
B-26 Appendix B The Basics of Logic Design

Check
Yourself

Assuming all values are initially zero, what are the values of A and B after executing
this Verilog code inside an always block?

C=1;
A <= C;
B = C;

The arithmetic logic unit (ALU) is the brawn of the computer, the device that per-
forms the arithmetic operations like addition and subtraction or logical opera-
tions like AND and OR. This section constructs an ALU from four hardware
building blocks (AND and OR gates, inverters, and multiplexors) and illustrates
how combinational logic works. In the next section, we will see how addition can
be sped up through more clever designs.

Because the MIPS word is 32 bits wide, we need a 32-bit-wide ALU. Let’s
assume that we will connect 32 1-bit ALUs to create the desired ALU. We’ll there-
fore start by constructing a 1-bit ALU.

A 1-Bit ALU

The logical operations are easiest, because they map directly onto the hardware
components in Figure B.2.1.

The 1-bit logical unit for AND and OR looks like Figure B.5.1. The multiplexor
on the right then selects a AND b or a OR b, depending on whether the value of
Operation is 0 or 1. The line that controls the multiplexor is shown in color to dis-
tinguish it from the lines containing data. Notice that we have renamed the con-
trol and output lines of the multiplexor to give them names that reflect the
function of the ALU.

The next function to include is addition. An adder must have two inputs for the
operands and a single-bit output for the sum. There must be a second output to
pass on the carry, called CarryOut.Since the CarryOut from the neighbor adder
must be included as an input, we need a third input. This input is called CarryIn.
Figure B.5.2 shows the inputs and the outputs of a 1-bit adder. Since we know

B.5 Constructing a Basic Arithmetic Logic
Unit B.5

FIGURE B.5.1 The 1-bit logical unit for AND and OR.

ALU n. [Arthritic Logic Unit
or (rare) Arithmetic Logic
Unit] A random-number
generator supplied as stan-
dard with all computer sys-
tems.

Stan Kelly-Bootle, The Devil’s
DP Dictionary, 1981

Operation

1

0

Result

a

b

B.5 Constructing a Basic Arithmetic Logic Unit B-27

what addition is supposed to do, we can specify the outputs of this “black box”
based on its inputs, as Figure B.5.3 demonstrates.

We can express the output functions CarryOut and Sum as logical equations,
and these equations can in turn be implemented with logic gates. Let’s do Carry-
Out. Figure B.5.4 shows the values of the inputs when CarryOut is a 1.

We can turn this truth table into a logical equation:

If is true, then all of the other three terms must also be true, so we
can leave out this last term corresponding to the fourth line of the table. We can
thus simplify the equation to

Figure B.5.5 shows that the hardware within the adder black box for CarryOut
consists of three AND gates and one OR gate. The three AND gates correspond

FIGURE B.5.2 A 1-bit adder. This adder is called a full adder; it is also called a (3,2) adder because it
has 3 inputs and 2 outputs. An adder with only the a and b inputs is called a (2,2) adder or half adder.

Inputs Outputs

Commentsa b CarryIn CarryOut Sum

0 0 0 0 0 0 + 0 + 0 = 00two

0 0 1 0 1 0 + 0 + 1 = 01two

0 1 0 0 1 0 + 1 + 0 = 01two

0 1 1 1 0 0 + 1 + 1 = 10two

1 0 0 0 1 1 + 0 + 0 = 01two

1 0 1 1 0 1 + 0 + 1 = 10two

1 1 0 1 0 1 + 1 + 0 = 10two

1 1 1 1 1 1 + 1 + 1 = 11two

FIGURE B.5.3 Input and output specification for a 1-bit adder.

CarryIn

Sum

CarryOut

a

b

+

CarryOut b CarryIn⋅() a CarryIn⋅() a b⋅() a b CarryIn⋅ ⋅()+ + +=

a b CarryIn⋅ ⋅

CarryOut b CarryIn⋅() a CarryIn⋅() a b⋅()+ +=

B-28 Appendix B The Basics of Logic Design

exactly to the three parenthesized terms of the formula above for CarryOut, and
the OR gate sums the three terms.

The Sum bit is set when exactly one input is 1 or when all three inputs are 1.
The Sum results in a complex Boolean equation (recall that means NOT a):

The drawing of the logic for the Sum bit in the adder black box is left as an exercise.
Figure B.5.6 shows a 1-bit ALU derived by combining the adder with the earlier

components. Sometimes designers also want the ALU to perform a few more sim-
ple operations, such as generating 0. The easiest way to add an operation is to
expand the multiplexor controlled by the Operation line and, for this example, to
connect 0 directly to the new input of that expanded multiplexor.

Inputs

a b CarryIn

0 1 1

1 0 1

1 1 0

1 1 1

FIGURE B.5.4 Values of the inputs when CarryOut is a 1.

FIGURE B.5.5 Adder hardware for the carry out signal. The rest of the adder hardware is the
logic for the Sum output given in the equation on page B-28.

a

b

CarryIn

CarryOut

a

Sum a b CarryIn⋅ ⋅() a b CarryIn⋅ ⋅() a b CarryIn⋅ ⋅() a b CarryIn⋅ ⋅()+ + +=

B.5 Constructing a Basic Arithmetic Logic Unit B-29

A 32-Bit ALU

Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by con-
necting adjacent “black boxes.” Using xi to mean the ith bit of x, Figure B.5.7 shows
a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores of a
quiet lake, a single carry out of the least significant bit (Result0) can ripple all the
way through the adder, causing a carry out of the most significant bit (Result31).
Hence, the adder created by directly linking the carries of 1-bit adders is called a
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on
page B-38.

Subtraction is the same as adding the negative version of an operand, and this
is how adders perform subtraction. Recall that the shortcut for negating a two’s
complement number is to invert each bit (sometimes called the one’s complement)
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses
between b and , as Figure B.5.8 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure B.5.7. The
added multiplexor gives the option of b or its inverted value, depending on Bin-
vert, but this is only one step in negating a two’s complement number. Notice that
the least significant bit still has a CarryIn signal, even though it’s unnecessary for
addition. What happens if we set this CarryIn to 1 instead of 0? The adder will
then calculate a + b + 1. By selecting the inverted version of b, we get exactly what
we want:

FIGURE B.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure B.5.5).

a

b

CarryIn

CarryOut

Operation

1

0

2+

Result

b

a b 1+ + a b 1+()+ a b–()+ a b–= = =

B-30 Appendix B The Basics of Logic Design

The simplicity of the hardware design of a two’s complement adder helps explain
why two’s complement representation has become the universal standard for inte-
ger computer arithmetic.

 A MIPS ALU also needs a NOR function. Instead of adding a separate gate for
NOR, we can reuse much of the hardware already in the ALU, like we did for sub-
tract. The insight comes from the following truth about NOR:

That is, NOT (a OR b) is equivalent to NOT a AND NOT b. This fact is called
DeMorgan’s theorem and is explored in the exercises in more depth.

Since we have AND and NOT b, we only need to add NOT a to the ALU. Figure
B.5.9 shows that change.

FIGURE B.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less significant bit
is connected to the CarryIn of the more significant bit. This organization is called ripple carry.

a0

Operation

CarryIn
ALU0

CarryOut
b0

CarryIn

a1 CarryIn
ALU1

CarryOut
b1

Result0

Result1

a2 CarryIn
ALU2

CarryOut
b2

a31 CarryIn
ALU31

b31

Result2

Result31

...
...

...

a b+() a b⋅=

B.5 Constructing a Basic Arithmetic Logic Unit B-31

FIGURE B.5.8 A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. By
selecting b (Binvert = 1) and setting CarryIn to 1 in the least significant bit of the ALU, we get two’s comple-
ment subtraction of b from a instead of addition of b to a.

FIGURE B.5.9 A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. By
selecting a (Ainvert = 1) and b (Binvert = 1), we get a NOR b instead of a AND b.

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2+

Result

1

0

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2+

Result

1

0

Ainvert

1

0

B-32 Appendix B The Basics of Logic Design

Tailoring the 32-Bit ALU to MIPS

These four operations—add, subtract, AND, OR—are found in the ALU of almost
every computer, and the operations of most MIPS instructions can be performed
by this ALU. But the design of the ALU is incomplete.

One instruction that still needs support is the set on less than instruction
(slt). Recall that the operation produces 1 if rs < rt, and 0 otherwise. Conse-
quently, slt will set all but the least significant bit to 0, with the least significant
bit set according to the comparison. For the ALU to perform slt, we first need to
expand the three-input multiplexor in Figure B.5.8 to add an input for the slt
result. We call that new input Less and use it only for slt.

The top drawing of Figure B.5.10 shows the new 1-bit ALU with the expanded
multiplexor. From the description of slt above, we must connect 0 to the Less
input for the upper 31 bits of the ALU, since those bits are always set to 0. What
remains to consider is how to compare and set the least significant bit for set on
less than instructions.

What happens if we subtract b from a? If the difference is negative, then a < b
since

We want the least significant bit of a set on less than operation to be a 1 if a < b;
that is, a 1 if a – b is negative and a 0 if it’s positive. This desired result corresponds
exactly to the sign bit values: 1 means negative and 0 means positive. Following
this line of argument, we need only connect the sign bit from the adder output to
the least significant bit to get set on less than.

Unfortunately, the Result output from the most significant ALU bit in the top
of Figure B.5.10 for the slt operation is not the output of the adder; the ALU out-
put for the slt operation is obviously the input value Less.

Thus, we need a new 1-bit ALU for the most significant bit that has an extra
output bit: the adder output. The bottom drawing of Figure B.5.10 shows the
design, with this new adder output line called Set, and used only for slt. As long
as we need a special ALU for the most significant bit, we added the overflow detec-
tion logic since it is also associated with that bit.

Alas, the test of less than is a little more complicated than just described
because of overflow, as we explore in the exercises. Figure B.5.11 shows the 32-bit
ALU.

Notice that every time we want the ALU to subtract, we set both CarryIn and
Binvert to 1. For adds or logical operations, we want both control lines to be 0. We
can therefore simplify control of the ALU by combining the CarryIn and Binvert
to a single control line called Bnegate.

a b–() 0< a b–() b+() 0 b+()<⇒
a b<⇒

B.5 Constructing a Basic Arithmetic Logic Unit B-33

FIGURE B.5.10 (Top) A 1-bit ALU that performs AND, OR, and addition on a and b or b,
and (bottom) a 1-bit ALU for the most significant bit. The top drawing includes a direct input that
is connected to perform the set on less than operation (see Figure B.5.11); the bottom has a direct output
from the adder for the less than comparison called Set. (See Exercise 3.24 to see how to calculate overflow
with fewer inputs.)

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2+

Result

1

0

Ainvert

1

0

3Less

Binvert

a

b

CarryIn

Operation

1

0

2+

Result

1

0

3Less

Overflow
detection

Set

Overflow

Ainvert

1

0

B-34 Appendix B The Basics of Logic Design

To further tailor the ALU to the MIPS instruction set, we must support condi-
tional branch instructions. These instructions branch either if two registers are
equal or if they are unequal. The easiest way to test equality with the ALU is to
subtract b from a and then test to see if the result is 0 since

FIGURE B.5.11 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top
of Figure B.5.10 and one 1-bit ALU in the bottom of that figure. The Less inputs are connected
to 0 except for the least significant bit, which is connected to the Set output of the most significant bit. If the
ALU performs a – b and we select the input 3 in the multiplexor in Figure B.5.10, then Result = 0 . . . 001 if
a < b, and Result = 0 . . . 000 otherwise.

...

a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

CarryIn

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a31 CarryIn
ALU31
Less

b31

Result2

Result31

...
...

...

Binvert

...

Ainvert

0

0

0 Overflow

...

Set

CarryIn

a b– 0=() a b=⇒

B.5 Constructing a Basic Arithmetic Logic Unit B-35

Thus, if we add hardware to test if the result is 0, we can test for equality. The
simplest way is to OR all the outputs together and then send that signal through
an inverter:

Figure B.5.12 shows the revised 32-bit ALU. We can think of the combination
of the 1-bit Ainvert line, the 1-bit Binvert line, and the 2-bit Operation lines as 4-
bit control lines for the ALU, telling it to perform add, subtract, AND, OR, or set
on less than. Figure B.5.13 shows the ALU control lines and the corresponding
ALU operation.

FIGURE B.5.12 The final 32-bit ALU. This adds a Zero detector to Figure B.5.11.

Zero Result31 Result30 . . . Result2 Result1 Result0+ + + + + () =

...

a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a31 CarryIn
ALU31
Less

b31

Result2

Result31

...
...

...

Bnegate

...

Ainvert

0

0

0 Overflow

...

Set

CarryIn
...

...
Zero

B-36

Appendix B The Basics of Logic Design

Finally, now that we have seen what is inside a 32-bit ALU, we will use the uni-
versal symbol for a complete ALU, as shown in Figure B.5.14.

Defining the MIPS ALU in Verilog

Figure B.5.15 shows how a combinational MIPS ALU might be specified in Ver-
ilog; such a specification would probably be compiled using a standard parts
library that provided an adder, which could be instantiated. For completeness, we
show the ALU control for MIPS in Figure B.5.16, which we will use later when we
build a Verilog version of the MIPS datapath in Chapter 5.

The next question is, How quickly can this ALU add two 32-bit operands? We
can determine the a and b inputs, but the CarryIn input depends on the operation
in the adjacent 1-bit adder. If we trace all the way through the chain of dependen-

ALU control lines Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set on less than

1100 NOR

FIGURE B.5.13 The values of the three ALU control lines Bnegate and Operation and the
corresponding ALU operations.

FIGURE B.5.14 The symbol commonly used to represent an ALU, as shown in Figure
B.5.12.

This symbol is also used to represent an adder, so it is normally labeled either with ALU or Adder.

ALU

a

ALU operation

b

CarryOut

Zero

Result

Overflow

B.14 Exercises B-81

B.19 [5] <§B.4> The Verilog code on page B-53 is for a D flip-flop. Show the Ver-
ilog code for a D latch.

B.20 [10] <§§5.9, B.3, B.4> Write down a Verilog module implementation of a
2-to-4 decoder (and/or encoder).

B.21 [10] <§§5.9, B.3, B.4> Given the following logic diagram for an accumula-
tor, write down the Verilog module implementation of it. Assume a positive edge-
triggered register and asynchronous Rst.

B.22 [20] <§§4.5, B.3, B.4, B.5> Section 3.4 presents basic operation and possible
implementations of multipliers. A basic unit of such implementations is a shift-
and-add unit. Show a Verilog implementation for this unit. Show how can you use
this unit to build a 32-bit multiplier.

B.23 [20] <§§4.6, B.3, B.4, B.5> Repeat Exercise B.22, but for an unsigned divider
rather than a multiplier.

3.24 [15] <§B.5> The ALU supported set on less than (slt) using just the sign
bit of the adder. Let’s try a set on less than operation using the values –7ten and 6ten.
To make it simpler to follow the example, let’s limit the binary representations to
4 bits: 1001two and 0110two.

1001two – 0110two = 1001two + 1010two = 0011two

This result would suggest that –7 > 6, which is clearly wrong. Hence, we must fac-
tor in overflow in the decision. Modify the 1-bit ALU in Figure B.5.10 on page B-
33 to handle slt correctly. Make your changes on a photocopy of this figure to
save time.

In

OutLoad
16

Adder

Register

Clk

Rst

Load

+

16

	B The Basics of Logic Design
	B.1 Introduction
	B.2 Gates, Truth Tables, and Logic Equations
	B.3 Combinational Logic
	B.4 Using a Hardware Description Language
	B.5 Constructing a Basic Arithmetic Logic Unit
	B.6 Faster Addition: Carry Lookahead
	B.7 Clocks
	B.8 Memory Elements: Flip-flops, Latches, and Registers
	B.9 Memory Elements: SRAMs and DRAMs
	B.10 Finite State Machines
	B.11 Timing Methodologies
	B.12 Field Programmable Devices
	B.13 Concluding Remarks
	B.14 Exercises

