
c⃝ 2011 by Hee Dong Jung. All rights reserved.

IMPROVING THE SECURITY IN INTERCONNECTING
BUILDING AUTOMATION SYSTEMS TO OUTSIDE NETWORKS

BY

HEE DONG JUNG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Adviser:

Professor Carl A. Gunter

Abstract

As control systems are becoming more complex and capable with much functionality, it requires more efforts

not only to maintain correct operations but also to protect them from various threats. Security of the control

network which connects entities in the system and serves as a path for information transfer between them

is a major cause of concern. Operators of the control systems have taken a conservative way to provide a

protection to the network where it is simply isolated from other systems and networks that could introduce

access channels. Even though the isolation provides a great protection, it limits management efficiency

and expandability of the system. Solving the problem of providing interconnectivity as well as sufficient

protection to the control network is not trivial.

Existing work proposed a solution where they applied a multi-tier web server system to the control

system in the effort to provide better connectivity and introduced a concept of redundant authentication

to mitigate risks to the system. In this architecture, a front end system that accepts requests from users

is required to provide a non-repudiable credential of the requesting user when it passes the request to a

back end proxy that has access privilege on the control system. This limits malicious actions that could be

performed by the compromised front end system. It, however, forces every recently authenticated user to

share the vulnerability in the case of the compromised front end system due to a requirement that clients

should remain unmodified.

In this thesis, we suggest a new solution with a client program to overcome the above limitation and

provide a better protection. Installation of the client program is required in order to access the control system

from the outside network. With this architecture, users who have chosen to opt out by not installing the

client program are safe from the risk introduced by other users who have chosen to install the program and

use the service. Non-repudiable credentials are still required with every request to the control system hence

containing the possible actions of the compromised front end system on the control system. We validate our

strategy on Building Automation System (BAS) testbed with a practical application which allows users to

unlock doors of the building.

ii

To My Lord, my Savior, Jesus Christ, and to my loving family.

iii

Acknowledgments

This thesis would not have been possible without the support of many people. Many thanks to my adviser,

Carl A. Gunter, who always supported me in many ways and guided me through the research. Thanks to

Jodie P. Boyer for setting the basis for this research, Ragib Hasan and Lars E. Olson for helping me on

various aspects on completing the research. I also want to thank my lab mates, parents, and many friends

for their support. Last but not the least, thanks to Eun Sun Kuk for her strong support and love.

iv

Table of Contents

List of Figures . vi

List of Abbreviations . vii

Chapter 1 Introduction . 1

Chapter 2 Related Works . 8
2.1 General architecture of BAS . 8
2.2 Background on BAS vendors, capabilities, and standards . 9
2.3 Basic perimeter protection and their application to the control systems 11
2.4 Multi-tier systems and its application to BAS . 12

Chapter 3 Design . 16

Chapter 4 Application and Threat Model . 21

Chapter 5 Implementation . 25
5.1 Client Program . 27
5.2 Application Server . 29
5.3 Gateway . 31

Chapter 6 Analysis . 33
6.1 Risk Analysis . 33
6.2 Possible Alternative Approaches . 35

Chapter 7 Conclusion . 37

References . 39

v

List of Figures

1.1 The Siebel Center for Computer Science at the University of Illinois 2
1.2 Temperature Controller . 3
1.3 Swipe Card and Door Lock . 4
1.4 Digital Security Camera . 4

2.1 Typical Building Control System . 8
2.2 Typical Multi-tier System Architecture . 12
2.3 User Accessible Building Automation System with Redundant Authentication 14

3.1 User Accessible Building Automation System with Client Program 18

5.1 Building Automation System Test Bed . 25
5.2 Prototype Implementation . 26
5.3 Client Program User Interface . 28
5.4 Client Program Signing Window . 28

vi

List of Abbreviations

SCADA Supervisory Control and Data Acquisition.

ICS Industrial Control Systems.

VPN Virtual Private Network.

BAS Building Automation System.

HVAC Heating, Ventilating and Air Conditioning.

OPC OLE for Process Control.

SPC Standard Project Committee.

ASHRAE American Society of Heating, Refrigerating and Air-conditioning Engineers.

ANSI American National Standards Institute.

oBIX Open Building Information eXchange.

OASIS Organization for the Advancement of Structured Information Standards.

CPNI Centre for the Protection Of National Infrastructure.

vii

Chapter 1

Introduction

Networked computers are widely used for large control systems which manage and regu-

late physical processes. Supervisory Control and Data Acquisition (SCADA) systems that

control and monitor processes like electrical power transmission and distribution are one

example and Industrial Control Systems (ICS) which monitor manufacturing and produc-

tion processes in a factory are another. Security and reliability of these networked computer

control systems are highly important due to the value of the resources that the systems

control and possible disastrous consequences of their malfunction. For example, 2003 black-

out which occurred throughout parts of Northeastern and Midwestern United States and

Ontario, Canada illustrates possible damages on the society when the security is compro-

mised [1].

A common way to provide protection to such systems is by isolating the control system

network which connects entities in the system and serves as a path for information transfer

between them from other less secure public networks including the Internet. This isolation,

often called an air gap, provides the protection by limiting access to the control network.

Only authorized operators with physical access to the system have access to the control sys-

tem network. Therefore, it requires human operators to present at the physical location and

manually manage the control system making the task inconvenient and inefficient. Opera-

tors often make compromises to perform their job more conveniently and efficiently. Typical

compromises are remote management by Virtual Private Network (VPN) connection to the

control systems and multi-homed systems that connect to both the control and the public

networks. Above compromises, however, introduce new vulnerabilities to the system and if

1

used without care, they can be used as means to compromised the whole system. Since VPN

connections have known vulnerabilities [13, 18], the operators must address them before they

use VPN. Also, multi-homed management console has access channels from outside networks

which broaden attack surface to the control system. Compromised VPN and multi-homed

management console can undermine the security of the control system and may lead to

devastating results.

In addition to making the control system management inconvenient and inefficient, the

isolation prevents support for various applications. In case of Building Automation System

(BAS) which controls the functions of a building including door locks, video surveillance,

and the Heating, Ventilating and Air Conditioning (HVAC), the isolation limits useful ap-

plications. For example, temperature control using web service, unlocking doors through

web pages and granting access to rooms without manual configuration of the control sys-

tems. Therefore, it is desirable to provide a different security mechanism that can provide

convenience and support for applications as well as a great protection to the control systems.

Figure 1.1: The Siebel Center for Computer Science at the University of Illinois

2

Figure 1.2: Temperature Controller

To illustrate the above state in more detail, we present a case study of one example of the

networked computers control systems. The Siebel Center, Computer Science Department

building at the University of Illinois at Urbana-Champaign, is an example of BAS. Figure 1.1

shows the outside look of the building. It is a 225,000 square foot building that was built in

2004. The Siebel Center uses Andover Continuum from Advanced Control Corporation for

its BAS management. As described above, the control system of the Siebel Center manages

and regulates various functions in the building. These functions include HVAC system, door

lock system, and surveillance system. Figure 1.2 shows a temperature controller on a wall.

This device enables users to manually set temperature of a room. This controller enables

users to manually set temperature of a room. The operator of the building has privilege to set

high and low limits on the controller so that the users cannot intentionally or unintentionally

set the temperature to an inappropriate degree. The Siebel Center uses swipe cards to open

doors to rooms as shown in figure 1.3. When the card is swiped, information on the card

is sent to the control system to verify whether it has privilege to open the door. To add

a new access privilege or to remove access privilege, the operator must make the change

3

Figure 1.3: Swipe Card and Door Lock Figure 1.4: Digital Security Camera

to the management system manually. Moreover, since requests for these changes usually

come through enterprise network or the Internet, the operator must transfer the data to the

control system manually. Therefore, it is onerous for the operators if a lot of changes occur.

Another important feature of BAS is video surveillance with security cameras. The Siebel

center has several digital security cameras at strategic locations covering building exits and

hallways. Figure 1.4 shows one of them. Although they are not always monitored by human,

audit records can be used in case of theft.

Even though the Siebel Center already has many functions, some interesting and useful

functions are not possible due to the isolation of the control network. A software doorbell

function could be one example. Since there is no physical doorbell for each room in Siebel

Center, a person without access privilege to the room must knock on the door until someone

comes out. It becomes a problem when the room is big and the door is far from where people

4

stay. If there were connection between the building control network and the Internet, we

can think of a smart phone application or a web site which allows a user to input a room

number. It can then connect to the control system and finds out people who recently swiped

into the room and send some type of alerts to answer the door. Another example is opening

doors through web services or smart phone applications. Surprisingly many people forget

to take their cards when leaving the room and could not get in. Sometimes people leave

their cards at home. It is very useful to have the door opening web service or application

in these situations. The application can allow people to enter a door name with some

type of identification and then send that information to the control system for verification

using the connection between the control network and the Internet. The control system

will open the door after the verification. (An advanced example of such an application is

the Grey authorization system [6, 7].) However, these new functions that are possible from

the interconnectivity must not jeopardize the security of the control system. Vulnerabilities

introduced by the connection to the outside networks have to be addressed beforehand.

Multi-tier client-server system which is widely used in e-commerce and enterprise infor-

mation applications can be applied to the control systems in order to provide the convenience

and the support for useful applications. But simply applying the multi-tier system to the

control system may introduce new vulnerabilities. Existing work [8] suggested a way to im-

prove security in applying the multi-tier systems. Their architecture consists of three tiers

and functionality is distributed among them. Higher tier or front end accepts connections

from clients and middle tier acts as a proxy and connects the higher tier to lower tier or back

end. The control system itself is the lower tier. Their system enforces the principle of least

privilege on the higher tier such that the higher tier can only access the lower tier’s functions

and data that are required for its mission. This is achieved by demanding a non-repudiable

credential of a client at the middle tier. The client first authenticates to the front end and

redundantly authenticates itself to a special proxy which provides the non-repudiable creden-

tial to the front end. The front end sends the request from the client with the non-repudiable

credential to the middle tier. The middle tier or the proxy only passes the request from the

5

front end to the back end when it comes with the non-repudiable credential of the requesting

client. The principle of least privilege is enforced since the higher tier’s actions are limited

by the non-repudiable credential, whereas higher tier in normal multi-tier system usually

has unlimited access. Their approach, therefore, contains possible malicious actions of the

higher tier if it is compromised.

Even though this strategy achieves the goal of providing certain level of protection in

providing the interconnectivity to the control system, it forces every recently authenticated

user in the system to share the vulnerability introduced by the new architecture. This inherits

from a requirement that the client should remain unchanged. Because of the requirement,

their architecture relies on a special proxy to generate the non-repudiable credentials that

are not tied with every request. Instead, the credential is tied with each client and could be

used with any requests from the same client until it is expired. Therefore, if the higher tier

gets compromised, it can use the unexpired credentials from the recently authenticated users

to send bogus requests to the middle tier pretending them to be coming from the legitimate

clients.

In this thesis, we introduce a new architecture that provides more protection with the

help of a client program. Users who want to use the new system must install the client

program. Those users who decide not to install the program cannot use the system but they

are not exposed to new vulnerabilities introduced to the users who have chosen to install

the program and use the system. Our new system also requires a non-repudiable credential

with every access of the higher tier to the lower tier to limit the possible actions. In our

architecture, however, the client program provides the non-repudiable credential and it is

tightly tied with every request. Therefore, it is not possible for the compromised higher tier

to use the credentials to create new fake requests. The most it can do is to reuse recently

executed requests which are probably not very useful.

We applied our strategy to our BAS test bed for validation. In particular, we implemented

an application which allows users to send an unlock door request to a higher tier application

server which serves as a front end to the BAS control networks. A middle tier gateway

6

proxy enforces least privilege by requiring the non-repudiable credential with the request

from the higher tier application server. The client program uses public key cryptography

digital signature to sign the request and to provide the non-repudiable credential. The

middle tier gateway proxy first verifies the credential and passes the request to the control

system or rejects the request depending on the verification status. We were able to open a

door using our application.

This thesis consists of 6 chapters. Next Chapter explains backgrounds and related works.

In Chapter 3, we introduce our new strategy by describing the architectural design of the

system. Chapter 4 discusses the application, its requirements and threat model. In Chap-

ter 5, we describe the actual implementation of the system. We then analyze our strategy

in Chapter 6. Finally we conclude in Chapter 7.

7

Chapter 2

Related Works

In this Chapter, we will first describe general architecture of Building Automation System

(BAS) and then give some background on current BAS vendors, capabilities, and standards.

Next, we will briefly talk about ways to control access to a network from potentially vulner-

able or malicious computers and efforts to apply them to the control networks. Lastly, we

will explain the work by Boyer et al. [8] in more detail since it is closely related to this work.

2.1 General architecture of BAS

Figure 2.1: Typical Building Control System

8

BAS is an example of the networked computers control systems that manages function-

alities of a building. These functionalities include lighting control, HVAC system, door

lock/unlock management, and alarm system. Since compromise of these functionalities can

bring severe damages including unlocking of doors and turning off the alarm system, the

building control network is usually isolated from other networks. Figure 2.1 shows a gen-

eral architecture of the building control system. Building control network is separated from

enterprise network and the Internet. A control console machine which has applications to

manage the building functionalities is attached to the control network. Control database

contains information regarding who has access to which rooms and current temperature set-

tings of each room. The enterprise network connects computers used by people who work in

the building and provides access to the Internet with some protection measure like firewall.

A building operator’s job is to monitor and control the BAS and keep the database up to

date.

Even though this isolation of the control network provides a great protection, it makes

the operators to conduct their job manually because they need to use the specific control

console. For instance, when there is a request to adjust temperature of the building or to

grant an access to a room to someone, the operator must sit on the control console to make

the change. These requests usually come to the operator via e-mail or some kind of web

request services. However, this architecture does not allow them to be processed efficiently

and automatically since the control network is isolated. In this thesis, we suggest a new

architecture that not only alleviates the burden on building control system management due

to the isolation of the control network but also effectively mitigates risks to the architecture.

2.2 Background on BAS vendors, capabilities, and standards

Some of the major BAS vendors are: Siemens Building Technologies, Honeywell Building

Control Systems, Johnson Controls, and Schneider Electric, formerly TAC. Recently, big

companies like IBM Corporation and Cisco Systems, Inc. also joined the BAS industry.

9

They all provide some kind of building management systems that allow the operators to have

more control and easier access to all building systems. Capabilities of these solutions seem

to include secure, extensible, and open systems. However, looking at them closely reveals

that those approaches are primitive. For example, some seems to offer SSL connections to

the control networks but limiting the use to the operators where others offer web access but

without open API. Although some vendors are working on more programmable and better

networked systems, most of the vendors are more concerned on the security and reliability

of BAS. Therefore, current BAS solutions take a conservative state and building owners and

the operators seem to accept it.

BACnet, LonTalk, Modbus, oBIX, and OLE for Process Control (OPC) are main industry

standards and communications protocols for BAS. Solutions from some vendors have support

for multiple protocols. For example, APOGEE Building Automation solution from Siemens

natively support BACnet but it also provide integration options for OPC, Modbus, and

LonTalk. Proprietary protocols are also used by others. Now let us look at some of these

protocols more closely.

BACnet is one of the main standard protocols. The development of BACnet began in 1987

by American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE).

It became ASHRAE and American National Standards Institute (ANSI) Standard in 1995. It

was also standardized by ISO in 2003. The BACnet protocol specifies both how to represent

data on the network and the services that are used to transfer data from one BACnet node

to another. BACnet defines all data on the network in terms of “objects”, “properties”, and

“services”. Objects represent physical inputs, outputs, and logical grouping of points that

perform some function. These objects have prescribed properties and they are monitored

and controlled through these properties. The BAS uses defined services to access a property

of an object or to request an action from an object [2].

LonTalk is another major standard protocol used in BAS besides BACnet. It was devel-

oped by a company called Echelon Corporation and accepted as ANSI Standard in 1999.

Subsequently, the communications protocol has been accepted as ISO/IEC global standard,

10

European standard, and Chinese standard. The Lontalk protocol implements all seven layers

of the OSI network model. It is implemented with a mixture of hardware and firmware on

a silicon chip. This is to eliminate any possibility of modification to the protocol. At first,

an Echelon Corporation-designed IC chip was required to implement the LonTalk protocol.

However, the protocol became available for general purpose processors in 1999 [3, 10].

The oBIX (Open Building Information eXchange) standard is web service-based inter-

faces to building control systems. It is an open standard developed around XML to support

web services and service oriented architecture. It enables communications between mechan-

ical and electrical control systems in buildings and enterprise applications. It is developed

and managed by the Organization for the Advancement of Structured Information Stan-

dards (OASIS) oBIX Technical Committee. In oBIX, all information and BAS entities are

represented as objects in XML. Each object consists of attributes or valid XML elements.

These valid XML elements also have attributes. Objects are queried and modified using

web services. A distinguishing aspect of oBIX is support for a publish/subscribe service on

objects which allows the objects to be accessed by a defined polling rate in a client-server

based system.

2.3 Basic perimeter protection and their application to the

control systems

A common practice to provide a protection to a network from outside access is to place a

machine at entry points to the network. The machine performs a security control on every

access from the outside. There are various types of this machine. The most common one

is a filtering firewall. It inspects packets coming into the network and decides whether to

allow the packets based on a set of rules. It can also restrict the ports that could not be

used to access the network. Another type is one that serves as an endpoint of VPN. It

uses authentication to deny access to unauthorized users and decrypts packets which were

encrypted to prevent eavesdropping. This machine can also be a proxy server which evaluates

11

requests from clients before they reach the actual server. It is similar to the filtering firewall

but rather than filtering at the packet layer, it works at application layer. Therefore, the

proxy server must have detailed knowledge about the applications to evaluate the requests.

There have been efforts to apply these methods on the isolated control networks. For

example, Tofino Industrial Security Solution provides firewall protection to the control sys-

tems. Rules can be defined to specify which network devices are allowed to communicate and

what protocols they may use. In March 2006, American Gas Association released a report [5]

on Cryptographic Protection of SCADA Communications. Although the main purpose of

the report is to provide a guideline for voluntary implementation of a comprehensive cyber

security posture, VPN is suggested for encryption and authentication of SCADA commu-

nications. A recent report [11] from Centre for the Protection of National Infrastructure

(CPNI) and the Department of Homeland Security recommended good security practices

in supporting remote access to industrial control systems. Among the many guidelines, it

recommends the use of firewalls and VPNs.

2.4 Multi-tier systems and its application to BAS

Figure 2.2: Typical Multi-tier System Architecture

In the effort to provide both interconnectivity and protection to BAS, Boyer et al. [8]

introduced an architecture that employs multi-tier client-server architecture to BAS. Multi-

tier architecture is widely used in e-commerce and enterprise information applications. It

separates service into difference modules to provide a flexibility and reusability. For example,

12

an application that allows access to personal bank accounts through the Internet can be

broken into user interface, application process logic, and back end system such as a database.

Each of these modules can be modified without the change of the other and they can be

reused in similar services as well. Figure 2.2 illustrates this architecture. Clients use user

interface such as web browsers to request service to an application server. The application

server, known as a higher tier or a front end, is in charge of authenticating the clients and

determining whether the requests are authorized for the clients. If the requests are legitimate,

the application server forwards the request to the database, a lower tier or a back end. And

the database serves the requests by retrieving or updating the relevant information. In this

architecture, the application server acts as the proxy server described above and provides

the protection to the system behind it. However, if the application server is compromised,

the system behind it is exposed to a serious threat. Because the front end passes requests

to the back end on behalf of many different clients, it usually has general access to the

back end. Therefore, the compromised front end can send malicious requests to the back

end pretending them to be coming from legitimate users. The back end does not have

means to identify whether those requests are legitimate or fake. In case of e-commerce, the

compromised application server can retrieve personal information like credit card numbers

and passwords from the database.

Authors have introduced a new architecture that can mitigate the effect of the compro-

mised front end in the multi-tier systems. Figure 2.3 illustrates the architecture on typical

BAS. As we can see from the figure, it has another proxy between the front end application

server and the back end control system. It is called gateway and its job is to enforce the

principle of least privilege on the application server to restrict its access to the back end

control system. In other words, it forces the application server to access only the functions

and data that are necessary to serve the client’s request from the back end control system.

Redundant authentication is their mechanism to enforce the principle of least privilege. The

gateway demands proof of authentication with every request from the application server and

restricts the access privileges according to the specified principal. Each user must authenti-

13

Figure 2.3: User Accessible Building Automation System with Redundant Authentication

cate themselves to the front end application server and the application server must show the

proof of authentication to the gateway hence it is called the redundant authentication. In

order to prevent the application server from forging the proof, they incorporated enterprise

authentication with a proxy server to provide the proof such a way that the application

server cannot tamper with the proof. Therefore, the compromised application server cannot

request a command like “open all doors” without the proof of the authorized personal. This

significantly improves the protection to the multi-tier system. In addition, this gateway is

also capable of performing the application layer firewall by enforcing a set of rules on each

application. These rules can be simple as whitelists and blacklist or more complex.

The role of the authentication proof is critical in this architecture. It must be non-

repudiable. In other words, when the application server passes a request with this credential,

it must be able to convince the gateway that it is from the user who made the request. Since

the most enterprise systems do not support non-repudiable credentials, they used another

proxy called authentication proxy to translate the enterprise authentication credentials to

non-repudiable credentials. When a user requests a service to the application server, the

user is also asked to authenticate to the enterprise authentication server. The enterprise

authentication then provides the authentication credential to the authentication proxy which

14

creates a non-repudiable credential based on the enterprise credential. The authentication

proxy returns this non-repudiable credential to the application server so that the application

server can send both the request and the credential to the gateway. The gateway limits the

privilege of the application server based on the credential provided.

This architecture shows a way to provide user accessibility to the control systems with

an effective protective mechanism. The authors have validated the architecture by applying

it to the BAS. However, we have found some limitations of the architecture and we suggest

a new architecture that overcomes those limitations and provides an even better protection

with same user accessibility to the control systems.

15

Chapter 3

Design

One of the limitations of the work by Boyer et al. [8] is that if the application server gets

compromised, all the recently authenticated users are under the risk. A lot of users may

concurrently send requests to the application server and to pass the requests to the gateway,

the application server needs non-repudiable credentials from all those users. The credentials

must go through the application server because there are no other channels to the gateway.

Once an attacker takes over the application server, the attacker can use the credentials that

are not expired and send false requests on behalf of recently authenticated users. Setting the

expiration time short might help since it leaves not much time for the attacker to use those

credentials. However, if it is too short, the users have to authenticate repeatedly causing

inconvenience. Therefore, it is hard to find the perfect expiration duration. Although their

work provides better protection than a simple multi-tier system where the compromised

application server has full privilege over the back end system, the attacker, in the worst

case, might be able to do almost everything with a combination of various privileges of

different users.

In addition, their architecture relies on the enterprise authentication to conduct user

authentication and provide credentials to the authentication proxy for generating non-

repudiable credentials. It implies that the enterprise authentication server and the proxy

must be trusted. Otherwise, the gateway cannot rely on the non-repudiable credentials cre-

ated by those two components. Moreover, they assume that the gateway is trusted as well.

They claim that since the application proxy and the gateway are small, special purpose and

isolated implementations, they can conform to stringent security requirements. Although it

16

is generally true, we believe that it is always better to have less number of trusted compo-

nents.

In the effort to overcome above limitations, we introduce a new architecture that pro-

vides better protection to the control systems in the case of the compromised application

server and that allows interconnectivity from outside networks. Consequently, our design

provides convenience to the control system management and support for useful applications

with increased protection. We chose to use client slide program to achieve the above goal.

More specifically, we require a client program which serves the purpose of providing the non-

repudiable credentials that were used in the existing work. We still utilize the non-repudiable

credential to enforce the principle of least privilege on the higher tier. However, in our case,

the client program provides this non-repudiable credential instead of the enterprise authen-

tication server and the authentication proxy. Moreover, in our case, this non-repudiable

credential is tightly coupled with not only the user making a request but the request itself.

Therefore, even though the application server passes the credential with the request to the

gateway, the compromised application server cannot use the credential to perform any other

actions than the exact request which the credential is tied to. Consequently, the scope of

possible actions of the compromised application server is greatly reduced from access privi-

leges of recently authenticated users to the recent requests. Moreover, our architecture does

not require the enterprise authentication server and the authentication proxy hence reducing

the number of trusted components of the system.

Our architecture could be applied in almost any multi-tier systems where client are ca-

pable of installing the client side program. To give better understanding of how it could be

applied in real systems, we illustrate our architecture integrated with a typical BAS in Fig-

ure 3.1. As the figure shows, it consists of three tiers. The application server is the top-tier

or the front end, the gateway proxy forms the middle-tier and the legacy BAS controller

and database represents the bottom-tier or the back end. There is only one access channel

from the outside to the building control network which is from the application server to

the gateway proxy. Users use the client program to send requests to the application server

17

Figure 3.1: User Accessible Building Automation System with Client Program

over the Internet or enterprise network. As mentioned above, the enterprise authentication

server and the authentication proxy are not needed in our architecture. However, the gate-

way still requires the non-repudiable credential to enforce the principle of least privilege on

the application server. The client program provides this credential using digital signature

scheme. Every request from the application server to the gateway is digitally signed by the

client program. Therefore, it is not possible for the compromised application server to reuse

the credential to make bogus requests, whereas it is the case in the existing work. In fact,

the most the compromised application server can do is to re-send the recent requests before

they expire. They are probably of little use for the attacker since the clients would not send

requests like “open all doors of the building” or “turn all security cameras off.” With the

help of the client program we significantly mitigate the risk to the control system, even more

than the existing work.

We now describe the process in detail. First of all, a user who wants to use the new

service must install the client program which allows the user to connect to the application

server. When the user executes the program, it asks for information that is required to make

a request to the control system. After the information is obtained, the program connects

to the application server and sends the request over the Internet or the enterprise network.

Upon receiving the request, the application server translates the client request to a low level

18

query that is understood by the gateway and the control system. This low level query is

then sent back to the client for verification. The client program reads the query and displays

it to the user in a user readable form so that the user can verify that the query is the

exact translation of the request. This is necessary to prevent the compromised application

server from sending a fake query back to the client for a signature and using it to achieve

a malicious goal. For example, when a user asks to open a door to his/her office, the

compromised application server can change it to open an entrance door and send back to

the user for the signature. If the client program does not show the returned request, the user

will blindly sign the request thinking it will open the office door but the entrance door will

be opened instead to allow an intruder. After the user verifies the query and digitally signs

it to tie the query with the user’s non-repudiable credential, the signed query is sent back

to the application server. It then passes the signed query to the gateway. The gateway first

checks validity of the digital signature and if valid, it checks whether the current request is

authorized to the associated user with its policy. If the signature is valid and the request

is authorized, the gateway executes the query by sending a message to the control system.

Otherwise the gateway rejects the request.

One advantage of our system is that users have a choice to decide whether to use the

service or not. It is important since only those users who chose to use the service share

vulnerability introduced by the interconnectivity. In other words, users who opt out of the

service do not risk anything in the case of the compromised application server or the client

machine. Users can opt out simply by not installing the client program. Compromised

client machine cannot connect and send requests to the application server without the client

program. Moreover, the compromised application server cannot exploit clients who do not

have the program installed. The existing work, however, forces every user to share the

vulnerability introduced by the architecture. This is because one of their requirements

is to keep the client unmodified. We decided to relax the requirement since most client

devices including laptops or cell phones are capable of installing a program. By relaxing

this requirement, we could limit the scope of the risk only to those users who opt in to

19

use the service and enhance the security of the control system in case of the compromised

application server.

20

Chapter 4

Application and Threat Model

It is important to analyze threats to a new system and describe the threat model. However,

we will first describe an application that we developed for the implementation of our system

to help better understanding of the threats. After we discuss the threats and the threat

model, we will show how our system effectively mitigates the threats.

Even though our system could be applied to different control systems, we focused on the

building automation system for our implementation. The application we developed illus-

trates how the interconnectivity from our design provides efficiency to the building manage-

ment and supports useful applications. Our application allows users of the building to unlock

doors for which they have been granted access via a program installed on their machines in-

cluding laptops and smart phones. Normally, they open doors with their identification cards.

If they have been granted a privilege to open the door then they can unlock the door with

their cards. If they do not the privilege, the door stays locked. People sometimes forget to

take their cards with them and thus cannot get in to their offices. In that case, the building

operator or manager either makes a temporary access card for them or use the master card

to open the door for them. This takes away much time from the operator. However, our

application allows the operator to save the time spend on these occasions by allowing the

users to open the doors by themselves. However, it does not allow them to open doors that

they do not already have privilege to open. The access privilege of each user is usually the

same when using our application. But it is also possible to limit the privilege if necessary

with the gateway policy. In addition, we require that every access through the application

to the control system must be audited. It should be analyzed to ensure that there are no

21

new security violations to the building system using the new service. It helps us to deal with

new attacks to the control system promptly.

Here is an example scenario which shows why the interconnectivity helps. A user, Alice

comes out of her office to go to a meeting. After the meeting she finds out that she left

her identification card in the office. The only way to get in is to get a temporary card from

building operations center because she uses the office alone. Depending on the busyness of

the center, it might take up to an hour to get the temporary card. However, if she could

use our application, she can go in to her office less than a minute. All she needs to do is

execute the program to send request to the building control system to open the door to her

office and wait few seconds. If there were no interconnectivity between the building control

network and the public network, both Alice and the building operator could not have saved

their time.

Because the application provides a direct connection to the building control system, it is

important to consider possible attacks and discuss the countermeasures. The most important

concern in providing the interconnectivity to the building control system is that it may

leave the system vulnerable. In other words, the interconnectivity might be used as a

channel for attacking the control system. In the worst case, attackers might be able to

gain complete control over the building control system. However, it is more likely that

the attackers exploit the application and use it in their favor. In that case, the attackers

could launch attacks like opening doors to the building entrances or critical rooms. These

might lead to physical attacks to the building including stealing of expensive equipment

and files which have sensitive information. Another possible threat is a denial of service

attack. The attackers could launch the denial of service attack on the application server

which accepts connections from users and make the service unavailable. In addition, it

might be possible for the attackers to remove all access privileges from all doors of the

building, rendering the building not accessible. Moreover, if the attackers were able to gain

the control over the building control system, they could manipulate other functionalities of

the building automation system. For example, they could set the temperature of the building

22

at a certain degree and disallow any changes, making the building unusable or they could

disable security cameras.

The multi-tier architecture with the enforcement of the principle of least privilege on the

application server would be able to mitigate the threat of the attackers taking complete

control over the building control system. Our system only allows door unlocking requests to

pass through the gateway proxy, hence it is not feasible for the attackers to send commands

like disabling the security cameras or changing the temperature and make them work. Unless

there is a serious bug in the application, it is not possible for the attackers to manipulate

other building functionalities. However, the enforcement of the principle of least privilege

cannot address the threats to the door unlocking system. To mitigate the threats to the door

unlocking system, we use the non-repudiable credentials that ties users with the requests

that they make. This allows the gateway to enforce a policy that rejects unlocking requests

when the user making the request has not been granted access within the BAS to the door on

which they are performing an action. In other words, the gateway checks whether the user

making the request is allowed to unlock the same door physically using their identification

card. This means that our application does not give more access privileges to the users than

they already have. Therefore, the attackers must acquire the non-repudiable credentials of

many different users in order to unlock arbitrary doors. Or they must acquire the credentials

of high privilege users to open doors to critical rooms like the building control center. Even

though our architecture do not provide countermeasures for the denial of service attack on the

application server, many existing solutions including filtering based on profiling [28, 27, 19],

rate limiting based on Reverse Turing Tests [22, 17], and payment based defenses [21, 30,

24, 16, 29] can be applied to our system.

Our architecture has three main components: the client program, the application server,

and the gateway proxy. Among these components, we assume that the client program and

the application server could be compromised by the attackers but not the gateway proxy.

This is a reasonable assumption because the gateway proxy is a small, special purpose

program which can comply with strict security requirements. In addition, the gateway is

23

isolated from the outside networks and the only path is from the application server which

the gateway does not fully trust. However, it is relatively easier to compromise the client

program and the application server since they are exposed to the public networks. Because

of the use of the non-repudiable credentials with every request to the control system in

our architecture, the possible actions that the compromised application server can perform

are very limited. All it can do is to replay the recently used requests until the credentials

expire. Because our application does not give more access privilege to individuals than the

privilege that they already have within the BAS, the compromised client program is only

as powerful as the individual associated with the program. Even though it is dangerous if a

client program of an individual with high access privilege is compromised, the gateway can

enforce an attenuation of privilege policy to reduce the privilege of the individual when using

the application. For example, the policy can specify which doors can be opened using our

application. In this case, the gateway can reject any requests to open doors to important

places.

24

Chapter 5

Implementation

Figure 5.1: Building Automation System Test Bed

We implemented a prototype of our system on a building automation system test bed

which is a small scale version of the actual BAS used for the Siebel Center for Computer

Science at the University of Illinois. This prototype implementation shows the practicality

of our design. Figure 5.1 shows the test bed located in Illinois Security Lab. This test bed

25

allows us to simulate a building with two doors and up to two areas. Each area could have

more than one door associated with it and people who have access to an area can open

all the doors associated with the area. One door of the test bed has a swipe card reader

and the other door has a proximity card reader. The swipe card reader is shown in the

bottom middle of the figure. This test bed can handle any number of users, although we

have registered four users for our implementation. The test bed is in a stand-alone mode,

meaning that there is only one management console connected to the BAS. The computer on

the left of the figure is the management console and runs the Andover Continuum System.

One limitation of the test bed is that it can only simulate the access control functions of the

Andover Continuum System, but this is enough for our prototype implementation.

Figure 5.2: Prototype Implementation

The overview of our implementation of the application discussed in the previous chapter

is illustrated in Figure 5.2. This shows the implementation choices we made to satisfy the

requirements of Chapter 4. A user who wants to open a door using our application uses the

client program to make a TCP connection to the application server. After the connection

is made, the client program sends a request to open a door with the user id and the door

name. The details of the client program and the communication process between the client

program and the application server is described in Section 5.1. The application server forms

26

a command based on the information received from the client and sends it back to the

client for a digital signature. The user must verify the command from the application server

before signing it. After the command has been signed, the application server passes it to

the gateway with a low-level oBIX query that the gateway understands using a dedicated

communication line. The application server and how it utilizes the oBIX to communicate

with the gateway is described in Section 5.2.

The gateway proxy, described in Section 5.3, is a trusted entity that enforces the principle

of least privilege on every request to the building control system. It is also capable of

enforcing its own access control policy independent from the building control system policy.

The policy data such as a black list and access control lists are stored in a database located

within the building control network, and can be queried using standard SQL. The gateway

first checks the integrity of the command using the digital signature scheme and verifies

whether the command satisfies its policy. After the verification, the command is translated

into the OPC standard and sent to the Andover Continuum NetController which send an

unlock command to the appropriate door.

5.1 Client Program

The Client program is a critical component of our application. First of all, it is not possible

to use the application without the client program. This gives users a choice on whether to

use the application or not. If the client program or the application server gets compromised,

those who use the application might be at risk. However, those who do not have the client

program are not exposed to the risk. In addition, it provides the non-repudiation proof to

the gateway via digital signature. This is required to enforce access control on every request

to the gateway.

This client program is currently written as Windows Forms Application in C# language.

Figure 5.3 shows an initial user interface form that appears when the client program starts.

On the left, it has two input boxes for a user ID and a door name. The user must fill them

27

Figure 5.3: Client Program User Interface

before clicking the unlock button below to connect to the application server. Upon clicking

the unlock button, the client program creates TCP connection to the application server and

sends the user ID and the door name entered in the input boxes. After the connection is

made, the unlock button is disabled to prevent another connection. Status window on the

right side displays important messages about actions performed by the client program. For

instance, “Server Connected” message is displayed when the connection to the application

server is made successfully. Also, if an error occurs, an error message is displayed.

Figure 5.4: Client Program Signing Window

The application server creates a temporary file and writes the information received from

28

the client program. It also writes the current time to calculate the expiration time of the

request. This file is then sent back to the client. The client program displays the contents

of the file on a new window. This window is shown in Figure 5.4. As shown in the figure,

user ID, room number (or door name), and the authentication time are displayed. If the

information is correct, user clicks the sign button on the left. The client program then

digitally signs the command with the private key of the user and sends the digital signature

attached command to the application server. It waits for a response from the application

server. If everything goes well, the door will be unlocked with a success message box and if

not, a failure message box will be displayed. If the information shown is different from what

the user entered in the previous window, the user can cancel the process by clicking a cancel

button on the right.

The gateway must maintain trustworthy copies of the public keys of all users who use the

application in order to verify the signatures. One way is to use a trusted third party certificate

authority to issue digital certificates. However, this method must allow the gateway to have a

channel to the third party certificate authority. This channel must be secured and dedicated

otherwise it could be used by attackers to gain access to the gateway to compromise it.

Alternatively, the building operator can create and issue a special key pair to each user only

to be used for this application. The operator can issue the key pair physically on a digital

medium like a flash drive when users first register and get their identification card. This

method is relatively safer than using the certificate authority since there is no additional

outside connection to the gateway proxy. Also, it is easier for the operator and the user to

revoke the key pair. They can simply discard the key pair because it is independent from

other uses.

5.2 Application Server

The main role of the application server is to accept connections from multiple clients and pass

the requests to the gateway proxy. It is basically a multi-threaded web server implemented

29

in C# that accepts TCP connections on a special port for the application. It listens on this

port for incoming connection requests and when the request comes from a client it creates

a new TCP connection and a client state to store information about the client. It is a

temporary state which is maintained until the application terminates. With the information

the application server produces a command which will be sent to the gateway after signed

by the client and writes the command in a temporary file. The application server then sends

the file to the client for verification of the contents of the file and for the digital signature

on the command. After the client returns the signed command, it passes the command to

the gateway proxy using the oBIX XML language.

The oBIX provides an XML-based interface for operating mechanical and electrical control

systems in buildings [12]. Recently, the purpose of oBIX has been generalized to include any

type of embedded software systems. General object model and a set of operations on these

objects are defined in the specification. Although any kind of objects can be represented

with this model, we decided to use our own XML specifications that are more appropriate

for objects of our application including users and non-repudiable credentials. In oBIX, every

objects are referenced using a unique URI and accessed with the read or write operations.

More complex commands than a read or write could use the invoke operation. The doors

in our prototype implementation have URI for reference and each door has two sub-objects

called unlock and open. The unlock sub-object tells whether the door is unlocked and the

open sub-object shows whether the door is opened. When clients send a request to open

a door, the application server sends write operation to the unlock sub-object of the door

object. The open sub-object is read only since our application does not require the write

operation on it. However, it is possible to design the system in a different way since these

are simply a design decision we have made. In addition to the above objects, we also have

an area object that is associated with door objects. An area can have more than one door

assigned to it. In this way, we can have an access control list for each area instead of keeping

it for every door. It is more convenient if an area has more than one door. Therefore, every

request to unlock a door is checked against the access control list of the area associated with

30

the door. These area objects only allow the read operation since the application does not

need to modify the access control list.

Using the oBIX XML language described above, the application server sends requests

from users to the gateway. It also passes the non-repudiable credential which is a signed

command of what the user has requested. It uses a dedicated line and UDP connection to

communicate with the gateway. It also utilizes the Web Service Security [20] to secure the

communication.

5.3 Gateway

The gateway is responsible for performing access control on requests from the application

server. It is also written in C#. When a request comes from the application server, it first

checks the integrity of the command by verifying the signature. We assume that the gateway

already has the public key of the client for the verification. We discussed possible ways to

acquire the public keys in Section 5.1. Unlike the other two components, we consider the

gateway as a trusted component. Therefore, we assume that the gateway will perform the

verification honestly. It is also the last line of defense against attacks to the building control

system. If it cannot verify the signature, then it simply rejects the request by sending an

error message to the application server which will pass that to the client program. Once the

signature is verified, the gateway retrieves information from the request. It includes the user

ID, the door name, and the authentication time. The authentication time is used to find out

how fresh the request is. The gateway proceeds only when the request is made less than the

configured expiration time. This expiration duration could be configured to allow longer or

shorter window. Currently, it is set to five minutes for our prototype implementation. Next,

the user ID is checked against the gateway policy. We implemented a white list and a black

list for the user ID. The user ID must be in the white list and must not be in the black list.

After the check, the gateway looks up the area that the requested door is assigned to and

determines whether the user has the access privilege on that area. If so then the gateway

31

sends the request to the BAS.

The gateway communicates with the BAS in two ways. First, it accesses the BAS database

to check the access privileges of users and to record a log of recent requests. Standard SQL is

used by the gateway to communicate with the BAS database. Second, the gateway interfaces

with the Andover Continuum NetControllers to operate the BAS. It uses an OPC [23]

interface to communicate with the NetController. The gateway can control building objects

and read current states of those objects with the OPC interface. In our implementation, the

gateway sends the unlock command to doors and reads the current state of doors using the

OPC interface. Here, the current state of a door represents whether the door is opened or

closed.

In summary, the gateway verifies the signature, checks the authentication time, examine

the policy constraints, and refers the BAS database for access rights. If the request pro-

ceeds without an error, the gateway finally issues the unlock command to the associated

NetController to unlock the door. Then it reads the state of the door and records relevant

information on the BAS database. Lastly, it sends a success message to the application

server which will forward it to the client program. The user is now able to open the door.

32

Chapter 6

Analysis

Here, we discuss a risk analysis of our system in providing interconnectivity to control

systems. In particular, we look into the different components of the architecture for possible

risks and consequences. In addition, we compare our strategy with other possible alternatives

that try to mitigate damage from malicious components or outside attacks.

6.1 Risk Analysis

Our system applies the multi-tier system to separate functionalities in providing the inter-

connectivity to the control system. Therefore, we introduce three new components to the

control system in providing the interconnectivity and supporting useful applications. Each

of the components could be a target for attack as well as the complex communication links

between them. However, because the multi-tier system compartmentalizes each component,

it could effectively contain faults or attacks to the targeted component. Additionally, the

multi-tier system makes the security-critical components to be partitioned easily.

The client program is usually as vulnerable as the machine that runs the program. If

the machine gets compromised, there is a high chance that the client program could also

be compromised. Computers are compromised in various ways. For example, people can

accidentally download viruses or malware on their machines or they could open and execute

an infected file. Attackers could exploit bugs of operating systems or applications to take the

control of the computers as well. Even though we expect that the users will have standard

precautions for viruses and malware, we do not rely on the users to keep their computers

safe. Consequently, we consider the client program not trustable. Our system limits the

33

effect of the compromised client program by enforcing the principle of least privilege and the

gateway policy. The compromised client can only perform actions that are already allowed

to the client in the control system. Moreover, the gateway policy can enforce additional

policy that does not allow access to critical functions using our system although the user

actually has the right. Once the gateway finds out that the client program or the machine

is compromised, it should revoke the key it of the client. It can do it simply by deleting the

key and including the user ID in the black list.

The application server is highly vulnerable as well since it accepts connections from

various clients, presenting a large attack surface. Attacker can install the client program

and try to compromise the application server by exploiting the client program. As the

application server supports more applications, it will have more complex and larger code

base for those applications. This might provide a source for bugs and vulnerabilities that

could be used by attackers. Again, we expect that the application server will have general

protection mechanisms like firewalls, but some attacks like zero-day exploits are hard to

defend. Therefore, we do not trust the application server and limits the impact of the

compromised application server with the non-repudiable credential mechanism. Since the

compromised application server cannot acquire appropriate keys to sign fake requests, all it

can do is to use the signed requests that are within the expiration duration. As long as the

gateway proxy is secure, the actions of the compromised application server are very limited.

We assume that the gateway proxy is a trusted component. The reason for this is because

the gateway exports a limited, static interface only to the application server. We believe

that there is a rare chance of vulnerability in that narrow interface. However, it is highly

dangerous to the control system if it gets compromised because the gateway is the last line

of defense to the control system. If it gets compromised, accesses from outside to the control

system are not properly managed and could allow full access to attackers. Therefore, it

is important to thoroughly examine the interface for any bugs and vulnerabilities. Every

possible protective mechanism must be in place as well.

34

6.2 Possible Alternative Approaches

Sandboxing is a common way to monitor and limit access of a component. It provides

limited interface to an untrusted component or program such that the untrusted component

or program can only access predefined safe functions or data. It is designed to enforce

the principle of least privilege on the sandboxed component. Extensive use of sandboxing

appears in limiting system call interface to untrusted programs [4, 15, 14, 25] and in execution

environments like Java. The idea of sandboxing can also be applied to our system to enforce

the principle of least privilege on the application server. This can be done by providing

limited interface to the application server. This approach can limit the possible actions

of the compromised application server but not as much as our system. For example, the

compromised application server with sandboxing can send requests to open arbitrary doors,

whereas our system cannot do that due to the non-repudiable credential.

Another possibility is privilege separation [26] where an application is separated into two

components: a privileged part and an unprivileged part. Because of the separation, attacks

and damages on the unprivileged part is contained to itself, leaving the privileged part intact.

However, there are several disadvantages of this approach compared to our system. First,

every application must be separated into two parts, either manually or automatically [9].

As the number of application increases, more work needs to be done. Our system, on the

other hand, utilizes the multi-tier architecture to provide reusable interfaces and compo-

nents, making it easier to add new applications. Second, the separation must be conducted

wisely requiring knowledge about the application and some efforts. Simply placing entire

application in the privileged part will not give much security benefit. Finally, the separation

might introduce more complexity to the application, leaving more attack surface. Sometimes

it is not clear how to separate an application into the privileged and the unprivileged part. If

the application requires a lot of complex communications between various components, and

if they are separated into different parts, it is not simple to provide a secure communication

between the two parts. If the communication becomes complex, there is a higher chance for

35

a bug which could be used by attackers.

Intrusion detection system could also be used to protect the control system from outside

connections. It looks for anomalies in requests or suspicious access patterns and sends alerts

to the management system. For instance, it can consider many rejected requests from a single

client as suspicious and send an alert to the operator of the control system. However, the

intrusion detection system alone is not sufficient to provide enough protection to the control

system. It is weak to zero-day attacks and is very hard to enforce policy constraints like our

system. For the intrusion detection system to enforce the principle of least privilege, it must

be able to figure out who has sent a request and decide whether that user has appropriate

access privilege. But we believe that the intrusion detection system can be incorporated into

our system to provide better protection. Audit records from the gateway could be used by

the intrusion detection system to find patterns and anomalies.

36

Chapter 7

Conclusion

In this thesis, we introduced a new system which allows interconnectivity to the controls

systems from outside networks with a method to effectively mitigate risks to the control

system. In particular, we applied a multi-tier system to the control system and a way to

enforce the principle of least privilege on a higher-tier. In addition, our system requires

the non-repudiable credential with every access to the control system. These protective

mechanisms effectively restrict possible actions of malicious or compromised components on

the control system. Our system can also support a security policy separate from the existing

access control policy of the control system. With the secure interconnectivity provided

from our system, management of the control system becomes more convenient and efficient.

Moreover, the control system can now support various useful applications to help users of

the control system.

We have validated our system with an implementation on the building automation system

test bed. We presented a door unlock application which allows users to unlock doors without

physical keys or cards. Our system consists of three components: the client program, the

application server, and the gateway proxy. The client program provides a user interface to

send unlock requests to the control system. It utilizes digital signature scheme to provide the

non-repudiable credential to the gateway proxy. The application server acts as a web server,

accepting connections from clients and passing the signed requests to the gateway proxy.

The gateway proxy is a trusted component which enforces the principle of least privilege

on the application server as well as its own security policy. It checks various constraints

including signature verification and access rights. It directly communicates with the BAS.

37

We believe that our system could be applied to various control systems and support many

useful applications.

38

References

[1] Final report on the august 14, 2003 blackout in the united states and canada: Causes and recommen-
dations. Technical report, U.S.-Canada Power System Outage Task Force, April 2004.

[2] Standard 135-2004. Bacnet, a data communication protocol for building automation and control net-
works, 2004.

[3] EIA/CEA 709.1-B-2002. CONTROL NETWORK PROTOCOL SPECIFICATION, 2002.

[4] Anurag Acharya and Mandar Raje. Mapbox: using parameterized behavior classes to confine untrusted
applications. In Proceedings of the 9th conference on USENIX Security Symposium - Volume 9, pages
1–1, Berkeley, CA, USA, 2000. USENIX Association.

[5] American Gas Association. Cryptographic protection of SCADA communications. AGA Report No.12,
2006.

[6] Lujo Bauer, Scott Garriss, Jonathan M. Mccune, Michael K. Reiter, Jason Rouse, and Peter Rutenbar.
Device-enabled authorization in the grey system. In In Proceedings of the 8th Information Security
Conference (ISC’05, pages 431–445. Springer Verlag LNCS, 2005.

[7] Lujo Bauer, Scott Garriss, Jonathan M. Mccune, Michael K. Reiter, Jason Rouse, and Peter Rutenbar.
Device-enabled authorization in the grey system. Technical Report CMU-CS-05-111, Carnegie Mellon
University, Computer Science Department, February 2005.

[8] Jodie P. Boyer, Ragib Hasan, Lars E. Olson, Nikita Borisov, Carl A. Gunter, and David Raila. Improving
multi-tier security using redundant authentication. In ACM Computer Security Architectures Workshop
(CSAW ’07), Fairfax, VA, November 2007.

[9] David Brumley and Dawn Xiaodong Song. Privtrans: Automatically partitioning programs for privilege
separation. In USENIX Security Symposium, pages 57–72, 2004.

[10] Echelon Corporation. LonTalk Protocol Specification, 1994.

[11] CPNI and Homeland Security. Configuring and Managing Remote Access for Industrial Control Systems,
November 2010.

[12] Paul Ehrlich and Toby Considine (Chairs). Open Building Information Exchange (oBIX) version
1.0. OASIS Committee Specification, December 2006. http://www.oasis-open.org/committees/

tc_home.php?wg_abbrev=obix.

[13] L. Fazal, S. Ganu, M. Kappes, A.S. Krishnakumar, and P. Krishnan. Tackling security vulnerabili-
ties in vpn-based wireless deployments. In Communications, 2004 IEEE International Conference on,
volume 1, pages 100 – 104 Vol.1, june 2004.

[14] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Ostia: A delegating architecture for secure system
call interposition. In IN NDSS, 2003.

39

[15] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure environment for untrusted
helper applications: Confining the wily hacker. In IN PROCEEDINGS OF THE 6TH USENIX SECU-
RITY SYMPOSIUM, 1996.

[16] Carl A. Gunter, Sanjeev Khanna, Kaijun Tan, and Santosh S. Venkatesh. Dos protection for reliably
authenticated broadcast. In NDSS, 2004.

[17] Srikanth Kandula, Dina Katabi, Matthias Jacob, and Arthur W. Berger. Botz-4-Sale: Surviving Orga-
nized DDoS Attacks That Mimic Flash Crowds. In 2nd Symposium on Networked Systems Design and
Implementation (NSDI), Boston, MA, May 2005.

[18] Byeong-Ho Kang and Maricel O Balitanas. Vulnerabilities of vpn using ipsec and defensive measures.
Science And Technology, 8(9):9–18, 2009.

[19] Sherif M. Khattab, Sameh Gobriel, Rami G. Melhem, and Daniel Mosse. Live baiting for service-level
dos attackers. In IEEE INFOCOM, pages 171–175, 2008.

[20] Kelvin Lawrence and Chris Kaler (Chairs). Web Services Security (WS-Security) X.509 Certificate
Token profile 1.1. OASIS Standard Specification, February 2006. http://docs.oasis-open.org/wss/
v1.1/wss-v1.1-spec-os-x509TokenProfile.pdf.

[21] David Mankins, Rajesh Krishnan, Ceilyn Boyd, John Zao, and Michael Frentz. Mitigating distributed
denial of service attacks with dynamic resource pricing. In ACSAC, pages 411–421, 2001.

[22] William G. Morein, Angelos Stavrou, Debra L. Cook, Angelos D. Keromytis, Vishal Misra, and Dan
Rubenstein. Using graphic turing tests to counter automated ddos attacks against web servers. In ACM
Conference on Computer and Communications Security, pages 8–19, 2003.

[23] OPC Task Force. OPC overview. OPC White Paper, October 1998. http://www.opcfoundation.org/
DownloadFile.aspx/General/OPC\%20Overview\%201.00.pdf?RI=1.

[24] Bryan Parno, DanWendlandt, Elaine Shi, Adrian Perrig, Bruce M. Maggs, and Yih-Chun Hu. Portcullis:
protecting connection setup from denial-of-capability attacks. In SIGCOMM, pages 289–300, 2007.

[25] Niels Provos. Improving host security with system call policies. In Proceedings of the 12th confer-
ence on USENIX Security Symposium - Volume 12, pages 18–18, Berkeley, CA, USA, 2003. USENIX
Association.

[26] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege escalation. In USENIX Security
Symposium, 2003.

[27] Supranamaya Ranjan, Ram Swaminathan, Mustafa Uysal, and Edward W. Knightly. Ddos-resilient
scheduling to counter application layer attacks under imperfect detection. In INFOCOM, 2006.

[28] Mudhakar Srivatsa, Arun Iyengar, Jian Yin, and Ling Liu. A middleware system for protecting against
application level denial of service attacks. In In Middleware, pages 260–280, 2006.

[29] Michael Walfish, Mythili Vutukuru, Hari Balakrishnan, David Karger, and Scott Shenker. DDoS Defense
by Offense. In ACM SIGCOMM 2006, Pisa, Italy, September 2006.

[30] XiaoFeng Wang and Michael K. Reiter. Defending against denial-of-service attacks with puzzle auction.
In IEEE Symposium on Security and Privacy, pages 78–92, 2003.

40

