
ASC Report No. 30/2014

C++11 Implementation of Finite

Elements in NGSolve

J. Schöberl

Institute for Analysis and Scienti�c Computing �

Vienna University of Technology � TU Wien

www.asc.tuwien.ac.at ISBN 978-3-902627-05-6

Most recent ASC Reports

29/2014 A. Arnold and J. Erb

Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equa-
tions with linear drift

28/2014 G. Kitzler and J. Schöberl

A high order space momentum discontinuous Galerkin method for the Boltz-
mann equation

27/2014 W. Auzinger, T. Kassebacher, O. Koch, and M. Thalhammer

Adaptive splitting methods for nonlinear Schrödinger equations in the semiclas-
sical regime

26/2014 W. Auzinger, R. Stolyarchuk, and M. Tutz

Defect correction methods, classic and new (in Ukrainian)

25/2014 J.M. Melenk and T.P. Wihler

A posteriori error analysis of hp-FEM for singularly perturbed problems

24/2014 J.M. Melenk and C. Xenophontos

Robust exponential convergence of hp-FEM in balanced norms for singularly
perturbed reaction-di�usion equations

23/2014 M. Feischl, G. Gantner, and D. Praetorius

Reliable and e�cient a posteriori error estimation for adaptive IGA boundary
element methods for weakly-singular integral equations

22/2014 W. Auzinger, O. Koch, and M. Thalhammer

Defect-based local error estimators for high-order splitting methods
involving three linear operators

21/2014 A. Jüngel and N. Zamponi

Boundedness of weak solutions to cross-di�usion systems from population dy-
namics

20/2014 A. Jüngel

The boundedness-by-entropy principle for cross-di�usion systems

Institute for Analysis and Scienti�c Computing
Vienna University of Technology
Wiedner Hauptstraÿe 8�10
1040 Wien, Austria

E-Mail: admin@asc.tuwien.ac.at

WWW: http://www.asc.tuwien.ac.at

FAX: +43-1-58801-10196

ISBN 978-3-902627-05-6

c© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.

ASC
TU WIEN

C++11 Implementation of Finite Elements in NGSolve

Joachim Schöberl

September 26, 2014

Abstract

We discuss an object oriented design of finite element core functionality. It allows to
separate the mathematical definition of the finite element basis functions, the efficient im-
plementation of operations, and the calculation of stiffness matrices and residual vectors.

We show how features of the C++11 programming language help to reduce code
complexity and thus allow for additional performance optimization such as vectorization.

The presented techniques are implemented in the open source finite element package
NGSolve.

1 Introduction

The finite element method is the major numerical method for the numerical approximation
of partial differential equations [6]. While continuous finite element methods fit well for
elliptic and parabolic equations, discontinuous Galerkin methods are particularly efficient for
hyperbolic equations [12]. The combination of local mesh refinement and variable distribution
of polynomial orders lead to highly accurate hp-finite element methods, see [29, 27, 14, 8, 12].

Efficient coding of hp-FEM is a challenging endeavor. Here, the sophisticated use of
modern programming languages such as C++ helps a lot. It allows to express the mathe-
matical concepts directly in computer programs. Since its beginning, the C++ programming
language allows to combine high performance computing with object oriented design. In par-
ticular, template-based compile time polymorphism [30, 31, 3] allows generic programming
without performance penalties. Recent C++ language developments have been combined in
the new standard C++11. It is included in the latest version of Stroustrup’s textbook [28].
Citing Stroustrup from http://www.stroustrup.com/C++11FAQ.html: Surprisingly, C++11
feels like a new language: The pieces just fit together better than they used to and I find a
higher-level style of programming more natural than before and as efficient as ever.

There are several widely used open source finite element packages available: DUNE [4]
with its module DUNE-FEM [7], deal.II [2], Life [23] which evolved into Feel++ [24], Elmer
[19], FEMSTER [5], Freefem++ [11], 3Dhp[9]. The techniques presented in the current work
are implemented in the finite element library NGSolve [25], version 5.3. We mention the
special purpose compilers FIAT [15] and the framework FEniCS [18], which produce machine
code directly from the mathematical formulation of finite elements.

This paper discusses the core functionality of finite element routines, namely the evaluation
of and operations with shape functions and its derivatives. The element matrix and element
vector calculation routines have to compute all basis functions. When computing residuals
of non-linear problems, evaluating operators for instationary equations, or even when solving
linear problems in a matrix free way, one needs the evaluation of finite element functions in

1

class FiniteElement {
int ndof ; // number o f b a s i s f u n c t i o n s
int order ; // h i g h e s t po lynomia l order

public :
int GetOrder () { return order ; }
int GetNDof () { return ndof ; }
virtual ELEMENT TYPE GetElementType () = 0 ;
virtual s t r i n g GetElementName () = 0 ;

} ;

Listing 1: class FiniteElement

the integration points. In addition, gradients are needed, and the transpose operations. We
aim in optimizing these functions, while keeping the code structure transparent.

One new key feature of C++11 are lambda functions, which are used here as follows:
The specific finite element class implements shape functions. The functionality layer classes
implement what to do with these shape funcitons. These operations are specified as lambda
functions, and are applied to the shape functions. Mathematically speaking, a lambda func-
tion is an element of the dual space. The techniques presented in the current work have been
implemented within the standard C++ programming language using classes before. But, the
new C++11 syntax allowed the simplification of a large portion of the code. The C++11
syntax is supported by the major compilers at time of writing this work.

Modern microprocessors can perform several operations of the same type simultaneously
(SIMD - single instruction multiple data), even within one core. Now very popular and low-
cost general purpose GPU devices can even compute with typically 32 synchronous threads
per processor core. These processor architecture is very well suited for performing equivalent
operations in many integration points. But, while computing power is increasing very fast,
the access to memory, and even caches, becomes more and more a bottleneck. The GPU
cores even have only a small number of registers as fast local memory. Thus, it is a primary
goal to eliminate the need of temporary memory.

2 Finite elements and element matrix integration

The NGSolve finite element class hierarchy is drawn in Figure 1. The base class for all finite
elements is FiniteElement, see Listing 1. It provides the common functionality of all finite
elements. It stores the number of basis functions, and the maximal polynomial degree as
class members and provides query functions to them. In addition, it provides a query to the
element-type (ET QUAD, ET HEX etc.) as well as the name of the element which is useful for
debugging.

The next level in the class hierarchy specifies the type of the finite element, and the space
dimension via a template argument. For second order elliptic equations we need continuous,
scalar valued basis functions. The element provides the basis functions on the reference
element, and also the gradients of them. Other types of elements are vectorial finite elements,
which are conforming in H(curl) or H(div), and are needed for solving electromagnetic field
problems and some flow models. These elements must compute the vector-valued shape

2

H1HighOrderFE<ET_TRIG>

T_CalcShape()

FiniteElement

GetNDof() : int
GetOrder() : int
GetElementType() : ELEMENT_TYPE

L2HighOrderFE<ET_TET>

T_CalcShape()

DIM : int
HDivFiniteElement

CalcShape()
CalcDivShape()

H1HighOrderFE<ET_QUAD>

T_CalcShape()

FEL
T_ScalarFiniteElement

CalcShape()
CalcDShape()

DIM : int
HCurlFiniteElement

CalcShape()
CalcCurlShape()

DIM : int
ScalarFiniteElement

CalcShape()
CalcDShape()
Evaluate()
EvaluateGrad()

Diagram: FiniteElement Page 1
Figure 1: FiniteElement class-diagram The root is the common base class FiniteElement.
The user works with the second level, for example a three-dimensional H(curl) finite element
HCurlFiniteElement<3>. The third level is the implementation of functionality, including
special hardware tuning. The fourth level implements the specific finite element shape func-
tions.

3

template <int DIM>
class Sca larF in i t eE lement : public FiniteElement {
public :

virtual void CalcShape (const In t eg ra t i onPo in t & ip ,
FlatVector<double> shape) = 0 ;

virtual void CalcDShape (const In t eg ra t i onPo in t & ip ,
FlatMatrixFixWidth<DIM, double> dshape)=0;

. . .
} ;

Listing 2: ScalarFiniteElement

functions, and the curl or divergence of them.
Element matrix calculation and similar functions work with the abstract intermediate

class ScalarFiniteElement<DIM> (see Listing 2) without knowing the particular finite ele-
ment class provided. Here, we use the traditional C++ run-time polymorphism via virtual
functions. The FlatVector template class is a cheap implementation of a vector in the sense
of linear algebra. It only contains the vector-size and the data pointer. The constructor just
copies the pointer (and no data), the destructor does not free any memory. Thus, a call
by value argument is efficient for a FlatVector, and similar for the FlatMatrixFixWidth, a
matrix with fixed width. Fixing the width at compile-time helps the compiler optimizing the
index calculation.

A simple implementation of element matrix calculation for the Laplace operator is given in
Listing 3. The input is a finite element object, and the transformation from reference element
to physical element. It computes the element matrix, which is already allocated by the caller.
The LocalHeap is a class providing fast allocation of temporary small memory blocks. The
whole memory is freed after finishing each element.

Since the common argument of the virtual function CalcElementMatrix must be the base
class FiniteElement, and we know we are dealing with scalar elements in DIM dimensions, we
can cast up to that class. The IntegrationRule provides a numerical integration formula on
the reference element of given geometry and order. The bracket operator applied to it delivers
an integration-point, which contains the coordinates on the reference-element as well as the
integration weight. In the loop over integration points we compute the mapped integration
point and the Jacobian from the abstract element transformation. Next we compute the
matrix of shape function gradients on the reference element. The push-forward is computed
by a matrix-matrix product with the inverse Jacobian. Finally, we update the matrix by a
matrix-matrix product. The linear algebra is based on an own implementation of expression
templates [30, 31, 10]. The dominant costs are the last matrix-matrix product. It is reduced
by unrolling the integration loop and combining a few integration points such that the inner
dimension of the matrix-matrix product increases.

The FESpace is the instance generating the specific finite element object, see Listing 4.
It has access to the mesh data structure. A particular class derived from FESpace is
H1HighOrderFESpace, which provides an arbitrary order finite element sub-space of the
Sobolev-Space H1. The virtual function GetFE allocates an object of the specific H1-
conforming finite element of given order. For performance reasons, the allocation is on the
LocalHeap. Global element vertex numbers are provided to the element for consistent ori-

4

template <int DIM> void Lap lac e In t eg ra to r : :
CalcElementMatrix (const FiniteElement & b a s e f e l ,

const ElementTransformation & tra fo ,
Matrix<> & elmat , LocalHeap & lh)

{
const Sca larFin i teElement<DIM> & f e l =

static cast<const Sca larFin i teElement<DIM>&> (b a s e f e l) ;
In t eg ra t i onRu l e i r (f e l . GetElementType () , 2∗ f e l . GetOrder ()) ;
MatrixFixWidth<DIM, double> dshape (f e l . GetNDof () , lh) ;
MatrixFixWidth<DIM, double> dshape r e f (f e l . GetNDof () , lh) ;

elmat = 0 . 0 ;
for (int i = 0 ; i < i r . S i z e () ; i++)
{

MappedIntegrationPoint<DIM,DIM> mip(i r [i] , t r a f o) ;
f e l . CalcDShape (i r [i] , d shape r e f) ;
dshape = dhape re f ∗ mip . GetJacobianInverse () ;
double f a c t o r = i r [i] . Weight ()∗mip . GetMeasure () ;
elmat += fac ∗ dshape∗Trans (dshape) ;

}
}

Listing 3: Element matrix calculation

entation of edge- and face-bubble functions. The template class H1HighOrderFE is a derived
class from ScalarFiniteElement.

3 Element functionality

The template class H1HighOrderFE<ELEMENT TYPE> implements shape functions for the par-
ticular element geometries. The CalcShape method computes all shape functions in a given
point, and CalcDShape computes the matrix of shape function gradients. Additional functions
help to speed up certain finite element computations.

Our approach is to implement just one template function T CalcShape which is able to
compute shapes, gradients, etc. This is obtained by keeping the variable types generic. Sub-
stituting the template arguments defines the particular operation. The operation is provided
by the intermediate class T ScalarFiniteElement in Listing 7.

Finite elements for H1 require basis functions connected with vertices, edges, faces (3D
only), and cells. Typically, these blocks are built from Legendre and Jacobi orthogonal
polynomials. An L2-orthogonal basis on simplices is provided via the Dubiner-Basis [14]

Basis functions of total order p for the triangle are given in terms of barycentric coordi-
nates λ:

Vertex basis: ϕV = λV

Edge basis: ϕE,i = λE1λE2P
S
i (λE1 − λE2 , λE1 + λE2) 0 ≤ i ≤ p− 2

Cell basis: ϕT,ij = λ1λ2λ3P
S
i (λ1 − λ2, λ1 + λ2)P

(0,2i+1)
j (2λ3 − 1) i+ j ≤ p− 3

5

FiniteElement & H1HighOrderFESpace : : GetFE(int e lnr , LocalHeap & lh)
{

ELEMENT TYPE et = mesh . GetElementType (e l n r) ;
Array<int> vnums = mesh . GetElementVert ices (e l n r) ;

switch (e t) {
case ET TRIG :

return new (lh) H1HighOrderFE<ET TRIG> (order , vnums) ;
case ET QUAD:

return new (lh) H1HighOrderFE<ET QUAD> (order , vnums) ;
case ET TET:

return new (lh) H1HighOrderFE<ET TET> (order , vnums) ;
. . .

}
}

Listing 4: Element construction

template <ELEMENT TYPE ET>
class H1HighOrderFE : public T ScalarFin iteElement<H1HighOrderFE<ET>>
{

int vnums [ElementTrait<ET> : :N VERTEX] ;
public :

H1HighOrderFE (int o , FlatArray<int> v)
{ vnums = . . . ; o rder = o ; ndof = . . . }

template <typename T, typename TSHAPE>
T CalcShape (T x [] , TSHAPE shape) const ;

}

Listing 5: High order finite element template

6

Here, the scaled Legendre polynomial is defined as

PS
i (x, t) = Pi(x/t)t

i.

It is a bivariate polynomial of total polynomial degree i, and can be evaluated by a very
similar three-term recurrence as the usual Legendre Polynomial [26, 32].

Orthogonal polynomial functions in NGSolve evaluate all polynomials up to the given
order n in one point x. The result is stored in the values array:

template <typename T, typename TVAL>
void LegendrePolynomial : : Eval (int n , T x , TVAL && va lues) ;

Note, the values array is defined as a C++11 right-value object which allows to provide
automatic objects. Its elements values[i] must be left-values. Multiplying all polynomials
by a factor c can be optimized by multiplying just the two initial polynomials by the factor,
the three-term recurrence delivers the multiplied polynomials for all other orders. This is
implemented in:

template <typename T, typename Tc , typename TVAL>
void LegendrePolynomial : : EvalMult (int n , T x , Tc c , TVAL && va lues) ;

Note that without this function one had to compute the usual polynomials first, store them,
and multiply all polynomials later. This additional function eliminates the need for the local
temporary memory.

The implementation of the basis functions for the H1-conforming triangular element is
given in Listing 6. It allows also to give individual polynomial orders for edges and the
interior. The GetEdgeSort method gives the local vertex numbers of the ith edge such that
vnums[e[0]] < vnums[e[1]]. This ensures a consistent parametrization of the edge across
neighboring elements. We note that the generic object shape is supposed to behave like a
simple C - array. It needs the bracket access operator for its elements, and the usual pointer
arithmetic pointer+int to give an offset. This allows to store the orthogonal polynomials for
edges and the cell directly in the corresponding sub-arrays.

We repeat that we only have to implement this one function defining the basis-functions,
and use C++ template mechanism to generate code for computing gradients, and other
operations.

The actual operations are triggered from the intermediate class T ScalarFiniteElement.
We use the Barton-Nackman trick: The specific element is a derived class, which hands over
itself as a template argument (FEL) to its base class. To call functions of the specific class,
the intermediate class can static up-cast itself to FEL, i.e. the derived class. This kind of
compile-time polymorphism avoids the performance penalty of virtual functions, and allows
aggressive inlining of the compiler.

The gradients are calculated by automatic differentiation implemented via the class
AutoDiff. In contrast to numerical differentiation, automatic differentiation calculates ex-
act derivatives. Precisely, we use the forward differentiation technique based on operator
overloading. An object of type AutoDiff<DIM> stores a value, and DIM partial derivatives.
Adding two AutoDiff variables (via the overloaded +-operator), just adds values and deriva-
tives. Multiplication multiplies values, and implements the product rule, i.e.

product.deriv[i] = a.value ∗ b.deriv[i] + b.value ∗ a.deriv[i].

The AutoDiff class has two constructors:

7

template<> template<typename T, typename TSHAPE>
void H1HighOrderFE Shape<ET TRIG> : :
T CalcShape (T x [] , TSHAPE & shape) const
{

// b a r y c e n t r i c c o o r d i n a t e s
T lam [3] = { x [0] , x [1] , 1−x [0]−x [1] } ;

// ver tex−based b a s i s f u n c t i o n s
for (int i = 0 ; i < N VERTEX; i++) shape [i] = lam [i] ;

int i i = N VERTEX;
// edge−based b a s i s f u n c t i o n s
for (int i = 0 ; i < N EDGE; i++)

i f (o rder edge [i] >= 2)
{

INT<2> e = GetEdgeSort (i , vnums) ;
LegendrePolynomial : :

EvalScaledMult (o rder edge [i]−2 ,
lam [e [1]] − lam [e [0]] , lam [e [0]] + lam [e [1]] ,
lam [e [0]] ∗ lam [e [1]] , shape+i i) ;

i i += order edge [i]−1;
}

// c e l l −based b a s i s f u n c t i o n s
i f (o r d e r f a c e [0] >= 3)
{

INT<3> f = GetFaceSort (0 , vnums) ;
DubinerBasis : : EvalMult (o r d e r f a c e [0]−3 ,

lam [f [0]] , lam [f [1]] ,
lam [f [0]] ∗ lam [f [1]] ∗ lam [f [2]] ,
shape+i i) ;

}
}

Listing 6: High order triangular finite element

8

template <typename FEL, ELEMENT TYPE ET>
class T ScalarFin i teElement :

public Sca larFin i teElement<ElementTrait<ET> : :DIM>
{

enum { DIM = ElementTrait<ET> : :DIM } ;
public :

virtual void CalcShape (const In t eg ra t i onPo in t & ip ,
FlatVector<double> shape)

{
static cast<const FEL∗> (this) −> T CalcShape (ip , shape) ;

}

virtual void CalcDShape (const In t eg ra t i onPo in t & ip ,
FlatMatrixFixWidth<DIM, double> dshape)

{
AutoDiff<DIM> adp [DIM] ;
for (int i = 0 ; i < DIM; i++)

adp [i] = AutoDiff<DIM> (ip (i) , i) ;

Array<AutoDiff<DIM>> adshape (ndof) ;

static cast<const FEL∗> (this) −> T CalcShape (adp , adshape) ;

for (int i = 0 ; i < ndof ; i++)
adshape [i] . StoreGradient (dshape .Row(i)) ;

}
} ;

Listing 7: T ScalarfiniteElement using Barton-Nackman trick

9

virtual void CalcDShape (const In t eg ra t i onPo in t & ip ,
FlatMatrixFixWidth<DIM, double> dshape)

{
AutoDiff<DIM> adp [DIM] ;
for (int i = 0 ; i < DIM; i++)

adp [i] = AutoDiff<DIM> (ip (i) , i) ;

static cast<const FEL∗> (this) −>
T CalcShape (adp , [&] (int i , AutoDiff<DIM> va l)

{ va l . StoreGradient (dshape .Row(i)) ; }) ;
}

Listing 8: Lambda function

AutoDif f (double va l) ;
AutoDif f (double val , int i) ;

The first one assigns the value, and zeros the gradient. The second one assigns the value, and
sets the gradient to the ith unit-vector.

The CalcDShape method in Listing 7 uses DIM AufoDiff variables for the coordinates.
The first one is initialized with the x-component with the 0th unit-vector as gradient. The
second one as y-coordinate with the 1st unit-vector as gradient, etc. The generic T CalcShape

template method is instantiated with AutoDiff variables. This type propagates down through
the evaluation of orthogonal polynomials. Whenever a basis-function is calculated and stored
in the result array, it contains the value in the point as well as the gradient of the basis
function in the point.

One drawback of the CalcDShape method in Listing 7 is the need of temporary memory
for storing the full AutoDiff shape function values, while only the gradient part is needed as
output. This temporary memory will be eliminated by the lambda-function technique.

4 Lambda functions for finite element operations

The implementation of the finite element classes computes basis functions, and stores the
result in the generic shape array, e.g.

shape [i] = lam [i] ;

We now develop a mechanism to redefine the array member write access to our needs. The
particular operation is provided by a lambda-function. Assume for a moment, we assign shape
functions via a 2-parameter function call

shape (i , lam [i]) ;

instead of the more intuitive array element assignment. This is now a function call to the
shape object. The C++11 lambda-function syntax allows to define a function (the lambda-
function) directly as a function call argument, see Listing 8.

The new syntax deserves some explanation. The lambda functions is started by the (new
C++11) scope operator [&], which allows to access all variables in the enclosing scope from
the lambda function. The arguments come next, in our case the number of the shape function

10

template <typename FUNC>
class SBLambdaElement {

FUNC f ;
int i ;

public :
SBLambdaElement (FUNC af , int hi) : f (a f) , i (h i) { ; }
template <typename VAL>
VAL operator= (VAL v) { f (i , v) ; return v ; }
} ;

template <typename FUNC>
class Class SBLambda {

FUNC func ;
int o f f s e t ;

public :
Class SBLambda (FUNC f , int ao = 0) : func (f) , o f f s e t (ao) { ; }
SBLambdaElement<FUNC> operator [] (int i) const
{ return SBLambdaElement<FUNC> (func , o f f s e t+i) ; }

Class SBLambda<FUNC> operator+ (int i) const
{ return Class SBLambda<FUNC> (func , o f f s e t+i) ; }

} ;

template <typename FUNC>
inl ine Class SBLambda<FUNC> SBLambda (FUNC f)
{ return Class SBLambda<FUNC> (f) ; }

Listing 9: Square bracket lambda function wrapper

and its value. Then, the function body is directly implemented in the calling arguments. In
our case it is very simple, just store the gradient part of the ith AutoDiff shape-function in
the output matrix. Here, no additional temporary array for the AutoDiff-shapes is required.

Since all function bodies are visible by the compiler, and the lambda-function is very
simple, the compiler certainly decides to inline the lambda-function. Thus, no function call
penalty occurs.

We prefer to use the array-element assignment in the finite element methods, instead of
the 2-argument function call. This is realized by a square-bracket lambda wrapper SBLambda
in Listing 9. The SBLambda class declares pointer-arithmetic, i.e. the bracket access operator
and the pointer offset operator. The access generates an automatic variable representing the
array element, which finally calls the provided two-argument function.

s t a t i c c a s t <const FEL∗> (t h i s) −>
T CalcShape (adp , SBLambda ([&] (i n t i , AutoDiff<DIM> va l)

{ va l . StoreGradient (dshape .Row(i)) ; })) ;

Now it is very simple to add additional finite element functions. For example we want to
evaluate the finite element function in some point, represented as IntegrationPoint object.

11

double T ScalarFin i teElement : :
Evaluate (In t eg ra t i onPo in t & ip , FlatVector<double> c o e f s)
{

Vector<double> temp (ndof) ;
CalcShape (ip , temp) ;
return InnerProduct (temp , c o e f s) ;

}

Listing 10: Traditional evaluation using temporary memory

double T ScalarFin i teElement : :
Evaluate (In t eg ra t i onPo in t & ip , FlatVector<double> c o e f s)
{

double sum = 0 ;
static cast<const FEL∗> (this) −>

T CalcShape (ip , SBLambda ([&] (int i , double va l)
{ sum += c o e f s (i) ∗ va l ; })) ;

return sum ;
}

Listing 11: Evaluation using lambda functions

The common way is to calculate the shape functions in the point (and store them in some
temporary memory), and form the inner product with the coefficient vector, see Listing 10.
Again, the drawback is the need of temporary memory.

By means of the lambda-functions, we can immediately update the sum of the inner
product as soon as a shape function is available. This avoids to move the whole shape
function vector to memory. An intuitive implementation is given in Listing 11. Note, adding
this one short function immediately adds the functionality for all elements derived from
T ScalarFiniteElement.

5 Vectorial finite elements

The discretization of Maxwell’s equations requires H(curl) conforming Nédélec elements [21,
20]. The classical approach is to define a polynomial space, and the degrees of freedom as linear
functions. The construction of Demkowicz et al [9] relies on projection based interpolation
procedures, which is also reflected in the implementation. The approach from [1, 26, 32]
directly defines the high order basis functions for the Nédélec space. In [32], basis functions
for triangles, quadrilaterals, tetrahedral, prismatic and hexahedral elements are given.

12

C++ object basis function curl of basis function

Du (u) ϕ = ∇u 0
uDv minus vDu (u,v) ϕ = u∇v − v∇u 2∇u×∇v
wuDv minus wvDu (u,v,w) ϕ = wu∇v − wv∇u ∇(uw)×∇v +∇u×∇(vw)

Table 1: H(curl) basis function objects

The triangular element from [26] has basis functions

ϕE,0 := λE1∇λE2 − λE2∇λE2

ϕE,i := ∇
(
λE1λE2P

S
i−1(λEi − λEj , λEi + λEj)

)
and for ui := λ1λ2P

S
i (λ1 − λ2, λ1 + λ2) and vj := λ3Pj(2λ3 − 1)

ϕ1
T,ij := ∇(uivj), i+ j ≤ p− 2

ϕ2
T,ij := ui∇vj − vj∇ui, i+ j ≤ p− 2

ϕ3
T,i = (λ1∇λ2 − λ2∇λ1)vj , j ≤ p− 2

The lowest order edge-basis functions are the well known Whitney forms. Also all other
H(curl) basis functions are defined via scalar polynomials and gradients of scalar polynomials.
This is the same also for the other element geometries, as well as in 3D. We implement the
basis functions utilizing this structure, see Listing 12. The basis-functions are defined via the
objects from Table 1.

Now, the template argument TSHAPE in calling T CalcShape, decides whether we want
to compute the values of the shape functions, or its curl: If the elements of TSHAPE are of
type HCurlShape, then implicit conversion operators from Du, uDv minus vDu, etc., calculate
the shape function value. If the elements are of type HCurlCurlShape, implicit conversion
operators calculate the curl, see Listing 13.

6 Vectorization of finite element operations

Modern Intel and Intel-compatible microprocessors, as well as general purpose graphics pro-
cessing units (GPGPUs or just GPUs) by Nvidia and others are designed to profit from the
single-instruction multiple-data (SIMD) paradigm. For example, Intel’s recent AVX - tech-
nology allows to calculate with four double precision numbers simultaneously in one processor
core. Nvidia’s GPU multi-processors compute with 32 threads simultaneously. Such SIMD
instructions can be used for evaluating shape functions in several integration points simulta-
neously: data (the coordinates) is different, but the operations are the very same. A more
and more serious bottleneck is the access to memory, even to the first level cache. GPUs
have only a relatively small number of double precision registers (up to 128 in the Kepler
device, and less if higher block-level parallelism is aspired). Thus, eliminating local arrays is
an important goal.

A proper interface allowing SIMD parallelization behind the scenes are functions based
on whole integration-rules, rather then on individual points. Two such functions are:

void Sca larFin i teElement<DIM> : :
Evaluate (In t eg ra t i onRu l e & i r ,

FlatVector<> coe f s , FlatVector<> v a l s) ;

13

template<> template<typename T, typename TSHAPE>
void HCurlHighOrderFE Shape<ET TRIG> : :
T CalcShape (T x [2] , TSHAPE & shape) const {

T lam [3] = { x [0] , x [1] , 1−x [0]−x [1] } ;
Array<AutoDiff<2>> adpol1 (order) , adpol2 (order) ;

int i i = 3 ;
for (int i = 0 ; i < 3 ; i++) {

INT<2> e = GetEdgeSort (i , vnums) ;

// Whitney l o w e s t order shape f u n c t i o n
shape [i] = uDv minus vDu (lam [e [0]] , lam [e [1]]) ;

// high−order edge−based shape f u n c t i o n s (g r a d i e n t s)
i f (o rder edge [i] > 0) {

LegendrePolynomial : :
EvalScaledMult (o rder edge [i]−1 ,

lam [e [1]] − lam [e [0]] , lam [e [0]] + lam [e [1]] ,
lam [e [0]] ∗ lam [e [1]] ,
SBLambda ([&] (int i , AutoDiff<2> va l)

{ shape [i i ++] = Du (va l) ; })) ;
}

}

// element−based b a s i s f u n c t i o n s
int p = o r d e r f a c e [0] ;
i f (p > 1) {

LegendrePolynomial : :
EvalScaledMult (p−1, lam [0]− lam [1] , lam [0]+ lam [1] ,

lam [0] ∗ lam [1] , adpol1) ;
LegendrePolynomial : :

EvalMult (p−1, 2∗ lam [2]−1 , lam [2] , adpol2) ;

// type 1 − g r a d i e n t s :
for (int j = 0 ; j < p−1; j++)

for (int k = 0 ; k < p−1− j ; k++)
shape [i i ++] = Du (adpol1 [j] ∗ adpol2 [k]) ;

// type 2
for (int j = 0 ; j < p−1; j++)

for (int k = 0 ; k < p−1− j ; k++)
shape [i i ++] = uDv minus vDu (adpol2 [k] , adpol1 [j]) ;

// type 3
for (int j = 0 ; j < p−1; j++)

shape [i i ++] = wuDv minus wvDu (lam [1] , lam [2] , adpol2 [j]) ;
}

}

Listing 12: H(curl) triangular finite element
14

virtual void CalcShape (const In t eg ra t i onPo in t & ip ,
FlatMatrixFixWidth<DIM> shape)

{
AutoDiff<DIM> adp [DIM] ;
for (int i = 0 ; i < DIM; i++) adp [i] = AutoDiff<DIM> (ip (i) , i) ;

static cast<const FEL∗> (this) −>
T CalcShape (adp , SBLambda ([&] (int i , HCurlShape va l)

{ shape .Row(i) = va l ; }))) ;
}

virtual void CalcCurlShape (const In t eg ra t i onPo in t & ip ,
FlatMatrixFixWidth<DIM CURL> cshape)

{
AutoDiff<DIM> adp [DIM] ;
for (int i = 0 ; i < DIM; i++) adp [i] = AutoDiff<DIM> (ip (i) , i) ;

static cast<const FEL∗> (this) −>
T CalcShape (adp , SBLambda ([&] (int i , HCurlCurlShape va l)

{ shape .Row(i) = va l ; }))) ;
}

Listing 13: H(curl) Shape functions and curls

void Sca larFint ieElement<DIM> : :
EvaluateTrans (In t eg ra t i onRu l e & i r ,

FlatVector<> vals , FlatVector<> c o e f s) ;

The first one evaluates the the finite element function in all points, i.e.

vals(i) =
∑
j

coefs(j)ϕj(xi) ∀ points xi,

while the second one computes the transposed operation

coefs(j) =
∑
i

vals(i)ϕj(xi) ∀ 0 ≤ j < ndof.

A simple default implementation just loops over all points, and calls the single-point function.
We implemented the vectorization on top of mdlib, a C++ wrapper for AVX and SSE

data types and compiler intrinsics. mdlib uses concepts from [17], but it distinguishes between
logical vector size and hardware implementation. For example, a MD<8,double> object is
implemented using two 256-bit AVX variables, or four 128-bit SSE variables, or just 8 double
variables, depending on the hardware.

The vectorized integration rule evaluation function is given in Listing 14. The point-vector
consists now of four x, y, and z-coordinates. Note, for performance reason we allow the
initialization with values possibly out of range of the integration-rule. When constructing the
integration-rule we allocate additional memory to ensure valid read access. The T CalcShape

15

template <class FEL, ELEMENT TYPE ET>
void T ScalarFin iteElement<FEL,ET> : :
Evaluate (const In t eg ra t i onRu l e & i r , FlatVector<double> coe f s ,

FlatVector<double> v a l s) const
{

for (int i = 0 ; i < i r . GetNIP () ; i += 4) {

Vec<DIM, MD<4>> pt ;
for (int k = 0 ; k < DIM; k++)

pt [k] = MD<4> (i r [i] (k) , i r [i +1](k) , i r [i +2](k) , i r [i +3](k)) ;

MD<4> sum = 0 . 0 ;
T CalcShape (&pt (0) , SBLambda ([&] (int j , MD<4> va l)

{ sum += c o e f s (j)∗ va l ; })) ;

MD<4,mask64> mask = MD<4, int > : : F i r s t I n t () < i r . GetNIP () − i ;
sum . Store (& v a l s (i) , mask) ;

}
}

Listing 14: Evaluate function using SIMD operations

computes now all shape functions for four points simultaneously. The values are added up to
the four summation variables. The resulting values are stored to the vals result vector. Here,
we use a bit-mask to write only into valid memory. The simultaneous integer comparison and
masked write are provided by hardware, which is faster than the alternative of four conditional
branch instructions.

7 Timings

First, we measure the performance of finite element function evaluation on CPUs and GPUs.
Our first test system, referred to as vector consists of two Sandy Bridge Intel processors
E5-2620, each of them contains 6 cores operating at 2GHz. It supports AVX SIMD - instruc-
tions. The peak performance of this system is 2 processors× 6 cores× 4 AVX× 2 GHz = 96G
multiplications and additions per second.

First, we measure the performance of shape function evaluation and gradient evaluation
for H1 finite elements. For this, we compute

∑N
i=1 uiϕi(xj) and

∑N
i=1 ui∇ϕi(xj) in a set of

integration points {xj}, where the order of the integration rule is twice the element order.
We call the function evaluation in an openmp-parallel loop. We use hyper-threading and thus
24 threads are generated. We note that all computations are performed within level 1 caches,
so essentially floating point performance is measured.

The inner-most loop for triangles and tetrahedral elements is the evaluation of Jacobi
polynomials, which takes 3 multiplication, plus one additional multiplication for the coeffi-
cient. The results in Figure 2 show 19 G shape function evaluation for higher polynomial
orders, which corresponds to 76 G multiplication. Thus, the floating point efficiency is close
to optimum, namely 80%. We use simultaneous evaluation of eight integration points (i.e.

16

template <class FEL, ELEMENT TYPE ET>
void T ScalarFin iteElement<FEL,ET> : :
Evaluate (const In t eg ra t i onRu l e & i r , FlatVector<double> coe f s ,

FlatVector<double> v a l s) const
{

for (int i = threadIdx . x ; i < i r . GetNIP () ; i += blockDim . x) {
Vec<DIM> pt = i r [i] . Point () ;
double sum = 0 ;
T CalcShape (&pt (0) , SBLambda ([&] (int j , double shape)

{ sum += c o e f s (j)∗ shape ; })) ;
v a l s (i) = sum ;

}
}

Listing 15: Evaluate function using CUDA

template <class FEL, ELEMENT TYPE ET>
void T ScalarFin iteElement<FEL,ET> : :
EvaluateTrans (const In t eg ra t i onRu l e & i r , FlatVector<double> vals ,

FlatVector<double> c o e f s) const
{

for (int i 0 = 0 ; i 0 < i r . GetNIP () ; i 0 += blockDim . x) {
int i = i 0 + threadIdx . x ;
Vec<DIM> pt = i r [i] . Point () ;
double v = (i < i r . GetNIP ()) ? v a l s (i) : 0 ;
T CalcShape (&pt (0) , SBLambda ([&] (int j , double shape)
{ double sum = HorizontalSum (v∗ shape) ;

i f (threadIdx . x == 0) c o e f s (j) = sum ; })) ;
}

}

Listing 16: Transpose evaluate using CUDA

17

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

sh
a
p

e
 e

v
a
lu

a
ti

o
n
s

p
e
r

n
s

order

segm
trig

quad
tet

Figure 2: function evaluation for H1 finite elements using AVX

two AVX data types) to hide operation latency. Figure 3 shows the performance of shape
function evaluation without SIMD optimization.

Figure 4 shows the performance of gradient evaluation. For the tetrahedral H1-element,
one gradient evaluation takes asymptotically 18 multiplications. Thus, the maximum is
96/18 = 5.3G gradient calculations per second.

Next, we give timings for evaluation and transpose evaluation using NVIDIA’s CUDA
platform. The test hardware is a Tesla K20 GPU, which contains 13 Cuda multi-processors
operating at 705.5 MHz. Each multi-processor can perform 64 double precision multiply-add
operations per cycle, which results in a peak performance of 587 G multiply-add operations
per second. We use the CUDA 6.5 development tools released August 2014, which is the first
version supporting C++11. Thus, the presented results for GPUs are very recent and subject
of ongoing research.

We give timings for shape function evaluation and transpose evaluation for quadrilateral
elements using tensor product Legendre polynomials. One warp consisting of 32 threads is
processing one element. Each thread evaluates either 2 or 4 integration points simultaneously,
which reduces memory operations for loading coefficients. The transpose operation requires
summation across threads, which is done using warp shuffle operations. Coefficients for the
Legendre polynomials are stored in constant memory. Timings for evaluation and transpose
evaluation are given in Figure 5. Details on the GPU implementation, results on multiple
evaluation, and timings of the full Discontinuous Galerkin code are given in [13].

7.1 Finite element matrix assembling

We provide timings for the matrix assembling for the diffusion equation with variable coeffi-
cients. We use a mesh consisting of 212 K elements and finite elements of (runtime) order 3,
which leads to 993 K global degrees of freedom. We use openmp multithreading using 12
threads on vector. Wall clock time for the assembling is 0.36 sec.

We use Intel’s VTune Amplifier XE 2015 performance analysis tool to figure out where
the major part of CPU-time is spent. It uses hardware event counters of the Sandy Bridge

18

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10

sh
a
p

e
 e

v
a
lu

a
ti

o
n
s

p
e
r

n
s

order

segm
trig

quad
tet

Figure 3: function evaluation for H1 finite elements without SIMD

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10

g
ra

d
ie

n
t

e
v
a
lu

a
ti

o
n
s

p
e
r

n
s

order

segm
trig

quad
tet

Figure 4: gradient evaluation for H1 finite elements using AVX

19

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14 16 18 20

sh
a
p

e
 e

v
a
lu

a
ti

o
n
s

p
e
r

n
s

order

eval - 2 p/thd
eval - 4 p/thd

evaltrans - 2 p/thd
evaltrans - 4 p/thd

Figure 5: evaluation and transpose for L2 quadrilateral on Kepler GPU

processor. We give the result of the CPU CLK UNHALTED.THREAD counter, which gives the
active core cycles.

12 active cores at 2 GHz perform 8640 M cycles within 0.36 seconds, which corresponds
well to the measured 8370 M cycles in total.

Out of these, 4299 M cylces are spent for the element matrix calculation. Element matrices
are of dimension 20 by 20, and 14 integration points are used. Assembling of the element
matrices into the global sparse matrix takes 3052 M cycles. Our multithreading algorithm
uses coloring, such that parallel assembling can be done without locks (critical sections). The
global matrix is stored in shared memory, which is the bottle-neck in the assembling routine.
The MPI-parallel version benefits from the NUMA memory architecture, and the assembling
can be significantly improved. 583 M cycles are spent for the logic, namely constructing the
finite element, and collecting degrees of freedom.

The calculation of one element matrix takes 4299 M / 212 K = 20278 core cycles, where
7382 cycles are spent for computing the mapped gradients. These are 7382/(14 × 20) = 26
cycles per gradient evaluation. Thus, all cores compute 12 cores × 4 AVX × 2GHz/26 = 3.7
gradients per nano-second, which corresponds well with Figure 4.

The second major part in element calculation is computing all inner products∑
xk

(wkλ(xk)∇ϕi(xk)) · ∇ϕj(xk). This is done by a matrix-matrix multiplication, again
using AVX optimization. The cpu-time for third order elements is approximately the same
as calculating the shape function gradients.

7.2 Discussion and further improvements

In the present manuscript we have presented a high level implementation of finite element
operations. We have demonstrated high floating point performance reaching 80 % of peak
on CPUs with AVX operations. Since the evaluation of shape functions take in average 4
multiplications per point and shape function, this factor of 4 is lost in competition with pre-
computed matrices, and performing linear algebra operations using vendor BLAS functions.
The matrix operations are in particular efficient when equivalent elements are combined, and

20

element matrix calculation 4299 shape gradient calc 1565
matrix matrix product 1552
mult coefficients 514
integration rule 224
etc 444

global matrix assembling 3052

logic: generate fe, dofs 583
etc 373

total 8307

Table 2: million core cycles for matrix assembling

 0

 200

 400

 600

 800

 1000

 1200

 2 4 6 8 10 12

sh
a
p

e
 e

v
a
lu

a
ti

o
n
s

p
e
r

n
s

order

eval L2-tet

Figure 6: function evaluation by sum-factorization and AVX for L2 tetrahedral elements

matrix-matrix products are computed. But, this coding technique requires a restructuring of
the element loop by grouping equivalent elements. In certain applications we also improve
the evaluation by combining evaluation for several vectors, for example when dealing with
systems of equations.

Another possibility for improvement is the utilization of tensor product structure of shape
functions and integration rules, known as sum-factorization [22, 14]. This allows to reduce
the complexity of evaluation from p2d to pd+1. We are currently working on a vectorized
implementation of sum-factorization following the programming techniques presented in this
paper. A preliminary result for evaluation of tetrahedral L2-elements using the Dubiner basis
is given in Figure 6. Measurements were done on the 12 core system vector. At order 5,
this version beats evaluation by matrix-multiplication at peak performance, at order 10 the
advantage is a factor more than 6.

Acknowledgement: The author wants to thank Matthias Hochsteger for helping with
the GPU-version of finite element function evaluation.

21

References

[1] M. Ainsworth and J. Coyle. Hierarchic Finite Element Bases on Unstructured Tetrahedral
Meshes. Int. J. Num. Meth. Eng., 58(14), 2103-2130.

[2] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II – a General Purpose Object
Oriented Finite Element Library. ACM Trans. Math. Softw., 33(4), 24/1–24/27, 2007

[3] J. Barton, L.R. Nackman. Scientific and Engineering C++: An Instroduction with
Advanced Techniques and Examples. Addison-Wesley Professional, 1994

[4] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klfkorn, R. Kornhuber, M. Ohlberger,
O. Sander. A Generic Grid Interface for Parallel and Adaptive Scientific Computing.
Part II: Implementation and Tests in DUNE. Computing, 82(2-3), 121–138, 2008

[5] P. Castillo, R. Rieben, D. White FEMSTER : An Object-Oriented Class Library of
High-Order Discrete Differential Forms ACM Trans. Math. Softw., 31(4), 425–457, 2005

[6] P.G. Ciarlet. The finite element method for elliptic problems. North-Holland, Amsterdam,
1978.

[7] A. Dedner, R. Klöfkorn, M. Nolte, M. Ohlberger A generic interface for parallel and
adaptive scientific computing: Abstraction principles and the DUNE-FEM module. Com-
puting 90(3), 165–196, 2011

[8] L. Demkowicz Computing with hp-adaptive finite elements. I. One and two dimensional
elliptic and maxwell problems Chapman & Hall / CRC Press, Boca Raton, FL, 2006

[9] L. Demkowicz Computing with hp-adaptive finite elements. II. Frontiers: Three dimen-
sional elliptic and Maxwell problems with applications Chapman & Hall / CRC Press,
Boca Raton, FL, 2008

[10] G. Guennebaud, B. Jacob. EIGEN - a C++ linear algebra library available from
http://eigen.tuxfamily.org

[11] F. Hecht. Freefem++. http:/www.freefem.org/ff++

[12] J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods—Algorithms,
Analysis and Applications. Text in Applied Mathematics. Springer, 2007.

[13] M. Hochsteger. High Order Discontinuous Galerkin Methods on GPUs. Master’s Thesis,
Inst. Analysis and Scientific Computing, Vienna UT, 2014

[14] G. E. Karniadakis and S. J. Sherwin. Spectral/hp Element Methods for Computational
Fluid Dynamics. Oxford Science Publications, 2005

[15] R.C. Kirby, Algorithm 839: FIAT, a new paradigm for computing finite element basis
functions, ACM Trans. Math. Software, 30(4), 502–516, 2004

[16] A. Klöckner, T. Warburton, J. Bridge, J.S. Hesthaven Nodal discontinuous Galerkin
methods on graphics processors. J Comp. Phys. 228(21), 7863–7882, 2009

22

[17] M. Kretz and V. Lindenstrutz. Vc: A C++ library for explicit vectorization Softw.
Pract. Exper,00, 1–18, 2011.

[18] A. Logg, K.-A. Mardal, G.N. Wells (eds) Automated Solution of Differential Equations by
the Finite Element Method. The FEniCS Book. Lecture notes in Computational Science
and Engineering 84. Springer, 2011

[19] M. Lyly, J. Ruokolainen, and E. Järvinen. ELMER - A finite element solver for multi-
physics. CSC-report on scientific computing, 156–159, 1999-2000

[20] P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press,
2003.

[21] J.C. Nédélec. A new family of mixed finite elements in R3, Num. Math., 50, 57–81, 1986.

[22] S.A.Orszag. Spectral methods for problems in complex geometries, J. Comp. Phys. 37,
70-92, 1980.

[23] C. Prud’homme. Life: Overview of a Unified C++ Implementation of the Finite and
Spectral Element Methods in 1D, 2D and 3D. in Applied Parallel Computing. Lecture
Notes in Computer Science Volume 4699, 712–721, 2007

[24] C. Prud’Homme, V. Chabannes, V. Doyeux; M. Ismail, A. Samake, G. Pena Feel++: A
Computational Framework for Galerkin Methods and Advanced Numerical Methods in
ESAIM: Proceedings 38, 429–455, 2012

[25] J. Schöberl. NGSolve Finite Element Library http://sourceforge.net/projects/ngsolve

[26] J. Schöberl and S. Zaglmayr, High order Nedelec elements with local complete sequence
properties, COMPEL, 24, 2, 374–384(11), 2005.

[27] C. Schwab. p- and hp- Finite Element Methods: Theory and Applications in Solid and
Fluid Mechanics. Clarendon Press, 1998

[28] B. Stroustrup. The C++ Programming Language, 4th edition. Pearson Education, Ind.,
2013

[29] B. Szabó and I. Babuška. Finite Element Analysis. Wiley, 1991.

[30] T. Veldhuizen. Expression Templates. C++ Report 7(5), 26-31, 1995.

[31] T. Veldhuizen. Techniques for Scientific C++. Indiana University Computer Science
Techical Report #542, 2000

[32] S. Zaglmayr, High Order Finite Element Methods for Electromagnetic Field Computa-
tion, PhD dissertation, Johannes Kepler Universität Linz, Austria, 2006.

23

	titelseite30-14
	implementing

