
I n t e r b a n d  o p t i c a l  i n j e c t i o n  a n d  c o n t r o l  o f  e l e c t r o n  s p in  p o p u l a t i o n s

A N D  B A L L IS T IC  S P IN  C U R R E N T S  IN  B U L K  S E M IC O N D U C T O R S .

by

Ravi Dinesh Rama Bhat

A thesis submitted in conformity with the requirements 
for the degree of Doctor of Philosophy 

Graduate Department of Physics 
University of Toronto

Copyright ©  2006 by Ravi Dinesh Rama Bhat

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A b s tra c t

In te rband  o p tica l in je c tio n  and con tro l o f e lectron spin popu la tions and b a llis tic  spin currents

in  b u lk  sem iconductors.

R avi D inesh Ram a B ha t 

D oc to r o f Philosophy 

G raduate  D epartm ent o f Physics 

U n ive rs ity  o f To ron to  

2006

T h is  thesis th e o re tica lly  studies in te rband  op tica l in jec tion  o f spin cu rren t, ca rrie r spin, current, 

and carrie r p o p u la tio n  by one-photon absorption , tw o-pho ton  absorp tion , and the  interference 

o f one- and tw o-pho ton  absorp tion  ( “ 1 + 2 ” exc ita tion ) in  cubic b u lk  sem iconductors. Novel 

effects— “ 1 + 2 ” sp in -cu rren t in jec tion , “ 1 + 2 ” spin con tro l, and one-photon pure sp in-current 

in jec tion— are proposed and stud ied, and theories o f p reviously know n effects— “ 1 + 2 ” curren t 

in jec tion , “ 1 + 2 ” ca rrie r-popu la tio n  con tro l, and tw o-pho ton  spin in je c tio n — are extended. Each 

o f the  effects is stud ied  phenom enologically from  the  p o in t o f v iew  o f c rys ta l sym m etry  to  

determ ine the po la riza tio n  and c rys ta l o rien ta tion  dependence, especially fo r cubic m ateria ls. 

The focus o f the  thesis is on the  op tica l in jec tion , ra th e r th a n  on the  subsequent scattering, 

transpo rt, and re laxa tion  o f the  noneq u ilib rium  carrie r d is tribu tions . A  m icroscopic expression 

fo r the in jec tion  ra te  o f each effect is derived w ith  the o p tica l fie ld  trea ted  as a p e rtu rb a tio n . The 

effects are stud ied  w ith  sim ple ana ly tica l band models, p e rtu rb a tive  in  the  B loch  wave vector 

k . “ 1 + 2 ” cu rren t in je c tio n  and “ 1 + 2 ”  sp in -curren t in jec tion , w h ich  are nonzero in  iso trop ic 

m ateria ls, are evaluated using the  iso trop ic, e ight-band Kane m odel. “ 1 + 2 ” popu la tion  contro l, 

“ 1 + 2 ”  spin con tro l, and tw o-pho ton  spin in jec tion  w hich require a lower sym m etry  m odel, are 

evaluated in  the parabo lic  band app rox im a tion  using a fourteen-band m odel. Each o f these, 

and one-photon pure sp in -cu rren t in jec tion  are fu rth e r calcu la ted num erica lly  using the fourteen 

band k  • p  H a m ilto n ia n . The  ca lcu la tion  is nonpe rtu rba tive  in  k , and hence shows the lim it  o f 

v a lid ity  o f the  s im p le r models. S tra in  is incorpora ted  in to  the  fourteen-band ca lcu la tion  to  show 

th a t one-photon pure sp in -cu rren t in jec tion  can be increased w ith  the  a pp lica tio n  o f s tra in . I t  

is shown th a t tw o -pho ton  spin in jec tion  can y ie ld  a very h igh degree sp in  po la riza tion , bu t

i i
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only due to  transitions th a t do not conserve angular momentum. E xciton ic effects on “ 1+2” 

excita tion are studied using the effective-mass theory o f W annier excitons and accounting for 

degenerate bands. I t  is shown th a t excitonic effects cause a phase sh ift in  the dependence of 

“ 1 + 2 ” current in jection  and “ 1 + 2 ” spin-current in jection  on the optica l phases, and cause an 

enhancement o f a ll four “ 1 + 2 ” effects.

i i i
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C hapter 1

Introduction

Semiconductors are characteristica lly photoconductive due to  interband optica l transitions 

(from  filled  valence bands to  em pty conduction bands), which populate the illum ina ted  m ateria l 

w ith  mobile carriers: electrons and holes. E a rly  studies o f in terband optica l transitions used 

incoherent, unpolarized ligh t sources and were insensitive to  properties o f the in it ia l carrier dis

tr ib u tio n  th a t decay on fast timescales [1], B u t modern detection techniques make possible the 

measurement o f such properties, and modern laser systems— capable o f coherent, w ell-ta ilored 

ligh t fields— make possible the selection o f some interband transitions over others, so th a t one 

can photoexcite carrier d is tribu tions  w ith  interesting and im portan t properties. For example, 

w ith  c ircu la rly  polarized ligh t, one can photoexcite conduction band electrons th a t are p a rtia lly  

spin-polarized [2 ], and w ith  a two-colour ligh t field, one can photoexcite a k-space d is tr ib u tio n  

o f carriers w ith  po lar asym m etry— i.e., an electrical current— and contro l the d irection  o f the 

current by ad justing the phases o f the fields [3, 4]. Th is thesis shows theore tica lly  th a t various 

combinations o f one- and two-photon interband transitions can generate carrier d is tribu tions  

w ith  net spin and /o r a net corre lation between velocity and spin, i.e. a spin current.

Spin is a fundam ental and characteristic property o f the electron, bu t i t  is unexplo ited in  

typ ica l semiconductor devices, which form  the basis o f modern electronics. The emerging fie ld 

o f semiconductor spintronics is based on the hope th a t the contro l o f electron spin in  semicon

ductors w ill lead to  the development o f new kinds o f data storage and processing devices, and 

perhaps to  the development o f a solid state quantum  com puter [5-8]. Though semiconductor 

spintronics is m a in ly  focussed on electrical methods o f spin-current in jection  and spin contro l 

[9-13], optica l methods o f spin in jection  and spin detection have played an im po rtan t early role 

[14-16],

The canonical bu lk  semiconductor for optica l studies is GaAs, which is cubic and has zinc- 

blende sym m etry [17]. In  th is  thesis, I  focus on typ ica l I I I - V  semiconductors (inc lud ing GaAs) 

and cubic I I -V I  semiconductors, which have band structures s im ila r to  GaAs. They feature

1
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C h a p t e r  1. I n t r o d u c t i o n 2

a direct band gap between s-like conduction bands, and degenerate, p-like heavy- and ligh t- 

hole valence bands. The selection rules for interband one-photon excitation with circularly 
polarized ligh t in  such semiconductors, which are reviewed in  Chapter 4, are often re-stated in  

the lite ra ture , and are typ ica lly  a ttr ib u te d  to  angular m omentum conservation. They explain, 

for excita tion  close to  the band edge, the experim enta lly observed 3:1 ra tio  o f spin-up to  spin- 

down photoexcited conduction band electrons (or stated alternately, the 50% degree o f spin 

po larization) [2 ].

Th is spin selectiv ity o f in terband one-photon optica l transitions w ith  c ircu la rly  polarized 

ligh t has underpinned optica l studies in  semiconductor spintronics. B u t w hat is possible w ith  

other types o f optica l excitation? The in it ia l m o tiva tion  o f th is thesis was to  study the spin 

properties o f carriers excited by nonlinear optica l processes.

Two-photon absorption o f c ircu la rly  polarized ligh t can also excite spin-polarized electrons 

in  the conduction band [18], bu t there has been some confusion in  the lite ra tu re  as to  the 

degree o f spin-polarization [19]. A  tem pting, bu t erroneous application o f angular m omentum 

conservation can lead one to  conclude th a t carriers are fu lly  polarized. Chapter 4 o f th is  thesis 

presents the firs t calculation o f two-photon spin in jection  th a t goes beyond a simple spherical 

model. I t  clarifies the selection rules for the transitions responsible fo r spin-po larization and 

predicts conditions under which a very high degree o f spin-polarization is possible. The mate

r ia l o f Chapter 4 was published in  2005 along w ith  experiments on one- and two-photon spin 

in jection  [2 0 ],

W hen a semiconductor is simultaneously irrad ia ted  by an optica l fie ld and its  phase-coherent 

second harmonic, quantum  interference between one- and two-photon absorption pathways 

enables excita tion  o f carrier d is tribu tions  w ith  interesting properties. Th is is an example o f an 

“ n + m ” coherent-control scheme, in  which a two-colour ligh t field controls a physical or chemical 

process by interference o f n- and m -photon transitions [21-23]. Interference between one- and 

two-photon transitions, for example, allows controllable po lar asym m etry o f photoelectrons in  

atom ic ion ization [24, 25], and controllable dissociation o f H D + [26]. In  semiconductors, i t  

has been shown th a t “ 1 + 2 ”  exc ita tion  can generate a ba llis tic  current, even in  the absence of 

an electrical bias, and th a t the d irection  and magnitude o f the current can be controlled by 

the phases o f the optica l fields [3, 4, 27-35]. Th is “ 1+2” current in jection  has been studied 

in  a variety o f configurations: im purity -band  absorption [28], free-carrier absorption [27-29], 

quantum  well intersubband transitions [30], asymmetric quantum  well in terband transitions 

[31, 32], and quantum  well in terband transitions [33-35]. Most relevant to  th is  thesis are the 

works o f Atanasov et al. and Hache et al. [3, 4], which showed th a t “ 1+2” current in jection  is 

possible for in terband transitions in  bu lk  semiconductors.

The to ta l density o f photoexcited carriers can also be modulated by quantum  interference
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C h a p t e r  1. I n t r o d u c t i o n 3

in  “ 1+2” excita tion, bu t only fo r m aterials th a t lack a center o f inversion [36]. Fraser et al. 

demonstrated such carrier popu la tion  contro l for in terband transitions in  bu lk  GaAs, which is 

noncentrosym metric [36, 37].

Results presented in  Chapter 2 o f th is  thesis, published in  2000 [38], were the firs t to  show 

th a t “ 1+2” excita tion  can generate spin currents. B y  appropria te ly choosing the po lariza tion  

o f the fields, one can generate (i) a spin-polarized electrical current (SPEC), in  which electrons 

are photoexcited w ith  a net spin and net velocity, or (ii) a pure spin current (PSC) w ith  no 

associated electrical current, in  which electrons traveling in  one d irection have net spin up while 

those traveling in  the opposite d irection  have net spin down.

Whereas a SPEC is required fo r some proposed semiconductor spintronics devices [7, 8 , 16, 

39, 40], a PSC is somewhat o f a novelty. The firs t observations of pure spin currents were based 

on the “ 1+2” scheme presented in  th is  thesis [41, 42]. Pure spin currents can also occur from  

the spin H a ll effect [43-46], and from  spin pum ping schemes [47-55]. Subsequent calculations 

o f “ 1+2” spin currents in  quantum  wells [33, 34, 56-58] and quantum  wires [59] have also 

appeared. Others have proposed th a t a dc electric fie ld can drive a dissipationless PSC [60-63]. 

Rashba has shown th a t such dissipationless PSCs can exist in  the ground state o f low sym m etry 

materials, and hence a d is tinc tion  should be made between them  and the k ind  o f transport PSC 

th a t I  present in  th is  thesis [64, 65].

Results in  th is  thesis also show th a t the net spin o f photoexcited carriers can be m odulated 

by quantum  interference in  “ 1+2” excita tion, bu t on ly fo r noncentrosymmetric materials. Re

cent experiments have confirmed “ 1 + 2 ”  spin contro l in  G aA s/A lG aA s m u ltip le  quantum  wells 

[6 6 , 67].

Thus, the p icture  has emerged over the last ten years th a t when a bu lk  semiconductor 

undergoes “ 1 + 2 ” excita tion, m odula tion  o f the phases o f the fields can modulate: carrier pop

u la tion, ba llis tic  currents, carrier spin, and /o r ba llis tic  spin currents. The la tte r two were firs t 

proposed by w ork presented in  th is  thesis. W hich o f these four “ 1+2” effects occur depends 

on the po larization states o f the fields. There have been several experim ental observations o f 

“ 1+2” in terband excita tion  in  bu lk  semiconductors . 1 Such experiments have been performed 

w ith  either: (a) two fields, typ ica lly  short pulses, one the generated second harmonic o f the other 

[4, 36, 37, 41, 42, 66-76], or (b) a single u ltrashort pulse having at least an octave bandw id th  

[77, 78].

Previous microscopic calculations o f “ 1+2” processes in  bu lk  semiconductors fa ll in to  two 

categories: ab in it io  density functiona l methods have been used for current in jection  [3] and 

popula tion contro l [36], while  simple analytica l band models pe rtu rba tive  in  k (w ith  at most

+  include in  this category experim ents w ith  heterostructures a t excess energies greater than  the confinement 
energy, in which the confinement plays a m inor role.
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C h a p t e r  1. I n t r o d u c t i o n 4

eight spherical, parabolic bands) have been used for current in jection [3, 79, 80]. The former are 

best suited fo r excess energies on the order o f eVs, while the la tte r are on ly va lid  fo r excita tion  

close to the band edge and cannot be applied to  popu la tion  and spin control, which vanish in  

such centrosymmetric models.

This thesis presents novel calculations o f the “ 1+2” effects. In  Chapter 2, I  s tudy the effects 

phenomenologically from  the po in t o f view o f crysta l sym m etry to  determ ine the ir polariza

tio n  and crysta l orien ta tion  dependence, and m icroscopically using simple ana lytica l models, 

pertu rba tive  in  the B loch wave vector k, to  determ ine the ir magnitude. The band model is 

pertu rba tive  in  the B loch wave vector k, and hence appropriate to  excita tion  close to  the band 

edge. C urrent in jection  and spin-current in jection, which are nonzero in  isotropic materials, 

are evaluated in  Chapter 2 using the isotropic, eight-band Kane model. Population contro l 

and spin control, which require a lower sym m etry model, are evaluated in  the parabolic band 

approxim ation using a fourteen-band model in  Append ix C. In  Chapter 3, a numerical cal

cu la tion o f the fourteen band k • p H am ilton ian  is used for a microscopic calculation o f each 

“ 1+2” effect. The calculation is nonpertu rbative  in  k, and hence shows the lim it  o f va lid ity  

o f the calculations in  Chapter 2 and A ppend ix C. Chapter 6  accounts for “ excitonic effects” , 

which are a consequence o f the corre lation between the op tica lly  excited electron and its  hole 

caused by th e ir Coulomb a ttraction . Such correlations were neglected in  previous theories o f 

“ 1+2” effects and in  Chapters 2-5 o f th is  thesis, which use the independent-particle approx

im ation. E xciton ic effects are well-studied in  one- and two-photon absorptions, bu t have not 

previously been studied in  “ 1+2” excita tion. The recently published results o f C hapter 6  pre

d ic t a frequency-dependent phase sh ift in  the dependence o f the current and spin current on 

the optica l phases [81].

Figure 1.1 shows, in  the red box, m y calculated band structure for GaAs w ith  the fourteen 

band k • p H am ilton ian  described in  Chapter 3. Also shown is its re la tion  to  an ab in it io  band 

structure calculation o f GaAs.

A lthough th is  thesis is m ain ly  focussed on electron spin properties o f nonlinear optica l 

excitation, the find ing th a t a pure spin current can be generated from  “ 1 + 2 ”  exc ita tion  begged 

the question o f whether a PSC can be generated from  linear excitation. Chapter 5 shows tha t, 

in  noncentrosymmetric materials, a ba llis tic  pure spin current can indeed be generated from  

one-photon absorption alone. Th is PSC is simpler, bu t more subtle than  the “ 1+2” spin current 

discussed in  Chapters 2, 3, and 6 . The calculation in  Chapter 5 o f the PSC from  one-photon 

absorption uses the same num erical solution to  the fourteen-band k • p H am ilton ian  used in  

Chapters 3 and 4, bu t also accounts fo r external s tra in  on the crystal. The calculation shows 

th a t the PSC can be increased w ith  the application o f stra in. The results o f Chapter 5 were 

recently published [82], and the one-photon PSC has been confirmed experim enta lly [83],
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C h a p t e r  1. I n t r o d u c t i o n 5
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Figure 1.1: Band structures for GaAs: ab in it io  (le ft) and fourteen band k p  (righ t) calculations. 

The units for the horizonta l (k ) axis on the righ t are A -1 , and the un its  fo r the vertica l (Energy) 

axis on the righ t are eV.
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C h a p t e r  1. I n t r o d u c t i o n 6

Electromagnetic un its are discussed in  Append ix A.

1.1 A ssum ptions and  L im ita tio n s

The theoretical studies in  th is  thesis share some common assumptions and lim ita tions . Through

out the thesis, I  use a fram ework based on (i) a pertu rba tive  expansion in  the optica l fie ld am pli

tudes, and (ii) a conceptual separation o f the in it ia l carrier photo in jection  from  the subsequent 

carrier scattering. I  calculate the photo in jection  rates for a zero-temperature semiconductor in  

the Ferm i’s golden rule (FG R ) lim it. Also, I  use the ve locity gauge coupling o f ligh t w ith  the 

m ateria l, and trea t the ligh t in  the long-wavelength lim it.

A t the low optica l intensities characteristic o f our na tu ra l environment, m ateria ls respond 

to  ligh t linearly. A t higher intensities, experim enta lly accessible since the invention o f the 

laser, m ateria l response can be nonlinear [84]. Up to  intensities o f about 1014 W /c m 2— typ ica l 

experiments discussed in  th is  thesis use intensities no more than 10 G W /cm 2 [4, 20, 36, 41,

42, 6 6 , 85]— one can study the m ateria l response w ith  a pertu rba tive  expansion in  the optica l 

fields. In  fact, the expansion o f the po lariza tion  in  powers o f the incident electric fie ld forms 

the common language o f nonlinear optics [84]. The calculations in  th is  thesis are intended for 

intensities at which such a pe rtu rba tive  approach is valid, and for ligh t sources th a t can be 

treated classically.

Higher in tensity  op tica l exc ita tion  is experim enta lly possible, b u t lies in  the realm  o f strong- 

held nonlinear optics [8 6 ], which is outside the scope o f th is  thesis. Strong-held “ 1+2” excita tion  

has been studied in  atoms and small molecules [87-94], The observation o f strong-held nonlinear 

optics in  semiconductors, w ith o u t destroying the sample, requires u ltrashort optica l pulses o f 

only a few cycles [95, 96].

The physical processes in itia te d  by optica l exc ita tion  na tu ra lly  separate in to  d is tinc t timescales. 

Whereas interband transitions begin w ith  the onset o f the optica l held, m om entum  re laxation 

occurs on a timescale o f 1 0 0  fs, and other processes— electron spin re laxation, carrier cooling, 

and carrier recom bination— occur on ps timescales or longer [97], Th is s itua tion  lends itse lf to  

a conceptual separation o f the in it ia l carrier photo in jection  from  the subsequent carrier scat

te ring  and carrier transport. In  th is  thesis, I  focus on microscopic calculations o f the in it ia l 

photoin jection. Thus, one should keep in  m ind th a t the effects I  calculate here w ill relax to  

a steady-state value under continuous illum ina tion , or w ill decay to  zero fo llow ing pulsed ex

c ita tion  as a result o f carrier scattering. The re laxation and transport o f the carriers after 

“ 1 + 2 ”  excita tion has been studied w ith  an effective c ircu it model [6 8 ], hydrodynam ic equations 

[3, 69, 70], Boltzm ann transport in  the re laxation tim e approxim ation [42], a non-equ ilib rium  

Green function  form alism  [80], and the semiconductor B loch equations [34, 56, 58]. The results
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in  th is  thesis can be in p u t in to  any o f these methods th a t do not go beyond its  lim ita tions. 

Even the simplest method, the effective c ircu it model, has given good agreement w ith  room  

tem perature electrical current in jection  experiments [6 8 , 72, 78], although more sophisticated 

models are necessary at higher carrier density [34, 56, 58, 70]. Also, the Boltzm ann transport 

model gives good agreement w ith  spin-current in jection  experiments as shown in  Chapter 3.

A  consequence o f not trea ting  photo in jection  and carrier scattering on the same theoretical 

level is the in a b ility  to  p roperly  model two-photon transitions th a t have a one-photon resonance. 

Thus, the results o f a ll bu t Chapter 5 o f th is  thesis are lim ite d  to  excess photon energy (2hu>—E g) 

less than the fundam ental band gap E g.

I  calculate the photo in jection  rates o f spin current, spin, current, and carrier popu la tion  by 

tak ing  the Ferm i’s golden rule (FG R) lim it  o f pe rtu rba tion  theory. In  th is  lim it,  the in jection  

rate (the rate o f change in  tim e) o f any o f these properties is constant for continuous optica l 

fields. Even i f  scattering and re laxation are neglected, tak ing  the FG R  lim it  elim inates con tri

butions to  these properties w ith  other tim e dependencies. For example, upon excita tion  w ith  a 

quasi-monochromatic pulse w ith  e lectric-fie ld envelope £ (t) ,  there are three d is tinc t con tribu

tions to  the current: current in jection, which is p roportiona l to \£ ( t ' ) \2 d t'\ “ sh ift”  current, 

which is p roportiona l to  |£ ( i) |2; and rectifica tion  current, which is p roportiona l to  d \£ ( t)\2 /d t  

[98-102]. There w ill be analogous “sh ift” -like and rectifica tion-like  contributions to  the effects 

studied in  th is  thesis, bu t they have not been studied in  detail. However, the d ifferent tim e 

dependencies o f the three current contribu tions allow for the ir separate exam ination experi

mentally, at least in  princip le. A nd  as w ith  the one-photon current, rough order-of-m agnitude 

estimates indicate th a t the in jection  con tribu tion  w ill always dom inate unless i t  is forbidden by 

symmetry. In  th is  thesis, I  only study the in jection  con tribu tion  to  each effect.

A lthough typ ica l semiconductor experiments are conducted at room  tem perature or liqu id - 

n itrogen tem perature, in  th is  thesis, I  study ideal zero-temperature, undoped semiconductors. 

A t increased temperatures, electron-phonon interactions increase carrier scattering, which af

fects the re laxation and transport o f the carriers. Increased tem perature also increases the 

la ttice  constant o f the m ateria l, which can in  p rinc ip le  m od ify  the values o f a ll the k • p model 

parameters, bu t s ign ificantly modifies on ly the band gaps [17]. For example, at zero tem pera

ture, the band gap o f GaAs is 1.519 eV, bu t at room  tem perature i t  is 1.42 eV [17]. However, 

theoretica l calculations o f semiconductor optica l properties are commonly made w ith  a zero 

tem perature crystal, and moreover I  have checked th a t using fin ite  tem perature values for the 

band gaps has li t t le  influence on the results presented in  the thesis. To best a id comparison 

w ith  experiments conducted at any tem perature, I  present spectra as a function  o f excess pho

ton  energy (energy re lative to  the band gap) ra ther than absolute photon energy. F ina lly , for 

undoped semiconductors, typ ica l temperatures w ill not introduce any significant equ ilib rium
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c o n c e n tra tio n  o f  free ca rrie rs .

Throughout th is  thesis, I  use the long-wavelength lim it.  In  th is  approxim ation, the spatia l 

dependence o f the electric fie ld is neglected, since i t  typ ica lly  varies on a scale much larger than  

a u n it cell o f the crystal. As a consequence, the propagation d irection o f the op tica l fie ld only 

m atters insofar as the po lariza tion  must be perpendicular to  the propagation d irection. The 

electric fie ld in  the equations in  th is  thesis is the fie ld inside the m ateria l. Typ ica lly, i t  is related 

to  the incident optica l fie ld in  a stra ightforw ard manner by Fresnel reflection coefficients [103]. 

B u t for complicated m ateria l geometries, M axw ell’s equations must be solved self-consistently 

w ith  the optica l-in ject ion equations. We undertook such a task to  model a “ 1+2” spin contro l 

experiment on a (llO )-g row n  m u ltip le  quantum  well sample in  which propagation effects were 

im portan t [67]. In  th is  thesis, I  neglect local-fie ld effects.

There are two commonly used forms for the optica l in teraction H am ilton ian: the velocity- 

and length-gauge couplings. The former takes the form  H v.;nt (t) — — (e/c) A ( t ) - v + e 2 A 2 /(2 m c 2), 

where A ( t )  is the vector po ten tia l associated w ith  the M axw ell electric fie ld [E =  — c- 1  A ( f ) ]  and 

v  is the ve locity operator associated w ith  the field-free H am ilton ian  Ho- In  the long-wavelength 

lim it,  the position dependence o f A ( f )  is neglected, and thus the second te rm  in  H v.\n i(t)  can 

be neglected, since i t  can be absorbed in  an overall time-dependent phase o f the fu ll system ket 

and hence cannot cause any transitions between states o f Ho- The length-gauge coupling takes 

the form  H r^nt(t) =  —eE (t) ■ r ,  which is also known as the dipole H am ilton ian. The A ( f )  ■ v  

coupling is typ ica lly  favored for semiconductors [103, 104] since the position operator is d ifficu lt 

to  deal w ith  for periodic systems [105, 106], a lthough the E (t)  • r  coupling can also be used 

[101, 106]. The two forms o f in teraction  H am ilton ian  are equivalent in  theory, being related by 

a gauge transform ation. However, when a nonlocal H am ilton ian is used, there is a correction 

to  the velocity-gauge H v_[nt(t) to  restore equivalence [106-108]. M any approxim ate approaches 

to  band structure  calculation— includ ing most pseudopotentials, and the trunca tion  to  a fin ite  

number o f bands— im p lic it ly  assume an underly ing field-free H am ilton ian th a t is nonlocal and 

hence require a nonlocal correction to  the ve locity gauge H v^nt(t) [107]. The correction does 

not affect one-photon transitions, bu t i t  does affect higher-order transitions inc lud ing  the two- 

photon transitions studied here. However, I  neglect such nonlocal corrections, which have been 

found to be small for a two-band calculation o f two-photon absorption [107] and for an ab in it io  

ca lculation o f second-harmonic generation [109].

The issues discussed above in  th is  section are not unique to  th is  thesis. They also arise 

in  calculations o f nonlinear optica l susceptibilities [84]. In  fact, the effects calculated in  th is  

thesis can be related to  nonlinear susceptibilities. Two-photon absorption and “ 1+2” current 

in jection  are related to  th ird -o rde r susceptibilities x^3\  and “ 1 + 2 ”  popu la tion  contro l is related 

to  a second-order susceptib ility  x ^ -  The spin in jections— one- and two-photon spin injec
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tion , and “ 1 + 2 ”  spin contro l— and the spin-current in jections— “ 1 + 2 ”  spin-current in jection  

and one-photon spin in jection— can probably be described in  the context o f a m agneto-optical 

susceptibility, a lthough such a task has not yet been undertaken.

Thus, in  a sense, th is thesis studies linear and nonlinear optics o f electron spin in  semicon

ductors. There are three m ain kinds o f spin in  semiconductors th a t can be op tica lly  excited: 

electron spin, hole spin, and nuclear spin. O p tica l exc ita tion  o f nuclear spin is ind irect, occur

ring  as a result o f angular m om entum  transfer from  spin-polarized carriers to  the nuclei [2 ]; 

I  do not study excita tion  o f nuclear spin in  th is  thesis. Whereas the spins o f electrons in  the 

conduction band relax on the order o f 1 0 0  ps, the spins o f holes in  the heavy- and light-hole 

valence bands relax on the order o f 100 fs in  bu lk  GaAs [110, 111]. The difference is due to  the 

degeneracy o f the heavy- and light-ho le  bands at the T po in t, and the entanglement o f spin and 

o rb ita l degrees o f freedom, which allow the holes to  lose the ir spins rap id ly  th rough m om entum  

scattering (the E llio t-Y a fe t spin-relaxation mechanism) [112, 113]. As a consequence, most o f 

the focus in  semiconductor spintronics has been on electron spin ra ther than  hole spin [8 ], since 

electron spin lasts long enough to  be more easily observed and to  have more po ten tia l usab ility  

in  a spintronics device. In  th is  thesis, I  focus on electron spin. Hole spin is considered in  

Chapter 2, bu t otherwise neglected in  the rest o f the thesis.

1.2 R e la tio n  to  published papers

Parts of th is  thesis are drawn from  papers published in  the Physical Review [20, 38, 81, 82], 

M ost of B hat and Sipe, Phys. Rev. L e tt. 85, 5432 (2000) is in  Secs. 2.1, 2.3.3, 2.3.4, and 2.4, 

a lthough i t  is corrected to  a new no ta tion  th a t displays cubic symmetry. I t  is augmented in  

Sec. 2.3.3 w ith  Append ix B o f B hat and Sipe, Phys. Rev. B 72, 075205 (2005). The rest o f th a t 

paper is Chapter 6  and Append ix E. Chapter 4 and pa rt o f Appendix C is m y theoretical work 

from  Bhat, Nemec, Kerachian, van D rie l, and Sipe, Phys. Rev. B  71, 035209 (2005). Chapter 

5 is my theoretical work from  Bhat, Nastos, Najm aie, and Sipe, Phys. Rev. L e tt. 94, 096603 

(2005). I t  is augmented by A ppend ix D, which appears here for the firs t tim e. Chapter 3, Sec. 

2.2, Appendix B, and parts o f Append ix C w ill form  a m anuscript to  be subm itted to  Phys. 

Rev. B.
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C hapter 2

Two-colour Q uantum  Interference: 

Sym m etries and th e Parabolic Band  

A pproxim ation

Quantum  interference between one- and two-photon absorption pathways allows coherent con

tro l o f in terband transitions in  unbiased bu lk  semiconductors; carrier popula tion, carrier spin 

polarization , photocurrent in jection, and spin-current in jection  can a ll be controlled. In  th is  

chapter, each o f the four effects is studied from  two perspectives: macroscopic and microscopic. 

Prom a macroscopic, phenomenological perspective, I  show how each effect is constrained by 

the sym m etry o f the crysta l, and can be described by a handfu l o f material-dependent con

stants. The microscopic calculation o f these m aterial-dependent constants is d iv ided in to  two 

parts: firs t, for the effect o f interest, one derives a microscopic expression, which is a function  

o f m a trix  elements and energies o f the electron states; second, one uses a model H am ilton ian  to  

evaluate the microscopic expression. In  th is  chapter, I  use a simple model H am ilton ian, diago- 

nalized using a pe rtu rba tive  expansion in  the B loch wave vector k, to  derive expressions for the 

m aterial-dependent constants. The model features parabolic energy bands and is applicable to  

excita tion  o f electrons close to  the fundam ental band edge. In  the next chapter, I  use a more 

accurate model, bu t w ith in  a num erical ra ther than  an analytica l approach. The microscopic 

expressions derived and used in  th is  chapter for the “ 1 + 2 ”  effects assume th a t the energy bands 

are doubly degenerate (tha t is, there is no sp in -sp litting). Noncentrosym m etric semiconductors 

have a small bu t nonzero sp in -sp litting , bu t i t  is neglected in  the parabolic band model used 

in  th is  chapter. Generalized microscopic expressions are derived in  the next chapter for models 

th a t include sp in-sp litting .

10
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2.1 M icroscopic  expressions for “ 1 + 2 ” effects

The firs t microscopic expression derived for in terband “ 1+2” current in jection  in  bu lk  semi

conductors used the independent-particle approxim ation, used velocity-gauge coupling (A • p) 

in  the long-wavelength approxim ation, and took the Ferm i’s golden rule (FGR) lim it  o f the 

second-order pe rtu rba tion  in  the optica l fields [3]. Subsequently, Aversa and Sipe studied the 

semiconductor response to  “ 1+2” excita tion  using a pertu rba tive  solution to  semiconductor 

optica l B loch equations (SOBEs) derived using length gauge coupling (E - r )  +  ]. The two d if

ferent approaches, which bo th  used the independent-particle approxim ation, produce fo rm a lly  

equivalent m icroscopic expressions for “ 1+2” current in jection, a lthough the velocity-gauge ap

proach requires m odifica tion  for nonlocal Ham ilton ians as discussed in  Sec. 1.1 [100]. However, 

the SOBEs obscure the quantum  interference nature o f the “ 1+2” effects.

M icroscopic expressions for the other three “ 1+2” effects— popula tion  control, spin-current 

in jection, and spin contro l— can be easily derived by generalizing the derivation o f the m icro

scopic expression for current control. In  fact, th is  has been done for popu la tion  contro l [36], In  

the rest o f th is  section, I  present a unified derivation o f a ll four “ 1+2” effects. I t  is review for 

current in jection  [3, 114] and popu la tion  contro l [36], bu t novel fo r spin-current in jection  and 

spin control.

The optica l fie ld is modeled as a superposition o f monochrom atic fields o f frequency lo and

2 lo:

E  (t) =  E w exp(—iu>t) +  E 2u> exp(—i 2u>t) +  c.c. (2-1)

I  calculate the in jection  o f each “ 1+2” process using microscopic expressions derived using 

velocity gauge (A  • v) coupling in  the long-wavelength approxim ation, trea ting  the fie ld per- 

tu rba tive ly  in  the FG R  lim it,  and using the independent-particle approxim ation [3, 36].1 The 

in it ia l state is an ideal semiconductor in  its ground state |0), w ith  filled  valence bands v and 

em pty conduction bands c. The ligh t fie ld causes transitions to  states ]cuk) =  kG+k |0), 

where the creation operator a}n k creates an electron in  the B loch state |nk). B y in troduc

ing “hole” creation operators b\, k , where b̂ , k =  a^k , one can refer to  the state |cuk) as an 

electron-hole sta te .2 The op tica lly  in jected electron and hole have the same crysta l wave vector 

k  as a consequence o f the long-wavelength approxim ation. I  w rite  the state o f the system as 

+  (t)) =  co (t) |0 ) +  ̂  Ccvk (t) |ci>k) and calculate ccvk (t) to  second order in  pe rtu rba tion  theory,

1Some consequences of relaxing the independent-particle approxim ation are presented in C hapter 6.
2The  notation  k =  a ^ .-k  is more common, since the operator a „ ,-k  creates a hole w ith  crystal m om entum  

Hk, whereas the operator av,k creates a hole w ith  crystal m om entum  —hk  [104], However, for the purposes of 
this section, such a notation  is unnecessarily cumbersome.
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tre a t in g  th e  lig h t c lass ica lly  in  th e  lo n g -w a v e le n g th  l im it .  T h e  re su lt is

c v ( t )  -  f o (1) +  H (2) 1 exP H * ( ^  +  te)] (2 2)
(t} -  r c-"-k +  Uc’V’k\ 2u  -  locv (k) +  ie  ’ ( }

where e is an in fin ites im a lly  small parameter to  account for the tu rn -on  o f the m onochrom atic 

fields, and

QS .k =  ^ E2- ' v - ( k ) ’ (2-3)
r.(2) (  e v c,„ (k)] [E^ • v „ it, (k )] ^

z ,  cjn v ( k ) - c j  ’ >

where \ n,m (k ) is a ve locity m a trix  element between B loch states, hu>n (k ) is the energy o f band

n, and cvnm (k ) =  ujn (k ) — u>rn (k ). To lowest order, the coefficient Co (t) =  1.

The four “ 1+2” effects can be generalized as the in jection  rate o f the expectation value in  

the state \ip ( t))  o f a one-body operator 0 .  In  second quantized form  [115]

0 =  ^2  a\ikamk' ( n k |0 |m k ') ,  (2.5)

where 8 is the associated single-particle operator .3 For current in jection, 8 =  ev, where v  is 

the velocity operator. For popu la tion  control, 8 is the pro jector onto c bands ^ c k lf'k) (ck|, 

which gives the number o f electron-hole pairs. For spin control, 8 is the spin operator S. For 

spin-current in jection, 8 is the product v l SJ. However, due to  the sp in-orb it p a rt o f the velocity 

operator— the so-called “ anomalous” velocity, discussed in  Sec. 2.3.1— v  and S do not commute, 

and thus v l SJ is not H erm itian . Instead, one should take (vl SJ +  SJv l ) /2  as the operator for 

spin-current. B u t since I  neglect the anomalous ve locity (see Append ix B), th is  is no t necessary.

In  what follows, I  assume th a t 8 is diagonal in  k  (i.e., (nk | 8 \m k ') =  (nk | 8 |m k) 5k,k')- Th is 

property  is satisfied by the four im portan t examples o f 8 above, b u t note th a t i t  is not satisfied 

by the polarization, since the position operator is not s tr ic tly  diagonal in  k  [105, 106],

In  terms o f the electron and hole operators, (2.5) becomes

0  =  ^2  alk ac'k^c,c' (k ) -  ^2  VkbvkOv,v' (k ) +  ^2  (aIkb£k9c,v (k ) +  /i.e .) +  ^2  °v,v ( k ) , 
c,c',k v,t/,k c,u,k v,k

where 8n m̂ (k ) =  ( n k \8 \m k). B y  using the basic anti-com m utation relations | a „ k ,  am̂ k ')  =  

5n,m5k,k' and { f l+ k , am,k '}  =  ( a!i,k’ am ,k '} =  °> and the properties o f the ground state aC)k |0 ) =

3Here, and throughout the thesis, one can make the replacement =  ( L 3/87t3) f  d3k, where the integral
on the right side is over the  first B rillou in  zone, and L 3 is a norm alization  volume.
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by,k |0 > =  0 , one finds

<0|e|0) =  5> , w (k),
u,k

(0 | 0  |c fk )  =  9Vfi ( k ) ,

(cvk| 0  |c v k )  9CC* (^ ) ^v,v' (k ) &c,d T  ^c,d^v,vf 9V̂V ( k ) .

(2.6)

(2.7)

(2.8)
u,k

Note th a t while, in  general, the expectation value o f an observable operator 0  in  the ground 

state can be nonzero, the popu la tion  o f electron-hole pairs is zero (by de fin ition  o f the ground 

state), and the current density in  the ground state is zero. There can be a net spin in  the 

ground state o f a magnetic m ateria l, and there can be a net spin current in  a m ateria l o f 

low enough sym m etry to  allow a nonzero second-rank pseudotensor. Rashba discussed such 

equilibrium , non-transport spin currents in  m aterials o f Coot, and C2„  sym m etry [64]. Neither 

a net ground-state spin nor spin-current are allowed by sym m etry in  m ateria ls w ith  Tci or Oh 

symmetry, which are the focus o f th is  thesis.

Using (2.6), (2.7), and (2.8), the in jection  rate o f the expectation value o f 0  per u n it volume

is

_ l/@ ) =  —  —
d t K 1 ~  L 3 dt

-  J _ A
~  L 3 dt

c.c.

\ e m

c0 W  Ccvk 6v’c + '
cuk

“t“ ^   ̂^  ^ ^cv k (^) Cc'v' k (^) [^c,c' (^ )  @v',v (k ) S J \
c'vf cvk

(k) Sv v̂i 9vi v (k ) 5C;c' j  ^  [cct)k (^) Cc'v1 k (f)] •
c 'v '  c v k

(2.9)

(2.10)

(2.11)

In  the firs t step, the term  from  |co|2 combines w ith  the te rm  due to  the last te rm  o f (2.8) to 

give |co|2 +  X) |cCuk|2, which is equal to  1 and independent o f time. The firs t te rm  in  the square 

brackets in  (2 .1 0 ) is the coherence between the electron-hole excita tion  and the ground state. 

Its  E 2oj piece gives the index o f refraction, and the one-photon “sh ift” and rectifica tion  currents, 

which are more na tu ra lly  derived in  the length gauge and w ith  a density m a trix  approach [1 0 1 ]. 

Its  in jection rate vanishes in  the FG R  lim it.  Using (2.2),

d
dt Ccvk W  Cc'v'k {t)

K ! * ) ' + ( « C 0 ' c ,?/, k 1 c',ir,k
2 e exp (2 et)

(2.12)

(2ui — ujdv' (k) +  ie) (2lo — (k) — ie)

The FG R  lim it  is the lim it  e —* 0. In  th is  lim it,  terms w ill only contribu te  when ujcivi (k)
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(k ) =  2 ca, for then

2 eexp (2 ei)

[2u  -  ojcv ( k ) ] 2 +  e2
lirn  — /i \ i2 o =  2nd (2u -  ton, ( k ) ) . (2.13)

In  the parabolic band model, th is  only occurs when ojcc' (k ) =  u>vv> (k ) =  0 .4 Taking the FG R  

lim it,

I  = 7 ?  E  E  (k ) v  -  (k ) M
dt L  cvk c V  (2.14)

X [ ( f t $ , k ) *  +  K i k ) " ]  +  QS ', k ]  *  (2 ^  -  “ cv ( k ) ) ,

where the prim e on the sum m ation implies the restric tion  to bands for which locci (k ) =  

covvi (k) =  0. Expanding the product o f the two terms in  square brackets,

dt

where

27r

c+’k

— (0 )  — 0(1) +  9(1) +  0(2), (2-15)

^(1) =  7 7  E  E  i0^  (k ) K v  -  d v , v  (k ) sCt&] ( n g ik) *  (2w -  (k ) ) » (2-16)
c vk c 'v '

®(2) =  %  E  E  [ 0 c ,c f (k ) K v  -  0«,v (k ) V ]  ( n S ,k ) *  n ? i ’M5 (2^ -  ^  ( k ) ) , (2.17)
c v k  c 'v '  

i

0(J) =  7 1  E  E  t^c’c' (k ) -  0V’>V (k ) 6c,d\
cuk c'v' (2-18)

( n S * ) '  +  + l , k  K U ) ‘ ] 4 (2“  -  (k »  •

Here, 9 ^  is due to  one-photon absorption from  the 2u  beam, 0(2) *s due to  two-photon ab

sorption from  the lj beam, and #(/) is the “ 1+2” interference term . Because o f th e ir different 

dependencies on the e lectric-fie ld amplitudes, these three terms can in  p rinc ip le  be separated 

experimentally. Each o f these can be fu rthe r separated in to  a con tribu tion  from  the in jected 

electrons and holes, e.g. 9 ^  =  0 (i;e) +  where the electron te rm  contains 9CC> (k ), and the

hole te rm  contains 9V̂ V (k ).

Equations (2.16), (2.17), and (2.18) encompass twelve physically d is tinc t effects. For 9 — 

7 7 ck |ck) (ck|, (2.16) describes one-photon absorption

N {1) =  E  lE2-  • (k )!2 5 (2w -  ^  (k »  ’ t2' 19)
' '  c.v,k

4W hen there is small spin-splitting of bands, (loci vi (k )  — tocv (k ) )  can be nonzero but sm all over a large volume 
of k-space; this s ituation is discussed in  the following chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C h a p t e r  2. “ 1 + 2 ” P r o c e s s e s : S y m m e t r i e s  a n d  t h e  P B A 15

(2.17) describes two-photon absorption, and (2.18) describes “ 1+2” popu la tion  contro l [36], 

For 0 =  ev, (2.16) describes the c ircu lar photogalvanic effect CPGE [99], (2.17) describes two- 

photon current in jection, and (2.18) describes “ 1+2” current in jection  [3]. For 6 =  S, (2.16) 

describes one-photon spin in jection  [2], (2.17) describes two-photon spin in jection  (Chapter 4), 

and (2.18) describes “ 1+2” spin contro l «S(j) — «S(/;e) +  S(i-h)-, where

«%;e) =  p  E  E ( c'k lS lck )QS , k ^ S + ^  (2w -  Uco (k ))  +  c.c. (2.20a)
c,t;,k d

S(i;h) =  - %  E  E < wklS lu'k )n S ,k f i S * k ^  (2w -  (k )) +  C . C . .  (2.20b)
c,v,k v*

For 0 =  v i SJ, (2.16) describes the one-photon linear PSC (Chapter 5) and the spin-polarized 

CPG E [116], (2.17) describes two-photon spin-current in jection, and (2.18) describes “ 1+2” 

spin-current in jection  K 1̂  =  K 1̂ . ^  +  K l̂ ,hy  where

^(/;e ) =  f l  E  E ^ c /k lu*5 J lck ) n S ,k n S2i* k <J (2w -  (k )) +  C'C• (2.21a)
c,t;,k d

K (i;h ) =  - %  E  E ^ l ^  lu' k >n S ,k n S ' V  (2uJ -  Ucv (k )) +  C .C .. (2.21b)
c,u,k v'

2.2 M acroscopic  perspective

In  th is  section, I  study the “ 1+2” effects from  a macroscopic perspective. To m otivate the 

approach taken in  the rest o f th is  section, consider the righ t side o f Eq. (2.19). I t  contains the 

electric fie ld amplitudes, bu t otherwise contains only m ateria l properties and can be rew ritten

% )  E » E l
2tt

(2M 2 L3
E  vc% (k) Viv (k) S(2u-ucv (k))
c,u,k

(2.22)

where the m ateria l properties have been isolated in  square brackets. Here superscript lower

case letters denote Cartesian components and sum m ation over repeated indices is im plied. The 

separation o f m ateria l properties and external fields, which is the purpose o f nonlinear sus

ceptib ilities, is often useful. From  a macroscopic, phenomenological perspective, one can w rite  

one-photon absorption as

+ )  =  e L (2.23)
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where is a second-rank tensor satisfying =  ^ ( i ) J  so tha t is rea l.5 Even though 

one can compare (2.22) and (2.23) to  find  a microscopic expression for (2.23) holds more 

generally. A ny microscopic expression for w ill have the form  (2.23), even one derived 

under a set o f assumptions different from  those in  Sec. 2.1. Equation (2.23) is useful because 

is constrained by the sym m etry o f the m ateria l. I f  the m ateria l undergoes a po in t group 

sym m etry operation th a t leaves i t  invariant, then the result o f the experiment should not change. 

Specifically, must be invariant under a ll po in t group sym m etry operations o f the m ateria l

[117]-

In  th is section, phenomenological expressions are given for each o f the “ 1+2” effects, tensors 

describing the effects are defined, and I  present the sym m etry properties o f the tensors fo r cubic 

materials.

A  tensor (or pseudotensor) T  o f rank n th a t is invariant under a set o f po in t group operations 

can be constructed from  a com pletely a rb itra ry  tensor (or pseudotensor) T  o f rank n, using the 

form ula

f a ia2...an =  ^  ^  (det (Gg) )p T hb2'--bnG bgia iGbg2a2...Gbgnan, (2.24)
g bih2-.bn

where Gg are 3 x 3  matrices th a t transform  a vector under the g-th  po in t group operation, and 

P  is zero for tensors and one for pseudotensors. The sum over g goes over a ll the elements 

o f the po in t group. The invariant tensor T  can be examined to  find  relations amongst the 

tensor components imposed by sym m etry constraint. Also, the num ber o f independent tensor 

components can be verified using character tables for the po in t group [117],

In  th is thesis, I  am p rim a rily  concerned w ith  m ateria ls o f zinc-blende symmetry, which have 

po in t group in  the Schoenflies no ta tion  (43m in  the in te rna tiona l no ta tion ), and m aterials 

o f diamond symmetry, which have po in t group Oh in  the Schoenflies no ta tion  ( A 3 +  or m 3m  

in  the in ternationa l no ta tion ) [118].

For an isotropic m ateria l, since the sum over g in  equation (2.24) is an in fin ite  sum, a 

different approach is preferred. A ny isotropic Cartesian tensor or pseudotensor can be w ritte n  

as a linear com bination o f products o f Kronecker delta functions and L e v i-C iv ita  tensors [119]. 

A l l  possible linear combinations are independent fo r tensors or pseudotensors o f rank 2-4, or 

6 , bu t for other ranks, there are fu rthe r identities th a t reduce th is  number [119].

5In  the mks system o f units (see Appendix A ), this unconventional one-photon absorption tensor [3] is related  

to  the linear susceptibility x ^  by =  (2 /f t )  £o ^Im ^ x i1^ )  — ®Ee (x a 1^ )  j , where Xs1^  =  ^X^1^  +  X^1^ ' )  / 2

and Xa1),J =  (x(1),J “  X (1)^ )  / 2 -
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2 .2 .1  C u rren t

Current in jection  in  the presence o f the fie ld (2.1) can be w ritte n

j { =  t +  { r i ^ E i ' E t ' E 1̂  +  c.c.) +  r ? * lm E ^  E kJ  E lE ™ , (2.25)

where J  is the macroscopic current density, and 77̂ ,  r f ^ 1, and r f ^ lrn are tensors describing 

the m ateria l response. The th ird  rank tensor 77̂  describes one-photon current in jection  (the 

c ircu lar photogalvanic effect [99, 116]), the f if th  rank tensor rf(2) lm describes tw o-photon current 

in jection, and the fou rth  rank tensor describes “ 1+2” current in jection  [3]. Aversa and Sipe 

showed th a t r f ^  is related to  a doubly divergent pa rt o f the th ird -o rder nonlinear susceptib ility  

x (3) [100]. In  cubic m ateria ls w ith  po in t group sym m etry T4, Oh or O, a general fou rth  rank 

tensor has four independent components, bu t due to  the in trins ic  sym m etry rf^ 1 =  ,

?/(/) has on ly three independent components; there are 2 1  non-zero components o f + / )  in  the

standard cubic basis: 77“ “ “ “  =  r / ^ b =  77̂ “ , r]bj “ b =  r)®bba =  =  r j ^ a =  77̂ °  =  77̂ ,  and
a(ab)b b(bc)c c(ca)a a(ac)c c(cb)b b(ba)a / , i  , ,1 u7 7 '  =  77^ ' =  77^ '  =  77^ ' =  77(} } =  77(} } ' ( the  com ponents m  parentheses can be

exchanged), where a, b, and c denote components along the princ ipa l cubic axes [3], Th is can

be w ritte n

r ,m  =  t-»7|i ^sn ski +  g ik fiji'j +  ir jB2§i l$ ik +  ir jcS 1̂ 1, (2.26)

where StJ is a Kronecker delta and the only non-isotropic part is 5l]k l, which I  define in  the 

princ ipa l cubic basis as Si]k l =  1 when i  =  j  =  k =  I and zero otherwise. The three independent 

components are tjbi =  - 2 i r jaabb, 7752 =  —ir]abba, and 77c  =  2 u f abb +  i r f bba -  ir)'Maa. Thus, in  a 

cubic m ateria l,

j (V} =  ir jB i (E * • E 2uJ) E ft  +  77752 (Eo, ■ E w)* E l2u +  i r j c E ^ E ^ E ^ E ^  +  c.c. (2.27)

Th is generalizes the no ta tion  we used previously for a calculation in  the parabolic band ap

proxim ation  [38], w ith  the connection r js i — e D B i/h ,  and 7752 =  e D B 2/h ,  where D , B \ and 

B 2 are defined in  Bhat and Sipe [38]. In  tha t, or any other spherical approxim ation, 77c  =  0.

2 .2 .2  P o p u la t io n

The carrier density injected by the fie ld (2.1) can be w ritte n

N  =  C ^ E t E L  +  ( ^ K ' E ' J e L  +  c.c.) +  ^ i klE i* E i* E kE l ,  (2.28)

where N  is the density o f electron-hole pairs (equal to  the density o f electrons or holes), and 

the tensors and describe the m ateria l response. Specifically, describes one-

photon absorption, ^ 2kl describes two-photon absorption, and describes “ 1+2” popu la tion
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contro l [36]. The th ird -ra n k  tensor which has in trins ic  sym m etry ^ j k =  can be re

lated to  the second-order nonlinear susceptibilities x ^  (2a;; — u , —uj) and (—a;; 2a;, —a;) by 

considerations o f energy transfer and macroscopic electrodynamics [36]. Th is po in t is discussed 

fu rthe r in  Sec. 6.6. In  centrosym m etric materials, such as those w ith  the diamond structure 

(po in t group Oh), is identica lly  zero; hence, popu la tion  contro l requires a noncentrosym- 

m etric  m ateria l. In  a m ateria l w ith  zinc-blende sym m etry (po in t group T j) ,  has only one 

independent component; in  the standard cubic basis =  ^'"fb =  £by  =  are

the only non-zero components, where a, b, and c denote components along the p rinc ipa l cubic 

axes.

2 .2 .3  S p in  c u r r en t

Spin-current density is quantified by a second-rank pseudotensor K lJ. Note th a t whereas I  take 

K li  =  (v l SJ), some authors choose the firs t index to  represent spin and the second index to  

represent ve locity [64]. The sym m etry results o f th is  section are valid for any de fin ition  o f K lJ 

th a t is a second-rank pseudotensor.

The spin current injected by the fie ld (2.1) can be w ritte n

k v  =  +  ( ^ mE *kE * l E Z  +  c-c )  +  ^ lrnnE ^ E l * E ^ E ^  (2.29)

where the pseudotensors and /j.^klmn describe the m ateria l response. Specifi

cally, describes one-photon spin-current in jection  (see Chapter 5), describes two-

photon spin-current in jection, and / x j^ m describes “ 1+2” spin-current in jection. The fifth - 

rank pseudotensor / / ] ^ m has in trins ic  sym m etry on exchange o f k  and I indices; specifically, 

j n an isotropic m ateria l, ^ j klm has three independent components, while 

in  a cubic m ateria l (w ith  T j,  O, or Of, sym m etry) has six independent components.

Th is is contrary to  our previous cla im  th a t i t  has four independent components [38]. The 

four parameters A i, i  =  1-4, th a t we used previously to  describe spin-current in jection  in  an 

isotropic model [38] can be reduced to  three independent components w ith  identities such as 
pijmfikl _  £ijkfilm  _|_ £j  km fill _  £ikm fijl _  q [n g ], For a cubic m ateria l, has 54 non-zero

elements in  the p rinc ipa l cubic basis, and can be w ritte n

^ i j k l m  = /^l f ^ j m l f i i k  +  £ j m k f i i l ^  +  ^ £ i m l § j k  +  £ i m k f i j l ^  +  ^ ^ i j m f i k l

+ H C16ik ln £n jm  + HC2Sjk l n £n im  + /iC3  ̂ ( S i i k n £nm l + 8 i j l n £nm k ĵ ,

(2.30)

where the non-isotropic tensor 8l]k l has nonzero components 8aaaa =  8bbbb — 5CCCC =  1, where a, 

b, and c denote components along the p rinc ipa l cubic axes. The six independent components are 

Un i  =  2^)aba, urn  =  2/x̂ aba, f iN3 =  ktfj)cc, k c i  =  HC2 =  k \aI ) ac~kN2+k-m,
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and //<73 =  2 / j,^ lcb — — /xjv2 - Thus in  a cubic m ateria l,

K ** = n m E *J  (E2w x  E*w)j  +  [ iN 2 (E2w x E*J +  (E * • E * )
/  \ (2.31)

+  (/xC16ikln£njm  +  v c 2Sjk ln enim)  EZkE * jE Z  +  ^ c z ^ klE*wk (E 2w x  E * ) ( +  c.c.

Note tha t the in jection  o f (v • S) is zero in  a cubic m ateria l, i.e., K li  is traceless. In  an isotropic 

model, such as the one we used previously [38], Hex =  Hc'2 =  /xc'3 =  0. The connection to  our 

previous no ta tion  is ^xjvi =  D  (A i — A 4 ), /XjV2 =  D  (A 2 +  A 4), and ^ 3  =  D  (A 3 +  A 4 ) [38].

2 .2 .4  S p in  p o p u la t io n

The spin density injected by the fie ld (2.1) can be w ritte n

&  =  $ * £ & £ &  +  (C f f l E 'J E ^ E 1̂  +  c.c.) +  C $ mE i* E kJ E lE ™ ,  (2.32)

where S is the macroscopic spin density (S =  (S)), and the pseudotensors C(\y ■, and

describe the m ateria l response. Specifically, C({) describes one-photon spin in jection  [2], C ( ifm

describes two-photon spin in jection  (see Chapter 4), and describes “ 1+2” spin control. 

The fou rth  rank pseudotensor Ql̂ jkl has in trins ic  sym m etry on the indices j  <-> k. Such a 

pseudotensor is zero in  the presence o f inversion sym m etry; hence, “ 1 + 2 ” spin contro l requires 

m aterials o f lower symmetry. For zinc-blende sym m etry (po in t group T j) ,  a general fourth -rank 

pseudotensor has three independent parameters and 18 non-zero elements in  the standard cubic 

basis; forcing the j  <-> k sym m etry leaves two independent parameters

iCiA =  C ft6a =  C(C/ 7  =  C f/f =  -C (7 a =  -C  ( I f  =  - C ( 7 ,  (2.33a)

•/*______ /-aabb    r c c a a    s-bbec   /-a a c c    /* ccbb   /■bbaa
+ /B  =  <,(/) -  <,(/) -  <,(/) ~  -<,(/) -  —8(/) -  - ( ,( !)  2 33b^

  / -baba
~  “ MB •

In  the independent-particle approxim ation, ^ j kl is pure ly  imaginary, which can be proven using 

the time-reversal properties o f the B loch states. Thus, Q a and CIB  are real.

  ra b a b    /■ca ca    s-bebe   /-a c a c    sebeb
~  sm  -  Cm -  Cm -  -C m  -  -C m

2.3 P ara b o lic  ban d  ap p ro x im atio n s

Microscopic expressions for the independent tensor components governing “ 1+2” effects can be 

found by comparing the microscopic expressions in  Sec. 2.1 w ith  the defin itions in  Sec. 2.2. To 

evaluate them  requires the one-particle energies and m a tr ix  elements o f velocity, spin, and the 

product o f velocity and spin. Th is section reviews the k  • p  H am ilton ian and uses a solution 

pertu rba tive  in  the B loch wave vector k  to  derive ana lytica l expressions for the independent
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tensor components. The eight-band Kane model is used for “ 1+2” current- and spin-current 

in jection. In  Append ix C, a fourteen-band model is used for “ 1+2” popu la tion  and spin control.

From the macroscopic perspective o f Sec. 2.2, “ 1+2” current- and spin-current in jection  

d iffer from  “ 1+2” popu la tion  and spin contro l in  the sense tha t the form er can be nonzero 

even in  isotropic materials, whereas the la tte r s tr ic tly  vanish in  any m ateria l w ith  a center of 

inversion.

One can see th a t difference from  a microscopic perspective as well. Consider an expansion 

in  k  about the T  po in t o f v n m(k ), which is the m a trix  element governing op tica l transitions 

[(2.3) and (2.4)]. I f  the lowest-order te rm  in  the expansion is independent o f k , the associated 

one-photon trans ition  is called “ allowed” ; otherwise, i f  the lowest-order te rm  is p roportiona l 

to  k , the associated one-photon trans ition  is called “ forb idden” . Two-photon transitions have 

two velocity m a tr ix  elements, and thus have a hyphenated label depending on the lowest-order 

terms in  the expansions for each m a trix  element. For example, i f  bo th  m a tr ix  elements are 

independent o f k , the two-photon trans ition  is called “ allowed-allowed” . In  the eight-band 

Kane model, which is isotropic, one-photon transitions are allowed, and two-photon transitions 

are allowed-forbidden (one m a trix  element is allowed, and the other is forbidden). As a result, 

the product *s l inear in k  to  lowest order. B u t the sum over k  in  the microscopic

expression w ill only survive i f  the summand is even in  k . Thus popu la tion  and spin contro l 

vanish in  the isotropic Kane model, whereas current- and spin-current in jection  survive due to  

the add itiona l ve locity m a tr ix  element, which is linear in  k  to  lowest order, in  th e ir expressions.

The preceding argument is complicated by the degeneracy at the T po in t, since the expansion 

about the T po in t o f v n m(k )— given below in  (2.39) and (2.40)— is best considered as a set of 

expansions in  k for each d irection  k  [120]. B u t nonetheless, popu la tion  and spin contro l vanish 

in  the isotropic Kane model, which I  have verified by exp lic it calculation.

Population and spin control, to  lowest order, are due to  the interference o f allowed one- 

photon transitions and allowed-allowed two-photon transitions. Th is po in t was made heuristi- 

ca lly by Fraser and van D rie l for popu la tion  contro l [37]. Allowed-allowed two-photon tra n 

sitions are present in  a fourteen-band model th a t includes upper conduction bands. The 

fourteen-band model is discussed in  deta il in  Chapter 3, and the pe rtu rba tive  in  k  calcula

tio n  o f popu la tion  and spin contro l is deferred to  A ppend ix C.

2 .3 .1  H a m ilto n ia n

The one-electron fie ld free H am ilton ian  is H  =  Hq +  H s o , where Ho =  p2 /  (2m ) +  V , the 

po ten tia l V  ( r )  has the sym m etry o f the crystal, and the sp in-orb it in teraction  H s o  is

=  j + ^ f W x p ) ,
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where er is the dimensionless spin operator, er =  2S/H. Note th a t re la tiv is tic  corrections 

proportiona l to  jcr x  V F | 2 have been neglected [117]. The eigenstates o f H  are B loch states 

|nk) w ith  energy hun (k ). The associated spinor wave function  <pnk (r)  =  (r |n k )  can be w ritte n  

0nk ( r )  =  u n k  (r ) exp (zk • r ) , where the spinor functions unk ( r )  have the pe riod ic ity  o f the 

crysta l la ttice. I  use the no ta tion  |n k ) to  denote the kets for the zz-functions; i.e. unk ( r )  =  

( r |n k ). Note th a t |n k )  =  e x p (—zk • r )  |nk). The H am ilton ian  for the zz-function kets is [117, 

118]

H k =  e~lk r H V k r  =  H +  +  fat • v ,
2  m

where the velocity operator v  =  ( i / h )  [H , r] is

V = ^ P + 4̂ + ‘” < W >- <2-34>

The second te rm  in  v , the anomalous velocity, which leads to  k-dependent sp in-orb it coupling 

in  H k , can be neglected for the processes I  consider as shown in  Append ix B; in  the rest o f th is 

thesis, I  assume th a t i t  vanishes. The H am ilton ian  H k is known as the k  • p  H am ilton ian.

The states |n, k  =  0) are a complete set o f eigenstates for the H am ilton ian  H  on the space 

o f cell-periodic functions. Thus cell-periodic eigenstates o f H k can be expanded in  the in fin ite  

set o f states \n, k  =  0).

2.3.2 Isotropic Kane M odel

The eight-band Kane model diagonalizes the H am ilton ian  H k in  a basis o f eight states |n, k  =  0) 

corresponding to  the eight bands closest in  energy to  the fundam ental band gap at the T po in t 

[121]. The trunca tion  to  eight bands o f the eigenstate expansion yields a model w ith  isotropic, 

doubly-degenerate energy bands. T h a t is, warping and sp in -sp litting  o f the bands are absent 

from  th is  model. In  fact, the eight band H am ilton ian  is identical for bo th  centrosym m etric and 

noncentrosymmetric semiconductors, and thus i t  is inadequate for the description o f “ 1 + 2 ” 

popula tion and spin control. Nonetheless, i t  is a good s ta rting  po in t for a microscopic model 

o f “ 1 + 2 ” current and spin-current in jection.

In  a semiconductor o f zinc-blende symmetry, the states {|n , k  =  0 ) , rz =  1..8 }  can be ex

panded in  the states { \S } , | A ) , | F ) , | A ) } 0 { | | ) , | j ) } ,  where |5 ) transforms like T i , ( | A ) , | K ) , |Z ) }  

transform  like T4 , and ( | t ) , | | ) }  are sp in-1 /2  states and eigenstates o f Sz [118, 121] . 6 Here, T i 

and T 4 are irreducib le representations o f the T([ po in t group in  the Koster no ta tion  [118]. The 

only nonzero m a trix  elements o f p  amongst these states are [1 2 1 ]

P0 =  - i  (h / m ) (Sj px |A )  =  - z  (h / m ) (51 py |F ) =  - z  (h / m ) (5| pz \ Z ) . (2.35)

6In  a semiconductor of higher symm etry, basis states w ith  higher sym m etry are used, but they result in  the  
same eight-band / + •
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The m a trix  elements o f H k in  a basis o f these states can be w ritte n  in  terms o f only three 

parameters: the fundam ental band gap E g, the sp lit-o ff gap Ao, and the Kane energy E p  =  

[121]. Kane showed th a t diagonalizes w ith  ease in  a basis th a t depends on the 

d irection k ; in  Kane’s basis, the m a trix  for depends only on k (the m agnitude o f k ) , and the 

heavy hole states decouple from  the others [121]. Since the eigenstates are doubly degenerate,

I  express them  in  a no ta tion  |n, s, k ) ,  where n  is one o f {c, hh, Ih, so} and s is a spin index a

or f3. The eigenstates o f the eight band are

|O T E )  =  aj (k ) I ts ' I ' )  +  - j= b j  (k ) I ( X 1 -  i Y ’) T') +  Cj (k ) \Z ’ I ' )  , (2.36a)

\ J ^ k )  =  aj  (k ) |iS '  V )  ~  - j f j  (k ) | { X '  +  i Y ')  } ' )  +  Cj (k ) \Z ' Y )  , (2.36b)

\ 7 J ^ k )  =  ~ ^ \ ( X '  +  i Y ' ) Y ) ,  (2.36c)

| h h j ^ )  =  - L  | ( X ' -  iY ' )  [ ' )  , (2.36d)

where the coefficients a3 (k ), bj (k), and cj (k) are given by Kane [121], and j  runs over the 

bands c, Ih, and so. The prim e on the T -po in t basis states in  (2.36) indicates the result o f a 

k-dependent ro ta tion  [121]. Expanding the coefficients aj (k). bj (k ), and Cj (k) about k =  0, 

one finds th a t they on ly contain even or odd powers o f k. The lowest order term s in  th a t 

expansion are:

“ c ( / c )  =  1 ;  b c { k )  =  l T  E g ( A 0 +  E g ) k ]  C c {k )  =  T g E 9 + \ >  ( 2 ‘ 3 7 a )

=  blh (k) =  - ^ = -  Q/i(fc) =  _ y | ;  (2.37b)

aso(k) =  ~ - ^ A qP+ e  hso{k) =  - \ j | ;  cso(k) =  - j= .  (2.37c)

Expanded about k  =  0 to  order k2 the four pairs o f doubly-degenerate bands are parabolic, 

characterized by effective masses m n. The effective masses can be expressed in  terms o f E g, 

Ao, and Ep:

m  , 1 /  2  1 \  m
—  ~  o p  ( Y — ^ T — I— ) ’----------------- — 1m c 3 \  Eg Eg -I- J 'wihh
m  2 E p  m  1 E p

+  i ;  —  =  .-  +  !•

(2.38)

mih  3E g m so 3 E g +  A 0

Since the heavy hole bands do not couple w ith  any o f the other bands, the ir dispersion is the 

same as a free electron (i.e. they have positive curvature). In  typ ica l semiconductors, however, 

the heavy hole band has negative curvature. To remedy th is  problem, i t  is standard to  trea t the 

effective masses as add itiona l independent parameters, which effectively accounts fo r some o f
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hh

Ih

Figure 2.1: E ight band Kane model o f a d irect band gap semiconductor consisting o f four 

pairs— conduction (c), heavy hole (hh), ligh t hole (Ih), and sp lit-o ff (so)— of doubly-degenerate 

bands. The fundam ental gap E g and sp lit-o ff gap Ao are shown, and one- and two-photon 

transitions are indicated.

the in teraction w ith  remote bands. For typ ica l semiconductors, mih, rrihh, and m so are negative, 

whereas m c is positive, as depicted in  Fig. 2.1. To recover the solution o f the orig ina l isotropic 

Kane model, one can use (2.38) to  substitu te  the effective masses in  subsequent expressions.

For the microscopic calculation o f “ 1+2” effects in  the P B A , I  expand the ve locity m a trix  

elements about k =  0 and keep the lowest order terms. In  terms o f the m a tr ix  elements o f the 

u-function  kets, the m a trix  elements o f the B loch states are

Vn,s;m,s' (k) =  (n, s, k| v  Im, s', k) =  (ra, s, k| V  Im, s', k) H 5nmSss>,i / \ i i  ' m

They can be evaluated using (2.35), (2.36), (2.37), and the ro ta tion  from  the unprim ed to  

prim ed states. In  terms o f the orthogonal tr ip le  o f u n it vectors k, 1 and m,

k =  x  sin 9 cos (fr +  y  sin 9 sin cj) +  z cos 6, 

1 =  x  cos 9 cos <f> +  y  cos 9 sin cf> — z sin 9, 

m  =  —x  sin <f> +  y  cos <j>,
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these m a trix  elements are:

1 j E p
V c,s;hh,s> \ j  —

Vc,s)lh,s'

VhhjSjhjS'

1 / E p

2 V 3m

[E r  
V 6m
1 f l  E p h k

lcr0 +  imcrz ,
- S,S*

2 k  er0 +  dcry — im cr1 

kcr° — i \ a y +  i m a x

2  V 3 Eg m

Vhh,s;so,s' —
1

lcr0 — im a z 

E p  hk

2 > /6  (A 0 +  Eg) m

S,S‘ 

0\a  — im a 2
S,S'

Vlh,s;so,s' —
1 E p  hk 

3 \/2  Eg m
Aq +  2 Eg -
Aq +  Eg

k  a — i
. 1 2Ao +  3 E,
2 A q  +  Er

^  (i(7y -  lilCT*)

(2.39a)

(2.39b)

(2.39c)

(2.39d)

(2.39e)

(2.39f)

Here, cr° is the 2 x 2  iden tity  m a tr ix  and a 1 are the Pauli spin matrices. O f course, for parabolic 

bands, the in traband m a trix  elements are

_ x hk
~v n.s;n,s' — °s,s' 5m „

(2.40)

where m n is the effective mass o f band n.

The microscopic calculation o f “ 1+2” spin-current in jection  requires m a tr ix  elements o f the 

product o f ve locity and spin, v l SE In  terms o f the m a tr ix  elements o f the u- function  kets, the 

m a tr ix  elements o f the B loch states are

_____ . .   fiUi   ._______
(n, s, k| v l S i  |m, s ' , k) =  (n, s, k| v l S^ |m, s', k) -I (n, s, k| S3 |m, s', k) .

They can be evaluated using (2.35), the well-known action o f the spin operator on { | | ) , | | ) } ,  

(2.36), (2.37), and the ro ta tion  from  the unprim ed to  prim ed states. For the conduction band, 

to  lowest order in  k ,

(c ,s ,k |u *S J |c, s', k )  =  —  ̂  
1 ' m c 2

V ( k )  +  Z c -  5i j az ĵ (2.41)

where

and

a ^ k )  =  l l a x +  m i ay +  k l a z

_ 1 E p A o
£c. -- ~

m .
3 Eg (Ao +  Eg) m

is a measure o f the extent to  which the spin and ve locity o f an electron in  the conduction band are 

entangled; setting Z c to  zero gives the expressions th a t would have resulted i f  the approxim ation 

(csk| v l S i  |cs'k) ~  (ck| v l |ck) (csk| |cs'k) had been made. In  GaAs, Z c — 0.0612. For the
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hole bands,

hk h -
{hh, s, k| vl S i \hh, s7, k )  = ------ —&;VJ(k),

mhh, 2

• • hk h - ■ / 2  • - 1 - .
{Ih, s, k| v l SJ \lh, s7, k )  = ----- —k % ( - a J(k) — - k Ja z

mih 2 \ 3  3
hk h i  E p  
m  2 3 E„

|jfeV'(k) -  ^ (k )#  +  -  2 # # )

(2.42a)

(2.42b)

/ 1 I i n l I / l \ ^
( s o ,  5 , k| 1? S* 15 0 , 3 , k )  =  -  —  -O TTX £

E a j {k ) -  2E k j a z
E p

A q + E q
( a % ) y  -  fcV'(k) -  <5i j a 2)  

(2.42c)

Notice th a t (2.38) was used to  make clearer the connection w ith  the ve locity m a trix  elements 

in  (2.41), (2.42a), and the firs t te rm  o f (2.42b).

2.3.3 Current

Due to  the energy denom inator in  the two-photon am plitude, interm ediate states are generally 

less im portan t the fu rthe r in  energy they are from  the conduction and valence band o f interest. 

I  d istinguish two types o f terms: two-band terms, in  which the interm ediate band is the same as 

e ither the in it ia l or fina l band, and three-band terms, in  which i t  is different. Th is calculation 

includes a ll o f the two-band terms, and on ly the three-band terms in  which the interm ediate 

band comes from  the set { Ih , hh, c }. I  sketch the derivation for the two-band terms, bu t for 

three-band terms, I  on ly present the results.

From the trans ition  am plitudes (2.3) and (2.4), the microscopic expression (2.18), and the 

defin ition  o f the current-in jection  tensor (2.25),

7re4 1

= i h K J z l?  ^  S  ^ c’c' (k ) 6v’v' ~  (k) Sĉcvk c'vf

X V
{ < * „ ( k ) , v ^ ( k ) |

c > ' (k ) E  1 .. ^  .. 5 (2w -  “ ><» (k )) >

(2.43)

^nv (k ) (-0

where jvc.n, =  (vi*nV%*v + l,c*nl,v )  /2  ensures the in trins ic  sym m etry rf^ 1 =  r f ^ y  Note 

th a t the microscopic expression (2.43) differs by a factor o f two from  the one given by Atanasov 

et al., which accounts fo r doubly-degenerate bands w ith  a factor o f two ra ther than  in  the sum 

over states [3]. Sw itching to  the double band index notation , bu t suppressing the spin index on 

energies, which are independent o f the spin index,

i j k l  •
V /)  = * h?oj3 L 3̂ E E A- ( k ) < , P( k ) E

c v k  S,p n,s'
(k ) 1 Vt*s’ ,vp ( k ) }  

^nv  (k ) U)
<S (2w -w ct, ( k ) ) ,  (2.44)
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where A c  (k ) =  v cs cs (k ) — vvPjVp (k ). Then, converting the sum over k  to  an integra l and 

using (2.40),

i j k l  ■

71 (-0 ~ l W ^ ?/ dk
k2 m cv 

87r3 hkrv
S ( k -  kcv)

{ V cs,ns> (k ) ’ V n S' ,v p (k)}

where

kr.v —

f  j n  I \  I  C S ,n S '  ’  n s '> l , P
s,P n,s'

\ ^ 2 m cv (2hu> —  E g )  for v =  Ih or v =  hh,

\ \ / ‘l m cv (2Huj — E g  —  Aq) for u =  so.

T w o-b and  term s

For two-band terms, n =  c or n  =  v. Thus the te rm  in  square brackets in  (2.45) is

1 fe,  „  , 1 ,* „  , f h k k \
la> \ m c ) Vcs’vp (  ̂ w Vcs'vp (^  ( m j^ ĉs,vp (k) n

s,p

1 h t i  
2u  m „,

( j  ^  k)

E  V*P,<* (k) V cs,vp (k) + (j ^  k) ’
s,p

and thus,

*# )  * /j3w 4 E  sn 2 m 2  2 J  d n k t^3 (**) ( ^ )  +  ^  ~  ^  •mm
cv s,p

The sums over spin yie ld

=  § ;  ( 5* ’' -  M ‘ )  •s,s'

, =  ^ 8^  so,s ,c,ŝ c,s;so,s'

The rem aining angular integrals are

/
The result is o f the form  (2.26) w ith  r]c =  0, and

Vbi =  ~z.D 
h

g j  m c  hh  22 j m c i}l ^  ^  ^ 2 hu> E g  A q ^  2 20 j m c s

m m \  2 fHO — E g m

VB2 =  \ d  ( - 2  J H S ! ±  +  2 , / ^
h V V m  V m

(2.45)

(2.46)

(2.47a)

(2.47b)
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where

and the last te rm  in  t)b \ should be excluded i f  2hw <  E g +  A q - The find ing th a t r]c =  0  is a 

consequence o f using an isotropic (spherical) band model.

T h re e -b a n d  te rm s

I  refer to  the three-band terms using a no ta tion  v-n-c  (valence-intermediate-conduction). The 

three band terms can be evaluated from  (2.45) using (2.39). Since they are more tedious to 

evaluate, I  on ly  present the results. I  have only worked out the three-band terms hh-lh-c  and 

Ih-hh-c. They add t ] b i (3BTs)  to  r/B i and add VB2(3BTs)  to  r]B2, where

riBHZBTs) =  2 j : D —

_  2 e E p
VB2(3BTs) -  —

' r n c M \ 3/ 2 L  ^  m cM

' m  )  V m hh,lh

2 / m C'ih \3/2 /  m c ih 
1 — x- —

3 \  m  ) Wlhhlh

- 1

- (
m C}h h \3/ 2 ( 1 , TTlc hhJ ( 1 +  X

m mhh,lh

- l
ITLcJh

m hh,lh

(2.49a)

- 1"

(2.49b)

and x  =  (2hjj — E g) /  (hui). I  have not worked out the three-band terms hh-so-c, Ih-so-c, so- 

hh-c, or so-lh-c. They are discussed in  Chapter 3 in  the context o f the num erical fourteen-band 

calculation.

D iscu ss io n

Previous calculations o f 7] ^  in  the P B A  used simpler band models than the one I  used here. 

Using a two-band model (one conduction and one valence band), Atanasov et al. obtained 

VBi <x {2fko — Eg)3/"2 and r)B2 =  0 [3]. Using a three-band model, bu t on ly accounting for 

two-band terms, Sheik-Bahae obtained results th a t differ from  (2.47a) and (2.47b) by m ateria l 

independent factors [79] . 7 The three-band model lacks the m a trix  elements v c| and v ^  ^ ,

and thus two-band terms for t]b i  derived from  i t  should d iffer from  (2.47a).

7To  make the comparison, note th a t Sheik-Bahae used the approxim ations 7nc,(h /u i ~  E g/  (2 E p )  and 
m Cth h /m  ai E g/ E p  [cf. (2.38)].
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2 .3 .4  S p in  C u rr e n t

The spin-current in jection  pseudotensor, defined in  (2.29) can be w ritte n  as a sum o f electron 

and hole terms so th a t / x j ^ m =  P-^pl™ +  p ’fph)1)■ Prom (2.21) and (2.29)

7re3 1
ijklm _  Y  (c 'k \ vl S3 |ck) v™ (k ) Y  _— J- S  (2uj -  ujcv ( k ) ) ,

c ,v ,k  c '

{ v kcr n ( k ) , v ln*v ( k ) }  

(k ) to

(2.50a)

7re3 1

rfnhT =  13 J 2  ^ k i d i§ j lu'k > < v  (k) Y
{ u*n (k), u|T,«' (k)}

^nv (^ )  ^
6 (2 to t^cv ( 0̂ )

(2.50b)

where {v£*n ,v l*v }  =  {v**nv l*v +  v l*nv^*v) / 2  ensures the in trins ic  sym m etry =  p 1̂ ™  ■

Switching to  the double band index notation , bu t suppressing the spin index on energies, which 

are independent o f the spin index,

K / S r  =  H  s '>  k l \c, s, k )
C ,v ,k  S,p s'

{ v« ',n8" (k ) > Vns",vp (k ) }  (2'51a)
X Vcs,vp (k ) Y  Y 1 u  (k ) -  u  (2uj U,{x ^  ̂  ’

n sn

r f m  =  ^ ’ ^ ’ k l h p '> k )
c ,u ,k  s,p p'

m  (2'51b)
X Vcs,vp (k ) Y  Wnv (k ) -  to ^  Uca ^  ’

The sums over spin states and integral over k can be done using steps s im ila r to  those used 

from  (2.44) to  (2.47), bu t they are more tedious to  work out because the m a tr ix  elements o f 

v l S3 are not diagonal in  spin index. I  only give results fo r transitions from  the hh  and Ih  bands; 

also, so in term ediate states are not included. The neglected terms are discussed in  Chapter 3 

in  the context o f the numerical fourteen-band calculation. The spin-current in jection  for bo th  

electrons and holes has the form  (2.30) w ith  / ic r  =  n c 2 =  PC3 =  0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C h a p t e r  2. “ 1+ 2 ” P r o c e s s e s : S y m m e t r i e s  a n d  t h e  P B A 29

For the electron spin current,

= d —  ( !L l l ) 3/2 { i  +  Zc). d l l  ( ^ l m ^ E l  + 4 -------
m c \  m  )  m c \  m  )  3Eg l  +  x m c%hh/ m hhj h
D rn_ / m C|fft\3 /2  / 7  _  ^  \  / m cj h \  5/2 E P ________ 1_______

m c \  m  )  V 3  /  m c \  m  )  3Eg 1 -  x m cj h/ m hhj h ’

_  n m_ f m c M \  3 /2  a n —  f m c M \ 5/2 E P 1 -  Z c

MJV2,e m c \ m )  c m c \ m )  3 E g 1 +  x m Cthh/ m hh,ih

I A  _ ZcDi5 . fHLL\5/2 El  1_-------- ,
m c \  m  J \  3 J  m c \  m  J 3Eg 1 -  x m cj h/ m hhjh

o r , m  f m c,hh\5/2 E p  l - Z cfJ-NS e ~ —2.D  I  2—  ) ---------------------- ----------
m c \  m  J ZEg 1 4- x m Cihh /m hhj h

+ 2( i - 4 ) 1 ) 5  (L L L f2 El  1 -------- ,
m c \  m  /  3 E g 1 -  x m c^h / m hh^h

(2.52a)

(2.52b)

(2.52c)

where x  =  (2ftw — E g) /  (fko), m ~ lm =  m ~ l  — m " 1, and D  is given in  (2.48). In  (2.52a) and 

(2.52b) (/iAfi;e and p 1v 2 ;e), the firs t te rm  is from  the hh-c transition , the second te rm  is from  

the hh-lh-c trans ition , the th ird  te rm  is from  the Ih-c transition , and the fou rth  te rm  is from  

the Ih-hh-c  trans ition . In  (2.52c) for /ijV3;e, the firs t te rm  is from  the hh-lh-c  trans ition , and 

the second te rm  is from  the Ih-hh-c  trans ition . Note th a t two-band terms make no con tribu tion  

to  /ijV3;e-

For the hole spin current, I  have on ly worked out the two-band terms hh-c and Z/i-c, which 

y ie ld  f iN3.h =  0  and

n / m c,w>\3/ 2 m  17 / 3E P — 3Eg\  f m c ih \ 3/ 2 m
W «  =  - 0 ( — )  —  -  T .D { 2M E L 3E - J  ( — )  (2 '53a)

„ „ 2„  .  - D  P L L L ) 3' 2 J L . _  +  ( ! f p  +  3 g » )  ( ^ ) 3 /2  —  (2.53b)
V m  )  m hh 3 \ 2E p  -  3Eg J  V m  J m th

For typ ica l semiconductors, /Zjvi;e, hN 2-e, hNi-,h, and //jv2 ;h are negative (keep in  m ind  th a t 

e3, mhh, and mih  are negative). W h ile  the holes are in jected w ith  spin opposite th a t o f the 

electrons [2 ], th e ir ve locity is also opposite, and thus the hole and electron spin currents have 

the same sign.

In  Bhat and Sipe, we published these results using a different no ta tion  [38].

2.4  S p in  c u rre n t configurations

We now examine the spin, current, and spin currents injected by optica l fields w ith  specific 

po larization configurations th a t are possible for co-propagating beams. Since the model is 

isotropic, we lose no generality by choosing z for the propagation d irection.
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Fields having opposite c ircular polarizations in ject neither current nor spin current. Co-

linear ly  polarized fields in ject a significant current [4], bu t only a small spin-current, propor

tiona l to  /X/V3 -

Case 1: Co-circularly polarized fields: ~Ew/ 2u =  (x  ±  i y ) / \ /2 .  The electron

spin injected by one-photon absorption from  the 2a; beam is 5 ( i ;e) =  +  (A /4) A ) j )z w ith in  the 

Kane model, where is the one-photon carrier in jection  rate [2]. The electron spin injected 

by two-photon absorption from  the a; beam, also calculated w ith in  the Kane model, is

r. h ifi'TIT’Cjhh +  (7 /3 ) y jm c lh • _ . . .
<S(2 ;C) =  + Q Q , ._= A f(2)z, (2.54)2 3^ /m Cihh +  (11/3)

where only the two-band terms are included, and AT(2) is the tw o-photon carrier in jection 

rate. There is no interference te rm  in  e ither the spin or carrier in jection  when the ma

te ria l (or model) possesses inversion sym m etry and thus the spin in jection  is s im ply S e =  

«S(i;e) +  S (2 ;e)■ The electrical current in jection  is J ( / j =  \ / 2m r jb i £ / E 2uJ, where the d irection 

m  =  x s in  (2<pw — <p2̂ ) ± y  cos (2 <f>w — 4>2w)- Its  m agnitude is comparable to  the current from  co- 

linearly polarized fields; in  fact, i t  is a factor o f \ /2  smaller, since t jb i  +> r}B2- The spin-current 

in jection  is

K f a  =  t V 2 E I E 2u} ( n m r t i z i  +  • (2-55)

Recalling th a t the firs t index o f is associated w ith  the carrier velocity, we see th a t the 

firs t te rm  in  shows th a t the electrical current is pa rtia lly  spin-polarized. The extent

o f the spin-polarization o f the current /  can be defined by K lz /  =  + / A / 2 . In  th is

case, /  =  2epN i/(hr)B i)-  Using parameter values appropria te to  GaAs [122], /  =  0.57 when 

2hu> — Eg =  100 meV. Th is value includes bo th  electron and hole contribu tions to  bo th  spin- 

current and current, a lthough three-band hole contribu tions to  the spin-current are not included. 

The spin-polarization o f the electron current d is tribu tion , evaluated using electron terms only, is 

/  =  0.53. The second te rm  in  K ^  represents spins po in ting  along m  th a t move along z. Since 

there is no net electrical current in  the z direction, th is  is a pure spin current. I t  arises because 

the electrons have a d is trib u tio n  o f velocities such th a t those w ith  positive z components have 

opposite average spin to  those w ith  negative z components. For the electron d is tr ib u tio n  in  

GaAs, M;v2 ;e/l l Ni;e =  —0.049 at 100 m eV excess photon energy. W hen bo th  electron and holes 

are included, /UN2;e/fJ-Npe =  0.13. The s itua tion  is schematically indicated in  Fig. 2.2(a). The 

firs t te rm  in  (2.55) was experim enta lly studied by Stevens et al. [71].

Case 2: Orthogonal linearly polarized fields: =  A u,el<U 'x  and E-2^  =  E ^ E ^ y .  In  th is

case, since the fields are linearly  polarized, there is no spin in jection, S e =  Sf, =  0, which can 

be verified by sym m etry arguments. The electrical current depends sinusoidally on the re lative 

phase of the two fields, J (/) =  2rjB2E ^ E 2u} sin {2<j>w — <p2̂ )  y . According to  the Kane model,
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Figure 2.2: Schematic illus tra tions o f the net electron m otion combining the in fo rm ation  o f 

K lJ and J 1 for (a) case 1 w ith  bo th  fields righ t c ircu la rly  polarized, and (b) case 2, orthogonal 

linearly polarized fields. The directions are specified in  the text.

its  m agnitude is much smaller than the current from  co-circularly polarized fields, since the 

contributions from  the heavy hole and ligh t hole transitions largely cancel in  r/ ^ 2  ra ther than 

adding in  t ]b \ -8 In  the no ta tion  o f Atanasov et al. [3], the current in  th is  case is p roportiona l to  

r]yxxy while the current in  case 1 is p roportiona l to  \ / 2lmr)xxyy, which is an order o f magnitude 

greater than riyxxy in  the ir ab in i t io  calculations. The spin current for orthogonal linearly  

polarized fields is

K ^  =  - 2 E l E 2u, cos (2<f>w -  4>2u) [(mivi +  p m )  x l zj  +  (p jv2 -  p m )  zl x j ] . (2.56)

Again there are two terms, the firs t arising from  carrier m otion  along E w w ith  spins aligned 

along the beam propagation d irection, and the second arising from  carrier m otion along the 

beam propagation d irection w ith  spins aligned along E w. B o th  o f these are pure spin currents, 

since there is no electrical current in  either d irection. A t 100 m eV excess photon energy in  

GaAs, \/2(/bvi;e  +  HNZ-,e)/ PNi-p =  i  +  Un z ) / Un i  =  1-3. T ha t is, when the optica l phase

difference is zero, the firs t te rm  is 1.3 times larger than the firs t te rm  o f the case 1 spin-current 

in jection. The second te rm  of (2.56) is smaller than the firs t. For the electron d is tribu tion , 

(/bV2;e-MA3;e)/(/PVl;e+/PV3;e) =  0.075, while for electrons and holes, {f iN2~  Vnz) /  ( v n i+ H n z )  =

0.23. The electrical current in jected along the Ea^ po lariza tion  is unpolarized for a ll optica l 

phases. The s itua tion  is schematically indicated in  Fig. 2.2(b).

8 I t  is not zero, however, as reported for the parabolic band approxim ation in  [3].
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C hapter 3

Two-colour Q uantum  Interference: 

Fourteen-band M odel C alculations

3.1 In tro d u c tio n

In  the preceding chapter, the “ 1+2” effects— current in jection, spin-current in jection, popula

tio n  control, and spin contro l— are studied from  the po in t o f view o f crysta l symmetry, and w ith  

solutions o f an eight-band k  • p  H am ilton ian  th a t are expanded pe rtu rba tive ly  in  the B loch wave 

vector k. The eight-band model has spherical symmetry, even to  higher orders in  k, and thus 

fails to  describe properties th a t depend on a lack o f inversion sym m etry such as sp in -sp litting , 

“ 1 + 2 ”  popu la tion  contro l, and “ 1 + 2 ”  spin control.

One can extend the eight-band model e ither by incorporating remote band effects in to  

the eight-band H am ilton ian  [121], or by enlarging the basis. I t  is most na tu ra l to  enlarge 

the basis to  fourteen to  encompass the group o f six higher conduction bands th a t are the 

next closest in  energy to  the fundam ental band gap in  typ ica l semiconductors. Fourteen-band 

models (also called five-level models) can accurately account for lack o f inversion sym m etry 

[123-134], In  th is  chapter, in jection  spectra fo r “ 1+2” processes are calculated using a 14 x  14 

k  • p  H am ilton ian  includ ing remote band effects for five bu lk  semiconductors o f zinc-blende 

symm etry: InSb, GaSb, InP, GaAs, and ZnSe. In  contrast to  the preceding chapter, the model 

is solved num erically and does not involve a pe rtu rba tion  in  k. Append ix C gives expressions 

fo r popu la tion  and spin contro l based on pertu rba tive  expansions in  k  o f the fourteen-band 

model. For each “ 1+2” process, I  compare the fourteen-band model results w ith  the ana lytica l 

results pe rtu rba tive  in  k  presented in  the preceding chapter and A ppend ix C.

Since the model used here accounts for sp in -sp litting , microscopic expressions for spin- 

current in jection  and spin contro l accounting for spin sp lit bands are presented.

32
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3.2 M o d e l

As in  the preceding chapter, I  calculate the in jection  o f each “ 1+2” process using microscopic 

expressions derived using ve locity gauge (A  • v )  coupling in  the long-wavelength approxim a

tion , trea ting  the fie ld pe rtu rba tive ly  in  the Ferm i’s golden rule (FGR) lim it,  and using the 

independent-particle approxim ation [3, 36], B u t for spin-current in jection  and spin control, one 

must use generalized expressions th a t account for the sp in -sp litting  o f the bands. A ll o f these 

expressions require the unperturbed (i.e. field-free) one-particle energies and m a trix  elements 

o f velocity and spin.

3 .2 .1  H a m ilto n ia n

Recall from  Sec. 2.3.1 th a t the k - p  H am ilton ian  can be expanded in  a set o f T -po in t states. The 

fourteen-band model truncates th is  expansion to  a set o f fourteen states [124]. The fourteen 

bands (counting one for each spin), which are shown in  F ig. 3.1, comprise six valence bands 

(two each for split-o ff, heavy and ligh t holes) and eight conduction bands (the two s-like ones 

at the band edge, and the six next lowest ones which are p-like). Th is “bare” fourteen-band 

model is fu rthe r improved by trea ting  remote bands using Low din  pe rtu rba tion  theory [135], 

which adds k-dependent terms to  the truncated 14 x  14 H am ilton ian  so th a t its  solutions better 

approximate those o f the fu ll H am ilton ian  [130]. The fourteen-band model H am ilton ian, which 

includes im portan t remote band effects to  order k 2, and which I  denote i / 14 , is given e xp lic itly  

by Pfeffer and Zawadski [130].1 We now b rie fly  review its  derivation.

In  a semiconductor o f zinc-blende symmetry, the states { |n ,k  =  0) |n =  1.. 14} are conve

n ien tly  expanded in  the eigenstates o f Ho, ( | 5 ) , | X ) , | T ) , |Z ) , | x ) , |y ) , |z )} <g> { |T) > | l ) } ,  where, 

under the po in t group T j,  |S) transform s like T i,  { | X ) , | V ) , |Z ) }  and ( | x ) , | y ) , |z )} transform  

like T4 [118]. The ( | t ) , | | ) }  are the usual spin 1 /2  states:

( t M t )  =  -  ( II o 'I I )  =  2  

(TI o’ | | )  =  ( ( I k  | t ) ) *  =  St — iy .

(3.1a)

(3.1b)

The non-zero m a trix  elements o f ( V V  x p ) are

(X \  ( W  x  p)» \Z)  =

< X | ( V V x p ) » |z )  =  * ^ p A - ,

1 Kq. (5) o f Pfeffer and Zawadski has one typographical error: element (4 ,1 4 ) should be — \J \ /3 P o +  [130].
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sc

8 v

hh 7 v

Ih ------ ►

SO
k

Figure 3.1: A  schematic diagram  o f the fourteen-band model, ind ica ting  band abbreviations 

(le ft), energies (center), and sym m etry o f the T -po in t states (righ t). Tg, T 7 , and Tg indicate 

irreducible representations o f the double group, whereas T\ and T 4 indicate irreducib le 

representations o f the Td po in t group. Note th a t sp in -sp litting  o f the bands cannot be seen on 

th is  scale.
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cyclic perm utations o f these [e.g. (x| ( V F  x  p )^  |z) =  (z\ ( V P  x p ) 1 |y) =  (y\ ( V P  x p ) 2 |rc)], 

and those generated by H erm itian  conjugation o f these. The above equations define the spin- 

o rb it energies Ao and Aq, and the interband sp in-orb it coupling A -  [136, 137]. The fourteen 

basis states ( |n k  =  0) \n =  1..14} fo r H u  are

|r7w, ± 1 /2 )  =  ± - L  |Z ) |Q ±) +  ^ = \ X ±  i Y ) K )  (3.2a)

\T8v, ± 1 /2 )  =  T ] j l  |Z)  |a± ) ±  -J= \X  ±  %Y) |a T ) (3.2b)

| r 8t),± 3 /2 )  =  ± - ^ | X ± i P ) | a ± ) (3.2c)

|r6c,±l/2) =  * |5 ) |a ± )  (3.2 d)

|T7c, ± 1 /2 )  =  ± -^ =  |z) |a y . )  +  -^= \x ±  iy )  |a T ) (3.2e)

|r8c, ± 1 /2 )  =  |z) |a± ) +  -^= |x ±  iy )  |azp) (3.2f)

|r8c,±3/2) =  ± - ^ | * ± * 2/ ) |a ± ) ,  (3.2g)

where |a+ ) =  | | )  and |a_ ) =  |J,). The states are labeled w ith  the ir transform ation property  

under the double group for X+ and w ith  a pseudo-angular m omentum nota tion . The meaning 

o f th is  no ta tion  is not im portan t fo r th is  chapter; i t  is discussed fu rthe r in  Chapter 4. In  the 

basis (3.2), iLk=o is diagonal except fo r terms p roportiona l to  A - . The connection between the 

eigenvalues o f 77k=o f° r  the T -po in t eigenstates and the eigenvalues o f H q is given by Pfeffer 

and Zawadski [124]. The nonzero m a tr ix  elements o f momentum, which appear in  H k, are

(S \px \X )  =  (S \py \Y )  =  (S \pz \ Z )  =  im P o /h  (3.3a)

(S| px \x) =  (S\ Py |y) =  (S \pz |z) =  im P 'o /k  (3.3b)

( X \ Py \z) =  (Y \p z \x) =  {Z\ px |y) =  ( Z \Py \x) =  (Y \p x \z) =  ( X \p z \y) =  im Q /h .  (3.3c)

Th is defines the parameters Pq, Pq, and Q. They are sometimes expressed as energies E p , Ep>, 

and E q  w ith  the connections E p  =  2m P ^ / h 2 , etc. The firs t, E p,  is known as the Kane energy.

The “bare” fourteen-band model has eight em pirica l parameters E g, Ao, E'0, A q ,  A - , Pq, 

Q, and Pq. Its  quantita tive  accuracy is improved by adding remote band effects to  order k2 

[130], O n ly the most im portan t remote band effects are included [130]. They are governed by 

the parameters 7 1 , 7 2 , 7 3 , F ,  and C +  The parameters 7 1 , 7 2 , and 7 3  are m odified L u ttinge r 

parameters th a t account for remote band effects on the valence bands; they are analogues of 

the usual L u ttin g e r parameters 7 i l ,  7 2 l , and 73L  m odified to  remove the couplings w ith  Tec, 

T 7C, and T 8c bands, which are already accounted for in  the “bare” fourteen-band model [130].
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Specifically [130],

_      E q
7 i - 7 i  l  +  A q  ’

E p E q

C
O 3 K

E p  t E q

6 E g 6 E'q

E p E q

6  E g 6E'q

72 =  72L

73 =  73L

The parameter F  accounts for remote band effects on the conduction band (TfjC), essentially 

fix ing  its effective mass to  the experim enta lly observed value. F inally, the parameter Ck is the 

small k -linear te rm  in  the valence bands due to  interactions w ith  remote bands [137]. The 

remote band effects can be removed by setting 7 1  =  — 1 and 7 2  =  7 3  =  F  =  Ck =  0. The model 

includes neither remote band effects on the uc bands, nor remote band effects on the Tgc-Tgu 

and r 6c"T7V m om entum  m a tr ix  elements, though such terms exist in  princip le  [132].

In  summary, H 14 is a fourteen-band approxim ation to  77k th a t incorporates some remote 

band effects. I t  has th irteen  parameters. Num erical solutions to  7714 give |n k ). The complete 

Ham ilton ian, which I  denote H u ,  can be found in  Eq. (5) o f Pfeffer and Zawadzki [130]. Note 

th a t the ir no ta tion  is s ligh tly  d ifferent from  mine. W ith  the ir no ta tion  on the left, and mine 

on the righ t: Eq =  —E g, E \  =  E '0 — E g, A i  =  Aq, A  =  A - , P i =  Pq. Also, m y Ao differs from  

theirs by a minus sign. O ther authors have also used different notations [132]. The fourteen 

bands are shown schematically in  F ig. 3.1 along w ith  the sym m etry no ta tion  o f the F -po in t 

states, and the no ta tion  used to  label the bands.

3 .2 .2  M a te r ia l  p a r a m e te r s

Num erical values for the th irteen  parameters o f the model are listed in  Table 3.1 for InSb, GaSb, 

InP, GaAs, and ZnSe. They are taken from  the lite ra tu re , where they were chosen to  f i t  low- 

tem perature experim ental data. O f the two parameter sets discussed by Pfeffer and Zawadzki 

for GaAs, I  use the one corresponding to  a  =  0.085 th a t they find  gives be tte r results [130]. For 

InP, GaSb, and InSb, I  use parameters from  Cardona, Christensen and Fasal [137]. For cubic 

ZnSe, I  use the parameters given by Mayer and Rossler [127], I  use a calculated value o f Ck 

[137], and I  use A -  =  —0.238 eV to  give a A;3 conduction band sp in -sp litting  th a t matches the ab 

in i t io  calculation o f Cardona, Christensen and Fasal [137]. W ink le r used these same parameters 

fo r ZnSe, bu t took A -  =  0 [132]. There is more uncerta in ty in  the parameters for ZnSe than 

in  those for the other m ateria ls [127], bu t I  include i t  as an example o f a semiconductor w ith  a 

larger band gap.

The parabolic-band approxim ation calculations use parameters from  Table 3.1, and average 

effective masses derived from  the parameters in  Table 3.1.
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Table 3.1: M ateria l parameters.

GaAs InP GaSb InSb ZnSe

E g (eV) 1.519 1.424 0.813 0.235 2.820

A 0 (eV) 0.341 0.108 0.75 0.803 0.403

K  (eV) 4.488 4.6 3.3 3.39 7.330

Ao (eV) 0.171 0.50 0.33 0.39 0.090

A "  (eV) -0 .061 0 .2 2 -0 .2 8 -0 .244 -0 .238

Po (eVA) 10.30 8.65 9.50 9.51 10.628

Q  (eVA) 7.70 7.24 8 .1 2 8 .2 2 9.845

Po (eVA) 3.00 4.30 3.33 3.17 9.165

7 lL 7.797 5.05 13.2 40.1 4.30

72L 2.458 1 .6 4.4 18.1 1.14

73L 3.299 1.73 5.7 19.2 1.84

F -1 .055 0 0 0 0

Ck (m eVA) -3 .4 -1 4 0.43 -9 .2 -1 4

3 .2 .3  M a tr ix  e le m e n ts

The relations between m a trix  elements o f the B loch states and m a trr ix  elements o f the u- 

function  kets (defined in  Sec. 2.3.1) are

    /ik
v nm (k ) =  (nk| v  |m k) =  (n k | v  |m k ) +  — <W , (3.4)

(nk | S |m k) =  (n k | S |m k ) (3.5)

  . . ____  %ui   .___
(nk| v l S i  |m k) =  (n k | vl SJ |m k ) -i (n k | SJ |m k ) . (3.6)

The m a trix  elements o f the ve locity operator, v, neglecting the anomalous ve locity as dis

cussed in  Append ix B, can be calculated using (2.34), (3.3), and the righ t side o f (3.4). The 

m a trix  elements o f the spin operator S, where S =  ( h /2) <r, can be found from  Eq. (3.1). The 

m a trix  elements o f vi S^ can be s im ila rly  found in  the basis o f eigenstates o f Hq. Each o f these 

can then be ro ta ted to  the basis (3.2) in  which the states |m k ) are expanded.

I t  i s  w e l l  k n o w n  t h a t  i n  a  c r y s t a l ,  v n n  ( k )  =  V k c v n  ( k ) .  M o r e  g e n e r a l l y ,

Vnm (k ) =  V k  (nk| H  |m k) =  (n k | V k # k  |m k ) • (3.7)

These identities can be proven from  the defin itions H k =  e~lk vH e lk r and v  =  ( i /h )  [H. r ] 

(see Sec. 2.3.1), even for a non-local H am ilton ian. B u t when remote band effects are included 

in  a fin ite  band model, they no longer hold. T h a t is, v „ m (k ) calculated using (3.4) and
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eigenstates o f H u  is not equal to  (n k | V k f+ 4  |m k ). I  exp lic itly  restore these identities by 

using (n k | V k i^ i4 |m k ) to  calculate v nm (k ). Th is approach can be described as includ ing 

remote band effects in  the ve locity operator. I t  was used for an eight band calculation o f linear 

absorption by Enders et al. [138]. Th is step is not c rit ica lly  im portan t for the effects calculated 

here, since remote band effects are generally small.

3 .2 .4  k -sp a c e  in te g r a t io n

The optica l calculations in  the rest o f th is  chapter have the form  0  (th is is unrelated to  the 

no ta tion  0  in  Chapter 2), where

0  =  Y ,  j  d* k fcv ( f fk )  s {hwcv (k ) -  2 fmj) , (3.8)
C,V

where f cv depends on m a trix  elements and energies o f eigenstates o f H ^.  and where ujnm (k ) =  

ojn (k ) — ujm (k ). The form  0  follows from  (2.18), and also holds when sp in -sp litting  is taken 

in to  account below. The integra l in  (3.8) is understood to  be restricted to  the firs t B rillio u n  

Zone, but I  do not active ly enforce the restric tion , since the photon energies considered here 

cause transitions well w ith in  the firs t B rillio u n  Zone. W ritin g  k  =  {kcv,dk ,0 k ) in spherical 

coordinates, where kcv is the solution to

(kw, ^ k ) — H ilo =  0, (3.9)

we have
r7r r2n k 2v sin 6k f „ ,  (H k )—̂  r n c

© =  V  /  /  — . d(pkde ^  (3 .io )
c v Jo Jo h (v cc (k ) -  v^j, (k )) ■ k

where I have used V w „  (k ) =  v „ „  (k ). For a ll o f the optica l calculations in  th is  chapter, (3.10)

is equal to

0  =  8  I ”  '  [    d(f,kd6k (3 1 1 )
c,v J° J°

rn/2 ^ /2  f e ^ s in g k / c ^ k )

fr (vcc (k ) -  v vv (k ))  - k

due to  the cubic sym m etry o f the crystal. I  solve (3.9) num erically using R idders’ method, 

and evaluate each integral in  (3.11) num erically using Simpson’s Rule converged to  a desired 

re lative accuracy [139]. I t  is num erica lly convenient to  do the sum over any degenerate bands

b e f o r e  t h e  i n t e g r a l  o v e r  0^  a n d  <-/>k .

3 .2 .5  A p p r o x im a tio n s

The calculations o f “ 1+2” effects in  the fo llow ing sections o f th is chapter are p r im a rily  labeled 

by the H am ilton ian  used to  approxim ate H ^.  The complete fourteen-band model is denoted 

H u .  The bare fourteen-band model, denoted / / i 4-Bare> is H u  w ith o u t remote band effects.
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The 8 x 8  subset o f the fourteen band H am ilton ian w ith in  the basis {Teo Tst); T 7z;} is denoted 

H g . The spherical eight-band model, denoted HgsPh, is derived from  H% by setting C*. =  0 and 

replacing 7 2  and 7 3  by 7  =  ( 2 7 2  +  3 7 3 ) /5 ; [140] i t  is a spherical approxim ation to  the Kane model 

includ ing remote band effects [121]. The aforementioned calculations are non-perturbative in  

k; th a t is, in  each case, the H am ilton ian  is solved num erically at each k. The pertu rba tive  

calculations o f Append ix C are denoted P B A  (parabolic-band approxim ation).

The microscopic expression for each o f the “ 1+2” effects contains a sum over interm ediate 

bands, which originates from  the two-photon am plitude. Unless otherwise noted, calculations 

include a ll possible interm ediate bands (eg., H u  includes fourteen interm ediate bands, and 

HgSph includes eight in term ediate bands). Calculations th a t restric t th is  sum are secondarily 

labeled to  reflect the restriction. The label “H 14, n o  uc" uses H u ,  bu t does not include uc 

bands as interm ediate states. The label “H u ,  no uc/so"  uses H u ,  bu t includes neither uc nor 

so bands as interm ediate states. The label “H u ,  2B T ” uses H u ,  bu t only includes two-band 

terms (terms for which the interm ediate band is the same as the in it ia l or fina l band). S im ilar 

labels are used for Hg^ph, f ° r example, “ -UgSplrPBA, no so” uses the pertu rba tive  solution to  

i? 8Sph and does not include so in term ediate states.

3.3 C u rre n t

To calculate r)(l), I  use the microscopic expression Eq. (2.43) in  Sec. 2.3.3. f t  is s im ila r to  the 

expression given by Atanasov et al. [3], bu t m odified to  exp lic itly  include the sum over spin 

states [33, 114]. A n  alternate microscopic expression has been derived in  the length gauge [1 0 0 ], 

b u t i t  has not yet been used in  a calculation. In  the independent-particle approxim ation tha t 

I  employ here, ??(/) is pure ly im aginary [3] and hence t ]b i,  t]b2, and r]c are real, a lthough they 

can be complex i f  excitonic effects are included (see Chapter 6 ).

The spectra o f t jb i ,  <1B2, and T]c, calculated for GaAs, are shown in  Fig. 3.2(a) along w ith  

the contributions to  each tensor component from  each possible in it ia l valence band. For a given 

photon energy, electrons photoexcited from  the hh  band have higher energies and velocities 

than  electrons photoexcited from  the Ih  band; hence the dom inant component t)bi is larger for 

hh-c transitions than  Ih-c transitions. The smallness o f 1)32 is due to  contributions from  the 

hh-c  tra n sitio n s  h av in g  o p p o s ite  s ig n  to  th e  lli-c  tra n sitio n s , as sh ow n  w ith  th e  p arab o lic  b an d

model in  Sec. 2.3.3.

Figure 3.2(b) separates each tensor component in to  an electron con tribu tion  and a hole 

con tribu tion  (denoted r)e and r]h by Atanasov et al. [3]). Electrons make a larger con tribu tion  

to  t)b i  than  holes, due to  the lower effective mass (and hence higher velocity) o f an electron 

than  o f a hole (much lower, in  the case o f a heavy hole) w ith  the same crysta l momentum.
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Figure 3.2: (colour): Spectra o f v b i  (black lines), 7]B2 (red lines), and vc  (blue lines) for GaAs. 

Panel (a) shows the contributions from  each in it ia l valence band; dashed, dotted, and dashed- 

dotted lines include on ly transitions from  the hh, Ih, and so bands respectively, while the solid 

lines include a ll three transitions. The th in  solid, lig h t brown line in  (a) is the to ta l Re .

Panel (b) separates the to ta l in to  electron (dashed) and hole (dotted) contributions.

Holes dominate VB2 at lower photon energies, while electrons dominate v b i  at higher energies. 

B o th  electrons and holes contribu te  equally to  the anisotropic component vc-

To help in  understanding the im portance o f the various interm ediate states, in  Fig. 3.3 we 

compare the calculated current in jection  tensor elements w ith  various degrees o f approxim ation 

described in  Sec. 3.2.5.

The component r js i  (and hence since vb\  is larger than  VB2 +  VC) is dom inated

by two-band terms. Three-band terms cause the increase, by as much as 34%, o f r/e i [the 

difference between the dashed and solid black lines in  Fig. 3.3(a)], A lthough  not shown in  Fig. 

3.3, most o f the increase is due to  three-band terms w ith  the so band as an interm ediate state. 

Terms w ith  the uc  bands as interm ediate states only cause a small increase to  v b i  (the difference 

between the dotted and solid black lines). The warping o f the bands is clearly not im portan t for 

Vb i , since the calculation w ith  HgSph closely approximates the calculation UH 14 , no uc” , which 

includes the same interm ediate states. Surprisingly, the “HsSph-PBA, 2 B T ” result from  Sec.

2.3.3 closely approximates the complete, non-pertu rbative  fourteen-band calculation, even at 

excess photon energies for which band nonparabo lic ity  is significant. Th is is due to  a fo rtu itous 

compensation between the neglect o f nonparabolic ity and the neglect o f three-band terms. The 

compensation is not as complete for a ll materials.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C h a p t e r  3 . “ 1 + 2 ”  P r o c e s s e s : F o u r t e e n - b a n d  M o d e l  C a l c u l a t i o n s 41

i i  14, i iU  U.C-
H i 4, 2 B T  
HgSph
i/ssph-P B A , 2 B T

Excess photon energy (m eV ) Excess photon energy (m eV ) Excess photon energy (m eV )

Figure 3.3: (colour): Approxim ations for GaAs current in jection tensor components (a) t)b i, 

(b) r}B2,  and (c) r /c -  The approxim ations are described in  Sec. 3.2.5.

The component r)B2, which determines the current due to  orthogonal linearly  polarized 

fields, is less forg iv ing to  approxim ations than  the component t ) b i■ We have already seen in  

Fig. 3.2 th a t r]B2 is small due to  a near cancellation o f hh and Ih  in it ia l states. Reasonable 

accuracy on r]B2 thus requires higher accuracy on the con tribu tion  from  each in it ia l state. In  

particu la r, three-band terms must not be neglected. B y comparing the dashed-dotted and solid 

lines in  Fig. 3.3(b), i t  can be seen tha t, whereas the sum o f the two-band term s is negative, 

the sum o f the three-band terms is positive and o f the same magnitude. I t  is useful to  divide 

the three-band terms in to  three groups: those w ith  interm ediate state from  the hh  or Ih  bands, 

those w ith  interm ediate state from  the so band, and those w ith  interm ediate state from  one 

o f the uc bands. I  find  th a t each group contributes roughly the same positive amount to  t]b2 

for excess photon energies less than  Ao- The groups are added successively to  the 2BTs in  the 

dashed, dotted, and solid lines in  Fig. 3.3(b). Three-band terms w ith  so in term ediate states 

are less im portan t at the higher excess photon energies in  Fig. 3.3(b). The warping o f the 

bands makes a small, bu t non-negligible con tribu tion  to  r]B2, as seen in  the difference between 

the dashed-double-dotted and dotted lines o f Fig. 3.3(b). The solid brown line in  Fig. 3.3(b) 

is the “ tfsS ph-P B A , no so” result from  Sec. 2.3.3. A t low excess photon energies, i t  greatly 

underestimates r)B2 due to  the neglect o f so and uc  interm ediate states, while  at excess photon 

energies greater than  100 meV, th is  is p a rtly  compensated for by the neglect o f nonparabolicity. 

I t  appears from  the difference between “ i/gsph-PBA, no so” and “ H 14 , no uc /so ” in  Fig. 3.3(b) 

th a t nonparabolic ity becomes im portan t at energies above 70 meV.

The te rm  rjc  is pure ly due to  cubic anisotropy by defin ition ; in  any model th a t is spherically 

sym m etric i t  is iden tica lly  zero. There is no cubic anisotropy in  the “bare” (i.e. w ith o u t remote
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Figure 3.4: (colour): rjBi (black), rjB2 (red), and rjc  (blue) for (a) InSb, (b) GaSb, (c) InP, and 

(d) ZnSe. The solid lines are calculated w ith  the complete fourteen-band model. The dashed 

line for t j b i is “ .HgSph-PBA, 2B T ” . The inset o f panel (c) shows the area near the o rig in  in  more 

detail.

band effects) eight-band model on the set { r 6C, Psu, r 7„ } .  Cubic anisotropy in  the fourteen- 

band model is due to  the m om entum  m a trix  elements governed by the parameters E q  and E p> ,  

the interband sp in-orb it coupling A - , and remote bands through (7 2  — 7 3 ) and Ck- From  Fig. 

3.3(c), i t  can be seen th a t three-band terms are im portan t for rjc- In  fact, w ith  on ly 2BTs 

included, rjc  is positive for GaAs, whereas i t  is negative w ith  a ll terms included. From Fig. 

3.3(c) i t  can also be seen th a t the so band and uc bands are im portan t as interm ediate states 

for rjc-

M y calculation o f r j j^  is o f the same order o f m agnitude as the ab in i t io  ca lculation o f 

Atanasov et al. [3], bu t its  spectral dependence is different. In  particu la r, r js i  agrees more 

closely w ith  the P B A  calculation, as seen in  Fig. 3.3(a). Atanasov et al. had a ttr ib u te d  the 

difference between the ir ab in i t io  and P B A  calculations to  the assumption o f k-independent 

velocity m a trix  elements in  the P B A  [3]. However, m y calculation accounts fo r the k-dependence 

o f velocity m a tr ix  elements and agrees closely (for r js i  and Rer/aaaa) to  the P B A . The earlier ab 

in i t io  calculation [3] was, in  fact, inaccurate a t low photon energies due to  various com putational 

issues; an improved ab in i t io  ca lculation agrees w ith  the spectral dependence at low photon 

energy given here [141].

Figure 3.4 shows the spectra o f r j B i ,  ijB2-, and rjc  calculated w ith  H u  for InSb, GaSb, InP, 

and ZnSe. The dashed black line in  Fig. 3.4 is the P B A  result (2.47a). The P B A  appears 

to  be a reasonable approxim ation to  rjBi for excess energies less than  about 0.2E g. In  each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C h a p t e r  3 . “ 1 + 2 ”  P r o c e s s e s : F o u r t e e n - b a n d  M o d e l  C a l c u l a t i o n s 43

m ateria l, r)B2 t jb i  and in  each m ateria l except for ZnSe, the sign o f t]b2 changes as a 

function o f frequency. The component r)c , which arises due to  cubic anisotropy, is negative for 

each materia l.

The cubic anisotropy o f current in jection  due to  colinearly polarized fields can be significant 

enough th a t i t  should be measurable. For fields colinearly polarized along e, specified by polar 

angles 9 and 4> re lative to  the cubic axes,

j (/) • e =  21m { E 2wE*2uj) { ^ b i  +  m 2 +  nc ~  y  /  (9, t j )  , (3.12)

where /  (6, <j>) =  sin2 (2#)+s in 4 (6) sin2 (2<j>). In  general, J ( j)  also has a component perpendicular 

to  e tha t is p roportiona l to  t]c, bu t i t  vanishes for e paralle l to  (001), (110), (111). The 

fie ld po lariza tion  th a t maximizes the current in jection  depends on the re lative sign o f rjc  and 

Rer]aaaa =  t)b i +  VR'i +  Vc■ W hen they have the opposite sign, current in jection  is a m in im um  

for e || (001) ( /  =  0) and a m axim um  for e || (111) ( /  =  4 /3 ); for ligh t norm ally  incident on a 

{001} surface, the largest current in jection  occurs when e || (110) ( /  =  1). W hen they have the 

same sign, current-in jection  is a m axim um  for e || (001) and a m in im um  for e || (111). From the 

GaAs results shown in  Fig. 3.2(a), the current in jection  for the three cases e || (001), e || (110), 

and e || (111) are in  the ra tio  1 to  1.14 to  1.20 at the band edge, 1 to  1.15 to  1.20 at 200 meV 

excess photon energy, and 1 to  1.22 to  1.29 at 500 m eV excess photon energy. In  contrast, 

the ab in i t io  ca lculation o f Atanasov et al. yields larger ratios, for example 1 to  1.32 to  1.43 

at 300 meV excess photon energy [3]. Th is  disagreement is consistent w ith  the inaccuracy of 

the ab in it io  ca lculation discussed above. In it ia l experiments w ith  GaAs used e || [001] [4, 71], 

whereas Roos et al. exploited the larger signal for e || [110] [72]. For each o f the m ateria ls shown 

in  Fig. 3.4, the m in im um  current in jection  is for e || (001). I t  is w orth  noting  th a t two-photon 

absorption is also a m in im um  w ith  e || (001) for many semiconductors [142-144]. I t  seems th a t 

bo th  “ 1+ 2 ” current in jection  and two-photon absorption w ith  linearly polarized fields are larger 

for e directed along the bonds.

The cubic anisotropy o f “ 1+2” current in jection  is pronounced for cross-linearly polarized 

fields and opposite -circu larly polarized fields. For example, for cross-linearly polarized fields 

norm ally  incident on (0 0 1 ) w ith  ew =  a  cos d> +  b  sin <p and e2w =  —a sin cp +  b  cos <+

j ( j )  =  I m ^ 2# ^ )  (2t]b 2 +  Vc sin2 (2<f>)) e2a; — sin (4<p) ew . (3.13)

For fields w ith  opposite c ircu lar polarizations, the current in jection  is p roportiona l to  rjc and 

is hence pure ly anisotropic.

The component r)c causes a type o f current in jection  th a t has not previously been noted. In  

a ll “ 1 + 2 ” experiments considered thus far w ith  ligh t norm a lly  incident on a surface, the d irection 

o f current in jection  lies in  the plane o f the surface. However, w ith  co-linearly polarized ligh t
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fields n orm ally  in c id en t on  a (111) su rface, th e  current can  have a co m p o n en t in to  (or o u t o f)  

the surface. The current in  th is  case is

J (/) =  2 Im  {E lE*2u,) r}Bl  +  r]B2 +  2  Vc ) e + (\ / 2 / 6 ^ Tjc cos (39) z (3.14)

where z is the [111] d irection, and 9 is the angle between e and the [211] d irection. Thus, rjc 

is responsible fo r th is  “ surfacing” current.

3.4  S p in  cu rre n t

As in  Sec. 2.1 and Sec. 2.3.4, the spin-current in jection  can be divided in to  a con tribu tion  from  

electrons K l̂ ,ey  and a con tribu tion  from  holes K l̂ .hy  th a t is, K Z) =  K U;e) +  (sim ilarly,

Expressions in  the P B A  for bo th  the electron and hole spin current 

are given in  the preceding chapter, bu t here I  focus on the electron spin current.

In  the preceding chapter, a m icroscopic expression for the spin-current in jection  is derived 

in  the FG R lim it  o f pe rtu rba tion  theory and applied to  a model in  which a ll bands are doubly 

degenerate [see (2.21a)]. However, i t  is unsuitable for a calculation w ith  H u ,  which accounts 

for the small sp litt in g  o f the spin degeneracy th a t occurs in  m aterials o f zinc-blende sym m etry 

[137, 145, 146]. I f  the spin-sp lit bands were well separated, then the microscopic expression for

K ) \  , would be(he )

*+Le) =  (Ckl V I S J  W  [(^SU) n2,k + C X ]  5  ( 2uJ -  U cv (k))
c,v, k

where L 3 is a norm alization volume, the one-photon am plitude f i^ u k  *s § iven m  (2-3), and the 

two-photon am plitude f r .  k is given in  (2.4).

However, for the photon energies and m ateria ls studied here, the sp in -sp litting  is small; i t  is 

comparable to  the broadening th a t one would calculate from  the scattering tim e o f the states, 

and also to  the laser bandw id th  for typ ica l u ltra fast experiments. Thus, the sp in-sp lit bands 

should be treated as quasidegenerate in  FG R, w ith  the result

(̂/;e) =  53^CklwiS’JlC,k̂  ( fi2,k) n?,l,k  ̂P (2w -  (k)) +  6(2UJ~ U d v  (k))] + C .C .,

c,c' v,k
where the prim e on the sum m ation indicates a res tric tion  to  pairs (c, c') for which e ither c' — c, 

or c and c' are a quasidegenerate pair. Th is  same issue arises in  the fourteen-band calculations 

of “ 1+2” spin contro l (Sec. 3.6), two-photon spin in jection  (Chapter 4), and one-photon spin- 

current in jection  (Chapter 5). In  Chapter 5, the optica l exc ita tion  o f the coherence between 

spin-split bands is jus tified  using the semiconductor optica l B loch equation approach. T ha t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C h a p t e r  3 . “ 1 + 2 ”  P r o c e s s e s : F o u r t e e n - b a n d  M o d e l  C a l c u l a t i o n s 45

0.5- 0 .6 -

I 0.4-
cr>I>>-5 -0.5- 0 .2 -

i
o
i—i

3.
- 0 .2 --1.5-

GaAs GaAs

-0.4
o 200100 300 400 500 0 100 200 300 400 500

Excess photon energy (m eV ) Excess photon energy (m eV )

Figure 3.5: (colour): Calculated spectra o f GaAs spin-current in jection  components and the ir 

contributions from  each in it ia l valence band; dashed, dotted, and dashed-dotted lines include 

on ly transitions from  the hh, Ih, and so bands respectively, while the solid lines include a ll three 

transitions. Panel (a) shows / ijv i (black lines), /XjV2 (red lines), and [ i n 3 (blue lines). Panel (b) 

shows pici (black lines), f i c 2 (red lines), and f i a  (blue lines).

approach yields the same result as the simpler approach taken here. Note th a t th is  issue does 

not arise for “ 1 + 2 ” current in jection  or “ 1 + 2 ” popu la tion  control, since (ck |v |c 'k ) and (ck |c 'k ) 

vanish between spin-sp lit bands.

Using the time-reversal properties o f the B loch functions, I  find  th a t H(i-e) is real, and can 

be w ritte n  as

-  < ( £ ) 3 E E E *  <“ » K "  -  ( < « ) ' ] }  •
c,c' t),k n

(3.15)

where

=  \ v ? v (k ) [ ^ ( k ) u ^ ( k )  +  ^ ( k ) v ^ ( k ) ]  . (3.16)

T h a t /2( / ;e) in  (3.15) is pure ly real is a consequence o f the independent-particle approxim ation 

(see C h a p te r  6 ) .

The spectra o f the independent components o f calculated for GaAs, are shown in

Fig. 3.5 and Fig. 3.6. F igure 3.5 includes contributions from  each possible in it ia l valence band. 

Figure 3.6 shows the spin-current in jection  calculated w ith  various degrees o f approxim ation 

described in  Sec. 3.2.5. The on ly other calculation o f “ 1+2” spin-current in jection  for bu lk  

GaAs is the calculation in  Sec. 2.3.4, which uses a spherical, parabolic band approxim ation to
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Figure 3.6: (colour): Approxim ations for GaAs spin current components (a) / / a /i, (b) Hn2, (c) 

/Tvs, (d) n c \ , (e) Hc2, (f) MC3 - The approxim ations are described in  Sec. 3.2.5.

the eight-band model; i t  is shown in  Fig. 3.6 for /xjvi, f i ,\2■ and /ijy 3 .

The te rm  u n i  has the largest m agnitude o f the six independent parameters o f Since

it  is negative fo r hh and Ih  transitions bu t positive for so transitions, i t  peaks in  m agnitude at 

2hw ju s t above E g +  Ao (the energy at which so transitions become allowed). Tw o band terms 

make the largest con tribu tion  to  u n i ,  followed by three-band terms w ith  hh  or Ih  interm ediate 

states. The so and uc interm ediate states make a very small con tribu tion  to  /i/v i for excess 

energies less than  200 meV. The warping o f the bands is not im portan t for /j,n i , since the calcu

la tion  w ith  Hgsph closely approximates the UH 14, no uc” calculation, which includes the same 

interm ediate states. The “ /fsSph-PBA, no so” calculation, which is derived in  Sec. 2.3.4, is a 

good approxim ation to  [xn i at excess energies below 250 meV; nonparabolic ity becomes im por

tan t at higher energies. The hh  con tribu tion  has a larger m agnitude than the Ih con tribu tion  

in  p a rt because three-band term s increase the m agnitude o f the hh  con tribu tion , b u t decrease
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th a t o f the Ih  con tribu tion , as expected from  the P B A  expression (2.52a).

The term  /zjV2 is negative fo r hh  transitions, positive for Ih transitions, and negligible for 

so transitions. The calculation “ i / 14 , 2B T ” is a good approxim ation to  the calculation i / 14 . 

However, the three-band terms are not small; ra ther, they nearly cancel. In  pa rticu la r the 

trans ition  hh-lh-c  makes a large positive con tribu tion  to  HN2, while the trans ition  hh-so-c 

makes a large negative con tribu tion . Since the P B A  result in  Sec. 2.3.4 includes the former 

bu t not the la tte r, i t  is a poor approxim ation to  hN2- B u t by includ ing on ly 2BTs, i t  is a fa ir 

approxim ation for excess energies less than  200 meV. Th is agreement is fo rtu itous, since the 

calculation i/ssph underestimates the magnitude o f hN 2, and the P B A  leads to  an overestimation 

of the m agnitude o f hN2-

The te rm  f i x 3 is negligible when on ly 2BTs are included, in  agreement w ith  the P B A  result 

in  Sec. 2.3.4. The hh-lh-c  transitions are positive, w hile the Ih-hh-c  transitions are negative; the 

form er is larger, and thus / t v 3 is positive when so interm ediate states are neglected. B o th  Ih-so-c 

and hh-so-c are negative and substantia l enough to  make the to ta l /1 /V3 negative. Consequently, 

the P B A  result in  Sec. 2.3.4, which neglects so in term ediate states, is a poor approxim ation to  

/xjV3 - Upper conduction bands make a fa ir ly  small con tribu tion  to  /Xjv3 , and warping does not 

seem to be im portan t for hN 3 since the calculation w ith  Hgsph is a good approxim ation.

As expected, the terms hC l, h e 21 and nc:i are zero when calculated w ith  Z/sSph- 

The te rm  f i c i  is negligible when only 2BTs are included. Transitions w ith  interm ediate 

states in  the set {h h , lh ,  so} comprise rough ly tw o-th irds o f h a -  The anisotropy o f these 

transitions is no t sim ply due to  the warping o f the hh  and Ih  bands, which I  have determ ined 

by a calculation (not shown) using Hg w ith o u t the remote band con tribu tion  to  the velocity. 

Rather, i t  comes from  wave function  m ix ing  o f the Tgc and T -jc states in to  the valence and c 

band states. The cubic anisotropy o f two-photon absorption has been a ttr ib u te d  to  such wave 

function m ix ing  [128, 142]. The other th ird  o f the fu ll u c  1 is due to  transitions w ith  the uc 

interm ediate state, which would be forbidden close to  the T po in t i f  the m ateria l were isotropic. 

I  also note th a t each three-band te rm  makes a positive con tribu tion  to  f i c i  ■

The te rm  fiQ2 is nearly negligible when on ly 2BTs are included. Transitions from  the hh 

and Ih  bands have opposite sign, and those from  the so band are negligible. A bou t ha lf o f n c 2 

is due to  the transitions hh-lh-c  and Ih -hh-c , and the other ha lf is due to  transitions w ith  the 

uc interm ediate states. Transitions w ith  so in term ediate states are negligible. As w ith  p c i ,  the 

anisotropy o f the hh-lh-c  and Ih-hh-c  transitions is due to  the wave function  m ix ing  o f the Tsc 

and T 7C states in to  the hh, Ih, and c band states.

The te rm  /icn is positive for hh  transitions, negative for Ih  transitions, and negligible fo r so 

transitions. The transitions hh-so-c and Ih-so-c account for most o f the value o f hcz-, bu t 2BTs 

are not negligible. Transitions w ith  uc in term ediate states reduce the value o f hen by as much
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Figure 3.7: Spectra o f spin current components fo r InSb, GaSb, InP, and ZnSe: t^Ni (solid 

black line), /ijv 2 (solid red line), t^N3 (solid blue line), n c i  (dashed black line), n c 2 (dashed red 

line), and /ic '3  (dashed blue line).

as 10%. M ost o f n c : i■, especially at energies less than 200 meV, is due to  the warping o f the hh 

and Ih  bands. Consistent w ith  th is, I  find  th a t remote band effects are somewhat im portan t for 

HC3'i when remote band effects are removed, the calculation o f f ics  is about 25% larger than 

the fu ll calculation. Note th a t f ie 3 is far more sensitive to  remote band effects than any other 

optica l p roperty  calculated in  th is  thesis.

In  Fig. 3.7 I  p lo t the spectra o f the independent components o f the spin current density 

pseudotensor for InSb, GaSb, InP, and ZnSe. The spin current tensor is largest for InSb in  

agreement w ith  the P B A  expressions in  Append ix C. I  also note th a t tl N3 is positive for InSb 

and GaSb at low excess photon energy, whereas i t  is negative for InP, GaAs, and ZnSe.

3 .4 .1  C o n fig u r a tio n s

C o-circu larly polarized fields generate a spin-polarized current, which can be characterized by 

its  degree o f spin po lariza tion  /  (see Sec. 2.4), where /  =  {2e/h) K %e q l h3/ \ J e|, where n  is a  

u n it vector norm al to  the po lariza tion  plane o f the fields, and q is a u n it vector in  the d irection 

o f Je. Essentially, /  =  (vS) /  (v). Since th is  measure aims to characterize the photoexcited 

d is trib u tio n  o f electrons, I  neglect holes from  bo th  K  and J .2 For fields norm ally  incident on 

a (0 0 1 ) surface (i.e. =  e2oj =  (x  ±  i y )  / \ / 2 ), the spin current is

zl m 3±

2T h e  calculation of /  in  B hat and Sipe included electrons in  K  but both electrons and holes in J  [38].
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Figure 3.8: (a) Degree o f po lariza tion  o f spin-polarized current due to  co-circu larly polarized 

fields, (b) Displacement o f spins in  pure spin current due to  cross-linearly polarized fields.

where

m ±  =  sin (2 0 w -  0 2aJ) x  ±  cos (2 0 w -  (few) y , 

the current is J ( / j =  -J^E-i^E'/ (tjbi +  Wc/ty  ™±> and the degree o f spin po lariza tion  is

t  _  2 e u n i  +  / x c i /2

;  h  VB1 +  V c / 2 '  (  j

For fields norm ally  incident on a (111) surface, J (/) =  s/y.E^^E'/ ( t ) b i  +  V c / 3) m ± , and

2 e ^tjvi +  M d / 3  +  MC3 / 3  ('3 181
^  Vb i  +  V c /3

The degree o f spin po lariza tion  is p lo tted  for GaAs in  Fig. 3.8(a). The cubic anisotropy is 

small, bu t clearly seen, especially at low excess photon energies. The other m ateria ls have very 

s im ila r degrees o f spin polarization.

A  pure spin current, w ith o u t an electrical current, can be generated w ith  cross-linearly 

polarized fields, as shown in  Sec. 2.4. To generalize (2.56) to  include cubic anisotropy, I  consider 

fields polarized in  the (0 0 1 ) plane, w ith  the u> fie ld polarized at an angle 9 to  the x  axis

(i.e. [1 0 0 ]) and the 2 u> fie ld polarized at an angle 6 to  the y  axis (ew =  x cos6 +  y  s in 6 and

e2u; =  —x  sin 9 +  y  cos 9). The spin current is

K 1̂  =  -  ^E 2ulE l cos (2<j>w -  02W) [(4/xjvi +  4jijV3 +  3 ^ c i +  M ci cos (4# )) el ^ j

- f i c i  sin (40) el2u}zj  -  n C2 sin (40) £l eJ2uJ +  (4 ^ 2  -  4/xN3 +  3 /rc 2 +  V-C2 cos (40)) zl e/

This pure spin current is typ ica lly  measured by the resulting displacement o f up and down 

spins [41, 42], The fin ite  displacement results from  transport and scattering o f the electrons.
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U s in g  th e  B o ltz m a n n  tra n s p o rt  e q u a tio n  in  th e  re la x a t io n  t im e  a p p ro x im a tio n  w ith  space-

charge effects ju s tif ia b ly  neglected [42], one finds cf (z) =  (A t /h )  K l] +  /  +  ^ ( 2) j  ■ Here,

d (z) is the displacement o f spins measured w ith  respect to  the quantiza tion d irection  z, r  is 

the m om entum  relaxation tim e, and N ^  is the i-photon carrier in jection  rate. I  assume the 

fie ld intensities have been chosen to  balance one- and two-photon absorption, a condition tha t 

is 0-dependent due to  the cubic anisotropy o f two-photon absorption. Thus,

t (4/x/vi +  4 ĵv3 +  3/zci +  Mci cos (40))
(3.19)

and

(3.20)

where a is the two-photon absorption cubic-anisotropy factor given exp lic itly  in  the next section

[128, 142]. A t 0 =  0 and 0 =  ir /A, d is paralle l to  eu . The spin separation distance is p lo tted

This calculation o f the spin separation distance is a significant improvement over m y in it ia l 

calculations [41, 42], which used the eight-band P B A  and neglected three-band terms from  

the two-photon am plitude ( “ ffssph-PBA, 2B T ” ). Stevens et al. measured a spin separation 

distance o f 20 nm  in  a GaAs m u ltip le  quantum  well at an excess photon energy o f 200 meV, 

and estimated a momentum  re laxation tim e o f r  =  45 fs [41]. For r  =  45 fs, I  calculate a 

spin separation distance o f 20.0 nm  for bu lk  GaAs at 200 meV. H iibner et al. measured a spin 

separation distance o f 24 nm  (the photoluminescence spot separation is h a lf th is  distance) in  

cubic ZnSe at an excess photon energy o f 280 meV, and estimated a m om entum  relaxation tim e 

o f r  =  100 fs [42]. The calculation in  Fig. 3.8(b) gives d =  23.6 nm  for ZnSe at 280 meV. In  

bo th  cases, I  now find  very good agreement w ith  the experiment, whereas the previous model 

resulted in  larger spin separation distances. O f course, th is  agreement is contingent on the 

accuracy o f the m om entum  relaxation tim e estimates.

Note th a t bo th  the degree o f spin po lariza tion  for co-circularly polarized fields and the spin- 

separation distance, p lo tted  in  Fig. 3.8, have a k in k  at excess photon energy Ao and decrease 

at higher excess photon energies. A  s im ila r k in k  and decrease, due to  the onset o f transitions 

from  the so band, occurs for bo th  one-photon spin in jection  [2 ] and two-photon spin in jection  

(see Chapter 4).

3.5 P o p u la tio n  con tro l

I  calculate £(/) w ith  the microscopic expression (C .l)  in  Appendix B, which is also given by 

Fraser et al. [36]. I t  is derived in  the independent-particle approxim ation, and is restricted to

in  Fig. 3.8(b), where I  have assumed a m om entum  re laxation tim e o f 100 fs for each m ateria l.
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Figure 3.9: Im y;®  calculated w ith  H I 4 (solid line) and H 14-P B A  (dashed line) fo r (a) InSb, 

(b) GaSb, (c) InP, (d) GaAs, and (e) ZnSe. Panel (f) shows the GaAs calculations on a log-log 

p lo t.

hui <  Eg <  2hid [36]. Under those conditions, £(/) is real and is p roportiona l to  the im aginary 

pa rt o f the susceptib ility  for second harm onic generation (SHG) [36, 101]; specifically, (in  mks)

=  ( 2 e0/h) ImX(2)cba ( - 2 w, u>). (3.21)

Th is connection to  SHG is im portan t because the im aginary part o f y (—2w , l} ,uj) has some

times been presented en route to  a calculation o f | y ^ |  [147-153]. As well, ana lytic  expressions 

have been derived for the dispersion o f SHG by using simple band models, w ith  approxim ations 

appropriate fo r 2hid near the band gap [147, 154-158], However, these earlier works d id  not 

connect I m y ^  (—2 oj] oj, uj) w ith  popu la tion  control, and in  fact typ ica lly  stated th a t i t  was not 

independently observable.

Fig. 3.9 shows the calculation o f I m x ^ cba (—2id;id,td) for InSb, GaSb, InP, GaAs and ZnSe. 

Also shown for comparison is the P B A  expression (C.3), derived in  Append ix C. Each spectrum  

can be d iv ided in to  rough ly three regions. A t very low excess photon energies, visib le in  the 

log-log p lo t Fig. 3 .9(f), the spectrum  is roughly independent o f u. Th is  fla t pa rt o f the spectrum  

disappears i f  Ck is set to  zero; hence, i t  is due to  the k-linear term  in  the c band sp in-sp litting . 

Next higher in  photon energy, up to  about 100 m eV in  GaSb, InP, GaAs, and ZnSe (up to  

about 15 meV in  InSb), is a region where the agreement w ith  the ana lytic  expression (C.3) is 

best. In  th is  region, the ra tio  X 2/ X 1, defined in  Append ix C, is 0.37 for InSb, 0.30 for GaSb, 

—0.25 for InP, 0.08 for GaAs, and 0.07 for ZnSe. A t higher photon energies, the dispersion 

o f Im y (2)cba (—2lo; uj, l j )  deviates from  the P B A  expression due to  band nonparabolic ity and
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warping, k-dependence o f m a trix  elements, and transitions from  the sp lit-o ff band, which are 

not included in  (C.3).

I f  I  remove the two-band transitions hh-{hh , c}-c, lh - { lh , c}-c, and so-{so, c}-c, then the 

calculation o f Im y (2) (or £(/)) is unchanged. Th is is expected for m aterials o f zinc-blende sym

m etry  [155, 159]. So-called “v ir tu a l hole term s” were argued to  make on ly a small con tribu tion  

to  y (2) (0) by Aspnes [159], and they have been neglected in  some previous calculations of 

dispersion [148, 150]. B y  removing the v ir tu a l hole te rms lh -{so , hh }-c  and hh -{so , lh }-c , leav

ing only {so, Ih, hh}-uc-c  transitions, £(/) is reduced by on ly 6- 1 0 % over the range from  the 

band edge to  500 meV above the gap for GaAs. I t  is thus clear th a t inclusion o f the uc bands 

is necessary for a calculation o f popu la tion  control. For some purposes i t  is also sufficient, since 

i f  remote band effects are removed from  the model, leaving the “bare” fourteen-band model 

[124, 128], /■) is decreased by only 7-10% from  its  fu ll value for GaAs.

For most materials, the results in  Fig. 3.9 are in  reasonable agreement w ith  previous cal

culations o f Im y^2) [147, 150, 152, 153], a lthough most previous calculations had poor spectral 

resolution in  th is  energy range. However, for ZnSe, the s itua tion  is more complicated. The 

calculation o f Huang and Chin is about an order o f m agnitude smaller than mine [150], and 

th a t o f Ghahram ani et al. is about 5 times smaller than  mine [149]. Note also th a t Huang 

and Chin calculated x^2-* (0) for ZnSe to  be an order o f m agnitude smaller than  experim ental 

results [150], Wagner et al. have measured the dispersion o f | x ^ | ,  which is an upper bound on 

Im y ® ; for ZnSe it  is about a factor o f two smaller than  m y calculation o f Im y ®  [160]. Note 

th a t Wagner et al. give a different set o f band parameters than I  have used here [160].

The m agnitude o f determines the m agnitude o f popula tion contro l, b u t in  an experiment 

one is more interested in  the depth o f the phase-dependent m odula tion  o f the carrier absorption,

i.e. the contro l ra tio  R  [36], I t  is

N (I) _  t» f>E * E l E t  +  C.c. 

~  N {1) +  N {2) ~  t f o E & E i ,  +  z W E i* E L * E * E l '

and i t  can also be viewed as R  =  — [7V]avg j  / [N ]avg, where [lV]avg is the carrier in jection

averaged over the phase m odulation. Th is ra tio  is largest for fie ld am plitudes th a t equalize 

a n d  N (2) [37]; in  w h a t  fo llow s, I  assum e th is  c o n d itio n  has b een  m e t. T h e  ra t io  th e n  depends  

only on and the polarizations o f the two fields. For ligh t norm a lly  incident on a

(111) surface, linearly-po larized fields y ie ld R  =  (1 — <r/2), while opposite

circu larly-po larized fields yie ld

R  =  2£{I) / ^ 3 t ; {1)q “ aa (1 -  a /6  -  5), (3.22)
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w h e re
■aaaa ■aaaa

■aaaa •aaaa (3.23)

are two-photon absorption anisotropy and circu lar dichroism  parameters [128, 142], Stevens 

et al. found th a t for ligh t norm ally  incident on a (111) surface o f GaAs, opposite c ircu la rly

The po lariza tion  configuration th a t yields a global m axim um  for the contro l ra tio  depends on 

the m ateria l and photon energy; I  have found th a t (3.22) is the m axim um  except for very close 

to  the band edge, where (3.24) is the m aximum.

To calculate the popu la tion  contro l ra tio , i t  is desirable to  use values o f £(/), £(!), and £(2) 

calculated w ith in  the same set o f approxim ations. I  use microscopic expressions for and £(2) 

in  the independent-particle approxim ation [3] [they can also be derived from  (2.16) and (2.17)], 

and calculate them  w ith in  the fourteen-band model. Note tha t m y calculation o f two-photon 

absorption (£(2)) is s im ila r to  th a t o f Hutchings and W herre tt [128], bu t th a t I  include remote 

band effects.

Fig. 3.10 shows the calculated spectra o f the popu la tion  contro l ra tio  (3.22) for various 

semiconductors. For each m ateria l, the ra tio  is close to  un ity  at the band edge, then drops 

steeply, bu t flattens out to  some non-zero ra tio  as photon energy is increased. In  general, 

the smaller the band gap (or conduction band effective mass) o f the m ateria l, the narrower 

the range over which the ra tio  drops, and the lower the ra tio  at higher excess photon energy. 

W orth  noting  is the pa rticu la rly  large ra tio  for ZnSe. Also p lo tted  in  Fig. 3.10 is the ra tio  

appropriate for linearly-polarized fields norm ally  incident on a (111) surface o f GaAs, which was 

the configuration in  the experiment o f Fraser et al. [36]. For a ll materials, the ra tio  (3.24) reaches 

exactly u n ity  at the band edge, in  agreement w ith  the P B A  calculation (C.9) in  A ppend ix C. .

The only previous theoretical calculation o f the popu la tion-contro l ra tio , which was for 

GaAs, missed find ing the large ra tio  near the band edge because i t  was based on ab in it io  

calculations o f £(i), £(2) and £(/) th a t had poor spectral resolution near the band edge [36]. 

Over the rest o f the spectrum  shown in  Fig. 3.10, i t  is about a factor o f two smaller than m y 

calculation. Th is is consistent w ith  the previous calculation being based on a calculation o f the 

two-photon absorption coefficient £(2) th a t is too large by comparison w ith  other calculations

The popu la tion-contro l ra tio  has been measured on ly in  GaAs [36, 37, 6 6 , 67, 75]. The 

measured ratios on ( l l l ) -G a A s ,  at excess photon energies o f 180 m eV [36, 37] and 312 meV

polarized fields y ie ld  the largest ra tio  [6 6 , 75]. For ligh t norm ally  incident on a (110) surface, 

fields linearly  polarized along [1 1 1 ] y ie ld

R  = (3.24)

[128, 144].
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Figure 3.10: (Colour) Calculated popu la tion  contro l ratios appropriate fo r opposite c ircu la rly  

polarized fields norm ally  incident on a (111) surface o f InSb, GaSb, InP, GaAs, and ZnSe. The 

blue, dotted line is the ra tio  for linearly  polarized fields norm ally  incident on a ( 1 1 1 ) surface of 

GaAs.

[6 6 , 75] were 4 to  5 times smaller than m y calculation. Some o f the difference can be a ttr ibu ted  

to  phase m ismatch and large sample thickness [36, 37, 6 6 , 75], A n  experiment on a (llO )-g row n  

m u ltip le  quantum  well was com plicated by an add itiona l cascaded second harmonic effect [67].

3.6  S p in  con tro l

The spin in jection  can be d iv ided in to  a con tribu tion  from  electrons «S(/;e), and a con tribu tion  

from  holes S (I;hy, th a t is, «S(/) =  [sim ilarly, C(/) =  C(/;e) +  where C(/) is

defined in  (2.32)].

I  trea t the spin-sp lit bands as quasidegenerate when tak ing  the FG R  lim it  o f pe rtu rba tion  

theory, as discussed for the spin current in  Sec. 3.4, deriv ing the microscopic expression

E  E  <Ckl S K k> ( “ SU)* ^ > 4 (2w _ (k)) + 5 (2w -  u* v (k))] + c-c-’c,c' u,k

where the prim e on the sum m ation indicates a restric tion  to  pairs (c, d) fo r which either d =  c, 

or c and d are a quasidegenerate pair. Using the time-reversal properties o f the B loch functions,
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Figure 3.11: (colour) Spin contro l pseudotensor components C/A (black lines), CI B  (red lines), 

and (C/a +  2Ci b ) (blue line) w ith  breakdown o f in it ia l states. D otted lines include transitions 

from  the Ih  band, dashed lines include transitions from  the hh  band, dashed-dotted lines include 

transitions from  the so band, and solid lines include a ll transitions.

I find  th a t C (/;e ) is pure ly im aginary and can be w ritte n

00) Ke K C  + « , ) ■
c,c' r>,k n

(3.25)

where v is given in  Eq. (3.16).

The spectra o f C/a and CI B  for GaAs are shown in  Figs. 3.11 and 3.12. F igure 3.11 includes 

the contributions from  each possible in it ia l valence band. Figure 3.12 shows the spin contro l 

calculated w ith  various degrees o f approxim ation described in  Sec. 3.2.5.

The te rm  C/a decreases from  zero at the band edge to  a m axim um  negative value at 40 meV, 

m ostly due to  transitions from  the hh band, and is positive at higher excess photon energies, 

m ostly  due to  transitions from  the Ih  band. The low energy behavior is in  agreement w ith  the 

P B A  result (C.12a), in  which the ra tio  o f hh : Ih  transitions is (m c^h /m c jh )3^2 • T ransitions 

w ith  so and uc interm ediate states dom inate the decrease in  C/a low excess photon energies, 

as seen in  Fig. 3.12(a); they are the only non-zero transitions in  the P B A  result (C.12a). The 

con tribu tion  from  uc in term ediate states is negative and approxim ate ly constant over most 

o f the spectrum, whereas the con tribu tion  from  so interm ediate states goes from  negative to  

positive as transitions from  the so band become allowed (2hw >  E g +  Ao). The con tribu tion  

from  2BTs, which is zero in  the P B A , is positive over the whole spectrum. The breakdown o f 

the P B A  is due to  the increase in  m agnitude o f the 2BTs. In  fact, the sum o f the P B A  and the 

2BTs is a good approxim ation to  the fu ll calculation. I  also note th a t a calculation w ith  H$
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Figure 3.12: Spin contro l pseudotensor for GaAs. The approxim ations are described in  Sec. 

3.2.5.

yields a near negligible result fo r C/a! thus, the con tribu tion  from  interm ediate states w ith in  

the set {s o , lh ,h h ,c }  (inc lud ing 2BTs) is due to  the m ix ing  of the r 7C and Tgf. wavefunctions 

w ith  these states.

The te rm  Cjb is larger in  m agnitude than  the te rm  Cm over most o f the calculated spectrum. 

I t  falls to  a m axim um  negative value at 95 meV, sharply increases when transitions from  the so 

band become allowed, and is positive at higher excess photon energy. A t lower photon energies, 

transitions from  the hh band and transitions from  the Ih  band bo th  make negative contributions 

to  CIB ', in  the P B A  result (C.12b) the ra tio  o f hh : Ih  transitions is (m Cthh /m Ctih)3^2. Fig. 3.12(b) 

reveals th a t C/b is essentially due to  contribu tions from  uc interm ediate states, and 2BTs. Over 

the whole spectrum, the former are negative while  the la tte r are positive. The smallness o f the 

con tribu tion  from  so in term ediate states is also seen in  the P B A  result (C.12b), since Z + +> Z'_ 

in  th a t expression. I  also note th a t a calculation w ith  H% yields a near negligible result for C/e; 

thus, the con tribu tion  from  interm ediate states w ith in  the set {so, Ih, hh, c} (includ ing 2BTs) 

is due to the m ix ing  o f the T yc and ITsc wave functions w ith  these states.

I  have also c a lc u la te d  th e  sp in  c o n tro l p seu d otensor fo r th e  sem ico n d u cto rs  In S b , G a S b , 

InP, and ZnSe. The results are shown in  Fig. 3.13 along w ith  the allowed-allowed parabolic 

band approxim ations (C.12a) and (C.12b).

The m agnitude o f spin contro l is determ ined by C(/)> b u t in  an experiment one is more 

interested in  the depth o f the phase dependent m odula tion  o f the spin po lariza tion  signal. One 

possible de fin ition  for the signal is the ra tio  o f spin in jection  measured w ith  bo th  u> and 2 a; fields
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Figure 3.13: (colour) Spin contro l calculated for InSb, GaSb, InP, and ZnSe. B lack lines are 

C/a and red lines are CIB- Solid lines are the fu ll calculation using H 14. D otted lines are the 

parabolic band approxim ation calculated w ith  (C.12a) and (C.12b).

to  the sum o f the spin in jections measured w ith  c ircu la rly  polarized fields o f each frequency 

[6 6 ]. The am plitude o f its  m odu la tion  is

stn (3.26)
S fo  (o+ ) +  S fa  (0 +)

where the argument (<r+ ) indicates in jection  w ith  a a + polarized field. Th is ra tio , which is 

largest fo r fie ld amplitudes th a t equalize (<r+ ) and <S^ (a + ), was measured by Stevens et 

al. w ith  excess photon energies o f 150 meV and 280 meV [6 6 , 67].

The ra tio  (3.26) has an undesirable feature: i t  can exceed unity. Close to  the band edge in  

many semiconductors (at 2 m eV in  G aAs), there is a photon energy for which S(2) (a + ) =  0  (See 

Chapter 4). A t th a t photon energy, i t  is impossible to  choose fie ld am plitudes to  balance one- 

and two-photon spin in jection  w ith  c ircu lar polarized fields [<S^ (er+ ) =  (<t+ )], and thus

the m axim um  ra tio  has a s ingularity. Even i f  the cond ition  5 ^ )  (cr+ ) =  <S(2) ( t + ) is relaxed, 

the ra tio  (3.26) can exceed unity. Th is is because <S^ (er+ ) and (<7 + ) have opposite sign 

close to the band gap (see Chapter 4), and thus i t  is possible, by appropria te choice o f fie ld 

amplitudes, to  make the denom inator o f the ra tio  a rb itra r ily  small.

A n  alternate ra tio  to  characterize the spin control, which has an upper bound o f un ity, is

R s =  2
6 (/)

(3.27)
^-W (l) +  N (2)

I t  is the am plitude o f phase-dependent oscilla tion o f the degree o f spin po larization , and i t  is 

most useful when there is l i t t le  or no popu la tion  control. I  assume the fields are chosen to
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balance one- and two-photon absorption. For most photon energies and m aterials th is  is nearly 

the same as balancing one- and two-photon spin in jection.

For norm al incidence on a (111) sample, opposite c ircu la rly  polarized fields yie ld

n 2 |C/a + 2C/b |
R s =  T  /

k  (1  -  o / 6  -  5)

For norm al incidence on a (110) sample, opposite c ircu la rly  polarized fields

D _ _  2  3|C/a  +  2C/b |
& fc /------------------------------------- ’

h A ^ j 2 q ^ a ( 1 - 6 -  a /8)

and orthogonal linearly  polarized fields (xy-polarized) yield

2 | (C/A +  2C/b) ( r  +  3 sin2 a ) cosa|
Rs (a) =  - — j - ' - ._

2 AyC"r)‘?(21)aa ( l  — \ ct (sin2 a ) (1 +  3 cos2 a ))

where r  =  — 2C/a / (C/a  +  2 Cib )  [6 6 ], and a  is the angle between the po lariza tion  o f the l j  field 

( E J  and the [001] axis, which lies in  the (110) plane. The angle th a t maximizes R s  depends 

on photon energy through r  and a. I  determ ine i t  numerically.

The ra tio  Rs for GaAs is p lo tted  in  Fig. 3.14(a). For ( lll) - in c id e n c e , opposite c ircu la rly  

polarized fields yie ld the highest ra tio  over the studied range o f photon energies. For (110)- 

incidence, opposite c ircu la rly  polarized fields y ie ld  the highest ra tio , except for between 190 

m eV and 415 meV when xy-polarized fields the highest ra tio . For .xy-polarized fields, the angle 

th a t yields the largest ra tio  decreases from  0.99 rad to  0.53 rad from  the band edge to  320 meV, 

and is zero for higher excess energies.

The ra tio  Rs for the five semiconductors InSb, GaSb, InP, GaAs, and ZnSe are p lo tted  

in  Fig. 3.14(b). A t low photon energy, opposite c ircu la rly  polarized fields norm ally  incident 

on (111) y ie ld  the largest ra tio  fo r InSb, GaSb, GaAs, and ZnSe, whereas orthogonal linearly  

polarized fields norm ally  incident on (110) y ie ld  the largest ra tio  fo r InP.
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Figure 3.14: (colour) Spin-control ra tio  normalized by carrier popu la tion  [Eq. (3.27)]. In  (a), 

for GaAs, black lines are ( l l l) - in c id e n t ,  opposite c ircu la rly  polarized fields; green lines are 

(llO )-inc iden t, opposite c ircu la rly  polarized fields; and red lines are (llO )-inc iden t, orthogonal 

linearly polarized fields. In  (b), for InSb, GaSb, InP, GaAs, and ZnSe, solid lines are (111)- 

incident, opposite c ircu la rly  polarized fields. The dotted line in  (b) is ( llO )-in c id e n t, orthogonal 

linearly polarized fields for InP.
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Chapter 4

T w o-photon Spin Injection

4.1 In tro d u c tio n

In  th is  chapter, a comparison is made between the degree of spin po la riza tion  o f electrons 

excited by one- and two-photon absorption o f c ircu la rly  polarized ligh t in  bu lk  zinc-blende 

semiconductors. The macroscopic sym m etry and microscopic theory for two-photon spin in 

jec tion  are reviewed, and the la tte r is generalized to  account for sp in -sp litting  o f the bands. 

The degree o f spin po lariza tion  o f one- and two-photon spin in jection  are calculated for GaAs, 

InP, GaSb, InSb, and ZnSe using the fourteen-band model described in  the preceding chapter. 

B y  includ ing the higher conduction bands in  the calculation, cubic anisotropy and the role o f 

allowed-allowed transitions can be investigated. The allowed-allowed transitions do not con

serve angular m om entum  and can cause a high degree o f spin po lariza tion  close to  the band 

edge; a value o f 78% is calculated in  GaSb, bu t by varying the m ateria l parameters it  could 

be as high as 100%. The selection rules for spin in jection  from  allowed-allowed transitions are 

presented, and interband sp in-orb it coupling is found to  play an im portan t role.

I t  is well known th a t linear absorption o f c ircu la rly  polarized ligh t in  a semiconductor 

produces spin-polarized electrons in  the conduction band [2], Th is occurs as a result o f the 

entanglement o f electron spin and m otion  caused by the sp in-orb it coupling in  the m ateria l; 

in  the absence o f sp in-orb it coupling, there would be no net spin po lariza tion  o f the excited 

carriers. For many common semiconductors, the highest valence states are in  the degenerate 

heavy- and light-ho le  bands at the T po in t. Consequently, the highest degree o f spin po lariza tion  

th a t can be achieved is 50%. Such a s itua tion  occurs when the photon energy exceeds the band 

gap, bu t is not large enough to  excite carriers out o f the sp lit-o ff band. Th is  can be understood 

from  selection rules th a t result from  the sym m etry o f the states at the T po in t [2 ].

One way to  increase the spin po lariza tion  o f the injected electrons is to  use m ateria ls where 

the degeneracy between heavy and ligh t hole bands is removed by stra in  and /o r quantum

60
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confinement, so th a t one can excite carriers on ly from  one band. From the sym m etry o f the 

states, one then expects 100% spin polarization . A nd  indeed bo th  theory [2 ] and experiments 

[161, 162] have shown a significant enhancement o f the degree o f spin polarization. The spin 

po lariza tion  could also be increased by using compounds w ith  crysta l structures having no 

valence band degeneracy [163-165].

Spin in jection  can also arise from  two-photon absorption. For certa in applications th is  m ight 

have advantages over one-photon spin in jection  due to  a much longer absorption depth, which 

allows spin excita tion  throughout the volume o f a bu lk  sample. Two-photon spin in jection  

has been investigated in  lead chalcogenides (PbTe, PbSe, and PbS), which are cubic, and 

have direct fundam ental band gaps at the L  points [18]. H igh degrees o f spin po lariza tion  

in  these m aterials have been predicted [18], bu t not observed [166-169]. The focus in  th is  

chapter is on semiconductors th a t have a d irect fundam ental band gap at the T po in t, such as 

GaAs. Based on arguments invo lv ing the conservation o f angular momentum, i t  was recently 

suggested th a t 1 0 0 % spin po lariza tion  could be achieved in  unstrained bu lk  GaAs from  two- 

photon absorption [19]. However, earlier theoretical results, includ ing Eq. (2.54), pred ict a 

two-photon spin po lariza tion  o f no more than 64% for th is  class o f cubic semiconductors [18, 

170, 171], A nd  tim e- and polarization-resolved experiments in  (OOl)-oriented GaAs reveal 

an in it ia l degree o f spin po la riza tion  o f 49% for bo th  one- and two-photon spin in jection  at 

wavelengths o f 775 and 1550 nm  [20]. E qua lity  o f one- and two-photon spin in jection  was also 

observed by Stevens et al. in  an experiment w ith  ( l l l) -o r ie n te d  GaAs [6 6 ].

In  th is chapter, I  present microscopic calculations o f two-photon spin in jection  th a t go be

yond the spherical approxim ation made by earlier calculations. I  show how the simple argument 

based on conservation o f angular m om entum  breaks down, and examine the transitions th a t 

give rise to  the p a rtia l spin po larization . The calculated one- and two-photon degrees o f spin 

po lariza tion  are not equal fo r a ll materials, and I  find  th a t, in  fact, two-photon spin in jection  

can be fu lly  polarized, b u t only from  transitions th a t do not conserve angular momentum.

O ptica l transitions near the T po in t can be summarized w ith  sketches such as those in  Fig. 

4.1 (c.f. Fig. 3.1). The sym m etry o f the states at the T  po in t o f a crysta l w ith  zinc-blende 

sym m etry is as follows. The conduction band (Fec) is s-like w ith  two degenerate spin states, 

while  the valence bands are p-like. The p-like orb ita ls  are coupled to  the electron spin to  form  

four states (the heavy and ligh t hole bands, r ^ )  th a t are to ta l angular m om entum  (j  =  3 /2 )- 

like, and two states at lower energy (the sp lit-o ff band, rz^) th a t are ( j  =  l / 2 )-like [118]. 

Note th a t these states are commonly referred to  as i f  they were eigenstates o f to ta l angular 

momentum, even though they are not [118]. The levels corresponding to  the sp lit-o ff band 

are not shown in  Fig. 4.1. The selection rules for the transitions between the Tyt,, Tgi,!, and
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(d)
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- 1/2  + 1/2
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3 /2  —1 /2  + 1 /2  + 3 /2
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r 6c

Figure 4.1: O p tica l transitions in  a bu lk  zinc-blende semiconductor for c ircu la rly  polarized ligh t 

a + allowed by the selection rules: (a) fo r one-photon absorption, (b) for two-photon absorption 

as suggested by Matsuyama et al. [19], (c) two-photon allowed-forbidden transitions w ith  a 

conduction band as an example o f an interm ediate state, and (d) two-photon allowed-allowed 

transitions for vanishing interband sp in-orb it coupling and ligh t incident along a (0 0 1 ) d irection. 

The quantum  number r r i j  for the pro jection  o f to ta l angular mom entum on the ligh t propagation 

d irection o f a ll states involved is indicated in  the figures. The thickness o f arrows and adjacent 

number in  (a) and (c) express the re lative trans ition  probabilities.

r6c states are the same as for the states o f a spherically sym m etric system [2] . 1 Thus they 

can be understood using angular m om entum  arguments. B y  apply ing the fam ilia r selection 

rule th a t one-photon absorption o f c ircu la rly  polarized ligh t w ith  positive he lic ity  (cr+ ) must 

change the pro jection  o f to ta l angular m om entum  by + 1 , one sees th a t only the two transitions 

shown in  Fig. 4.1(a) are allowed. A n  exam ination o f Clebsch-Gordan coefficients reveals tha t 

the trans ition  from  the r r i j  =  —3/2  state o f the valence band to  the r r i j  =  —1/2 state o f the 

conduction band is three times as probable as the trans ition  from  the r r i j  =  —1 / 2  state o f the 

valence band to  the r r i j  — + 1 /2  o f the conduction band. Thus, near the band edge, one expects 

a value o f 50% for the net degree o f electron spin po larization

N t -  N r , x
P  =  — -------- (4 1)

~  N i +  N r ’ ( ’

where N j  (A1/  ) is the concentration o f electrons w ith  spin down (up).

The idea o f angular m om entum  conservation was applied to  two-photon absorption by

1 Recall from  C hapter 2 th a t the eight-band Kane model is isotropic.
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Matsuyama et al. [19]. They argue th a t because the to ta l angular m om entum  of the two 

righ t c ircu la rly  polarized photons is +2 , only the trans ition  from  r r i j  =  — 3 /2  to  r r i j  — + 1 /2  is 

allowed [see also Fig. 4.1(b)]. Therefore, they suggest th a t even in  a bu lk  semiconductor w ith  

degenerate valence bands the resulting electron spin po larization should be 1 0 0 %, and indeed 

w ith  an opposite sign w ith  respect to  one-photon spin injection.

On the other hand, the degree o f spin po lariza tion  due to  two-photon spin in jection  has 

been calculated several times [18, 170, 171], includ ing in  Sec. 2.4, using the eight-band Kane 

model [121]. Ivchenko calculated the degree o f spin po larization in  the lim it  o f large sp in-orb it 

sp littin g  [18, 170], A rifzhanov and Ivchenko improved the calculation by allow ing the sp lit-o ff 

band to  act as an interm ediate state; they gave the degree o f spin po lariza tion  at the band edge 

as a function o f E g/ Ao, where E g is the band gap energy and Ao is the sp in-orb it sp litt in g  [171]. 

For GaAs, one infers a 51% degree o f spin po lariza tion  from  the ir results. Note tha t, in  contrast 

to  one-photon spin in jection, the degree o f spin po lariza tion  of two-photon spin in jection  near 

the band edge depends not on ly on the sym m etry o f the states, bu t also on various m ateria l 

parameters. In  (2.54), w ith  on ly two-band transitions included, I  give a very simple expression 

fo r the two-photon degree o f spin po la riza tion  in  terms o f the conduction and valence band 

effective masses, from  which one infers for GaAs a spin po larization o f 48%.

In  most I I I -V  semiconductors, the next higher conduction bands are p-like ( r 7C and Tgc) 

[118]. The role th a t these higher bands p lay in  two-photon spin in jection  has not previously 

been investigated. I t  is known th a t k • p m ix ing  w ith  these bands is responsible for cubic 

anisotropy o f two-photon absorption [128, 142]. The higher conduction bands can also act as 

interm ediate states in  the two-photon am plitude. Such transitions are qua lita tive ly  different 

than transitions w ith in  the set o f bands nearest to  the fundam ental band gap [172-175].

In  Sec. 4.2 we review the sym m etry o f tw o-photon spin in jection  and I  present m y calculation, 

which includes the higher conduction bands. In  contrast to  previous calculations o f two-photon 

spin in jection [18, 170, 171] [including (2.54)], th is  calculation is not pe rtu rba tive  in  k. In  

Sec. 4.3 I  discuss the transitions responsible for the degree o f spin po lariza tion  in  two-photon 

absorption [Figs. 4.1 (c) and (d)]. In  A ppend ix C.3, I  derive expressions for the degree o f 

two-photon spin in jection  due to  so-called “ allowed-allowed” transitions.

4.2  C a lc u la tio n  o f tw o -p h o to n  spin in jec tio n

For an electric fie ld o f the form  E  (t) — E w exp (—iu t )  +  c.c. ( I sometimes w rite  E w =  E ^e ^), the 

two-photon spin in jection  rate can be w ritte n  phenomenologically as <S* =  ^ ^ mE i,E ^E ^*E ™*, 

where is a f if th  rank pseudotensor sym m etric on exchange o f indices j  and k, and on

exchange o f indices I and m; superscript lowercase letters denote Cartesian components and
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repeated indices are to  be summed over [33]. For the po in t groups and Oh, appropriate to 

most cubic semiconductors, a general f if th  rank pseudotensor has ten independent components. 

Forcing the j  <-> k and I m  symmetries, and the condition for rea lity  o f <S, C,l̂ k =  (C ^ ™ )* , 

leaves three independent real components.

I  define ( 2A =  —iC_abccc and ( 2R =  ImCaa6ac, where the indices a, b, and c denote compo

nents along the standard cubic axes [100], [010], and [001]. Then the three independent real

components are R eC /p ImC'2/l i and £2b - In  the standard cubic basis, the non-zero components 

o f cH)lm are

sabbbc   sabccc   /■bacaa   /-bccac   /-caaab   scabbb   ■/■
M2) -  M2) — M2) — S(2) — ((2) — M2) — iC>2A
sabcbb   saccbc   /■baaac   sbaccc   scabaa   /■cbbab   ■/■*
M2) — S(2) — S(2) — S(2) — S(2) — S(2) ~  ~ l(*2A
saabac   /•bbcab   scacbc   saacab   /■babbc   rcbcac _
S(2) S(2) S(2 ) S(2) S(2 ) S(2 )

as well as those generated by exchanging j  <-> k  and /o r I <-> m, for a to ta l o f 48 components. 

The po in t group sym m etry allows spin in jection  for linearly  polarized ligh t, associated w ith
fijk l 
’ (2)

ir f  n o f /

»(2)
due to  the time-reversal properties o f the B loch states. One m ight expect deviations from  the 

independent-particle approxim ation w ith in  an exciton b ind ing energy o f the band edge (see 

Chapter 6 ) [174, 176]. In  w hat follows, I  assume the independent-particle approxim ation is 

valid, which leaves the tw o-photon spin in jection  specified in  terms o f two real parameters £2a 

and ( 2«.

The component o f the spin-in jection rate along one o f the cubic axes can be w ritte n  com

pactly  (w ith  no sum m ation convention) as [18]

&  = 2* (Ew x E* y  (C2a |E J 2 +  (2C2b -  C2a) \E l \2)  . (4.2)

I f  the m ateria l were isotropic, the spin in jection  rate could be described by on ly one real 

parameter; £2A =  2£2b  and the second te rm  in  Eq. (4.2) would be zero.

The cubic anisotropy means th a t the two-photon spin in jection  from  c ircu la rly  polarized 

ligh t depends on the angle o f incidence o f the ligh t re lative to the cubic axes. For c ircu la rly  

polarized ligh t incident along n  specified by polar angles 6 and d> re lative to  the cubic axes,

,4 ( ,  , 2 C2B -  C2A

1111( 2 / i . However, from  a microscopic expression for (*2^ m in  the independent-particle approxi

m ation [see Eq. (4.4), (4.5), or (4.6) below], one can show th a t must be pure ly  im aginary

S  n  =  T 2 C2A I ^1 +  4 C2A /  ( M )  j  » (4-3)

where /  (6, <j>) =  sin2 (26) +  sin4 (9) sin2 {2(b). The upper (lower) sign is for righ t (le ft) c ircu lar 

polarization. The analogous equation for two-photon absorption is given by Hutchings and 

W herre tt [128]. Equation (4.3) has extrema for ligh t incident along (001) and (111) directions.
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Due to  the cubic anisotropy, the net injected spin is not always paralle l to  n, a lthough i t  is 

when n  is along (001) or (111). In  particu la r, for ligh t along a (001) d irection, |«S| =  2 ^2/1 |T ^ |4, 

while for ligh t incident along a (1 1 1 ) d irection, |«S| =  (4 /3 ) (C2A +  C2b)  |£ /,|4.

4.2.1 Microscopic calculation

Microscopic expressions for the two-photon spin in jection  rate, derived using the assumptions 

discussed in  Sec. 1.1 and the independent-particle approxim ation, have been given before [18, 33, 

171]. However, a ll previous calculations, and the result (2.54) in  Chapter 2, used semiconductor 

models in  which a ll bands are doubly degenerate. In  such a case, one finds th a t

S =
2 tt

,tf,k

where |nk) is a B loch state w ith  energy hujn (k ), L 3 is a norm alization volume, S is the spin

operator, uinm{k ) =  cjn (k ) — u;m (k), the prim e on the sum m ation indicates a res tric tion  to  pairs
(2)

(c, c') for which uicc/ =  0, and 12), /  k is the two-photon am plitude given in  (2.4). However, the 

spin degeneracy is removed in  real crystals o f zinc-blende sym m etry [145, 146], a lbe it w ith  a 

small energy sp litting . Thus, (4.4) is unsuitable for a calculation w ith  the fourteen-band model, 

which accounts for th is  sp in -sp litting  [130].

I f  the spin-sp lit bands were well separated, a stra igh tforw ard FG R  derivation would y ie ld

^  =  %  E  <c k l S lck> K ? , k |2 5  [2w -  ( k ) ] , (4.5)
c,v, k

which is a simpler result than  (4.4). However, in  GaAs the sp littin g  is at most a few meV 

for conduction states w ith in  500 meV of the band edge [137]. Since th is  is comparable to  the 

broadening th a t one would calculate from  the scattering tim e o f the states (and also to  the laser 

bandw id th  for experiments w ith  pulses shorter than 1 0 0 fs), sp in-split pairs o f bands should be 

treated as quasidegenerate in  FGR. Thus in  place o f Eq. (4.4) or (4.5) I  use,

^  i 2  <c k l S lc' k > { 5  t2u; "  (k ) l +  5  -  “ cv (k ) ] }  , (4.6)
c,c',v,k

where the prim e on the sum m ation indicates a res tric tion  to  pairs ( c ,  c') for which e ither d  =  c, 

or c and c' are a quasidegenerate pair. The coherence between quasidegenerate bands is op tica lly  

excited and grows w ith  the ir populations, as is the case w ith  simpler band models th a t neglect 

spin sp litting , inc lud ing the isotropic Kane model from  Chapter 2 [18, 33, 170, 171]. Th is  same 

issue arises in  the fourteen-band calculations o f “ 1 + 2 ” spin-current in jection  and “ 1 + 2 ” spin 

contro l (Chapter 3), and one-photon spin-current in jection  (Chapter 5). In  Chapter 5, i t  is
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ju s tif ie d  u s ing  th e  sem ico n d u cto r o p tic a l B lo c h  e q u a tio n  ap p ro ach . T h a t  ap p ro ac h  y ie ld s  th e  

same result as the approach taken here, which is simpler.

Using the time-reversal properties o f the B loch functions, the expression for lm th a t

follows from  (4.6) can be sim plified to  give

=  T? ^  S [2w — l o c v  (k)] Im
c ,c ',v ,k  n ,n '

(ck| S* |c 'k) ( y i klm -  V lmi k) /2

(i'J jn v  (k ) -  l o )  ( u ) n >v  (k ) -  l o )
, (4-7)

where

V * lm ee { v c,.n, ( k ) , v n >  (k ) } Jk { v * n ( k ) , ( k ) } ‘m ,

and { v i ,  V2 } lJ =  [v \v {  +  v {v l2) / 2.

The photo in jection  rate for the density o f electron-hole pairs is, from  (2.17),

% )  =  71  E | n S , k 2 « [2 w - ^ ( k ) ] . (4.8)
c,v, k

From  Eqs. (4.6) and (4.8), the degree o f spin polarization , P , can be calculated, since

„  2 5 n

h n ,(2)
(4.9)

The sign o f P  is chosen so th a t a positive P  corresponds to  an excess o f electrons w ith  spin 

down, i.e. spin opposite the photon angular momentum.

To evaluate the degree o f spin po larization , I  use a k  • p  model th a t diagonalizes the one- 

electron H am ilton ian  (includ ing sp in -o rb it coupling) w ith in  a basis set o f fourteen T -po in t 

states, and includes im portan t remote band effects [130]. The fourteen states (counting one 

for each spin) comprise six valence band states (the sp lit-o ff, heavy, and ligh t hole bands), and 

eight conduction band states (the two lowest, which are s-like, and the six next-lowest, which 

are p -like ).

The model is the same as th a t used in  the preceding chapter, except th a t here the remote 

band velocity is no t included, even though remote band terms are included. The effect o f the 

remote band ve locity contribu tions to  one-photon absorption was discussed by Enders et al. 

[138]. In  th is  calculation, removing the remote band terms from  the H am ilton ian  changes P  

for GaAs by at most 2%. Thus I  feel jus tified  in  the neglect o f the remote band contribu tions 

to  the velocity operator.

Th is two-photon spin in jection  calculation is s im ila r to  the two-photon absorption calcula

tio n  o f Hutchings and W herre tt [128]. I  can reproduce the ir results by removing remote band 

effects, which they d id  not include.
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Table 4.1: Calculated band-edge two-photon P .

InSb (%) GaSb (%) InP  (%) GaAs (%) Z n S e (%)

[0 0 1 ] -4 9 .3 -5 8 .9 58.7 -2 0 .5 -1 4 .5

[1 1 1 ] -7 3 .3 -7 8 .4 -1 6 .6 -6 0 .0 -57 .1

4 .2 .2  C a lc u la t io n  r e su lt s

The calculated degrees o f electron spin po larization , P , are shown for GaAs, InP, GaSb, InSb, 

and cubic ZnSe in  Fig. 4.2 as a function  o f excess photon energy, 2hui — E g, where E g is the 

fundam ental band gap. I  also show, fo r comparison, the degree o f electron spin po lariza tion  

due to  one-photon absorption, which is discussed in  Chapter 5. For each semiconductor, the 

one-photon degree o f spin po lariza tion  is 50% at the band edge as expected from  the T -po in t 

selection rules.

In  GaAs, so long as the excess photon energy is less than  the sp lit-o ff energy (341 meV) and 

greater than  about 50meV, there is a near equality o f one- and two-photon P ’s. Th is agrees 

recent experim ental results [2 0 , 6 6 ].

Close to  the band edge however, there is a feature o f the two-photon P  th a t has not pre

viously been identified; i t  is seen more clearly in  the insets o f Fig. 4.2. The values o f the 

two-photon P  at the band edge for each m ateria l are listed in  Table 4.1. Th is feature is fu rthe r 

discussed in  Sec. 4.3, bu t I  note here th a t i t  does not appear in  a spherical approxim ation. To 

show this, I  have calculated the two-photon P  w ith  the 8 x 8  Kane model th a t includes only 

the valence bands and the Tf,c conduction bands, has C\: =  0 , and has 7 2  and 7 3  replaced by 

7  =  (2 7 2  +  3 7 3 ) /5  to  give spherical bands [140] ( “PsSph” in  the no ta tion  o f Sec. 3.2.5); the 

result, which is independent o f crysta l orientation , is shown in  the dashed-dotted lines in  Fig. 

4.2.

Both  one- and two-photon P ’s decrease as the excess photon energy is increased. Th is is 

due to  band m ix ing  away from  the T po in t, which changes the selection rules. A t excess photon 

energies above the sp lit-o ff energy, the one-photon P  decreases due to  transitions from  the 

sp lit-o ff valence band [2]. The two-photon P  also decreases due to  these transitions, bu t less 

so.

The possib ility  o f cubic anisotropy in  two-photon spin in jection was firs t pointed out by 

Ivchenko [18], a lthough i t  has not been calculated u n til now. Cubic anisotropy in  two-photon 

absorption, on the other hand, has been calculated by Hutchings and W herre tt [128]. They 

found tha t near the band edge two-photon absorption o f c ircu la rly  polarized ligh t in  GaAs 

should be about 10% greater fo r ligh t incident along [111] compared to  along [001] [128], The 

results o f my calculation for GaAs indicate th a t two-photon spin in jection  varies w ith  crysta l
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Figure 4.2: Calculated degrees o f electron spin po lariza tion  P  in  (a) InSb, (b) GaSb, (c) InP, 

(d) GaAs, and (e) cubic ZnSe. The solid (dashed) lines are for two-photon exc ita tion  w ith  ligh t 

incident along a (001) ((111)) d irection and the dotted lines are for one-photon excita tion. The 

dashed-dotted lines are for two-photon excita tion  calculated w ith  an eight band ( r 7„ , r %v, and 

r6c) spherical model. The insets show P  close to  the band edge. The sign o f P  is given by Eq. 

(4.9).
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orientation by a s im ila r amount. Hence the degree o f spin po lariza tion  shown in  Fig. 4.2(d), 

which is the ra tio  o f the two, varies w ith  crysta l o rien ta tion  by on ly a few percent for most 

photon energies in  the range I  investigated. Th is is not the case, however, for excess photon 

energies very close to  the band gap, as can be seen in  the inset o f Fig. 4.2(d). The cubic 

anisotropy is more substantia l for ZnSe and InP.

4.3  Discussion

The prediction o f a 100% degree o f two-photon spin in jection  mentioned in  Sec. 4.1 uses ar

guments fam ilia r from  spherically sym m etric systems. A t firs t i t  m ight seem incorrect to  even 

apply these in  cubic systems. For the crysta l H am ilton ian  is not ro ta tiona lly  invariant and 

thus does not conserve angular m omentum: The la ttice  is viewed as fixed and able to  pro

vide any amount o f torque. However, the deviation from  spherical sym m etry is small in  many 

cases, and hence angular m om entum  arguments should have approximate va lid ity . Stated more 

technically, since is a subgroup o f Oft , which is a subgroup o f the fu ll ro ta tion  group, the 

H am ilton ian can be w ritte n  as the sum o f spherical, cubic and te trahedra l parts w ith  the la tte r 

two treated as perturbations [132, 140, 177-179]. The eight band Kane model (even includ ing 

remote band effects bu t w ith  7 2 l  =  7 3 L and C\. =  0) is spherically symm etric, bu t can nonethe

less accurately describe many properties o f electrons in  semiconductors. I t  has been used, in  

particu la r, for earlier calculations o f one- and two-photon spin in jection  [2, 18, 170, 171], and 

for “ 1+2” current and spin-current in jection  (see Chapter 2). In  a spherical model however, the 

transitions depicted in  Fig. 4.1(b) do not occur. B y exam ining the possible interm ediate states 

[i.e. band n in  Eq. (2.4)], we can see which transitions do occur, and understand the transfer 

o f angular momentum.

4 .3 .1  A llo w e d -fo r b id d e n  tr a n s it io n s

W hen the interm ediate state is in  the same band as e ither the in it ia l or fina l state (a so-called 

“ two-band trans ition ” ), one o f the photons causes an in traband trans ition . These two-band 

transitions dom inate two-photon absorption in  GaAs [172] and indeed in  most semiconductors 

[173-175]. They are “ allowed-forbidden” transitions because the in traband trans ition , propor

tiona l to the ve locity o f electrons in  the band, is zero at the T po in t. Consequently, i t  is not 

possible to  derive the two-photon degree o f spin po la riza tion  using the states at the T po in t 

as can be done for one-photon excita tion  [Fig. 4.1(a)], “ 1+2” popula tion contro l (C . l) ,  “ 1+2” 

spin contro l (C.2), or allowed-allowed two-photon transitions [Fig. 4.1(d)]. Instead, one must 

go away from  the T po in t and sum over a ll k directions. W ith  th is caveat in  m ind, I  nonetheless 

give a schematic illu s tra tio n  o f a two-band trans ition  in  Fig. 4.1(c). One should bear in  m ind
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th a t, away from  the T po in t, one cannot in  general associate states in  the heavy hole band w ith  

J z =  ± 3 /2  and states in  the ligh t hole band w ith  J z =  ± 1 /2 , since th is  is on ly true  for k  || z. 

I t  is essentially due to  th is  com plication th a t the sum over directions o f k  gives a two-photon 

P  th a t depends on the details o f the bands.

The slower decrease o f the two-photon P  compared to  the one-photon P  at excess photon 

energies greater than the sp lit-o ff energy can be understood from  a consideration o f two-band 

transitions. The one-photon P  decreases in  th is  regime due to  the selection rules invo lv ing 

transitions from  the sp lit-o ff band [2]. The same selection rules apply to  the interband pa rt of 

the two-band trans ition , bu t the in traband pa rt o f transitions from  the sp lit-o ff band is much 

weaker than the transitions from  the heavy and ligh t hole bands, since the la tte r excite to  states 

higher in  the conduction band th a t have higher velocity.

There are also allowed-forbidden transitions o f the three-band varie ty (h h - lh -c , hh-so-c , 

Ih -h h -c ,  and Ih -so -c ); in  these cases, the inter-valence band m a trix  elements can connect states 

o f opposite spin. The ir effect on the two-photon spin po lariza tion  approxim ate ly cancels out 

in  GaAs, as one can see by comparing a calculation th a t neglects them  (2.54) w ith  one tha t 

includes them  [171].

W ith in  a spherical model, allowed-forbidden transitions must conserve angular momentum; 

two-photon absorption w ith  c ircu la rly  polarized ligh t must transfer two units o f angular mo

m entum  to  each electron-hole pa ir th a t is created. In  order to  understand how th is  leads to  an 

incomplete electron spin po larization , one should form  eigenstates o f angular m omentum, even 

away from  the T po in t. Such states can be formed in  a spherical model w ith  envelope functions 

over an expansion o f B loch states [180]. A ny treatm ent o f electron angular m om entum  must 

then take in to  account bo th  the cell-periodic pa rt and the envelope-function pa rt o f the electron 

wave function. I t  is the la tte r th a t is neglected in  the argument o f Matsuyam a [19].

Yet even w ithou t th a t analysis i t  is clear th a t, in  a simple two-band spherical model con

sisting o f a single spin degenerate valence band and a single spin degenerate conduction band, 

the two un its  o f angular m om entum  are divided equally between the two parts o f the electron 

wave function. Th is can be inferred from  the fact th a t the envelope function  for the re lative 

m otion o f the electron and hole has one u n it o f o rb ita l angular m om entum  (i.e. i t  is a p  wave) 

[176]. A  two-band spherical model can be mocked-up from  an eight-band spherical model by 

setting the heavy and ligh t hole band masses equal [174, 177]. Doing so w ith  (2.54) one sees 

th a t in  th a t case the two-photon P  is 50% [since (1 ±  7 /3 ) /(3  ±  11/3) =  1/2] at the band edge. 

More generally, the m axim um  two-photon P  in  a spherical model is 64% [171]. Th is  can be 

seen from  (2.54) by varying the effective masses to  maxim ize P ; the m axim um  is 7/11 when 

mc,lh ^  m c,hh- In  A rifzhanov and Ivchenko, the m axim um  7/11 occurs for A q E g.
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4 .3 .2  A llo w e d -a llo w e d  tr a n s it io n s

Allowed-allowed transitions are those for which bo th  m a trix  elements in  the two-photon am

p litude  (2.4) are non-zero at the T po in t. A llowed-allowed transitions have a different fre

quency dependence than  allowed-forbidden transitions. Near 2hui >  E g the form er varies as 

(2hw — Eg) 1/ 2 while the la tte r varies as (2 fko — E g):1/ 2. Hence, allowed-allowed transitions can 

dom inate allowed-forbidden transitions in  a frequency range close to  the band edge. For GaAs, 

however th is  range is on ly lO m eV  [128, 172]. As seen in  the fourteen-band calculation shown 

in  the inset o f Fig. 4.2(d), the two-photon degree o f spin po lariza tion  in  th is  range can be very 

different from  the rest o f the spectrum. These transitions are necessarily due to  lower symme

tr y  parts o f the H am ilton ian; in  a system w ith  true  spherical sym m etry one could not have a 

two-photon trans ition  from  a p state to  an s state, since two-photon transitions cannot connect 

states of opposite parity.

The selection rules for allowed-allowed transitions are worked out in  Appendix C.3. Consider 

firs t the simple approxim ation o f vanishing interband sp in-orb it coupling A -  (denoted A  by 

Pfeffer and Zawadzki [130]). Then the basis states given in  (3.2) are the energy eigenstates at 

the r  po in t. For cr+ polarized ligh t incident along [001], the only allowed-allowed transitions are 

depicted in  Fig. 4.1(d); these can be derived from  Table I I I  o f Lee and Fan [174], The product 

o f the two m a trix  elements in  the two-photon am plitude is the same for bo th  transitions. Thus, 

i f  the sp in-orb it sp littin g  o f the upper conduction bands Aq can be neglected compared to  the 

other energy differences, then P  is zero [see Eq. (C.19) w ith  A -  =  0], For <r+ polarized ligh t 

incident along [111], the non-zero transitions are i) |Fgv , + 1 /2 )  to  |Fgc, —3/2) to  |Fgc, —1/2); ii) 

|r '8l),+ 3 /2 )  to  ( i r k , - 1 /2 )  and |F^C, - 1 /2 ) )  to  |r '6c, + l / 2 ) ;  and iii)  |r ^ „ ,  - 3 /2 )  to  ( |r '8c, - l / 2 )  

and |Fyc, —1/2)) to  |Fgc, + 1 /2 ) . Here the prim e indicates th a t the states are ro ta ted so th a t the 

quantization axis is [111] ra ther than  [001], I f  the sp in-orb it sp littin g  o f the upper conduction 

bands Aq can be neglected compared to  the other energy differences, then the th ird  o f these is 

zero and the p robab ility  for the second is three times th a t o f the firs t, resulting in  P  =  —0.5 

[see Eq. (C.20)].

However, close to  the band edge, where allowed-allowed transitions dominate, the fu ll 

fourteen-band calculation [see Table 4.1 or the insets o f Figs. 4 .2(a)-(e)] does not agree w ith  

these simple arguments. There is significant difference between materials; for GaAs P  =  —0.21 

and P  =  —0.60 for ligh t incident along [001] and [111] respectively. The disagreement is due to  

the importance o f the sp in -orb it m ix ing  between the valence and upper conduction conduction 

bands, characterized by a nonvanishing A ' .

The interband sp in-orb it coupling A -  would be zero i f  the m ateria l had inversion sym m etry 

[136, 137, 181]. In  contrast to  most o f the other parameters in the fourteen-band model, the
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Figure 4.3: Sensitiv ity o f the GaAs band-edge two-photon P  to A - . The solid (dashed) line is 

for two-photon excita tion  w ith  c ircu la rly  polarized ligh t incident along a (0 0 1 ) ( ( 1 1 1 )) d irection 

as calculated w ith  the fourteen-band model. The dotted line is Eq. (C.19).

value of A -  has not been determ ined by d irec tly  f it t in g  i t  to  one or more experim ental results. 

Rather, i t  has been calculated by various methods: the em pirica l pseudopotential m ethod 

(—61m eV for GaAs) [124, 130, 182], the tig h t b ind ing  method (—85m eV for GaAs) [137], 

the ab in it io  linear-m uffin -tin -o rb ita ls  method ( —llO m e V  for GaAs) [137], and by an ind irect 

f it t in g  w ith  a 30 x  30 k  • p  H am ilton ian  (—70m eV for GaAs) [137, 181].

In  ligh t o f the varia tion  in  calculated values o f the interband sp in-orb it coupling A - , I 

have investigated the dependence o f the band edge two-photon degree o f spin po lariza tion  on 

A - . The result, shown in  Fig. 4.3, is ra ther dram atic. F irs t, i t  shows th a t for small A - , P  

due to  [001] incident ligh t is p roportiona l to  A - , whereas P  due to  [111] incident ligh t is less 

sensitive to  A - . Second, i t  indicates th a t a 100% degree o f spin po lariza tion  could indeed be 

possible due to  two-photon absorption. B u t th is  poss ib ility  is not due to  the transfer o f angular 

momentum from  the ligh t to  the electrons. Since i t  results from  allowed-allowed trans itions th a t 

are only non-zero due to  the lack o f inversion sym m etry and could only occur for certa in crysta l 

orientations, I  suggest th a t some o f the angular m om entum  comes from  the crysta l la ttice  itself.

The selection rules for allowed-allowed transitions includ ing interband sp in-orb it coupling 

are given for [001] incident ligh t in  Eqs. (C .13-C.18) and an expression for the resulting spin 

po larization is given in  Eq. (C.19). I t  is w orth  noting  th a t P  is independent o f the valence-upper 

conduction m om entum  m a trix  parameter Q.

This allows us to  see how the small sp in-orb it m ix ing  between valence and upper conduction 

bands can have an im po rtan t effect on the band edge spin-polarization. A llowed-allowed tra n 

sitions between the unm ixed states [Fig. 4.1(d)] are p roportiona l to  the small m a tr ix  element 

Pq, which would be zero i f  there were inversion symmetry. And since the interm ediate state is
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in  an upper conduction band, the energy denom inator o f the two-photon trans ition  am plitude 

is large, which fu rthe r reduces the am plitude for these transitions. The interband sp in-orb it 

m ixing, p roportiona l to  A ~ / E'0, is small, bu t i t  introduces allowed-allowed transitions w ith  a 

valence band as an interm ediate state. Then, instead o f being proportiona l to  Pq, the trans i

tio n  is p roportiona l to  Po, and the energy denom inator is smaller. Th is allows the condition 

C P q — D P qA ~  to  be met w ith  fa ir ly  modest in terband sp in-orb it m ixing.

4 .4  Conclusion

I  have presented the firs t calculation o f two-photon spin in jection th a t goes beyond a spherical 

model. The cubic anisotropy o f the two-photon P  is small for most o f the semiconductors I 

investigated at photon energies where allowed-forbidden transitions dominate, a lthough i t  is 

somewhat larger in  ZnSe and InP  than  in  the others. Allowed-allowed transitions, which do 

not appear in  a spherical model, and hence do not conserve angular momentum, are found to  

strongly m od ify  the two-photon P  close to  the band edge, and cause a large cubic anisotropy. 

I  have identified the selection rules responsible for these transitions, and found th a t in terband 

sp in-orb it coupling plays an im portan t role.

Measuring the two-photon P  due to  allowed-allowed transitions would be challenging in  

most semiconductors, since they only dom inate in  a narrow energy range, and the absorption 

rate is small close to  the band edge. However, such a measurement could serve as a means o f 

determ ining the parameter A - , which contributes to  the electron g factor [137] and the spin 

sp littin g  o f bands [127, 130].

I  emphasize th a t the calculations presented here are a ll in  the independent-particle approxi

m ation, and in  pa rticu la r neglect the Coulomb in teraction  between the op tica lly  excited electron 

and hole. Hence, two-photon in jection  o f spin-polarized bound excitons is outside the scope o f 

th is  chapter. Exciton ic effects on “ 1+2” excita tion  are discussed in  Chapter 6 . Close to  the 

band edge, excitonic effects are known to  enhance two-photon absorption [174, 176, 183-185]. 

Two-photon spin in jection  w ill be s im ila rly  enhanced, and thus the two-photon P  w ill be less 

sensitive to  excitonic effects since i t  is a ra tio  o f the two (see Eq. 4.9). Certainly, for excess pho

ton  energies greater than  an exciton b ind ing energy, I  do not expect excitonic effects to  greatly 

m od ify  the results presented here. However, w ith in  an exciton b ind ing energy o f the band edge, 

the enhancements o f allowed-allowed and allowed-forbidden transitions may d iffer [184, 185], 

envelope-hole coupling may m od ify  the selection rules leading to  two-photon spin in jection  

[186], and the electron spin life tim e w ill be shorter due to  the B ir-A ronov-P ikus mechanism o f 

spin re laxation [187]. Thus, a complete theory o f tw o-photon spin in jection  close to  the band 

edge should include excitonic effects. Nonetheless, the two-photon P  due to  allowed-allowed
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transitions predicted here in  the independent-particle approxim ation should be observable in  

m aterials for which the dominance o f allowed-allowed transitions extends beyond an exciton 

b ind ing energy o f the band edge.
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C hapter 5

Pure Spin Current from O ne-Photon  

A bsorption o f Linearly Polarized  

Light in N oncentrosym m etric  

Sem iconductors

5.1 In tro d u c tio n

Chapters 2 and 3 show th a t “ 1+2” excita tion  can in ject e ither a spin-polarized electrical current 

(SPEC) or a pure spin current (PSC), the la tte r distinguished by the absence o f an accompanying 

charge current. T h a t pred iction  led to  the firs t observations o f PSCs [41, 42]. There have been 

m any recent proposals for PSC schemes invo lv ing  spin-pum ping or spin H a ll effects [43, 44, 48- 

55, 60, 62], some o f which have been experim enta lly observed [45-47].

In  th is  chapter, I  show theore tica lly  th a t a ba llis tic  PSC can be generated in  noncentrosym

m etric  semiconductors, merely by one-photon absorption. Th is feature o f one-photon absorption 

o f linearly polarized ligh t does not seem to  have been appreciated previously: I t  occurs even 

in  unstrained bu lk  GaAs, i t  can be generated by a single, weak continuous wave (C W ) laser 

beam, and i t  arises from  the sym m etry o f the crysta l itself. I  calculate the linear PSC using the 

14 x  14 k  • p  model used in  preceding chapters. I  also use an extension o f the model to  show 

th a t the linear PSC can be increased w ith  the application o f strain.

In  the no ta tion  o f Sec. 2.2.3, the linear PSC comes from  f i f f -  Whereas r f f f ,  the tensor 

for one-photon current in jection  (see Sec. 2.2.1), is zero in  bu lk  GaAs, can be nonzero, 

resulting in  a PSC. The linear PSC does not re ly  on carrier scattering, bu t to  connect w ith  

experiments, I  include an estimate o f the spin-separation distance using a simple model o f

75
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m o m e n t u m  r e l a x a t i o n .

As in  preceding chapters, I  consider a semiconductor w ith  filled  valence bands and em pty 

conduction bands, ignore interactions amongst the electrons, and trea t the coupling between 

ligh t and the electrons pe rtu rba tive ly  in  the long-wavelength lim it  using A  • v  coupling. B u t 

whereas preceding chapters used microscopic expressions based on the Ferm i’s golden rule 

(FG R) lim it  o f the wave function  evolution, I  here use microscopic expressions based on 

the evolution o f the density m a trix , i.e. the semiconductor optica l B loch equations (SOBEs) 

[104, 106, 188]. A nd  whereas preceding chapters studied the effects o f m onochrom atic or bichro- 

m atic fields, th is  chapter studies the effect o f a pulsed field. The SOBE approach more na tu ra lly  

accommodates a phenomenological dephasing rate, and hence better justifies the optica l excita

tio n  o f the coherences between sp in-sp lit bands, which are added by hand in  the FG R  approach. 

The use o f a pulsed fie ld results in  an integra l over tim e  for the spin current, ra ther than a 

spin-current in jection  rate. I  have elsewhere derived the results presented here w ith  the FG R  

approach and a m onochrom atic fie ld [189].

In  Sec. 5.2, I  indicate th a t, w ith in  these approxim ations, one-photon absorption o f linearly  

polarized ligh t excites a d is tr ib u tio n  o f electrons in  k-space tha t is even in  k , no m a tte r what 

the sym m etry o f the m ateria l; no net electrical current results .1 Further, electrons excited in to  

the conduction band at opposite k  points w ill have opposite spin polarization , resu lting in  no 

net spin in jection. In  noncentrosym metric crystals however, the spin po lariza tion  in jected at 

a given k  need not vanish .2 Thus, in  such a case, there w ill be a PSC, since the velocities o f 

electrons at opposite k  points are opposite. Then in  Sec. 5.3, I  give a microscopic expression 

for and calculate the linear PSC w ith  the fourteen-band model inc lud ing strain.

5.2 P ro o f o f lin e a r p u re  spin cu rre n t

The electric fie ld inside the semiconductor is E  (t ) =  E w (t) exp (—iu t )  +  c.c., where E w (t) is a 

slow ly varying envelope function, and hui >  E g. Note th a t th is  is a change from  other chapters 

in  th is  thesis, in  which E g >  huj.

The SOBEs are dynam ical equations for the single-particle density m a trix  elements pnm (t). 

Versions o f the SOBEs have been derived in  the independent-particle approxim ation using 

bo th  the ve locity gauge [104] and the length gauge [101, 106], B o th  give the same result for 

the problem  at hand. The SOBEs are solved pe rtu rba tive ly  by an ite ra tive  m ethod whereby 

(n +  l ) - th  order term s o f the density m a trix  are driven by terms invo lv ing products o f the

1 Linear photogalvanic effects, due to  asym m etric scattering or a shift in charge density upon excitation  can 
occur [99], but not w ith in  these approxim ations.

2This was exploited by A lvarado et a l ,  who detected a spin polarization in electrons photoem itted  from  (110) 
G aAs [190],
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electric fie ld and n -th  order terms o f the density m a trix  (see, e.g. Aversa and Sipe [106]). The 

zeroth-order density m a trix , the in it ia l condition, is the ground state. The only nonzero firs t- 

order density matrices are the interband coherences pvc. In  second-order, there are also electron 

populations pcc, hole populations pvv, in ter-conduction band coherences pcc>, and inter-valence 

band coherences pvv/.

To second-order, for conduction bands c and d  (which can be the same),

^  =  " 4  £  f  {D a  +  D J „ ) , (5.1)
„  J -oo Ucv U)dv

where u nm (k ) =  ujn (k ) — uirn (k ), hun (k ) is the energy o f the B loch state |nk), the velocity 

m a trix  element (k ) =  (ck| v  |t’k ) , "fnrn (k ) is the dephasing rate o f the coherence pnm, and 

D nm =  5 (ui — uinm) — ( i / 7r ) V  (uj — LOnm) —1, where V  indicates the p rinc ipa l part. In  deriv ing 

(5.1) i t  has been assumed th a t in terband dephasing is fast compared w ith  the tim e  o f the pusle. 

The dephasing rates account for some of the m any-body interactions in  an approxim ate way 

[104, 188],

The photoexcited electron density is — '}2C k pccM W  • Defining N cv (k ) as the electron 

density excited from  band v to  band c at k  (i.e. N (i) =  ^Zk cv ^cv  (k )), one finds from  Eq. (5.1) 

th a t (d /d t +  7 cc) N cv (k ) =  N c ( k ) , where

^ nj) (k ) =  |EW ■ (k ) | 2 5 (Wc„ (k ) -  W) ,

and L 3 is a norm alization volume [c.f. (2.16)] [103]. Time-reversal sym m etry o f the B loch states 

yields Kramers degeneracy, u>n (—k ) =  ojn (k ), where a bar above a band index denotes the band 

w ith  the opposite spin. As well, the ve loc ity  m a trix  elements satisfy v CT (—k) =  — [vo; ( k ) ] * . 3 

Using these two properties, i t  follows th a t when the ligh t is linearly  polarized, (—k ) =

IVgP^ (k ). Consequently, the photocurrent in jection  rate, given by

e ^2  tVcc -  Wvv ^ nj) (k) .
k,c,ti

is zero for linearly  polarized ligh t; hence, any spin current must be a PSC.

The photoexcited electron spin density is S  — c, k (c'k| S |ck) pcc',k (t), where S is the 

spin operator. Note th a t fo r excita tion  near the band edge hujcci is either less than a few meV 

( if  c and d  are equal, or are the sp in-sp lit lowest conduction bands) or greater than  a few eV 

( if  c or d  is a higher conduction band) [137, 145]. A t times t  longer than  the pulse w id th  

t i ,  the integral over t '  in  Eq. (5.1) w ill be negligible unless ujcct <  1 j t ^ .  For long pulses, a 

s im ila r argument can be made bu t w ith  7 CC< replacing l / t f .  however, in  th is  chapter, I  focus 

on typ ica l u ltra fast experiments [41, 42], for which one can neglect spin re laxation and carrier

3T h e  phases of states and partition ing  of degenerate subspaces can always be chosen so th a t this is true  [117].
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re c o m b in a tio n  o c c u rr in g  on  lon g er tim escales. T h u s  th e  in te g ra l over t '  a llow s one to  neg lect 

coherences other than  those between spin-sp lit pairs o f bands. I  expand the retained coherences 

in  powers o f uicc> ju j and keep only the lowest order term . This neglects the precession o f the 

spins due to  the sp in -sp litting  o f the bands, which is jus tified  since the precession period is 

long compared to  the m om entum  scattering tim e [2]. W ritin g  S  =  S (k ), where S  (k) 

is the electron spin density at k one finds S l (k) =  Y ij  i C(i)(k ) / _ oo E i*  i f )  E ^  (£') dt', where 

superscript indices denote Cartesian components,

C ( i ) ( k )  =  2 j 3 ( c ' k l l c k ) v i c '  ( k ) V cv  ( k ) Is  (U c v  (k) -  u )  +  6  (u)c’v (k) -  w ) ] , (5.2)
-p,c,c'

and the prim e on the sum m ation indicates a res tric tion  to  pairs (c, c') for which e ither d  =  c, 

or c and d  are a quasidegenerate pair. Thus the coherence between bands c and c is op tica lly  

excited and grows w ith  the population, as in  simpler band models th a t neglect spin sp litt in g  [2 ],

I f  one were to  neglect the coherence between spin-sp lit bands, the net degree o f spin polarization , 

\S\/(N(±)h/2), would only be 10% in  GaAs compared to  the accepted 50% w ith  Eq. (5.2).

From the time-reversal properties o f the B loch states, the spin m a trix  elements satisfy the 

property  (n, —k| S |m, - k )  =  -  (n, k |S |  m, k)*.4 Using th is  property, Kram ers degeneracy, and 

the time-reversal p roperty  o f the velocity m a trix  elements, one finds S (—k) =  —S  (k) for linear 

polarized excita tion. Thus there is no net spin in jection  from  linearly  polarized ligh t, and i f  

S (k) is nonzero for some k, there is a PSC.

5.3 M icrosco p ic  ca lcu la tio n

One m ight naively quan tify  a PSC by (7j — / jJ ,  where I ] ( i )  is the current due to  up (down) 

electrons. A  more general measure th a t na tu ra lly  accounts for a d is trib u tio n  o f carrier velocities 

and spins is to  use a spin current density pseudotensor =  (v1 S1) as I  have done in  Chapters 

2 and 3. W hen there is no accompanying charge current, the spin current is a PSC.

Phenomenologically, the in jection  o f a spin current due to  one-photon absorption can be 

w ritte n  in  term s o f a m ateria l response pseudotensor / i ^ ) , as K l] =  m Mff)™ /  E l* ( t r) E™ ( t1) d t' 

Th is generalizes the de fin ition  o f / j , ^  in  Sec. 2.2.3 to  excita tion by a pulse. The spin current 

pseudotensor satisfies the in trins ic  sym m etry . I t  is fu rthe r constrained by

the sym m etry o f the m ateria l, since i t  must be invariant under the po in t group transform ations 

o f the crystal. I t  vanishes fo r m ateria ls w ith  inversion symmetry, bu t can be nonzero for the 

symmetries appropria te to  zinc-blende and w u rtz ite  crystals. The sym m etry analysis o f 

and the other one-photon effect tensors is discussed in  Append ix D.

4T he  phases of states and partition ing  of degenerate subspaces can always be chosen so th a t this is true [117].
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The microscopic expression for is derived from  Eq. (5.1), w ith  the same approxim ations

made for Eq. (5.2). Using tim e reversal properties o f the Bloch functions, one can then show 

th a t is real, and can be w ritte n  as

7re2 1

^ ( r T  =  ^ 2  J3  Re [ ( ^ 1  V%S3 lck ) Vvc' (k ) (k ) +  (*<"> m )\ • (5-3)
k.-u c,c'

In  an u ltra fast experiment, a PSC can be measured by the resulting displacement o f up and 

down spins. To estimate the spin separation, I  use the op tica lly  in jected electron d is tr ib u tio n  

as a source te rm  in  the Boltzm ann transport equation. B y  neglecting space-charge effects, 

which are negligible for a PSC, the Bo ltzm ann equation can be solved in  the re laxation  tim e 

approxim ation [42]. Th is approach neglects scattering during  optica l excita tion, b u t for u ltra 

fast experiments the error should not be too large. I f  one measures the spin w ith  respect to  

the quantization d irection  a, the up and down spin populations are separated by an average 

displacement d (a). I  find  dl (a) =  Yhj (4 r /h )  K l ] aJ/N ,  where r  is the m om entum  relaxation 

time.

To calculate the PSC for bu lk  GaAs, I  use the fourteen-band model described in  deta il in  

Chapter 3, a lthough the remote band contribu tions to  the velocity are not included in  th is 

calculation. I t  is a k  • p  model th a t diagonalizes the one-electron H am ilton ian  (inc lud ing spin- 

o rb it coupling) w ith in  a basis set o f fourteen T po in t states and includes im portan t remote 

band effects [130]. The model contains th irteen  parameters chosen to  f i t  low-tem perature 

experimental data [130].

Stra in is included by the deform ation po ten tia l m ethod o f Pikus and B ir, which amounts to  

adding k-independent terms to  H u  th a t are p roportiona l to  the s tra in  [120, 191]. The deforma

tio n  potentia ls amongst valence and lowest conduction band states are well established [192]. 

Between the valence and p-like conduction band states, there are two deform ation potentia ls 

for the stra in  considered in  th is  chapter, acv and bcv [193-195]. I  use bcv =  —2.3eV, which is 

an average o f tigh t-b ind in g  calculations [193, 194], and consistent w ith  experiment [196]. The 

parameter acv couples to  the hydrostatic component o f s tra in  [194]; neither i t  nor the deforma

tio n  potentia ls amongst p-like upper-conduction band states affect m y results. I  also neglect 

the small effect o f s tra in  on sp in-orb it coupling [194],

For GaAs, I  present results for ligh t linearly  polarized along [001]. In  the standard cubic 

basis, K xx =  — K vy =  k are the on ly two nonzero components o f the spin current. A lternate ly, 

using a basis where x  || [0 0 1 ], z || [1 1 0 ] and y  || [1 1 0 ], the on ly two nonzero components o f the 

spin current are K zy =  K yz =  k . T h a t is, there is a net PSC of electrons w ith  spin component 

along [110] and ve locity component along [110], and an equal PSC w ith  spin component along 

[110] and ve locity component along [110]. Under s tra in  in  the [001] d irection, the po in t group
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Figure 5.1: Calculated spin separation in  GaAs under no stra in  (th ick  line), under 1% tensile 

s tra in  (dotted line), and under 1 % compressive s tra in  (dashed line). Transitions from  the 

sp lit-o ff band begin to  contribu te  at ss 350 meV.

sym m etry o f the crysta l is reduced from  T j  to  D-2d, bu t K zy =  K yz remain the only nonzero 

components o f the spin current. I  have considered 1% b iax ia l strain; under tensile (compressive) 

stra in, the la ttice  dilates (contracts) by 1 % in  the [1 0 0 ] and [0 1 0 ] directions and contracts 

(dilates) by 0.93% in  the [001] direction, w ith  the la tte r determ ined from  the elastic constants 

C n  and C 12 [192].

The calculated spin separation distances, |d|, for these PSCs are p lo tted  in  Fig. 5.1 as a 

function o f photon energy above the band gap, where I  have assumed a m om entum  relaxation 

tim e  of 100 fs; note th a t the band gap for each case is different. A  density functiona l theory 

calculation for w u rtz ite  CdSe found a spin separation distance o f s im ila r m agnitude [82], For 

comparison, experiments on PSCs generated w ith  harm onically related fields in  G aA s/A lG aA s 

quantum  wells [41] and ZnSe [42] measured spin separations of 20 nm  and 24 nm  respectively.

To illus tra te  the spin-m om entum  corre lation im plied by the calculation o f d , I  p lo t in  Fig. 5.2 

calculated angular d is tribu tions  o f the in jected carrier density N ( k ) =  X)|k| N  (k ) and degree o f 

spin po lariza tion  s (k ) =  5Z|k| S  (k ) /A r(k ) for the excited conduction band electrons in  GaAs.

In  unstrained GaAs, smax, the m axim um  over k  o f |s (k ) |/  (ft/2 ), rises from  zero at the band 

edge to a m axim um  of 1 2 % at the photon energy when transitions from  the sp lit-o ff valence 

band become allowed. Under stra in, smax is largest near the band edge. In  F ig. 5.2(b), smax is 

15% while in  Fig. 5.2(c) i t  is 44%.

I t  is clear th a t s tra in  can increase the PSC, especially at lower energies where strain-induced 

sp littin g  o f the heavy and ligh t hole bands increases the spin po lariza tion  o f the photogenerated 

electrons. Under tensile (compressive) s tra in  the ligh t hole band moves to  higher (lower) energy
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Figure 5.2: (colour) (a) Calculated k-space d is tribu tions o f photoexcited electrons in  unstrained 

GaAs w ith  excess photon energy 300 meV. The surface represents the injected carrier density, 

N ( k ) ; the radius o f the surface in  any d irection  k  is proportiona l to  N  ( k ) . The vectors affixed to 

the surface give the degree o f spin polarization, s (k ), o f electrons excited w ith  crysta l momentum 

in  the d irection  k . The cross sections through the centers o f the d is tribu tions, along w ith  the 

pro jection  o f spins on the cross sections, have been displaced to  aid v isualization, (b) and (c) 

are as in  (a), bu t at 20m eV excess photon energy and for 1% tensile and compressive strains 

respectively. The reference spin in  the lower le ft corner o f each panel is 0.25H/2.

than the heavy hole band. The calculated sp littin g  between heavy- and light-ho le  bands at the 

T po in t is 84 meV for tensile s tra in  and 69 meV for compressive stra in.

Note th a t in  Eq. (5.3) I  have assumed th a t v  and S commute. Th is  is no longer true  when 

the anomalous velocity term , h(cr x  V P )  /  (4m 2c2), is included in  v . The linear PSC I  have 

described here does not require th a t term , in  contrast to  other effects [55, 64], In  fact, I  have 

neglected the anomalous ve locity (see Append ix B).

W hile  the calculations o f ba llis tic  PSCs th a t I  have presented here are appropria te for bu lk  

semiconductors, larger PSCs m ight be possible in  heterostructures, which can be prepared w ith  

large s truc tu ra l asymmetry. As well, I  note th a t since on ly linear absorption is involved, th is  

effect could be studied even w ith  C W  beams, and in  nanostructures, where short spin transport 

distances could s t ill have significant consequences.

In  a m ateria l w ith  low enough symmetry, one-photon absorption o f c ircu la rly  polarized 

ligh t can generate a ba llis tic  current w ith o u t an applied voltage [99]; th is  so-called circular 

photogalvanic effect (C PG E) is a SPEC [116, 197], I t  is tem pting  to  understand the linear 

PSC as a superposition o f opposite SPECs due to  two fields w ith  opposite helicity. However, 

the CPGE cannot occur in  crystals w ith  zinc-blende symmetry, although i t  can in  w u rtz ite  

CdSe [198] and strained GaAs [199]. I t  is w orth  noting  th a t in  add ition  to  describing the linear 

PSC, the spin-current response pseudotensor in  Eq. (5.3) can also describe the SPEC due to 

the CPGE.
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Finally, I  po in t out th a t a PSC can be generated even w ith  unpolarized ligh t. Averaging 

over po larization directions in  a plane, one obtains K tj =  f  E%dt' rn (Slm — n lnm) 

where h  is the propagation d irection o f the ligh t. Th is PSC is smaller than th a t due to  linearly 

polarized ligh t. In  m ateria ls w ith  Td symmetry, the PSC due to  unpolarized ligh t incident along 

a cubic axis is smaller by a factor o f two than  the PSC due to  ligh t polarized along a cubic axis.
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Tw o-colour Q uantum  Interference: 

E xcitonic Effects

6.1 In tro d u c tio n

Chapters 2 and 3 establish th a t quantum  interference between one- and two-photon trans ition  

am plitudes allows for the contro l o f carrier popula tion, carrier spin po lariza tion , photocurrent 

in jection, and spin-current in jection. The experimenter can contro l these processes by adjusting 

the phases o f the optica l fields.

B u t the controllable optica l phases are not the only source o f phase between the trans ition  

amplitudes. In  general, there is also a m aterial-dependent in trins ic  phase [200]. Phenomenolog- 

ically, the in trins ic  phase appears as a phase sh ift in  the dependence o f the process on a re lative 

phase parameter o f the optica l fields. A dd itiona lly , se lectiv ity between two processes is possible 

when the ir in trins ic  phases d iffer [201]; for example, “ 1+3” experiments on d ia tom ic molecules 

have controlled the branching ra tio  o f ion ization and dissociation channels [202]. The in trins ic  

phase can be strongly frequency-dependent near resonances [2 0 2 ], and the hope th a t i t  m ight 

serve as a new spectroscopic observable [203, 204] has led to  efforts to  understand its  physical 

orig in.

Whereas a resonance is necessary for a phase sh ift to  a “ 1+3” process [203], i t  is not 

necessary for a phase sh ift to  a “ 1+2” process. For example, an in trins ic  phase in  the “ 1+2” 

photo ion ization o f atoms is predicted from  the simple model o f a ^-function  po ten tia l [205, 206].

Nevertheless, microscopic theories for the interband “ 1 +  2” processes in  bu lk  semiconduc

tors, includ ing those in  Chapters 2 and 3, have predicted tr iv ia l in trins ic  phases [3, 36], The 

photocurrent, for example, was predicted to  be p roportiona l to the sine o f the re lative phase 

parameter for a ll fina l energies [3]. Each o f these theories uses the independent-particle approx

im ation, in  which the Coulomb a ttrac tion  between the injected electron and hole is neglected.

83
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T h a t approxim ation is expected to  be good for fina l energies well above the band gap, since 

in  th is  case the electron and hole travel qu ickly away from  each other. However, close to  the 

band gap, one generally expects to  see deviations from  the independent-particle approxim ation. 

In  the one-photon absorption spectrum, for instance, i t  is well known th a t the electron-hole 

a ttrac tion  is responsible for exciton lines below the band gap, and for an enhancement o f the 

absorption above the gap known as Sommerfeld or Coulomb enhancement [104].

The effect o f the electron-hole a ttrac tion  on one-photon absorption has been studied w ith  

various degrees o f sophistication. On the one hand, modern ab in i t io  calculations th a t include 

Coulomb effects have recently given very good quantita tive  agreement w ith  experim ental spectra 

[207-211], a lthough at the cost o f significant com putational overhead. On the other hand, simple 

models o f W annier excitons can describe Coulomb effects near the band edge o f many direct-gap 

semiconductors. These excitonic effects have long been understood qua lita tive ly  on the basis of 

a simple two-band model in  the effective mass approxim ation [2 1 2 ], which is even quan tita tive ly  

accurate for typ ica l semiconductors [210]. E xciton ic effects on one-photon current in jection  (the 

c ircu lar photogalvanic effect) were studied by Shelest and E n tin  [98, 213].

Exciton ic effects on nonlinear optica l properties o f bu lk  semiconductors have also been 

studied in  the effective mass, W annier exciton approxim ation [107, 174, 176, 183-186, 214-220], 

and only recently w ith  ab in i t io  methods [109]. The two-photon absorption spectrum  shows a 

different set o f exciton lines and a Coulomb enhancement th a t is weaker than  its  one-photon 

counterpart.

One- and two-photon absorption spectra have been measured suffic iently often th a t excitonic 

effects on them  are well established. In  contrast, semiconductor “ 1+2” interference experiments 

have been done typ ica lly  at on ly a single energy and typ ica lly  many exciton b ind ing energies 

above the band gap. Moreover, these in it ia l experiments lacked an absolute ca lib ra tion  o f the 

re lative optica l phase, and thus were insensitive to  the in trins ic  phase. W ith  such a ca libration, 

which is technica lly possible [221], one could verify  the predictions I  present here. A  non triv ia l 

in trins ic  phase would have im plications for the use o f “ 1 +  2 ”  current in jection  as an absolute 

measurement o f the carrier-envelope phase o f an u ltrashort optica l pulse [72, 77, 78].

In  th is chapter, I  extend the theory o f “ 1+2” coherent contro l o f bu lk  semiconductor in te r

band transitions beyond the independent-particle approxim ation to  include the electron-hole 

interaction. The focus is on photon energies th a t excite carriers above the band edge, bu t close 

enough to  i t  so th a t trans ition  am plitudes based on low-order expansions in  k are applicable. 

Consistent w ith  the rest o f th is  thesis, I  use a pe rtu rba tive  treatm ent in  the fields. In  th is 

lim it  of low  photoin jected carrier density, the on ly in te rpartic le  in teraction  o f im portance is 

th a t between a single electron and hole. I  show th a t, due to  the electron-hole a ttrac tion , a 

n o n triv ia l phase sh ift does in  fact occur in  the contro l o f current and spin current, b u t not in
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the contro l o f carrier popu la tion  or spin polarization. The in trins ic  phase can be understood in  

terms of partia l-wave phase shifts due to  the Coulomb potentia l between electron and hole. In  

addition , I  find  an enhancement o f each process, and relate i t  to  the Coulomb enhancements of 

one- and two-photon absorption.

In  the next section, I  establish no ta tion  necessary to  describe the “ 1+2” processes in  terms 

o f one- and two-photon trans ition  amplitudes. In  Sec. 6.3, I  present the microscopic model. 

The trans ition  am plitudes are worked out in  Sec. 6.4. The fina l expressions for the “ 1+2” 

effects are given in  Sec. 6.5, and numerical results fo r GaAs are presented. In  Sec. 6 .6 , fu rthe r 

understanding o f the enhancement and in trins ic  phase is discussed, and I  examine the ratios 

often used as figures o f m erit for “ 1+2” effects. Interm ediate-state Coulomb enhancement is 

examined in  A ppend ix E.

6.2 P re lim in a rie s

In  Sec. 2.1, I  derived a microscopic expression for the optica l in jection  o f a quan tity  (0), which 

could stand for current density, popu la tion  density, spin-current density, or spin density. W hen 

the carrier-carrier Coulomb in teraction  is included, a s im ila r m icroscopic expression can be 

derived, bu t instead o f B loch states, the expression contains eigenstates o f a H am ilton ian  th a t 

includes the carrier-carrier Coulomb interaction. These fina l states in  the Ferm i’s golden rule 

(FG R) calculation w ill be specified in  deta il in  the next section. For the present discussion, I 

w rite  them  as |n), having ve locity v nn, p robab ility  am plitude c „( t) , and energy huin above the 

ground state. W ith  th is  generality, the label n  can represent the set o f quantum  numbers for 

e ither an in teracting  or independent electron-hole pair.

The derivation follows Sec. 2.1, w ith  the result th a t

dt (9 )  =  j p

=  % (n£>)* +

=  %  E W ® K >  { ^  +  c.c.) } s (2oj-  LJn)
n ,n '

(6.1)

where the prim e on the sum m ation indicates a restric tion  to  terms satisfying ujn =  uini , L 3 is a

norm alization volume, and is the am plitude for an 2-photon trans ition . The take the(0
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form

=  E 2w • d £ >  (6 .2 )

nW  =  EwE u, :D<,2\  (6.3)

where the vector and second-rank tensor depend only on properties o f the materia l.

The trans ition  am plitudes are given in  de ta il in  Sec. 6.4.

Recall from  Sec. 2 .2 .1  th a t the rate o f photocurrent in jection in to  an unbiased bu lk  semi

conductor by a two-colour ligh t fie ld E(t) =  E^ exp(—iu t )  +  E2ci) exp(—i2uit) +  c.c. can be 

w ritte n

(/) =  tf ^ lE * j E l kE l2u] +  c.c., (6.4)
dJ\

~ d T  =  ” (')

where superscripts denote Cartesian components and repeated indices are to  be summed over 

[3]. The fou rth -rank current-in jection  tensor, , is pure ly  im aginary in  the independent- 

partic le  approxim ation [3], bu t can be complex in  general. I  define the in trins ic  phase 6ljkl o f 

the component r f ^ 1 as

fitjkl _  arct an
Re

(6.5)

. I m ( r' + ) J  ’
so tha t i t  is zero or n  in  the independent-particle approxim ation. W hen the electron-hole 

in teraction is included in  the set o f approxim ations used here, a ll the components o f ?7(/) have 

the same phase. T h a t is,
JjM  — aJS ijk l (6.6)V(i) =  rjfa

The in trins ic  phase 5 appears as a phase sh ift in  the dependence o f the current in jection  on 

the phase o f the optica l fields. For co-linearly polarized fields [Ew =  F+ e x p ( i+ ^ )x  and E 2w =  

E 2w exp(i(/>2a,)x ], for example, the current in jection  is

d'f I • ‘ _  I IX I
V(I)(/) =  2 E l E 2u) sin (2<j>w -  <p2u ~  <5) x .

dt

Consistent w ith  the rest o f th is  thesis, th is  discussion is predicated on a conceptual separation 

o f the in jection and re laxation processes. I  focus on the former, bu t note th a t Coulomb effects 

other than the excitonic effects considered here play a role in  scattering, especially at high 

densities o f excited carriers. Such Coulomb effects, which are outside the scope o f th is  thesis, 

have been recently studied in  lower dimensional systems [56, 58, 59]. A  comparison o f (6.1) 

w ith  (6.4) yields

=  ( 0 i 2),f  K ' ) b  ( a ,  -  . (6.7)
n

Recall from  Sec. 2.2.2 th a t the carrier in jection  rate can be w ritte n  in  terms o f one- and 

two-photon absorption tensors and an<̂  a “ 1+2” popu la tion  contro l tensor Using
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6.1, 6.2, and 6.3,

<+= |e  (+1*')’ K ’)J 4 (2“ - • (6-8)
n

$ ‘=§E(+2T  (+2)f <( (6-9)
n

and

$  ( D l 2)* ) y  ( D » ’ ) " { (2 “  -  “ ») ■ (610)
n

They are pure ly  real in  the independent-particle approxim ation.

Recall from  Sec. 2.2.3 th a t “ 1+2” spin-current in jection can be w ritte n  in  terms o f a pseu

dotensor C g f, and recall from  Sec. 2.2.4 th a t “ 1+2” spin-current in jection  can be w ritte n  in  

terms o f a pseudotensors In  the independent-particle approxim ation, is purely

im aginary [6 6 ], while is pure ly real [33], They are complex in  general; hence, one can

define the ir in trins ic  phases w ith  equations such as (6.5).

The phases o f the m ateria l response tensors T](l); £(/) • ^ ( i) ,  an(i  C(/) are related to  the phases 

o f the one- and two-photon m a trix  elements, and D ^ .  The one- and two-photon m a trix  

elements also appear, respectively, in  the one- and two-photon absorption coefficients, as can 

be seen from  (6 .8 ) and (6.9). There have been many theoretical investigations o f one- and 

two-photon absorption near the d irect gap o f bu lk  semiconductors th a t include excitonic effects 

[222, 223]. However, since one- and two-photon absorptions are insensitive to  the phases of 

the trans ition  amplitudes, those calculations took no care to  get the phases o f the trans ition  

amplitudes correct. In  the next two sections I  derive expressions for the trans ition  am plitudes 

w ith  the correct phases, includ ing excitonic effects.

6.3 M o d e l

The firs t pa rt o f th is  section reviews the two-band effective-mass model o f W annier excitons; the 

two bands are nondegenerate conduction and valence bands tha t are parabolic and isotropic w ith  

a direct gap E%  a t k =  0 (the T po in t) [103, 224]. Th is model has been used-to study excitonic 

effects on one-photon absorption [212], tw o-photon absorption [176], and other nonlinear optica l 

processes [214-220]. I  subsequently describe a generalization th a t accounts for degeneracy 

and m u ltip le  bands. I t  has been used for two-photon absorption [174], and has been im p lic it 

whenever two-band results have been applied to  actual semiconductors.

The to ta l H am ilton ian  o f the system can be w ritte n  in  the fo rm  H  =  H b  +  H e  +  -Hint (t) ■ 

Here, H q =  H b  +  H e  is the field-free H am ilton ian  made up o f the single-particle pa rt H b  and 

the part due to  the Coulomb in teraction  between carriers H e ,  and H \nt(t) is the in teraction  

H am ilton ian  in  the velocity gauge. Compared to  preceding chapters, on ly H e  is new.
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The in it ia l state is the “vacuum” 10); i t  corresponds to  completely filled  valence bands and 

em pty conduction bands. I f  the Coulomb in teraction  were neglected in  a two-band model con

sisting o f valence (v) and conduction (c) bands, the fina l states would be o f the form  a ^ c + k  |0 ) , 

where the operator a ^ k  creates an electron in  an eigenstate of H b , a B loch state |n ,k )  w ith  

band index n  and wave vector k  (see Sec. 2.1). The photon m omentum  has been neglected, 

consistent w ith  the long-wavelength approxim ation. The Coulomb in teraction  couples states at 

different k ; thus, accounting for H e , the fina l states are o f the form

|c v k ) =  ^ A ^ ,  ( k )  aj;k a „ k  | 0 ) , ( 6 . 1 1 )

k

where k  labels the state; its  physical meaning is given below. In  the effective mass W annier 

exciton approxim ation, the Fourier transform

V & (r)  =  X > 5 ,  ( k ) e i k 'r , ( 6 . 1 2 )

k

which is the wave function fo r the re lative coordinate between electron and hole, is a hydrogenic 

wave function  satisfying

- ^ v 2V & (r) -  V c ( r ) C ( r )  =  [E c v  (« ) -  E & ]  C ( r ) ,  (6.13)

where m + 1 =  m “ 1 + m “ 1 is the reduced mass in  terms o f the (positive) conduction- and valence- 

band effective masses, and Vc ( r )  is the Coulomb potentia l, V c (r )  =  e2/  (er), screened by the 

s ta tic  dielectric constant e [104, 178, 212], The state has energy

h2n2
cv (K) =  2 ^  +  cv'

I  choose the states to  be normalized over the volume L 3 by (m, k |n , k ;) =  4n,n-+k,k' and 

( c v k \c v k ' )  =  SKK'\ as a result + £ ,(r) is unitless, having the norm alization f  d 3 r  [+ ^ ,(r) ]*  r )  =

The focus o f th is  chapter is on the unbound solutions to  (6.13); bound-exciton states lack 

re lative ve locity between the electron and hole, and hence do not contribu te  to  the ba llis tic  

current in jection  or spin-current in jection. For a FG R  calculation o f the current in jection  or 

spin-current in jection, the unbound state must behave asym pto tica lly  like an outgoing plane 

wave in  the re lative coordinate between electron and hole; k  is the wave vector o f the outgoing 

plane wave. Specifically, one must use “ ion iza tion  states” ra ther than  scattering states [225], as 

was done for atom ic “ 1+2” ion iza tion  [205]. They are related by [+ £ ,(r) ]i(:m =  {[v+ ,K(r )]sCatt}* 

[226]. Calculations o f one- or two-photon absorption are insensitive to  an error in  th is  choice o f 

boundary condition, bu t the present calculation is not, since i t  is sensitive to  the re lative phase 

o f the trans ition  amplitudes.
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The ionization state wave functions th a t solve (6.13) can be expressed as a sum over p a rtia l 

waves,

oo p  ( l  +  H  — 'j /  • \
0 * ( r )  =  ^ a°vK (2 i n r ) 1 e~lKTPi ( ^ - ^ )  iF i  N  +  1 +  — ; 2 1 +  2 ; 2 i« r  ) ,

( ) .  \  7*AC /  \  flpit ft /(2/)!(=o v '
(6.14)

where =  eh? /  (nic-yC2) is the exciton Bohr radius, and k and r  mean |/c| and | r | . 1 The Pi

are Legendre polynom ials, i + i  is a confluent hypergeometric function, and T is the Gamma 

function.

Such a two-band model o f W annier excitons is useful for the description o f many optica l 

properties. However, near the band gap at the T po in t o f a typ ica l zinc-blende semiconductor 

there are, counting spin, eight bands (Fig. 2.1): two each o f conduction (c), heavy hole (hh), 

ligh t hole (Ih) and sp lit-o ff hole (so). O ther bands, especially the next-higher conduction bands 

(Fig. 3.1), can also be im portan t for some processes, especially for popu la tion  and spin control.

The existence o f m u ltip le  bands and band degeneracy modifies the exciton H am ilton ian, 

i.e., the operator acting on V’cu(r) in  the le ft side o f (6.13). In  the effective-mass approxim ation, 

using a basis o f T -po in t states, the k ine tic  p a rt o f the W annier exciton H am ilton ian  has a m a trix  

structure  [228, 229]. Even though th is  approxim ation neglects band warping, nonparabolicity, 

and inversion asymmetry, the H am ilton ian  lacks ana lytic eigenstates [229]. Th is is essentially 

due to  the degeneracy o f the hh  and Ih  bands at the T po int. As a result o f the difference 

between rrihh and there is “ envelope-hole coupling,” [230] which is a sp in-orb it-like  coupling 

between the o rb ita l angular m om entum  o f the exciton envelope function  and the to ta l angular 

momentum o f the valence band T -po in t B loch functions [140]. Baldereschi and L ip a ri sp lit 

the effective-mass H am ilton ian  in to  a sum o f terms based on symmetry, and showed th a t in  a 

spherical approxim ation the envelope-hole coupling could be treated as a pe rtu rba tion  to  the 

diagonal pa rt, which has analytic, hydrogenic eigenstates [177, 178]. In  order to  extract the 

m ain physics, while preserving the s im p lic ity  o f the two-band model, I  neglect envelope-hole 

coupling entirely. In  th is  approxim ation, (6.13) remains va lid  for each conduction-valence band 

pair, however one must use “ average” effective masses for degenerate bands. Specifically, the 

effective mass o f the valence bands hh, Ih, and so is m j 7 1 ^, where m  is the free-electron mass, 

and 7 i l  is one o f the L u ttin g e r parameters [178], The upper conduction bands have a different 

average effective mass. Note th a t 'ip1//,( r )  is independent o f c and v w ith in  the set o f bands 

{c, hh , lh ,  so}. The effect o f envelope-hole coupling has been studied for bound-exciton states 

[177, 178, 186], bu t not fo r op tica l processes invo lv ing unbound excitons in  the continuum.

Even w ith in  th is  model, the presence o f m u ltip le  bands provides two types o f terms in

1This follows from  the relation between ionization and scattering states, and the scattering states given in,
e.g., Schiff [227].
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the sum over interm ediate states in  the two-photon am plitude: two-band terms, in  which the 

interm ediate and fina l states are in  the same exciton series [i.e., two states o f the form  (6 .1 1 ) 

w ith  the same c and v], and three-band terms, in  which the interm ediate and fina l states are 

in  different series. Three-band terms are im portan t for some processes bu t not for others. For 

current control, three-band terms are im portan t for cross-linearly polarized fields (see Sec. 3.3), 

and for spin-current control, they are im portan t fo r the spin current due to  colinearly polarized 

fields (see Sec. 2.4). Three-band terms are essential for popula tion and spin contro l (see Sec. 

3.4 and Sec. 3.6).

The ve locity m a trix  elements invo lv ing the state | cvk)  are

( c v k IV |0) =  \A cv (k ) ] * ( k ) , (6.15)
k

(c v k | v  |cV k ' )  =  ^  [A*v (k )]* A $ v, (k ) [v ^  (k ) 5vy  -  v v<v (k ) 6C,C,] , (6.16)
k

where v nm (k ) =  (n, k| v  |m ,k )  is the ve locity m a trix  element between B loch states.

6 .4  T ra n s itio n  am p litu d es

The trans ition  am plitudes in  the independent-particle approxim ation are presented in  (2.3) and 

(2.3). Here, I  rename them  and and use k instead o f k  in  preparation for a

comparison w ith  the trans ition  am plitudes w ith  excitonic effects included. Thus,

° ^ ree) =  ' Vot (k )  - (6-17) 

and f ^ ree) =  £ c,y  where

,-,(2-free) _  (  e {Eu; ’ [vcc' ( K ) $ v ,v '  ~  ĉ,c'vv ' v  (K)] } (Ê  ■ Vc'„' (k))
cc/v v ' n = { j - )  E dv, { K ) / h - U  ' ’

W ith  excitonic effects included, using the pe rtu rba tion  H\nt (t)  to  second order gives the 

trans ition  amplitudes

=  ^ ; e 2^  • (CVKIv  l°) - (6-19)

and
o(2) - (  e  V  (Eq, • (cvk| V Ic ' v ' k ' ) )  (Ê  • ( c ' v ' k ' \  v  |0))

CVK \ h w )  ^  E dv. { K ' ) / h - u )  ’ ( ]
c’ v ' k ’

where the sum over in term ediate states is over bo th  bound and free excitons. The two-photon 

trans ition  am plitude is more d ifficu lt to  deal w ith  due to  the sum over interm ediate states; 

however, in  the set o f approxim ations described in  Sec. 6.3, i t  has been done exactly [174, 176, 

184],
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In  order to  proceed analytica lly, i t  is common to  use (6.15) and (6.16), and then make an 

expansion in  k o f the ve locity m a trix  elements v nm (k) about the T po in t [104, 174, 176, 183, 

184, 212]. However, due to  the degeneracy at the T po in t, the coefficients o f such an expansion 

can depend on the d irection  o f k [120]. To proceed, I  note tha t W annier excitons have large 

spatia l extent and hence only a small region o f wave vectors is im portan t for them, i.e., (k)
is peaked in  the region o f k near k  [224]. Th is is especially true for fina l states w ith  energies 

above the band gap. Thus, I  expand v nm (k) about the T po int, approached in  the d irection  k ,

v n m  (k) = v h m  («) + k ' Vk<m(«0 + • • • , (6.21)

where vlnm (k )  =  l im ^ o  (n, T| v  1?+ Ak.) and V k.vlnm (k )  =  l im ^ o  ^ k ( +  P| v  Ak).

O ptica l transitions due to  the firs t te rm  in  (6.21) are called “allowed” , while those due to  

the second term  are called “ forbidden” . In  th is  thesis, I  do not consider m ateria ls for which 

the allowed valence to  conduction band trans ition  vanishes. Keeping on ly the allowed te rm  in

(6.15),[212]

( c v k \  v  |0) =  wcv (k )  [V£,(r =  0)]*. (6.22)

For the intravalence and in traconduction  band transitions, the firs t two terms o f (6.21) in  (6.16) 

give [184]

/ cftv t
~jz [V& (r )]*V & /(r )

r f r  . (623)-  [<».»' VkUrf (ft) -  i„ .v kt>;,„ (ft)]> j  -JJ [VS. (r)]’ W?«/(r).

In  pa rticu la r [184, 231],

( c v k I v  |ci>k) = V  [A*v (k)]* A*v (k) — k =  - i —  [  ^  [ ^ ( r ) ] *  V r ^ ( r )  =  h K /m cv.
Tflcv Nlcv J

(6.24)

For Ge and for simple models o f zinc-blende semiconductors th a t neglect lack o f inversion 

symmetry, the firs t te rm  in  (6.23) always vanishes. Th is means th a t there are on ly allowed- 

forbidden two-photon transitions (the interband trans ition  is allowed, while  the in traband tra n 

s ition  is fo rb idden). W hen the firs t te rm  is nonvanishing, there are allowed-allowed two-photon 

trans itions .2

I  w rite  =  Qc v k +  Qcvk"a\  and discuss the allowed-forbidden and allowed-allowed

transitions separately.

2 I n  p r i n c i p l e ,  f o r  n o n c e n t r o s y m m e t r i c  m a t e r i a l s ,  t h e r e  i s  a l s o  a  s m a l l  c o n t r i b u t i o n  t o  t h e  a l l o w e d - f o r b i d d e n  

t w o - p h o t o n  t r a n s i t i o n  f r o m  t h e  f i r s t  t e r m  i n  ( 6 . 2 3 )  a n d  t h e  t e r m  i n  { c v k  \ v  | 0 )  t h a t  c o m e s  f r o m  t h e  s e c o n d  t e r m  i n  

( 6 . 2 1 ) ;  I  n e g l e c t  i t  i n  w h a t  f o l l o w s ,  b u t  n o t e  t h a t  w h e n  c o m p a r e d  t o  t h e  d o m i n a n t  a l l o w e d - f o r b i d d e n  c o n t r i b u t i o n  

t h a t  i s  c o n s i d e r e d  h e r e ,  i t  h a s  a  d i f f e r e n t  C o u l o m b  e n h a n c e m e n t  b u t  t h e  s a m e  i n t r i n s i c  p h a s e  ( s e e  E q .  2 . 3 2  o f  

R u s t a g i  et al. [ 1 8 4 ] ) .
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Using (6.14), (6.22), and (6.19), the one-photon trans ition  am plitude is [212]

n & L  =  ^ ™ ee) exp ( - ? — )  T ( l  -  — )  , (6.25)
J Y QqvK J

( 1 fj"gp \ A
where only the allowed te rm  is kept in  Hcvk ■ The trans ition  is to  an s wave. The one-photon

absorption coefficient is p roportiona l to  the norm  o f [see Chapter 2] [212],

For allowed-forbidden two-photon transitions, substitu ting  (6.22) and the second term  of

(6.23) in to  (6.20),

s2 

u i 2 h  ■
0 - 4 T E  [E "  ■ («)] K  [ < v 'V kvic, (k )  -  5c,c' V kvlv,v (&)] • M cc,vv> (k )  , (6.26)

c'v'

where

M ccW  (k ) =  - i J  d \  (r) ]*  V G cV (r , 0 ; hu> -  E 9c,v,) , (6.27)

and the Coulomb Green function,

G (r r '- n )  -  —  V  ^ , ( r )  [ ^ ( r Q ] *  
(*CV l 3 2 ^  Ecu{ k ) - E 9v - 0 '

is known ana ly tica lly  [176], In  particu la r,

77? (  2r
a „ ( r ,  0; * , - * * , )  =  (1 -  7„ )  ( —  I , (6.28)

where I  define

7cv =  A/ E 9CV -  h u '

B cv =  h2/  (2m c1,a2 ;) is the exciton b ind ing  energy, and W 7 ii / 2 (+) is a W h itta ke r function  w ith  

the integral representation

Since the Green function  depends only on the m agnitude o f r , only the p wave o f the fina l state

survives the integral in  Eq. (6.27) over the angles o f r , f  dO.Pi ( f  • k )  r  =  47t k / 3 . The integral

over r  can be done using [176]

/ oo r)a~a
r a - l e~Pri F 1 (a; CT; ^ r ) =  T (ct) _  (6.30)

The fina l result is

it nitC’ V

3Note th a t act, in  this chapter is the exciton Bohr radius defined after (6.14). I t  is unrelated to  the deform ation  
potential acv in  C hapter 5.
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where only the allowed-forbidden term  is kept in  and

N c c 'v l (K) =  (X +  2 [
Jo

/  \  / f r

1 S ( I + f  ) ^  exP arctan (ac'v>Kjc>v’S)
dS. (6.32)

( 1 +  «cV k 2 % v 5 2 ) 2

For allowed-allowed two-photon transitions, substitu ting  (6.22) and the firs t te rm  of (6.23) 

in to  (6 .2 0 ),

^ c 2k  a) =  ' [Sv v 'V lcc/ (k) -  5c,d V lv ,v (&)] E w • v cV (k)

x h J d i r  [V’S, (r )]* GcV (r , 0 ; hu  -  E 9dv,) .

Since Gc>v> depends only on the m agnitude o f r  [Eq. (6.28)], only the s pa rt o f the fina l state 

w ill survive the in tegra tion  over angles o f r . Again I  use (6.29) for the W h itta ke r function. The 

integral over the m agnitude o f r  can be done using an iden tity  obtained by tak ing  a derivative 

w ith  respect to  p o f bo th  sides o f (6.30). F inally,

Q(2 :a-a) _J lCVK —
7T

2  drrt,K
r i

Qrv K E ^ ( 2 - f r e e ) A r (a -a ) (  , 
cc'vv'k cc'vv' x / ’ (6.33)

where only the allowed-allowed te rm  is kept in  !1^ ,  and

N cc'vl' (K) =  i1 +  {ac'v'K lc'v>Y

/Jo
x 5  1 - 5  

/ o V a,
^c'v ' Ic 'v ' 1 _|_ 5 +  T'c'd' eX P

1 -  s
-2— arctan (acv « / yc>v'S)

1 +  ((+' d  Kqc' vf *̂ )̂
dS.

(6.34)

Th is agrees w ith  Eq. 2.28 o f Rustagi [184], bu t note th a t (k ) =  1 +  (acv k + c v ) 2 h,k  (K),

where (k ) is given, w ith  a typograph ica l error, in  Eq. 2.25 of th a t paper.

The factors and A ^ , ^ , ,  which appear in  (6.32) and (6.34) are the enhancements due

to  the Coulomb in teraction  in  the interm ediate states; they are discussed fu rthe r in  Append ix 

E.

6.5 R esults

The one- and two-photon trans ition  am plitudes were presented in  the preceding section on the 

basis of an expansion in  k of the B loch-state velocity m a trix  elements. The allowed one-photon 

trans ition  am plitude is in  (6.25), the allowed-forbidden two-photon trans ition  am plitude 

is in  (6.31), and the allowed-allowed two-photon trans ition  am plitude is in  (6.33). From  them, 

D ^k , and Dctk, can be extracted by comparison w ith  the defin itions in  (6.2) and (6.3).
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6 .5 .1  C u rr e n t in je c t io n

The “ 1+2” current in jection  is dom inated by interference o f allowed one-photon transitions and 

allowed-forbidden two-photon transitions, as shown in  Sec. 3.3. S ubstitu tion  o f these in to  (6.7), 

and application o f the identities T (x  +  1) =  xT  (x) and

7T X
T (1 — ix )  T (1 +  i x )  =  :— r, (6.35)

smh (nx)

yields the fina l result for the current-in jection  tensor

= E  f 1 + - ^ z )  E E  Nivv ' ^  ^ccW  - (6-36)
c v  n Kcv

where

and

1 2 h u i E c v  /c , 0  ̂
kCv =  — \  ^ ----------, (6.37)

O^cv V &CV

x ( t t /x )  exp (7r/x) 27T . . _ _ i

= < * >  S  s i n h ( V * )  =  ¥  11 -  “ P  ( - 2 , r / l ) l ' ( 6 '3 8 )

i j k l    2 7 T e  x  ^  *  •»' /  \  /  ^ ( 2 - f r e e W \

■ iccW  -  L 3 E A -  («) (Dccwi*)'  (^ -ee)) 5 -  E °> ^  W ’ (6‘39)
w ith  A c„ (k ) =  (vcc (k ) — v vv (k)) =  h K /m cv and

/ n (2 - f re e )y fe _  / _ ^ \ 2 {  { ^ c d  ( * )  <W  ~  <5c,c'v v 'v  («0) > v c V  ( k ) } 3*
V c&w 'k)  \ hw) E dv, { K ) / h - L J  ’ 1

where { v i ,V 2 }*J =  (vi v 2 +  wi v2 ) / 2  anc^

( ^ K ee))  =  i Z j ~ VCV (K ) ■ (6-41)

Note tha t on ly the allowed pa rt o f (6.41) and the allowed-forbidden pa rt o f (6.40) should be 

retained for a consistent solution. I  have w ritte n  (6.36) to  separate the parts due to  the electron- 

hole in teraction. In  the independent-particle approxim ation, the current-in jection  tensor v f jk{Tee) 

is [3]

«fgL> - E <«•«)
c,c' ,V ,v'

i t  is e v a lu a te d  fo r p a ra b o lic  b an ds in  Sec. 2.3.3.

For GaAs, I  present in  Fig. 6.1 the m agnitude o f t]xxxx, based on r]xx,xx, calculated by two 

methods. The firs t m ethod uses the isotropic, parabolic Kane model and includes only two- 

band terms (see Sec. 2.3.3). Since the Coulomb corrections to  r ) ^  in  (6.36) do not depend

on the spin index, the sum over spin indices from  (6.36) can be included in  i t  is then

stra ightfo rw ard to  extract V^'vv' f r ° m  Sec. 2.3.3. I  use effective-mass ratios for conduction,
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> 20

2 0 0  3 0 0  4 0 0

E x c e s s  p h o t o n  e n e r g y  2hio —  E g ( m e V )

100 5 0 0

E x c e s s

Figure 6.1: M agnitude o f the diagonal element o f the current-in jection tensor for GaAs w ith  

[Eq. (6.36)] and w ithou t [Eq. (6.42)] excitonic effects. The grey dotted and dashed-dotted lines 

are based on a parabolic-band calculation o f rjxx,xx, th a t only includes two-band terms; the 

dotted  line includes excitonic effects, while the dashed-dotted line does not. The black solid 

and dashed lines are based on calculated w ith  a nonperturbative solution o f the 8 x 8

k  • p  H am ilton ian; the solid line includes excitonic effects, while the dashed line does not.

heavy-hole, light-hole, and sp lit-o ff bands o f 0.067, 0.51, 0.082, and 0.154, respectively, E p  =  

27.86 eV, the fundam ental band gap E g is 1.519 eV, and valence-band sp in -o rb it sp littin g  is 

0.341 eV [124, 232]. These parameters are consistent w ith  those listed in  Table 3.1. The second 

method solves the 8  x  8  k  ■ p  H am ilton ian, includ ing remote-band effects, bu t in  a spherical 

approxim ation w ith  warping and sp in -sp litting  neglected by replacing 7 2  and 7 3  w ith  7  =  

(2 7 2  +  3 7 3 ) /5  [140] ( “ H 8Sph” in  the no ta tion  o f Sec. 3.2.5); the calculation is nonperturbative 

in  k  (hence i t  includes band nonparabo lic ity), and i t  includes bo th  two- and three-band terms 

in  the two-photon am plitude. The solid and dotted  lines in  Fig. 6.1 are calculated w ith  (6.36), 

and hence include excitonic effects; the Coulomb enhancement pa rt o f the calculation uses 

B cv — 4.2 m eV [233] and the band parameters listed above. Note th a t the solid black line in  

Fig. 6.1 is inconsistent in  the sense th a t the Coulomb enhancement is based on an expansion in  

k , whereas the free-particle result th a t i t  enhances is nonpertu rbative in  k ; nevertheless, such 

an approach has given good agreement w ith  experiments for one- and two-photon absorption 

[234, 235].

The Coulomb enhancement o f r)xf xx can be clearly seen in  Fig. 6.1. There is a k in k  in  

each curve at excess photon energy 341 meV corresponding to  the onset o f transitions from  

the so band. A t higher energies, the Coulomb enhancement o f so transitions is larger than  the 

Coulomb enhancements o f hh  and Ih  transitions, since the form er transitions are to  Conduction-
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(2Hu -  Eg) /B<
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Excess photon energy 2Hu — E g (m eV )

Figure 6.2: Phase sh ift o f the current (in trins ic  phase o f rjxxxx) in  GaAs due to  excitonic effects. 

The solid line is calculated w ith  Eqs. (6.5) and (6.36), and the dotted line is calculated w ith  

Eq. (6.43). The inset is Eq. (6.43) p lo tted  in  scaled units.

band states w ith  lower energy. Hence, the k in k  in  r/(/) is enhanced by excitonic effects.

I  extract the in trins ic  phase o f rjxxxx using (6.5). The solid line in  Fig. 6.2 is the in trins ic  

phase o f rjxxxx calculated for GaAs w ith  the nonpertu rbative  8  x  8  k  • p  H am ilton ian; the result 

fo r the parabolic-band model is nearly identical. Since I  have used a spherical exciton model, 

the in trins ic  phase is the same for a ll components o f r f f f . The in trins ic  phase has its  m axim um  

value of 7t / 2  at the band edge, and goes to  zero as the ligh t frequency increases. The decrease is 

smooth except for a small k in k  at the onset o f transitions from  the so band. In  fact, for excess 

photon energies less than  the sp lit-o ff energy, the in trins ic  phase has the simple analytic form

arctan . (6.43)

Equation (6.43) is p lo tted  as the dotted line in  Fig. 6.2; compared to  the solid line, i t  is identical 

below the onset o f so transitions, and i t  makes a good approxim ation above the the onset o f 

so transitions. Since (6.43) on ly depends on the excess photon energy scaled by the exciton 

b ind ing energy, I  p lo t i t  as a function  o f th is  scaled energy in  the inset o f Fig. 6.2; i t  is useful 

for find ing the in trins ic  phase o f m aterials other than  GaAs.

In  [Eq. (6.36)], the two- and three-band terms have different interm ediate-state Coulomb 

enhancement For many materials, however, N ^ i^ v, is approxim ate ly equal fo r a ll the

terms rfjĉ v, th a t contribu te  s ign ificantly  to  the to ta l rf(jkfveey  as shown in  Append ix E for GaAs. 

Thus, at photon energies for which transitions from  the heavy- and light-ho le bands dominate
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Figure 6.3: Approxim ate Coulomb-enhancement factors. The solid line, applicable to  current 

and spin-current contro l, is [Eq. (6.45)] w ith  Ncalv =  1, and the dotted line, applicable to 

carrier popu la tion  and spin control, is [Eq. (6.50)] w ith  Nc%$ =  1.

77( / j , the Coulomb enhancement becomes approxim ate ly independent o f the sum over bands and 

one can make the s im plifica tion

r f jk i  _  p (i) exp ^  

where the in trins ic  phase is given by (6.43), and

(6.44)

'a - f  ( ^ )  — (.Q cvK cv) \ J  1 +  i f l c v ^ c v )  ATccvv i ^ c v )  > (6.45)

The Coulomb-enhancement factor (u>) is p lo tted  in  Fig. 6.3 w ith  the approxim ation tha t 

NcafJ =  1 (see Append ix E).

6 .5 .2  C a rr ier  p o p u la t io n  c o n tr o l

The “ 1+2” carrier popu la tion  contro l is dom inated by interference o f allowed one-photon tran 

sitions and allowed-allowed two-photon transitions (see Chapter 3) [37, 75]. S ubstitu tion  o f 

these into (6.10), and application o f the Gamma function  iden tity  (6.35) yields

£ ( / )  ~  E  “  ( a c v K c v )  E  ^ c c 'v v '  ( K c v )  Z c i 'v v ” (6.46)

where
pijk   2 ire
’ c c 'v v 1 3 E ( D c f v v i * y k 8 [2 w -  («) /h ] , (6.47)

and anfl D „ 1;I reê  are given by (6.40) and (6.41). Note th a t on ly the allowed pa rt o f

(6.41) and the allowed-allowed part o f (6.40) should be retained for a consistent solution. In  

the independent-particle approxim ation,

M j k  _  \  '  c i j k  (̂7-free) /  y -<cc’ v v ’ ’ (6.48)
c 'v '
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Thus, popula tion contro l has a Coulomb enhancement due to  excitonic effects, bu t no phase 

shift.

Note th a t (6.46) gives the popu la tion-contro l tensor at fina l energies above the band edge. 

There can also be popu la tion  contro l o f bound excitons when bo th  one- and two-photon tran 

sitions are to  the same excitonic state. Th is can occur, for example, at s excitons due to  

allowed-allowed two-photon transitions [185] in terfering  w ith  allowed one-photon transitions.

I f  (kcv) is approxim ate ly the same for a ll the terms th a t s ign ificantly contribute

t °  £(/)> then, at photon energies for which transitions from  the heavy and ligh t hole bands 

dom inate £(/), the Coulomb enhancement becomes approxim ate ly independent o f the sum over 

bands, and one can make the sim plification,

$ )  =  (6.49)

where

M  ee S (acvncv) N <£$ (kcv) . (6.50)

The Coulomb enhancement factor F ^-i (w) is p lo tted  in  Fig. 6.3 w ith  the approxim ation tha t 

Nccw =  1 (see Append ix E).

6 .5 .3  S p in -c u r r e n t  in je c t io n  a n d  s p in  c o n tr o l

The “ 1+2” spin-current in jection  is dom inated by interference o f allowed one-photon transitions 

and allowed-forbidden two-photon transitions, whereas “ 1 + 2 ” spin contro l is dom inated by 

interference o f allowed one-photon transitions and allowed-allowed two-photon transitions (see 

Chapter 3). Under the approxim ations th a t led to  (6.44) and (6.49), the spin-current in jection  

pseudotensor is

where is given by (6.45), 5 is given by (6.43), and //( /_free) is the spin-current in jection  

pseudotensor in  the independent-particle approxim ation. Under s im ila r approxim ations, the 

spin-control pseudotensor is

e g ) '=  ^ 2 ^ ) .  (6 -52)

where F ^-l is given by (6.50), and C(J-free) is th e spin-contro l pseudotensor in  the independent-

partic le  approxim ation. Spin contro l, like carrier popu la tion  control, has a Coulomb enhance

ment bu t no phase shift. There can also be spin contro l o f bound excitons, bu t i t  has not been 

included in  (6.52).
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6.6  Discussion

We now examine the re lationship between the Coulomb enhancements o f the “ 1+2” processes 

and o f one- and two-photon absorption; the la tte r are denoted by F ^  and so th a t for 

i  £ {1 ,2 } , =  n ^eeF ^ \  The re lationship is pa rticu la rly  simple at photon energies for

which transitions from  the heavy- and light-hole bands are dom inant and interm ediate-state 

Coulomb enhancement is the same for each significant te rm  in  the sum over interm ediate states. 

The Coulomb enhancements for the “ 1+2” processes are then given by (6.45) and (6.50). For 

one-photon absorption, =  E (acvKcv) [212]. In  noncentrosymmetric semiconductors, two- 

photon absorption is dom inated by allowed-allowed transitions jus t above the band gap, and by 

allowed-forbidden transitions at higher fina l energies; the crossover po in t in  GaAs is a few meV 

above the band gap [172]. A t photon energies for which allowed-allowed transitions dominate 

two-photon absorption, from  (6.33),

F &  =  E (acvncv) [ N ^  ( « « , ) ] 2 , (6.53)

and thus
zp(F — a / c’ ii'i it’12') i, ^

where C  =

F W  =  y /F W F W  and F $  =  C \ / F ^ F ^ , (6.54)

Nccvv (Keu) /Ncaw  (kcv) \J  1 +  (aCvKcv)~ 2, while at photon energies for which

allowed-forbidden transitions dom inate two-photon absorption, from  (6.31),

F (2) =  E (a^Kov) ( l  +  ( a ^ A ^ ) -2 )  (k c t) )  , (6.55)

and thus

F jV  =  (1 /C )  y /F W F W  and F $  =  V f ^ F W .  (6.56)

Note tha t, based on Append ix E, C  «  +  B „ , j  (21iuj — E g), which is the ra tio  o f the two

curves in  Fig. 6.3. In  centrosym m etric semiconductors, there are no allowed-allowed transitions, 

and only (6.56) applies.

The “ 1+2” processes are often described by ratios. For example, a useful q uan tity  to  

describe the current is the swarm velocity [6 8 , 236], defined as the average ve locity per injected 

electron-hole pa ir
(dJ /d t)

"swarm —
e (d n /d t ) '

The swarm velocity is a m axim um  when the re lative intensities o f the two colours are chosen such 

th a t N2ui — A+; re tu rn ing  to  (6 .1 ), i f  one associates the one- and two-photon amplitudes w ith  the 

arms of an effective interferom eter, th is  condition corresponds to  balancing th a t interferom eter. 

For fields colinearly polarized along x , the m axim um  swarm speed is

1
m IX X
»?(/)

6  f c x x  c x x x x
(6.57)
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A  useful quan tity  to  describe pure spin currents is the m axim um  spin-separation distance [42]; 

i t  is p roportiona l to  ^ ( /) /- \ /£ (  1)^(2)- As a consequence o f (6.56), the m axim um  swarm speed, 

and the m axim um  spin-separation distance, are unaffected by excitonic effects when allowed- 

forbidden transitions dom inate two-photon absorption .4 However, close to  the band edge, where 

allowed-allowed transitions dom inate two-photon absorption, excitonic effects increase these 

ratios by a factor C  over the ir value in  the independent-particle approxim ation. In  contrast, as 

a consequence o f (6.56), excitonic effects do not affect the m axim um  contro l ra tio  for popu la tion  

and spin contro l (£ ( / ) / \/£ ( i)£ (2) and C (/)/\/£ (i)£ (2) respectively [36, 6 6 , 75]) close to  the band 

edge and decrease them  by a factor C  at higher photon energies for which allowed-forbidden 

transitions dom inate two-photon absorption.

In  the term inology o f Seideman [203], the excitonic phase sh ift o f the “ 1+2” current and 

spin current is a d irect phase sh ift. Th is phase sh ift is due to  the complex nature o f the fina l 

state as i t  appears in  the trans ition  amplitudes. Thus i t  can be understood in  terms o f the 

partial-wave phase shifts o f the fina l state caused by the Coulomb po ten tia l between electron 

and hole. The Coulomb in teraction  is ra ther unique due to  its  long-range nature, so we firs t 

suppose th a t the po ten tia l between the electron and hole falls o ff more rap id ly  than  1 /r . In  

th a t simpler problem, the final-state wave function  is w ritte n  as

fc ( r )  =  f v e-« .W  (21 +  1) ( m i ) ,
r  V t k  /

/=o

where the (r)  are real [226]. I f  the po ten tia l between the particles is ignored, then the 

partia l-wave phase shifts, Si (k ) are zero. The allowed one-photon pathway reaches an s 

wave, while the allowed-forbidden two-photon pathway reaches a p wave. S ubstitu ting  th is 

fo rm  for the wave function  in to  the one- and two-photon trans ition  amplitudes yields =  

r e free) ^ ° W io  (K) for the one-photon rate, where fo  (k) is real and depends on 'uK)o (r ), and 

^ ( 2 .a-[) _  Q ^-(ree)eibi(n) (K/j for )-}le two-photon rate, where / i  (k) is real and depends on 

u k q ( r )  and uK)\ (r ). Here f l ^ ’ free* is the i-pho ton  trans ition  am plitude when the po ten tia l be

tween the particles is ignored. I t  is then stra ightforw ard  to  see from  (6.7) th a t the re lative shift 

o f the pa rtia l waves is responsible for the phase sh ift o f the current and spin current. T h a t is,

S =  (50 -  Si. (6.58)

The use o f ionization states as opposed to  scattering states was im portan t to  get the correct 

sign o f the in trins ic  phase. W ith  scattering states, one would find  S — Si — Sq. In  contrast, 

the allowed-allowed two-photon pathway reaches an s wave and thus there is no phase sh ift for 

popu la tion  contro l or spin control.

4A t higher excitation densities, the Coulomb interaction can m odify the m axim um  spin-separation distance 
through the m om entum  relaxation  tim e.
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Due to  the long-range nature o f the Coulomb potentia l, the partia l-wave phase shifts have a 

logarithm ic r  dependent pa rt, b u t i t  is the same for a ll pa rtia l waves and thus does not appear 

in  the relative phase. The p a rt o f the Coulomb partial-wave phase sh ift Si (k ) th a t does not 

depend on r  is arg ( r  [Z +  1 +  i / ( a cvn ) \ \  [226, 231]; when inserted in to  (6.58), th is  reproduces 

(6.43).

The expression (6.58) for the in trins ic  phase in  terms o f the scattering phases is pa rticu la rly  

simple, since each pathway connects to  on ly a single parity. Th is contrasts w ith  “ 1+2” ionization 

from  an atom ic s state, for which the one-photon trans ition  is to a p  wave and the two-photon 

trans ition  is to  bo th  s and d waves; the in trins ic  phase is thus a weighting o f the p-s and p-d 

partial-wave shifts [205]. M ateria ls for which the firs t te rm  in  (6.21) is forbidden (CU2 O is an 

example) have these same selection rules [176, 184, 212]; hence, they w ill have an in trins ic  phase 

w ith  a s im ila r weighting.

The absence o f a phase sh ift in  popu la tion  contro l can be connected to  a sym m etry o f 

the second-order nonlinear optica l susceptibility. From considerations o f energy transfer and 

macroscopic electrodynamics, £(/) is related to  the nonlinear susceptib ility  x ^  by

=  (ie0/h )  [ x & kv  (2oj; -u>, - u )  -  X (2Wfei ( - +  2a;, -u ,) ]  . (6.59)

In  the independent-particle approxim ation [101],

X
(2 )ijk (2 o>; — u), — lu) =  x^2^ lk {—<+ 2 a;, — a;) , (6.60)

which is a generalization o f overall perm uta tion  sym m etry to  resonant absorption. As a result 

o f (6.60), Fraser et al. showed th a t £(/) is p roportiona l to  I in y 1̂ , and is thus pure ly real [36]. 

The find ing th a t £(/) remains real when excitonic effects are included suggests th a t (6.60) holds 

more generally. In  fact, i t  can be shown th a t (6.60) holds for any H am ilton ian  sym m etric under 

time-reversal so long as tu j  is not resonant.

6.7  S u m m a ry  and  O u tlo o k

This chapter extended the theory o f in terband “ 1+2” processes in  bu lk  semiconductors to  

include the electron-hole in teraction. Follow ing previous theories [3, 33, 36], includ ing those 

in  Chapters 2 and 3, I  have used a framework based on (i) a separation o f the in it ia l carrier 

photo in jection and the subsequent carrier scattering, and ( ii)  a pe rtu rba tive  expansion in  the 

optica l-fie ld  am plitudes, w ith  in jection  rates obtained in  a FG R  lim it  for the b ichrom atic field. 

The in jection  rates for carrier popu la tion  control, spin control, current in jection, and spin- 

current in jection, have been described phenomenologically by tensors £(/), Q /p  P(j), and /+ /), 

respectively (see Sec. 2.2). L ike previous theories, I  have used the long-wavelength lim it,  and
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neglected nonlocal corrections to  the in teraction H am ilton ian. B u t whereas previous theories of 

“ 1+2” photo in jection  used the independent-particle approxim ation, I  have included excitonic 

effects. I  have shown th a t excitonic effects cause (i) an enhancement o f each “ 1+2” process, 

and (ii) a phase sh ift for current in jection  and spin-current in jection. The m ain results, the 

m odifications o f the aforementioned tensors re lative to  the independent-particle approxim ation 

are given in  (6.44), (6.49), (6.51), and (6.52). These pa rticu la rly  simple results are va lid  at 

photon energies for which transitions from  the heavy- and light-hole bands are dom inant; more 

general results are given for rj^  and in  (6.36) and (6.46).

The results are based on the effective-mass model o f W annier excitons; degenerate bands are 

included, bu t I  use a spherical approxim ation to  the exciton H am ilton ian, and I  neglect envelope- 

hole coupling. Th is is a good approxim ation for many typ ica l semiconductors, inc lud ing GaAs, 

since the electron-hole envelope function  extends over many un it cells due to  the screening o f the 

Coulomb in teraction  by the sta tic  d ie lectric constant [140, 177, 178, 186, 230]. As a consequence 

o f making the spherical approxim ation, the phase shifts and Coulomb enhancements I  find  in  

th is  paper are independent o f crysta l orientation.

Also, the results are lim ited  to  low excess photon energy since (i) the W annier exciton 

H am ilton ian assumes parabolic B loch bands, and (ii) I  have truncated the expansion in  k  o f the 

Bloch-state ve locity m a trix  elements, which is the basis o f the trans ition  am plitude expansion. 

B y comparing the black dashed line and grey dashed-dotted line in  Fig. 6.1, one sees th a t 

higher order terms in  k  (for bo th  bands and velocities) are im portan t in  GaAs for excess 

photon energies greater than about 200 meV. This can be considered the lim it  o f va lid ity  of 

m y calculation. However, com bining the Coulomb enhancement calculated assuming parabolic 

bands w ith  the nonpertu rbative independent-particle approxim ation result (as was done for the 

solid black line in  Fig. 6.1) like ly  gives a good approxim ation for a few hundred more meV; th is 

was the case for one- and two-photon absorption [234, 235].
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Conclusion

Spin is a fundam ental p roperty  o f the electron. Understanding the contro l and transport of 

electron spins in  semiconductors is im portan t from  a fundam ental po in t o f view, bu t also for the 

development o f new technologies. In  solid state systems, electron spin can be controlled by ligh t 

on ly ind irectly, th rough the re la tiv is tic  effect o f sp in-orb it coupling. In terband transitions in  

bu lk  semiconductors are the most fundam ental optica l transitions in  semiconductor physics. In  

th is  thesis, I  have shown (Chapter 5) th a t one-photon absorption o f linearly  polarized lig h t—  

the simplest in terband optica l trans ition— can generate a spin current in  bu lk  GaAs, one o f 

the most well-studied semiconductors. Th is fact had not been previously known, despite the 

fact tha t such transitions have been studied for many years. I  have also expanded the po ten tia l 

to o lk it for optica l m anipu la tion  o f spin and spin currents by making the firs t study o f the spin of 

carrier d is tribu tions  excited by “ 1+2” excita tion  (Chapters 2, 3, and 6 ). The “ 1+2” excita tion  

is a low-order nonlinear process w ith  a two-colour optica l field, which has been studied in  recent 

years in  many physical systems includ ing atoms, molecules, semiconductors, and semiconductor 

heterostructures. I t  is the simplest optica l exc ita tion  th a t can display contro l over a physical 

process w ith  the phases o f the optica l fields. As such i t  is inherently interesting, bu t i t  is also 

im portan t as a means for measuring the carrier-envelope phase o f an u ltrashort op tica l pulse. 

For applications such as th is, the detailed microscopic investigations o f “ 1+2” excita tion  I  have 

presented in  th is  thesis are essential.

O ptica l exc ita tion  o f carriers has several advantages over other methods o f m anipu la ting  

carriers in  semiconductors: a w ide range o f carrier densities can be studied by varying the fie ld 

intensities, carrier transport can be studied in  undoped samples (and ba llis tic  transport can be 

studied in  unbiased samples), and a wide range o f nonequilibrium  carrier d is tribu tions  can be 

generated by optica l fields. Th is thesis has shown, in  particu la r, th a t op tica l fields can excite 

carrier d is tribu tions th a t have a pure spin current. Th is led to the firs t observation o f a pure 

spin current in  a semiconductor. Pure spin currents are o f fundamental interest, and many
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methods for generating them  have been proposed and studied in  recent years.

In  studying the spin properties o f photoexcited carrier d istribu tions, I  have also studied 

the carrier popula tion, and the net current. A  knowledge o f a ll four properties— number of 

carriers, net spin, net current, and net spin current— gives one sufficient in fo rm ation  about the 

carrier d is trib u tio n  to  calculate, for instance, how a subsequent probe pulse w ill in teract w ith  

the materia l, or how the carriers w ill radiate as these quantities change rap id ly  due to  u ltra fast 

excitation. The m ain contributions o f th is  thesis are the proposals th a t one-photon absorption 

can in ject PSCs, “ 1+2” excita tion  can in ject ba llis tic  spin currents (bo th  SPECs and PSCs), 

and “ 1 + 2 ” excita tion  can in ject an electron spin po lariza tion  th a t depends on the phase o f the 

fields. B u t I  also presented thorough studies o f each o f these effects, “ 1+2” current in jection  

and popula tion control, and tw o-photon spin in jection. M any o f the effects predicted in  th is 

thesis have now been observed experimentally.

As discussed in  Sec. 1.1, the theoretical fram ework for calculating these effects is s im ilar 

to  the framework o f the nonlinear optica l susceptibilities. T ha t section discusses many o f the 

assumptions and lim ita tions  o f the calculations in  th is  thesis.

In  Chapters 2, 3, and 6 , 1 presented studies o f “ 1+2” excita tion  w ith  three different electronic 

s tructure  calculations. In  Sec. 2.2, I  analyzed the sym m etry o f each “ 1+2” effect, especially for 

m aterials w ith  cubic symmetry. Since the results o f Sec. 2.2 re ly on ly on the sym m etry o f the 

crystal, they apply to  a ll three chapters, and quite generally. In  the rest o f Chapter 2, I  used 

the isotropic eight-band Kane model in  the parabolic band approxim ation (P B A ) to  evaluate 

the current, and spin-current injections. The m ain results are (2.47), (2.49), (2.52), and (2.53). 

Parabolic band approxim ations o f “ 1+2” spin contro l and popu la tion  contro l are calculated 

using fourteen-bands in  Appendix C. The m ain results are (C.3) and (C.12). Together, Chapter 

2 and Appendix C establish th a t, close to  the band edge, “ 1+2” current in jection  and spin- 

current in jection  result from  the interference o f allowed one-photon transitions and allowed- 

forbidden two-photon transitions, w hile “ 1 + 2 ” popu la tion  contro l and spin contro l result from  

the interference o f allowed one-photon transitions and allowed-allowed two-photon transitions. 

Th is conclusion is validated by agreement w ith  the results o f Chapter 3 at low excess photon 

energy.

Using an electrode detection technique, Stevens et al. observed the current due to  “ 1+2” 

excita tion  w ith  co-circularly polarized fields, found agreement w ith  the predictions in  Chapter 

2, and hence inferred th a t the current was spin-polarized (Case 1 in  Sec. 2.4) [71], The “ 1+2” 

transverse PSC w ith  orthogonally polarized fields (Case 2 in  Sec. 2.4) has been observed using 

spatially-resolved pum p-probe techniques [41], spatially-resolved photoluminescence techniques 

[42], and optica l g ra ting  techniques [74],

In  Chapter 3, I  evaluated the “ 1+2” effects w ith  a nonpertu rbative numerical solution
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to  the fourteen-band k  ■ p  H am ilton ian. W ith  th is  calculation, which is more accurate than 

the calculation in  Chapter 2, I  examined the relative importance o f each possible in it ia l and 

interm ediate state to  get a be tte r m icroscopic understanding o f each “ 1+2” effect. Th is explains 

the lim ita tions  o f the P B A  results o f Chapter 2 and Appendix C. I  applied the calculation to  

five semiconductors to  present a sense o f how the “ 1 + 2 ” effects can vary from  m ateria l to  

m ateria l. The m ain results o f th is  chapter are Figures 3.2-3.14.

More recent experiments measure the “ 1+2” long itud ina l PSCs, and are thus sensitive to 

HN2 and which each changed sign between the calculations o f Chapter 2 and 3; p re lim inary  

results confirm  the signs o f /xtv2 and h n 3 calculated w ith  the more accurate fourteen-band 

model in  Chapter 3 [83]. Recently, “ 1+2” spin contro l has been observed using pum p-probe 

techniques on (111)- and ( llO )-G aA s  [6 6 , 67]. The experiment on (llO )-G aA s was complicated 

by a cascaded second-harmonic generation process and propagation effects, which are interesting 

in  the ir own righ t, bu t make a d irect comparison w ith  the results in  Chapter 3 d ifficu lt; the 

calculation in  Chapter 3 was used as an in p u t in to  a propagation calculation th a t produced 

results in  general agreement w ith  the experiment [67]. B o th  experiments used large excess 

photon energies (150 m eV and 280 meV). The experiment on ( l l l ) -G a A s ,  which was not 

complicated by propagation effects, used a 280 meV excess photon energy and observed a 

m axim um  spin-contro l ra tio  o f 2 % [6 6 ].

Small contro l ratios were also measured in  popu la tion  contro l experiments at s im ila r excess 

photon energies [36, 37, 6 6 , 67], The calculations in  Chapter 3 predict th a t much larger popula

tio n  control ratios and spin contro l ratios are possible under excita tion  closer to  the band edge. 

Based on the P B A  results in  Append ix C, one can understand th a t large contro l ra tios can be 

expected when allowed-allowed two-photon transitions dominate allowed-forbidden two-photon 

transitions. Such a s itua tion  occurs close to  the band edge w ith in  an energy range th a t is larger 

for materials w ith  larger conduction band effective mass such as ZnSe. Experim enta l confirm a

tio n  o f th is  pred iction  o f large contro l ratios could generate interest in  using popu la tion  contro l 

and spin contro l in  some technological application, perhaps for op tica l sw itching.

In  Chapter 6 , I  extended the theory o f the “ 1+2” effects to  include the electron-hole interac

tion , which is neglected in  rest o f the thesis, and earlier theories o f “ 1+2” excita tion. The main 

con tribu tion  o f Chapter 6  is the identifica tion  o f the in trins ic  phase for “ 1+2” current in jection  

an d  “ 1 + 2 ” s p in -c u rre n t in je c tio n , an d  th e  c a lc u la tio n  o f C o u lo m b  en h an cem en ts  o f  each “ 1 + 2 ” 

effect. The underly ing single-particle band structure  o f Chapter 6  is the P B A  of Chapter 2 and 

Appendix C, a lthough w ith  the added approxim ation o f equal heavy- and light-ho le effective 

masses. Th is approxim ation allowed for analytic solutions o f the excitonic H am ilton ian, which 

in  tu rn  allowed for physical insight in to  the problem. For example, I  related the in trins ic  phase 

to  the p a rtia l wave phase shifts o f the Coulomb po ten tia l between the electron and hole, and I
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related the Coulomb enhancement o f the “ 1+2” effects to  the Coulomb enhancements o f one- 

and two-photon absorption. The m ain results o f Chapter 6  are summarized in  Sec. 6.7.

I t  is in teresting to  ask i f  there are other sources o f in trins ic  phases to  the current (or spin 

current) besides the one th a t I  have identified here, as these m ight produce spectral features 

in  the in trins ic  phase. One poss ib ility  is the coupling between bound so-c excitons and the 

unbound hh-c  or Ih-c  excitons, since i t  is known th a t the in trins ic  phase can show spectral 

features near a resonance [204]. A nother poss ib ility  is the envelope-hole coupling between the 

continua o f unbound hh-c and Ih-c  excitons th a t was neglected in  my treatm ent.

Thus far, semiconductor “ 1+2” experiments have lacked the ca lib ra tion  o f the optica l phases 

necessary to  measure the in trins ic  phases predicted in  Chapter 6 , and have lacked the spectral 

resolution to  confirm  the Coulomb enhancements predicted in  Chapter 6 . The in trins ic  phase 

w ill be challenging to  observe experim enta lly since i t  is most significant in  a narrow range of 

photon energies above the band edge. B u t i t  may have consequences for the use o f “ 1+2” current 

in jection  as a measure o f the carrier-envelope phase o f an u ltrashort optica l pulse [77, 78],

The in trins ic  phase and Coulomb enhancement m ight be greater in  reduced dimensional 

systems, which have greater exciton b ind ing  energies. The carrier-carrier Coulomb in teraction  

was included in  the theory for “ 1 +  2 ” contro l o f electrons in  biased asymmetric quantum  wells, 

although the in trins ic  phase was not identified [31]. M a rti et al. recently included excitonic 

effects in  a theory for “ 1 + 2 ” non-resonant excita tion  in  a quantum  wire, bu t d id  not find  any 

non triv ia l in trins ic  phase [59]. Due et al. recently included the carrier-carrier Coulomb in te r

action in  a theory for “ 1 + 2 ” current in jection  and spin-current in jection  in  unbiased quantum  

wells [58]. They d id  not in it ia lly  study the phase dependence of the effects, bu t they have con

firm ed th a t the ir ca lculation yields a n o n tr iv ia l in trins ic  phase [237]. Since carbon nanotubes 

have strong excitonic effects [238], they would be interesting m aterials in  which to  study the in 

tr in s ic  phase. The “ 1+2” current in jection  has been studied in  carbon nanotubes and graphene 

sheets, bu t only in  the independent-particle approxim ation [239].

Since “ 1+2” popu la tion  contro l and second harmonic generation are related, the methods 

used in  th is  thesis to  calculate “ 1 + 2 ” popu la tion  contro l can be extended to  a calculation 

o f second harmonic generation. Such a task would require a K ram ers-K ronig transform ation 

on Im y -2  ̂ to  get R ey(2h and hence would require the form er to  be specified over a larger 

range o f frequency than  I  have studied here. Hutchings and A rno ld  have calculated second 

harmonic generation w ith  the fourteen-band model, a lthough they d id  not include remote band 

effects [131]. Others have used P B A  expressions for contributions from  several c ritica l points to  

obta in  Im y ®  over a wide spectral range [147, 158], Those P B A  results are s t il l used to  model 

experiments [160], and could be improved by the inclusion o f terms p roportiona l to  in terband 

sp in-orb it coupling parameterized by A - , which I  include in  Append ix C. In  InSb, such terms
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contribute as much as 37% to  I m x ^  ■ Exciton ic effects on second harmonic generation have 

recently been studied w ith  ab in i t io  methods [109], bu t i t  would be valuable to  also study them  

w ith  a simpler band model.

In  Chapter 4, I  applied the fourteen-band model o f Chapter 3 to  two-photon spin in jection, 

which had previously only been studied w ith  isotropic models. I  compared one- and two- 

photon spin in jection, and showed th a t allowed-allowed transitions, which are absent from  

isotropic calculations and are not restricted by angular m omentum conservation, pe rm it very 

high degrees o f spin polarization. The m ain results o f Chapter 4 are Fig. 4.2 and the allowed- 

allowed band edge results C.19 and C.20 in  Append ix C. The two-photon degree o f spin 

po lariza tion  has not yet been measured close to  the band edge, bu t at higher excess photon 

energies, recent experiments agree w ith  the calculation in  Chapter 4 [20].

The theoretical considerations o f angular mom entum th a t I  raised in  Chapter 4 would be 

interesting to  pursue fu rther. I  showed th a t in  a spherical model pa rt o f the photon angular 

momentum is transferred to  the carrier spins, and hypothesized th a t the rest o f i t  is transferred 

to  the o rb ita l m otion  o f the carriers. I t  would be challenging to  calculate the transferred o rb ita l 

angular m om entum  directly, since the position operator is ill-defined for an in fin ite , periodic 

crysta l [105], I t  would then be interesting to  apply th a t calculation to  a non-spherical model 

in  which to ta l angular m om entum  need not be conserved.

In  Chapter 5, I  showed th a t a pure spin current can be op tica lly  injected from  one-photon 

absorption alone. I  calculated th is  effect w ith  the fourteen-band model o f Chapter 3, and also 

w ith  add itiona l terms in  the H am ilton ian  th a t account for applied strain. I  showed th a t the 

one-photon PSC is smaller than  the “ 1+2” PSC, even when increased by stra in. In  th is  chapter, 

I  used a theoretica l approach based on the density m a trix  rather than the wave function. The 

density m a trix  approach is not essential, bu t i t  more clearly demonstrates the approxim ations 

inherent in  the calculation. The one-photon PSC has been observed experim enta lly [83]. PSCs 

due to  one-photon absorption have now been studied in  quantum  well systems [240], and would 

be interesting to  study in  other systems o f lower symmetry, which could y ie ld  even larger PSCs.

A lthough I  proposed the one-photon PSC, and calculated it  w ith  the fourteen-band model, 

I  d id  not derive an expression for i t  in  the P B A  as I  d id  fo r the other optica l effects in  the 

thesis. The spin-separation distance in  unstrained GaAs appears to  be p roportiona l to  excess 

p h o t o n  e n e r g y  c l o s e  t o  t h e  b a n d  e d g e ,  w h i c h  s u g g e s t s  t h a t  a  p e r t u r b a t i v e  a p p r o a c h  s h o u l d  b e a r  

fru it. I t  would be interesting to  see which parameters o f the model are responsible for the PSC, 

and hence find  m ateria ls th a t have larger PSCs. Since the effect relies on noncentrosymmetry, 

i t  should be possible to  a ttr ib u te  i t  to  wave function m ix ing  between upper conduction bands 

and valence bands and /o r sp in -sp litting  o f the bands. B o th  o f these are due to  the m om entum  

m a trix  element P '  and the interband sp in-orb it coupling A - .
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The form alism  to  describe the one-photon PSC can also describe the SPEC due to  the 

c ircu lar photogalvanic effect (CPGE) [116]. In  fact, the pseudotensor f i ^ 1 describes bo th  

processes: the form er for a linearly  polarized field, and the la tte r for a c ircu la rly  polarized 

field. O ther researchers have a ttr ib u te d  the one-photon SPEC to  sp in -sp litting  o f the bands 

[116, 197], whereas m y pre lim ina ry  investigations in  unstrained GaAs a ttr ib u te  the one-photon 

PSC to  wave function m ix ing  between upper conduction bands and valence bands. Even though 

these two points are not necessarily at odds— since the CPG E vanishes in  m aterials w ith  zinc- 

blende sym m etry— it  would be good to  be tte r understand the microscopic o rig in  o f bo th  effects.

Throughout th is  thesis I  have argued th a t the coherence between spin-sp lit bands w ill grow 

like the band populations in  typ ica l experiments. Consequently, I  treated spin-sp lit bands as 

quasidegenerate in  FG R  for the derivation o f m icroscopic expressions o f each optica l process. 

For excita tion w ith  long pulses, th is  requires the sp in -sp litting  to  be smaller than the energy 

associated w ith  the dephasing between spin-sp lit bands. I t  would be interesting to  study ex

perim ental situations— perhaps at higher excess photon energies, or in  heterostructures w ith  

larger spin sp littin g — where the quasidegenerate assumption breaks down.

Nonlinear optica l properties are a more stringent test o f electronic structure  calculations 

than  linear optica l properties. B y  m aking extensive comparisons between the P B A  and the 

fourteen-band model, I  have shown the lim ita tions  o f the former fo r the calculation o f these 

nonlinear properties. I t  is in teresting to  note the im portance of in terband sp in-orb it coupling 

( A - ) on effects for which allowed-allowed transitions are im portan t— “ 1+2” spin-control, “ 1+2” 

popula tion control, and band edge two-photon spin in jection. Linear optica l properties are much 

less sensitive to  the parameter A - .

In  a sense, th is  thesis completes the phenomenology o f in terband “ 1+2” excita tion  in  semi

conductors by adding spin and spin current to  the lis t o f properties th a t can be controlled. 

I t  presents the firs t op tica l method for generating a pure spin current, and also shows tha t 

pure spin currents were inadverten tly  generated even in  the simplest early experiments on one- 

photon absorption in  semiconductors. The detailed study o f these effects, using an accurate 

band model and incorpora ting  excitonic effects, is necessary as they begin to  be used to  study 

spin re laxation and transport [74], and to  measure the carrier-envelope phase o f an u ltrashort 

pulse [77, 78],
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A p pendix  A

N otes on system s o f electrom agnetic  

units

There are two com m only used systems o f electromagnetic units: the Gaussian system, and 

the In te rna tiona l System o f U n its  (SI). The ir differences, which Jackson discusses in  a detailed 

appendix [241], stem from  adopting different p ropo rtion a lity  constants for Coulom b’s law (the 

force F  between two po in t charges q\ and cp separated by a distance r ) . In  the Gaussian system

r 2 ’

whereas in  SI

F  —  .

47reo r 2

The Gaussian system, typ ica lly  used w ith  cgs units (centimeters, grams, and seconds), is 

favoured by theorists, because i t  makes most electromagnetic formulas simpler; in  particu la r, 

the four fields appearing in  M axw ell’s equations a ll have the same units. The Sl-mks system, 

which uses the SI choice for Coulom b’s law and SI un its (meters, kilograms, and seconds), is 

favoured by experimentalists. Table 3 o f the appendix in  Jackson is useful fo r converting for

mulas between the two systems o f electromagnetic un its [241]. For example, when converting a 

Gaussian form ula to  SI, the electric fie ld E  should be replaced by E y /47reo, the electric charge 

e should be replaced by e/yJAireQ, and the current density J should be replaced by J /V T re y . 

A ppend ix A  o f Boyd discusses the two systems o f un its in  the context o f nonlinear optics [84].

In  th is thesis, I  have used bo th  systems o f units. On the one hand, I  have used the Gaussian 

system for theoretica l derivations. For example, the in teraction Ham ilton ians in  Sec. 1.1 are 

w ritte n  in  the Gaussian system o f units. On the other hand, I  have used the Sl-mks system to 

p lo t results. For example, a ll o f the figures use Sl-mks units, w ith  the exception o f Fig. 3.9, 

which uses bo th  systems.
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Note th a t many o f the formulas in  th is  thesis are the same in  bo th  systems o f units. For 

example, the trans ition  am plitudes (2.3) and (2.4) contain the product eE, which is the same 

in  formulas for bo th  systems o f units, since i t  is a force.

Moreover, I  state th a t the formulas in  Sec. 2.2 defining new tensors and pseudotensors— r 

£(j), and , where i  stands for 1 , 2 or I — are the same in  bo th  systems o f units. As a 

consequence, a ll microscopic expressions for the tensors and pseudotensors are the same in  bo th  

systems o f units.

As an example, consider r f f f ,  which is defined in  (2.25). Suppose th a t de fin ition  is in  

Gaussian units. Then, according to  the conversion rules, to  keep the de fin ition  (2.25) the same 

in  SI, 7]1̂ 1 should be replaced by / (Attso)2■ Now suppose the microscopic expression (2.43)

is in  Gaussian units. Then, m aking the replacements for and e (a ll o ther quantities are 

unchanged), one finds th a t (2.43) is the same in  SI.

Th is feature does not hold for the conventional linear and nonlinear susceptibilities [84], 

and thus the relations between them  and the tensors r j^  and where i  stands for 1, 2 or 7 

are different in  each system o f units. Where I  have w ritte n  such relations— in  a footnote after

(2.23), in  (3.21), and in  (6.59)— I  have favoured SI.
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A ppendix  B

N eglect o f th e anom alous velocity  

and k-dependent spin-orbit coupling

The anomalous velocity, i.e. =  (v —p /m ) =  h(cr x W )  /  (4m 2 c2), which leads to  k -

dependent sp in-orb it coupling in  H k from  the te rm  hk  ■ , is often neglected from  k  • p models

[123, 124, 130, 242, 243]. Some authors have treated m a trix  elements o f V H  as add itiona l 

independent parameters [145, 156, 244, 245], bu t I  here relate them  to  other parameters o f the 

model, thereby dem onstrating th a t they can be safely neglected.

B ir  and Pikus showed th a t the iden tity  [Hq, p] =  i h W  leads to  ( X |  V yV  \Z ) =  0 [120]. A n  

application o f th a t id e n tity  to  the rem aining nonzero m a trix  elements yields

(S \V xV \X )  =  ^ ( E s - E x )m P 0, (B .la )

(S \V xV \x )  =  - ^ ( E x - E s )m I*0, (B .lb )

<X| V yV  |z) =  (Z \ V yV  |x> =  (E x -  E x ) m Q , (B .lc )

and sim ilar results fo r cyclic perm utations and H erm itian  conjugates o f these. The energies 

E g , E \ ,  and E x are the eigenvalues o f |S), | X ) ,  and |.t) w ith  respect to  the H am ilton ian  Hq. 

The ir values are fixed by the requirement th a t the eigenvalues of Hk=o give the parameters E g, 

E'0, Ao, and A '0 [124], Neglecting the small con tribu tion  from  A - , E s — E x  =  E g +  A o /3 , 

E x — Eg =  Eq — E g +  2A q/3 , and E x — E x  =  Eq +  2A q /3  -I- A q /3 .

Bahder gives the m a tr ix  for hk ■ w ith in  the eight-band model and defines the parameter

[244]

Ostromek used the value Co =  0.16 eV A  to  f i t  the eight-band model to  experim ental results

1 1 1
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A p p e n d ix  B. N e g l e c t  o f  t h e  a n o m a lo u s  v e l o c i t y  a n d  I n d e p e n d e n t  s p i n - o r b i t  c o u p l in g 1 1 2

[245]. However, using (B .la )  and parameters from  Table 3.1 for GaAs, Cq =  5 x  1 0 ~® eV A d  

From the po in t o f view o f the theory o f invariants [120, 132, 246, 247], k-dependent spin- 

o rb it coupling amounts to  using different values o f Pq for Tg and Ty valence bands (and sim ilar 

changes for Pq coupling and Q  coupling) [132]. In  terms o f Cq, Pq ^  Py =  Pq +  2\/3Cb for 

couplings w ith  Ty bands and Pq ^  Pg =  Pq — \/3Co for couplings w ith  Tg bands. From  (B .la ),

P i ~  P& _  3 (E s  -  E x )
P q A m c 2

which is very small since me2 =  5.11 x  105 eV.

The above suggests th a t k-dependent sp in-orb it coupling can be neglected for bu lk, cubic 

materials. As a check, I  have repeated the calculations o f two-photon spin in jection  in  GaAs 

(Chapter 4), and one-photon linear PSC (Chapter 5) includ ing such coupling on ly between va

lence and lowest conduction bands and the associated anomalous velocity. Using the consistent 

value o f Co =  5 x  1 0 - 6  eVA, the results are unchanged. Even when using the overly large 

coupling value o f Co =  0.16eVA, the two-photon P  decreases only by «  2% for excess energies 

between 0.1 and 200 meV, and the linear PSC spin-separation distance changes by less than

0 .1  nm.

1 N o t e  t h a t  Co i s  u n r e l a t e d  t o  t h e  k - l i n e a r  t e r m  Ck ■
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A ppendix  C

A llow ed-A llow ed Transitions in the  

Parabolic Band A pproxim ation

In  th is  appendix, I  derive expressions for “ 1+2” popu la tion  control, “ 1+2” spin control, and 

two-photon spin in jection  in  the parabolic band approxim ation (P B A ) due to  allowed E-point 

transitions in  the fourteen-band model. These ana lytica l results, which are pe rtu rba tive  in  k, 

are compared in  numerical, nonpertu rbative results in  Chapters 3 and 4.

To calculate optica l effects due to  allowed one-photon transitions, allowed-allowed two- 

photon transitions, or th e ir interference, one needs the velocity m a trix  elements fo r the eigen

states at the T po in t. B y  approxim ating the ve locity m a trix  elements by the ir value at the T 

po in t, the in tegra l over k  in  the microscopic expressions for the optica l effects becomes s tra igh t

forward. As a fu rthe r s im plification, I  approximate a ll the bands as spherical and parabolic, 

neglecting the small k -linear te rm  C Since the bands are doubly degenerate at the T po in t, 

even for models th a t include sp in-sp litting , I  can use microscopic expressions such as those in  

Sec. 2.1.

The T -po in t basis states are given in  (3.2). However, a ll bu t the I^c  states are not eigen

states at the r  po in t due to  sp in-orb it coupling between upper conduction and valence bands 

parameterized by A - . The H am ilton ian  at the T po in t in  th is  basis has off-diagonal elements, 

bu t the order o f the basis can be arranged so th a t i t  is b lock diagonal w ith  blocks at most 2 x 2 . 

F o r th e  b an d s  | r 7„ , + 1 /2 )  a n d  | r 7C, + l / 2 ) (o r  fo r th e  b an d s  I IV ^ ,—1/2) an d  | r 7c, —1 /2 )), th e  

block is

— Eg — Ao — | A “

_ - | A -  K - E g  '

Since A -  /  (E '0 +  Ao) -C 1, the off-diagonal pa rt can be treated as a pertu rba tion . To firs t order
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in  the pertu rba tion , we have eigenvectors

lso T / 1) = |r7v, ± i / 2> + 

l»c t / 1) = |r7c,± i / 2> -

For the P8 bands, the blocks are

" -E,

2A" 1

3 E '0 +  Ao 

2A ~  1
3 E q +  Ao

|r7c,± i / 2) 

|r7„ ,± i/2) .

9

± A "  E'0 - E g +  A{,.

w ith  eigenvectors to  firs t order in  A  /  (E '0 +  A'0),

A -
\hh T /  I )  =  |r8„,±3/2) -

\ih  T / 1) =  |r8„ ,± i/2) -

\hc T /  I) =  |r8c,±3/2) +

\ic T / 1) = |r8c,± i / 2) +

3 E'q +  A'q

A " 1

3 ^  +  Ao
A “ 1

3

<1+

A " 1

7 |r8c,±3/2)

7 |r8c,± i /2)

7 |r8„ ± 3 /2 )
0

7  | r8t, , ± i / 2 )
3 E '0 +  Aq

Velocity m a trix  elements between these T-point eigenstates can be worked out from  (3.2), 

and (3.3). I  present here those th a t can contribu te  to  transitions from  in it ia l hh and Ih  bands. 

Note tha t amongst r 8t) states, by exact cancellation, vih,s, h h (F) =  0. Between T-jv and r 8„ 

states,

Q A ~  (  2
f^SO,S ,hh,s' (r)

fcvso,s,lh,s’ ( r )

^ V K  ^ 0  E'q +  Aq J y/Q
Q A ~  (  2

+  1 \  [<r*x -  ia °  y  +  2 ctxz ]S)S,

+  1 ) -4 = [ ~ ^ x  +  a»y]a)a
3 V Eq +  Ao Eq +  Aq /  y/2

Between Toe and T8l, states,

h v CtStih ,s’ (r) =  P s -y =  { - 2 a zz  +  a x x  +  o^y]^,

1
hvc,s,hh,s' (r ) =  E8^ =  [<Jzx  +  io-°y]s s,5,S'

Between Tgc and r 7l) states,

fcvao,S,c,8' (r ) =  \-aZ*  +  +

Between Tgc and r 8c states,

v  1frvc,s,ic,s> (r ) =  p 8-J=  [-2 c rzz +  GXX +  cryy ]SjS, 

f^c,s,hc,s' (r ) =  [v 2*  +  iCT° y ] 5,s'
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Between r qc and r 7C states,

h v c , s , S C <S'  (r) = P$-j= [dzz + (7xx + (TVy]s s

2
Between 1 +  and 1 +  states (for these, I  drop terms proportiona l to  (A - ) ),

fivsc,s,ih,s' (r) = -j= [—crxx + <rvy]St„,

Qfrvsc,s,hh,s' ( r )  =  -J= [crzx  -  i a ° y  +  2 a x z ] s s ,

Between r 8c and r 8„  states, dropping terms proportiona l to  (A - ) ,

hvih,s,hc,s' ( r )  =  [o-z x  -  i a ° y  -  c P z ] ^ ,

ftv hh,s,ic,s’ ( r )  =  [ - c r 2 x  -  i<7°y  +  <tx z ] s)S,

and hvih,s,lc,s' ( r )  =  Fwhh,s,hc,s' ( r )  =  0. In  the above equations, I  have defined effective m a trix  

element parameters

Ps =  P o - ^ ^ -3 P ' + A '

P7 =  P0 +  2A

Ps = Po +

3 E q +  Ao 

A -  Pq 
3 E q  +  Aq

pi _ pi 
7 — M )

7 2 A -  P0

3 E q +  Ao

C . l  “ 1 + 2 ” P o p u la tio n  C o n tro l

The microscopic expression for popu la tion  contro l is, from  (2.3), (2.4), (2.18), and (2.28),

p i j k  _  ■ e  f t  S T  V  

H 1) “  h3+  L3
euk n

{ < c  ( k ) , < n  ( k ) }  

(k ) OJ
V c , v  (k ) s (2a; -  ( k ) ) , (C .l)

where j + c ( k ) , + >n (k ) j  =  (1 / 2 ) + c (k ) + >n (k ) +  + >c (k ) (k ) j ensures the in trins ic  sym

m etry  =  e(j y  Sw itching to  double index, changing the sum over k  to  an in tegra l using 

( i / i 3) E k  =  ( 1 / 8 A )  J k 2d kd fl, and approxim ating velocities and the energy denom inator by 

the ir values at the T po in t yields

e3 1 
r a b c  =   L  V
H I )  fi3,,,3 <>.■* 2 ^

kcvTTlcv
ffiui3 2tt t—1 hwnv (r) — Hu (r )> ^p ,n S' ( r ) } ^ c W (r )

-  s>P s'
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where kcv is given in  (2.46). From  cubic symmetry, only needs to  be evaluated. The 

sums over spin states can be worked out from  the m u ltip lica tion  rules o f the Pauli matrices: 

a aa b =  iedceae +  Scda°. For hh-Tgc-c, the te rm  in  square brackets is zero. For lh-Tgc-c, the 

te rm  in  square brackets is i  (2 /3 ) PgQPg/h3. For hh-T7c-c , the te rm  in  square brackets is zero. 

For lh -F 7c-c, the te rm  in  square brackets is i  (2 /3 ) P {Q P g/h3. For hh-Y7v-c, the te rm  in  square 

brackets is zero. For lh -Y 7v-c, the te rm  in  square brackets is

2 P7 Q A
i - - +
3 H 3H \ E '0 +  Ao E '0 +  Aq

Ps

The result, which gives in  mks, is

—p 3 o ,___________
rabc   rEr>

^  ~ T r 7 h V E p 8Eq

•mc,hh\Z /2 /m Ctih \ V 2
- )m  /

+ (Hr)
x

y/Epgi
E q +  Aq — ftlV

+ s/ E p v \ / E p 7  A

y j2  fk j -  E g 

(2huj)3 

2
E'o

+
hu) Aq -(- hu) 3 V ^o  E o A  Aq

Expanding the effective m a trix  elements and e lim ina ting  terms o f the order ( A  

fina l result

-e3 2

m  J \  m

- \ 2

cabc  __
Hi) ~ 377 k

m c M y / i  +  y n cj hy / l

where

A i  =  \ j  E p E p i +
E q — HU) E q +  Aq — hjJ

X 2 =  E p
2 (E 'q +  A o ) (E ’q +  A ’q, - 1

o)
E q — hu)

X 3 =
Ep/

E q +  Aq — flU) 

1

2 (E q +  Aq) 1 +  (Eq +  Aq) 
Aq +  hui

3 E q +  A q \ E q — hu) E q +  Aq — Hu) /

Note th a t ( —e3) is positive. For typ ica l semiconductors, X 3 can be neglected and

A "  '

(C.2)

yields the 

(C.3)

(C.4) 

(C.5) 

(C .6 )

Ao E P
Ax 2 (Ao +  huj) y Ep>

In  X 2, the most im portan t te rm  is the last, which comes from  the interference o f {hh , lh }-so-c  

two-photon transitions and {hh , lh }-c  one-photon transitions.

The expression (C.3) only includes the allowed-allowed transitions from  the hh  and Ih  

bands. A t photon energies for which 2tho >  E g +  Ao, one should add the con tribu tion  due to  

the trans ition  so-uc-c.

Because o f (3.21), (C.3) is also an ana lytica l expression for In r \ / 2 âbc (—2 u) ; u) , u i ) .  Jha and 

W ynne have also used k-independent ve locity m a tr ix  elements and spherical, parabolic bands
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to  derive an expression fo r ^C)a&c ( —2u ; u . u ) ,  bu t they d id  not include the interband sp in-orb it 

coupling te rm  A -  [158], Taking the im aginary pa rt o f the ir Eq. 4.4 for hu <  E g <  2hu, and 

correcting a factor o f i t  error, reproduces the lm x ^ abc (—2 u \u ,u )  one would find  from  (C.3) 

bu t w ith  X 2 =  X 3 =  0. Also, they make the approxim ation hu ~  E g/2  in  the te rm  X \ .

To get a P B A  expression for the popu la tion  contro l ra tio  requires P B A  expressions for one- 

and two-photon absorption. I  take the same approach used to  derive (C.3), bu t for s im plic ity, 

I  take A -  =  0 in  the following. In  the P B A , at photon energies 2hu <  E g +  Ao, one-photon 

absorption is

_  e2 V 2 m E p  ( f m cjih \ \  , ( m C)hh\ l \  ^ 2 hu  -  E g ^  ^

“  3 ^ ~ W ~  V w T J  W T V  )  (2 h u )2 ' ( }

In  a m ateria l o f cubic symmetry, the two-photon absorption tensor has three independent 

components and which are a lternate ly parameterized by the set | ^ “2“ act, a,

[see (3.23)]. The allowed-forbidden two-photon absorption in  the isotropic Kane model, ne

glecting three- and four-band terms, is

where

( - 6 ik5j l  +  -S i l5jk  -  Si j 5kl ) +  ( — SikSj l  +  — SilSjk  +  5i2Skl
m  \  2 2 J  V m  \  6  6

(C .8 )

_  64 \/2  e4E p  (2hu  — E r ^ 2

^ (2) 157T y / m  ( 2  h u )

ta a a a    neabab _i_ eaal
»(2) -  ZH 2) +  «(2 )

3

9)

Note the add itiona l symmetry, =  2£?2 “ 6 +  A )?.66 in  th is  isotropic model. The allowed-

allowed two-photon absorption, neglecting A q / (E '0 — Eg +  hu), has C 2“ a =  C 'Y * =  0 and

gQjbo,b _ £(LCL
V  21 —

e2 2m E p ,E Q

W u 2m 2 E P (e'q -  E g +  h u )2 ’

which agrees w ith  A rifzhanov and Ivchenko [171]. Thus, at photon energies for which allowed- 

allowed transitions dom inate two-photon absorption,

=  (C.9)

whereas when allowed-forbidden transitions dom inate two-photon absorption,

R  =  2 fa ,  I  E q E i"
E p  (2hu  — E, \

( ^ f 2 + ( ^ f 2 S 1 . 1

}JL f ™ C,hh , 11 / ™c,lh ( A q  + E 'q — Eg + h u  E q — Eg +  h u  
10 y m  10 Y m

(C.10)
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C .2  “ 1 + 2 ” Sp in  C o n tro l

From (2.3), (2.4), (2.20a), and (2.32),

C, - * w  no E ^
k  c,c' n  n v  v '

Proceeding as w ith  popu la tion  control, I  take the velocity m a trix  elements at the ir T po in t 

value, etc. and

(c,s,r|s ‘ |c,s',r) = |  [o‘ ] tX

E [«V {<’■'•■=•*(r> • (r)} (r)
s,s ' ,p,s"

( C . l l )

There are two independent components to  C/A =  —K zf f z and CIB  =  — K Zj f x - For C/A,

the term  in  square brackets is
_ 2  f% Q P s  

3 h h h

for in it ia l Ih  and interm ediate r 8c (only interm ediate he is nonzero); is

2  P ^Q P s
3 h h h

for in it ia l Ih  and interm ediate T 7,.; is

2 P 7 Ps Q A ~  f  2 1

A jk l    • 0  \  >  kcvTUcv

( t ;e )  4 7 rh 2w 3 '  hunv (r) — fho

3 h h H3 \ E '0 +  A 0 E '0 +  A'0 '

for in it ia l Ih  and interm ediate r 7,,; and is zero for in it ia l hh  and a ll n  since v * s, hhp (r) =  0 .

The result is

- e 3 yf2huj - E g ( ( m cf,h \ W  ( m C)hh^ \  ,

° A = 1 T  ( 2  t o ) 3 + l — I  ) ^ Q E ^

V E P8> \J E p r  A  {  2  1 ^  y /E p 7
O” O I EV 1 A ' EVE q +  Aq — hu> E q — hu> 3 y E q +  Ao E q +  Aq y Ao +  hu  

For Ci b , the term  in  square brackets in  ( C . l l )  is

1 Q P s P i
2  h h h

for in it ia l hh  and interm ediate r ( o n l y  interm ediate Ic is nonzero); is

6  h h h

for in it ia l Ih  and interm ediate Fgc (only interm ediate he is nonzero); is

1 P ^Q P s
2  h h h

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A p p e n d i x  C .  P a r a b o l i c  B a n d  A p p r o x i m a t i o n  A l l o w e d - A l l o w e d  T r a n s i t io n s  119

for in it ia l hh  and interm ediate rVc; is

for in it ia l Ih  and interm ediate T 7C; is

1 P7 P8 Q A '

1 P ^Q P s  
6  h h h

+
2 h h m  \ E '0 +  Ao -Eq +  a o 

for in it ia l hh  and interm ediate IV , ; and is

1 P7 Pg QA~
6  h h H3

for in it ia l Ih  and interm ediate 1^,. The result is

"m Cihh\3 /2

+
K  +  A o  E q +  A q

C I B  =
67T

-e3 y /2hw -  Eg 

( 2  h w f

—y/Epg /
E q +  A q  — fiW

((!m

\JE py

( m Ctih \  
\  m  /

A

3 /2

»0 I IW  E q i i w  o  y ± ^Q

Expanding the effective m a trix  elements and e lim ina ting  terms o f the order (A  

fina l result

h w  3

\ /E q E p 8 

2  1

Ek +  A (
+ V  E py

E q  +  A q  J Ao +  h w

_ \ 2

CIA  =  ~

C lB  —  

where

m c , l h \ 3 / 2 \  y J Z h w  -  E g

m ( 2  h w f

( - e 3) |' j m C:hhy /2  | ^ m c,ihy / 2^  \ / 2 hw -  Eg
67T ( 2  hw)"

y /E ^  (Z_ + z ;  + Z") , 

^ ( z + +  z'_ +  z ' ; ) ,

yields the

(C.12a)

(C.12b)

Z ±  =  \J  E p E p t  

y  _  A ~ E p64- — ------- ^—

1

E'o -  hW Eq +  A q 

2  1

hw

1

Eq +  Ao Eq +  Aq J Ao 
2  1

+

hw
1 1

Z ±  =  -
A  E p ' 1

E q +  A o  E q   h w  E q +  A q  E q +  A q    f]W

1 1

3 E q +  A q \ E q — HW E 'q +  A q ~  hW

In  Z ± , the firs t te rm  is from  interm ediate sc states and the second term  is from  interm ediate 

Ic and he states. In  the firs t te rm  is from  interm ediate so states, the second te rm  is from  

interm ediate sc states, and the th ird  te rm  is from  interm ediate Ic and he states. In  Z ± , the 

firs t te rm  is from  interm ediate so states, and the second term  is from  interm ediate he and Ic 

states. The te rm  Z ±  can be neglected for typ ica l semiconductors. Note th a t (C lA  +  2Ci b ) has 

contributions only from  interm ediate so and sc states. Th is only includes transitions from  in it ia l 

hh and Ih  states; transitions from  in it ia l so states, which contribu te  when 2hw >  Eg +  Ao, have 

been neglected.
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C .3  A llo w ed -a llo w ed  c o n tr ib u tio n  to  tw o -p h o to n  spin in je c tio n

To calculate S and N  due to  allowed-allowed transitions, one can approxim ate a ll the m a trix  

elements and energies in  the two-photon am plitude by the ir value at the T po in t, thus avoiding 

the integral over k. Since the bands are doubly degenerate at the P po in t, one can use Eq. 

(4.4).

C .3 .1  L igh t in c id e n t  a lo n g  [001]

Since I  use a basis o f states w ith  spin quantized along z, (c, E| Sz \c', T) oc 5CtC< and we have

(2)
'c fvT n(2) | 

c|,u,r ^  5 [2w -  low (k)]

where c "f and c J. are shorthand for the bands w ith  states | r 6C, ± 1 /2 ) .

For <t+ ligh t, w ith  po lariza tion  ew =  (x  +  iy )  / \/2 , and S  || z from  Eq. (4.2) and the degree 

o f spin po lariza tion  is

P  =
E „

2
f l (2)ct,D,r

2

E « c|,D,r
2

+ cTv,r
2 '

The non-zero m a trix  elements o f e^, ■ v  in  the eigenstate basis th a t can cause a two-photon 

trans ition  between v and c are

eu) ■ VhclJhl ( r )  — \ l  gQ

wc[,hci (I") — Pq + 3 E '0 +  A ’0
Pa

■ vScuhi (r) — q

e„ vct„cl ( D - v i  {Pi- 2Jfw h -a
e„ ■ (r) = + 2

E '0 +  Ao \ E '0 +  Aq 

e. ■ vcT,soi (r) = \Jl(Po+  ^  e'+°A0

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

where I have dropped terms second order in  A  . Note th a t eu ■ Vhh[,lhl (F) =  0 by an exact 

cancellation, as i t  should from  sym m etry considerations. Thus,

(2)
c l , m x  - I  - I  y  3) h \E w\ y  - Q  [AP q +  B P oA ~ ] , 

/where A  =  (E '0 +  A q  — E g/ 2 )  and B  =  (E '0 +  A q )  A /3 . Also,

2 ft IE. T  W ^n(2)
cT,//iT,r 2 12 Q [ C P ^ - D P 0A ~ ] ,
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where C =  (E '0 — E gJ2) 

D =

- l

E'o +  Aq Eg / 2 +  Aq 3 \ E q +  Aq J 3

and I  have dropped terms p roportiona l to  Q Po(A  ) . The degree o f spin po lariza tion  is then

P  =  ( A n  + B P v A - f - i C P l - D P ^ - f  (c  19)
(APq + B P qA - )  + { C P q -  D PoA- )

C .3 .2  L ig h t in c id e n t  a lo n g  [111]

For <j + ligh t incident along [111], i t  is more tedious to  obta in  an expression like Eq. (C.19) 

since there are more non-zero m a trix  elements o f e^, ■ v  than  for cr+ ligh t incident along [0 0 1 ]. 

B y  ro ta ting  the basis to  states quantized along [111], the m a trix  o f elements o f • v  becomes 

simpler, bu t the H am ilton ian  is no longer in  2 x  2 blocks. W hen A -  =  0, the la tte r is not an 

issue. In  th a t case, I  find

n

J- =  ( £ ) 2 s IlE » l2 Qp i  A  +  2C>

S & l . r  =  ( £ ) 2 « l ^ l 2 QP° i C - A ) ,

where A  and C  are as defined in  the previous subsection, and f  and {  are along [111]. W ith  

the assumption th a t Aq < F q -  E g/ 2, A  ps C  and I  find  th a t

P ( A "  =  0) =  - 1 /2 .  (C.20)
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A ppendix  D

Sym m etry o f one-photon effects

In  th is  appendix, I  present the sym m etry constraints on the one-photon effects— absorption, 

spin in jection, current in jection, and spin-current in jection— th a t are discussed in  Chapter 5. 

I  present results for the po in t group Trj ,  which applies to  semiconductors w ith  zinc-blende 

symmetry, and for the po in t group > which applies to  semiconductors w ith  zinc-blende 

sym m etry under stra in  along one o f the cubic axes.

The one-photon absorption tensor is a second-rank tensor satisfying the rea lity  condition

and real in  the independent-particle approxim ation (IP A ). The one-photon spin 

in jection pseudotensor (k ) is a th ird -ra n k  pseudotensor satisfying the rea lity

condition and im aginary in  the IPA . Thus, in  the IPA , =  Z deljk , where

Z li  is an arb itra ry , real tensor. The one-photon current in jection tensor r / ^ '  is a th ird -ra n k  

tensor satisfying the rea lity  condition , and im aginary in  the IPA . Thus, in  the IP A ,

^  =  Y'l cl jk , where is an arb itra ry , real pseudotensor [116]. The one-photon spin-current 

in jection  tensor f i 1̂ 1 is a fou rth -rank pseudotensor satisfying the rea lity  cond ition  ,

and real in  the independent-particle approxim ation.

T d  s y m m e try

For Td, £({) oc [84], a  eljk  [2], and r f ^  =  0 [99]. The spin-current has two independent 

components and non-zero elements

x x y y  _  z z x x  _  l t y y z z  _  x x z z  _  . z z y y  _  y y x x
^ (1) -  ^ (1) ~~ ^ (1) _  _ ^ ( 1) -  _ ^ (1) ~~ _ ^ (1) ’

and

x y x y  _  z x z x  _  , , yzyz  _  x z x z  __ . z y z y  _  _  y x y x  
^ ( 1) — ^ ( 1) — ^ ( 1) — ^ ( 1) — ^ ( 1) — ^ ( 1)

_  . . x y y x  _  z x x z  _  n y z z y  _  x z z x  _  . z y y z  _  y x x y  
-  ^ ( i)  -  /^(l) -  M(i) -  -M (i)  -  -M (i)  -  M(i) •

122
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There is no second-rank pseudotensor th a t is invariant under the po in t group Td- Thus, 

is zero, which can easily be verified from  the non-zero components o f .

D 2d  sym m etry

The po in t group D<id has a preferred axis, which I  w ill choose to  be the z-axis in  w hat follows. 

One-photon absorption has two independent components and non-zero elements =  3 5  and 

. The spin in jection  is has two independent components and non-zero elements

r x y z  _  __r x z y  _  r y z x  _  _ r y x z  
(1) “  (1) “  (1) 

r z x y  _   z-zyx

(1) “  ‘’ (I) ’

or a lternate ly Z xx =  Z yy and Z zz. The current in jection  has one independent component w ith  

nonzero elements
x y z  x z y  y z x  y x z

; = - % ) l' =  - < D  = < d  

or a lternate ly j xx — —-fyy — rjXŷ . The spin-current in jection  tensor has seven independent 

components and non-zero elements

. x x y y  _  _  y y x x  fx — [X

^ z z x x  =  _ pLzz yy  

^ y y z z  =  _ ^ x x z z

j j x yxy — ^ y y x  = —f l yxyx = _ ^ y x x y

zxzx
t1

zxxz 
—  f l  — - f l zyzy  = - f l zyyz

f jVzyz =  v yzzy  =
xzxz f l  — xzzx

t1

xxxx  f l  - - —nyyyy

The firs t group o f six elements are a ll equal under Td, the second group o f twelve elements are 

a ll equal under Td, and the last two are zero under Td-
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A p pendix  E

Interm ediate-state Coulom b  

enhancem ent

Consider the functions i\K a~f) and Ar(̂ a' aK which appear in  (6.32) and (6.34); I  refer to  them  

collectively as N . F irs t, note th a t due to  the energy-conserving 6 -function  in  (6.7), k w il l be 

equal to  kcv [see Eq. (6.37)], and thus A  is a function  only o f cu, E%v, E f.,v, , rna ,. and m cv -  

Second, note th a t N  is defined so th a t iV —> 1 i f  the electron-hole a ttrac tion  is tu rned off, for 

example by le ttin g  e —> oo . 1 Th is allows N  to  be identified as part o f the Coulomb enhancement. 

In  particu la r, N  is the enhancement due to  the Coulomb in teraction in  the interm ediate states; 

i f  the Coulomb in teraction  is neglected for the interm ediate states, N  =  1 [185]. [Note th a t Lee 

and Fan [174] d id  not allow for v' ^  v in  N  (related to  Jj in  the ir notation).]

Since the integrand is smooth for the param eter range o f interest, numerical in tegra tion  of 

N  is stra ightforward; however, i t  need not be undertaken. Further s im plifica tion  is possible 

since the parameter 7  can be considered to  be much less than  one. Since most m aterials have 

an exciton b ind ing energy th a t is much smaller than  the band gap, huo is detuned from  the band 

edge by many exciton b ind ing  energies at photon energies consistent w ith  the approxim ations 

made here. In  GaAs, for example, when 2fuv is w ith in  500 meV o f the gap, 7  is at most 0.09. 

A n  expansion o f A ^a' f) fo r small 7 ,

N (a‘ f) =  1 +  ^ 7 c v  +  Q  in  2 -  ^  7 c V  +  (^ c )  -  7 c v  +  O  ( 7 ^ , )  ,

where Sq ~  0.5633, shows th a t is approxim ate ly 1 and nearly constant as a function  o f

u . The same is true  o f A ^a"a), which has the expansion

A T ( a - a )  =  1 _  A  ( £ W  _  a cv ) P  +  0  ( 7c4v )  ,

O'CV

1M ahan instead defines a q uantity  J K =  N ( k )j 2 ( l  +  (cry*;)2) 1 [176].
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1 . 0 5 0

1 0 0  2 0 0  3 0 0  4 0 0  5 0 0

Excess photon energy 2hu; — E g (m eV )

Figure E . l:  The factor N (a' f) [intermediate-state Coulomb enhancement, see Eq. (6.31)] for 

GaAs. The firs t (second) subscript is v (v r) ; subscripts for c =  c' =  Fg are no t shown; Tg 

denotes the heavy and ligh t hole bands, and T 7 denotes the sp lit-o ff band.

where, w ith  S i «  1.645,

P  =  7  dv ’ +  2  In 2
Obri,,i

7dv' + 3a lv acv 3 cv
- - a c V «  + S i  h i

In  fact, when m cv — m c>v', =  1 even to  fou rth  order in  7 civ>. F ig. E . l  shows a numerical

in tegra tion  o f Ada' f) using the parameters o f GaAs.
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