﬁ Z Z <Ukl SJ Ivlk> UC’U (k) Z { (k) }5 (2"‘) - va (k)) 7
cu.k v
(2.50b)
where {vcn,vnv} = (v k*;L l* +vé*nv ) /2 ensures the intrinsic symmetry /,L’(JIl)km = H?I'l;lm-

Switching to the double band index notation, but suppressing the spin index on energies, which

are independent of the spin index,

3 1 A
W = i g O 3 2 (e |08 fe s

cuk s,p 8

I (2.51a)
{ cs’ ,ns” k) ’Uns” R (k)}
cs ,Up (k) Z Z W (k) —w 6 (2“) — Wew (k)) ’
ijklm . med ~i &F
My = —Zm'ﬁ Z%Z > (v.p.k|9'8 |v,p' k)
cuvk s;p p
(2.51b)

Ues ,ns'’ (k) ’vns v (k)
csvp ZZ { o (k) _wp }5(20.}—(.000 (k))

S”

The sums over spin states and integral over k can be done using steps similar to those used
from (2.44) to (2.47), but they are more tedious to work out because the matrix elements of
©"89 are not diagonal in spin index. I only give results for transitions from the hh and lh bands;
also, so intermediate states are not included. The neglected terms are discussed in Chapter 3
in the context of the numerical fourteen-band calculation. The spin-current injection for both

electrons and holes has the form (2.30) with pc1 = pce = pes3 = 0.
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For the electron spin current,

3/2 5/2 E 1-Z
BN Le = Dﬂ (mc,hh) (1+ Zc) B Dﬁ (mc,hh) P c
me N\ m me N\ m 3Eg 1 4+ zme ph/Munin (2.520)
m (mep\3/2 (7 m (men\3/2 Ep 1 '
+D—(——’ ) iz —D—( ) ,
me \ m 3 me \ m 3Eg 1 — zmen/mpnin
3/2 5/2 | 1-2Z
LNe = Dﬂ (mc,hh) (1 + Zc) _ 3Dﬂ (mc,hh) P c
mMe ™m Me m 3Eg 1+ xmc’hh/mhh’lh (2 52b)
m [Meyp\3/2 7 m /men\5/2 Ep 1 ’
_p™ (——) 1- 1z, —ZCD—( : ) ,
me \ m 3 me \ m 3E4 1 — xmein/Mpn ik
——2Dm (mc,hh)5/2 Ep l—Zc
HN3e me m 3Eg 14 a:mc’hh/mhh’lh (2 520)
+2(1- Z) D2 (mc’”l)m Ep L '
“ e U m 3By 1 — zmen/mpnin’

where z = (2hw — E,) / (hw), my 1, = m;t —mgl, and D is given in (2.48). In (2.52a) and
(2.52b) (un1,e and png;e), the first term is from the hh-c transition, the second term is from
the hh-lh-c transition, the third term is from the lh-¢ transition, and the fourth term is from
the lh-hh-c transition. In (2.52c) for pn3., the first term is from the hh-lh-c transition, and
the second term is from the lh-hh-c transition. Note that two-band terms make no contribution
to pN3e-

For the hole spin current, I have only worked out the two-band terms hh-c and [h-c, which

yield pn3.5 = 0 and

Menh\3/2 m 17 3Ep — 3E, Melh\3/2 m
. =—D(———C’ ) m 2! g ( : ) n 2.53
HN1h m mup 9 2Ep - 3Eg m mip ( a)
Mmehh\3/2 m 1 TEp + 3E, mein\3/2 m
p=—D(Dlehh)¥= ™ Cp ( : ) . 2.53b
KN2h ( m ) Mhh 3 (2Ep — 3Eg m mip ( )

For typical semiconductors, pn1.e, UN2ie; UN1;h, and pno.n are negative (keep in mind that
e3, mpp, and my, are negative). While the holes are injected with spin opposite that of the
electrons [2], their velocity is also opposite, and thus the hole and electron spin currents have

the same sign.

In Bhat and Sipe, we published these results using a different notation [38].

2.4 Spin current configurations

We now examine the spin, current, and spin currents injected by optical fields with specific
polarization configurations that are possible for co-propagating beams. Since the model is

isotropic, we lose no generality by choosing z for the propagation direction.
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Fields having opposite circular polarizations inject neither current nor spin current. Co-
linearly polarized fields inject a significant current [4], but only a small spin-current, propor-
tional to 3.

Case 1: Co-circularly polarized fields: B, = E, /Qwei%/m (X +14¥9) /2. The electron
spin injected by one-photon absorption from the 2w beam is S(l;e) = F (h/4) N(l)i within the
Kane model, where N(l) is the one-photon carrier injection rate [2]. The electron spin injected

by two-photon absorption from the w beam, also calculated within the Kane model, is

B /Mehh + (T/3) /Mein
23, /Mchr+ (11/3) /T ik

where only the two-band terms are included, and N(Q) is the two-photon carrier injection

Se) = F N2, (2.54)

rate. There is no interference term in either the spin or carrier injection when the ma-
terial (or model) possesses inversion symmetry and thus the spin injection is simply S, =
S (Lie) + 3(2;6). The electrical current injection is J (I = ﬂrﬁnglEf,ng, where the direction
m = Xsin (2¢, — ¢2,,) £y cos (2¢, — Paw). Its magnitude is comparable to the current from co-
linearly polarized fields; in fact, it is a factor of v/2 smaller, since 7131 > ng2. The spin-current
injection is

Kg) = FV2E2 By, (un1's + unasid) . (2.55)

Recalling that the first index of K 3) is associated with the carrier velocity, we see that the
first term in Kg) shows that the electrical current is partially spin-polarized. The extent
of the spin-polarization of the current f can be defined by K%/ (ji /e) = Ffh/2. In this
case, f = 2eun1/(hnp1). Using parameter values appropriate to GaAs [122], f = 0.57 when
2lw — E4 = 100 meV. This value includes both electron and hole contributions to both spin-
current and current, although three-band hole contributions to the spin-current are not included.
The spin-polarization of the electron current distribution, evaluated using electron terms only, is
f = 0.53. The second term in K 8) represents spins pointing along m that move along z. Since
there is no net electrical current in the 2z direction, this is a pure spin current. It arises because
the electrons have a distribution of velocities such that those with positive Z components have
opposite average spin to those with negative z components. For the electron distribution in
GaAs, N2/ IN1e = —0.049 at 100 meV excess photon energy. When both electron and holes
are included, pung.e/pn1;e = 0.13. The situation is schematically indicated in Fig. 2.2(a). The
first term in (2.55) was experimentally studied by Stevens et al. [71].

Case 2: Orthogonal linearly polarized fields: E, = E,e'%% and Eq,, = Es,e'%?*y. In this
case, since the fields are linearly polarized, there is no spin injection, S.=8 r = 0, which can
be verified by symmetry arguments. The electrical current depends sinusoidally on the relative

phase of the two fields, J n = 2o E2 Ey,, sin (2¢, — ¢o2,)¥. According to the Kane model,
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Figure 2.2: Schematic illustrations of the net electron motion combining the information of

K% and J' for (a) case 1 with both fields right circularly polarized, and (b) case 2, orthogonal

linearly polarized fields. The directions are specified in the text.

its magnitude is much smaller than the current from co-circularly polarized fields, since the
contributions from the heavy hole and light hole transitions largely cancel in g2 rather than
adding in np1.% In the notation of Atanasov et al. [3], the current in this case is proportional to
nY%%Y while the current in case 1 is proportional to v/2Imn®*¥¥_ which is an order of magnitude
greater than n¥**¥ in their ab initio calculations. The spin current for orthogonal linearly

polarized fields is
K, = —2E2Ej, cos (26, — $2.) [(1n1 + iva) #7 + (une — pns) #°87] . (2.56)

Again there are two terms, the first arising from carrier motion along E, with spins aligned
along the beam propagation direction, and the second arising from carrier motion along the
beam propagation direction with spins aligned along E,,. Both of these are pure spin currents,
since there is no electrical current in either direction. At 100 meV excess photon energy in
GaAs, V2(un1e + Unse)/EN1e = V2(in1 + pn3)/pn1 = 1.3. That is, when the optical phase
difference is zero, the first term is 1.3 times larger than the first term of the case 1 spin-current
injection. The second term of (2.56) is smaller than the first. For the electron distribution,
(UN2e—tN3e)/ (N1, +1N3e) = 0.075, while for electrons and holes, (une—pn3)/(un1+uNn3) =
0.23. The electrical current injected along the Ej, polarization is unpolarized for all optical

phases. The situation is schematically indicated in Fig. 2.2(b).

81t is not zero, however, as reported for the parabolic band approximation in [3].
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Chapter 3

Two-colour Quantum Interference:

Fourteen-band Model Calculations

3.1 Introduction

In the preceding chapter, the “1+2” effects—current injection, spin-current injection, popula-
tion control, and spin control—are studied from the point of view of crystal symmetry, and with
solutions of an eight-band k-p Hamiltonian that are expanded perturbatively in the Bloch wave
vector k. The eight-band model has spherical symmetry, even to higher orders in k, and thus
fails to describe properties that depend on a lack of inversion symmetry such as spin-splitting,

“14-2” population control, and “1+2” spin control.

One can extend the eight-band model either by incorporating remote band effects into
the eight-band Hamiltonian [121], or by enlarging the basis. It is most natural to enlarge
the basis to fourteen to encompass the group of six higher conduction bands that are the
next closest in energy to the fundamental band gap in typical semiconductors. Fourteen-band
models (also called five-level models) can accurately account for lack of inversion symmetry
[123-134]. In this chapter, injection spectra for “1+2” processes are calculated using a 14 x 14
k - p Hamiltonian including remote band effects for five bulk semiconductors of zinc-blende
symmetry: InSb, GaSb, InP, GaAs, and ZnSe. In contrast to the preceding chapter, the model
is solved numerically and does not involve a perturbation in k. Appendix C gives expressions
for population and spin control based on perturbative expansions in k of the fourteen-band
model. For each “1+2” process, I compare the fourteen-band model results with the analytical

results perturbative in k presented in the preceding chapter and Appendix C.

Since the model used here accounts for spin-splitting, microscopic expressions for spin-

current injection and spin control accounting for spin split bands are presented.

32
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3.2 Model

As in the preceding chapter, I calculate the injection of each “1+2” process using microscopic
expressions derived using velocity gauge (A - v) coupling in the long-wavelength approxima-
tion, treating the field perturbatively in the Fermi’s golden rule (FGR) limit, and using the
independent-particle approximation [3, 36]. But for spin-current injection and spin control, one
must use generalized expressions that account for the spin-splitting of the bands. All of these
expressions require the unperturbed (i.e. field-free) one-particle energies and matrix elements

of velocity and spin.

3.2.1 Hamiltonian

Recall from Sec. 2.3.1 that the k-p Hamiltonian can be expanded in a set of I'-point states. The
fourteen-band model truncates this expansion to a set of fourteen states [124]. The fourteen
bands (counting one for each spin), which are shown in Fig. 3.1, comprise six valence bands
(two each for split-off, heavy and light holes) and eight conduction bands (the two s-like ones
at the band edge, and the six next lowest ones which are p-like). This “bare” fourteen-band
model is further improved by treating remote bands using Lowdin perturbation theory [135],
which adds k-dependent terms to the truncated 14 x 14 Hamiltonian so that its solutions better
approximate those of the full Hamiltonian [130]. The fourteen-band model Hamiltonian, which
includes important remote band effects to order k2, and which I denote Hi4, is given explicitly
by Pfeffer and Zawadski [130].! We now briefly review its derivation.

In a semiconductor of zinc-blende symmetry, the states {|n,k = 0) |n = 1..14} are conve-
niently expanded in the eigenstates of Hy, {|S),|X),|Y),|2),lz),|v),|2)} @ {|T),|l)}, where,
under the point group Ty, |S) transforms like I'y, {|X),|Y),|Z)} and {|z},|y),|2)} transform
like T'4 [118]. The {|1),]l)} are the usual spin 1/2 states:

(Mo =={lleall)=2 (3.1a)
(Mo |l) = {lla|f) =x—iF. (3.1b)

The non-zero matrix elements of (VV x p) are

2.2
(X]|(VV x p)?|Z) = 2'4’;‘; Ao,
4m?2c?
Y —
(@l (VV x )Y |2) = i =5,
4 2.2
(X|(VV xp)|2) =i ";hc A,

1Eq. (5) of Pfeffer and Zawadski has one typographical error: element (4,14) should be —+/1/3Pok. [130).
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uc

Energy

Figure 3.1: A schematic diagram of the fourteen-band model, indicating band abbreviations
(left), energies (center), and symmetry of the I'-point states (right). I's, I'7, and I's indicate
irreducible representations of the Ty double group, whereas I'1 and I'y indicate irreducible
representations of the Ty point group. Note that spin-splitting of the bands cannot be seen on

this scale.
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cyclic permutations of these [e.g. (2| (VV x p)¥ |2} = (2| (VV x p)? |y) = {y| (VV x p)®|z}],
and those generated by Hermitian conjugation of these. The above equations define the spin-
orbit energies Ay and Aj, and the interband spin-orbit coupling A~ [136, 137]. The fourteen
basis states {|nk = 0) |n = 1..14} for Hy4 are

1 1
Ty, £1/2) = £—=|2Z) |ax) + —= | X £13Y) |az) (3.2a)
v \/—— \/_ F
Tau, £1/2) = \f 12) ) + 7= |X £i¥) fas) (3.2b)
ITsy, £3/2) = |X £iY) |ai> (3.2¢)
\/_
Toe, £1/2) = iS) |ovs) (3.24)
1 1
Tre,£1/2) =x—|2) |ax) + —= |z £ iy) | 3.2e
T7e, +1/2) \/§|>|:l:> \/gl Y) o) (3.2¢)
2 1 .
e, #1/2) = :F\/j B las) + o =) o) (321
ITsc, £3/2) = \/— lz £ iy) ot ) (3.2g)
where |a4) = |1) and |a—) = ||). The states are labeled with their transformation property

under the double group for T, and with a pseudo-angular momentum notation. The meaning
of this notation is not important for this chapter; it is discussed further in Chapter 4. In the
basis (3.2), Hx—¢ is diagonal except for terms proportional to A~. The connection between the
eigenvalues of Hy_g for the I'-point eigenstates and the eigenvalues of Hy is given by Pfeffer

and Zawadski [124]. The nonzero matrix elements of momentum, which appear in Hy, are

(S|p* |X) = (S|p?Y) = (S|p*|Z) = imPo/h (3.3a)
(S]p" |z) = (S|p¥ly) = (S|p*|2) = imPy/h (3.3b)
(X|p¥|2) = (Y|p*|z) = (Z]p® ly) = (Z]|p |z) = (Y|p* |2) = (X|p*ly) = imQ/h.  (3.3¢)

This defines the parameters Py, Pj, and Q. They are sometimes expressed as energies Ep, Ep/,
and Eg with the connections Ep = 2mP§ / h?, etc. The first, Ep, is known as the Kane energy.

The “bare” fourteen-band model has eight empirical parameters E,, Ao, Ep, Ay, A~, P,
Q, and P}. Its quantitative accuracy is improved by adding remote band effects to order k2
[130]. Only the most important remote band effects are included [130]. They are governed by
the parameters 1, 2, v3, F, and Ci. The parameters v;, 72, and 73 are modified Luttinger
parameters that account for remote band effects on the valence bands; they are analogues of
the usual Luttinger parameters 11, y2r, and -3z, modified to remove the couplings with I's,,

Iz, and I'g. bands, which are already accounted for in the “bare” fourteen-band model [130].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. “142” PROCESSES: FOURTEEN-BAND MODEL CALCULATIONS 36

Specifically [130],

_.._Ep _Eq _ Eq
MENLTRE T 3E, 3E,+ Ay
Ep Eg
72—72L—6—}_Z+6E6,
_._Er Eq
Y3 = V3L 6Eg 6E6'

The parameter F' accounts for remote band effects on the conduction band (T's.), essentially
fixing its effective mass to the experimentally observed value. Finally, the parameter C is the
small k-linear term in the valence bands due to interactions with remote bands [137]. The
remote band effects can be removed by setting 3 = —1 and 9 = v3 = F = C; = 0. The model
includes neither remote band effects on the uc bands, nor remote band effects on the I'ge-I'sy
and I'g.-I'7, momentum matrix elements, though such terms exist in principle [132].

In summary, Hy4 is a fourteen-band approximation to Hy that incorporates some remote
band effects. It has thirteen parameters. Numerical solutions to Hy4 give in_k> The complete
Hamiltonian, which I denote Hi4, can be found in Eq. (5) of Pfeffer and Zawadzki [130]. Note
that their notation is slightly different from mine. With their notation on the left, and mine
on the right: Eg = —E,, E1 = Ej — E5, Ay = A}, A = A~, P, = Pj. Also, my A differs from
theirs by a minus sign. Other authors have also used different notations [132]. The fourteen
bands are shown schematically in Fig. 3.1 along with the symmetry notation of the I'-point

states, and the notation used to label the bands.

3.2.2 Material parameters

Numerical values for the thirteen parameters of the model are listed in Table 3.1 for InSb, GaSb,
InP, GaAs, and ZnSe. They are taken from the literature, where they were chosen to fit low-
temperature experimental data. Of the two parameter sets discussed by Pleffer and Zawadzki
for GaAs, I use the one corresponding to a = 0.085 that they find gives better results [130]. For
InP, GaSb, and InSb, I use parameters from Cardona, Christensen and Fasal [137]. For cubic
ZnSe, 1 use the parameters given by Mayer and Rossler [127], I use a calculated value of Cj
[137], and T use A~ = —0.238 eV to give a k3 conduction band spin-splitting that matches the ab
initio calculation of Cardona, Christensen and Fasal [137]. Winkler used these same parameters
for ZnSe, but took A~ = 0 [132]. There is more uncertainty in the parameters for ZnSe than
in those for the other materials [127], but I include it as an example of a semiconductor with a
larger band gap.

The parabolic-band approximation calculations use parameters from Table 3.1, and average

effective masses derived from the parameters in Table 3.1.
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Table 3.1: Material parameters.

GaAs InP GaSb InSb ZnSe
E, (eV) 1.519 1.424 0813 0235 2.820
Ao (eV) 0.341 0.108  0.75 0.803 0.403
E} (eV) 4.488 4.6 3.3 3.39 7.330
Al (eV) 0.171 0.50 0.33 0.39 0.090
A~ (eV) | —0.061 022 -028 —0244 —0.238
Py (eVA) | 10.30 8.65 9.50 9.51 10.628
Q (eVA) 7.70 7.24 8.12 8.22 9.845
P} (eVA) 3.00 4.30 3.33 3.17 9.165
ML 7.797 505 13.2 40.1 4.30
Yar 2.458 1.6 4.4 18.1 1.14
3L 3.299 1.73 5.7 19.2 1.84

F —1.055 0 0 0 0

Cr (meVA) | -34 14 043 -92 -14

3.2.3 Matrix elements

The relations between matrix elements of the Bloch states and matrrix elements of the u-

function kets (defined in Sec. 2.3.1) are

Vo (K) = (nk| v jmk) = (K] v [7K) + 5, (3.4
(nk| S |mk) = (nk| S |mk) (3.5)
(nk| v'S? [mk) = (K| 'S [K) + % (k| &7 7K. (3.6)

The matrix elements of the velocity operator, v, neglecting the anomalous velocity as dis-
cussed in Appendix B, can be calculated using (2.34), (3.3), and the right side of (3.4). The
matrix elements of the spin operator S, where S = (h/2) o, can be found from Eq. (3.1). The
matrix elements of v*S7 can be similarly found in the basis of eigenstates of Hy. Each of these
can then be rotated to the basis (3.2) in which the states |m_k> are expanded.

It is well known that in a crystal, vy, (k) = Vkw, (k). More generally,

Vam (k) = Vi (nk| H |mk) = (nk| VicHy |mk) . (3.7)

These identities can be proven from the definitions Hy = e kTHeXT and v = (i/h) [H,1]
(see Sec. 2.3.1), even for a non-local Hamiltonian. But when remote band effects are included

in a finite band model, they no longer hold. That is, vp, (k) calculated using (3.4) and
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eigenstates of Hi4 is not equal to <n_k| ViHia |m> I explicitly restore these identities by
using <H| ViHis |m> to calculate vy, (k). This approach can be described as including
remote band effects in the velocity operator. It was used for an eight band calculation of linear
absorption by Enders et al. [138]. This step is not critically important for the effects calculated

here, since remote band effects are generally small.

3.2.4 k-space integration

The optical calculations in the rest of this chapter have the form © (this is unrelated to the

notation © in Chapter 2), where
0= 3 [ hfou (F) 8 (e (1) — 2h). (38)
cv

where f.,, depends on matrix elements and energies of eigenstates of Hy, and where wyy, (k) =
wn (k) — wm (k). The form © follows from (2.18), and also holds when spin-splitting is taken
into account below. The integral in (3.8) is understood to be restricted to the first Brillioun
Zone, but I do not actively enforce the restriction, since the photon energies considered here
cause transitions well within the first Brillioun Zone. Writing k = (kqy, 0k, ¢k) in spherical

coordinates, where k., is the solution to

hwey (key, b, dxc) — 2hw = 0, 39
we have 2
o Z/ / , sin okfc'v (Hy) - drdby, (3.10)
‘h Vee (k) — v (k)) - k
where I have used Vwy (k) = vnn (k). For all of the optical calculations in this chapter, (3.10)
is equal to
_ SZ /w/z/ 2, Sin Oy fer (Hic) e dbie (3.11)

A(Vee (k ~Vou () - K|

due to the cubic symmetry of the crystal. I solve (3.9) numerically using Ridders’ method,
and evaluate each integral in (3.11) numerically using Simpson’s Rule converged to a desired
relative accuracy [139]. It is numerically convenient to do the sum over any degenerate bands

before the integral over 8y and ¢.

3.2.5 Approximations

The calculations of “142” effects in the following sections of this chapter are primarily labeled
by the Hamiltonian used to approximate Hy. The complete fourteen-band model is denoted

Hi4. The bare fourteen-band model, denoted Hi4.Bare, is H14 without remote band effects.
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The 8 x 8 subset of the fourteen band Hamiltonian within the basis {I'ec, I'sy, ['7,} is denoted
Hjg. The spherical eight-band model, denoted Hgsph, is derived from Hg by setting C = 0 and
replacing v, and y3 by 4 = (272 + 373) /5;[140] it is a spherical approximation to the Kane model
including remote band effects [121]. The aforementioned calculations are non-perturbative in
k; that is, in each case, the Hamiltonian is solved numerically at each k. The perturbative
calculations of Appendix C are denoted PBA (parabolic-band approximation).

The microscopic expression for each of the “1+2” effects contains a sum over intermediate
bands, which originates from the two-photon amplitude. Unless otherwise noted, calculations
include all possible intermediate bands (eg., Hy4 includes fourteen intermediate bands, and
Hggpp includes eight intermediate bands). Calculations that restrict this sum are secondarily
labeled to reflect the restriction. The label “Hy4, no uc” uses Hyyg, but does not include uc
bands as intermediate states. The label “Hy4, no uc/so” uses Hy4, but includes neither uc nor
so bands as intermediate states. The label “Hy4, 2BT” uses Hi4, but only includes two-band
terms (terms for which the intermediate band is the same as the initial or final band). Similar
labels are used for Hgsph, for example, “Hgspp-PBA, no so” uses the perturbative solution to

Hggpy and does not include so intermediate states.

3.3 Current

To calculate 7p), I use the microscopic expression Eq. (2.43) in Sec. 2.3.3. It is similar to the
expression given by Atanasov et al. [3], but modified to explicitly include the sum over spin
states [33, 114]. An alternate microscopic expression has been derived in the length gauge [100],
but it has not yet been used in a calculation. In the independent-particle approximation that
I employ here, 7(5) is purely imaginary [3] and hence ngi, 7B2, and nc are real, although they
can be complex if excitonic effects are included (see Chapter 6).

The spectra of g1, ng2, and 1, calculated for GaAs, are shown in Fig. 3.2(a) along with
the contributions to each tensor component from each possible initial valence band. For a given
photon energy, electrons photoexcited from the hh band have higher energies and velocities
than electrons photoexcited from the [k band; hence the dominant component 7np; is larger for
hh-c transitions than [h-c transitions. The smallness of ngs is due to contributions from the
hh-c transitions having opposite sign to the l/i-c transitions, as shown with the parabolic band
model in Sec. 2.3.3.

Figure 3.2(b) separates each tensor component into an electron contribution and a hole
contribution (denoted 7, and 7, by Atanasov et al. [3]). Electrons make a larger contribution
to g than holes, due to the lower effective mass (and hence higher velocity) of an electron

than of a hole (much lower, in the case of a heavy hole) with the same crystal momentum.
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Figure 3.2: (colour): Spectra of np; (black lines), g2 (red lines), and nc (blue lines) for GaAs.
Panel (a) shows the contributions from each initial valence band; dashed, dotted, and dashed-
dotted lines include only transitions from the hh, [h, and so bands respectively, while the solid
lines include all three transitions. The thin solid, light brown line in (a) is the total Re (ngf)‘m).
Panel (b) separates the total into electron (dashed) and hole (dotted) contributions.

Holes dominate 72 at lower photon energies, while electrons dominate ngy at higher energies.

Both electrons and holes contribute equally to the anisotropic component nc.

To help in understanding the importance of the various intermediate states, in Fig. 3.3 we

compare the calculated current injection tensor elements with various degrees of approximation
described in Sec. 3.2.5.

The component 7g; (and hence n?}‘)““, since ng; is larger than ngs + ne) is dominated

by two-band terms. Three-band terms cause the increase, by as much as 34%, of np; [the
difference between the dashed and solid black lines in Fig. 3.3(a)]. Although not shown in Fig.
3.3, most of the increase is due to three-band terms with the so band as an intermediate state.
Terms with the uc bands as intermediate states only cause a small increase to np; (the difference
between the dotted and solid black lines). The warping of the bands is clearly not important for
7B1, since the calculation with Hggpy, closely approximates the calculation “Hy4, no uc”, which
includes the same intermediate states. Surprisingly, the “Hggpn-PBA, 2BT” result from Sec.
2.3.3 closely approximates the complete, non-perturbative fourteen-band calculation, even at
excess photon energies for which band nonparabolicity is significant. This is due to a fortuitous
compensation between the neglect of nonparabolicity and the neglect of three-band terms. The

compensation is not as complete for all materials.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. “142” PROCESSES: FOURTEEN-BAND MODEL CALCULATIONS 41

25 I 2
(a) 1© -
T —H14 e
4'---H14, no uc P 0 i -
20 ——gm, 2BT e < 1 -
—~ -=+ Hgsph < Sl S ~ 0 -
N B ot . . T e i s Eme =
R — Hssph-PBA, ZB'I)/_.‘-;‘-’ " N ch N ~
£ 15 A 4 E RSN a4 N\ =
L) . .. .
|> eGP |> N N 7 ] ..\
e N N oIUET s ’
. \ ~= 9]
104 ‘),/’ 9»2——H14 AR S 32
— 4 //’ I R H14, no uc « 1
] 0 4{.-.. H \ Q L]
a2 4 - a 14, DO uc/so™, 23— H.,
o /4 3 ---Hja, T AN I Hi4, no uc
A -=-=Haspn AN ad Hi4, no uc/so
-~ Hgspn-PBA, no so "~ _ T ——-Hy4, 2BT
\\J
0 4 +— 5 -

T T T T T T T T T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Excess photon energy (meV) Excess photon energy (meV) Excess photon energy (meV)

Figure 3.3: (colour): Approximations for GaAs current injection tensor components (a) np1,

(b) nB2, and (c) nc. The approximations are described in Sec. 3.2.5.

The component g2, which determines the current due to orthogonal linearly polarized
fields, is less forgiving to approximations than the component ng;. We have already seen in
Fig. 3.2 that np2 is small due to a near cancellation of hh and lh initial states. Reasonable
accuracy on 7p2 thus requires higher accuracy on the contribution from each initial state. In
particular, three-band terms must not be neglected. By comparing the dashed-dotted and solid
lines in Fig. 3.3(b), it can be seen that, whereas the sum of the two-band terms is negative,
the sum of the three-band terms is positive and of the same magnitude. It is useful to divide
the three-band terms into three groups: those with intermediate state from the hh or [h bands,
those with intermediate state from the so band, and those with intermediate state from one
of the uc bands. I find that each group contributes roughly the same positive amount to 7po
for excess photon energies less than Ag. The groups are added successively to the 2BT's in the
dashed, dotted, and solid lines in Fig. 3.3(b). Three-band terms with so intermediate states
are less important at the higher excess photon energies in Fig. 3.3(b). The warping of the
bands makes a small, but non-negligible contribution to ngs, as seen in the difference between
the dashed-double-dotted and dotted lines of Fig. 3.3(b). The solid brown line in Fig. 3.3(b)
is the “Hggpn-PBA, no s0” result from Sec. 2.3.3. At low excess photon energies, it greatly
underestimates 1p2 due to the neglect of so and uc intermediate states, while at excess photon
energies greater than 100 meV, this is partly compensated for by the neglect of nonparabolicity.
It appears from the difference between “Hggpn-PBA, no so” and “Hyg, no uc/so” in Fig. 3.3(b)

that nonparabolicity becomes important at energies above 70 meV.

The term 7¢ is purely due to cubic anisotropy by definition; in any model that is spherically

symmetric it is identically zero. There is no cubic anisotropy in the “bare” (i.e. without remote
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Figure 3.4: (colour): np; (black), np2 (red), and n¢ (blue) for (a) InSb, (b) GaSb, (¢) InP, and
(d) ZnSe. The solid lines are calculated with the complete fourteen-band model. The dashed
line for np; is “Hggph-PBA, 2BT”. The inset of panel (c) shows the area near the origin in more
detail.

band effects) eight-band model on the set {T's.,I'sy, ['7p}. Cubic anisotropy in the fourteen-
band model is due to the momentum matrix elements governed by the parameters Eg and Ep/,
the interband spin-orbit coupling A~, and remote bands through (2 — 73) and Cj. From Fig.
3.3(c), it can be seen that three-band terms are important for no. In fact, with only 2BTs
included, nc is positive for GaAs, whereas it is negative with all terms included. From Fig.
3.3(c) it can also be seen that the so band and uc bands are important as intermediate states

for nc.

My calculation of 7y is of the same order of magnitude as the ab initio calculation of
Atanasov et al. [3], but its spectral dependence is different. In particular, np; agrees more
closely with the PBA calculation, as seen in Fig. 3.3(a). Atanasov et al. had attributed the
difference between their ab initio and PBA calculations to the assumption of k-independent
velocity matrix elements in the PBA [3]. However, my calculation accounts for the k-dependence
of velocity matrix elements and agrees closely (for 7p; and Ren®@??) to the PBA. The earlier ab
initzo calculation [3] was, in fact, inaccurate at low photon energies due to various computational
issues; an improved ab initio calculation agrees with the spectral dependence at low photon

energy given here [141].

Figure 3.4 shows the spectra of ng1, np2, and n¢ calculated with Hyy for InSb, GaSb, InP,
and ZnSe. The dashed black line in Fig. 3.4 is the PBA result (2.47a). The PBA appears

to be a reasonable approximation to np; for excess energies less than about 0.2E,;. In each
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material, ngs < 7np1 and in each material except for ZnSe, the sign of nps changes as a
function of frequency. The component 7¢, which arises due to cubic anisotropy, is negative for
each material.

The cubic anisotropy of current injection due to colinearly polarized fields can be significant
enough that it should be measurable. For fields colinearly polarized along &, specified by polar

angles & and ¢ relative to the cubic axes,
J-é=2Im (E2E3,) (7731 + B2+ Nc — %f (6, ¢)) ) (3.12)

where f (0, $) = sin? (20)+sin® (9) sin? (2¢). In general, J (1) also has a component perpendicular
to & that is proportional to nc, but it vanishes for & parallel to (001), (110), (111). The
field polarization that maximizes the current injection depends on the relative sign of nc and
Ren®® = np; + ng2 + nc. When they have the opposite sign, current injection is a minimum
for & || (001) (f = 0) and a maximum for & || (111) (f = 4/3); for light normally incident on a
{001} surface, the largest current injection occurs when & || (110) (f = 1). When they have the
same sign, current-injection is a maximum for € || (001) and a minimum for & || (111). From the
GaAs results shown in Fig. 3.2(a), the current injection for the three cases & || (001), & || (110},
and & || (111) are in the ratio 1 to 1.14 to 1.20 at the band edge, 1 to 1.15 to 1.20 at 200 meV
excess photon energy, and 1 to 1.22 to 1.29 at 500 meV excess photon energy. In contrast,
the ab initio calculation of Atanasov et al. yields larger ratios, for example 1 to 1.32 to 1.43
at 300 meV excess photon energy [3]. This disagreement is consistent with the inaccuracy of
the ab initio calculation discussed above. Initial experiments with GaAs used & || [001] [4, 71],
whereas Roos et al. exploited the larger signal for & || [110] [72]. For each of the materials shown
in Fig. 3.4, the minimum current injection is for & || (001). It is worth noting that two-photon
absorption is also a minimum with & || (001) for many semiconductors [142-144]. It seems that
both “1+2” current injection and two-photon absorption with linearly polarized fields are larger
for é directed along the bonds.

The cubic anisotropy of “1+42” current injection is pronounced for cross-linearly polarized
fields and opposite-circularly polarized fields. For example, for cross-linearly polarized fields

normally incident on (001) with &, = acos¢ + bsin¢ and &y, = —asin¢ + bcos ¢,
Iy =Tm (E2E3,) [(2n82 + no sin® (26)) &2, — 2 sin (49) & - (3.13)

For fields with opposite circular polarizations, the current injection is proportional to nc and
is hence purely anisotropic.

The component ¢ causes a type of current injection that has not previously been noted. In
all “14-2” experiments considered thus far with light normally incident on a surface, the direction

of current injection lies in the plane of the surface. However, with co-linearly polarized light
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fields normally incident on a (111) surface, the current can have a component into (or out of)

the surface. The current in this case is
. 1 . .
Jy =2Im (Ef,E;w) [(7731 + 12 + 577(;) é+ (\/5/6) Ne cos (36) z] , (3.14)

where % is the [111] direction, and @ is the angle between & and the [211] direction. Thus, n¢

is responsible for this “surfacing” current.

3.4 Spin current

As in Sec. 2. 1 and Sec. 2.3.4, the spin-current injection can be divided into a Contribution from
electrons K% (¢ @nd a contribution from holes K9 (I.ny} that is, K 8) = K9 (Tey + KY (Th) (similarly,
u?l-’;lm uzjlké)m + /A?Ik,l:)") Expressions in the PBA for both the electron and hole spin current
are given in the preceding chapter, but here I focus on the electron spin current.

In the preceding chapter, a microscopic expression for the spin-current injection is derived
in the FGR limit of perturbation theory and applied to a model in which all bands are doubly
degenerate [see (2.21a)]. However, it is unsuitable for a calculation with Hy4, which accounts
for the small splitting of the spin degeneracy that occurs in materials of zinc-blende symmetry
[137, 145, 146]. If the spin-split bands were well separated, then the microscopic expression for
K (l} ¢ would be

i 27
(I; e) - L3

c,v,k

c, v,k

(ck| v"S7 |ck) KQ(Q) ) Q(l) vk FCC ] 0 (2w — wey (K)),

)

where L2 is a normalization volume, the one-photon amplitude Qg vk is given in (2.3), and the
two-photon amplitude Qg’k is given in (2.4).

However, for the photon energies and materials studied here, the spin-splitting is small; it is
comparable to the broadening that one would calculate from the scattering time of the states,
and also to the laser bandwidth for typical ultrafast experiments. Thus, the spin-split bands
should be treated as quasidegenerate in FGR, with the result

2 n 1
g o = Z Z ck|v'S?| k) (Qi 31() Qg )vk—2- [0 (2w — wey (k) + 6 (2w — weryy (k)] + coco,
e vk
where the prime on the summation indicates a restriction to pairs (c, ¢’) for which either ¢’ = ¢,
or ¢ and ¢’ are a quasidegenerate pair. This same issue arises in the fourteen-band calculations
of “1+42” spin control (Sec. 3.6), two-photon spin injection (Chapter 4), and one-photon spin-
current injection (Chapter 5). In Chapter 5, the optical excitation of the coherence between

spin-split bands is justified using the semiconductor optical Bloch equation approach. That
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Figure 3.5: (colour): Calculated spectra of GaAs spin-current injection components and their
contributions from each initial valence band; dashed, dotted, and dashed-dotted lines include
only transitions from the hh, lh, and so bands respectively, while the solid lines include all three
transitions. Panel (a) shows up1 (black lines), un2 (red lines), and pn3 (blue lines). Panel (b)

shows pe (black lines), pce (red lines), and pes (blue lines).

approach yields the same result as the simpler approach taken here. Note that this issue does
not arise for “14+2” current injection or “1+2” population control, since (ck|v|c’k) and (ck|c'k)
vanish between spin-split bands.

Using the time-reversal properties of the Bloch functions, I find that y;.) is real, and can
be written as

! Q] *
B =1 (5) 3 L E X~ 00 Re { LT it — (k) ]},

w —w
cc vk n nuk

where

MET, = 20, () [ofs (K)ol (1) + ol ()uka ()] (3.16)
That pz,e) in (3.15) is purely real is a consequence of the independent-particle approximation
(see Chapter 6).

The spectra of the independent components of yr,), calculated for GaAs, are shown in
Fig. 3.5 and Fig. 3.6. Figure 3.5 includes contributions from each possible initial valence band.
Figure 3.6 shows the spin-current injection calculated with various degrees of approximation
described in Sec. 3.2.5. The only other calculation of “1+42” spin-current injection for bulk

GaAs is the calculation in Sec. 2.3.4, which uses a spherical, parabolic band approximation to
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Figure 3.6: (colour): Approximations for GaAs spin current components (a) pn1, (b) un2, (c)

uns, (d) pei, (e) peg, (f) pes. The approximations are described in Sec. 3.2.5.

the eight-band model; it is shown in Fig. 3.6 for pun1, un2, and pys.

The term py; has the largest magnitude of the six independent parameters of (1,c). Since
it is negative for hh and [h transitions but positive for so transitions, it peaks in magnitude at
2fw just above Eg + Ag (the energy at which so transitions become allowed). Two band terms
make the largest contribution to g1, followed by three-band terms with hh or lh intermediate
states. The so and uc intermediate states make a very small contribution to pn; for excess
energies less than 200 meV. The warping of the bands is not important for p 1, since the calcu-
lation with Hgspn closely approximates the “Hi4, no uc” calculation, which includes the same
intermediate states. The “Hggpp-PBA, no so” calculation, which is derived in Sec. 2.3.4, is a
good approximation to ppy1 at excess energies below 250 meV; nonparabolicity becomes impor-
tant at higher energies. The hh contribution has a larger magnitude than the [A contribution

in part because three-band terms increase the magnitude of the Ah contribution, but decrease
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that of the lh contribution, as expected from the PBA expression (2.52a).

The term ppn2 is negative for hh transitions, positive for lh transitions, and negligible for
so transitions. The calculation “Hiy, 2BT” is a good approximation to the calculation Hiq.
However, the three-band terms are not small; rather, they nearly cancel. In particular the
transition hh-lh-c makes a large positive contribution to ppy2, while the transition hh-so-c
makes a large negative contribution. Since the PBA result in Sec. 2.3.4 includes the former
but not the latter, it is a poor approximation to py2. But by including only 2BTs, it is a fair
approximation for excess energies less than 200 meV. This agreement is fortuitous, since the
calculation Hggpy, underestimates the magnitude of p1 2, and the PBA leads to an overestimation
of the magnitude of pns.

The term p 3 is negligible when only 2BTs are included, in agreement with the PBA result
in Sec. 2.3.4. The hh-lh-c transitions are positive, while the [h-hh-c transitions are negative; the
former is larger, and thus g3 is positive when so intermediate states are neglected. Both lh-so-c
and hh-so-c are negative and substantial enough to make the total pn3 negative. Consequently,
the PBA result in Sec. 2.3.4, which neglects so intermediate states, is a poor approximation to
3. Upper conduction bands make a fairly small contribution to py3, and warping does not
seem to be important for py3 since the calculation with Hggpy is a good approximation.

As expected, the terms pc1, puc2, and pc3 are zero when calculated with Hggpp.

The term pci is negligible when only 2BTs are included. Transitions with intermediate
states in the set {hh,lh,so} comprise roughly two-thirds of uci. The anisotropy of these
transitions is not simply due to the warping of the hh and [h bands, which I have determined
by a calculation (not shown) using Hg without the remote band contribution to the velocity.
Rather, it comes from wave function mixing of the I's, and I';, states into the valence and ¢
band states. The cubic anisotropy of two-photon absorption has been attributed to such wave
function mixing [128, 142]. The other third of the full uc; is due to transitions with the uc
intermediate state, which would be forbidden close to the I" point if the material were isotropic.
I also note that each three-band term makes a positive contribution to pc;.

The term peo is nearly negligible when only 2BTs are included. Transitions from the hh
and [h bands have opposite sign, and those from the so band are negligible. About half of pco
is due to the transitions hh-lh-c and [h-hh-c, and the other half is due to transitions with the
uc intermediate states. Transitions with so intermediate states are negligible. As with ucq, the
anisotropy of the hh-lh-c and lh-hh-c transitions is due to the wave function mixing of the I's,
and I';, states into the hh, lh, and c band states.

The term 3 is positive for hh transitions, negative for lh transitions, and negligible for so
transitions. The transitions hh-so-c and lh-so-c account for most of the value of pc3, but 2BTs

are not negligible. Transitions with uc intermediate states reduce the value of 3 by as much
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Figure 3.7: Spectra of spin current components for InSb, GaSb, InP, and ZnSe: upn; (solid
black line), pno (solid red line), uns (solid blue line), uc; (dashed black line), pc2 (dashed red
line), and pc3 (dashed blue line).

as 10%. Most of ucs, especially at energies less than 200 meV, is due to the warping of the hh
and [h bands. Consistent with this, I find that remote band effects are somewhat important for
uc3; when remote band effects are removed, the calculation of uc3 is about 25% larger than
the full calculation. Note that ucs3 is far more sensitive to remote band effects than any other
optical property calculated in this thesis.

In Fig. 3.7 I plot the spectra of the independent components of the spin current density
pséudotensor for InSb, GaSb, InP, and ZnSe. The spin current tensor is largest for InSb in
agreément with the PBA expressions in Appendix C. I also note that pn3 is positive for InSb

and GaSb at low excess photon energy, whereas it is negative for InP, GaAs, and ZnSe.

3.4.1 Configurations

Co-circularly polarized fields generate a spin-polarized current, which can be characterized by
its degree of spin polarization f (see Sec. 2.4), where f = (2¢/h) K:éjcjiﬁj/wel, where 1 is a
unit vector normal to the polarization plane of the fields, and q is a unit vector in the direction
of J.. Essentially, f = (vS)/(v). Since this measure aims to characterize the photoexcited
distribution of electrons, I neglect holes from both K and J.2 For fields normally incident on

a (001) surface (i.e. e, = eg, = (X £i¥) /Vv/2), the spin current is

Kipy = #VREEL (i + 550) A+ (s 4 552) 2404

2The calculation of f in Bhat and Sipe included electrons in K but both electrons and holes in J [38].
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Figure 3.8: (a) Degree of polarization of spin-polarized current due to co-circularly polarized

fields. (b) Displacement of spins in pure spin current due to cross-linearly polarized fields.

where
my = sin (2¢w - ¢2w) X + cos (2¢w - ¢’2w) y7
the current is J (n = V2E5,E? (nB1 + nc/2) M, and the degree of spin polarization is

_ 2epn1+ pe1/2

= . 3.17
h mp1+nc/2 (3.17)
For fields normally incident on a (111) surface, J (n = \/ingEz (nB1 + nc/3) My, and
2 3 3
f= feﬂm + pc1/3 + pes/ (3.18)

nB1 +nc/3
The degree of spin polarization is plotted for GaAs in Fig. 3.8(a). The cubic anisotropy is
small, but clearly seen, especially at low excess photon energies. The other materials have very
similar degrees of spin polarization.

A pure spin current, without an electrical current, can be generated with cross-linearly
polarized fields, as shown in Sec. 2.4. To generalize (2.56) to include cubic anisotropy, I consider
fields polarized in the (001) plane, with the w field polarized at an angle € to the % axis
(i.e. [100]) and the 2w field polarized at an angle 6 to the § axis (e, = Xcosf + §sinf and

€9, = —Xsin8 + ¥ cos ). The spin current is
. 1 o
Kg) =" §E2wE3 cos (20w — dow) [(4un1 + 4pns + 3pct + pot cos (49)) e, 2

—pc1sin (49) €b, 59 — pcosin (46) 2'e}, + (4unz — 4uns + 3uce + pez cos (46)) éiei,]

This pure spin current is typically measured by the resulting displacement of up and down

spins [41, 42]. The finite displacement results from transport and scattering of the electrons.
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Using the Boltzmann transport equation in the relaxation time approximation with space-
charge effects justifiably neglected [42], one finds d’ (2) = (47/h) K937/ (N(l) + N(z)). Here,
d (2) is the displacement of spins measured with respect to the quantization direction 2, 7 is
the momentum relaxation time, and N(Z-) is the i-photon carrier injection rate. I assume the
field intensities have been chosen to balance one- and two-photon absorption, a condition that

is f-dependent due to the cubic anisotropy of two-photon absorption. Thus,

d(3) e, = T (4HN1 + 4pns + 3pct + per cos (46)) (3.19)

e (L (0/2)si’ (26))

and

. o1 sin (460
d(z)'eQw_E a ( ) — s
\/g(l) £ (1 - (0/2) sin® (26))
where o is the two-photon absorption cubic-anisotropy factor given explicitly in the next section

[128, 142]. At 8 = 0 and 6 = 7/4, d is parallel to e,. The spin separation distance is plotted

(3.20)

in Fig. 3.8(b), where I have assumed a momentum relaxation time of 100 fs for each material.

This calculation of the spin separation distance is a significant improvement over my initial
calculations [41, 42], which used the eight-band PBA and neglected three-band terms from
the two-photon amplitude (“Hgsp,-PBA, 2BT”). Stevens et al. measured a spin separation
distance of 20nm in a GaAs multiple quantum well at an excess photon energy of 200 meV,
and estimated a momentum relaxation time of 7 = 45fs [41]. For 7 = 45fs, I calculate a
spin separation distance of 20.0 nm for bulk GaAs at 200 meV. Hiibner et al. measured a spin
separation distance of 24 nm (the photoluminescence spot separation is half this distance) in
cubic ZnSe at an excess photon energy of 280 meV, and estimated a momentum relaxation time
of 7 = 100fs [42]. The calculation in Fig. 3.8(b) gives d = 23.6nm for ZnSe at 280 meV. In
both cases, I now find very good agreement with the experiment, whereas the previous model
resulted in larger spin separation distances. Of course, this agreement is contingent on the
accuracy of the momentum relaxation time estimates.

Note that both the degree of spin polarization for co-circularly polarized fields and the spin-
separation distance, plotted in Fig. 3.8, have a kink at excess photon energy Ay and decrease
at higher excess photon energies. A similar kink and decrease, due to the onset of transitions
from the so band, occurs for both one-photon spin injection [2] and two-photon spin injection
(see Chapter 4).

3.5 Population control

I calculate £y with the microscopic expression (C.1) in Appendix B, which is also given by

Fraser et al. [36]. It is derived in the independent-particle approximation, and is restricted to
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Figure 3.9: Imx(® calculated with Hy4 (solid line) and Hy4-PBA (dashed line) for (a) InSb,
(b) GaSb, (c) InP, (d) GaAs, and (e) ZnSe. Panel (f) shows the GaAs calculations on a log-log
plot.

hw < Eg4 < 2hw [36]. Under those conditions, &) is real and is proportional to the imaginary
part of the susceptibility for second harmonic generation (SHG) [36, 101]; specifically, (in mks)

4 = (2e0/h) Imx P (—2w;w, w) . (3.21)

This connection to SHG is important because the imaginary part of x(? (—2w; w,w) has some-
times been presented en route to a calculation of | X(2)| [147-153]. As well, analytic expressions
have been derived for the dispersion of SHG by using simple band models, with approximations
appropriate for 2fiw near the band gap [147, 154-158]. However, these earlier works did not
connect Imy(? (—2w;w,w) with population control, and in fact typically stated that it was not
independently observable.

Fig. 3.9 shows the calculation of Imx(z)d’“ (—2w;w,w) for InSb, GaSb, InP, GaAs and ZnSe.
Also shown for comparison is the PBA expression (C.3), derived in Appendix C. Each spectrum
can be divided into roughly three regions. At very low excess photon energies, visible in the
log-log plot Fig. 3.9(f), the spectrum is roughly independent of w. This flat part of the spectrum
disappears if C}, is set to zero; hence, it is due to the k-linear term in the ¢ band spin-splitting.
Next higher in photon energy, up to about 100 meV in GaSb, InP, GaAs, and ZnSe (up to
about 15 meV in InSb), is a region where the agreement with the analytic expression (C.3) is
best. In this region, the ratio X2/Xi, defined in Appendix C, is 0.37 for InSb, 0.30 for GaSb,
—0.25 for InP, 0.08 for GaAs, and 0.07 for ZnSe. At higher photon energies, the dispersion

- of Imy(2?)ba (—2w;w,w) deviates from the PBA expression due to band nonparabolicity and
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warping, k-dependence of matrix elements, and transitions from the split-off band, which are

not included in (C.3).
If I remove the two-band transitions hh-{hh,c}-c, lh-{lh,c}-c, and so-{so,c}-c, then the

calculation of Imy(? (or &1y) is unchanged. This is expected for materials of zinc-blende sym-
metry [155, 159]. So-called “virtual hole terms” were argued to make only a small contribution
to x(?) (0) by Aspnes [159], and they have been neglected in some previous calculations of x(2)
dispersion {148, 150]. By removing the virtual hole terms lh-{so, hh}-c and hh-{so, lh}-c, leav-
ing only {so,lh, hh}-uc-c transitions, &(r) is reduced by only 6-10% over the range from the
band edge to 500 meV above the gap for GaAs. It is thus clear that inclusion of the uc bands
is necessary for a calculation of population control. For some purposes it is also sufficient, since

if remote band effects are removed from the model, leaving the “bare” fourteen-band model
[124, 128], §j) is decreased by only 7-10% from its full value for GaAs.

For most materials, the results in Fig. 3.9 are in reasonable agreement with previous cal-
culations of Imy(? [147, 150, 152, 153], although most previous calculations had poor spectral
resolution in this energy range. However, for ZnSe, the situation is more complicated. The
calculation of Huang and Chin is about an order of magnitude smaller than mine [150], and
that of Ghahramani et al. is about 5 times smaller than mine [149]. Note also that Huang
and Chin calculated x(? (0) for ZnSe to be an order of magnitude smaller than experimental
results [150]. Wagner et al. have measured the dispersion of | X(Z)I, which is an upper bound on
Imyx(?; for ZnSe it is about a factor of two smaller than my calculation of Imy(?) [160]. Note

that Wagner et al. give a different set of band parameters than I have used here [160].

The magnitude of .f“bc determines the magnitude of population control, but in an experiment
one is more interested in the depth of the phase-dependent modulation of the carrier absorption,
i.e. the control ratio R [36]. It is

Noy ¢ Es ELEE + c.c.

Ny +Ngy €1 B E], + €3N ErEL ELEL

and it can also be viewed as R = (N — [N ]avg) / [N]avg, where [N Javg is the carrier injection
averaged over the phase modulation. This ratio is largest for field amplitudes that equalize N, (1)
and N(z) [37]; in what follows, I assume this condition has been met. The ratio then depends

only on 5231'), 5 (1’ Eg;c , and the polarizations of the two fields. For light normally incident on a

(111) surface, linearly-polarized fields yield R = v/2 §( be / \/35(1) ?Qa)aa — 0/2), while opposite

circularly-polarized fields yield

R =261/ /3663802 (1 - 0/6 - ), (3:22)
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where

et - &g - 2 o ks WO

Il

g = aaaa and 5 aaaqa
£ 280)

are two-photon absorption anisotropy and circular dichroism parameters [128, 142]. Stevens
et al. found that for light normally incident on a (111) surface of GaAs, opposite circularly
polarized fields yield the largest ratio [66, 75]. For light normally incident on a (110) surface,
fields linearly polarized along [111] yield

R =2¢ /\/35(1)§g;)aa (1—20/3). (3.24)

The polarization configuration that yields a global maximum for the control ratio depends on
the material and photon energy; I have found that (3.22) is the maximum except for very close
to the band edge, where (3.24) is the maximum.

To calculate the population control ratio, it is desirable to use values of {1y, §(1), and §(g
calculated within the same set of approximations. I use microscopic expressions for £y and (o)
in the independent-particle approximation [3] [they can also be derived from (2.16) and (2.17)],
and calculate them within the fourteen-band model. Note that my calculation of two-photon
absorption (&(2)) is similar to that of Hutchings and Wherrett [128], but that I include remote
band effects.

Fig. 3.10 shows the calculated spectra of the population control ratio (3.22) for various
semiconductors. For each material, the ratio is close to unity at the band edge, then drops
steeply, but flattens out to some non-zero ratio as photon energy is increased. In general,
the smaller the band gap (or conduction band effective mass) of the material, the narrower
the range over which the ratio drops, and the lower the ratio at higher excess photon energy.
Worth noting is the particularly large ratio for ZnSe. Also plotted in Fig. 3.10 is the ratio
appropriate for linearly-polarized fields normally incident on a (111) surface of GaAs, which was
the configuration in the experiment of Fraser et al. [36]. For all materials, the ratio (3.24) reaches
exactly unity at the band edge, in agreement with the PBA calculation (C.9) in Appendix C. .

The only previous theoretical calculation of the population-control ratio, which was for
GaAs, missed finding the large ratio near the band edge because it was based on ab initio
calculations of &), ) and &7y that had poor spectral resolution near the band edge [36].
Over the rest of the spectrum shown in Fig. 3.10, it is about a factor of two smaller than my
calculation. This is consistent with the previous calculation being based on a calculation of the
two-photon absorption coefficient §(3) that is too large by comparison with other calculations
[128, 144).

The population-control ratio has been measured only in GaAs [36, 37, 66, 67, 75]. The
measured ratios on (111)-GaAs, at excess photon energies of 180 meV [36, 37] and 312 meV
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Figure 3.10: (Colour) Calculated population control ratios appropriate for opposite circularly
polarized fields normally incident on a (111) surface of InSb, GaSb, InP, GaAs, and ZnSe. The
blue, dotted line is the ratio for linearly polarized fields normally incident on a (111) surface of
GaAs.

[66, 75] were 4 to 5 times smaller than my calculation. Some of the difference can be attributed
to phase mismatch and large sample thickness [36, 37, 66, 75]. An experiment on a (110)-grown

multiple quantum well was complicated by an additional cascaded second harmonic effect [67].

3.6 Spin control

The spin injection can be divided into a contribution from electrons & (I:e)> and a contribution
from holes S(I;h); that is, S(I) = S(I;e) + S(I;h) [similarly, {1y = {(r,e) + C(1;n), Where {(py is
defined in (2.32)].

I treat the spin-split bands as quasidegenerate when taking the FGR limit of perturbation

theory, as discussed for the spin current in Sec. 3.4, deriving the microscopic expression

) o * 1
S0 = L—Z 33 (kIS k) (Qg?gwk) Qg}}v,ki [6 (2w — wep (K)) + 8 (2w — wery (k)] + coc:,

c,c’ vk

where the prime on the summation indicates a restriction to pairs (¢, ') for which either ¢ = ¢,

or ¢ and ¢’ are a quasidegenerate pair. Using the time-reversal properties of the Bloch functions,
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Figure 3.11: (colour) Spin control pseudotensor components (;4 (black lines), {;p (red lines),
and ({74 + 2¢rB) (blue line) with breakdown of initial states. Dotted lines include transitions
from the [h band, dashed lines include transitions from the Ah band, dashed-dotted lines include

transitions from the so band, and solid lines include all transitions.

I find that ((;.e) is purely imaginary and can be written

=1 () g S 3 S ey me { R [+ (321) T}

w —_—
cc vk n nvk

(3.25)
where Mglz » is given in Eq. (3.16).

The spectra of {14 and (;p for GaAs are shown in Figs. 3.11 and 3.12. Figure 3.11 includes
the contributions from each possible initial valence band. Figure 3.12 shows the spin control
calculated with various degrees of approximation described in Sec. 3.2.5.

The term (74 decreases from zero at the band edge to a maximum negative value at 40 meV,
mostly due to transitions from the hh band, and is positive at higher excess photon energies,
mostly due to transitions from the [h band. The low energy behavior is in agreement with the
PBA result (C.12a), in which the ratio of hh : lh transitions is (mcpn /mc,lh)?’/ 2 Transitions
with so and uc intermediate states dominate the decrease in (74 at low excess photon energies,
as seen in Fig. 3.12(a); they are the only non-zero transitions in the PBA result (C.12a). The
contribution from wuc intermediate states is negative and approximately constant over most
of the spectrum, whereas the contribution from so intermediate states goes from negative to
positive as transitions from the so band become allowed (2fw > Eg + Ao). The contribution
from 2BTs, which is zero in the PBA, is positive over the whole spectrum. The breakdown of

the PBA is due to the increase in magnitude of the 2BTs. In fact, the sum of the PBA and the

2BTs is a good approximation to the full calculation. I also note that a calculation with Hg
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Figure 3.12: Spin control pseudotensor for GaAs. The approximations are described in Sec.
3.2.5.

yields a near negligible result for {;4; thus, the contribution from intermediate states within
the set {so,lh, hh,c} (including 2BTs) is due to the mixing of the I'y. and I's. wavefunctions

with these states.

The term ¢ p is larger in magnitude than the term (54 over most of the calculated spectrum.
It falls to a maximum negative value at 95 meV, sharply increases when transitions from the so
band become allowed, and is positive at higher excess photon energy. At lower photon energies,
transitions from the hh band and transitions from the [A band both make negative contributions
to {rp; in the PBA result (C.12b) the ratio of hh : lh transitions is (mc,hh/mc,lh)3/2- Fig. 3.12(b)
reveals that (;p is essentially due to contributions from uc intermediate states, and 2BTs. Over
the whole spectrum, the former are negative while the latter are positive. The smallness of the
contribution from so intermediate states is also seen in the PBA result (C.12b), since Z; > Z!
in that expression. I also note that a calculation with Hg yields a near negligible result for {;p;
thus, the contribution from intermediate states within the set {so,lh, hh,c} (including 2BTs)
is due to the mixing of the I'7. and I's, wave functions with these states.

I have also calculated the spin control pscudotensor for the semiconductors InSb, GaSb,
InP, and ZnSe. The results are shown in Fig. 3.13 along with the allowed-allowed parabolic
band approximations (C.12a) and (C.12b).

The magnitude of spin control is determined by (), but in an experiment one is more
interested in the depth of the phase dependent modulation of the spin polarization signal. One

possible definition for the signal is the ratio of spin injection measured with both w and 2w fields
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Figure 3.13: (colour) Spin control calculated for InSb, GaSb, InP, and ZnSe. Black lines are
Cra and red lines are {;p. Solid lines are the full calculation using Hy4. Dotted lines are the

parabolic band approximation calculated with (C.12a) and (C.12b).

to the sum of the spin injections measured with circularly polarized fields of each frequency
[66]. The amplitude of its modulation is

‘351)

S(zl) (o) + S(ZQ) (o)

(3.26)

where the argument (o) indicates injection with a o polarized field. This ratio, which is
largest for field amplitudes that equalize S(zl) (1) and S(zz) (o), was measured by Stevens et
al. with excess photon energies of 150 meV and 280 meV [66, 67].

The ratio (3.26) has an undesirable feature: it can exceed unity. Close to the band edge in
many semiconductors (at 2meV in GaAs), there is a photon energy for which 3(22) () =0 (see
Chapter 4). At that photon energy, it is impossible to choose field amplitudes to balance one-
and two-photon spin injection with circular polarized fields [S(zl) (ch) = 5(22) (¢1)], and thus
the maximum ratio has a singularity. Even if the condition 3(1) (1) = 3(2) (o) is relaxed,
the ratio (3.26) can exceed unity. This is because S(zl) (67) and 5(22) (o) have opposite sign
close to the band gap (see Chapter 4), and thus it is possible, by appropriate choice of field
amplitudes, to make the denominator of the ratio arbitrarily small.

An alternate ratio to characterize the spin control, which has an upper bound of unity, is

2 %

Rg=2_ "0 (3.27)
R Nuy + N

It is the amplitude of phase-dependent oscillation of the degree of spin polarization, and it is

most useful when there is little or no population control. I assume the fields are chosen to
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balance one- and two-photon absorption. For most photon energies and materials this is nearly
the same as balancing one- and two-photon spin injection.

For normal incidence on a (111) sample, opposite circularly polarized fields yield

|Cra + 2¢; 8|
h V3EEs 1 —0/6-9)

For normal incidence on a (110) sample, opposite circularly polarized fields

2 3|¢ra + 2CIB|
ha e (1-8—0/8)

S:

and orthogonal linearly polarized fields (zy-polarized) yield

|(¢ra + 2¢1B) (r + 3sin? @) cos |

2
h2\/§(l) ?;)a“ (1 — 2o (sin? @) (1 + 3 cos? a))

Rg

where r = —2(74/({14 + 2{1B) [66], and « is the angle between the polarization of the w field
(E.) and the [001] axis, which lies in the (110) plane. The angle that maximizes Rg depends
on photon energy through r and o. I determine it numerically.

The ratio Rg for GaAs is plotted in Fig. 3.14(a). For (111)-incidence, opposite circularly
polarized fields yield the highest ratio over the studied range of photon energies. For (110)-
incidence, opposite circularly polarized fields yield the highest ratio, except for between 190
meV and 415 meV when zy-polarized fields the highest ratio. For xy-polarized fields, the angle
that yields the largest ratio decreases from 0.99 rad to 0.53 rad from the band edge to 320 meV,
and is zero for higher excess energies.

The ratio Rg for the five semiconductors InSb, GaSb, InP, GaAs, and ZnSe are plotted
in Fig. 3.14(b). At low photon energy, opposite circularly polarized fields normally incident
on (111) yield the largest ratio for InSb, GaSb, GaAs, and ZnSe, whereas orthogonal linearly
polarized fields normally incident on (110) yield the largest ratio for InP.
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Figure 3.14: (colour) Spin-control ratio normalized by carrier population [Eq. (3.27)]. In (a),
for GaAs, black lines are (111)-incident, opposite circularly polarized fields; green lines are
(110)-incident, opposite circularly polarized fields; and red lines are (110)-incident, orthogonal
linearly polarized fields. In (b), for InSb, GaSb, InP, GaAs, and ZnSe, solid lines are (111)-
incident, opposite circularly polarized fields. The dotted line in (b) is (110)-incident, orthogonal
linearly polarized fields for InP.
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Chapter 4

Two-photon Spin Injection

4.1 Introduction

In this chapter, a comparison is made between the degree of spin polarization of electrons
excited by one- and two-photon absorption of circularly polarized light in bulk zinc-blende
semiconductors. The macroscopic symmetry and microscopic theory for two-photon spin in-
jection are reviewed, and the latter is generalized to account for spin-splitting of the bands.
The degree of spin polarization of one- and two-photon spin injection are calculated for GaAs,
InP, GaSb, InSb, and ZnSe using the fourteen-band model described in the preceding chapter.
By including the higher conduction bands in the calculation, cubic anisotropy and the role of
allowed-allowed transitions can be investigated. The allowed-allowed transitions do not con-
serve angular momentum and can cause a high degree of spin polarization close to the band
edge; a value of 78% is calculated in GaSb, but by varying the material parameters it could
be as high as 100%. The selection rules for spin injection from allowed-allowed transitions are
presented, and interband spin-orbit coupling is found to play an important role.

It is well known that linear absorption of circularly polarized light in a semiconductor
produces spin-polarized electrons in the conduction band [2]. This occurs as a result of the
entanglement of electron spin and motion caused by the spin-orbit coupling in the material;
in the absence of spin-orbit coupling, there would be no net spin polarization of the excited
carriers. For many common semiconductors, the highest valence states are in the degenerate
heavy- and light-hole bands at the I point. Consequently, the highest degree of spin polarization
that can be achieved is 50%. Such a situation occurs when the photon energy exceeds the band
gap, but is not large enough to excite carriers out of the split-off band. This can be understood
from selection rules that result from the symmetry of the states at the I' point [2].

One way to increase the spin polarization of the injected electrons is to use materials where

the degeneracy between heavy and light hole bands is removed by strain and/or quantum
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confinement, so that one can excite carriers only from one band. From the symmetry of the
states, one then expects 100% spin polarization. And indeed both theory [2] and experiments
[161, 162] have shown a significant enhancement of the degree of spin polarization. The spin
polarization could also be increased by using compounds with crystal structures having no

valence band degeneracy [163-165].

Spin injection can also arise from two-photon absorption. For certain applications this might
have advantages over one-photon spin injection due to a much longer absorption depth, which
allows spin excitation throughout the volume of a bulk sample. Two-photon spin injection
has been investigated in lead chalcogenides (PbTe, PbSe, and PbS), which are cubic, and
have direct fundamental band gaps at the L points [18]. High degrees of spin polarization
in these materials have been predicted [18], but not observed [166-169]. The focus in this
chapter is on semiconductors that have a direct fundamental band gap at the I' point, such as
GaAs. Based on arguments involving the conservation of angular momentum, it was recently
suggested that 100% spin polarization could be achieved in unstrained bulk GaAs from two-
photon absorption [19]. However, earlier theoretical results, including Eq. (2.54), predict a
two-photon spin polarization of no more than 64% for this class of cubic semiconductors [18,
170, 171]. And time- and polarization-resolved experiments in (001)-oriented GaAs reveal
an initial degree of spin polarization of 49% for both one- and two-photon spin injection at
wavelengths of 775 and 1550 nm [20]. Equality of one- and two-photon spin injection was also

observed by Stevens et al. in an experiment with (111)-oriented GaAs [66].

In this chapter, I present microscopic calculations of two-photon spin injection that go be-
yond the spherical approximation made by earlier calculations. I show how the simple argument
based on conservation of angular momentum breaks down, and examine the transitions that
give rise to the partial spin polarization. The calculated one- and two-photon degrees of spin
polarization are not equal for all materials, and I find that, in fact, two-photon spin injection

can be fully polarized, but only from transitions that do not conserve angular momentum.

Optical transitions near the I' point can be summarized with sketches such as those in Fig.
4.1 (cf. Fig. 3.1). The symmetry of the states at the I' point of a crystal with zinc-blende
symmetry is as follows. The conduction band (T's.) is s-like with two degenerate spin states,
while the valence bands are p-like. The p-like orbitals are coupled to the electron spin to form
four states (the heavy and light hole bands, I's,) that are total angular momentum (j = 3/2)-
like, and two states at lower energy (the split-off band, I'z,) that are (j = 1/2)-like [118].
Note that these states are commonly referred to as if they were eigenstates of total angular
momentum, even though they are not [118]. The levels corresponding to the split-off band

are not shown in Fig. 4.1. The selection rules for the transitions between the I'z,, I'sy, and
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Figure 4.1: Optical transitions in a bulk zinc-blende semiconductor for circularly polarized light
ot allowed by the selection rules: (a) for one-photon absorption, (b) for two-photon absorption
as suggested by Matsuyama et al. [19], (c¢) two-photon allowed-forbidden transitions with a
conduction band as an example of an intermediate state, and (d) two-photon allowed-allowed
transitions for vanishing interband spin-orbit coupling and light incident along a (001) direction.
The quantum number m; for the projection of total angular momentum on the light propagation
direction of all states involved is indicated in the figures. The thickness of arrows and adjacent

number in (a) and (c) express the relative transition probabilities.

Te. states are the same as for the states of a spherically symmetric system [2].} Thus they
can be understood using angular momentum arguments. By applying the familiar selection
rule that one-photon absorption of circularly polarized light with positive helicity (c1) must
change the projection of total angular momentum by +1, one sees that only the two transitions
shown in Fig. 4.1(a) are allowed. An examination of Clebsch-Gordan coefficients reveals that
the transition from the m; = —3/2 state of the valence band to the m; = —1/2 state of the
conduction band is three times as probable as the transition from the m; = —1/2 state of the
valence band to the m; = +1/2 of the conduction band. Thus, near the band edge, one expects
a value of 50% for the net degree of electron spin polarization
N| — N;

P=——""
N, + Ny

(4.1)

where N| (N; ) is the concentration of electrons with spin down (up).

The idea of angular momentum conservation was applied to two-photon absorption by

!Recall from Chapter 2 that the eight-band Kane model is isotropic.
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Matsuyama et al. [19]. They argue that because the total angular momentum of the two
right circularly polarized photons is +2, only the transition from m; = —3/2 to m; = +1/2 is
allowed [see also Fig. 4.1(b)]. Therefore, they suggest that even in a bulk semiconductor with
degenerate valence bands the resulting electron spin polarization should be 100%, and indeed
with an opposite sign with respect to one-photon spin injection.

On the other hand, the degree of spin polarization due to two-photon spin injection has
been calculated several times [18, 170, 171], including in Sec. 2.4, using the eight-band Kane
model [121]. Ivchenko calculated the degree of spin polarization in the limit of large spin-orbit
splitting [18, 170]. Arifzhanov and Ivchenko improved the calculation by allowing the split-off
band to act as an intermediate state; they gave the degree of spin polarization at the band edge
as a function of E4/A¢, where Ej is the band gap energy and Ay is the spin-orbit splitting [171].
For GaAs, one infers a 51% degree of spin polarization from their results. Note that, in contrast
to one-photon spin injection, the degree of spin polarization of two-photon spin injection near
the band edge depends not only on the symmetry of the states, but also on various material
parameters. In (2.54), with only two-band transitions included, I give a very simple expression
for the two-photon degree of spin polarization in terms of the conduction and valence band
effective masses, from which one infers for GaAs a spin polarization of 48%.

In most III-V semiconductors, the next higher conduction bands are p-like (I'7. and T'g.)
[118]. The role that these higher bands play in two-photon spin injection has not previously
been investigated. It is known that k - p mixing with these bands is responsible for cubic
anisotropy of two-photon absorption [128, 142]. The higher conduction bands can also act as
intermediate states in the two-photon amplitude. Such transitions are qualitatively different
than transitions within the set of bands nearest to the fundamental band gap [172-175].

In Sec. 4.2 we review the symmetry of two-photon spin injection and I present my calculation,
which includes the higher conduction bands. In contrast to previous calculations of two-photon
spin injection [18, 170, 171] [including (2.54)], this calculation is not perturbative in k. In
Sec. 4.3 I discuss the transitions responsible for the degree of spin polarization in two-photon
absorption [Figs. 4.1 (c¢) and (d)]. In Appendix C.3, I derive expressions for the degree of

two-photon spin injection due to so-called “allowed-allowed” transitions.

4.2 Calculation of two-photon spin injection

For an electric field of the form E (t) = E,, exp(—iwt) +c.c. (I sometimes write E,, = E_ 8&,), the
two-photon spin injection rate can be written phenomenologically as St = (g;ﬂmEﬁ,EﬁEL*ELn*,
where Cg;clm is a fifth rank pseudotensor symmetric on exchange of indices j and k, and on

exchange of indices [ and m; superscript lowercase letters denote Cartesian components and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. TWO-PHOTON SPIN INJECTION 64

repeated indices are to be summed over [33]. For the point groups Ty and O, appropriate to
most cubic semiconductors, a general fifth rank pseudotensor has ten independent components.

ilmjk __ ( z]klm)*

Forcing the j — k and | < m symmetries, and the condition for reality of 8, ¢ @) (2)

leaves three independent real components.
I define (o4 = —i¢®°¢ and (op = Im(*®%¢, where the indices a, b, and ¢ denote compo-
nents along the standard cubic axes [100], [010], and [001]. Then the three independent real

components are Re(o4, Im(s4, and (5. In the standard cubic basis, the non-zero components

of ((Z%;dm are

Cabbbc _ Cabccc C?g)caa — C&c)cac — C(cg)aab C—(cg)bbb =iCon

C&b)cbb szzc)cbc — C?Qa)aac — Cf)za)ccc g(cg.)baa — C(cggwab S C;A

C&a)bac — C?g)cab ((cg)cbc — C&a)cab Cg)éz)bbc - _ C(c2b)cac — iC2B,
as well as those generated by exchanging j < k and/or | < m, for a total of 48 components.
The point group symmetry allows spin injection for linearly polarized light, associated with

Im(24. However, from a microscopic expression for Cg;dm in the independent-particle approxi-

mation [see Eq. (4.4), (4.5), or (4.6) below], one can show that (g;dm must be purely imaginary
due to the time-reversal properties of the Bloch states. One might expect deviations from the
independent-particle approximation within an exciton binding energy of the band edge (see
Chapter 6) [174, 176]. In what follows, I assume the independent-particle approximation is
valid, which leaves the two-photon spin injection specified in terms of two real parameters (24
and (2p.

The component of the spin-injection rate along one of the cubic axes can be written com-

pactly (with no summation convention) as [18]
Si = 2i(E, x E) (@A B2 + (2G5 — Goa) | EL| ) (4.2)

If the material were isotropic, the spin injection rate could be described by only one real
parameter; (o4 = 2{op and the second term in Eq. (4.2) would be zero.

The cubic anisotropy means that the two-photon spin injection from circularly polarized
light depends on the angle of incidence of the light relative to the cubic axes. For circularly
polarized light incident along i specified by polar angles 8 and ¢ relative to the cubic axes,

8=l E (14 22222 .9)). (43)

where f (0, ¢) = sin? (20) + sin* (6) sin? (2¢). The upper (lower) sign is for right (left) circular
polarization. The analogous equation for two-photon absorption is given by Hutchings and

Wherrett [128]. Equation (4.3) has extrema for light incident along (001) and (111) directions.
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Due to the cubic anisotropy, the net injected spin is not always parallel to f, although it is
when 1 is along (001) or (111). In particular, for light along a (001) direction, |§| = 2¢o4|E. |4,
while for light incident along a (111) direction, |8| = (4/3) (Cza + (28) | Eu|*.

4.2.1 Microscopic calculation

Microscopic expressions for the two-photon spin injection rate, derived using the assumptions
discussed in Sec. 1.1 and the independent-particle approximation, have been given before [18, 33,
171]. However, all previous calculations, and the result (2.54) in Chapter 2, used semiconductor

models in which all bands are doubly degenerate. In such a case, one finds that

!

_27r
T3

/
c,c/ v,k

S (ck| S |¢k) P

vk C,’v,ké 2w — wey (K)], (4.4)
where |nk) is a Bloch state with energy fw,(k), L? is a normalization volume, S is the spin
operator, wpm (k) = wp (k) —wp,(k), the prime on the summation indicates a restriction to pairs
(¢, ') for which wey = 0, and ng,k is the two-photon amplitude given in (2.4). However, the
spin degeneracy is removed in real crystals of zinc-blende symmetry [145, 146], albeit with a
small energy splitting. Thus, (4.4) is unsuitable for a calculation with the fourteen-band model,
which accounts for this spin-splitting [130].

If the spin-split bands were well separated, a straightforward FGR derivation would yield

. 27 2
5 =53 (IS |2f) | 812w - we ()], (45)

e,k
which is a simpler result than (4.4). However, in GaAs the splitting is at most a few meV
for conduction states within 500 meV of the band edge [137]. Since this is comparable to the
broadening that one would calculate from the scattering time of the states (and also to the laser
bandwidth for experiments with pulses shorter than 100 fs), spin-split pairs of bands should be
treated as quasidegenerate in FGR. Thus in place of Eq. (4.4) or (4.5) I use,

52" i (ck| S |¢'k) 2 o)

c,u, ke v

w5120 —wa (O] 4320 —we, (O}, (46)
c,c/ vk

where the prime on the summation indicates a restriction to pairs (c, ¢’) for which either ¢’ = ¢,

or c and ¢’ are a quasidegenerate pair. The coherence between quasidegenerate bands is optically

excited and grows with their populations, as is the case with simpler band models that neglect

spin splitting, including the isotropic Kane model from Chapter 2 [18, 33, 170, 171]. This same

issue arises in the fourteen-band calculations of “14+2” spin-current injection and “14-2” spin

control (Chapter 3), and one-photon spin-current injection (Chapter 5). In Chapter 5, it is
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justified using the semiconductor optical Bloch equation approach. That approach yields the

same result as the approach taken here, which is simpler.

ijklm that

Using the time-reversal properties of the Bloch functions, the expression for C(z)

follows from (4.6) can be simplified to give

ijklm _ . 4 2m (ck| St |c’k) (ijlm _ Vlmjk) /2
C(%) = (_) Z Z 0 2w — wey (k)] Im (wWnw (K) — w) (Wpry (k) —w) |’ (4.7)

¢,/ v,k n,n’

where
ijlm = {VC',n/ (k) > Vn/ (k) }] {Vz,n (k) L) (k)} " )
and {v1,vo}¥ = (viv] + vivi)/2.
The photoinjection rate for the density of electron-hole pairs is, from (2.17),

27r
Ny =

fjk’ 82w — wen (K)]. (4.8)

c,v.k
From Eqgs. (4.6) and (4.8), the degree of spin polarization, P, can be calculated, since

p=_25-1 (4.9)
h N

The sign of P is chosen so that a positive P corresponds to an excess of electrons with spin
down, i.e. spin opposite the photon angular momentum.

To evaluate the degree of spin polarization, I use a k - p model that diagonalizes the one-
electron Hamiltonian (including spin-orbit coupling) within a basis set of fourteen I'-point
states, and includes important remote band effects [130]. The fourteen states (counting one
for each spin) comprise six valence band states (the split-off, heavy, and light hole bands), and
eight conduction band states (the two lowest, which are s-like, and the six next-lowest, which
are p-like).

The model is the same as that used in the preceding chapter, except that here the remote
band velocity is not included, even though remote band terms are included. The effect of the
remote band velocity contributions to one-photon absorption was discussed by Enders et al.
[138]. In this calculation, removing the remote band terms from the Hamiltonian changes P
for GaAs by at most 2%. Thus I feel justified in the neglect of the remote band contributions
to the velocity operator.

This two-photon spin injection calculation is similar to the two-photon absorption calcula-
tion of Hutchings and Wherrett [128]. I can reproduce their results by removing remote band

effects, which they did not include.
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Table 4.1: Calculated band-edge two-photon P.

| InSb (%) GaSb (%) WP (%) GaAs (%) ZnSe (%)
[001] —49.3 —58.9 58.7 —-20.5 —-14.5
[111] —-73.3 -784  —16.6 —60.0 —57.1

4.2.2 Calculation results

The calculated degrees of electron spin polarization, P, are shown for GaAs, InP, GaSb, InSb,
and cubic ZnSe in Fig. 4.2 as a function of excess photon energy, 2w — Ej, where E is the
fundamental band gap. I also show, for comparison, the degree of electron spin polarization
due to one-photon absorption, which is discussed in Chapter 5. For each semiconductor, the
one-photon degree of spin polarization is 50% at the band edge as expected from the I'-point
selection rules.

In GaAs, so long as the excess photon energy is less than the split-off energy (341 meV) and
greater than about 50 meV, there is a near equality of one- and two-photon P’s. This agrees
recent experimental results [20, 66].

Close to the band edge however, there is a feature of the two-photon P that has not pre-
viously been identified; it is seen more clearly in the insets of Fig. 4.2. The values of the
two-photon P at the band edge for each material are listed in Table 4.1. This feature is further
discussed in Sec. 4.3, but I note here that it does not appear in a spherical approximation. To
show this, I have calculated the two-photon P with the 8 x 8 Kane model that includes only
the valence bands and the I's, conduction bands, has C;, = 0, and has 9 and ~3 replaced by
¥ = (2724 373) /5 to give spherical bands [140] (“Hggpn” in the notation of Sec. 3.2.5); the
result, which is independent of crystal orientation, is shown in the dashed-dotted lines in Fig.
4.2.

Both one- and two-photon P’s decrease as the excess photon energy is increased. This is
due to band mixing away from the I' point, which changes the selection rules. At excess photon
energies above the split-off energy, the one-photon P decreases due to transitions from the
split-off valence band [2]. The two-photon P also decreases due to these transitions, but less
s0.

The possibility of cubic anisotropy in two-photon spin injection was first pointed out by
Ivchenko [18], although it has not been calculated until now. Cubic anisotropy in two-photon
absorption, on the other hand, has been calculated by Hutchings and Wherrett [128]. They
found that near the band edge two-photon absorption of circularly polarized light in GaAs
should be about 10% greater for light incident along [111] compared to along [001] [128]. The

results of my calculation for GaAs indicate that two-photon spin injection varies with crystal
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Figure 4.2: Calculated degrees of electron spin polarization P in (a) InSb, (b) GaSb, (c) InP,
(d) GaAs, and (e) cubic ZnSe. The solid (dashed) lines are for two-photon excitation with light

incident along a (001) ((111)) direction and the dotted lines are for one-photon excitation. The

dashed-dotted lines are for two-photon excitation calculated with an eight band (I'7,, I's,, and

Tgc) spherical model. The insets show P close to the band edge. The sign of P is given by Eq.

(4.9).
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orientation by a similar amount. Hence the degree of spin polarization shown in Fig. 4.2(d),
which is the ratio of the two, varies with crystal orientation by only a few percent for most
photon energies in the range I investigated. This is not the case, however, for excess photon
energies very close to the band gap, as can be seen in the inset of Fig. 4.2(d). The cubic

anisotropy is more substantial for ZnSe and InP.

4.3 Discussion

The prediction of a 100% degree of two-photon spin injection mentioned in Sec. 4.1 uses ar-
guments familiar from spherically symmetric systems. At first it might seem incorrect to even
apply these in cubic systems. For the crystal Hamiltonian is not rotationally invariant and
thus does not conserve angular momentum: The lattice is viewed as fixed and able to pro-
vide any amount of torque. However, the deviation from spherical symmetry is small in many
cases, and hence angular momentum arguments should have approximate validity. Stated more
technically, since Ty is a subgroup of Oy, which is a subgroup of the full rotation group, the
Hamiltonian can be written as the sum of spherical, cubic and tetrahedral parts with the latter
two treated as perturbations [132, 140, 177-179]. The eight band Kane model (even including
remote band effects but with 97, = 731 and Cy = 0) is spherically symmetric, but can nonethe-
less accurately describe many properties of electrons in semiconductors. It has been used, in
particular, for earlier calculations of one- and two-photon spin injection [2, 18, 170, 171], and
for “142” current and spin-current injection (see Chapter 2). In a spherical model however, the
transitions depicted in Fig. 4.1(b) do not occur. By examining the possible intermediate states
[i.e. band n in Eq. (2.4)], we can see which transitions do occur, and understand the transfer

of angular momentum.

4.3.1 Allowed-forbidden transitions

When the intermediate state is in the same band as either the initial or final state (a so-called
“two-band transition”), one of the photons causes an intraband transition. These two-band
transitions dominate two-photon absorption in GaAs [172] and indeed in most semiconductors
[173-175]. They are “allowed-forbidden” transitions because the intraband transition, propor-
tional to the velocity of electrons in the band, is zero at the I' point. Consequently, it is not
possible to derive the two-photon degree of spin polarization using the states at the I' point
as can be done for one-photon excitation [Fig. 4.1(a)], “14+2” population control (C.1), “1+2”
spin control (C.2), or allowed-allowed two-photon transitions [Fig. 4.1(d)]. Instead, one must
go away from the I' point and sum over all k directions. With this caveat in mind, I nonetheless

give a schematic illustration of a two-band transition in Fig. 4.1(c). One should bear in mind
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that, away from the T" point, one cannot in general associate states in the heavy hole band with
J, = £3/2 and states in the light hole band with J, = £1/2, since this is only true for k || z.
It is essentially due to this complication that the sum over directions of k gives a two-photon

P that depends on the details of the bands.

The slower decrease of the two-photon P compared to the one-photon P at excess photon
energies greater than the split-off energy can be understood from a consideration of two-band
transitions. The one-photon P decreases in this regime due to the selection rules involving
transitions from the split-off band [2]. The same selection rules apply to the interband part of
the two-band transition, but the intraband part of transitions from the split-off band is much
weaker than the transitions from the heavy and light hole bands, since the latter excite to states

higher in the conduction band that have higher velocity.

There are also allowed-forbidden transitions of the three-band variety (hh—lh—c, hh—so—c,
lh—hh—c, and [h—-so—c); in these cases, the inter-valence band matrix elements can connect states
of opposite spin. Their effect on the two-photon spin polarization approximately cancels out
in GaAs, as one can see by comparing a calculation that neglects them (2.54) with one that
includes them [171].

Within a spherical model, allowed-forbidden transitions must conserve angular momentum;
two-photon absorption with circularly polarized light must transfer two units of angular mo-
mentum to each electron-hole pair that is created. In order to understand how this leads to an
incomplete electron spin polarization, one should form eigenstates of angular momentum, even
away from the I point. Such states can be formed in a spherical model with envelope functions
over an expansion of Bloch states [180]. Any treatment of electron angular momentum must
then take into account both the cell-periodic part and the envelope-function part of the electron

wave function. It is the latter that is neglected in the argument of Matsuyama [19].

Yet even without that analysis it is clear that, in a simple two-band spherical model con-
sisting of a single spin degenerate valence band and a single spin degenerate conduction band,
the two units of angular momentum are divided equally between the two parts of the electron
wave function. This can be inferred from the fact that the envelope function for the relative
motion of the electron and hole has one unit of orbital angular momentum (i.e. it is a p wave)
(176]. A two-band spherical model can be mocked-up from an eight-band spherical model by
setting the heavy and light hole band masses equal [174, 177]. Doing so with (2.54) one sees
that in that case the two-photon P is 50% [since (1+ 7/3)/(3+11/3) = 1/2] at the band edge.
More generally, the maximum two-photon P in a spherical model is 64% [171]. This can be
seen from (2.54) by varying the effective masses to maximize P; the maximum is 7/11 when

Me,ih > Mepp- In Arifzhanov and Ivchenko, the maximum 7/11 occurs for Ag > Ej.
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4.3.2 Allowed-allowed transitions

Allowed-allowed transitions are those for which both matrix elements in the two-photon am-
plitude (2.4) are non-zero at the I' point. Allowed-allowed transitions have a different fre-
quency dependence than allowed-forbidden transitions. Near 27w 2 E, the former varies as
(2hw — E,4)'/? while the latter varies as (2hw — Ey)3/2. Hence, allowed-allowed transitions can
dominate allowed-forbidden transitions in a frequency range close to the band edge. For GaAs,
however this range is only 10 meV [128, 172]. As seen in the fourteen-band calculation shown
in the inset of Fig. 4.2(d), the two-photon degree of spin polarization in this range can be very
different from the rest of the spectrum. These transitions are necessarily due to lower symme-
try parts of the Hamiltonian; in a system with true spherical symmetry one could not have a
two-photon transition from a p state to an s state, since two-photon transitions cannot connect

states of opposite parity.

The selection rules for allowed-allowed transitions are worked out in Appendix C.3. Counsider
first the simple approximation of vanishing interband spin-orbit coupling A~ (denoted A by
Pfeffer and Zawadzki [130]). Then the basis states given in (3.2) are the energy eigenstates at
the I' point. For ot polarized light incident along [001], the only allowed-allowed transitions are
depicted in Fig. 4.1(d); these can be derived from Table III of Lee and Fan [174]. The product
of the two matrix elements in the two-photon amplitude is the same for both transitions. Thus,
if the spin-orbit splitting of the upper conduction bands Aj can be neglected compared to the
other energy differences, then P is zero [see Eq. (C.19) with A~ = 0]. For ¢T polarized light
incident along [111], the non-zero transitions are i) |I',, +1/2) to |T's,, —3/2) to [T, —1/2); ii)
[Chys+3/2) 0 (IThes —1/2) and [T, ~1/2)) to [T, +1/2); and iii) [Th,, ~3/2) to (The, ~1/2)
and |T'%,, —1/2)) to |T'g,, +1/2). Here the prime indicates that the states are rotated so that the
quantization axis is [111] rather than [001]. If the spin-orbit splitting of the upper conduction
bands Af can be neglected compared to the other energy differences, then the third of these is
zero and the probability for the second is three times that of the first, resulting in P = —0.5
[see Eq. (C.20)].

However, close to the band edge, where allowed-allowed transitions dominate, the full
fourteen-band calculation [see Table 4.1 or the insets of Figs. 4.2(a)—(e)] does not agree with
these simple arguments. There is significant difference between materials; for GaAs P = —0.21
and P = —0.60 for light incident along [001] and [111] respectively. The disagreement is due to
the importance of the spin-orbit mixing between the valence and upper conduction conduction

bands, characterized by a nonvanishing A~

The interband spin-orbit coupling A~ would be zero if the material had inversion symmetry

[136, 137, 181]. In contrast to most of the other parameters in the fourteen-band model, the
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Figure 4.3: Sensitivity of the GaAs band-edge two-photon P to A~. The solid (dashed) line is
for two-photon excitation with circularly polarized light incident along a (001) ({111)) direction
as calculated with the fourteen-band model. The dotted line is Eq. (C.19).

value of A™ has not been determined by directly fitting it to one or more experimental results.
Rather, it has been calculated by various methods: the empirical pseudopotential method
(—61meV for GaAs) (124, 130, 182], the tight binding method (—85meV for GaAs) [137],
the ab initio linear-muffin-tin-orbitals method (—110meV for GaAs) [137], and by an indirect
fitting with a 30 x 30 k - p Hamiltonian (—70meV for GaAs) [137, 181].

In light of the variation in calculated values of the interband spin-orbit coupling A~, I
have investigated the dependence of the band edge two-photon degree of spin polarization on
A~. The result, shown in Fig. 4.3, is rather dramatic. First, it shows that for small A=, P
due to [001] incident light is proportional to A~, whereas P due to [111] incident light is less
sensitive to A~. Second, it indicates that a 100% degree of spin polarization could indeed be
possible due to two-photon absorption. But this possibility is not due to the transfer of angular
momentum from the light to the electrons. Since it results from allowed-allowed transitions that
are only non-zero due to the lack of inversion symmetry and could only occur for certain crystal
orientations, I suggest that some of the angular momentum comes from the crystal lattice itself.

The selection rules for allowed-allowed transitions including interband spin-orbit coupling
are given for [001] incident light in Eqs. (C.13—-C.18) and an expression for the resulting spin
polarization is given in Eq. (C.19). It is worth noting that P is independent of the valence-upper
conduction momentum matrix parameter Q).

This allows us to see how the small spin-orbit mixing between valence and upper conduction
bands can have an important effect on the band edge spin-polarization. Allowed-allowed tran-
sitions between the unmixed states [Fig. 4.1(d)] are proportional to the small matrix element

Py, which would be zero if there were inversion symmetry. And since the intermediate state is
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in an upper conduction band, the energy denominator of the two-photon transition amplitude
is large, which further reduces the amplitude for these transitions. The interband spin-orbit
mixing, proportional to A™/E], is small, but it introduces allowed-allowed transitions with a
valence band as an intermediate state. Then, instead of being proportional to Py, the transi-
tion is proportional to Fy, and the energy denominator is smaller. This allows the condition

CP} = DPyA~ to be met with fairly modest interband spin-orbit mixing.

4.4 Conclusion

I have presented the first calculation of two-photon spin injection that goes beyond a spherical
model. The cubic anisotropy of the two-photon P is small for most of the semiconductors I
investigated at photon energies where allowed-forbidden transitions dominate, although it is
somewhat larger in ZnSe and InP than in the others. Allowed-allowed transitions, which do
not appear in a spherical model, and hence do not conserve angular momentum, are found to
strongly modify the two-photon P close to the band edge, and cause a large cubic anisotropy.
I have identified the selection rules responsible for these transitions, and found that interband
spin-orbit coupling plays an important role.

Measuring the two-photon P due to allowed-allowed transitions would be challenging in
most semiconductors, since they only dominate in a narrow energy range, and the absorption
rate is small close to the band edge. However, such a measurement could serve as a means of
determining the parameter A~, which contributes to the electron g factor [137] and the spin
splitting of bands [127, 130].

I emphasize that the calculations presented here are all in the independent-particle approxi-
mation, and in particular neglect the Coulomb interaction between the optically excited electron
and hole. Hence, two-photon injection of spin-polarized bound excitons is outside the scope of
this chapter. Excitonic effects on “14-2” excitation are discussed in Chapter 6. Close to the
band edge, excitonic effects are known to enhance two-photon absorption [174, 176, 183-185].
Two-photon spin injection will be similarly enhanced, and thus the two-photon P will be less
sensitive to excitonic effects since it is a ratio of the two (see Eq. 4.9). Certainly, for excess pho-
ton energies greater than an exciton binding energy, I do not expect excitonic effects to greatly
modify the results presented here. However, within an exciton binding energy of the band edge,
the enhancements of allowed-allowed and allowed-forbidden transitions may differ [184, 185],
envelope-hole coupling may modify the selection rules leading to two-photon spin injection
[186], and the electron spin lifetime will be shorter due to the Bir-Aronov-Pikus mechanism of
spin relaxation [187]. Thus, a complete theory of two-photon spin injection close to the band

edge should include excitonic effects. Nonetheless, the two-photon P due to allowed-allowed
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transitions predicted here in the independent-particle approximation should be observable in

materials for which the dominance of allowed-allowed transitions extends beyond an exciton

binding energy of the band edge.
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Chapter 5

Pure Spin Current from One-Photon
Absorption of Linearly Polarized
Light in Noncentrosymmetric

Semiconductors

5.1 Introduction

Chapters 2 and 3 show that “142” excitation can inject either a spin-polarized electrical current
(SPEC) or a pure spin current(PSC), the latter distinguished by the absence of an accompanying
charge current. That prediction led to the first observations of PSCs [41, 42]. There have been
many recent proposals for PSC schemes involving spin-pumping or spin Hall effects [43, 44, 48—
55, 60, 62|, some of which have been experimentally observed [45-47].

In this chapter, I show theoretically that a ballistic PSC can be generated in noncentrosym-
metric semiconductors, merely by one-photon absorption. This feature of one-photon absorption
of linearly polarized light does not seem to have been appreciated previously: It occurs even
in unstrained bulk GaAs, it can be generated by a single, weak continuous wave (CW) laser
beam, and it arises from the symmetry of the crystal itself. I calculate the linear PSC using the
14 x 14 k - p model used in preceding chapters. I also use an extension of the model to show
that the linear PSC can be increased with the application of strain.

In the notation of Sec. 2.2.3, the linear PSC comes from uﬁ’;l Whereas ngl)c, the tensor

for one-photon current injection (see Sec. 2.2.1}, is zero in bulk GaAs, ugl)d can be nonzero,
resulting in a PSC. The linear PSC does not rely on carrier scattering, but to connect with

experiments, I include an estimate of the spin-separation distance using a simple model of

75
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momentum relaxation.

As in preceding chapters, I consider a semiconductor with filled valence bands and empty
conduction bands, ignore interactions amongst the electrons, and treat the coupling between
light and the electrons perturbatively in the long-wavelength limit using A - v coupling. But
whereas preceding chapters used microscopic expressions based on the Fermi’s golden rule
(FGR) limit of the wave function evolution, I here use microscopic expressions based on
the evolution of the density matrix, i.e. the semiconductor optical Bloch equations (SOBEs)
[104, 106, 188]. And whereas preceding chapters studied the effects of monochromatic or bichro-
matic fields, this chapter studies the effect of a pulsed field. The SOBE approach more naturally
accommodates a phenomenological dephasing rate, and hence better justifies the optical excita-
tion of the coherences between spin-split bands, which are added by hand in the FGR approach.
The use of a pulsed field results in an integral over time for the spin current, rather than a
spin-current injection rate. I have elsewhere derived the results presented here with the FGR
approach and a monochromatic field [189].

In Sec. 5.2, I indicate that, within these approximations, one-photon absorption of linearly
polarized light excites a distribution of electrons in k-space that is even in k, no matter what
the symmetry of the material; no net electrical current results.! Further, electrons excited into
the conduction band at opposite k points will have opposite spin polarization, resulting in no
net spin injection. In noncentrosymmetric crystals however, the spin polarization injected at
a given k need not vanish.2 Thus, in such a case, there will be a PSC, since the velocities of
electrons at opposite k points are opposite. Then in Sec. 5.3, I give a microscopic expression

for (1), and calculate the linear PSC with the fourteen-band model including strain.

5.2 Proof of linear pure spin current

The electric field inside the semiconductor is E (t) = E,, (¢) exp (—iwt) + c.c., where E,, (t) is a
slowly varying envelope function, and iw > E4. Note that this is a change from other chapters
in this thesis, in which Ej > hw.

The SOBEs are dynamical equations for the single-particle density matrix elements pnm, (¢).
Versions of the SOBEs have been derived in the independent-particle approximation using
both the velocity gauge [104] and the length gauge [101, 106]. Both give the same result for
the problem at hand. The SOBEs are solved perturbatively by an iterative method whereby

(n + 1)-th order terms of the density matrix are driven by terms involving products of the

!Linear photogalvanic effects, due to asymmetric scattering or a shift in charge density upon excitation can
occur [99], but not within these approximations.

2This was exploited by Alvarado et al., who detected a spin polarization in electrons photoemitted from (110)
GaAs [190].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. ONE-PHOTON PURE SPIN CURRENT 77

electric field and n-th order terms of the density matrix (see, e.g. Aversa and Sipe [106]). The
zeroth-order density matrix, the initial condition, is the ground state. The only nonzero first-
order density matrices are the interband coherences py.. In second-order, there are also electron
populations pc, hole populations p,,,, inter-conduction band coherences p.., and inter-valence
band coherences py,.

To second-order, for conduction bands ¢ and ¢’ (which can be the same),

b =75 > [ Bl e Bl e e Dy 4 D), )
where wpm (k) = wy, (k) — wi (k), Aw, (k) is the energy of the Bloch state |nk), the velocity
matrix element v, (k) = {ck| v |vk), ynm (k) is the dephasing rate of the coherence pnyn,, and
Dypm = 8 (W — wnm) — (/) P (w — wpm) "', where P indicates the principal part. In deriving
(5.1) it has been assumed that interband dephasing is fast compared with the time of the pusle.
The dephasing rates account for some of the many-body interactions in an approximate way
(104, 188].

The photoexcited electron density is N1y = 3.,y peck (t). Defining Ney (k) as the electron
density excited from band v to band c at k (i.e. Njy = >_y ., New (k)), one finds from Eq. (5.1)
that (d/dt + ~ec) New (k) = N& (k) , where

_ 2me?
~ h2w?

7 (inj 1
NG (k) 73 |Bu - Vo ()| 6 (wew () — w),

and L3 is a normalization volume [c.f. (2.16)] [103]. Time-reversal symmetry of the Bloch states
yields Kramers degeneracy, wy, (—k) = wp (k), where a bar above a band index denotes the band
with the opposite spin. As well, the velocity matrix elements satisfy ve, (k) = — [vay (k)]*.3
Using these two properties, it follows that when the light is linearly polarized, Nc(f,"j) (k) =

Né(%nj) (k). Consequently, the photocurrent injection rate, given by

e [Vee (k) = v (K] NG (k) ,

k,c,v
is zero for linearly polarized light; hence, any spin current must be a PSC.

The photoexcited electron spin density is S = >__ .\ (c'k|S|ck) pee k (t), where S is the
spin operator. Note that for excitation near the band edge hw, is either less than a few meV
(if ¢ and ¢’ are equal, or are the spin-split lowest conduction bands) or greater than a few eV
(if ¢ or ¢’ is a higher conduction band) [137, 145]. At times ¢ longer than the pulse width
tr, the integral over ¢’ in Eq. (5.1) will be negligible unless w,» < 1/t;. For long pulses, a
similar argument can be made but with . replacing 1/tr; however, in this chapter, I focus

on typical ultrafast experiments [41, 42], for which one can neglect spin relaxation and carrier

3The phases of states and partitioning of degenerate subspaces can always be chosen so that this is true [117].
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recombination occurring on longer timescales. Thus the integral over ¢’ allows one to neglect
coherences other than those between spin-split pairs of bands. I expand the retained coherences
in powers of w.»/w and keep only the lowest order term. This neglects the precession of the
spins due to the spin-splitting of the bands, which is justified since the precession period is
long compared to the momentum scattering time [2]. Writing & = ), 8 (k), where & (k)
is the electron spin density at k one finds St (k) = > Cgi(k) ffoo EZ (') EL (t') dt', where

superscript indices denote Cartesian components,

/
LK) = 2 LS (k| S e e () oty (0[5 () = ) 5 (o (R) = )], (5:2)
v,¢,¢!
and the prime on the summation indicates a restriction to pairs (¢, ¢’) for which either ¢/ = ¢,
or ¢ and ¢’ are a quasidegenerate pair. Thus the coherence between bands ¢ and ¢ is optically
excited and grows with the population, as in simpler band models that neglect spin splitting [2].
If one were to neglect the coherence between spin-split bands, the net degree of spin polarization,
|S|/ (N(l)h/2), would only be 10% in GaAs compared to the accepted 50% with Eq. (5.2).
From the time-reversal properties of the Bloch states, the spin matrix elements satisfy the
property (n, —k|S|m, —k) = — (71, k| S|m, k)*.# Using this property, Kramers degeneracy, and
the time-reversal property of the velocity matrix elements, one finds & (—k) = —& (k) for linear

polarized excitation. Thus there is no net spin injection from linearly polarized light, and if

S (k) is nonzero for some k, there is a PSC.

5.3 Microscopic calculation

One might naively quantify a PSC by (I} — I}), where I}(}) is the current due to up (down)
electrons. A more general measure that naturally accounts for a distribution of carrier velocities
and spins is to use a spin current density pseudotensor K% = (ﬁi.é'j) as I have done in Chapters
2 and 3. When there is no accompanying charge current, the spin current is a PSC.
Phenomenologically, the injection of a spin current due to one-photon absorption can be
written in terms of a material response pseudotensor (1), as K = 3, ,ugl)m JEYX@)E™(¢)dt'.
This generalizes the definition of y(;) in Sec. 2.2.3 to excitation by a pulse. The spin current
pseudotensor ji(;) satisfies the intrinsic symmetry ui{l)m = (ugr)nl) *. It is further constrained by
the symmetry of the material, since it must be invariant under the point group transformations
of the crystal. It vanishes for materials with inversion symmetry, but can be nonzero for the
symmetries appropriate to zinc-blende and wurtzite crystals. The symmetry analysis of uﬁl)m

and the other one-photon effect tensors is discussed in Appendix D.

4The phases of states and partitioning of degenerate subspaces can always be chosen so that this is true [117].
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The microscopic expression for pgl)m is derived from Eq. (5.1), with the same approximations
made for Eq. (5.2). Using time reversal properties of the Bloch functions, one can then show

that ugl)m is real, and can be written as

9 '

uitm = %% ) 6 (we (k) — w) Re [<c'k| V89 k) oL, (k) o (k) + (1 m)] . (53)

kv ¢,

In an ultrafast experiment, a PSC can be measured by the resulting displacement of up and
down spins. To estimate the spin separation, I use the optically injected electron distribution
as a source term in the Boltzmann transport equation. By neglecting space-charge effects,
which are negligible for a PSC, the Boltzmann equation can be solved in the relaxation time
approximation [42]. This approach neglects scattering during optical excitation, but for ultra-
fast experiments the error should not be too large. If one measures the spin with respect to
the quantization direction &, the up and down spin populations are separated by an average
displacement d (4). I find d* (3) = > (4r/R) K Y@ /N, where 7 is the momentum relaxation
time.

To calculate the PSC for bulk GaAs, I use the fourteen-band model described in detail in
Chapter 3, although the remote band contributions to the velocity are not included in this
calculation. It is a k - p model that diagonalizes the one-electron Hamiltonian (including spin-
orbit coupling) within a basis set of fourteen I' point states and includes important remote
band effects [130]. The model contains thirteen parameters chosen to fit low-temperature
experimental data [130].

Strain is included by the deformation potential method of Pikus and Bir, which amounts to
adding k-independent terms to Hy4 that are proportional to the strain [120, 191]. The deforma-
tion potentials amongst valence and lowest conduction band states are well established [192].
Between the valence and p-like conduction band states, there are two deformation potentials
for the strain considered in this chapter, as, and bey [193-195]. I use by, = —2.3eV, which is
an average of tight-binding calculations [193, 194], and consistent with experiment [196]. The
parameter a., couples to the hydrostatic component of strain [194]; neither it nor the deforma-
tion potentials amongst p-like upper-conduction band states affect my results. I also neglect
the small effect of strain on spin-orbit coupling [194].

For GaAs, I present results for light linearly polarized along [001]. In the standard cubic
basis, K** = — K% = k are the only two nonzero components of the spin current. Alternately,
using a basis where X || [001], Z || [110] and ¥ || [110], the only two nonzero components of the
spin current are K*¥ = K% = k. That is, there is a net PSC of electrons with spin component
along [110] and velocity component along [110], and an equal PSC with spin component along

[110] and velocity component along [110]. Under strain in the [001] direction, the point group
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Figure 5.1: Calculated spin separation in GaAs under no strain (thick line), under 1% tensile
strain (dotted line), and under 1% compressive strain (dashed line). Transitions from the

split-off band begin to contribute at ~ 350 meV.

symmetry of the crystal is reduced from Ty to Dyg, but K?¥ = KY? remain the only nonzero
components of the spin current. I have considered 1% biaxial strain; under tensile (compressive)
strain, the lattice dilates (contracts) by 1% in the [100] and [010] directions and contracts
(dilates) by 0.93% in the [001] direction, with the latter determined from the elastic constants
C11 and Cy2 [192].

The calculated spin separation distances, |d|, for these PSCs are plotted in Fig. 5.1 as a
function of photon energy above the band gap, where I have assumed a momentum relaxation
time of 100 fs; note that the band gap for each case is different. A density functional theory
calculation for wurtzite CdSe found a spin separation distance of similar magnitude [82]. For
comparison, experiments on PSCs generated with harmonically related fields in GaAs/AlGaAs
quantum wells [41] and ZnSe [42] measured spin separations of 20 nm and 24 nm respectively.

To illustrate the spin-momentum correlation implied by the calculation of d, I plot in Fig. 5.2
calculated angular distributions of the injected carrier density N (k) = >_k NV (k) and degree of
spin polarization s(k) = [Zlkl S (k)} /N (k) for the excited conduction band electrons in GaAs.

In unstrained GaAs, Smax, the maximum over k of [s(k)|/ (k/2), rises from zero at the band
edge to a maximum of 12% at the photon energy when transitions from the split-off valence
band become allowed. Under strain, spy,y is largest near the band edge. In Fig. 5.2(b), Spax is
15% while in Fig. 5.2(c) it is 44%.

It is clear that strain can increase the PSC, especially at lower energies where strain-induced
splitting of the heavy and light hole bands increases the spin polarization of the photogenerated

electrons. Under tensile (compressive) strain the light hole band moves to higher (lower) energy
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Figure 5.2: (colour) (a) Calculated k-space distributions of photoexcited electrons in unstrained

GaAs with excess photon energy 300 meV. The surface represents the injected carrier density,
N (l::), the radius of the surface in any direction k is proportional to N (R) The vectors affixed to
the surface give the degree of spin polarization, S(f{), of electrons excited with crystal momentum
in the direction k. The cross sections through the centers of the distributions, along with the
projection of spins on the cross sections, have been displaced to aid visualization. (b) and (c)
are as in (a), but at 20 meV excess photon energy and for 1% tensile and compressive strains

respectively. The reference spin in the lower left corner of each panel is 0.25%/2.

than the heavy hole band. The calculated splitting between heavy- and light-hole bands at the
T point is 84 meV for tensile strain and 69 meV for compressive strain.

Note that in Eq. (5.3) I have assumed that v and S commute. This is no longer true when
the anomalous velocity term, fi (o x VV) / (4m202), is included in v. The linear PSC I have
described here does not require that term, in contrast to other effects [55, 64]. In fact, I have
neglected the anomalous velocity (see Appendix B).

While the calculations of ballistic PSCs that I have presented here are appropriate for bulk
semiconductors, larger PSCs might be possible in heterostructures, which can be prepared with
large structural asymmetry. As well, I note that since only linear absorption is involved, this
effect could be studied even with CW beams, and in nanostructures, where short spin transport
distances could still have significant consequences.

In a material with low enough symmetry, one-photon absorption of circularly polarized
light can generate a ballistic current without an applied voltage [99]; this so-called circular
photogalvanic effect (CPGE) is a SPEC [116, 197]. It is tempting to understand the linear
PSC as a superposition of opposite SPECs due to two fields with opposite helicity. However,
the CPGE cannot occur in crystals with zinc-blende symmetry, although it can in wurtzite
CdSe [198] and strained GaAs [199]. It is worth noting that in addition to describing the linear
PSC, the spin-current response pseudotensor in Eq. (5.3) can also describe the SPEC due to
the CPGE.
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Finally, I point out that a PSC can be generated even with unpolarized light. Averaging
over polarization directions in a plane, one obtains K% = [ E2dt’ > im (6“" - leﬁm) ,ugl)m /2,
where 7 is the propagation direction of the light. This PSC is smaller than that due to linearly
polarized light. In materials with T; symmetry, the PSC due to unpolarized light incident along

a cubic axis is smaller by a factor of two than the PSC due to light polarized along a cubic axis.
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Chapter 6

Two-colour Quantum Interference:

Excitonic Effects

6.1 Introduction

Chapters 2 and 3 establish that quantum interference between one- and two-photon transition
amplitudes allows for the control of carrier population, carrier spin polarization, photocurrent
injection, and spin-current injection. The experimenter can control these processes by adjusting
the phases of the optical fields.

But the controllable optical phases are not the only source of phase between the transition
amplitudes. In general, there is also a material-dependent intrinsic phase [200]. Phenomenolog-
ically, the intrinsic phase appears as a phase shift in the dependence of the process on a relative
phase parameter of the optical fields. Additionally, selectivity between two processes is possible
when their intrinsic phases differ [201]; for example, “14-3” experiments on diatomic molecules
have controlled the branching ratio of ionization and dissociation channels [202]. The intrinsic
phase can be strongly frequency-dependent near resonances [202], and the hope that it might
serve as a new spectroscopic observable [203, 204] has led to efforts to understand its physical
origin.

Whereas a resonance is necessary for a phase shift to a “14+3” process [203], it is not
necessary for a phase shift to a “1+2” process. For example, an intrinsic phase in the “14-2”
photoionization of atoms is predicted from the simple model of a §-function potential {205, 206].

Nevertheless, microscopic theories for the interband “1 + 2” processes in bulk semiconduc-
tors, including those in Chapters 2 and 3, have predicted trivial intrinsic phases [3, 36]. The
photocurrent, for example, was predicted to be proportional to the sine of the relative phase
parameter for all final energies [3]. Each of these theories uses the independent-particle approx-

imation, in which the Coulomb attraction between the injected electron and hole is neglected.

33
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That approximation is expected to be good for final energies well above the band gap, since
in this case the electron and hole travel quickly away from each other. However, close to the
band gap, one generally expects to see deviations from the independent-particle approximation.
In the one-photon absorption spectrum, for instance, it is well known that the electron-hole
attraction is responsible for exciton lines below the band gap, and for an enhancement of the
absorption above the gap known as Sommerfeld or Coulomb enhancement [104].

The effect of the electron-hole attraction on one-photon absorption has been studied with
various degrees of sophistication. On the one hand, modern ab initio calculations that include
Coulomb effects have recently given very good quantitative agreement with experimental spectra
[207-211], although at the cost of significant computational overhead. On the other hand, simple
models of Wannier excitons can describe Coulomb effects near the band edge of many direct-gap
semiconductors. These excitonic effects have long been understood qualitatively on the basis of
a simple two-band model in the effective mass approximation [212], which is even quantitatively
accurate for typical semiconductors [210]. Excitonic effects on one-photon current injection (the
circular photogalvanic effect) were studied by Shelest and Entin [98, 213].

Excitonic effects on nonlinear optical properties of bulk semiconductors have also been
studied in the effective mass, Wannier exciton approximation [107, 174, 176, 183-186, 214-220],
and only recently with ab initio methods [109]. The two-photon absorption spectrum shows a
different set of exciton lines and a Coulomb enhancement that is weaker than its one-photon

counterpart.

One- and two-photon absorption spectra have been measured sufficiently often that excitonic
effects on them are well established. In contrast, semiconductor “1+42” interference experiments
have been done typically at only a single energy and typically many exciton binding energies
above the band gap. Moreover, these initial experiments lacked an absolute calibration of the
relative optical phase, and thus were insensitive to the intrinsic phase. With such a calibration,
which is technically possible [221], one could verify the predictions I present here. A nontrivial
intrinsic phase would have implications for the use of “1 4+ 2” current injection as an absolute

measurement of the carrier-envelope phase of an ultrashort optical pulse [72, 77, 78].

In this chapter, I extend the theory of “142” coherent control of bulk semiconductor inter-
band transitions beyond the independent-particle approximation to include the electron-hole
interaction. The focus is on photon energies that excite carriers above the band edge, but close
enough to it so that transition amplitudes based on low-order expansions in k are applicable.
Consistent with the rest of this thesis, I use a perturbative treatment in the fields. In this
limit of low photoinjected carrier density, the only interparticle interaction of importance is
that between a single electron and hole. I show that, due to the electron-hole attraction, a

nontrivial phase shift does in fact occur in the control of current and spin current, but not in
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the control of carrier population or spin polarization. The intrinsic phase can be understood in
terms of partial-wave phase shifts due to the Coulomb potential between electron and hole. In
addition, I find an enhancement of each process, and relate it to the Coulomb enhancements of

one- and two-photon absorption.

In the next section, I establish notation necessary to describe the “142” processes in terms
of one- and two-photon transition amplitudes. In Sec. 6.3, I present the microscopic model.
The transition amplitudes are worked out in Sec. 6.4. The final expressions for the “1+2”
effects are given in Sec. 6.5, and numerical results for GaAs are presented. In Sec. 6.6, further
understanding of the enhancement and intrinsic phase is discussed, and I examine the ratios
often used as figures of merit for “142” effects. Intermediate-state Coulomb enhancement is

examined in Appendix E.

6.2 Preliminaries

In Sec. 2.1, I derived a microscopic expression for the optical injection of a quantity (é), which
could stand for current density, population density, spin-current density, or spin density. When
the carrier-carrier Coulomb interaction is included, a similar microscopic expression can be
derived, but instead of Bloch states, the expression contains eigenstates of a Hamiltonian that
includes the carrier-carrier Coulomb interaction. These final states in the Fermi’s golden rule
(FGR) calculation will be specified in detail in the next section. For the present discussion, I
write them as |n), having velocity v,,, probability amplitude ¢, (t), and energy fw, above the
ground state. With this generality, the label n can represent the set of quantum numbers for

either an interacting or independent electron-hole pair.

The derivation follows Sec. 2.1, with the result that
d A _ 1 Al d *
70) = 3 (i) ew (k0
21 A (o) 4 0@ m\* @\
= 23 o) [ + 2@ [(a®D) + (22) ] 8 (2w - wn)
2 S o 7] () + (3]

= % z,:(nK:)ln') {(lel))* QS') + (9%2))*953) 1 (Qﬁ,l)ﬂﬁf)* 4 c.c.)}& (2w — wn) |

n,n’

(6.1)

where the prime on the summation indicates a restriction to terms satisfying wy, = wys, L3 is a

normalization volume, and Qg ) is the amplitude for an i-photon transition. The Qg) take the
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form
ngl) =Es, - D7(11) (6.2)
Q2 = E,E, : D2, (6.3)

where the vector Dsll) and second-rank tensor D(n2) depend only on properties of the material.
The transition amplitudes are given in detail in Sec. 6.4.

Recall from Sec. 2.2.1 that the rate of photocurrent injection into an unbiased bulk semi-
conductor by a two-colour light field E(t) = E, exp(—iwt) + Eg, exp(—i2wt) + c.c. can be
written ;

d;’ ) = Ny EJESES, + cc., (6.4)

where superscripts denote Cartesian components and repeated indices are to be summed over

[3]. The fourth-rank current-injection tensor, ng’;l, is purely imaginary in the independent-
particle approximation [3], but can be complex in general. I define the intrinsic phase 5kl of

the component anI‘l;l as

698 = arctan (6.5)

so that it is zero or m« in the independent-particle approximation. When the electron-hole
interaction is included in the set of approximations used here, all the components of 1) have
the same phase. That is,

ikl _ . id

-
N = nz]I) ) (6.6)

The intrinsic phase § appears as a phase shift in the dependence of the current injection on
the phase of the optical fields. For co-linearly polarized fields [E, = E, exp(i¢, )X and Ey, =

Es, exp(igay)X], for example, the current injection is

dJ;
— i = 2E3Ea,

TTTL

(1)

sin (2, — o, — 8) X.

Consistent with the rest of this thesis, this discussion is predicated on a conceptual separation
of the injection and relaxation processes. I focus on the former, but note that Coulomb effects
other than the excitonic effects considered here play a role in scattering, especially at high
densities of excited carriers. Such Coulomb effects, which are outside the scope of this thesis,
have been recently studied in lower dimensional systems [56, 58, 59]. A comparison of (6.1)

with (6.4) yields ‘
ngl)d = 2%; vi, (D£L2)*)Jk (Dﬁll))l 0 (2w — wy) . (6.7)

n

Recall from Sec. 2.2.2 that the carrier injection rate can be written in terms of one- and

two-photon absorption tensors .fg) and 53’;2 and a “142” population control tensor 52%6 Using
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6.1, 6.2, and 6.3,
G o N j
& =73 (D,(}) ) (D,gl)) § (2w — wn), (6.8)
n
ight _ 21 p@)” (p@)" 5 (2 — 6.9
5(2) = I3 n n (2w — wn), (6.9)
and
e om N\ k
k=22 (DﬁL?) ) (D(nl)) § (2w — wn) . (6.10)

They are purely real in the independent-particle approximation.
Recall from Sec. 2.2.3 that “142” spin-current injection can be written in terms of a pseu-
dotensor Cg?l, and recall from Sec. 2.2.4 that “14+2” spin-current injection can be written in

terms of a pseudotensors uz.l)dm. In the independent-particle approximation, (g;d is purely

imaginary [66], while ,u%dm is purely real [33]. They are complex in general; hence, one can
define their intrinsic phases with equations such as (6.5).

'The phases of the material response tensors 71y, {1y, &1y, and ((7) are related to the phases
of the one- and two-photon matrix elements, D(nl) and DSLQ). The one- and two-photon matrix
elements also appear, respectively, in the one- and two-photon absorption coefficients, as can
be seen from (6.8) and (6.9). There have been many theoretical investigations of one- and
two-photon absorption near the direct gap of bulk semiconductors that include excitonic effects
[222, 223]. However, since one- and two-photon absorptions are insensitive to the phases of
the transition amplitudes, those calculations took no care to get the phases of the transition

amplitudes correct. In the next two sections I derive expressions for the transition amplitudes

with the correct phases, including excitonic effects.

6.3 Model

The first part of this section reviews the two-band effective-mass model of Wannier excitons; the
two bands are nondegenerate conduction and valence bands that are parabolic and isotropic with
a direct gap EZ, at k = 0 (the I point) [103, 224]. This model has been used-to study excitonic
effects on one-photon absorption [212], two-photon absorption {176], and other nonlinear optical
processes [214-220]. I subsequently describe a generalization that accounts for degeneracy
and multiple bands. It has been used for two-photon absorption [174], and has been implicit
whenever two-band results have been applied to actual semiconductors.

The total Hamiltonian of the system can be written in the form H = Hg + Hc + Hip(t).
Here, Hy = Hp + H¢ is the field-free Hamiltonian made up of the single-particle part Hg and
the part due to the Coulomb interaction between carriers H¢, and Hjy(t) is the interaction

Hamiltonian in the velocity gauge. Compared to preceding chapters, only H¢ is new.
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The initial state is the “vacuum” |0); it corresponds to completely filled valence bands and
empty conduction bands. If the Coulomb interaction were neglected in a two-band model con-
sisting of valence (v) and conduction (c) bands, the final states would be of the form aikavk |0},
where the operator aLk creates an electron in an eigenstate of Hp, a Bloch state |n, k) with
band index n and wave vector k (see Sec. 2.1). The photon momentum has been neglected,
consistent with the long-wavelength approximation. The Coulomb interaction couples states at

different k; thus, accounting for H¢, the final states are of the form
lcve) =)~ AE, (k) afy a0k [0) (6.11)
k

where k labels the state; its physical meaning is given below. In the effective mass Wannier

exciton approximation, the Fourier transform
Y5 (r) =D A% (k) e, (6.12)
k

which is the wave function for the relative coordinate between electron and hole, is a hydrogenic
wave function satisfying
h2

2Mey

Vg (1) = Vo(r)we,(r) = [Ee (K) — BL) 6, (r), (6.13)

where m2! = m-14+m; ! is the reduced mass in terms of the (positive) conduction- and valence-
band effective masses, and V¢ (r) is the Coulomb potential, V¢ (r) = €2/ (er), screened by the
static dielectric constant e [104, 178, 212]. The state has energy

h?K2
En (k)= CTo + EY,.
I choose the states to be normalized over the volume L® by (m,k|n, k) = &, mékx and

(cK|cUK') = 0, ; as a Tesult Y2 (r) is unitless, having the normalization [ d3r [ (r)]* ¢, (r) =
L36n,,¢/.

The focus of this chapter is on the unbound solutions to (6.13); bound-exciton states lack
relative velocity between the electron and hole, and hence do not contribute to the ballistic
current injection or spin-current injection. For a FGR calculation of the current injection or
spin-current injection, the unbound state must behave asymptotically like an outgoing plane
wave in the relative coordinate between electron and hole; k is the wave vector of the outgoing
plane wave. Specifically, one must use “ionization states” rather than scattering states [225], as
was done for atomic “1+2” ionization [205]. They are related by % ()}, = {{¥a(r)lscate}
[226]. Calculations of one- or two-photon absorption are insensitive to an error in this choice of
boundary condition, but the present calculation is not, since it is sensitive to the relative phase

of the transition amplitudes.
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The ionization state wave functions that solve (6.13) can be expressed as a sum over partial

waves,

00F(l+1+a;vn ;

Y (r) = e

) (2im')l e TP (r : K') 1F1 (l +1+

@) — ; 20+ 2; 2im"> ,

Qe K
=0 cv

(6.14)
where acy = €h?/ (meye?) is the exciton Bohr radius, and x and r mean || and |r|.! The P,
are Legendre polynomials, 1 F] is a confluent hypergeometric function, and I" is the Gamma
function.

Such a two-band model of Wannier excitons is useful for the description of many optical
properties. However, near the band gap at the I" point of a typical zinc-blende semiconductor
there are, counting spin, eight bands (Fig. 2.1): two each of conduction (c), heavy hole (hh),
light hole (lh) and split-off hole (so). Other bands, especially the next-higher conduction bands
(Fig. 3.1), can also be important for some processes, especially for population and spin control.

The existence of multiple bands and band degeneracy modifies the exciton Hamiltonian,
i.e., the operator acting on ¥% (r) in the left side of (6.13). In the effective-mass approximation,
using a basis of ['-point states, the kinetic part of the Wannier exciton Hamiltonian has a matrix
structure [228, 229]. Even though this approximation neglects band warping, nonparabolicity,
and inversion asymmetry, the Hamiltonian lacks analytic eigenstates [229]. This is essentially
due to the degeneracy of the hh and lh bands at the I' point. As a result of the difference
between mpp, and myy, there is “envelope-hole coupling,” [230] which is a spin-orbit-like coupling
between the orbital angular momentum of the exciton envelope function and the total angular
momentum of the valence band I'-point Bloch functions [140]. Baldereschi and Lipari split
the effective-mass Hamiltonian into a sum of terms based on symmetry, and showed that in a
spherical approximation the envelope-hole coupling could be treated as a perturbation to the
diagonal part, which has analytic, hydrogenic eigenstates [177, 178]. In order to extract the
main physics, while preserving the simplicity of the two-band model, I neglect envelope-hole
coupling entirely. In this approximation, (6.13) remains valid for each conduction-valence band
pair, however one must use “average” effective masses for degenerate bands. Specifically, the
effective mass of the valence bands hh, lh, and so is m /v, where m is the free-electron mass,
and 7, is one of the Luttinger parameters [178]. The upper conduction bands have a different
average cffective mass. Note that % (r) is independent of ¢ and v within the set of bands
{¢, hh,lh, so}. The effect of envelope-hole coupling has been studied for bound-exciton states
[177, 178, 186], but not for optical processes involving unbound excitons in the continuum.

Even within this model, the presence of multiple bands provides two types of terms in

IThis follows from the relation between ionization and scattering states, and the scattering states given in,
e.g., Schiff [227].
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the sum over intermediate states in the two-photon amplitude: two-band terms, in which the
intermediate and final states are in the same exciton series [i.e., two states of the form (6.11)
with the same ¢ and v], and three-band terms, in which the intermediate and final states are
in different series. Three-band terms are important for some processes but not for others. For
current control, three-band terms are important for cross-linearly polarized fields (see Sec. 3.3),
and for spin-current control, they are important for the spin current due to colinearly polarized
fields (see Sec. 2.4). Three-band terms are essential for population and spin control (see Sec.
3.4 and Sec. 3.6).

The velocity matrix elements involving the state |cuk) are

(cuk|v|0) = Z[A K)|* Ve (k) , (6.15)

<CUK’| v |CIUIK’,> = Z [A?v (k)]* Azlv' (k) [Vcc’ (k) 5v,v’ — Vury (k) 50,0'] ) (616)
k

where v, (k) = (n,k| v |m, k) is the velocity matrix element between Bloch states.

6.4 Transition amplitudes

The transition amplitudes in the independent-particle approximation are presented in (2.3) and
(1-free) (2-free)

(2.3). Here, I rename them Qe and Qe , and use & instead of k in preparation for a
comparison with the transition amplitudes with excitonic effects included. Thus,

QLfree) _ Q’WEQW Veo (K) (6.17)

and Qg—gee) = Z Q(2 Hfree)  here

cclvv'r?

Q(2 free) __

cc'vv'Kk

€ )2 {Ew : [Vcc’ (""') 511, 50 ' Vo'v (K’ ]} (Ew Ve (K'))

(ﬂ Eoy (K) Jh—w (6.18)

With excitonic effects included, using the perturbation Hiy (t) to second order gives the

transition amplitudes

(1)

ok = %EQW (cvk| v 10), (6.19)
and
@ _ (B, - {cvr| v |dV'K)) (Ey - (VK| v |0))
Heom = ( ) C’Z':g/ Eoy (K') [h—w ’ (6.20)

where the sum over intermediate states is over both bound and free excitons. The two-photon
transition amplitude is more difficult to deal with due to the sum over intermediate states;
however, in the set of approximations described in Sec. 6.3, it has been done exactly [174, 176,
184].
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In order to proceed analytically, it is common to use (6.15) and (6.16), and then make an
expansion in k of the velocity matrix elements v,,, (k) about the I' point [104, 174, 176, 183,
184, 212]. However, due to the degeneracy at the I' point, the coefficients of such an expansion
can depend on the direction of k [120]. To proceed, I note that Wannier excitons have large
spatial extent and hence only a small region of wave vectors is important for them, i.e., A% (k)
is peaked in the region of k near k [224]. This is especially true for final states with energies

above the band gap. Thus, I expand vy, (k) about the I" point, approached in the direction &,
vi (k) =, (R) + k- Vol (R)+ ..., (6.21)

where vl,, (R) = limy_g (n,T| v|m, A&) and Vi, (R) = limy_o Vi (n,T| v |m, AL).

Optical transitions due to the first term in (6.21) are called “allowed”, while those due to
the second term are called “forbidden”. In this thesis, I do not consider materials for which
the allowed valence to conduction band transition vanishes. Keeping only the allowed term in
(6.15),[212]

(corl v [0) = Veu (R) [W5(r = O)]" (6.22)

For the intravalence and intraconduction band transitions, the first two terms of (6.21) in (6.16)

give [184]

(cvr| v |dVK'Y = [6yVee (R) = 8c.crViry (R)] /& (5, (0)]" 985, (r)
’ ’ L3 e Cv (6.23)

i ~ i - . d37' * ’
— [0, ViVly (R) — e, VikUiry, (n)] i / I5 [WE (v)]" VYo, (r).
In particular [184, 231],

h K= — h

Mey Mey

d3r "
[ T WA e 5) = b
(6.24)

For Ge and for simple models of zinc-blende semiconductors that neglect lack of inversion

(cor|vcok) =Y A, ()] AL, (k)
k

symmetry, the first term in (6.23) always vanishes. This means that there are only allowed-
forbidden two-photon transitions (the interband transition is allowed, while the intraband tran-
sition is forbidden). When the first term is nonvanishing, there are allowed-allowed two-photon
transitions.?

I write Qg,)n = Qg::'f) + nga), and discuss the allowed-forbidden and allowed-allowed

transitions separately.

2In principle, for noncentrosymmetric materials, there is also a small contribution to the allowed-forbidden
two-photon transition from the first term in (6.23) and the term in (cvk| v |0) that comes from the second term in
(6.21); I neglect it in what follows, but note that when compared to the dominant allowed-forbidden contribution
that is considered here, it has a different Coulomb enhancement but the same intrinsic phase (see Eq. 2.32 of
Rustagi et al. [184]).
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Using (6.14), (6.22), and (6.19), the one-photon transition amplitude is [212]

T 1
r{1- , 6.25
2acvli) ( acvn> ( )

where only the allowed term is kept in Qg,,ﬁree) 3 The transition is to an s wave. The one-photon

), = Q) oy (

absorption coefficient is proportional to the norm of QL) [see Chapter 2] [212].
For allowed-forbidden two-photon transitions, substituting (6.22) and the second term of
(6.23) into (6.20),

2
. € - i i -~
ng: = 7 Z [Ey - veu (R)] EL [ v v'VkUcc/ (R) — 0c,cr Viuyn, (n)] Mg (K),  (6.26)
c'v’
where
Moy (K) = —i / @3 [0, (0)]* VG (r,0; s — Y, ), (6.27)

and the Coulomb Green function,

o(r) [¥& ()]
Gew (r,02) = L3ZE (k) — E% — @’

is known analytically [176]. In particular,

g Mev _ 27‘
Gey(r,0;hw — EY)) = 5 rh2r(1 %U)W'ycu.é 2 ) (6.28)
where 1 define
_ | Bw
Yev = Eé’v .

B, = h?/ (2mwagv) is the exciton binding energy, and W, 15 (2) is a Whittaker function with

the integral representation

ze” 3 o0 1+t\" _,,
W’y,1/2 (Z) = m/o dt (T) e . (629)

Since the Green function depends only on the magnitude of r, only the p wave of the final state
survives the integral in Eq. (6.27) over the angles of r, [ dQP (f - &) # = 47R/3. The integral

over r can be done using [176]

X0 1 pa—a
e TP P (oo Ar)dr =T —_— 6.30
/0 r? e P Fy (a; 05 Ar) dr (o) o \)° (6.30)
The final result is
2af) m , i (a-f) (2-free)
Qg’u: = €Xp (2(1ch) r (2 - ac'u—’g> ZNccavv ( )Qcc vl:en’ (6'31)

c'v’

3Note that ac, in this chapter is the exciton Bohr radius defined after (6.14). It is unrelated to the deformation
potential a., in Chapter 5.
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where only the allowed-forbidden term is kept in Q&) ond

cc'vv'K?
148\ 7" 2
18 ( ) exp [—m arctan (acfvfnfyclv/S)]

(1 + ag’v"izfyg’v’sz)Q

N (6) = (14 a2yr®d,) 2/ ds. (6.32)
0

For allowed-allowed two-photon transitions, substituting (6.22) and the first term of (6.23)
into (6.20),

Qg): ®) = ( ) Z E, vv'v ) 6c,c’vzi;'v (R')] E, vy (k')

c'v’
b [ @8 () e (v, 01— BZ,.).

Since G, depends only on the magnitude of r [Eq. (6.28)], only the s part of the final state
will survive the integration over angles of r. Again I use (6.29) for the Whittaker function. The
integral over the magnitude of r can be done using an identity obtained by taking a derivative

with respect to p of both sides of (6.30). Finally,

2:a- i 2-fi
b =e ()1 (1= 25 SOLENED 0, 05
Iv/
where only the allowed-allowed term is kept in Qg/ir;f '2, nd

NS (8) = |1+ (@ewmren)’] 2

-2 1ot K Yot
. /1 s (1 B Sac'v"yc'v') (1 + z)wv/ exp [ o arctan (acy H’Y;v S)] s
0 Gev B [1 + (ac'v"ch’v'S)Q]

(6.34)

This agrees with Eq. 2.28 of Rustagi [184], but note that Nc(jjg (k) = [1 + (acry Ivycfv/)Q] I i (K),
where I, ;. (k) is given, with a typographical error, in Eq. 2.25 of that paper.
(a-f) (a-a) . .
The factors N, ', and N5, which appear in (6.32) and (6.34) are the enhancements due
to the Coulomb interaction in the intermediate states; they are discussed further in Appendix

E.

6.5 Results

The one- and two-photon transition amplitudes were presented in the preceding section on the
basis of an expansion in k of the Bloch-state velocity matrix elements. The allowed one-photon
transition amplitude QM) is in (6.25), the allowed-forbidden two-photon transition amplitude
is in (6.31), and the allowed-allowed two-photon transition amplitude is in (6.33). From them,

DEBc and ngzg can be extracted by comparison with the definitions in (6.2) and (6.3).
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6.5.1 Current injection

The “14-2” current injection is dominated by interference of allowed one-photon transitions and
allowed-forbidden two-photon transitions, as shown in Sec. 3.3. Substitution of these into (6.7),

and application of the identities I' ( + 1) = zI" (z) and

, . T
Frl—iz) T (1+iz) = sinh (n2)’ (6.35)
yields the final result for the current-injection tensor
f)
iy =2 (1 + )~<awaN£:W (o) 1 (6.36)
ow Aeyhcy
where
Koy = — 4 ——)\ 6.37
¢ ey Bey ( )
- (m/x)exp (n/x) _ 27 -1
= (2) = = 2T —exp(— 6.
(@)= LR = P (1 exp (~2m/m)] (6.39)
and
2me * . l
ikl = 22 Z AL, () (D) ) (DEE) 812w = Ewo () /1, (6.39)
with Agy (K) = (Ve (K) = Vi (K)) = Ak /M, and
ik
(D(2 free)) _ (i)z {(Vcc’ ("‘") 5v,v’ - 5c,c’vv’v (K:)) y Very! (Ii) }] (6 40)
e hw Eoy (5) /h—w ’ '
where {v1, vy} = (viv] + vivi)/2 and
(1-free) . €
(D ) =ik, (). (6.41)

Note that only the allowed part of (6.41) and the allowed-forbidden part of (6.40) should be

retained for a consistent solution. I have written (6.36) to separate the parts due to the electron-

ijkl

hole interaction. In the independent-particle approximation, the current-injection tensor M(I-free)

is (3]
17kl ijkl .
77(1 free) Z Nectvv's (642)
c,c/ v’
it is evaluated for parabolic bands in Sec. 2.3.3.

LTTLL

For GaAs, I present in Fig. 6.1 the magnitude of M , based on 7

TLTT
cc'vv’

calculated by two
methods. The first method uses the isotropic, parabolic Kane model and includes only two-
band terms (see Sec. 2.3.3). Since the Coulomb corrections to 7 in (6.36) do not depend

Ukl . it is then

on the spin index, the sum over spin indices from (6.36) can be included in 7, ;

straightforward to extract n’ .., from Sec. 2.3.3. I use effective-mass ratios for conduction,
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Figure 6.1: Magnitude of the diagonal element of the current-injection tensor for GaAs with
[Eq. (6.36)] and without [Eq. (6.42)] excitonic effects. The grey dotted and dashed-dotted lines
are based on a parabolic-band calculation of #2577, that only includes two-band terms; the
dotted line includes excitonic effects, while the dashed-dotted line does not. The black solid
and dashed lines are based on nZ7>%, calculated with a nonperturbative solution of the 8 x 8

k - p Hamiltonian; the solid line includes excitonic effects, while the dashed line does not.

heavy-hole, light-hole, and split-off bands of 0.067, 0.51, 0.082, and 0.154, respectively, Ep =
27.86eV, the fundamental band gap Ej is 1.519eV, and valence-band spin-orbit splitting is
0.341eV [124, 232]. These parameters are consistent with those listed in Table 3.1. The second
method solves the 8 x 8 k - p Hamiltonian, including remote-band effects, but in a spherical
approximation with warping and spin-splitting neglected by replacing v2 and 3 with ¥ =
(2v2 + 373) /5 [140] (“Hgspn” in the notation of Sec. 3.2.5); the calculation is nonperturbative
in k (hence it includes band nonparabolicity), and it includes both two- and three-band terms
in the two-photon amplitude. The solid and dotted lines in Fig. 6.1 are calculated with (6.36),
and hence include excitonic effects; the Coulomb enhancement part of the calculation uses
B, = 4.2meV [233] and the band parameters listed above. Note that the solid black line in
Fig. 6.1 is inconsistent in the sense that the Coulomb enhancement is based on an expansion in
k, whereas the free-particle result that it enhances is nonperturbative in k; nevertheless, such

an approach has given good agreement with experiments for one- and two-photon absorption
(234, 235).

The Coulomb enhancement of 77‘(”;”)” can be clearly seen in Fig. 6.1. There is a kink in
each curve at excess photon energy 341 meV corresponding to the onset of transitions from
the so band. At higher energies, the Coulomb enhancement of so transitions is larger than the

Coulomb enhancements of hh and [h transitions, since the former transitions are to conduction-
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Figure 6.2: Phase shift of the current (intrinsic phase of nff)” } in GaAs due to excitonic effects.

The solid line is calculated with Egs. (6.5) and (6.36), and the dotted line is calculated with
Eq. (6.43). The inset is Eq. (6.43) plotted in scaled units.

band states with lower energy. Hence, the kink in 7y is enhanced by excitonic effects.

ZTTY

I extract the intrinsic phase of o using (6.5). The solid line in Fig. 6.2 is the intrinsic
phase of nff)” calculated for GaAs with the nonperturbative 8 x 8 k- p Hamiltonian; the result
for the parabolic-band model is nearly identical. Since I have used a spherical exciton model,
the intrinsic phase is the same for all components of ngl)d The intrinsic phase has its maximum
value of /2 at the band edge, and goes to zero as the light frequency increases. The decrease is
smooth except for a small kink at the onset of transitions from the so band. In fact, for excess

photon energies less than the split-off energy, the intrinsic phase has the simple analytic form

d (w) = arctan (1 / ﬁc_ng) . (6.43)

Equation (6.43) is plotted as the dotted line in Fig. 6.2; compared to the solid line, it is identical
below the onset of so transitions, and it makes a good approximation above the the onset of
so transitions. Since (6.43) only depends on the excess photon energy scaled by the exciton
binding energy, I plot it as a function of this scaled energy in the inset of Fig. 6.2; it is useful

for finding the intrinsic phase of materials other than GaAs.
In 1733“ [Eq. (6.36)], the two- and three-band terms have different intermediate-state Coulomb

For many materials, however, N (o-f) is approximately equal for all the
y

a-
cc'vv’
ijkl

(I-free)?

Thus, at photon energies for which transitions from the heavy- and light-hole bands dominate

(a-f)
enhancement N, o
ikl

terms 77, . that contribute significantly to the total n

as shown in Appendix E for GaAs.
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Figure 6.3: Approximate Coulomb-enhancement factors. The solid line, applicable to current
and spin-current control, is F, ;If) [Eq. (6.45)] with Nc(;,? =1, and the dotted line, applicable to
carrier population and spin control, is Fa(_la) [Eq. (6.50)] with Nc(g;i) =1.

n(1y, the Coulomb enhancement becomes approximately independent of the sum over bands and

one can make the simplification

ijkl I . ikl
iyt~ Y exp (i6) nf o), (6.44)

where the intrinsic phase is given by (6.43), and
F (W) = E (aewken) V1 + (cvker) *NED (Kew) (6.45)

The Coulomb-enhancement factor F’ ;_If) (w) is plotted in Fig. 6.3 with the approximation that

cggvf,v) = 1 (see Appendix E).

6.5.2 Carrier population control

The “1+2” carrier population control is dominated by interference of allowed one-photon tran-
sitions and allowed-allowed two-photon transitions (see Chapter 3) [37, 75]. Substitution of

these into (6.10), and application of the Gamma function identity (6.35) yields

53"; =Y E(acwke) D NE® () €9k (6.46)
c,v CI’UI
where
i 271'6 - f; jk -fi l
€k = 5 2 (DS ) (DGR 82w - Eew () /1], (6.47)

and Dgifa and Dg,’,ﬁree) are given by (6.40) and (6.41). Note that only the allowed part of

(6.41) and the allowed-allowed part of (6.40) should be retained for a consistent solution. In

the independent-particle approximation,

ik ik
gz‘}-free) = Z £g’vv’ : (648)
c'v’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. “1+42” PROCESSES: EXciToNiCc EFFECTS 98

Thus, population control has a Coulomb enhancement due to excitonic effects, but no phase
shift.

Note that (6.46) gives the population-control tensor at final energies above the band edge.
There can also be population control of bound excitons when both one- and two-photon tran-
sitions are to the same excitonic state. This can occur, for example, at s excitons due to
allowed-allowed two-photon transitions [185] interfering with allowed one-photon transitions.

If Nc(:,':g, (key) is approximately the same for all the terms that significantly contribute
to §(5), then, at photon energies for which transitions from the heavy and light hole bands

dominate (1), the Coulomb enhancement becomes approximately independent of the sum over

bands, and one can make the simplification,

ik -
&y ~ FAe oo (6.49)

where
FaE-Ia) (w) = Z(acwkev) Nég;%) (Kew) - (6.50)

The Coulomb enhancement factor Fég (w) is plotted in Fig. 6.3 with the approximation that
Nc(;}{a,) =1 (see Appendix E).

6.5.3 Spin-current injection and spin control

The “1+2” spin-current injection is dominated by interference of allowed one-photon transitions
and allowed-forbidden two-photon transitions, whereas “1+2” spin control is dominated by
interference of allowed one-photon transitions and allowed-allowed two-photon transitions (see
Chapter 3). Under the approximations that led to (6.44) and (6.49), the spin-current injection

pseudotensor is

ijkl I . iikl
'™ = F) exp (i6) i, (6.51)
where Fa(L_If) is given by (6.45), & is given by (6.43), and fi(s free) is the spin-current injection

pseudotensor in the independent-particle approximation. Under similar approximations, the

spin-control pseudotensor is

ijkl (I ~ijkl
Cd) - Fa(t—a)g(}-free)’ (6‘52)

where Fa(L_Ia) is given by (6.50), and ((7.free) is the spin-control pseudotensor in the independent-
particle approximation. Spin control, like carrier population control, has a Coulomb enhance-
ment but no phase shift. There can also be spin control of bound excitons, but it has not been

included in (6.52).
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6.6 Discussion

We now examine the relationship between the Coulomb enhancements of the “142” processes
and of one- and two-photon absorption; the latter are denoted by F(1) and F @ so that for
i € {1,2}, ) = hggeF("). The relationship is particularly simple at photon energies for
which transitions from the heavy- and light-hole bands are dominant and intermediate-state
Coulomb enhancement is the same for each significant term in the sum over intermediate states.
The Coulomb enhancements for the “1+2” processes are then given by (6.45) and (6.50). For
one-photon absorption, FO) =g (acykew) [212]. In noncentrosymmetric semiconductors, two-
photon absorption is dominated by allowed-allowed transitions just above the band gap, and by
allowed-forbidden transitions at higher final energies; the crossover point in GaAs is a few meV
above the band gap [172]. At photon energies for which allowed-allowed transitions dominate

two-photon absorption, from (6.33),
2
F®) = 2 (ankor) [N (k)] (6.53)

and thus

FD) = VFOF® and FY) = cVFOF®), (6.54)
where C = [Nc(g{,f)) (Kew) /Nc(gv%) (ncv)] A1+ (acvna,)_Q, while at photon energies for which

allowed-forbidden transitions dominate two-photon absorption, from (6.31),
2
F® = = (agke) (1 + (awncv)_Q) (Ngg;{} (nw)) : (6.55)

and thus
FY = (1/C) VFOF® and FY) = VFOF®, (6.56)

Note that, based on Appendix E, C ~ /1 + Be/ (2hw — Eg), which is the ratio of the two

curves in Fig. 6.3. In centrosymmetric semiconductors, there are no allowed-allowed transitions,
and only (6.56) applies.

The “142” processes are often described by ratios. For example, a useful quantity to
describe the current is the swarm velocity [68, 236], defined as the average velocity per injected

electron-hole pair

v _ (dJ/dt)
SWA T e (dn/dt)
The swarm velocity is a maximum when the relative intensities of the two colours are chosen such
that No, = N,,; returning to (6.1), if one associates the one- and two-photon amplitudes with the
arms of an effective interferometer, this condition corresponds to balancing that interferometer.

For fields colinearly polarized along X, the maximum swarm speed is

TITTX

1 |

Vswarm = = —F/——.
e T cTTLT
VEDER)

(6.57)
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A useful quantity to describe pure spin currents is the maximum spin-separation distance [42];
it is proportional to ury/\/€1)€2)- As a consequence of (6.56), the maximum swarm speed,
and the maximum spin-separation distance, are unaffected by excitonic effects when allowed-
forbidden transitions dominate two-photon absorption.? However, close to the band edge, where
allowed-allowed transitions dominate two-photon absorption, excitonic effects increase these
ratios by a factor C over their value in the independent-particle approximation. In contrast, as
a consequence of (6.56), excitonic effects do not affect the maximum control ratio for population
and spin control (§1y/+v/&1)€2) and {(1y/+/E1)€(2) respectively [36, 66, 75]) close to the band
edge and decrease them by a factor C' at higher photon energies for which allowed-forbidden
transitions dominate two-photon absorption.

In the terminology of Seideman [203], the excitonic phase shift of the “1+2” current and
spin current is a direct phase shift. This phase shift is due to the complex nature of the final
state as it appears in the transition amplitudes. Thus it can be understood in terms of the
partial-wave phase shifts of the final state caused by the Coulomb potential between electron
and hole. The Coulomb interaction is rather unique due to its long-range nature, so we first
suppose that the potential between the electron and hole falls off more rapidly than 1/r. In
that simpler problem, the final-state wave function is written as

o —is(s U, (1) r-K
Yn(r) = Dt (214 1) =R (2,

TK
=0

where the u, (r) are real [226]. If the potential between the particles is ignored, then the
partial-wave phase shifts, §; (k) are zero. The allowed one-photon pathway reaches an s
wave, while the allowed-forbidden two-photon pathway reaches a p wave. Substituting this
form for the wave function into the one- and two-photon transition amplitudes yields ij) =
Qg_ﬁee)ei‘%(") fo (k) for the one-photon rate, where fo (k) is real and depends on u,p (), and
Q@D = qfree)gisi(x) f1 (k) for the two-photon rate, where f; (k) is real and depends on
U0 (1) and w1 (r). Here Q{®) i5 the i-photon transition amplitude when the potential be-
tween the particles is ignored. It is then straightforward to see from (6.7) that the relative shift

of the partial waves is responsible for the phase shift of the current and spin current. That is,
6 =08 — 1. (6.58)

The use of ionization states as opposed to scattering states was important to get the correct
sign of the intrinsic phase. With scattering states, one would find § = §; — dg. In contrast,
the allowed-allowed two-photon pathway reaches an s wave and thus there is no phase shift for

population control or spin control.

4At higher excitation densities, the Coulomb interaction can modify the maximum spin-separation distance
through the momentum relaxation time.
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Due to the long-range nature of the Coulomb potential, the partial-wave phase shifts have a
logarithmic r dependent part, but it is the same for all partial waves and thus does not appear
in the relative phase. The part of the Coulomb partial-wave phase shift §; (x) that does not
depend on r is arg {I'[l + 1 +i/(acvk)]} [226, 231]; when inserted into (6.58), this reproduces
(6.43).

The expression (6.58) for the intrinsic phase in terms of the scattering phases is particularly
simple, since each pathway connects to only a single parity. This contrasts with “142” ionization
from an atomic s state, for which the one-photon transition is to a p wave and the two-photon
transition is to both s and d waves; the intrinsic phase is thus a weighting of the p-s and p-d
partial-wave shifts [205]. Materials for which the first term in (6.21) is forbidden (Cu0O is an
example) have these same selection rules [176, 184, 212]; hence, they will have an intrinsic phase
with a similar weighting.

The absence of a phase shift in population control can be connected to a symmetry of
the second-order nonlinear optical susceptibility. From considerations of energy transfer and
macroscopic electrodynamics, {(z) is related to the nonlinear susceptibility x® by

E0% = (ieo/h) [X P (205 —w, —w) — xPIH (—0; 200, —w)] . (6.59)

In the independent-particle approximation [101],
XD (205 —w, ~w) = [x DI (~w; 20, ~w)| ", (6.60)

which is a generalization of overall permutation symmetry to resonant absorption. As a result
of (6.60), Fraser et al. showed that £;) is proportional to Imx®, and is thus purely real [36].
The finding that £y remains real when excitonic effects are included suggests that (6.60) holds
more generally. In fact, it can be shown that (6.60) holds for any Hamiltonian symmetric under

time-reversal so long as fiw is not resonant.

6.7 Summary and Outlook

This chapter extended the theory of interband “142” processes in bulk semiconductors to
include the electron-hole interaction. Following previous theories [3, 33, 36], including those
in Chapters 2 and 3, I have used a framework based on (i) a separation of the initial carrier
photoinjection and the subsequent carrier scattering, and (ii) a perturbative expansion in the
optical-field amplitudes, with injection rates obtained in a FGR limit for the bichromatic field.
The injection rates for carrier population control, spin control, current injection, and spin-
current injection, have been described phenomenologically by tensors &1, {(r), n(r), and (s,

respectively (see Sec. 2.2). Like previous theories, I have used the long-wavelength limit, and
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neglected nonlocal corrections to the interaction Hamiltonian. But whereas previous theories of
“1+42” photoinjection used the independent-particle approximation, I have included excitonic
effects. I have shown that excitonic effects cause (i) an enhancement of each “142” process,
and (ii) a phase shift for current injection and spin-current injection. The main results, the
modifications of the aforementioned tensors relative to the independent-particle approximation
are given in (6.44), (6.49), (6.51), and (6.52). These particularly simple results are valid at
photon energies for which transitions from the heavy- and light-hole bands are dominant; more
general results are given for n;) and §(;) in (6.36) and (6.46).

The results are based on the effective-mass model of Wannier excitons; degenerate bands are
included, but I use a spherical approximation to the exciton Hamiltonian, and I neglect envelope-
hole coupling. This is a good approximation for many typical semiconductors, including GaAs,
since the electron-hole envelope function extends over many unit cells due to the screening of the
Coulomb interaction by the static dielectric constant [140, 177, 178, 186, 230]. As a consequence
of making the spherical approximation, the phase shifts and Coulomb enhancements I find in
this paper are independent of crystal orientation.

Also, the results are limited to low excess photon energy since (i) the Wannier exciton
Hamiltonian assumes parabolic Bloch bands, and (ii) I have truncated the expansion in k of the
Bloch-state velocity matrix elements, which is the basis of the transition amplitude expansion.
By comparing the black dashed line and grey dashed-dotted line in Fig. 6.1, one sees that
higher order terms in k (for both bands and velocities) are important in GaAs for excess
photon energies greater than about 200meV. This can be considered the limit of validity of
my calculation. However, combining the Coulomb enhancement calculated assuming parabolic
bands with the nonperturbative independent-particle approximation result (as was done for the
solid black line in Fig. 6.1) likely gives a good approximation for a few hundred more meV; this

was the case for one- and two-photon absorption [234, 235].
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Chapter 7

Conclusion

Spin is a fundamental property of the electron. Understanding the control and transport of
electron spins in semiconductors is important from a fundamental point of view, but also for the
development of new technologies. In solid state systems, electron spin can be controlled by light
only indirectly, through the relativistic effect of spin-orbit coupling. Interband transitions in
bulk semiconductors are the most fundamental optical transitions in semiconductor physics. In
this thesis, I have shown (Chapter 5) that one-photon absorption of linearly polarized light—
the simplest interband optical transition—can generate a spin current in bulk GaAs, one of
the most well-studied semiconductors. This fact had not been previously known, despite the
fact that such transitions have been studied for many years. I have also expanded the potential
toolkit for optical manipulation of spin and spin currents by making the first study of the spin of
carrier distributions excited by “1+2” excitation (Chapters 2, 3, and 6). The “1+2” excitation
is a low-order nonlinear process with a two-colour optical field, which has been studied in recent
years in many physical systems including atoms, molecules, semiconductors, and semiconductor
heterostructures. It is the simplest optical excitation that can display control over a physical
process with the phases of the optical fields. As such it is inherently interesting, but it is also
important as a means for measuring the carrier-envelope phase of an ultrashort optical pulse.
For applications such as this, the detailed microscopic investigations of “1+2” excitation I have
presented in this thesis are essential.

Optical excitation of carriers has several advantages over other methods of manipulating
carriers in semiconductors: a wide range of carrier densities can be studied by varying the field
intensities, carrier transport can be studied in undoped samples (and ballistic transport can be
studied in unbiased samples), and a wide range of nonequilibrium carrier distributions can be
generated by optical fields. This thesis has shown, in particular, that optical fields can excite
carrier distributions that have a pure spin current. This led to the first observation of a pure

spin current in a semiconductor. Pure spin currents are of fundamental interest, and many
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methods for generating them have been proposed and studied in recent years.

In studying the spin properties of photoexcited carrier distributions, I have also studied
the carrier population, and the net current. A knowledge of all four properties—mumber of
carriers, net spin, net current, and net spin current—gives one sufficient information about the
carrier distribution to calculate, for instance, how a subsequent probe pulse will interact with
the material, or how the carriers will radiate as these quantities change rapidly due to ultrafast
excitation. The main contributions of this thesis are the proposals that one-photon absorption
can inject PSCs, “1+42” excitation can inject ballistic spin currents (both SPECs and PSCs),
and “14-2” excitation can inject an electron spin polarization that depends on the phase of the
fields. But I also presented thorough studies of each of these effects, “14-2” current injection
and population control, and two-photon spin injection. Many of the effects predicted in this
thesis have now been observed experimentally.

As discussed in Sec. 1.1, the theoretical framework for calculating these effects is similar
to the framework of the nonlinear optical susceptibilities. That section discusses many of the
assumptions and limitations of the calculations in this thesis.

In Chapters 2, 3, and 6, I presented studies of “1+2” excitation with three different electronic
structure calculations. In Sec. 2.2, I analyzed the symmetry of each “1+2” effect, especially for
materials with cubic symmetry. Since the results of Sec. 2.2 rely only on the symmetry of the
crystal, they apply to all three chapters, and quite generally. In the rest of Chapter 2, I used
the isotropic eight-band Kane model in the parabolic band approximation (PBA) to evaluate
the current, and spin-current injections. The main results are (2.47), (2.49), (2.52), and (2.53).
Parabolic band approximations of “142” spin control and population control are calculated
using fourteen-bands in Appendix C. The main results are (C.3) and (C.12). Together, Chapter
2 and Appendix C establish that, close to the band edge, “14+2” current injection and spin-
current injection result from the interference of allowed one-photon transitions and allowed-
forbidden two-photon transitions, while “14+2” population control and spin control result from
the interference of allowed one-photon transitions and allowed-allowed two-photon transitions.
This conclusion is validated by agreement with the results of Chapter 3 at low excess photon
energy.

Using an electrode detection technique, Stevens et al. observed the current due to “142”
excitation with co-circularly polarized fields, found agreement with the predictions in Chapter
2, and hence inferred that the current was spin-polarized (Case 1 in Sec. 2.4) [71]. The “1+2”
transverse PSC with orthogonally polarized fields (Case 2 in Sec. 2.4) has been observed using
spatially-resolved pump-probe techniques [41], spatially-resolved photoluminescence techniques
[42], and optical grating techniques [74].

In Chapter 3, 1 evaluated the “1+2” effects with a nonperturbative numerical solution
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to the fourteen-band k - p Hamiltonian. With this calculation, which is more accurate than
the calculation in Chapter 2, I examined the relative importance of each possible initial and
intermediate state to get a better microscopic understanding of each “1+42” effect. This explains
the limitations of the PBA results of Chapter 2 and Appendix C. I applied the calculation to
five semiconductors to present a sense of how the “1+2” effects can vary from material to

material. The main results of this chapter are Figures 3.2-3.14.

More recent experiments measure the “14+2” longitudinal PSCs, and are thus sensitive to
pn2 and g3, which each changed sign between the calculations of Chapter 2 and 3; preliminary
results confirm the signs of puy2 and pns calculated with the more accurate fourteen-band
model in Chapter 3 [83]. Recently, “14+2” spin control has been observed using pump-probe
techniques on (111)- and (110)-GaAs [66, 67]. The experiment on (110)-GaAs was complicated
by a cascaded second-harmonic generation process and propagation effects, which are interesting
in their own right, but make a direct comparison with the results in Chapter 3 difficult; the
calculation in Chapter 3 was used as an input into a propagation calculation that produced
results in general agreement with the experiment [67]. Both experiments used large excess
photon energies (150 meV and 280 meV). The experiment on (111)-GaAs, which was not
complicated by propagation effects, used a 280 meV excess photon energy and observed a

maximum spin-control ratio of 2% [66].

Small control ratios were also measured in population control experiments at similar excess
photon energies [36, 37, 66, 67]. The calculations in Chapter 3 predict that much larger popula-
tion control ratios and spin control ratios are possible under excitation closer to the band edge.
Based on the PBA results in Appendix C, one can understand that large control ratios can be
expected when allowed-allowed two-photon transitions dominate allowed-forbidden two-photon
transitions. Such a situation occurs close to the band edge within an energy range that is larger
for materials with larger conduction band effective mass such as ZnSe. Experimental confirma-
tion of this prediction of large control ratios could generate interest in using population control

and spin control in some technological application, perhaps for optical switching.

In Chapter 6, I extended the theory of the “1+42” effects to include the electron-hole interac-
tion, which is neglected in rest of the thesis, and earlier theories of “1+42” excitation. The main
contribution of Chapter 6 is the identification of the intrinsic phase for “1+2” current injection
and “14-2” spin-current injection, and the calculation of Coulomb enhancements of each “142”
effect. The underlying single-particle band structure of Chapter 6 is the PBA of Chapter 2 and
Appendix C, although with the added approximation of equal heavy- and light-hole effective
masses. This approximation allowed for analytic solutions of the excitonic Hamiltonian, which
in turn allowed for physical insight into the problem. For example, I related the intrinsic phase

to the partial wave phase shifts of the Coulomb potential between the electron and hole, and I
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related the Coulomb enhancement of the “1+2” effects to the Coulomb enhancements of one-
and two-photon absorption. The main results of Chapter 6 are summarized in Sec. 6.7.

It is interesting to ask if there are other sources of intrinsic phases to the current (or spin
current) besides the one that I have identified here, as these might produce spectral features
in the intrinsic phase. One possibility is the coupling between bound so-c excitons and the
unbound hh-c¢ or lh-c¢ excitons, since it is known that the intrinsic phase can show spectral
features near a resonance [204]. Another possibility is the envelope-hole coupling between the

continua of unbound hh-c and lh-c excitons that was neglected in my treatment.

Thus far, semiconductor “14+2” experiments have lacked the calibration of the optical phases
necessary to measure the intrinsic phases predicted in Chapter 6, and have lacked the spectral
resolution to confirm the Coulomb enhancements predicted in Chapter 6. The intrinsic phase
will be challenging to observe experimentally since it is most significant in a narrow range of
photon energies above the band edge. But it may have consequences for the use of “142” current
injection as a measure of the carrier-envelope phase of an ultrashort optical pulse [77, 78].

The intrinsic phase and Coulomb enhancement might be greater in reduced dimensional
systems, which have greater exciton binding energies. The carrier-carrier Coulomb interaction
was included in the theory for “1 4+ 2” control of electrons in biased asymmetric quantum wells,
although the intrinsic phase was not identified [31]. Marti et al. recently included excitonic
effects in a theory for “14+2” non-resonant excitation in a quantum wire, but did not find any
nontrivial intrinsic phase [59]. Duc et al. recently included the carrier-carrier Coulomb inter-
action in a theory for “142” current injection and spin-current injection in unbiased quantum
wells [58]. They did not initially study the phase dependence of the effects, but they have con-
firmed that their calculation yields a nontrivial intrinsic phase [237]. Since carbon nanotubes
have strong excitonic effects [238], they would be interesting materials in which to study the in-
trinsic phase. The “142” current injection has been studied in carbon nanotubes and graphene
sheets, but only in the independent-particle approximation [239].

Since “1+2” population control and second harmonic generation are related, the methods
used in this thesis to calculate “142” population control can be extended to a calculation
of second harmonic generation. Such a task would require a Kramers-Kronig transformation
on Imyx® to get Rex(?, and hence would require the former to be specified over a larger
range of frequency than I have studied here. Hutchings and Arnold have calculated second
harmonic generation with the fourteen-band model, although they did not include remote band
effects [131]. Others have used PBA expressions for contributions from several critical points to
obtain Imx(z) over a wide spectral range [147, 158]. Those PBA results are still used to model
experiments [160], and could be improved by the inclusion of terms proportional to interband

spin-orbit coupling parameterized by A~, which I include in Appendix C. In InSb; such terms
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contribute as much as 37% to Imy(?. Excitonic effects on second harmonic generation have
recently been studied with ab initio methods [109], but it would be valuable to also study them

with a simpler band model.

In Chapter 4, I applied the fourteen-band model of Chapter 3 to two-photon spin injection,
which had previously only been studied with isotropic models. I compared one- and two-
photon spin injection, and showed that allowed-allowed transitions, which are absent from
isotropic calculations and are not restricted by angular momentum conservation, permit very
high degrees of spin polarization. The main results of Chapter 4 are Fig. 4.2 and the allowed-
allowed band edge results C.19 and C.20 in Appendix C. The two-photon degree of spin
polarization has not yet been measured close to the band edge, but at higher excess photon
energies, recent experiments agree with the calculation in Chapter 4 [20].

The theoretical considerations of angular momentum that I raised in Chapter 4 would be
interesting to pursue further. I showed that in a spherical model part of the photon angular
momentum is transferred to the carrier spins, and hypothesized that the rest of it is transferred
to the orbital motion of the carriers. It would be challenging to calculate the transferred orbital
angular momentum directly, since the position operator is ill-defined for an infinite, periodic
crystal [105]. It would then be interesting to apply that calculation to a non-spherical model
in which total angular momentum need not be conserved.

In Chapter 5, I showed that a pure spin current can be optically injected from one-photon
absorption alone. I calculated this effect with the fourteen-band model of Chapter 3, and also
with additional terms in the Hamiltonian that account for applied strain. I showed that the
one-photon PSC is smaller than the “142” PSC, even when increased by strain. In this chapter,
I used a theoretical approach based on the density matrix rather than the wave function. The
density matrix approach is not essential, but it more clearly demonstrates the approximations
inherent in the calculation. The one-photon PSC has been observed experimentally [83]. PSCs
due to one-photon absorption have now been studied in quantum well systems [240], and would
be interesting to study in other systems of lower symmetry, which could yield even larger PSCs.

Although I proposed the one-photon PSC, and calculated it with the fourteen-band model,
I did not derive an expression for it in the PBA as I did for the other optical effects in the
thesis. The spin-separation distance in unstrained GaAs appears to be proportional to excess
photon energy closc to the band edge, which suggests that a perturbative approach should bear
fruit. It would be interesting to see which parameters of the model are responsible for the PSC,
and hence find materials that have larger PSCs. Since the effect relies on noncentrosymmetry,
it should be possible to attribute it to wave function mixing between upper conduction bands
and valence bands and/or spin-splitting of the bands. Both of these are due to the momentum

matrix element P’ and the interband spin-orbit coupling A~.
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The formalism to describe the one-photon PSC can also describe the SPEC due to the
circular photogalvanic effect (CPGE) [116]. In fact, the pseudotensor ugl)cl describes both
processes: the former for a linearly polarized field, and the latter for a circularly polarized
field. Other researchers have attributed the one-photon SPEC to spin-splitting of the bands
[116, 197], whereas my preliminary investigations in unstrained GaAs attribute the one-photon
PSC to wave function mixing between upper conduction bands and valence bands. Even though
these two points are not necessarily at odds—since the CPGE vanishes in materials with zinc-
blende symmetry—it would be good to better understand the microscopic origin of both effects.

Throughout this thesis I have argued that the coherence between spin-split bands will grow
like the band populations in typical experiments. Consequently, I treated spin-split bands as
quasidegenerate in FGR for the derivation of microscopic expressions of each optical process.
For excitation with long pulses, this requires the spin-splitting to be smaller than the energy
associated with the dephasing between spin-split bands. It would be interesting to study ex-
perimental situations—perhaps at higher excess photon energies, or in heterostructures with
larger spin splitting—where the quasidegenerate assumption breaks down.

Nonlinear optical properties are a more stringent test of electronic structure calculations
than linear optical properties. By making extensive comparisons between the PBA and the
fourteen-band model, I have shown the limitations of the former for the calculation of these
nonlinear properties. It is interesting to note the importance of interband spin-orbit coupling
(A7) on effects for which allowed-allowed transitions are important—“142” spin-control, “1+2”
population control, and band edge two-photon spin injection. Linear optical properties are much
less sensitive to the parameter A™.

In a sense, this thesis completes the phenomenology of interband “1+4-2” excitation in semi-
conductors by adding spin and spin current to the list of properties that can be controlled.
It presents the first optical method for generating a pure spin current, and also shows that
pure spin currents were inadvertently generated even in the simplest early experiments on one-
photon absorption in semiconductors. The detailed study of these effects, using an accurate
band model and incorporating excitonic effects, is necessary as they begin to be used to study
spin relaxation and transport [74], and to measure the carrier-envelope phase of an ultrashort

pulse [77, 78].
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Appendix A

Notes on systems of electromagnetic

units

There are two commonly used systems of electromagnetic units: the Gaussian system, and
the International System of Units (SI). Their differences, which Jackson discusses in a detailed
appendix [241], stem from adopting different proportionality constants for Coulomb’s law (the

force F between two point charges q; and g2 separated by a distance r). In the Gaussian system

q192
=232
r2 "’
whereas in SI
q192
F= .
dmegr?

The Gaussian system, typically used with cgs units (centimeters, grams, and seconds), is
favoured by theorists, because it makes most electromagnetic formulas simpler; in particular,
the four fields appearing in Maxwell’s equations all have the same units. The SI-mks system,
which uses the SI choice for Coulomb’s law and SI units (meters, kilograms, and seconds), is
favoured by experimentalists. Table 3 of the appendix in Jackson is useful for converting for-
mulas between the two systems of electromagnetic units [241]. For example, when converting a
Gaussian formula to SI, the electric field E should be replaced by Ey/4rmeg, the electric charge
e should be replaced by e/+/4meg, and the current density J should be replaced by J/v/4meo.
Appendix A of Boyd discusses the two systems of units in the context of nonlinear optics [84].

In this thesis, I have used both systems of units. On the one hand, I have used the Gaussian
system for theoretical derivations. For example, the interaction Hamiltonians in Sec. 1.1 are
written in the Gaussian system of units. On the other hand, I have used the SI-mks system to
plot results. For example, all of the figures use SI-mks units, with the exception of Fig. 3.9,

which uses both systems.
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Note that many of the formulas in this thesis are the same in both systems of units. For
example, the transition amplitudes (2.3) and (2.4) contain the product eE, which is the same
in formulas for both systems of units, since it is a force.

Moreover, I state that the formulas in Sec. 2.2 defining new tensors and pseudotensors—my;),
&(s)> (), and ((;), where i stands for 1, 2 or I—are the same in both systems of units. As a
consequence, all microscopic expressions for the tensors and pseudotensors are the same in both
systems of units.

As an example, consider ng])d, which is defined in (2.25). Suppose that definition is in
Gaussian units. Then, according to the conversion rules, to keep the definition (2.25) the same

in SI, ngl;l should be replaced by ngl)d /(47meg)?. Now suppose the microscopic expression (2.43)

is in Gaussian units. Then, making the replacements for ng’;l and e (all other quantities are
unchanged), one finds that (2.43) is the same in SI.

This feature does not hold for the conventional linear and nonlinear susceptibilities [84],
and thus the relations between them and the tensors 7;) and {;), where ¢ stands for 1, 2 or I
are different in each system of units. Where I have written such relations—in a footnote after

(2.23), in (3.21), and in (6.59)—I have favoured SI.
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Appendix B

Neglect of the anomalous velocity

and k-dependent spin-orbit coupling

The anomalous velocity, i.e. v4 = (v —p/m) = h{o x VV)/(4m?c?), which leads to k-
dependent spin-orbit coupling in Hy from the term zk - v 4, is often neglected from k- p models
[123, 124, 130, 242, 243]. Some authors have treated matrix elements of VV as additional
independent parameters [145, 156, 244, 245], but I here relate them to other parameters of the
model, thereby demonstrating that they can be safely neglected.

Bir and Pikus showed that the identity [Hg, p] = iAVV leads to (X| V4V |Z) = 0 [120]. An

application of that identity to the remaining nonzero matrix elements yields

(SIV.V |X) = = (Bs — Ex)mP, (B.1a)
(SIVaV |2) = 25 (Ex — Bs)mF, (B.1b)
(XIVyV |2) = (ZIV,V [2) = == (Bx — Ex)m@Q, (B.1c)

and similar results for cyclic permutations and Hermitian conjugates of these. The energies
Es, Ex, and E, are the eigenvalues of |S), | X), and |z) with respect to the Hamiltonian Hj.
Their values are fixed by the requirement that the eigenvalues of Hy_q give the parameters Eg,
Ej, Ag, and Aj [124]. Neglecting the small contribution from A™, Es — Ex = E; + Ag/3,
E, — Es = Ej— E;+2A(/3, and E; — Ex = Ej +2A3/3 4+ Ao/3.

Bahder gives the matrix for hk - v4 within the eight-band model and defines the parameter
[244]

1 R

Co = V3 4m2c2

(S| V.V |X).

Ostromek used the value Cp = 0.16 eV A to fit the eight-band model to experimental results
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[245]. However, using (B.1a) and parameters from Table 3.1 for GaAs, Co = 5 x 1079 eV A 1
From the point of view of the theory of invariants [120, 132, 246, 247], k-dependent spin-
orbit coupling amounts to using different values of Py for I's and I'; valence bands (and similar
changes for P} coupling and Q coupling) [132]. In terms of Cy, Py — P; = Py + 2v/3Cp for
couplings with I'; bands and Py — Pg = Py — v/3Cy for couplings with I's bands. From (B.1a),

P - R _ 3(Es — Ex)
Py 4mc?

which is very small since mc? = 5.11 x 10° eV.

The above suggests that k-dependent spin-orbit coupling can be neglected for bulk, cubic
materials. As a check, I have repeated the calculations of two-photon spin injection in GaAs
(Chapter 4), and one-photon linear PSC (Chapter 5) including such coupling only between va-
lence and lowest conduction bands and the associated anomalous velocity. Using the consistent
value of Cyp = 5 x 107 %eVA, the results are unchanged. Even when using the overly large
coupling value of Cy = 0.16 eVA, the two-photon P decreases only by =~ 2% for excess energies
between 0.1 and 200meV, and the linear PSC spin-separation distance changes by less than

0.1nm.

!Note that Cy is unrelated to the k-linear term Cy.
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Appendix C

Allowed-Allowed Transitions in the

Parabolic Band Approximation

In this appendix, I derive expressions for “14+2” population control, “14+2” spin control, and
two-photon spin injection in the parabolic band approximation (PBA) due to allowed I'-point
transitions in the fourteen-band model. These analytical results, which are perturbative in Kk,

are compared in numerical, nonperturbative results in Chapters 3 and 4.

To calculate optical effects due to allowed one-photon transitions, allowed-allowed two-
photon transitions, or their interference, one needs the velocity matrix elements for the eigen-
states at the ' point. By approximating the velocity matrix elements by their value at the T’
point, the integral over k in the microscopic expressions for the optical effects becomes straight-
forward. As a further simplification, I approximate all the bands as spherical and parabolic,
neglecting the small k-linear term Cj. Since the bands are doubly degenerate at the I' point,
even for models that include spin-splitting, I can use microscopic expressions such as those in

Sec. 2.1.

The I'-point basis states are given in (3.2). However, all but the I's, states are not eigen-
states at the I' point due to spin-orbit coupling between upper conduction and valence bands
parameterized by A~. The Hamiltonian at the I' point in this basis has off-diagonal elements,
but the order of the basis can be arranged so that it is block diagonal with blocks at most 2 x 2.
For the bands |y, +1/2) and [Ty, +1/2) (or for the bands |T'7,, —1/2) and |7, —1/2)), the
block is

—E,— Ay —2A- } .
_%A_ Ey - Eg

Since A~/ (E) + Ag) < 1, the off-diagonal part can be treated as a perturbation. To first order
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in the perturbation, we have eigenvectors

2A~ 1
|so1 /1) = |7, £1/2) + S A IT7e, £1/2)
0
2A~ 1
|scT /1) = |7, £1/2) — Tm |T70, £1/2) .
For the I's bands, the blocks are
5 A
%A‘ Ey— Eq + Ay
with eigenvectors to first order in A~/ (Ey + Ajp),
A~ 1
|hh 1/ 1) = |Tsy, £3/2) - S E AL Tsc, £3/2)
0
A~ 1
llh T / l> = |F8v7i1/2> - ?m Irsc,ﬂzl/2>
A~ 1
lhc T/ 1) = |T'se, £3/2) + S ELA Ty, £3/2)
0
A~ 1
[le1 /1) =|Ts, £1/2) + ITge, £1/2)

TETA

Velocity matrix elements between these I'-point eigenstates can be worked out from (3.2),
and (3.3). I present here those that can contribute to transitions from initial Ah and lh bands.
Note that amongst I's, states, by exact cancellation, v, s pp s (I') = 0. Between I'z, and T'g,

states,

s,8’

QA~ 2 1 1 n . On A
fivso shhe (T) = 3 B+ Ao + B+ AL % [sz —ioy + QUIZ]

QA 2 1 1 e e
Maosins (0= "5\ G ne * By v ) val 7 X F 7 ks

Between I'g. and T'g, states,

Westne (1) = Pz [20°2 4 7%+ 0¥5),
hesnhs (D) = Pg% [0*% +i0%F]
Between I'g, and I'7, states,

Between I'g. and I's. states,
1 A - -
hvc,s,lc,s’ (F) = Pé7g [_20zz + o0&+ Uyy]s,s’

1
hvc,s,hc,s’ () = Pgl'— [O’zf( + io’Oy]

V2

8,8’
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Between I'g, and I'7. states,
K T) = P [0%% + o"% + o9
Ve,s,5¢,8 ( ) = 7% [U Z+o'x+o0 y]s,s'
Between I'7. and I'g, states (for these, I drop terms proportional to (A‘)Q),

Q . .
thc,s,lh,s' (F) = _\/_5 [__O,zx + ayy]s,s’

Q . . O~ R
hvsc,s,hh,s’ (F) = % [UZX - ZUOy + 201-2] 5,8’

Between I's. and I's, states, dropping terms proportional to (A‘)z,

AVin s hes (D) = [0*% — i0%) — 0%2]

s,s’

hvhh,,s,lc,s’ (F) = [_o'zi - 'L'UOS’ + 0-1'2] 5,8’

Slele

and fvip s ic s (') = Avan s he,s () = 0. In the above equations, I have defined effective matrix

element parameters

Py =Fo - A?:E’I-T-OA’
Pr=Fho+ 22— EOiOAo
Rerr R
p;=pg,_3§__fé%&).

C.1 “142” Population Control
The microscopic expression for population control is, from (2.3), (2.4), (2.18), and (2.28),

&S vh e (k) vdn (K)
& = 'hgwg—L—g,ZZ{ o= }vﬁ,v(kw:zw—ww(k)), (c.1)
C'Uk n nv

where { vy, . (K), Vi (k)} (1/2) [ vy, . (K) V) (K) + vh ¢ (K) v g (k)] ensures the intrinsic sym-
metry fg}? = §g§ Switching to double index, changing the sum over k to an integral using
(1 / L3) Yk = (1 / 87r3) f k?dkdSQ, and approximating velocities and the energy denominator by

their values at the I' point yields

e cvMey
52111’)0 h3w3 271- Z By (]_:7)1 [Z Z { Uns' cs (F) ’ vp ns’ (F)} Ves,up (F):|

s,p s
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where kg, is given in (2.46). From cubic symmetry, only 5?}’)‘: needs to be evaluated. The
sums over spin states can be worked out from the multiplication rules of the Pauli matrices:
% = jedeege 4 5450, For hh-T'sc-c, the term in square brackets is zero. For [h-T'g.-c, the
term in square brackets is ¢ (2/3) P{QPg/ H3. For hh-T'7.-c, the term in square brackets is zero.
For [h-T'7¢-c, the term in square brackets is ¢ (2/3) P;QPg/ h3. For hh-I'7,-c, the term in square
brackets is zero. For [h-I'7,-c, the term in square brackets is

2P QA ( 2 1 ) P

'3h T3h \Ej+ Do | Eg+ A

The result, which gives §E‘}’f in mks, is

32 3/2 cn\3/2
6 = avEre () ()]

(T T - (s )

Eo+ D, —fw  Ey—fw Bothw 3 EO+AO+E()+A6

(C.2)

Expanding the effective matrix elements and eliminating terms of the order (A")2 yields the

final result

3
s =5 =2 [(mc’hh)3/2+ (mc”‘)s/z] v Y B+ Xa+ X5, (C3)

7T h m m (Q}w)
where
X1 =+ EpEps L + ! (04)
Ey—hw ' Ey+Ay—hw)’
X, - A g 2(Ep+A80)"  (By+ AN 2(By+ D0+ (B +AYT ©5)
2773 El — hw Ey+ A} — hw Ao + hw C
A~ FEp 1 1
-_= . 6
Xa=—3 E6+A6(E(’,—hw+E6+A6—hw) (C.6)

Note that (—63) is positive. For typical semiconductors, X3 can be neglected and

Xs A~ Ep

X1 " T2(80+ )\ Ep
In X5, the most important term is the last, which comes from the interference of {hh,lh}-so-c
two-photon transitions and {hh, lh}-c one-photon transitions.

The expression (C.3) only includes the allowed-allowed transitions from the hh and lh
bands. At photon energies for which 2hw > E, + Ay, one should add the contribution due to
the transition so-uc-c.

Because of (3.21), (C.3) is also an analytical expression for Imy(2¢ (—2w; w, w). Jha and

Wynne have also used k-independent velocity matrix elements and spherical, parabolic bands
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to derive an expression for x(2)%¢ (—92u: w. w), but they did not include the interband spin-orbit
coupling term A~ [158]. Taking the imaginary part of their Eq. 4.4 for hw < E; < 2hw, and
correcting a factor of 7 error, reproduces the Imy(2)abe (—2w;w,w) one would find from (C.3)
but with X2 = X3 = 0. Also, they make the approximation fiw ~ E;/2 in the term X;.

To get a PBA expression for the population control ratio requires PBA expressions for one-
and two-photon absorption. I take the same approach used to derive (C.3), but for simplicity,
I take A™ = 0 in the following. In the PBA, at photon energies 2fw < E4 + Ag, one-photon

absorption is

i _ € VImEp ((mc,zh)% N (mc,hh>%) 2hw — Eg(;w

= = T (C.7)

In a material of cubic symmetry, the two-photon absorption tensor 7Kl has three independent
(2

components fé’é‘)‘m, §E’§‘)bb, and 52121’)‘”, which are alternately parameterized by the set { E’;)‘m, o,0 }
[see (3.23)]. The allowed-forbidden two-photon absorption in the isotropic Kane model, ne-

glecting three- and four-band terms, is

ikl _ & Mehh (3 ket | B citcik _ sijski Meth (1 cpci | 1 cin | cij skt
5(2)—5(2)[\/m (256+256 Yo% | + o 655+656 + %4 ,

(C.8)
where
_ 64V2e'Ep (2hw — Eg)%
¢ = 75, VM (2hw)®

Note the additional symmetry, ﬁ?;)aa = 25( abab 4 f‘“‘bb in this isotropic model. The allowed-
allowed two-photon absorption, neglecting A/ (Eg — E4 + hw), has 52‘;)‘"’ 5212‘.1)”” =0 and

Eabab g 62 2m EP'EQ
(2) (1) w2m2 EP (EO E + fuu)

which agrees with Arifzhanov and Ivchenko [171]. Thus, at photon energies for which allowed-

allowed transitions dominate two-photon absorption,

30

R ————
N

~1, (C.9)

whereas when allowed-forbidden transitions dominate two-photon absorption,

N a1 e e e L,
N Ep(2hw — Eg)A| o mchh+l_ mc,lh AY+Ey—Eyj+hw  Ej—Eg+ hw
10 m 10

(C.10)
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C.2 “142” Spin Control

From (2.3), (2.4), (2.20a), and (2.32),

ii ) 3 gy ’U] ( ) v’un( )
(o) = zhzws L3 ZZZ<ckIS k) vl Z{ W (K) — }6(2w_ww (1)

k e¢c

Proceeding as with population control, I take the velocity matrix elements at their I' point
value, etc. and

(c,s,T|S*

| o

)=

[o7] 0

)

jkl __ . m . . .
Gt = 47rh2w3 - cvr)whw > (0w { s O (1) } b ()

s,8’,p,s"”
(C.11)

There are two independent components to C(%d, Cra = —iC(zI’“)“ and (;g = —inIz)” . For (4,
the term in square brackets is

2P QP

3h R K
for initial {h and intermediate I's. (only intermediate hc is nonzero); is

2P QP

3h h A

for initial [h and intermediate I'7.; is

2EAQAT( 2 1
3h h h3 \E,+Ao  Ey+A4,

for initial lh and intermediate I'7y; and is zero for initial hh and all n since v7, 4, (T) = 0.

The result is

—63 2hw — Eg Melh 3/2 Me hh 3/2
= L —7 E E
S ) <(m) +(52) )V Qrs
% vV Epg N Epy + £ 2 + 1 Ep;
E6+A'O—hw Ef — hw 3 Ey+ Ao Ej+ Ay ) Ao+ hw
For (B, the term in square brackets in (C.11) is
2h h h
for initial Ah and intermediate I's. (only intermediate lc is nonzero); is
_1RQR
6 h h A
for initial A and intermediate 'g. (only intermediate hc is nonzero); is
1PIQ P
2h kA
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for initial Ah and intermediate I'7.; is

for initial [h and intermediate I'7.; is

1 P; PR QA ( 2 1 )

2hh R \E,t b Ept A

for initial Ah and intermediate I'7,; and is

1P PQA- 2 1
6 n h B3 \E,+0A¢ Eh+A)

for initial [h and intermediate I'7,. The result is

—e? /2w — E Merh\3/2 /e 3/2
i =% L) () R

(2hw)’ m
9 —vVEpy  VEpy n A 2 n 1 Epr
E6+A6—ﬁw E6—7iw 3 E6+A0 E6+A6 Do+ Fw |’

Expanding the effective matrix elements and eliminating terms of the order (A‘)2 yields the

final result

— 3 —_
Cra = (=€) ((mc,hh)s/z n (M)s/z) ___\M\/ng_ +2,+2Z"), (C.12a)

3r m m (27@)3
(=€) [ rmepn\32 | rmein\3/2\ /2w — Eg , .
i =~ (Tt (Ta) ") VgV (2 + 24 20). (@120
where

1 1
Zy =+/EpEp +
* d P(E{)—hw E6+A6-hw)

A"Ep 2 1 1
Zy=-— +
+ 3 E\+Ay  E)+AL) Ag+ hw

2 1 1 1
+E6+A0E{)—hw:tE6+A()E(’)+A6—hw]
g A Ep 1 1 + 1
= 3 Ej+Aj\E),-hw  Ej+A)—hw

In Z., the first term is from intermediate sc states and the second term is from intermediate
lc and hc states. In ZY, the first term is from intermediate so states, the second term is from
intermediate sc states, and the third term is from intermediate lc and hc states. In Z/, the
first term is from intermediate so states, and the second term is from intermediate hc and lc
states. The term Z/ can be neglected for typical semiconductors. Note that ({4 + 2(;p) has
contributions only from intermediate so and sc states. This only includes transitions from initial
hh and [h states; transitions from initial so states, which contribute when 2/w > E4+ Ay, have

been neglected.
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C.3 Allowed-allowed contribution to two-photon spin injection

To calculate S and N due to allowed-allowed transitions, one can approximate all the matrix
elements and energies in the two-photon amplitude by their value at the I" point, thus avoiding
the integral over k. Since the bands are doubly degenerate at the I' point, one can use Eq.
(4.4).

C.3.1 Light incident along [001]

Since I use a basis of states with spin quantized along %, (c,T'| $%|c¢/,T’) x 6. and we have
02

=% [ Clvry]gé[zw—ww(kn

where ¢ 1 and ¢ | are shorthand for the bands with states |I's, £1/2).
For ot light, with polarization &, = (%X + i§) /v/2, and & || z from Eq. (4.2) and the degree
@ |°_|q®
v [’ch,v I" - ‘QCT v,l

2]
: |
5. |0 +

The non-zero matrix elements of &, - ¥ in the eigenstate basis that can cause a two-photon

0@ ’ _
cTv,Il’

of spin polarization is

transition between v and c are

€u Vel n (T fQ (C.13)

eu Vel (1) = P+ 5 }%—iA—BPO (C.14)
ey Vsepant (F) = -Q (C.15)
e Versot () = @ (Pa - %ﬁ) (C.16)
ey Vsolnt (I') = ;?;QA/S (gé i iz + 2) (C.17)
ey Versol (T) = g (Po + MT'#})—(S_AO) , (C.18)

where I have dropped terms second order in A~. Note that e, - Vapy n) (I') = 0 by an exact

cancellation, as it should from symmetry considerations. Thus,

€

2 2 B
Qo r = - (ﬂ) h|E,|? \/;Q [AP{ + BP,A™],
where A = (Ej+ Ay — Eg/2) ! and B = (Ej + Ap) ™ A/3. Also,

€

2 2 _
U nrr =~ (ﬁ) hIEN \/;Q [€F - DRAT],
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where C = (E| — Eg/2)_1,

1 1 1 (E\+ Ay 2
D= (= 2 ~C
E{j+ Ao [Eg/2+A03 (E{,+Ag+ )+3 ]’

and I have dropped terms proportional to QPé(A‘)2. The degree of spin polarization is then

(AP, + BP,A™)? — (CP, — DP,A™)?
0 0
AP} + BPyA~ 24 (CP. - DP,A-)
0 0

(C.19)

C.3.2 Light incident along [111]

For o7 light incident along [111], it is more tedious to obtain an expression like Eq. (C.19)
since there are more non-zero matrix elements of &, - v than for o light incident along [001].
By rotating the basis to states quantized along [111], the matrix of elements of &, - ¥ becomes
simpler, but the Hamiltonian is no longer in 2 x 2 blocks. When A~ = 0, the latter is not an

issue. In that case, I find

2 2 /e \? 2
P, o= S (—) hIE,[2QPLA

hw
(2) 2 . renN? 9
Qcthhtr = gﬁl (—h;) R|E.|° QP (A+20)
@) V2 e 2 )
QcT,hhl,F=—13—\/§ (E) h|Eu|” QP (C — A),

where A and C are as defined in the previous subsection, and | and | are along [111]. With
the assumption that Aj < Ej — E,/2, A= C and I find that

P(A™=0)=-1/2. (C.20)
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Appendix D

Symmetry of one-photon effects

In this appendix, I present the symmetry constraints on the one-photon effects—absorption,
spin injection, current injection, and spin-current injection—that are discussed in Chapter 5.
I present results for the point group Tz, which applies to semiconductors with zinc-blende
symmetry, and for the point group Dyy, which applies to semiconductors with zinc-blende
symmetry under strain along one of the cubic axes.

The one-photon absorption tensor 5231) is a second-rank tensor satisfying the reality condition
53) = §g;, and real in the independent-particle approximation (IPA). The one-photon spin
injection pseudotensor C(z{;c =3k §g;€ (k) is a third-rank pseudotensor satisfying the reality
condition ((Zf)] = (g;c*, and imaginary in the IPA. Thus, in the IPA, Cg{f = ZUuclik  where
ZY is an arbitrary, real tensor. The one-photon current injection tensor ngl; is a third-rank
tensor satisfying the reality condition nzlfg = ngl;*, and imaginary in the IPA. Thus, in the IPA,
772]1’)6 = vk where 7% is an arbitrary, real pseudotensor [116]. The one-photon spin-current
injection tensor ug’;l is a fourth-rank pseudotensor satisfying the reality condition ugl)k = ,uﬁ')cl*,

and real in the independent-particle approximation.

Td symmetry

For Ty, 58) o 5 [84], CE{;C o €9 [2], and 77?1’; = 0 [99]. The spin-current has two independent

components and non-zero elements

rryy __ ,zzxx __ YYzz __ TZZ __ ZzYYy __ Yyyrx
Ky = HD T =G = CHE = R = R
and
VY = = = =l =l
= HEy” = A =R = AT = T = Ry

122
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There is no second-rank pseudotensor that is invariant under the point group Ty. Thus, u?l")clékl

is zero, which can easily be verified from the non-zero components of uzjll)d.

D2d symmetry

The point group Dyy has a preferred axis, which I will choose to be the z-axis in what follows.
One-photon absorption has two independent components and non-zero elements fflz) = E’ly) and
§(zf). The spin injection is has two independent components and non-zero elements

=~ =< = s

=~

or alternately Z** = Z¥% and Z%%. The current injection has one independent component with

nonzero elements

Tyz T2y Y2z Yyxz
T T Ty T T T
or alternately 7** = —¥% = nay)z. The spin-current injection tensor has seven independent

components and non-zero elements

TTYY _ Tz
P = — ¥y
Z2XTXT RZ
1 Py
ZZ TTZZ
1YY —u
TYyry __ TYyr __ TYT __ T
i Y L L — Ty
2Xzx ZXxZ Yz ZYyyz
" " — Y = PV
Yz __ ZZY TZTxZ __ IZZX
L Y7y YRR — —u
TITTX
" — Yy

The first group of six elements are all equal under Ty, the second group of twelve elements are

all equal under 7y, and the last two are zero under Ty.
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Appendix E

Intermediate-state Coulomb

enhancement

Consider the functions N®f and N(®®) which appear in (6.32) and (6.34); I refer to them
collectively as N. First, note that due to the energy-conserving 4-function in (6.7), x will be
equal to K¢, [see Eq. (6.37)], and thus N is a function only of w, E%,, EY ,, me, and meyy.
Second, note that N is defined so that N — 1 if the electron-hole attraction is turned off, for
example by letting e — 0o.! This allows N to be identified as part of the Coulomb enhancement.
In particular, N is the enhancement due to the Coulomb interaction in the intermediate states;
if the Coulomb interaction is neglected for the intermediate states, N = 1 [185]. [Note that Lee
and Fan [174] did not allow for v’ # v in N (related to J; in their notation).]

Since the integrand is smooth for the parameter range of interest, numerical integration of
N is straightforward; however, it need not be undertaken. Further simplification is possible
since the parameter v can be considered to be much less than one. Since most materials have
an exciton binding energy that is much smaller than the band gap, hw is detuned from the band
edge by many exciton binding energies at photon energies consistent with the approximations
made here. In GaAs, for example, when 2fw is within 500 meV of the gap, v is at most 0.09.
An expansion of N@ for small ~,

B 2 4 1 2
N(a ) — 1+ §7c’v’ + (§ In2— §) ’)’szv/ + (S() - Tgazv,‘gQ) Fyg’v’ + 0 (’Yzllv/) ;

where Sy ~ 0.5633, shows that N is approximately 1 and nearly constant as a function of

w. The same is true of N(®2) which has the expansion

2
NG®2) =1 = (g — ae) P+ 0 (v4y),

Acy

'Mahan instead defines a quantity J. = N(x)7v* (1 + (a'm)z)—1 [176].

124
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1.065_ T T T T T T T T
[ (a-f) 1
1060V —
JrosE Ngn ]
3 r ]
2 L
1.050F . b
; NP
1.045F —
L NF5F7
L L [ L 1 L I \
1.0405 100 200 300 400 500

Excess photon energy 2fiw — Eg (meV)

Figure E.1: The factor N0 [intermediate-state Coulomb enhancement, see Eq. (6.31)] for
GaAs. The first (second) subscript is v (v’); subscripts for ¢ = ¢/ = I'¢ are not shown; I'g

denotes the heavy and light hole bands, and I'; denotes the split-off band.

where, with S7 = 1.645,

2
_ Aoty 2 2a ) 2aclvl 1 2 2 3
P= Vet + (2 In2— e ) Vet + (—ﬁ — —(I_C,U_ — é—aclv,n + 51 Velo!

In fact, when mey = mey, N@2 =1 even to fourth order in 7. Fig. E.1 shows a numerical

integration of N @0 using the parameters of GaAs.
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