
C.1

Unit C – Timers and Counters

C.2

Counter/Timers Overview

ATmega328P has two 8-bit and

one 16-bit counter/timers.

• Can count at some rate up to a

value, generate an interrupt and

start over counting from 0.

• Useful for performing operations

at specific time intervals.

• Can be used for other tasks such

as pulse-width modulation or

counting external events.

C.3

Counter/Timers Overview

But we already have delay() functions … why do we

need timers?

• Delay functions tie up the processor while executing.

• Better to let a timer measure the delay, and generate

an interrupt when complete.

• We can do other useful work while we are waiting for

time to elapse!
while(1)

{

lcd_moveto(0,0);

lcd_stringout("hello");

_delay_ms(500);

}

// is "hello" printed

// every 500 ms?

C.4

Use of Timers

• Use 1: Generate an interrupt

at a regular interval

– Great for fixed time periods

• Use 2: Use HW timer to

measure time duration

– Great for measuring unknown

timer intervals
uC senses event

& starts timer
uC senses event

& stops timer

Interrupts generated

at a fixed time interval

TT T

C.5

General Overview of Timer HW

0000 0001 1001 1100

16-bit Counter (TCNTx)

Increments every

prescaled "clock"

=

0000 0010 0000 0000

Modulus A (OCRxA)

=

0000 1010 0110 1100

Modulus B (OCRxB)

Interrupt

if equal

Interrupt

if equal

Start Over @ 0?

System Clock

(16MHz Arduino)
÷÷÷÷

Prescalar

(1,8,256,1024)

Timer HW Module

We'll just use the modulus A

register so you can ignore B for our

class

C.6

Duration Timer

• Timer can be configured to

count at a certain rate (Δt)

• Start/stop the timer when

the microcontroller senses

the start/stop of an event

• The count value, n, can

determine the duration of

the event: T = n•Δt

1

2

3

n

Δt

T
im

e
r

C
o
u
n

t
(T

C
N

T
x
)

T = n • Δt

C.7

Periodic Interrupt Timer

• Timer can be configured to count at a certain rate (Δt) and an

upper bound (aka modulus count / OCRxA register)

• Start the timer and whenever its value reaches the upper

bound an interrupt will be generated

– Can be configured to immediately restart the count at 0 and repeat

1
2

3

OCRxA

Δt

T
im

e
r

C
o

u
n
t

(T
C

N
T

x
)

T = OCRxA • Δt

Interrupt Interrupt Interrupt

C.8

Periodic Interrupt Timer Steps

To use the counter to generate interrupts at a fixed

interval:

• Decide how long an interval is required between

interrupts (1 sec, 50 ms, etc.) for your application

• Determine a counter frequency (time period), and a

counter modulus (max period)that will make the

counter take that long to count from 0 to the modulus

value.

• Configure registers.

• Write an ISR.

• Start the timer.

C.9

Counter/Timer Registers

• Bad News: Lots of register bits to deal with

C.10

Counter/Timer Registers

• Good News: Can ignore most for simple timing

C.11

Computing the Desired Cycle Delay

• Primary step: calculate how many processor clock cycles are

required for your desired delay

– Desired clock cycles (aka "modulus") = clock frequency × desired delay time

– Arduino UNO clock is fixed at 16 MHz

• Example: 0.25 second delay with a 16 MHz clock

– Desired clock cycles = 16,000,000 c/s × 0.25s = 4,000,000 cycles

– The Arduino timer starts at 0, so we will set the max count to 3,999,999

• 4,000,000-1 = 3,999,999

• Problem: The desired value you calculate must fit in at most a 16-

bit register (i.e. max 65,535)

– If the number is bigger than 65,535 then a prescalar must be used to reduce

the clock frequency to the counter from 16MHz to something slower

C.12

Calculating the Prescalar

• The counter prescalar divides the processor clock down to a

lower frequency so the counter is counting slower.

• Can divide the processor clock by four different powers of

two: 8, 64, 256, or 1024.

• Try prescalar options until the cycle count fits in 16-bits

– 4,000,000 / 8 = 500,000 ← too big

– 4,000,000 / 64 = 62,500 ← OK

– 4,000,000 / 256 = 15,625 ← OK

– 4,000,000 / 1024 = 3906.25 ← OK, but not an integer

• In this example, either of the last three could work but since

we can only store integers in our timer count registers the last

one would not yield exactly 0.25s (more like 0.249984s)

C.13

Counter/Timer Initialization 1
• Set the mode for “Clear Timer on Compare” (CTC)

– WGM13 = 0, WGM12 = 1

– This tells the hardware to start over at 0 once the

counter is reaches your desired value

• Enable “Output Compare A Match Interrupt”

– OCIE1A = 1

• Load the 16-bit counter modulus into OCR1A

– This is the value the counter will count up to and

then generate an interrupt.

– The counter then clears to zero and starts counting

up again.

– In C, the register can be accessed as…

• A 16-bit value "OCR1A"

• Or as two eight bit values "OCR1AH" and OCR1AL”.

// Set to CTC mode

TCCR1B |= (1 << WGM12);

// Enable Timer Interrupt

TIMSK1 |= (1 << OCIE1A);

// Load the MAX count

// Assuming prescalar=256

// counting to 15625 =

// 0.25s w/ 16 MHz clock

OCR1A = 15625;

C.14

Counter/Timer Initialization 2
• Select the prescalar value with bits:

CS12, CS11, CS10 in TCCR1B reg.

– 000 = stop ⟸ Timer starts when

prescaler set to non-zero

– 001 = clock/1

– 010 = clock/8

– 011 = clock/64

– 100 = clock/256

– 101 = clock/1024

• Enable global interrupts

// Set to CTC mode

TCCR1B |= (1 << WGM12);

// Enable Timer Interrupt

TIMSK1 |= (1 << OCIE1A);

// Load the MAX count

// Assuming prescalar=256

// counting to 15625 =

// 0.25s w/ 16 MHz clock

OCR1A = 15625;

// Set prescalar = 256

// and start counter

TCCR1B |= (1 << CS12);

// Enable interrupts

sei();

1

2

3

OCRxA

Δt

T
im

e
r

C
o

u
n

t
(T

C
N

T
x
)

T = OCRxA • Δt

Interrupt Interrupt

C.15

Counter/Timer Initialization 3
• Make sure you have an appropriate

ISR function defined
– Using name ISR(TIMER1_COMPA_vect)

#include <avr/io.h>

#include <avr/interrupt.h>

volatile unsigned cnt = 0;

void init_timer1(unsigned short m)

{

TCCR1B |= (1 << WGM12);

TIMSK1 |= (1 << OCIE1A);

OCR1A = m;

TCCR1B |= (1 << CS12);

}

int main()

{

init_timer1(15625);

sei()

while(){

// do something w/ cnt

}

return 0;

}

ISR(TIMER1_COMPA_vect){

// increments every 0.25s

cnt++;

}

C.16

8-bit Counter/Timers

• The other two counters are similar but only 8-bits.

• Same principle: find the count modulus that fits in an

8-bit value.

C.17

8-bit Timers (Timer 0 & Timer 2)

WGM?1,

WGM?0

Meaning

00 Normal (Counter)

01 Phase Correct PWM

10 CTC (Timer)

11 Fast PWM (Top=255,

Thresh=OCRx)

CS0[2:0] Prescalar

000 Timer off

010 Clk / 8

011 Clk / 64

100 Clk / 256

101 Clk / 1024

TCCR0A Reg. (TCCR2A)

Timer/Counter0 Control Register

COM0

A1

COM0

A0

COM0

B1

COM0

B0

- - WGM

00

WGM

01

TCCR0B Reg. (TCCR2B)

Timer/Counter0 Control Register

FOC

0A

FOC

0B

- - WGM

02

CS02 CS00CS01

• Timer0 (Timer2) of the Arduino only have

an 8-bit timer and max count value (thus

we can only count up to 255)

• Set WGM01 (WGM21) bit to CTC

• Enable interrupt via OCIE0A (OCIE2A) bit

in TIMSK0 (TIMSK2) register

• Load the OCR0A (OCR2A) Register

• Start timer when desired by setting

appropriate prescalar

OCR0A Reg (OCR2A)

Max/Modulo count value for TMR0 (2)

Bit 7 Bit 0

TIMSK0 Reg (TIMSK2)

Timer0 Interrupt Mask Register

Bit 7 OCIE0

B

TOIE0OCIE0

A

8-bit Timers can only count up to 255. Be sure to select a prescalar such that your OCR value will fit in 8-bits.

C.18

ISR Names

• In CTC mode, an "Output Compare A Match

Interrupt" will vector to an ISR with these names:

– ISR(TIMER0_COMPA_vect) { } /* 8-bit Timer 0 */

– ISR(TIMER1_COMPA_vect) { } /* 16-bit Timer 1 */

– ISR(TIMER2_COMPA_vect) { } /* 8-bit Timer 2 */

