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1
Introduction to Octave

1.1 Introduction to numerical computing

With the advent of computers in
post world war II era, desire to sim-
ulate all physical problems led to
the invention of numerical comput-
ing. Whereas analytical computa-
tion required only pen, paper and
human mind, numerical computa-
tion required a calculating device,
or a computer. Successful imple-
mentation of computing device to
solve problems (especially involving
repeated tasks) over large array of data points was observed in many fields
of science and engineering. For example, breaking enemy codes, simulating
nuclear reactions before nuclear explosions etc.

As time progressed, various schemes to define analytical functions like
differentiation, integration, trigonometric etc. were written for digital com-
puters. This involved their digitization, which certainly introduces some
errors. Knowledge of error introduced and its proper nullification could
yielded valuable information quicker than analytical results. Thus it be-
came one of the most actively researched field of science and continues to
be the one till date. Search for faster and accurate algorithms continues to
drive innovation in the field of numerical computing and enables humanity
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to simulate otherwise impossible tasks.

1.2 Various alternatives

A number of alternatives exist to perform numerical computation. Pro-
gramming languages written to handle mathematical functions like FOR-
TRAN, C, python, Java to name a few, can be used to write algorithms
for numerical computation. Specialized softwares like MATLAB R©, Scilab,
Mathematica also exists to provide specialized packages for a particular field
of problems. Their rich libraries now run in many GBs of data. Amongst
them, MATLAB R© became tremendously popular among scientific commu-
nity since 1984. Cheap availability of digital computing resources propelled
its use in industry and academia to such an extent that virtually every lab
needed MATLAB R©. Whereas it wasn’t very expensive for west, it proved
to a costly piece of software for rest of the world, particularly third world
countries. This part of world, which has otherwise a rich pool of scientific
community, needed an open sourced alternative to MATLAB R©. Thus Oc-
tave and Scilab came into existence. Whereas Scilab is extrmemly powerful,
it was not compatibale with MATLAB R© syntax-wise. On the other hand
Octave was developed so that .m files could directly run on octave.

1.3 MATLAB R© and Octave

Octave is a opensource alternative which can run MATLAB R© code. So
existing MATLAB R© users can swiftly change to this new system. Also new
users can learn to code in octave and then shift to MATLAB R© environment
as and when required. GNU Octave, version 3.8.1 comes with a Graphic
User Interface (GUI), hence it has been chosen for the present book. Older
and future versions will also run well for the codes presented in the book,
provided future versions choose to remain compatible with present version.

Other alternatives include softwares like Scilab and programming lan-
guages like python, C, C++, Java etc. They have their own merits and
demerits and hence reader is advised to judge their choice based on their
needs. Octave is a good choice to prototyping the problem quickly and
checking the results. Other alternatives prove better while working with
web-based data collection, analysis and visualization. Octave is a high-level
language, primarily intended for numerical computations. Octave has a rich
library of tools for solving numerical linear algebra problems, finding the
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roots of non-linear equations, integrating ordinary functions, manipulating
polynomials, and solving ordinary and partial differential and differential-
algebraic equations. This makes it suitable for most of the basic numerical
computational work.

1.4 Installation

Please note that following instructions are valid for Octave, version 3.8.1
only. GNU octave can be downloaded from the url https://www.gnu.org/
software/octave/download.html as per the operating system. Installation
is quite straight forward and user forums or simple google search yields
useful answers to common problems encountered by users. As explained
earlier version 3.8.1 comes with a GUI, hence it is advised that this should
be installed for forthcoming discussions, but all older version will prove to
be equally good.

1.5 Workspace

There are two ways to work within octave. First one is to work at command
line by writing one command at a time. Second method is to write a script
(a .m file having a set of commands in a sequence) and running it from the
command line by simply writing its name. For example to run a.m script
file, one simply writes at command prompt:

1 >>a

Octave command prompt is represented by the symbol ”>>” by default.
After entering a command at the command prompt, if enter key is pressed
on keyboard, the command is executed.

1.5.1 Calculator

In simplest view, octave works as a calculator with mathematical operators
like multiplication (symbol is *), division (symbol is /), addition (symbol is
+), substraction (symbol is -) and exponentiation(symbol is ^):

1 >> 3 + 5
2 ans = 8

CHAPTER 1. INTRODUCTION TO OCTAVE 11
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3 >> 2 − 3
4 ans = −1
5 >> 3 .0 ∗ 5
6 ans = 15
7 >> 2 / 3
8 ans = 0.66667
9 >> format long

10 >> 2 / 3
11 ans = 0.666666666666667
12 >> format shor t
13 >> 2 / 3
14 ans = 0.66667
15 >> 2 % 3
16 ans = 2
17 >> 2 ˆ 3
18 ans = 8

As seen in example above, when command is fed at the command prompt
>> it is executed and answer is given by displaying the results in next line
as ans =. To display more numbers in the result, format long command is
used, whereas by default, octave works with the command format short.

1.5.2 Predefined constants

1 >> pi
2 ans = 3.1416
3 >> e
4 ans = 2.7183
5 >> i
6 ans = 0 + 1 i
7 >> j
8 ans = 0 + 1 i
9 >> I n f / I n f

10 ans = NaN

A number of physical constants are per-defined: pi, e(Euler’s number),
i and j (the imaginary number

√
−1), inf (Infinity), NaN (Not a Number

- resulting from undefined operations, such as Inf/Inf.)

1.5.3 Common mathematical functions

1 >> abs (−10.034)

12 CHAPTER 1. INTRODUCTION TO OCTAVE
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2 ans = 10.034
3 >> l og ( e )
4 ans = 1
5 >> l og10 (10)
6 ans = 1
7 >> s i n (10)
8 ans = −0.54402
9 >> cos (10)

10 ans = −0.83907
11 >> tan (10)
12 ans = 0.64836
13 >> a s in (1 )
14 ans = 1.5708
15 >> a s in (10)
16 ans = 1.5708 + 2.9932 i
17 >> acos (1 )
18 ans = 0
19 >> acos (10)
20 ans = 0.00000 − 2.99322 i
21 >> atan (1 )
22 ans = 0.78540
23 >> atan (10)
24 ans = 1.4711

A number of predefined mathematical functions exists in octave like:

• absolute value: abs()

• Logarithm: Natural logarithm log(), Base 10 logarithm log10()

• trigonometric functions” sin(), cos(), tan()

Arguments are taken in radians

• inverse-trigonometric functions” asin(), acos(), atan()

When we work on command prompt, it is often convenient to have a clear
screen by getting rid of previous command written at command prompt. this
is done by the command clc which clears screen by removing all inputs and
outputs from the user screen.

Complex calculations using these functions and operations can be per-
formed with ease like √

sin(10)2 + cos(10)2

CHAPTER 1. INTRODUCTION TO OCTAVE 13
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and
sin(10)√
cos(10)

1 >> s q r t ( ( ( s i n (10) ) ˆ2)+(cos (10) ) ˆ2)
2 ans = 1
3 >> s i n (10) / sq r t ( cos (10) )
4 ans = 0.00000 + 0.59390 i

1.6 help

Covering all the functions available with octave is beyond the scope of the
present book. To understand how a particular function needs to be used,
one can use help() command where argument can be the function whose
usage needs to be found out. For example help(exp) gives a detailed view
about how this function should be used.

1 >> help exp
2 ’ exp ’ i s a bu i l t−in func t i on from the f i l e l i b i n t e r p / co r e f cn /

mappers . cc
3

4 −− Mapping Function : exp (X)
5 Compute ’ eˆx ’ f o r each element o f X. To compute the matrix
6 exponent ia l , s e e ∗note Linear Algebra : : .
7

8 See a l s o : l og .
9

10

11 Addi t iona l he lp f o r bu i l t−in f un c t i on s and ope ra to r s i s
12 av a i l a b l e in the on l i n e ve r s i on o f the manual . Use the command
13 ’ doc <top ic> ’ to search the manual index .
14

15 Help and in fo rmat ion about Octave i s a l s o a v a i l a b l e on the WWW
16 at http ://www. octave . org and v ia the help@octave . org
17 mai l ing l i s t .

1.7 Variable

To store values temporarily, we use variables which store the value at a
particular memory location and address it with a symbol or set of symbols
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(called strings). For example: one can store the value of 1/10 ∗ pi as a
variable a and then use it in an equation like

a2 + 10
√
a

1 >> a=1/10∗ pi
2 a = 0.31416
3 >> aˆ2 + 10∗ s q r t ( a )
4 ans = 5.7037

Hence the symbol = works as an assignment operator, which assigns the
value present on right hand to the variable name at left hand side.

Multiple assignments can be performed by using comma (,) operator.
Also if we do not wish to produce results on screen, we can suppress this by
using ; operator.

1 >> a1 = 1 , a2 = 10 , a3 = 100
2 a1 = 1
3 a2 = 10
4 a3 = 100
5 >> a1 = 1 , a2 = 10 , a3 = 100 ;
6 a1 = 1
7 a2 = 10
8 >> a1 = 1 ; a2 = 10 ; a3 = 100 ;
9 >> a1

10 a1 = 1
11 >> a2
12 a2 = 10
13 >> a3
14 a3 = 100

1.7.1 Data types

While assigning data to a variable it is important to understand that data
can be defined as a variety of object defined by its datatype as follows:

• logical: This type of data stores boolean values 1 or 0 boolean values
and can be operated by boolean operators like AND, OR, XOR etc.

• char: This type of data stores alphabetic characters and strings (group
of characters written in a sequence).

CHAPTER 1. INTRODUCTION TO OCTAVE 15
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• int8,int16,int32,int64: This type of data is stored as integers within
8 bits, 10 bits, 32 bits and 64 bits respectively. Size of integer is given
by its bit counts.

Both logical and char are 1 byte (8 bits) wide.

• uint8, uint16, uint32, uint64: This type of data stores unsigned
integer data in 8, 16, 32 and 64 bits respectively.

• double, single This type of data is stored as double and single pre-
cision floating type respectively. Decimal numbers are represented by
floating point data types. Single precision occupies 4 bytes (32 bits)
and double precision occupies (64 bits) to store the floating point num-
bers.

In single precision system, 23 bits stores the fraction bits (i.e num-
bers after the decimal point), 8 bits stores the exponent (i.e the num-
bers before the decimal point) and 32nd bit is reserved for storing the
sign.

In double precision system, 52 bits stores the fraction bits (i.e
numbers after the decimal point), 11 bits stores the exponent (i.e the
numbers before the decimal point) and 64th bit is reserved for storing
the sign.

Single and double precision matters when precision of result mat-
ters. In cases like GPS position for a projectile flying at high speeds,
it will be required that the results should be as precise as possible for
greater accuracy of hit.

• double complex,single complex: Complex numbers have real and
imaginary parts which are stored separately. These numbers can be
stored as single or double precision numbers using these data types.

1.7.2 Naming conventions for variables

There are some naming conventions for variables names, which must be
respected to avoid errors.

• Names should not start with a number however numbers can be used
anywhere afterwards.

• Variable names are case sensitive

• Keywords cannot be used as names.

16 CHAPTER 1. INTRODUCTION TO OCTAVE
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• Names can include underscore (_)

While naming a variable, if one needs to check that the name given is
a keyword or not, then one can use a built-in function iskeyword(name).
Simply writing iskeyword() produces a list of keywords as shown below:

1 >> i skeyword ( )
2 ans =
3 {
4 [ 1 , 1 ] = FILE
5 [ 2 , 1 ] = LINE
6 [ 3 , 1 ] = break
7 [ 4 , 1 ] = case
8 [ 5 , 1 ] = catch
9 [ 6 , 1 ] = c l a s s d e f

10 [ 7 , 1 ] = cont inue
11 [ 8 , 1 ] = do
12 [ 9 , 1 ] = e l s e
13 [ 1 0 , 1 ] = e l s e i f
14 [ 1 1 , 1 ] = end
15 [ 1 2 , 1 ] = end t ry ca t ch
16 [ 1 3 , 1 ] = end unwind protect
17 [ 1 4 , 1 ] = endc l a s sd e f
18 [ 1 5 , 1 ] = endenumeration
19 [ 1 6 , 1 ] = endevents
20 [ 1 7 , 1 ] = endfor
21 [ 1 8 , 1 ] = endfunct ion
22 [ 1 9 , 1 ] = end i f
23 [ 2 0 , 1 ] = endmethods
24 [ 2 1 , 1 ] = endpar for
25 [ 2 2 , 1 ] = endprope r t i e s
26 [ 2 3 , 1 ] = endswitch
27 [ 2 4 , 1 ] = endwhi le
28 [ 2 5 , 1 ] = enumeration
29 [ 2 6 , 1 ] = events
30 [ 2 7 , 1 ] = f o r
31 [ 2 8 , 1 ] = func t i on
32 [ 2 9 , 1 ] = g l oba l
33 [ 3 0 , 1 ] = i f
34 [ 3 1 , 1 ] = methods
35 [ 3 2 , 1 ] = otherw i s e
36 [ 3 3 , 1 ] = par f o r
37 [ 3 4 , 1 ] = p e r s i s t e n t
38 [ 3 5 , 1 ] = p r op e r t i e s
39 [ 3 6 , 1 ] = return
40 [ 3 7 , 1 ] = s t a t i c
41 [ 3 8 , 1 ] = switch
42 [ 3 9 , 1 ] = try
43 [ 4 0 , 1 ] = un t i l

CHAPTER 1. INTRODUCTION TO OCTAVE 17
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44 [ 4 1 , 1 ] = unwind protect
45 [ 4 2 , 1 ] = unwind protect c l eanup
46 [ 4 3 , 1 ] = whi l e

1.7.3 List of variables

List of all variables can be obtained by the commands who and whos where
who simply presents the list of variables in the workspace whereas whos

presents the same with more details like size of variable, number of bytes
used to store the variable and variable type.

1 >> who
2 Var iab l e s in the cur rent scope :
3

4 a a1 a2 a3 ans
5

6 >> whos
7 Var iab l e s in the cur rent scope :
8

9 Attr Name S i z e Bytes Class
10 ==== ==== ==== ===== =====
11 a 1x1 8 double
12 a1 1x1 8 double
13 a2 1x1 8 double
14 a3 1x1 8 double
15 ans 1x1 8 double
16

17 Total i s 5 e lements us ing 40 bytes

By using who and whos one can keep track of memory requirements
judicious use of memory resources are important such as Raspberry Pi based
systems.

1.7.4 Global and Local Variables

A variable declared globally i.e. within the main program is known as global
variable whereas a variable declared locally within a function is known as
local variable. Using global declaration statement. Once defined, it remains
same irrespective of any new definition unless clear command is issued for
clearing variable names and values from the memory.

18 CHAPTER 1. INTRODUCTION TO OCTAVE
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1 >> g l oba l a =1
2 >> g l oba l a = 2
3 >> a
4 a = 1
5 >> c l e a r
6 >> who
7 >> whos
8 >> a=1
9 a = 1

10 >> a=2
11 a = 2
12 >>

As seen above, a = 1 stays same irrespective of next definition a = 2.
When the command clear is issued at command prompt, all variable anmes
and values are flushed out of memory and the variable name can be sued
again. This time, if it is not defined as global variable, then its value can be
changed repeatedly. The command isglobal() lets one check if a variable
name has been defined as global variable.

Global variables are used to define constants during numerical calcula-
tions. Suppose we wish that all variable except some should change values,
then we name those unchanging values to be global variables by giving the
name of our choice. The predefined variables like pi, e etc. have been
defined in a similar manner.

1.7.5 clear

As seen in previous section, clear command flushes out variable names and
their values from the memory. It proves to be much more useful than that.
Whereas clear all is same as clear, it can also be used to selectively wipe
out variables and their values. Simply type help clear gives a detailed view
of its use:

1 >> help c l e a r
2 ’ c l e a r ’ i s a bu i l t−in func t i on from the f i l e l i b i n t e r p / co r e f cn /

v a r i a b l e s . cc
3

4 −− Command: c l e a r [ opt ions ] pattern . . .
5 Delete the names matching the g iven pat t e rns from the symbol

t ab l e .
6 The pattern may conta in the f o l l ow i ng s p e c i a l cha ra c t e r s :
7

CHAPTER 1. INTRODUCTION TO OCTAVE 19
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8 ’ ? ’
9 Match any s i n g l e cha rac t e r .

10

11 ’ ∗ ’
12 Match zero or more cha ra c t e r s .
13

14 ’ [ LIST ] ’
15 Match the l i s t o f cha ra c t e r s s p e c i f i e d by LIST . I f the f i r s t
16 cha rac t e r i s ’ ! ’ or ’ ˆ ’ , match a l l cha r a c t e r s except those
17 s p e c i f i e d by LIST . For example , the pattern ’ [ a−zA−Z ] ’ w i l l
18 match a l l l owercase and uppercase a lphabe t i c cha ra c t e r s .
19

20 For example , the command
21

22 c l e a r foo b∗ r
23

24 c l e a r s the name ’ foo ’ and a l l names that begin with the l e t t e r ’
b ’

25 and end with the l e t t e r ’ r ’ .
26

27 I f ’ c l e a r ’ i s c a l l e d without any arguments , a l l user−de f ined
28 va r i a b l e s ( l o c a l and g l oba l ) are c l e a r ed from the symbol t ab l e .

I f
29 ’ c l e a r ’ i s c a l l e d with at l e a s t one argument , only the v i s i b l e
30 names matching the arguments are c l e a r ed . For example , suppose

you
31 have de f ined a func t i on ’ foo ’ , and then hidden i t by per forming

the
32 ass ignment ’ foo = 2 ’ . Executing the command ’ c l e a r foo ’ once

w i l l
33 c l e a r the va r i ab l e d e f i n i t i o n and r e s t o r e the d e f i n i t i o n o f ’ f oo

’
34 as a func t i on . Executing ’ c l e a r foo ’ a second time w i l l c l e a r

the
35 f unc t i on d e f i n i t i o n .
36

37 The f o l l ow i ng opt ions are a v a i l a b l e in both long and shor t form
38

39 ’−a l l , −a ’ Clear s a l l l o c a l and g l oba l user−de f ined v a r i a b l e s and
a l l

40 f un c t i on s from the symbol t ab l e .
41

42 ’−exc lu s i v e , −x ’
43 Clears the v a r i a b l e s that don ’ t match the f o l l ow i ng pattern .
44

45 ’−f unc t i ons , −f ’
46 Clears the func t i on names and the bu i l t−in symbols names .
47

48 ’−g loba l , −g ’
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49 Clears the g l oba l symbol names .
50

51 ’−va r i ab l e s , −v ’
52 Clears the l o c a l v a r i a b l e names .
53

54 ’−c l a s s e s , −c ’
55 Clears the c l a s s s t r u c tu r e t ab l e and c l e a r s a l l o b j e c t s .
56

57 ’−regexp , −r ’
58 The arguments are t r ea t ed as r e gu l a r e xp r e s s i on s as any
59 va r i a b l e s that match w i l l be c l e a r ed .
60

61 With the except ion o f ’ e x c l u s i v e ’ , a l l long opt ions can be used
62 without the dash as we l l .
63

64

65 Addit iona l he lp f o r bu i l t−in f un c t i on s and ope ra to r s i s
66 av a i l a b l e in the on l i n e ve r s i on o f the manual . Use the command
67 ’ doc <top ic> ’ to search the manual index .
68

69 Help and in fo rmat ion about Octave i s a l s o a v a i l a b l e on the WWW
70 at http ://www. octave . org and v ia the help@octave . org
71 mai l ing l i s t .
72 >>

Judicious use of clear command proves to be a very powerful tool in
managing memory requirements for a memory intensive numerical calcula-
tion.

1.8 Summary

Using octave as a simple calculator (using numbers and basic operations)
as well as a complex calculator (using variables with complex functions),
one can perform numerical calculation at ease. Learning curve for octave
is quite flat owing to is simple and intuitive syntax. In case of confusion,
documentation for particular commands can be easily available using help

command. Octave also provides an integrated environment for working with
a lot of different kinds of computational tasks.
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2
Working with Arrays

2.1 Introduction

Matrices have become integrated
part of numerical computation
while dealing with large quantity of
data. For a 2 dimensional matrix,
elements have unique row and col-
umn index through which one can
access them. Rows and Columns
can be attributed to different prop-
erties under study. In this way, one
can fit data for two properties as a
matrix and then use these matrices
for numerical calculations. For example, suppose element of a row is defined
as 1 if a compound is conductor and 2 if it is a semiconductor and 3 if it
is an insulator. Then a row vector (a matrix composed of only one row)
[1 0 0 3 2 1 3 0 1 0 3 2 1] has information about 13 compounds. In
a numerical conductivity involving conductive nature of a compound, this
row vector (a 13× 1 matrix) can be utilized.

Octave has a class of objects for dealing with matrices. They are called
arrays. Using different properties of this class, one can define various kinds
of matrices. Built-in functions for matrix operations make it easier for a
programmer to deal with large number of data by arranging them as a
matrix in the desired format and performing array operations.
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2.2 Arrays and vectors

Instead of just pointing to a single number, a variable name can also point
to a sequential set of numbers called an array.

1 >> a = [1 , 2 , 3 , 4 , 5 ]
2 a =
3

4 1 2 3 4 5
5

6 >> a1 = [10 , 11 , 12 , 13 , 14 ]
7 a1 =
8

9 10 11 12 13 14
10 >> matrix22 = [1 , 2 ; 3 , 4 ]
11 matrix22 =
12

13 1 2
14 3 4
15 >> matrix33 = [ 1 , 2 , 3 ; 4 , 5 , 6 ; 7 , 8 , 9 ]
16 matrix33 =
17

18 1 2 3
19 4 5 6
20 7 8 9
21 >> s i z e ( a )
22 ans =
23

24 1 5
25

26 >> s i z e ( matrix22 )
27 ans =
28

29 2 2
30

31 >> s i z e ( matrix33 )
32 ans =
33

34 3 3

As seen in the example code, an array can be understood as a matrix
consisting of rows and columns. Thus one can make a desired sized matrix
for example, matrix22 is a 2X2 and matrix33 is a 3X3 matrix where as a

is a 1X5 matrix. The first number while defining the size gives the number
of rows while the second number gives the number of columns. The comma
(,) operator operates by defining the next element in the same row whereas
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the (;) operator defines the numbers in the next line/row.

If the number of elements in each row/column do not match then one
obtains an error message:

1 >> r i gh t33 = [ 1 , 2 , 3 ; 4 , 5 , 6 ; 7 , 8 , 9 ]
2 r i gh t33 =
3

4 1 2 3
5 4 5 6
6 7 8 9
7

8 >>wrong33 = [ 2 , 3 ; 4 , 5 , 6 ; 7 , 8 , 9 ]
9 e r r o r : v e r t i c a l dimensions mismatch (1 x2 vs 1x3 )

10 >> wrong33 = [ 1 , 2 , 3 ; 4 , 5 , 6 ; 8 , 9 ]
11 e r r o r : v e r t i c a l dimensions mismatch (2 x3 vs 1x2 )

Elements of an array can be any data-type as defined in section 1.7.1. All
elements of an array can be set to a particular data-type by the commands
as shown below:

1 >> x = uint32 ( [ 1 , 65535 ] )
2 x =
3

4 1 65535
5

6 >> x = uint64 ( [ 1 , 65535 ] )
7 x =
8

9 1 65535
10

11 >> x = int16 ( [ 1 , 65535 ] )
12 x =
13

14 1 32767
15

16 >> x = int32 ( [ 1 , 65535 ] )
17 x =
18

19 1 65535
20

21 >> x = int64 ( [ 1 , 65535 ] )
22 x =
23

24 1 65535
25

26 >> x = f l o a t ( [ 1 , 65535 ] )
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27 e r r o r : ’ f l o a t ’ undef ined near l i n e 1 column 5
28 >> x = s i n g l e ( [ 1 , 65535 ] )
29 x =
30

31 1 65535
32

33 >> x = double ( [ 1 , 65535 ] )
34 x =
35

36 1 65535
37

38 >> x = s i n g l e ( [ 1 . 0 , 65535 e10 ] )
39 x =
40

41 1 .0000 e+00 6.5535 e+14
42

43 >> x = double ( [ 1 . 0 , 65535 e10 ] )
44 x =
45

46 1 .0000 e+00 6.5535 e+14

Line number 14 shows that if the element is set to int16 then it can store
a maximum value of 32767 irrespective of being commanded to store a value
bigger than that. Hence it becomes supremely important to understand the
data-type of the elements beforehand, to avoid errors in numerical calcula-
tions. Also storing very small numbers in larger number of bits is a waste
of memory system (line number 46 displays that the number 1 is stored as
a double precision floating point number which occupies 64 bits where es-
sentially 63 bits except the last one are all zeros).

2.3 Operations on arrays and vectors

Operating on arrays has two aspects:

• Operating on two or more arrays

• Element wise operations

All arithmetic operators like +,-,*,/, %,^ etc. can be used in both
cases. When we need to do element wise operation, then a . is placed before
operator so that element-wise operators become .+,.-,.*,./, .%,.^. This
will become more clear in following example.
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1 >> a = [ 1 , 2 ; 3 , 4 ]
2 a =
3

4 1 2
5 3 4
6

7 >> b = [ 5 , 6 ; 7 , 8 ]
8 b =
9

10 5 6
11 7 8
12

13 >> a+b
14 ans =
15

16 6 8
17 10 12
18

19 >> 2.+a
20 ans =
21

22 3 4
23 5 6
24

25 >> −10.+b
26 ans =
27

28 −5 −4
29 −3 −2

When a and b are matrices to be added/subtracted, then their elements
are added/subtracted with elements in the same position. For this reason,
size of the two matrices added or subtracted should be same.

When we write 2.+a then we add 2 to each of the element individually.
This can be done irrespective of the size and is implemented uniformly on
all the elements of the matrix.

Those who are familiar with matrix algebra, know that matrix multipli-
cation and division is not a straightforward task. A aXb matrix can only
be multiplied by a bXc matrix which results in aXc matrix and it is per-
formed by multiplying elements of rows with elements of columns to get
new elements.
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1 >> a = [ 1 , 2 ; 3 , 4 ; 5 , 6 ]
2 a =
3

4 1 2
5 3 4
6 5 6
7 >> a ’
8 ans =
9

10 1 3 5
11 2 4 6
12

13 >> a∗a ’
14 ans =
15

16 5 11 17
17 11 25 39
18 17 39 61
19 >> a/b
20 ans =
21

22 0.050000 0.050000 0.050000
23 0.116667 0.116667 0.116667
24 0.183333 0.183333 0.183333

a’ gives the transpose of a matrix (rows are made columns and vice
versa).

Performing division of a matrix involves the matrix inversion.

1 >> pinv ( a )
2 ans =
3

4 −1.33333 −0.33333 0.66667
5 1.08333 0.33333 −0.41667
6

7 >> pinv (b)
8 ans =
9

10 0.016667 0.016667 0.016667
11 0.016667 0.016667 0.016667

Inverse of a matrix a, denoted by a−1, is a matrix such that

a ∗ a−1 = I

28 CHAPTER 2. WORKING WITH ARRAYS



Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

where I is identity matrix.

1 >> a
2 a =
3

4 1 2
5 3 4
6 5 6
7 >> pinv ( a )
8 ans =
9

10 −1.33333 −0.33333 0.66667
11 1.08333 0.33333 −0.41667
12 >> pinv ( a ) ∗a
13 ans =
14

15 1.00000 0.00000
16 −0.00000 1.00000
17 >> det ( pinv ( a ) ∗a )
18 ans = 1

I is called an identity matrix because all its diagonal elements are 1 and
all non-diagonal elements are zero, which makes its determinant 1. Deter-
minant of a matrix a is calculated by the command det(a).

Automatic generation of an identity matrix is done by using the com-
mand eye(a,b) where a and b are values of number of rows and columns.

1 >> eye (2 , 2 )
2 ans =
3

4 Diagonal Matrix
5

6 1 0
7 0 1
8 >> det ( eye (2 , 2 ) )
9 ans = 1

10 >> eye (4 , 5 )
11 ans =
12

13 Diagonal Matrix
14

15 1 0 0 0 0
16 0 1 0 0 0
17 0 0 1 0 0
18 0 0 0 1 0
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2.3.1 Random matrix

Using random number generators, a random matrix can be created by the
command rand(a,b)

1 >> rand (4 , 5 )
2 ans =
3

4 0.779821 0.904132 0.025018 0.118232 0.823903
5 0.963702 0.393643 0.148051 0.832420 0.316977
6 0.149530 0.943838 0.872814 0.699306 0.509816
7 0.133360 0.115337 0.401372 0.067246 0.264232

Please note that the numbers generated above will be different each time
even on same machine since they are supposed to be random in nature. By
default, they are uniformly distributed over the interval (0, 1). A vector is
simply a row vector so it can be generated randomly by command rand(a).
help rand gives detailed description about various other features and argu-
ments of random number generator.

2.3.2 Indexing

Each element of the matrix is characterized by two numbers, the row number
and the column number. This is used to pinpoint an element and operate
on that.

1 >> a = rand (2 , 3 )
2 a =
3

4 0.5248873 0.5531882 0.0051345
5 0.1597312 0.3685503 0.3041072
6

7 >> a (2 , 3 )=1
8 a =
9

10 0.5248873 0.5531882 0.0051345
11 0.1597312 0.3685503 1.0000000
12

13 >> a (1 , 1 )=0
14 a =
15
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16 0.00000 0.55319 0.00513
17 0.15973 0.36855 1.00000

Please note that a(2,3)=1 sets the element at 2nd row and 3rd column
i.e. number 0.3041072 to 1 and a(1,1)=0sets the element at 1st row and
1st column i.e. number 0.5248873 to 0. To index numbers in a vector, one
needs a single number.

1 >> a = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ]
2 a =
3

4 1 2 3 4 5 6 7 8 9
5

6 >> a (1 )
7 ans = 1
8 >> a(−1)
9 e r r o r : s ub s c r i p t i n d i c e s must be e i t h e r p o s i t i v e i n t e g e r s l e s s

than 2ˆ31 or l o g i c a l s
10 >> a (5 )
11 ans = 5
12 >> a (10)
13 e r r o r : A( I ) : index out o f bounds ; va lue 10 out o f bound 9
14 >>

It is important to note that unlike some programming languages, where
indices start from 0, in octave indices start from 1 and it does not take
negative numbers as indices.

2.3.3 Using indices to make new vector

1 >> a = [10 20 30 40 50 60 ]
2 a =
3

4 10 20 30 40 50 60
5

6 >> b = a ( [ 1 3 6 1 ] )
7 b =
8

9 10 30 60 10

In the above example, b is a new vector formed from vector a where
successive elements are made up of elements taken from a index vector
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[1 3 6 1].

1 >> a = [11 , 12 , 13 ; 40 , 50 , 60 ; 17 , 18 , 19 ]
2 a =
3

4 11 12 13
5 40 50 60
6 17 18 19
7

8 >> a ( [ 1 , 2 ] , [ 2 , 3 ] )
9 ans =

10

11 12 13
12 50 60

Please note that since use of comma operator is optional, so henceforth
we will define vectors and matrices by simply putting a whitespace.

2.3.4 Slicing

Matrices can be sliced to desired portions by using indices and colon :

operator.

1 >> a = [1 2 3 4 1 3 2 4 6 4 5 ]
2 a =
3

4 1 2 3 4 1 3 2 4 6 4 5
5

6 >> b =a ( 1 : 5 )
7 b =
8

9 1 2 3 4 1
10

11 >> c = a ( 5 : 7 )
12 c =
13

14 1 3 2

2.4 Automatic generation of vectors

One can generate a series of numbers and store them as arrays by using the
command
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start:step:stop

1 >> a=1:1:10
2 a =
3

4 1 2 3 4 5 6 7 8 9 10
5

6 >> a = [ 1 : 1 : 1 0 ]
7 a =
8

9 1 2 3 4 5 6 7 8 9 10

Please note that [] are optional here. If step is not defined then it is taken
as 1.

1 >> a=1:10
2 a =
3

4 1 2 3 4 5 6 7 8 9 10
5

6 >> a=1:2:10
7 a =
8

9 1 3 5 7 9

2.4.1 Linearly spaced vector

The command linspace(start,stop,n) produces an array starting from
first number and stopping at second one with a total of n numbers. Hence
they are linearly spaced.

1 >> a = l i n s p a c e (1 , 2 , 5 )
2 a =
3

4 1 .0000 1 .2500 1 .5000 1 .7500 2 .0000
5

6 >> a = l i n s p a c e (1 , 2 , 10 )
7 a =
8

9 1 .0000 1 .1111 1 .2222 1 .3333 1 .4444 1 .5556 1 .6667
1 .7778 1 .8889 2 .0000
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2.4.2 logspace

Similar to linspace logspace(start, stop,n) produces n number from
start to stop which are linearly space in logarithmic nature.

1 >> l og space (1 , 10 , 5 )
2 ans =
3

4 1 .0000 e+01 1.7783 e+03 3.1623 e+05 5.6234 e+07 1.0000 e+10

2.5 Matrix manipulations

Some common matrix manipulations have already been written in function
form which makes it easier for developer to use them right away, rather than
invest time to write an optimum code.

2.5.1 Flipping a matrix

flipud(A) returns a copy of matrix A with the order of the rows reversed.
flipud stands for flip-up-down. fliplr(A) returns a copy of matrix A with
the order of the rows reversed. fliplr stands for flip left right.

1 >> a = [1 2 ; 3 4 ; 5 6 ]
2 a =
3

4 1 2
5 3 4
6 5 6
7

8 >> f l i p l r ( a )
9 ans =

10

11 2 1
12 4 3
13 6 5
14

15 >> f l i p ud ( a )
16 ans =
17

18 5 6
19 3 4
20 1 2
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2.5.2 Rotating a matrix

Using the command rot90(a,n) a matrix a can be rotated n times by 90
degrees

1 >> a = [1 2 ; 3 4 ; 5 6 ]
2 a =
3

4 1 2
5 3 4
6 5 6
7

8 >> rot90 (a , 1 )
9 ans =

10

11 2 4 6
12 1 3 5
13

14 >> rot90 (a , 2 )
15 ans =
16

17 6 5
18 4 3
19 2 1
20

21 >> rot90 (a , 4 )
22 ans =
23

24 1 2
25 3 4
26 5 6

2.5.3 Reshaping a matrix

Number of rows and columns can be changed provided total number of
elements remains same.

1 >> a = [1 2 ; 3 4 ; 5 6 ]
2 a =
3

4 1 2
5 3 4
6 5 6
7

8 >> reshape (a , 6 , 1 )
9 ans =
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10

11 1
12 3
13 5
14 2
15 4
16 6
17 >> reshape (a , 4 , 1 )
18 e r r o r : reshape : can ’ t reshape 3x2 array to 4x1 array

2.5.4 Sorting

Numbers can be sorted in increasing order using sort function:

1 >> a = rand (1 , 5 )
2 a =
3

4 0.577290 0.079980 0.880757 0.294744 0.964269
5

6 >> s o r t ( a )
7 ans =
8

9 0.079980 0.294744 0.577290 0.880757 0.964269

2.6 Special matrices

Matrix algebra defines some kinds of matrices which are special in nature
and find their use in some problems. Octave has some functions defined to
create these matrices.

2.6.1 Upper and Lower triangular matrix

Upper triangular matrix is such that only diagonal and elements above di-
agonal are non-zero. Similarly, lower triangular matrix is such that diagonal
and elements below diagonal are non-zero.

1 >> a = rand (3 , 3 )
2 a =
3

4 0.414936 0.399589 0.269880
5 0.070691 0.405602 0.378955

36 CHAPTER 2. WORKING WITH ARRAYS



Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

6 0.169398 0.850042 0.919782
7

8 >> t r i l ( a )
9 ans =

10

11 0.41494 0.00000 0.00000
12 0.07069 0.40560 0.00000
13 0.16940 0.85004 0.91978
14

15 >> t r i u ( a )
16 ans =
17

18 0.41494 0.39959 0.26988
19 0.00000 0.40560 0.37896
20 0.00000 0.00000 0.91978

2.6.2 Ones and zeros matrix

A matrix having all its numbers as 1 or 0 make up ones and zeros matrix
respectively:

1 >> ones (3 , 3 )
2 ans =
3

4 1 1 1
5 1 1 1
6 1 1 1
7

8 >> z e ro s (3 , 3 )
9 ans =

10

11 0 0 0
12 0 0 0
13 0 0 0

2.7 Summary

Array based computing lies at the very heart of modern computational tech-
niques. Octave presents a very suitable platform to perform this technique
with ease. A variety of predefined functions enable user to save time while
prototyping a problem. Flexible methods to define multidimensional arrays
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and performing fast computation is the main necessity of our times. Most
of the time spent during a simulation is either in loops or in array opera-
tions. Predefined array operations have been optimized with algorithms for
reliability, time saving and efficient memory management.
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Plotting

3.1 Introduction

Without visualization, numerical
computations are difficult to judge.
Producing publication quality im-
ages of complex plots which give a
meaningful analysis of numerical re-
sults, has been a challenge for scien-
tists all over the world. Many com-
mercial softwares made good busi-
ness satisfying this need. Octave
also provides this facility. Plotting
features includes choosing from var-
ious types of plots in 2D and 3D regime, decorating plots with additional
information like titles, labeled axes, grids, label for data and writing equa-
tions and other important information about data etc. Following sections
will describe these actions in detail. It is worth mentioning that plotting
capabilities are essential to machine learning experiments since visual direc-
tions from the progressive steps give intuitive understanding of the problem
under consideration.
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3.1.1 2D plotting

plot(x,y)

Since we need data on two axes to be plotted, we first need to create them.
Lets assume that x axis has 100 linearly space data points on which y = x2.

1 >>x = l i n s p a c e (0 ,100 ,100) ;
2 >> y = x .ˆ2
3 >> p lo t (x , y )

Figure 3.1: y = x2

First we defined a variable x and placed 100 equally spaced data points
from 0 to 100. This made a 1x100 matrix. Using scalar operation of expo-
nentiation, we defined a variable y as x2. Then we use the function plot()

which takes two arguments as x-axis and y-axis data points.

Writing help plot on the command prompt gives useful insight into
this wonderful function written to plot two dimensional data.
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polar

Sometimes we prefer to plot in polar coordinates, rather than Cartesian
coordinates. Then instead of x, y our coordinates are r, θ.

1 theta = 0 : 0 . 0 2 : 2 ∗ pi ;
2 a1 = 0 .5 + 1 .3 . ˆ theta ;
3 a2 = 5 ∗ cos ( theta ) ;
4 a3 = 3 ∗ (1 − cos ( theta ) ) ;
5 a4 = 6∗ s i n (4∗ theta ) ;
6 r = [ a1 ; a2 ; a3 ; a4 ] ;
7 PolarGraph = po la r ( theta , r , ”∗” ) ;
8 s e t ( PolarGraph , ”LineWidth” , 2) ;
9 l egend ( ” s p i r a l ” , ” c i r c l e ” , ” heart ” , ”Rose” ) ;

CoordinatesPolar.m

Figure 3.2: Polar Graph

Figure 3.2 gives an example of a polar graph for code given by CoordinatesPolar.m

example. Explanation of program is given as follows(according to line num-
ber):
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1. A variable named th representing θ is defined by points starting from
0 to 2π with steps of 0.02.

2. A variable named a1 representing r for spiral is calculated by equation

r = 1.5(θ)

3. A variable named a2 representing r for circle is calculated by equation

r = 5(cos(θ))

4. A variable named a3 representing r for heart is calculated by equation

r = 3(1− cos(θ))

5. A variable named a4 representing r for rose is calculated by equation

r = 6(sin(4θ))

6. A variable named r stores all the r calculated using equations as a
column vector.

7. A variable named PolarGraph stores the values produced by the func-
tion polar() which takes θ, r as arguments and also "*" for the type
of marker.

8. set function is used to set the property values for the graph function.
This is a neat way of setting properties of the graph and experimenting
with them later. In present case, property named LineWidth is set to
be 2.

9. legend() function sets four legends in the same order as the polar
function has taken them from the vector r

plotting multiple plots is same graph

Multiple plots can be plotted within the same figure by simply supplying x
and y axes vectors.

1 c l e a r a l l ;
2 c l f ;
3 x = l i n s p a c e (1 ,100 ,100) ;
4 y1 = x . ˆ 2 . 0 ;
5 y2 = x . ˆ 2 . 1 ;
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6 y3 = x . ˆ 2 . 2 ;
7 y4 = x . ˆ 2 . 3 ;
8 p lo t (x , y1 , ”@12” , x , y2 , x , y3 , ”4” , x , y4 , ”+” )
9 g r id on

10 l egend ( ’ xˆ2 ’ , ’ x ˆ{2 .1} ’ , ’ x ˆ{2 .2} ’ , ’ x ˆ{2 .3} ’ ) ;
11 x l ab e l ( ’ x−ax i s ’ )
12 y l ab e l ( ’ y−ax i s ’ )
13 t i t l e ( ’ Mult ip l e Graphs ’ )
14

15 %plo t y with po in t s o f type 2 ( d i sp l ayed as ‘+ ’)
16 %and co l o r 1 ( red ) , y2 with l i n e s , y3 with l i n e s
17 %of c o l o r 4 (magenta ) and y4 with po in t s d i sp layed as ‘+ ’

multi.m

Figure 3.3: Multiple plots within same figure

Explanation of line numbers for above code is as follows:

1. clear all clears variable names and values from the memory

2. clf clears any current figure window.
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3. x = linspace(1,100,100) makes a vector x made up of 100 equally
spaced data points between 1 and 100.

4. y1 = x.2.0; makes a new vector named y1 having element wise square
of vector x

5. y1 = x.2.1; makes a new vector named y2 having element wise expo-
nentiation by 2.1 of vector x

6. y2 = x.2.2; makes a new vector named y3 having element wise expo-
nentiation by 2.2 of vector x

7. y3 = x.2.3; makes a new vector named y3 having element wise expo-
nentiation by 2.3 of vector x

8. y4 = x.2.4; makes a new vector named y4 having element wise expo-
nentiation by 2.4 of vector x

9. plots as per comment given in line 15,16,17.

10. grid is turned on for the figure.

11. xlable takes the value of string x-axis

12. ylabel takes the value of string y-axis

13. title takes the value of string Multiple Graphs

Figure 3.3 is obtained by running the code. These types of plots are used
to check the variation of result by varying a particular parameter.

Plotting multiple plots separately

subplot(row,coloumn, index) command is used to plot multiple plots
within the same figure separately. subplot(2,2,4) means that plot will
be on 2nd row, 2nd column and 4th index.

1 c l e a r a l l ;
2 c l f ;
3 x = l i n s p a c e (1 ,100 ,100) ;
4 y1 = x . ˆ 2 . 0 ;
5 y2 = log (x ) ;
6 y3 = s in (x ) ;
7 y4 = log10 (x ) ;
8 subplot ( 2 , 2 , 1 ) , p l o t (x , y1 )
9 subplot ( 2 , 2 , 2 ) , p l o t (x , y2 )
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10 subplot ( 2 , 2 , 3 ) , p l o t (x , y3 )
11 subplot ( 2 , 2 , 4 ) , p l o t (x , y4 )
12 %gr id on
13 %legend ( ’ x ˆ2 ’ , ’ x ˆ{2 .1} ’ , ’ x ˆ{2 . 2} ’ , ’ x ˆ{2 . 3} ’ ) ;
14 %x labe l ( ’ x−axis ’ )
15 %y labe l ( ’ y−axis ’ )
16 %t i t l e ( ’ Mult ip l e Graphs ’ )
17

18 %plo t y with po in t s o f type 2 ( d i sp l ayed as ‘+ ’)
19 %and co l o r 1 ( red ) , y2 with l i n e s , y3 with l i n e s
20 %of c o l o r 4 (magenta ) and y4 with po in t s d i sp layed as ‘+ ’

multiSubplot.m

Figure 3.4: Separate Multiple plots within same figure

As seen in figure 3.4, plots are organized as matrix where row number
as well as column number dictates its position. Index of the plot can then
be used to treat it as an object for further processing on graphical object.
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Many commands for controlling the font size, tick labels, fonts, inserting
mathematical equations etc. can be known by writing help plot or reading
the documentation of this function. Ample of examples can be obtained from
the web. This function will be used frequently, so its is necessary that one
has good command over its use.

3.1.2 3D plots

There are various functions available for 3D plotting in octave. Choosing
one of them depends on particular problem.

mesh

1 a = b = l i n s p a c e (−8 , 8 , 41) ’ ;
2 [ xx , yy ] = meshgrid ( a , b) ;
3 c = sq r t ( xx . ˆ 2 + yy . ˆ 2) + eps ;
4 d = s i n ( c ) . / c ;
5 mesh (a , b , d) ;

ThreeDMesh.m

Its important to note that we used a new function named meshgrid.
Doing a quick search around it, using help meshgrid will be very useful. It
is used as follows:

1 >> a = b = l i n s p a c e (−8 ,8 ,41) ;
2 >> [ xx , yy ] = meshgrid ( a , b) ;

Two variables are created namely a and b and they store linearly spaced
41 data points between −8 to 8, as a row vector. These two row vectors
(both 1X41 in dimension) are passed as arguments for the fucntion meshgrid

which gives two outputs: xx and yy. These are 41X41 dimensioned matrices
where rows of xx are copies of a and columns of yy are copies of b. meshgrid
can also take third argument whose copes make a complete 3D grid. Oth-
erwise on this two dimensional base grid, a function can be defined for data
points defined by copies of a and b vector. In our case the function is defined
as:

c =
√
x2 + y2 (3.1)

and
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Figure 3.5: 3D Meshing

d =
sin(c)

c
(3.2)

Note: Function eps produces a very small number (2.2204.10−16 for
machine used test at the time of writing the book). It is widely used in
numerical computation where zero needs to be avoided especially the case
of division by zero. By adding a very small number to large numbers, we
avoid this problem (remember that variable c calculated in 3 is then used
under division as a denominator in step 4).

Continuing now the plotting exercise, new arrays can then be used to
plot by applying a 3D plotting function mesh() which takes these two arrays
a and d as its arguments resulting in figure 3.5. If mesh(x,y,z) is used then
a wire-frame mesh made up of rectangles. The vertices of the rectangles are
made of data points generated by the function (in our case equation. 3.1 and
eq. 3.2). The (x, y) coordinated of vertices are given by xx and yy matrices
since x coordinated comes from xx matrix and y coordinate comes from yy

matrix. z determines the height above the plane of each vertex. In this way
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a 3D plot is plotted. It is important to note that the original 3D ”curve”
is interpreted as a surface made of flat ”rectangles” which is at best an ap-
proximation. In some cases, this error can be ignored. To get less error, size
of rectangles can be made small, if possible. There are some other variations
of the same function like ezmesh, meshc, meshz. A simple help command
can be very useful to judge which one will suit best for a particular problem.

The mesh also codes color for height (z-value). This is computed by
linearly scaling the Z values to fit the range of the current color-map (write
help colormap to know more).

meshc

meshc() generates a 3D rectangulated mesh as well a contour at base. As
seen in figure 3.6, apart from producing a 3D plot for given function, one
also obtains a contour plot. Please note that this time, the equation working
on matrices, is written as an argument of meshc() function, this making the
programs even smaller.

1 x=l i n s p a c e (−10 ,10 ,50) ;
2 y=l i n s p a c e (−10 ,10 ,50) ;
3 [ xx , yy]=meshgrid (x , y ) ;
4 meshc (xx , yy ,2−(xx .ˆ2+yy . ˆ 2 ) )

ThreeDMeshc.m

surf()

surf() generates a surface plot where wire-mesh is simply filled up at empty
points, as seen in figure 3.7,

1 a = b = l i n s p a c e (−8 , 8 , 10) ’ ;
2 [ xx , yy ] = meshgrid ( a , b) ;
3 c = sq r t ( xx . ˆ 2 + yy . ˆ 2) + eps ;
4 d = s i n ( c ) . / c ;
5 s u r f ( c , d ) ;

ThreeDsurf.m

3.2 Summary

A rich library of plotting functions makes octave a suitable choice for plotting
data in a variety of publication-ready formats. Together with commands to
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Figure 3.6: 3D Meshing with the function meshc()

access systems files and folders, these plots can be directed to be saved at
appropriate places for making a suitable report. Plotting in 3D and viewing
with different angles is quite intuitive in octave. Hence octave presents a
suitable choice to visualize the data.
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Figure 3.7: 3D Meshing with the function surf()
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4
Data through File reading and writing

4.1 Introduction

Using the information in chapter on arrays and chapter on plotting, one can
now formulate physical problems in terms of numerical computations and
solve them on digital computer. This process has some requirements such
as:

• Data should be in digital form (a digital file)

• Computer program should be able to read the file and make array
without errors. If errors have been made, then a mechanism to check
those errors and giving a warning to the user should be in place. If
possible correcting them should also be in place.

• Data should be stored as an array in proper data type and should be
displayed on demand in proper format.

• Array operations on data will result in memory usage in terms of
reading and writing data on disk. This should be facilitated by the
system. User should be able to check the status of memory as and
when required.

• Post-processing tasks includes displaying data in various formats: As
a printout from printer, on a terminal, as a graph on terminal or
printer/plotter etc.
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• If a report for particular experiment having input parameters, process-
ing data and output as file or graph, can be generated, then it makes
the task of user easier.

Octave has some features for each of these steps. Present chapter will
discuss them in brief.

4.2 File operations

File operations constitutes an im-
portant part of computation. It is
important to note that file system is
OS (Operating System) dependent.
Octave was traditionally written for
UNIX-like systems so it works on
Linux based and Mac OS X equally
well with same set of commands.
On windows, one uses same com-
mands as that of Linux for dealing
with file. Codes written below has
been tested on Windows 8, Mac OSX 10.10 and Ubuntu 14.04 systems.

4.2.1 Users

A computing system is accessed by different users. Each user defines a
workspace to avoid damaging each other’s work. After login, a user’s workspace
becomes active for a user. Workspace is made up of various files and folders.
Some files are essential for the OS to define the workspace and its properties,
hence they should not be altered at each time. This is ensured by giving
permissions for various users. ”Reading” and ”Writing” a file is restricted
by permissions. ”Administrator” (fondly called admin) is also called ”super
user” who has all the privileges of having all permissions to edit any file/-
folder. One must understand the defined user-type for on computer system
and then issue commands accordingly. If one is not permitted to access cer-
tain folders and input data is placed inside those files/folders, then unless
one seeks to change the permission from the admin, one would always get
an error.
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4.2.2 File Path

Directory/Folder can contain sub-directories/sub-folders and files again. This
can go to any level if this process if not restricted by the administrator.

pwd command stands for print working directory. On octave termi-
nal, typing pwd displays the path of present working directory as shown in
example below.

1 >> pwd
2 ans = /home/ sandeep

Under the user, /home directory, contains another directory named /sandeep.
This is the present working space. When pwd is typed on the terminal, a
variable name named ans stores this data (file path). A variable name of
choice, can be assigned to store the filename as a string.

A file/folder is accessed by writing file-path on the terminal. Lets do
a small exercise to understand this process. To make a new directory, use
mkdir ’name’ as follows:

1 >> mkdir octave
2 ans = 1
3 >> l s
4 Downloads Music
5 R
6 Templates
7 octave
8 Videos
9 Desktop so f tware

10 Work
11 Documents Library
12 Pic tu r e s
13 >> cd octave
14 >>

At line number 1, mkdir octave makes a directory named ”octave”.
To see the contents of the present directory, one can use the command ls

,as done at line number 3, which stands for list. To change directory, one
can use the command cd "file path" as shown in line number 13. It is
suggested that one works in this directory for rest of the book.
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4.2.3 Creating files and saving them

save and load commands enables one to write and read data to the mem-
ory.

1 >> matrix = rand (3 , 3 ) ;
2 >> save MyFirstFi le . mat matrix
3 >> l s
4 MyFirstFi le . mat
5 >> load MyFirstFi le . mat
6 >> matrix
7 matrix =
8

9 0.467414 0.610273 0.429941
10 0.568490 0.037898 0.734682
11 0.547370 0.275421 0.539650
12

13 >>

At line number 1, A variable named ”matrix” is created first, which
stored a random values 3× 3 matrix. At line number 2, this data is stored
as a .mat file named MrFirstFile.mat, which is passed the variable name
as the argument. When required, this file can be loaded in workspace using
load MyFirstFile.mat and then calling the variable name matrix. Those
random number which were recorded at the time of saving the file, are loaded
as the data for 3×3 matrix. Please note that the data need not be numbers
always. It can anything which a digital computer can handle, like pictures,
videos, strings, character just to name a few.

Multiple variables can be stored in the same file by passing the name of
variables at the time of saving.

1 >> matrix1 = rand (4 , 4 ) ;
2 >> matrix2 = rand (2 , 3 ) ;
3 >> matrix3 = rand (2 , 2 ) ;
4 >> save ( ” Sav ingMul t ip l eVar iab l e s . mat” , ”matrix1 ” , ”matrix2 ” , ”

matrix3 ” )
5 >> load Sav ingMul t ip l eVar iab l e s . mat
6 >> matrix1
7 matrix1 =
8

9 0.8598130 0.0118250 0.9803720 0.3044413
10 0.6676748 0.0056845 0.1101545 0.2183920
11 0.2547204 0.8192626 0.8056112 0.6961116
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12 0.7924558 0.9130480 0.1976146 0.4635055
13

14 >> matrix2
15 matrix2 =
16

17 0.35215 0.55770 0.66650
18 0.98515 0.98677 0.45513
19

20 >> matrix3
21 matrix3 =
22

23 0.097693 0.540354
24 0.923853 0.329501
25

26 >>>> save −binary SavedAsBinary m∗
27 >> l s
28 MyFirstFi le . mat SavedAsBinary Sav ingMul t ip l eVar iab l e s . mat

help save and help load gives very useful instructions about using
them. Using ”options” one can save the file in a specific format. For exam-
ple, at line number 26, all variables names starting with ”m” are saved as
binary data inside a binary file named ”SavedAsBinary”. This is particu-
larly important for the case were data generated from octave based numerical
computation is used to feed another software. One can also specify precision
of saved data using options. Also one can compresses a big file using -zip

command. This is very useful in case the data generated by octave is large
in size and needs to be transmitted.

load function follows the same logic as save function. Data can be
unzipped and loaded from a particular formatted file as an array. Array
thus populated, can be used for computation and resultant files can be made
using save function again (if required). Elaborate computations require this
procedure to be repeated successively many times, thus the functions have
been optimized to locate and load required data in a short time.

diary

An octave session can be recorded in a file by using the command diary.
Using help diary its use can be obtained. Writing help "filename" al-
lows recording the session at a file with given filename. The commands and
their outputs are continuously updated using this function.
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Using the command history a list of executed commands is displayed.
Various options are available to see this history in particular formats.

Opening and closing files

To read and write data files, they must be opened and defined as readable
and/or writable. The fopen function returns a pointer to an open file that
is ready to be read or written. This is defined by an option ”r” as read-
able, ”w” as writable, ”r+” as readable and writable, ”a” for appending
i.e. writing new content at the end of the file, ”a+” for reading, writing
and appending. Opening mode can be set as ”t” for text mode or ”b” for
binary mode. ”z” enables opening a gzipped file for reading and writing.

Once all data has been read from or written to the opened file it should
be closed. The fclose function does this.

1 MyFile = fopen ( ”a . dat” , ” r ” ) ;

A variable MyFile is created which is used to store the contents of the
file a.dat. This file is opened in ”reading mode” only in the sense that it
cannot be edited. This is important if author of the file wants it to remain
unchanged while sharing like file containing constants or important piece of
code which should not be changed etc. freport() prints a list of files opened
and whether they are opened for reading, writing or both. For example:

1 >> f r e p o r t
2

3 number mode arch name
4 −−−−−− −−−− −−−− −−−−
5 0 r i e e e−l e s td in
6 1 w ieee−l e s tdout
7 2 w ieee−l e s t d e r r
8

9 >>

Reading and writing binary files

A binary file is computer readable file. They are simply sequence of bytes.
Same as C functions, fread and fwrite functions can read and write binary
data from a file.
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csvread and csvwrite

Functions csvread and csvwrite are used to read data from .csv filed which
stand for comma seperated values.

Suppose the following data needs to be stored as a csv file.

1 2 3 4
5 6 7 8
8 7 6 5
4 3 2 1

Following code makes an array using csvwrite to create a file named
csvTestData.dat containing the matrix values. One can check by simply
opening this newly created file in a text editor. At line number 3, a new
file named csvTestData1.dat is created with offset defined at row 1 and
column 2.

1 >> a = [1 , 2 , 3 , 4 ; 5 ,6 ,7 ,8 ; 8 ,7 ,6 ,5 ; 4 ,3 ,2 ,1 ] ;
2 >> a
3 a =
4

5 1 2 3 4
6 5 6 7 8
7 8 7 6 5
8 4 3 2 1
9 >> c svwr i t e ( ’ csvTestData . dat ’ , a )

10 >> c svwr i t e ( ’ csvTestData1 . dat ’ , a , 1 ,2)
11 >> a1 = csvread ( ’ csvTestData . dat ’ )
12 a1 =
13

14 1 2 3 4
15 5 6 7 8
16 8 7 6 5
17 4 3 2 1
18

19 >> a1 = csvread ( ’ csvTestData . dat ’ , 1 , 2)
20 a1 =
21

22 7 8
23 6 5
24 2 1
25

26 >>

Now csvread function can be used to create matrices with desired offsets
just as the function csvwrite.
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Note: A number of other functions to read and write files exist, but the
present section focuses on some of the most commonly used ones. Docu-
mentation can be accessed to know about using these specialized functions,
if required.

4.2.4 Working with Excel files

A lot of data is present on Internet, in the form of an excel file. Octave has
a separate module to work with these files but it first needs to be installed.
The module ”IO” is part of octave-forge project where to install a module,
one has to write pkg install -forge package_name at octave command
prompt:

1 pkg i n s t a l l −f o r g e i o

Please note that one must be connected to Internet in above case.

Once the module has been automatically installed at a proper place, its
functions can be used. Following is the list of file extensions and associated
permissions.

1 F i l e ex tens i on COM POI POI/OOXML JXL OXS UNO OTK JOD OCT
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 . x l s ( Excel95 ) R R R
4 . x l s ( Excel97 −2003) + + + + + +
5 . x l s x ( Excel2007+) ˜ + (+) + +
6 . x lsb , . xlsm ˜ ? R R?
7 . wk1 + R
8 . wks + R
9 . dbf + +

10 . ods ˜ + + + +
11 . sxc + +
12 . f ods +
13 . uos +
14 . d i f + +
15 . csv + R
16 . gnumeric +
17 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18

19 R : only read ; + : f u l l read /wr i t e ; ˜ : dependent on Excel
v e r s i on
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To open, read, write and close an excel file

xlsopen, xlswrite, xlsclose, odsopen, odswrite, odsclose commands
open, write and close the .xls and .ods files respectively. While .xls files
are generated using Microsoft Excel software, .ods files are generated using
Open/Libre Office software, which is open source equivalent of Microsoft
Excel software. The process of opening, reading and writing data is as
follows:

• xlsopen(’Filename.xls’)

• a = xlsread (’Filename.xls’, ’3rd_sheet’, ’B3:AA10’);

Numeric Data from the file Filename.xls’s worksheet named 3rd

sheet will be read from cell B3 to AA10. This data is stored as an
array named a.

• [Array, Text, Raw, limits] = xlsread (’a.xls’, ’hello’);

The file a.xls is read from the worksheet named hello, and the
whole numeric data is fed into an array named ”Array”, the text data
is fed into array named ”Text”, the raw cell data into cell array ”Raw”
and the ranges from where the actual data came in ”limits”

• xlswrite(’new.xls’, a) writes the data in array named a, into .xls

formated excel sheet named new.xls.

• xlsclose

1 >> pkg load i o
2 >> a = rand (10 ,10) ;
3 >> odswr i te ( ’ a . ods ’ , a )
4 ans = 1
5 >> l s
6 a . ods

4.3 Taking data from the Internet

Most often, useful large data sets are kept at some remote server. Using
urlread() one can read the remote file. For saving at the local disk, one
can use urlwrite() functions.
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1 >> a = ur l r ead ( ’ http ://www. f s . f ed . us/ land/wfas / f d r ob s . dat ’ ) ;
2 >> who
3 Var iab l e s in the cur rent scope :
4

5 a ans
6

7 >> whos
8 Var iab l e s in the cur rent scope :
9

10 Attr Name S i z e Bytes Class
11 ==== ==== ==== ===== =====
12 a 1x147589 147589 char
13 ans 1x1 8 double
14

15 Total i s 147590 e lements us ing 147597 bytes
16

17 >> u r lw r i t e ( ’ http ://www. f s . f ed . us/ land/wfas / f d r ob s . dat ’ , ’ f i r e .
dat ’ )

18 >> l s
19 f i r e . dat
20 >>

Here a variable named a stores the data from the data file stored at http:
//www.fs.fed.us/land/wfas/fdr_obs.dat. Alternatively, the whole data
is stored as a file named a.dat using the function urlwrite(URL).

4.4 Printing and saving plots

Some commands like print, saveas exist to save graphs/figures generated
by octave programs, to be saved in desired formats. They are discussed
below:

4.4.1 print

print command handles the printing jobs such as printing using a printer
and/or plotter, printing to a file etc. Especially for figures, this command is
very useful to save a figure automatically by a desired filename in a specified
format.

1 % Saving in svg format
2 f i g u r e (1 ) ;
3 c l f ( ) ;
4 peaks ( ) ;
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5 pr in t −dsvg f i g u r e 1 . svg
6

7 % Saving in png format
8 f i g u r e (1 ) ;
9 c l f ( ) ;

10 sombrero ( ) ;
11 pr in t −dpng f i g u r e 2 . png
12

13 % Pr int ing to a HP DeskJet 550C
14 c l f ( ) ;
15 sombrero ( ) ;
16 pr in t −dcdj550

clf function clears the current graphic window. A lot of other ”options”
for saving in different formats exist for print command. To know more,
please type help print at octave terminal.

4.4.2 saveas

saveas functions saves a graphic object in a desired format as follows:

1 c l f ( ) ;
2 a = sombrero ( ) ;
3 saveas ( a , ” f i g u r e 3 . png” ) ;

4.4.3 orient

orient(a,orientation) function defines the orientation of an graphical
object ”a”. The valid values for orientation parameters are portrait,
landscape, and tall.The landscape option changes the orientation so the
plot width is larger than the plot height. The tall option sets the orienta-
tion to portrait and fills the page with the plot, while leaving a 0.25 inch
border. The portrait option (default) changes the orientation so the plot
height is larger than the plot width.

4.5 Summary

In present chapter, various functions enabling reading and writing permis-
sion as well as taking data to and from a file, has been illustrated. This
becomes an essential part of a numerical computation exercise. The data
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can be generated in the form of files using a software or hardware (an instru-
ment). Octave does not care for its origin. It treats data by its type and by
file-type. Judging an appropriate function to operate using files, has to be
done by the user as per the situation. File operation does provide faculties
to trim the data so that only useful part of data is fed as an array. Further
trimming can be performed by slicing operations. With the art of handling
files, one can confidently proceed towards handling sophisticated numerical
computations.
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5
Functions and loops

5.1 Introduction

When a particular numerical tasks
needs to be ”repeated” over differ-
ent data points, digital computers
becomes a useful tool since they
can perform the same with greater
speeds than humans. Loops per-
form exactly this tasks. Using a
condition to check the start and
termination rules, one can perform
repetitive parts of a process eas-
ily. Different programming lan-
guages and environments have different rules of defining loops. Octave pro-
vide a much simpler way to define and run loops. They will be discussed
shortly. Its useful to define the term function here. A big program may
require a set of instructions to be called at different times. Hence these set
of instructions can be defined as a sub-program, which can be requested to
perform the computation at a desired time. In this way, a complicated task
can be divided into many small parts. This architecture of programming is
called modular programming. This is the most popular way of programming
since its quite logical, better at visualizing the problem and easy to debug.
The most popular way of defining the these small set of instructions is to
define them as functions. Present chapter will discuss both these concepts
in details.
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5.2 Loops

Loops form an essential part of an algorithm since they perform the tasks
which computers perform best: doing repetitive actions in a very fast man-
ner. Loops can come in many flavors like for loop which repeats certain
tasks over a list of variable values, while loop which checks a logical con-
dition before executing certain task and if-then-else loop which checks
a condition and directs the flow of algorithm. Choice of a particular loop
depends on the problem at hand.

A variety of functions and their usage is listed below. Judging their
usage critically becomes supremely important because the looping part of
algorithm consumes most of execution time.

5.2.1 while

while loop defines a logical condition and until it is satisfied, it run a block
of code. The syntax for while loop is:

1 whi le cond i t i on
2 BODY
3 endwhi le

Here the keyword while initiates the execution of a while loop. The
condition is a logical condition whose answer can be ’true’ (1) or ’false’
(0). The BODY encompasses the st of commands which is executed until the
condition holds true.

1 x = 1 . 0 ;
2 whi le x < 10
3 di sp ( sq r t ( x ) ) ;
4 x = x+1;
5 endwhi le

while1.m

The program while1.m runs by first initializing a variable x to value 1.0.
Then it lists a logical condition:

x < 10

.
At the first step of loop, x = 1, this condition is satisfied since 1 < 10.

When this condition is satisfied, disp(sqrt(x)) is executed which displays
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the square root of x. Then line number 4 is executed where x = x + 1

increments x. With new incremented value of x to 2, the logical condition
x < 10 is again checked and the body of loop given by lines 3 and 4 are
executed. This is done until x = 10 when the loop condition is not satisfied,
hence line number 5 is executed, which declares the end of while loop. The
execution of file while1.m yields:

1 >> whi le1
2 1
3 1 .4142
4 1 .7321
5 2
6 2 .2361
7 2 .4495
8 2 .6458
9 2 .8284

10 3

5.2.2 do-until

It is important to note that there can be cases where the body of a loop
might not get executed even one in the case of while loop. This is the case
when after initialization, condition is not satisfied. To overcome this kind
of scenario do-until loop is framed whose syntax is as follows:

1 do
2 BODY
3 un t i l c ond i t i on

The loop first executes the body of code and then check for condition.
This way, the code block comprising the BODY of loop is at least executed
once. The usage can be understood in the example below:

1 % Disp lay ing square root o f
2 % f i r s t ten p o s i t i v e natura l numbers
3

4 x = 1 . 0 ;
5 do
6 di sp ( sq r t ( x ) ) ;
7 x = x+1;
8 un t i l x == 10
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dountil1.m

The execution of code yields:

1 >> dount i l 1
2 1
3 1 .4142
4 1 .7321
5 2
6 2 .2361
7 2 .4495
8 2 .6458
9 2 .8284

10 3
11 >>

At line number 4, x is initialized at 1.0. Then the body of loop is written
for displaying the square root of x and then incrementing it by 1. This is
done until x = 10 i.e value of x becomes 10.

5.2.3 for

for loop is used to perform computation on a list of known values. The
syntax of for loop is:

1 f o r v a r i a b l e = vecto r
2 BODY
3 end

The keyword for declared the starting of loop where a variable takes the
values stored in a vector. Then a body of code (here represented by BODY)
is executed. The keyword end declares end of for loop. This is explained
in the example below:

1 % program to c a l c u l a t e squate root
2 % of f i r s t 10 numbers
3

4 f o r i = 1 :10
5 ans = sq r t ( i )
6 end

for1.m
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Executing for1.m yields:

1 >> f o r 1
2 ans = 1
3 ans = 1.4142
4 ans = 1.7321
5 ans = 2
6 ans = 2.2361
7 ans = 2.4495
8 ans = 2.6458
9 ans = 2.8284

10 ans = 3
11 ans = 3.1623

5.2.4 if-elseif-else

Situation where a number of conditions needs to be checked at different
points of times, if-elseif-else loop works well. The syntax for the loop
is given by:

1 i f c ond i t i on1
2 BODY1
3 e l s e i f cond i t i on2
4 BODY2
5 e l s e
6 BODY3
7 end i f

At line 1, a condition is defined. If this condition is satisfied then the
line 2 is executed or else line 3 is executed. Hence BODY1, BODY2 are the
blocks of codes which are executed by checking for different set of conditions
and BODY3 set of codes is executed in the case when none of the condition
is executed.

1 % Program to check i f a
2 % number i s even or odd
3

4 x = 33 ;
5

6 i f ( rem (x , 2) == 0)
7 p r i n t f ( ”x i s even\n” ) ;
8 e l s e i f ( rem (x , 5) == 0)
9 p r i n t f ( ”x i s odd and d i v i s i b l e by 5\n” ) ;

10 e l s e
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11 p r i n t f ( ”x i s odd\n” ) ;
12 end i f

ifelse1.m

Executing ifelse1.m yields:

1 >> i f e l s e 1
2 x i s odd and d i v i s i b l e by 5

At line number 4, x is initialized as 33. Then at line number 6, the
remainder of x

2 is checked. If it is zero then line number 7 is executed or
else line number 8 is executed where remainder of x

5 is checked. If it is zero
then line number 9 is executed. If both the conditions are not satisfied then
Line number 11 is executed and then line number 12 declares ending the
if-else loop.

5.3 Functions

Function is a set of code which can be called as and when required. Hence
it can be defined separately either in a separate file or within the body of
program. Octave presents some ways to define a functions as discussed in
following subsections.

5.3.1 function

The definition of a function follows the syntax:

1 f unc t i on [ re turn value 1 , r e turn value 2 , . . . ] = name( [ arg1 ,
arg2 , . . . ] )

2 body
3 endfunct ion

Here function keyword defines the object types as function. Then a
set of variables are defined which this function is expected to return. Next
comes an = operator. Then the name of function. In above case its name.
Name objects takes a set of arguments which are objects using which the
function is defined. Then comes the main body of function. The last part
is to define the end of function.
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For example, one can write a function to find x2 − y2 and assign it to
variable name z.

1 f unc t i on y = fn1 (x , y )
2 y = xˆ2 − y ˆ2 ;
3 end

Save this as fn1.m in the present working directory. Now go to the
octave terminal and type:

1 >> fn1 (5 , 1 )
2 ans = 24
3 >> fn1 (5 , 2 )
4 ans = 21
5 >> fn1 (5 , 3 )
6 ans = 16
7 >> fn1 (5 , 4 )
8 ans = 9
9 >> fn1 (5 , 5 )

10 ans = 0

Hence one can see that function named fn1 is performing the computa-
tion x2 − y2 on the two input arguments for which it is defined.

It is a good practice to define the program as a group of function files
and call them in the master program stored as a script file. This modular
approach makes it easy to experiment with the idea and also makes it easier
to debug and test the code. A function can return more than two values
too. For example:

1 f unc t i on [ y1 , y2 , y3 ] = fn2 (x , y )
2 y1 = xˆ2 − y ˆ2 ;
3 y2 = xˆ2 + y ˆ2 ;
4 y3 = y2 − y1 ;
5 end

This gives the following result:

1 >> [ a , b , c ] = fn2 (5 , 2 )
2 a = 21
3 b = 29
4 c = 8
5 >> [ a , b , c ] = fn2 (5 , 0 )
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6 a = 25
7 b = 25
8 c = 0

Functions can incorporate loops to regulate the repetitive tasks inside
the program. For example, factorial of a number can be calculated using a
function given below:

1 f unc t i on r e s u l t = f a c t o r i a l ( n )
2 i f ( n == 0 )
3 r e s u l t = 1 ;
4 re turn ;
5 e l s e
6 r e s u l t = prod ( 1 : n ) ;
7 end i f
8 endfunct ion

A function named factorial, which takes a number n as an argument
calculates the product of number with all its successive numbers. When
called from octave command line, the function yields the following result.

1 >> f a c t o r i a l (50)
2 ans = 3.0414 e+064
3 >> f a c t o r i a l (1 )
4 ans = 1
5 >> f a c t o r i a l (0 )
6 ans = 1
7 >> f a c t o r i a l (100)
8 ans = 9.3326 e+157
9 >> f a c t o r i a l (1000)

10 ans = NaN
11 >> f a c t o r i a l (−1)
12 e r r o r : f a c t o r i a l : N must a l l be non−negat ive i n t e g e r s

help NaN and help prod gives useful insights into the behavior of these
commands.

5.3.2 inline

Functions can also be defined inline using the command inline as follows:

1 >> f = i n l i n e ( ”xˆ2+y” ) ;
2 >> f ( 1 , 2 )
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3 ans = 3
4 >> f ( 10 ,10)
5 ans = 110
6 >> f ( 0 , 2 )
7 ans = 2
8 >>

Line number 1 defines a function named f with two variables x and y to
calculate f(x, y) = x2 + y. When called with values of these two variables,
it outputs the calculated values.

5.3.3 Anonymous function

Anonymous functions are unnamed function objects defined in the program.
There definition follows a simple syntax:

@(argument list) expression

For example:

1 >> a = @(x ) s i n (x ) ∗ cos ( x ) ;
2 >> quad (a , 0 , 1)
3 ans = 0.35404
4 >> quad (a , 0 , p i )
5 ans = 7.3031 e−017
6 >> quad (a , −pi , p i )
7 ans = 0
8 >> quad (a , −pi , 2∗ pi )
9 ans = −2.8435e−016

10 >> quad (a , −2∗pi , 2∗ pi )
11 ans = 0

help quad tells us that the function quad evaluated the integration of a
function between two values. Hence line 1 defines a function sin(x)cos(x)
whose integration.
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∫ 1

0
sin(x)cos(x) = 0.35404∫ π

0
sin(x)cos(x) = 7.3031× 10−17∫ π

−π
sin(x)cos(x) = 0∫ 2π

−π
sin(x)cos(x) = −2.8435× 10−16

∫ 2π

−2π
sin(x)cos(x) = 0

Hence using anonymous function definition, one need not name a func-
tion.

5.4 Summary

Defining functions is the key to modular programming. Octave presents an
elegant way to define and use functions both inline and in separate files.
When combined with the ability to write functions inside a loop, complex
problems can be implemented in few lines of codes. It requires an artistic
attitude while designing an algorithm where functions and loops are the
paintbrush to devise an elegant solutions to a given numerical problem.
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6
Numerical Computing formalism

6.1 Introduction

Numerical computation enables us
to compute solutions to numerical
problems, provided we can frame
them into a proper format. This re-
quires certain considerations. For
example, if we digitize continu-
ous functions, then we are going
to introduce certain errors due to
the sampling at a finite frequency.
Hence a very accurate result would
require very fast sampling rate. In
cases when a large data set needs to be computed, it becomes computation-
ally intensive and time consuming task. Also one must understand that the
numerical solutions are an approximation at best, compared to analytical
solutions. The onus of finding their physical meaning and significance lies
on us. The art of discarding solutions which do not have a meaning for
real world scenario, is something which a scientist/engineer develops over
the years. Also, a computational device is just as intelligent as its operator.
The law of GIGO (Garbage-In-Garbage-Out) is followed very strictly in this
domain.

In the present chapter, we shall try to understand some of the important
steps one must consider to solve a physical problem using numerical com-
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putation. Defining a problem in proper term is just the first step. Making
the right model and then using the right method to solve (solver) enables
to distinguish between a naive and experienced scientist/engineer.

6.2 Physical problems

Everything in our physical world is governed by physical laws. Owing to men
and women of science who toiled under difficult circumstances and came up
with fine solutions to things happening around us, we obtained mathemat-
ical theories for physical laws. To test these mathematical formalisms of
physical laws, we use numerical computation. If it yields the same results
as that of a real experiment, the validate each other. Numerical simulations
can remove the need of doing an experiment altogether provided we have
a well tested mathematical formalism. For example, nuclear powers of our
times need not test nuclear bombs for real any more. The data about nu-
clear explosion, which was obtained during real nuclear explosions, enabled
scientists to model these physical systems quite accurately, thus eliminating
the need to a real testing.

Apart from applications like simulating a real experiment, modeling
physical problems are good educational exercises. While modeling, hands-
on exercises enables students explore the subject in depth and give a proper
meaning of topic under study. Solving numerical problem and visualization
of results makes the learning permanent and also ignites the research about
flaws in mathematical theory which ultimately leads to new discoveries.

6.3 Defining a model

Modeling means writing equations for a physical system. As the name sug-
gests, an equation is about equating two sides. An equation is written using
an = sign where terms on left hand side is equal to term on right hand side.
The terms on either sides of equations can be numbers or expressions. For
example:

3x+ 4y + 9z = 10

This is an equation having a term 3x+ 4y + 9z on left hand side (LHS)
and a term 10 on right hand side (RHS). Please note that whereas LHS is
an algebraic term, RHS is a number.
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Expressions are written using functions which is simply a relation be-
tween two domains. Like f(x) = y is a relation from y to x using rules of
algebra. Mathematics has a rich library of functions using which one can
make expressions. Choice of proper functions depend on problem. Some
functions describe some situations best. For example, oscillatory behavior
can be described in a reasonable manner using trigonometric functions like
sin(x), cos(x) etc. Objects moving in straight lines can be described well
using linear equations like y = mx+ c where x is their present position, m
is constant rate of change of x w.r.t y and c is the offset position. Objects
moving in a curved fashion can be described by various non-linear functions
(where power of dependent variable like x above, is not 1).

In real life we can have situations which can be mixture of these scenar-
ios. Like an object can oscillate and move in curved fashion at the same
time. In that case we write an expression using mixture of functions or find
new functions which could explain the behavior of object. Verifying the
functions is done by finding solutions to equations describing the behavior
and matching it with observations taken on object. If they match perfectly,
we obtain perfect solutions. In most cases, an exact solutions might be dif-
ficult to obtain. In these cases, we get an ”approximate” solution. If the
errors involved while obtaining an approximate solution are within tolera-
tion limits, the models can be acceptable.

As discussed above, physical situations can be analytically solved by
writing mathematical expressions in terms of functions involving dependent
variables. Simplest problems have simple functions between dependent vari-
ables with a single equation. There can be situation where multiple equa-
tions are needed to explain a physical behavior. In case of multiple equations
being solved, the theory of matrix comes handy.

Suppose equations below define the physical behavior of a system:

−x+ 3y = 4 (6.1)

2x− 4y = −3 (6.2)

Then this system of two equations can be represented by a matrix equa-
tion as follows:[

−1 3
2 −4

]
+

[
x
y

]
=

[
4
3

]
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Now using matrix algebra, values of variables x and y can be found such
that they satisfy the equations. Those values are called roots of these equa-
tions. These roots are the point in 2-D space (because we had 2 dependent
variables) where the system will find stability for that physical problem. In
this way, we can predict the behavior of system without actually doing an
experiment.

Mathematical concept of differentiation and integration becomes very
important where we need to work with dynamic system. When the sys-
tem is constantly changing the values of dependent variables to produce a
scenario, then its important to know the rate of change of these variables.
When these variables are independent of each other, we use simple deriva-
tives to define their rate of change. When they are not independent of each
other, we use partial derivatives for the same.

For example, Newtons second law of motion says that rate of change
of velocity of an object is directly proportional to the force applied on it.
Mathematically:

F ∝ dy

dx
(6.3)

The proportionality is turned into equality by substituting for a constant
of multiplication m such that:

F = m× dy

dx
(6.4)

If we know values or expressions for F , this equation can be solved ana-
lytically and solutions can be found to this equation. But in some cases, the
analytical solution may be too difficult to obtain. In those cases, we digitize
the system and find a numerical solution.

There are many methods to digitize and numerically solve a given func-
tion. Programs to implement a particular method to solve a function nu-
merically, is called a solver. A lot of solvers exist to solve a function. Choice
of solver is critical to successfully obtain a solution. For example, equation
6.4 is a differential equation. It is a first order ordinary differential equation.
A number of solvers exist to solve it like Euler, Runge-Kutta etc. Choice
of particular solver depends on accuracy of its solution, time taken for ob-
taining a solution and amount of memory used during the process. The
latter is important where memory is not an freely expendable commodity
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like micro-computers with limited memory storage.

The advantage of using octave to perform a numerical computation lies
in the fact that it has a very rich library of functions to perform various
tasks required. The predefined functions has been optimized for speed and
accuracy (in some cases, accuracy can be predefined). This enables the user
to rapidly prototype the problem instead of concentrating on writing func-
tions to do basic tasks and optimizing them for speed, accuracy and memory
usage.

6.4 Octave Packages

A number of packages exist to perform numerical computation in a particu-
lar scientific domain. The website http://octave.sourceforge.net/ gives
a list of packages. Installing package can be simply attained by writing the
command

>> pkg install -forge package_name

on the octave command line.

6.5 Summary

Almost all branch of science and engineering requires one to perform numer-
ical computation. Octave is one of the alternative to do so. Octave has a
library of optimized functions for general computation. Also it has a variety
of packages are present to perform a specialized job. This makes it an ideal
choice for prototyping a numerical computation problem efficiently.
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