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Since its inception over 90 years ago, congestion pricing has been recognized by

many as an efficient method for alleviating traffic congestion. Despite the successes

of pricing projects worldwide and growing government support, congestion pricing

remains largely unappealing to the general public, and it is this lack of public support

that impedes its further development and implementation. This dissertation focuses on a

class of congestion pricing strategies that is Pareto-improving (i.e., a pricing scheme that

benefits society while ensuring that no one in the system is worse off). It is believed that

such pricing strategies should be able to gain more public acceptance.

This dissertation provides an in-depth investigation of the-state-of-the-art of

Pareto-improving pricing strategies for general transportation networks. First, a

systematic study of the existence and properties of Pareto-improving pricing schemes is

conducted. Second, an anonymous Pareto-improving pricing scheme in a transportation

network with a discrete set of value of times (VOTs) for several distinct user classes is

proposed and solution algorithms are developed to solve the proposed model efficiently.

Last, a Pareto-improving hybrid policy that combines multiple policy instruments is

investigated. The proposed hybrid policy takes advantage of the synergistic effects

between congestion pricing and free-travel-right assignment. Numerical results

demonstrate that the proposed hybrid policy can achieve substantial improvements

in transportation system efficiency while maintaining Pareto-improving.
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Most importantly, this dissertation tackles a long-standing dilemma for transportation

authorities: how to enjoy the efficiency benefits of congestion pricing while keeping the

general public happy. The strategies developed demonstrate that Pareto-improving

pricing is a viable and promising way to achieve these two seemingly contradictory

goals simultaneously. The findings may make congestion pricing no longer a hard sell to

decision makers and the general public and lead the nation’s transportation system to a

more sustainable future.
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CHAPTER 1
INTRODUCTION

1.1 Background

Traffic congestion, as an almost inevitable by-product of fast urbanization around

the world, is undesirable because it causes deadweight loss to society as a whole.

There are two approaches to handling traffic congestion, namely supply-side and

demand-side. Transportation authorities used to cope with congestion problems from

the supply side by adding more capacity. However, whenever and wherever highway

capacity is expanded, latent travel demand soon fills the capacity gains. The problem

is especially acute for megacities in developing countries where road infrastructure

struggles to keep pace with increasing vehicle ownership and travel demand. Downs

(1962, 2004) suggested a “fundamental law of highway congestion” and concluded that

once peak-hour congestion has appeared in a region; it is impractical for the region to

build its way out of congestion. Duranton and Turner (2011) investigated the relationship

between interstate highways and highway vehicle miles traveled (VMT) in US cities and

found that increased provision of roads or public transit is unlikely to relieve congestion.

From another perspective, traffic congestion can be viewed as an example of the

“tragedy of the commons” (Garrett, 1968) which refers to the fact that people tend to

overuse free public goods. The primary reason for such demand-supply mismatches

is that road users are selfish decision makers when they are only required to pay their

private costs instead of the true social costs.

We contend that sustainable solutions to eliminate or at least reduce traffic

congestion are on the demand side. Congestion pricing is one type of travel demand

management (TDM) strategies and has been recognized as an efficient method for

alleviating traffic congestion. The theoretical foundation of congestion pricing was laid

out by Pigou (1920) and Knight (1924). Many have come to recognize congestion

pricing as an effective market-based instrument to allocate road space resources to
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benefit society as a whole, see, e.g., the review article of Lindsey (2006), de Palma

and Lindsey (2011) and references cited therein. The recent advent of electronic

tolling makes congestion pricing more practical and there exist several successful

implementations worldwide (e.g., San Diego, Singapore, Oslo, and London).

The basic idea of congestion pricing is to let road users pay the true social costs

of using the road. In general, road users are selfish when they make travel decisions

and are not aware of or not willing to consider the negative congestion externality they

impose on other users. The classic marginal social cost (MSC) pricing principle states

that users should be charged for the difference between the marginal social costs and

private costs. In this way, road users pay the true social costs and subsequently their

travel decisions comply with the interests of society. Although MSC pricing makes

perfect economic sense, it assumes that there is no constraint on pricing; therefore,

it is also called first-best pricing. On the other hand, a second-best pricing scheme

removes this strong assumption at the price of achieving less system efficiency. It is

worth mentioning that all existing congestion pricing implementations around the world

are second-best pricing schemes.

Congestion pricing remains politically difficult in the US. Road users generally

view congestion pricing as another tax when they are asked to pay for something

they currently receive for free. Hence, most elected officials are reluctant to support

congestion pricing knowing road users are voters. Despite strong theoretical arguments

and growing government support (e.g., FHWA’s Value Pricing Program), getting the

public to accept congestion pricing is still a major obstacle. Residents in Hong Kong,

Cambridge (England) and Edinburgh voted against the congestion pricing schemes

proposed for their cities. More recently, the congestion pricing plan for New York City

was “killed” before it reached the State Assembly. Hau (2005) concluded that congestion

tolls levied on each road user typically exceed travel time/cost savings they yield, which
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implies that road users are usually made worse off unless toll revenues are redistributed

to them in certain forms.

It would presumably be easy to gain support for a congestion pricing scheme from

the general public if implementing the scheme improves net social benefits without

making any stakeholder (road users, society and transportation authorities) worse off.

Lawphongpanich and Yin (2010) recently introduced a new class of pricing schemes

called “Pareto-improving” congestion pricing, which improves system efficiency while

ensuring that, in terms of travel time, no user is made worse off and some users are

better off when compared with the situation without any pricing intervention, even before

toll revenue redistribution.

In recent years, the concept of Pareto-improving pricing has been picked up by

many researchers. They proposed to compensate the unhappy road users who are

made worse off by congestion pricing using the toll revenue raised, usually through

a revenue refunding scheme. Liu et al. (2009) proposed a Pareto-improving scheme

that charges positive tolls on road users and refunds all toll revenue collected to transit

users with uniformly distributed users’ value of time (VOT) functions. Nie and Liu (2010)

examined how users’ VOT distributions may affect the existence of a Pareto-improving

pricing and refunding scheme. Guo and Yang (2010) investigated Pareto-improving

pricing and refunding schemes in general transportation networks. They concluded that

a congestion pricing scheme is Pareto-improving if it reduces system travel time and all

toll revenue is refunded to users. Admittedly toll revenue refunding is an effective way

to make a congestion pricing scheme more appealing to the general public. However, if

users anticipate toll refunding in some form when they pay, the behavioral implications

are much more complicated than what are assumed in models in the literature, which

may lead to unexpected outcomes. Therefore, in this dissertation, we focus primarily on

nonnegative Pareto-improving congestion pricing schemes.
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1.2 Objectives

The main objective of this dissertation is to provide an in-depth investigation of

the-state-of-the-art of Pareto-improving pricing strategies for general transportation

networks. More specifically, three major components discussed in this dissertation are

as follows:

First, for the Pareto-improving pricing problem formulated in Lawphongpanich

and Yin (2010), the existence of the pricing scheme is not guaranteed. Why and

when such pricing schemes exist are still open questions. This dissertation provides

a systematic study of the existence and properties of Pareto-improving schemes in

general transportation networks, which is almost an unexplored area in the literature.

Second, one complication that makes practical implementations of congestion

pricing challenging is that road users are heterogeneous in many aspects. Many

debates on congestion pricing root in user heterogeneity. For instance, road users with

different VOTs may have different perceptions of an anonymous (uniform) toll and react

differently to the tolling intervention. The Pareto-improving pricing problem formulated

by Lawphongpanich and Yin (2010) only considered road users with homogeneous

VOT. This dissertation explores the problem of developing Pareto-improving pricing

schemes for networks with heterogeneous users, which may have important practical

policy implications and is urgently needed.

Last, apart from market-based congestion pricing strategies, regulatory demand

management policies, such as road space rationing, can also effectively mitigate traffic

congestion (see, e.g.,Wang et al., 2010 and Han et al., 2010). However, in transportation

literature, regulatory and market-based demand management policies are usually

evaluated separately. The potential of bundling multiple policy instruments are generally

overlooked. Downs (2004) concluded that the most effective overall strategy for reducing

congestion probably should consist of both market-based and regulatory elements. This

dissertation fills this needed gap in the literature by investigating how to design hybrid
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policies that take advantage of the synergistic effects between congestion pricing and

free-travel-right assignment.

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 reviews the

background of congestion pricing and highlights two aspects of congestion pricing:

user heterogeneity and equity issues. Chapter 3 systematically investigates the

Pareto-improving congestion pricing approach. Chapter 4 presents the Pareto-improving

congestion pricing problem for network with multiclass users. Chapter 5 proposes a

Pareto-improving hybrid policy that combines multiple policy instruments. Chapter 6

discusses future research directions and concludes the dissertation.
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CHAPTER 2
LITERATURE REVIEW

2.1 Background of Road Pricing

Broadly speaking, road pricing refers to all charges that users pay for using the road

system, which includes fuel taxes, vehicle registration fees, parking fees, road tolls and

congestion pricing charges, etc. People may think roads are provided by the government

for free, however, they are not aware of the fact that they are actually paying for their

travel through various taxes and fees.

Road pricing is not a new concept, toll roads were common in Britain and the United

States during most of the 19th century (Lindsey, 2006). The Highway Trust Fund (HTF)

was founded in 1956 to ensure dependable financing for the interstate highway system.

The HTF can date back to the 1920s when Oregon first adopted a motor fuel tax that

was earmarked for road construction and maintenance. Currently it is derived from two

main sources: federal excise taxes on motor fuels (gasoline, diesel, and special fuels)

and truck-related taxes (truck and trailer sales, truck tires, and heavy-vehicle use). The

HTF is facing shortfall because of declining fuel tax income due to more fuel-efficient

vehicles on the road and rising costs of transportation projects. Despite an $8 billion

infusion from the General Fund of the Treasury in September 2008 to replenish the

account, HTF needs an additional infusion of funds, about $15 billion, to remain solvent

through the end of fiscal year 2010 (GAO, 2009). An urgent reform of the existing

highway finance system is needed. Interestingly, when it was first proposed in 1920s,

fuel taxes were consciously adopted as imperfect substitutes by state legislatures. They

believed that direct tolling at the time and place of use is more appropriate, but tolls were

expensive and awkward to collect (Wachs, 2003). As the advent of electronic tolling, we

should think of shifting from reliance on fuel tax to direct usage-based charges.

Among various forms of direct usage-based charges, in this chapter, we will focus

on congestion pricing, which particularly aims at mitigating congestion using pricing
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instruments. For literature review on general road pricing, please refer to Small et al.

(1989) and Gómez-Ibáñez et al. (1999).

2.2 Fundamental of Congestion Pricing

The principle of congestion pricing was first proposed by Pigou (1920) and Knight

(1924) over 80 years ago. The work has been elaborated and extended by many

researchers, see, e.g., Walters (1961), Mohring and Harwitz (1962), Beckmann et al.

(1956) and Vickrey (1969). The basic concept of congestion pricing is to charge road

users their negative external impacts on others. Consider society of road users, more

specifically, the externality is mainly the congestion impact that an individual user

imposes on all other road users. Wardrop (1952) stated the user equilibrium (UE)

conditions and described road users’ selfish routing behavior. Under such behavior

assumption, when users enter road network, they either are not aware of or not willing

to consider the congestion they impose on others. They tend to only consider their own

private cost (marginal private cost). However, the cost (marginal social cost) borne by

society is more than the private cost. The discrepancy is the fundamental cause of

inefficiency in road resource allocation. Therefore, to achieve the maximum efficiency to

society each road user is required to pay a user charge equal to the difference between

the marginal social cost and private cost, which ensures that the individual user’s

decision also reflects the interests of society. Such charge, known as marginal cost

pricing or first-best congestion pricing toll, maximizes the net benefit of society and also

induces a Pareto-optimal situation, that is, no one can be made better off without making

someone else worse off.

The underlying principle of marginal cost pricing can be explained graphically

using Figure 2-1 for a single road segment (bottleneck) with homogenous road users.

The MC curve represents the marginal social cost of an additional user to traffic flow

for the new trip-maker and all existing road users, while the AC curve represents the

marginal private cost borne by the new trip-maker alone. Note that when all road users
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are assumed to be price-takers, perceived marginal private cost equals to the average

private cost. Without any tolling intervention, the equilibrium flow is Va, where AC and

inverse demand curve intersect. From society’s point of view, Va is not optimal because

the last user that enters the road network enjoys a benefit of ab while imposing a

marginal cost of ac to society. By charging users the marginal cost toll, the equilibrium

flow shifts from Va to Vo . With this toll scheme, users’ interests coincide with society’s

interests, thereby, the flow Vo is optimal to society. The total social welfare, given in the

area ghqm, is also maximized. The additional traffic flow beyond Vo generates a cost of

the area ache and only enjoys a benefit of the area abhe. A welfare gain of the area bch

(the shadow area) is apparent due to the marginal cost pricing toll scheme.

Mathematically, let c(v), v denote road users’ average travel cost function or the

AC curve and traffic flow on the road respectively. Then the marginal social cost, MC, is

defined as

MC(v) =
∂c(v)v

∂v
= c(v) + v

∂c(v)

∂v

The marginal cost pricing toll, by definition, is the difference between MC and AC curve.

Therefore, the marginal cost pricing toll, τ(v) is

τ(v) = v
∂c(v)

∂v

The above results also can be derived by solving a social welfare maximization problem.

Social welfare (SW) is defined as total social benefit minus total social cost.

SW (v) =

∫ v

0

D−1(ω)dω − c(v)v

where D−1(v) is the inverse demand function or benefit function. Maximizing SW (v)

with respect to v yields the necessary first-order condition:

D−1(v)− c(v)− v
∂c(v)

∂v
= 0
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By definition of marginal cost pricing toll, the optimal equilibrium flow, vo , happens when

MC curve and inverse demand curve intersect.

D−1(v) = c(v) + τ(v)

Thus, the optimal toll is

τ(v) = v
∂c(v)

∂v

Graphically, the social welfare can be seen as the sum of consumer surplus of the area

hqp and the government surplus of the area ghpm.

2.3 Network-Wide Congestion Pricing

In this section, we will review congestion pricing problems in general networks.

Wardrop (1952) introduced two important principles in transportation network modeling,

namely, Wardrop’s first principle and second principle. The first principle depicts users’

selfish routing behavior, that is, all users in the network try to minimize their own

private travel costs. The resulting equilibrium state is called UE state, where travel

costs on all utilized paths are equal or less than those on any unused paths for a

specific OD pair. When the network traffic flow distribution is in UE state, no users

can further reduce their travel costs by unilaterally changing their paths. The second

principle assumes there is a central controller to coordinate the traffic flow so that

users work collaboratively to achieve the best system performance. Therefore, such a

flow distribution is also called system optimum (SO) state. Note that a SO state is not

sustainable because some users may be able to lower their travel costs by switching to

other paths. The SO state gives the upper bound of system performance, thus it is an

important benchmark and also the target goal for planning and operations. In general

networks, a UE flow distribution generally is different from a SO flow distribution due

to congestion externality. We will show in this section that the marginal cost pricing

principle is still valid in the network context, which can drive a UE flow distribution to a

SO one.
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Notations that will be used in this section are given as follows. Let N and L denotes

the set of nodes and links in a road network, and W be the set of OD pairs. A link

(i , j) ∈ L represents a road segment. For OD pair w , xwij denotes the flow on link (i , j)

of that OD pair. The vector x is the flow vector for OD pair w with xwij as its elements.

The aggregate flow on link (i , j) is expressed by vij =
∑

w x
w
ij . Due to congestion effects,

travel time function tij(vij) is assumed to be a continuous and monotonically increasing

function of the aggregate link flow vij . Let A be the node-arc incidence matrix for the

network and Ew denote a vector in Rm, where m is the number of nodes. Specifically,

Ew is an “input-output” vector and has exactly two non-zero components: one has a

value 1 corresponding the origin node of OD pair w and the other one has a value -1 in

the component for the destination.

2.3.1 Fixed-Demand Marginal Cost Pricing

Consider the case where travel demand for OD pair w , dw , is given and homogeneous,

total system travel time can be set as the system performance measure. Thus SO

flow distribution minimizes the total system travel time. Mathematically, the SO flow

distribution can be obtained by solving the following mathematical program:

min
(v ,x)

∑
(i ,j)∈L

tij(vij)vij (2–1)

s.t. Axw = Ewdw ∀w ∈ W (2–2)

v =
∑
w∈W

xw (2–3)

x ≥ 0. (2–4)

Beckmann et al. (1956) formulated traffic assignment problem as a mathematical

program and proved the equivalence between the optimality conditions of the proposed

model and the Wardrop’s first principle. The corresponding mathematical program is as
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follows:

min
(v ,x)

∑
(i ,j)∈L

∫ vij

0

tij(ω)dω (2–5)

s.t. Axw = Ewdw ∀w ∈ W (2–6)

v =
∑
w∈W

xw (2–7)

x ≥ 0. (2–8)

Comparing the optimality conditions of the above SO and UE formulations, we note

that SO problem is equivalent to a UE problem with the following modified travel cost

function

~tij(vij) = tij(vij) + vij
dtij(vij)

dvij
. (2–9)

The first term of the modified travel cost function is the user’s private travel time function

and the second term is the additional travel time imposed on all existing users by

an additional user. If all users adopt the modified travel cost function to make their

route choice decisions, the resulting flow distribution will be automatically a SO flow

distribution. However, in reality users normally only consider their own private cost,

tij(vij). To make users’ decision comply with society’s interests, the second term of the

modified travel cost function should be charged as a congestion toll. The marginal cost

pricing toll for each link can be expressed as follows:

τij = vij
dtij(vij)

dvij

∣∣∣∣
vij=v

SO
ij

(i , j) ∈ L (2–10)

Note that ~tij(vij) =
dvij tij (vij )

dvij
, the modified travel cost function is exactly the marginal

cost of adding an additional user to link (i , j). Furthermore, tij(vij) is assumed to be

separable, therefore we have ~tij(vij) =
d
∑

(i ,j)∈L vij tij (vij )

dvij
, which is also the marginal social

cost of having an additional user to the system. Hence, we can express Wardrop’s
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second principle in another way: all utilized paths have the same marginal cost for a

specific OD pair.

2.3.2 Elastic-Demand Marginal Cost Pricing

In the elastic demand case, travel demand for a specific OD pair w , dw follows

a demand function Dw(µw), where µw is the travel cost between that OD pair. Let

D−1
w (dw) denote the inverse demand function for OD pair w . Total system travel time is

not appropriate to be used as the system performance measure anymore because of

demand elasticity. For the elastic demand case, SO problem can be defined in terms of

maximization of social welfare. The mathematical program that corresponding to the SO

problem is as follows:

max
(v ,x ,d)

∑
w∈W

∫ dw

0

D−1
w (ω)dω −

∑
(i ,j)∈L

tij(vij)vij (2–11)

s.t. Axw = Ewdw ∀w ∈ W (2–12)

v =
∑
w∈W

xw (2–13)

x ≥ 0. (2–14)

The UE problem with elastic demand is formulated as follows:

min
(v ,x ,d)

∑
(i ,j)∈L

∫ vij

0

tij(ω)dω −
∑
w∈W

∫ dw

0

D−1
w (ω)dω (2–15)

s.t. Axw = Ewdw ∀w ∈ W (2–16)

v =
∑
w∈W

xw (2–17)

x ≥ 0. (2–18)

Using the exact same procedure as the last section, we can obtain the marginal

cost pricing toll for each link as follows:

τij = vij
dtij(vij)

dvij

∣∣∣∣
vij=v

SO
ij

(i , j) ∈ L (2–19)
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Note that although SO state definitions are different for fixed and elastic demand case,

the marginal cost pricing toll vectors, (2–10) and (2–19) are identical.

2.3.3 First-Best Toll Set

In most literature, the marginal cost pricing toll vector (2–10 and 2–19) derived in

previous two sections has been the only first-best pricing scheme. However, Hearn and

Ramana (1998) found that the link-based marginal cost pricing toll scheme does not

necessarily have to be unique and proposed a “first-best toll set”, which contains all toll

vectors that can drive a UE state to a SO one. The traditional marginal cost pricing toll

vector is just one element of this toll set. Consider the following system of equations:

xwij (tij(vij) + τij − ρwi + ρwj ) = 0 ∀(i , j) ∈ L,w ∈ W (2–20)

tij(vij) + τij ≥ ρwi − ρwj ∀(i , j) ∈ L,w ∈ W (2–21)

Axw = Ewdw ∀w ∈ W (2–22)

v =
∑
w∈W

xw (2–23)

x ≥ 0 (2–24)

where ρwi represents the node potential Ahuja et al. (1993) of node i for OD pair w .

These conditions essentially are the Karush-Kuhn-Tucker (KKT) conditions for the tolled

UE problem. Recall that the objective of first-best toll is to drive the solution of the tolled

UE problem to coincide with the un-tolled SO problem. Therefore, if and only if there

exists a ρ vector such that the combined vector (τ , ρ) satisfies the following conditions,

the τ vector is a valid first-best toll vector (Hearn and Ramana, 1998) .

xwij (tij(v
SO
ij ) + τij − ρwi + ρwj ) = 0 ∀(i , j) ∈ L,w ∈ W (2–25)

tij(v
SO
ij ) + τij ≥ ρwi − ρwj ∀(i , j) ∈ L,w ∈ W . (2–26)

23



More concisely, the first-best toll set can be expressed in vector from as follows:

(t(vSO) + τ)TvSO =
∑
w∈W

(Ew)Tdwρw (2–27)

t(vSO) + τ ≥ ATρw ∀w ∈ W . (2–28)

Since the first-best toll set generally has multiple elements, including the traditional

marginal cost pricing toll, it gives more flexibility in setting link tolls to meet secondary

objectives, such as minimum number of toll booth, maximum government revenue, etc.

Yin and Lawphongpanich (2009) further investigated the first-best toll set and

concluded that all elements of the toll set are actually still in line with the marginal

cost pricing principle in path level although they may be different from the traditional

link-based marginal cost pricing toll vector.

2.3.4 Second-Best Congestion Pricing

Marginal cost pricing or first-best congestion pricing toll schemes assume that

there is no constraint on pricing and reduce congestion to its minimum level when

travel demand is fixed or increase the social welfare to its maximum level when travel

demand is elastic. On the other hand, for political reasons or otherwise, some roads

are not tollable and other restrictions may also apply. Because of these restrictions,

generally this type of toll scheme cannot achieve the maximum system efficiency and is

called “second-best” congestion pricing scheme. In the literature, many formulated the

problem as a bi-level optimization problem (see, e.g., Bard, 1998; Shimizu et al., 1997)

or a mathematical program with equilibrium constraints (see, e.g., Luo et al., 1996).

Generally speaking, the upper-level problems or the objectives of the second-best toll

schemes are optimizing certain system performance measures and the lower-level

problems or complimentary constraints are used to describe road users’ route choice

behaviors, i.e., tolled UE conditions. Other types of second-best pricing schemes include

area-based (see, e.g., Maruyama and Harata, 2006; Maruyama and Sumalee, 2007)
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and cordon pricing (see, e.g., Akiyama et al., 2004; Sumalee, 2004; Zhang and Yang,

2004).

2.4 Congestion Pricing with Heterogeneous Users

It is well known that road users consists of heterogeneous users. User heterogeneity

can be categorized into two types, namely observable and unobservable heterogeneity.

Observable user heterogeneity refers to users’ different vehicle types, e.g., truck, bus,

car, etc. Unobservable user heterogeneity assumes that all users have the same type

of vehicles, while their socioeconomic characteristics vary across different user groups,

such as value of times (VOT).

For the observable user heterogeneity, due to the differences of their vehicle types,

different user groups may have different congestion externalities imposing on others.

Since their physical difference is observable, it is possible to charge differentiated

tolls for each vehicle type based on the marginal cost pricing principle. More detailed

discussions of congestion pricing on this type of user heterogeneity can be found in

Patriksson (1994) and Nagurney (1999).

For unobservable user heterogeneity, all users differ from one another in unobservable

ways, it is very difficult if not impossible to introduce differentiated or non-anonymous

tolls (Arnott and Kraus, 1998). Since users have different VOTs, they may react

differently to an anonymous (uniform) toll scheme. It is then interesting to investigate

whether marginal cost pricing principle is still valid in this case. In transportation

literature, this type of user heterogeneity is captured by assuming either users’ VOTs

follow a continuous distribution or a discrete set of VOTs for several distinct user

classes. Yin and Yang (2004) concluded that an anonymous link toll can still be derived

based on the marginal cost pricing principle to achieve the cost-based system optimum

(total value of system travel time minimization). User externality of travel time is the

same for all user groups because they use the same type of vehicle. Thus, the optimal

anonymous toll is equal to the user externality of travel time multiplied by the arithmetic
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mean of VOTs of all users traversing that link, which is exactly the additional travel

cost that a marginal user imposes on others already traveling on that link. On the other

hand, the system manager may want to achieve a time-based system optimum (total

system travel time minimization). In this case, although the user externality of travel

time is still the same across different user groups, no anonymous toll can be derived

based on the marginal cost pricing principle. The reason is congestion tolls can only be

charged in monetary unit. To internalize the externality, a congestion toll equals to the

user externality of travel time multiple the user group’s VOT should be charged to each

user group, which is no longer anonymous. Yang and Huang (2004) further proved that

an anonymous toll scheme that supports a multiclass user equilibrium flow distribution

as a time-based system optimum exists and can be obtained by solving a proposed

dual linear programming (LP) problem. However, the anonymous toll derived does not

reflect the user externality. Yin and Yang (2004) extended the work and proposed a

general toll set containing all feasible anonymous toll patterns that support a multiclass

user equilibrium flow distribution as a time-based system optimum. The toll set can be

expressed as a nonempty polyhedron in a linear inequality and equality system. In a

similar way, the general toll set that supports a cost-based system optimum can also

be derived. And, the marginal cost link toll pattern is an element of the set. Engelson

and Lindberg (2006) pointed out that from a pure economic perspective that cost-based

system optimum provides the maximum overall economic efficiency to society with

heterogeneous uses.

Engelson and Lindberg (2006) investigated the marginal cost pricing principle

in a cost-based framework and concluded that the equilibrium flow distribution is not

unique in a cost-based system optimum supported by the marginal cost link toll while

the aggregate link flow is indeed unique. Therefore, implementing the marginal cost

link toll, the resulting toll equilibrium needs not coincide with the cost-based system

optimum flow distribution, which may cause marginal cost pricing principle to fail to work
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in real-world implementation. However, they further proved that the objective function

value of the cost-based system optimum, i.e., the total value of system travel time is

unique for any resulting tolled equilibrium distribution by implementing the marginal cost

link toll, even though the objective function in general is non-convex.

2.5 Public Acceptance of Congestion Pricing

Economists have long recognized that congestion pricing is an effective tool to

manage and reduce traffic congestion. However, getting the public to accept congestion

pricing is still an obstacle. In this section, we will briefly discuss why the marginal

cost pricing toll scheme is not appealing to the general public. Equity issues, the

major concern preventing congestion pricing gaining public acceptance, will also be

investigated.

2.5.1 Weakness of Marginal Cost Pricing

Marginal cost pricing can increase social welfare to the maximum level, which is

beneficial to society as a whole. However, it turns out that all road users in the system

are worse off compared to the “un-tolled” scenario. The only stakeholder that gains

surplus is the government who collects toll revenues. Hau (2005) pointed out that

marginal cost pricing is “most likely doomed to be political failures” because users

will find themselves worse off. Use Figure 2-1 to illustrate, excess flow beyond tolled

equilibrium flow Vo is “priced off” to other times or pathes because their willingness

to pay is not high enough. These users suffer a loss in consumer surplus of the area

bhk . For those users remaining on the road, their travel time is reduced at the cost of

paying congestion tolls. Their travel time saving (area mnkg) is always less than the tolls

they pay (area mphg). A deficit in consumer surplus of the area nphk is expected when

marginal cost pricing toll is introduced. If the government does not compensate users

directly by revenue refunding or indirectly by improvements in infrastructure and public

transit, road users are generally made worse off.

27



2.5.2 Equity Effects of Congestion Pricing

Equity effects were largely ignored by early researchers on congestion pricing.

Richardson (1974) believed that the equity arguments are “murky” and decision should

be made in light of efficiency. Giuliano (1994) claimed that congestion pricing is no

more regressive than other existing road related charges, such as fuel tax. Indeed,

equity effects could be highly subjective and economists have not reached a consensus

on the definition of “equity” yet. On the other hand, equity issues play an important

role in implementing any public policies. There is no exception for congestion pricing.

With the advent of electronic tolling, congestion pricing becomes more practical and

many cities around the world are considering implementing it. Therefore, in recent

years, researchers have shown an increasing interest in equity effects of congestion

pricing. Due to the complexity of equity issues, three dimensions of equity concerns are

discussed in this section.

Assuming road users are heterogeneous in their incomes, social (vertical) equity

issues arise when an anonymous toll is charged because the uniform charge tends

to take up a higher percentage of the budget of a person or family with a lower

income. Foster (1974) was the first to argue that congestion pricing is regressive

and discriminates against the poor. Since then, many studies have been done on

welfare/revenue redistribution to make congestion pricing scheme progressive or less

regressive. Eliasson (2001) proposed a toll scheme that reduces aggregate travel

time and makes everyone better off by redistributing toll revenues equally to all users.

Yang et al. (2004) developed an integrated pricing scheme for a bimodal transportation

network with transit subsidy. Eliasson and Mattsson (2006) claimed that with the toll

revenue spent on public transportation, which benefits women and those with lower

incomes, the proposed Stockholm road pricing scheme is progressive.

Spatial (horizontal) equity emphasizes that the benefits and costs of congestion

pricing should be distributed equally over space (Viegas, 2001). Congestion pricing may
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have significantly different impacts on the generalized travel costs between different

OD pairs. Yang and Zhang (2002) designed a second-best toll scheme with explicit

constraints on social and spatial equity. Yin and Yang (2004) tried to find the most

equitable anonymous link toll pattern that can support the multiclass, bi-criterion user

equilibrium flow pattern as a system optimum. The total transformed travel disutility was

used as the inequality measurement. Social and spatial inequalities were calculated for

the purpose of comparison.

Another dimension of equity issue which is often overlooked is intergenerational

or temporal equity. Let’s consider a broader road pricing concept, toll revenues are

usually used to finance new roads and capacity expansions under current practices

of transportation infrastructure financing. To what extent the gains and losses are

distributed between the present and future generations is the key issue of intergenerational

equity. Szeto and Lo (2006) defined a gap function to capture the intergenerational

equity and formulated a time-dependent network design problem to obtain the most

desirable toll patterns for each planning period (generation).

Since there is no absolute equity, it is more meaningful to discuss the degree of

equity using some equity measures. Ramjerdi (2006) examined various equity measures

for a proposed pricing scheme in Oslo using two case studies and concluded that it is

not appropriate to make judgment about the equity implication of a policy on the basis of

a single equity measure, therefore, multiple equity measures should be employed.

2.6 Summary

This chapter briefly reviewed the classic marginal cost pricing principle in the

framework of network modeling. Recent developments in first-best and second-best

pricing were also covered. Two aspects of congestion pricing were highlighted:

user heterogeneity and public acceptance. General speaking, unobservable user

heterogeneity is more difficult to deal with because only anonymous toll is feasible to

charge in this case and some equity concerns may arise due to the regressiveness

29



of anonymous tolling. Public acceptance is the key issue of implementing congestion

pricing schemes. We explained why marginal cost pricing scheme is not appealing to

the general public and how three dimensions of equity concerns play important roles in

designing congestion pricing toll schemes.

To address the public acceptance issues, ideally we should directly tackle equity

concerns when developing a congestion pricing scheme. However, the equity issue is

not to determine whether a pricing scheme is equal or not, but it is a problem about the

degree of equity, which relies on some equity measures. Unfortunately, not all equity

measures are well defined and suitable to be incorporated in optimization models.

Therefore, instead of directly utilizing various equity measures, a Pareto-improving

approach is adopted in this dissertation, that is, developing congestion pricing schemes

that improve system efficiency while ensuring that everyone is better off and no one is

worse off than the “un-tolled” situation, which will be discussed in more details in the

next chapter. Although the Pareto-improving approach does not directly address equity

concerns, it is easy for the general public to understand. Since no one is worse off in the

toll scheme, it would presumably be easier to gain public acceptance and serves as a

stepping stone towards more comprehensive road pricing schemes.

30



MC

AC

Demand

V

Traffic Flow

C

T
ra

v
e
l 
T

im
e
 o

r 
C

o
s
t

0
a
V

o
V

a

b

c

q

h

e

g

p

n

m

k

Figure 2-1. Graphical representation of marginal cost pricing
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CHAPTER 3
PARETO-IMPROVING CONGESTION PRICING APPROACH

3.1 The Concept of Pareto-Improving Pricing

Pareto efficiency, or Pareto optimality, is a central concept in welfare economics

(see, e.g., Ng, 1979). A change from one economic arrangement to another that can

make at least one person better off without making any other person worse off is called

a Pareto improvement. A situation is said to be Pareto-efficient or Pareto-optimal when

there is no further Pareto improvement can be made. It is named after Vilfredo Pareto

(1848-1923), an Italian economist who used the concept in his studies of economic

efficiency and income distribution. Almost everyone would agree that society should

avoid situations that are not Pareto-optimal. Since a Pareto improvement does not hurt

anyone, a Pareto-improving arrangement would presumably have less obstacles of

gaining public acceptance. It is well known that if there is perfect competition and no

externality, Pareto optimality would hold. However, the statement in general is not true

when externality exists.

In transportation literature, users are usually assumed to make their route choices

selfishly to minimize their own travel costs. The flow distribution that follows this route

choice principle is called a Wardrop’s user equilibrium (UE) distribution. Because of the

existence of congestion externality, Pareto optimality generally does not hold in a UE

state. From the system’s perspective, system efficiency is not optimized under a UE

flow distribution. System optimum (SO), on the other hand, makes an assumption that

all users work cooperatively to improve system efficiency and, furthermore, a SO flow

distribution is Pareto-optimal. In general, a Pareto-optimal flow distribution needs not

to optimize system efficiency, although a SO flow distribution is always Pareto-optimal.

A SO flow distribution is ideal to society; however, it is unstable in the sense that

some travelers could unilaterally change routes to reduce their own travel costs. In the

literature, a long-established market-based approach to induce a UE flow distribution to
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a SO flow distribution is the marginal social cost (MSC) congestion pricing strategy (see,

e.g., Pigou, 1920; Beckmann et al., 1956; Button, 1993 and Arnott and Small, 1994).

Although a SO flow distribution and MSC congestion pricing improve system

efficiency to its optimal level, they are not appealing to the general public with good

reason (Hau, 2005). Some users may find themselves suffering longer travel time in a

SO flow distribution even before tolling. Moreover, after introducing the MSC tolls, some

users may experience higher travel costs (time plus congestion tolls) than those under

the original UE condition. To illustrate the concept of MSC congestion pricing, consider

the example in Figure 3-1 from Hagstrom and Abrams (2001) in which there is only one

OD pair (1, 4) with a demand of 3.6.

Table 3-1 displays the link and path flows under UE and MSC pricing along with the

associated costs. Recall that tolls under MSC pricing are of the form dtij(vij)/dvij and vij

is the flow on link (i , j). When implemented, MSC pricing forces 1.54 users to use path

1-2-4 with a total cost of 101.70, of which 75.85 is the travel time and the rest (25.85)

is for tolls. Thus, these 1.54 users suffer twice, once for having to use a longer route

(75.85 instead of 71.06) and the other for having to pay tolls. Overall, the total cost to the

3.6 users under MSC pricing is 366.13 which is more than the total cost (225.80) under

UE, a cost consisting entirely of time or delay. However, MSC pricing yields less total

delay (227.11) and generates toll revenue (139.02) for the transportation authority.

In this chapter, instead of considering MSC or similar pricing, we introduce a class

of tolling or pricing schemes that improves net social benefits without making any

stakeholder (road users, society or the transportation authority) worse off. We term this

class of pricing schemes Pareto-improving congestion pricing.

The outline of this chapter is as follows: Section 2 discusses a class of non-equilibrium

flow distribution called dominating flow distribution that improves system efficiency

without making anyone worse off. Mathematical formulations to find such a flow

distribution are given. The conditions when a dominating flow distribution can be
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supported by anonymous nonnegative tolls are explored. Section 3 investigates

properties and the existence of anonymous and discriminatory Pareto-improving tolls.

Section 4 provides mathematical formulations to obtain dominating flow distributions

and equilibrium-inducing Pareto-improving toll vectors simultaneously. Section 5 is the

summary of this chapter.

3.2 Dominating Flow Distribution

Even though a SO flow distribution can reduce total system delay to its minimum

level, some users may suffer longer travel time, and thus are worse off. Such a flow

distribution may encounter fierce opposition from the general public, and subsequently

some elected officials are reluctant to advocate such a solution. Intuitively, if there exists

a flow distribution that improves system efficiency without making any user worse off,

the flow distribution would be much easier to gain public support. In this dissertation,

such a flow distribution is referred to as a dominating flow distribution. A flow distribution

dominates the UE distribution if it strictly improves a measure of system efficiency

and allows all users to use routes that are no longer than those under UE. For brevity,

we also say that a flow distribution is dominating if it dominates the UE distribution.

When compared to the UE distribution, we show later that our definition of domination

is consistent with the traditional one, i.e., no user is worse off and some are better

off under a dominating flow distribution. Consequently, we say that a pricing or tolling

scheme is Pareto-improving if it induces a flow distribution that dominates the UE

distribution and generates a generalized travel cost (i.e., time plus congestion tolls) for

every user that is no larger than his or her travel time under UE.

In Hagstrom and Abrams (2001) and Abrams and Hagstrom (2006), the authors

refer to a dominating flow distribution as a Generalized Braess Paradox. They found

non-equilibrium flow distributions may achieve lower travel time for every user than

the UE flow distribution does and also subsequently reduce total system delay. The

seemingly paradox can be explained by the fact that the UE flow distribution may not be
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Pareto-optimal, which implies it is possible to find better alternatives for at least one user

without making any other user worse off.

3.2.1 Feasible Flow Distribution

When demands are fixed, V F denotes a set of all feasible flow distributions, each

of which is represented as v . The number of nodes and links in the transportation

network are m and n respectively. In particular, v ∈ Rn and vF ∈ Rn. The set vF can

be described using either path or link flow variables. Using the former, let f wr and dw

denote the amount of flows on path (or route) r and the given demand for OD pair w,

respectively. Then,

V F = {v : vij =
∑

w

∑
r∈Pw

δijr f
w
r ;

∑
r∈Pw

f wr = dw ,∀w ; f wr ≥ 0,∀w , r},

where Pw is the set of paths for OD pair w and δijr (equals 0 or 1) indicates whether arc

(i , j) is on path r. Alternatively, let A be the node-arc incidence matrix and it is of size

m × n. We use w to represent the index for OD pair w and dw denotes the demand

between OD pair w. Ew ∈ Rm is an “input-output” vector and has exactly two nonzero

components, the one corresponding to the origin of OD pair w has a value 1 and the

one corresponding to the destination has a value of -1. Let L be the set of links in the

network and its element (i , j) represents a link from node i to node j. Travel time function

tij(vij) is assumed to be separable, continuous, strictly monotone and tij(vij) > 0 for all

v ∈ V F . The feasible flow distribution V F can be written as follows:

V F = {v : v =
∑

w
xw ,Axw = Ewdw ,∀w},

where xw ∈ Rn is a vector whose components are link flows of OD pair w.

3.2.2 Finding Dominating Flow Distribution

To describe a dominating flow distribution mathematically, let f wr be the path flow on

path r of OD pair w and Pw be the set of paths between OD pair w. A flow distribution

v ∈ V F dominates a given UE flow distribution, or is dominating if v and its path flow f wr
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satisfy the flowing conditions:

∑
(i ,j)∈�w

r

tij(vij) ≤ cUEw ∀w , r ∈ Pw
+ (3–1)

t(v)Tv < t(vUE)TvUE (3–2)

where, for OD pair w, �w
r is the set of links on path r and Pw

+ = {r : r ∈ Pw and f wr > 0}

is a set of utilized paths associated with the flow distribution v. vUE is the UE flow

distribution, i.e., vUE satisfies t(vUE)T (v − vUE) ≥ 0,∀v ∈ V F . In particular, condition

(3–1) ensures that all users are not worse off and condition (3–2) guarantees that some

are better off. If v is dominating, then condition (3–2) implies that there must exist at

least one utilized path for some OD pair w , such that
∑

(i ,j)∈�w
~r
tij(vij) < cUEw , i.e., users

of path ~r are better off. Otherwise,
∑

(i ,j)∈�w
r
tij(vij) = cUEw for every w and r ∈ Pw

+ ,

implying that t(v)F = t(vUE)TvUE . The latter contradicts the fact that v is dominating

and satisfies condition (3–2).

Any feasible flow pattern that satisfies the above two inequalities is a dominating

flow distribution. When such a distribution exists, however, it may not be unique. To

illustrate, Table 3-2 lists three dominating flow distributions for the five-link network in

Figure 3-1. They are in columns labeled DF-F-1, DF-F-2, and DF-F-3. As displayed in

the penultimate row in the table, the lengths of the longest utilized path for the three

dominating flow distributions are no greater than the one for UE. Among the three, the

longest path for DF-F-1 is the shortest while DF-F-3 yields the smallest total delay. In

addition, a convex combination of DF-F-2 and DF-F-3 is also dominating. Thus, the

number of dominating flow distributions for the five-link network is infinite.

Among all dominating flow distributions, we define the one with the least total

system delay as the optimal dominating flow distribution, which not only dominates the

UE distribution but also dominates all other dominating flow distributions. To find the

optimal dominating flow distribution, we formulate the following path-based optimization
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problem. The optimization problem is equivalent to the formulation in Abrams and

Hagstrom (2006) of finding a Generalized Braess Paradox.

P1: min
v

t(v)Tv (3–3)

s.t. v ∈ V F (3–4)

f wr (
∑

(i ,j)∈�w
r

tij(vij)− cUEw ) ≤ 0 ∀w , r ∈ Pw (3–5)

In the above, constraint (3–4) requires v to be a feasible flow distribution. Constraint

(3–5) ensures that when path r is utilized, its travel time should be less than or equal to

that under the UE flow distribution. The objective function is to minimize total system

delay. Thus, if the optimal solution to P1 is v ∗ and t(v ∗)v ∗ < t(vUE)vUE , then condition

(3–2) holds. The complementarity constraint implies for f wr > 0,
∑

(i ,j)∈�w
r
tij(v

∗
ij )− cUEw ≤

0 and hence, condition (3–1) also holds. Furthermore, if there exists another dominating

flow distribution other than v ∗ that has less total system delay, v ∗ cannot be the optimal

solution to problem P1. Thus, if dominating flow distributions exist, v ∗ must be the

optimal dominating flow distribution. When t(v ∗)Tv ∗ = t(vUE )TvUE , there is no v ∈ V F

that satisfies both (3–1) and (3–2), i.e., no dominating distribution exists. Note that for

the five-link network, DF-F-3 in Table 2 solves the P1 problem and the other two do not.

To make the problem more computationally tractable, we formulate the following

link-based optimization problem:

P2: min
(v ,ρ)

t(v)Tv (3–6)

s.t. v ∈ V F (3–7)

xwij
(
ρwi − ρwj − tij(vij)

)
≥ 0 ∀w , (i , j) ∈ L (3–8)

ρwo(w) − ρwd(w) ≤ cUEw ∀w (3–9)

When a link (i , j) is utilized, i.e., xwij > 0, constraint (3–8) reduces to
(
ρwi − ρwj − tij(vij)

)
≥

0. Adding this expression up for each link along a utilized path r of OD pair w yields the
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following: ∑
(i ,j)∈�w

r

tij(vij) ≤
∑

(i ,j)∈�w
r

(ρwi − ρwj ) = ρwo(w) − ρwd(w),

where, for OD pair w, �w
r is a set containing links on path r and o(w) and d(w) represent

the origin and destination nodes. Thus, along with constraint (3–9), it implies that

condition (3–1) is satisfied for every utilized path and OD pair. With a similar argument

to problem P1, we can conclude that the optimal solution to P2 is the optimal dominating

flow distribution if there exists a dominating flow distribution.

As formulated above, mathematical program P1 and P2 are optimization problems

with complementarity constraints (MPCC), a difficult class of problem to solve optimally

(see, e.g., Scheel and Scholtes, 2000), and Abrams and Hagstrom (2006) propose a

practical methodology for finding a local optimal solution to problem P1 by allowing only

routes utilized in the UE distribution to have positive flows.

3.2.3 Dominating Flow Distribution and Nonnegative Tolls

Although a dominating flow distribution can improve traffic condition without making

anyone worse off, the flow distribution is not in equilibrium state and hence is unstable.

In real-world implementation, the dominating flow distribution has to be realized through

either regulatory or market-based approach. In this chapter, road congestion pricing

is used as an instrument to induce such a dominating flow distribution. In this section,

we would like to explore the relationship between a dominating flow distribution and

nonnegative tolls. More specifically, we will discuss when a dominating flow distribution

can be supported by an anonymous nonnegative toll vector as a Wardrop equilibrium

flow distribution.

Before we start answering this question, the concept of Gallager loop, or loop in

Gallager’s sense (Gallager, 1977) needs to be introduced first.

Definition of Gallager loop: An aggregate feasible flow v that satisfies demand d

contains loops if it can be expressed as v = �v + ~v , where �v is a feasible flow distribution

for d and ~v > 0 is a circulation flow, such that A~v = 0.
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In other words, for a flow distribution with Gallager loop, if the circulation flow ~v

is removed, �v is still a feasible flow distribution for demand d . Hereafter we will use

the term commodity to refer to users between a particular OD pair. By the definition

of Gallager loop, a flow distribution is loop-free if there exists no decomposition into

commodity link flows that use all links of a directed cycle. Gallager (1977) also provided

the following necessary and sufficient condition for a flow distribution to contain a

Gallager loop.

Lemma 1: An aggregate feasible flow v contains loops if and only if �v is another

feasible aggregate flow for the same demand with �v < v .

A circulation flow of a single commodity along a directed cycle is an obvious

example of a Gallager loop. We call such a circulation flow a single-commodity loop.

It is generally easy to identify a single-commodity loop by visual inspection. However,

a Gallager loop also exists when an aggregate circulation flow is formed by flows of

different OD pairs, which we refer to as a multi-commodity loop. It is generally not a

straightforward task to detect a multi-commodity loop through visual inspection. The

examples in Figure 3-2 and 3-3 extracted from Gallager (1977) and Hagstrom and

Abrams (2009) are used to illustrate.

In the examples, three OD pairs and their corresponding demands are shown in the

figures. Different dotted links are used to distinguish paths taken by users of different

OD pairs. For example, in Figure 3-2, travel demand from the origin node 2 to the

destination node 5 follows path 2-4-3-5. By inspection, there is no single-commodity

loop in Figure 3-2. However, a multi-commodity loop can be found, which consists of

flows of three different OD pairs along directed cycle 1-2-4. The existence of a Gallager

loop can also be verified using Lemma 1. Let v denote aggregate flow vector in Figure

3-2. Figure 3-3 shows another feasible flow distribution with an aggregate flow vector �v

by removing traffic flows from the directed cycle 1-2-4. By Lemma 1, for the same travel
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demand, we have another aggregate flow �v and �v < v , therefore, the flow distribution in

Figure 3-2 must contains a Gallager loop.

Given a feasible flow distribution �v with travel demand d , we formulate the following

optimization problem to explore the existence of a Gallager loop mathematically.

P3: min
v

∑
(i ,j)∈L

(vij − �vij) (3–10)

s.t. v ∈ V F (3–11)

0 ≤ vij ≤ �vij ∀(i , j) ∈ L (3–12)

where, constraint (3–11) is to make sure the flow distribution v is feasible. Constraint

(3–12) requires aggregate link flow v should be no greater than the original feasible

flow distribution. The objective function is to maximize the difference between v and �v ,

and the value is always less than or equal to 0. The above optimization problem always

has at least one feasible solution when vij = �vij ,∀(i , j) ∈ L. If the optimal value of the

objective function is 0, we can conclude that the given feasible flow distribution �v is

loop-free. When the optimal objective function value is strictly less than 0, the given

feasible flow distribution �v contains at least one loop, and the optimization problem also

generates a loop-free feasible flow distribution �v for travel demand d .

Hagstrom and Abrams (2009) investigated loops and the existence of equilibrium-inducing

tolls. They established necessary and sufficient conditions for a particular traffic flow to

be supported by various classes of tolls. The following theorem is from Hagstrom and

Abrams (2009). We restate it here for convenience.

Theorem 1: The feasible flow �v is realizable as a Wardrop equilibrium with positive

anonymous cost vector c(�v) if and only if �v does not contain a loop.

To relate a given feasible flow distribution to nonnegative tolls, we have the following

lemma as a direct extension of the above theorem.
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Lemma 2: The absence of loops (single- and multi-commodity) is necessary and

sufficient for the existence of anonymous nonnegative tolls to support a given feasible

flow distribution as a Wardrop equilibrium.

Proof: We prove the necessary part first. If a feasible flow, �v , contains no loop,

according to Theorem 1, it is realizable with positive cost c(�v). The cost function can

be written as follows: cij(�vij) = tij(�vij) + τij . The toll for link (i , j) can be expressed as

τij = cij(�vij)− tij(�vij). In a tolled UE, the following system of equations holds:

∑
(i ,j)∈�w

r

cij(�vij) =
∑

(i ,j)∈�w
r

(tij(�vij) + τij) = λw , ∀w and r ∈ �Pw
+ (3–13)

∑
(i ,j)∈�w

r

cij(�vij) =
∑

(i ,j)∈�w
r

(tij(�vij) + τij) ≥ λw , ∀w and r ∈ �Pw
0 (3–14)

where �Pw
+ = {r : r ∈ Pw and �f wr > 0} and �Pw

0 = {r : r ∈ Pw and �f wr = 0}. We

further know that the UE flow distribution does not change when the travel cost function

of each link is multiplied by a positive scale, i.e., if link travel cost becomes αcij(�vij)

for every link (i , j) ∈ L, the UE flow distribution still holds. Therefore, we know that

τij = αcij(�vij)− tij(�vij) is also a valid toll to support the UE flow. By changing the scale α,

the existence of a nonnegative toll vector is guaranteed.

To prove the sufficient part, generally every link is assumed to have a positive free

flow travel time in a transportation network, which implies that tij(�vij) > 0. Therefore,

when there is a nonnegative toll vector to support a feasible flow distribution �v , we have

cij(�vij) = tij(�vij) + τij > 0. By Theorem 1, we know that the feasible flow distribution �v

does not contain any loop (single- and multi-commodity).

Corollary 1: The absence of loops (single- and multi-commodity) is necessary and

sufficient for the existence of anonymous nonnegative tolls to support a dominating flow

distribution as a Wardrop equilibrium.

Essentially, a dominating flow distribution is just a special class of feasible flow

distribution. As a result, by Lemma 2, we have the above corollary.
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For a transportation network with a single OD pair, the relationship between the

optimal dominating flow distribution and nonnegative tolls can be further strengthened.

Theorem 2: When a transportation network has a single OD pair, there always

exists a nonnegative toll vector to support the optimal dominating flow distribution.

Proof: To obtain a contradiction, let (v ∗, ρ∗) be the solution to the optimization

problem P2. If v ∗ contains a Gallager’s loop, it can be expressed as v ∗ = �v + ~v ,

where �v is another feasible flow, �v ∈ V F , and �v < v ∗. tij(vij) is strictly monotone, thus

tij(�vij) ≤ tij(v
∗
ij ) for all (i , j) ∈ L. Since the transportation network has a single OD

pair, the second constraint of P2 can be reduced to vij
(
ρi − ρj − tij(vij)

)
≥ 0. When(

ρ∗i − ρ∗j − tij(v
∗
ij )
)
≥ 0, for the feasible flow �v , we have

(
ρ∗i − ρ∗j − tij(�vij)

)
≥ 0 because

tij(�vij) ≤ tij(v
∗
ij ) for all (i , j) ∈ L. When

(
ρ∗i − ρ∗j − tij(v

∗
ij )
)
≤ 0, in order to make the

second constraint hold, v ∗
ij = 0. Since �vij ≤ v ∗

ij for all (i , j) ∈ L, we have �vij = 0.

Therefore, �vij
(
ρ∗i − ρ∗j − tij(�vij)

)
≥ 0 also holds. We can conclude that if we keep ρ∗

unchanged, the feasible flow �v satisfies all three constraints of problem P2. In other

words, �v is also a feasible solution to problem P2. Since �v < v ∗ and tij(�vij) ≤ tij(v
∗
ij ) for

(i , j) ∈ L,
∑

(i ,j)∈L tij(�vij)�vij <
∑

(i ,j)∈L tij(v
∗
ij )v

∗
ij . We have a contradiction that a feasible

solution to a minimization problem cannot lead to a lower value in the objective function

than the optimal solution does.

3.3 Nonnegative Pareto-Improving Tolls

In previous sections, we investigated the relationship between dominating flow

distributions, and nonnegative congestion tolls and concluded that the absence of

loops (single- and multi-commodity) is necessary and sufficient for the existence of

anonymous nonnegative tolls to support a given dominating flow distribution as a

Wardrop equilibrium. A further question we are interested in is: when a given dominating

flow distribution can be supported by anonymous nonnegative tolls, does there always

exist a Pareto-improving toll vector to induce the dominating flow distribution? The
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following discussions will provide an answer to this question. In this section, we assume

that a dominating distribution is given.

3.3.1 Existence of Anonymous Pareto-Improving Tolls

Let �v denote a given dominating distribution. With respect to the travel costs

under UE, a nonnegative toll vector, τ , is Pareto-improving if it satisfies the following

conditions:

∑
(i ,j)∈�w

r

(tij(�vij) + τij) = λw ∀w , r ∈ �Pw
+ (3–15)

∑
(i ,j)∈�w

r

(tij(�vij) + τij) ≥ λw ∀w , r ∈ �Pw
0 (3–16)

τ > 0 (3–17)

λw ≤ cwUE ∀w (3–18)

Similar to before, �Pw
+ = {r : r ∈ Pw and �f wr > 0} and �Pw

0 = {r : r ∈ Pw and �f wr = 0}. For

each OD pair, conditions (3–15) and (3–16) ensure that τ is a valid toll vector (see, e.g.,

Hearn and Ramana, 1998), in that they force the utilized paths associated with �v to have

the same generalized travel cost that is no greater than those for the non-utilized paths.

Condition (3–18) ensures that the generalized cost for each OD pair is no greater than

the user equilibrium travel time. Without the nonnegativity requirement in (3–17), setting

τ = −t(�v) trivially satisfies conditions (3–15) – (3–18) and the resulting generalized

travel cost is zero for all paths. Thus, τ = −t(�v) is Pareto improving. When τ must be

nonnegative, a Pareto-improving toll vector may not exist. As discussed in the previous

section, if a dominating flow distribution contains a single- or multi-commodity loop, no

nonnegative tolls can be found to support the dominating flow distribution. However,

even if a dominating flow distribution can be supported by a nonnegative toll vector,

does that indicate that we can always find a nonnegative Pareto-improving toll vector to

induce the flow distribution? We will illustrate the problem using the following numerical
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example. The five-link network in Figure 3-4 has two OD pairs (1, 4) and (3, 2) with

demands of 3.6 and 1.0 respectively.

To obtain a dominating flow distribution of the example in Figure 3-4, we can solve

the optimization problem P2. The UE flow distribution and optimal dominating flow

distribution are given in Table 3-3.

We can observe from Table 3-3 that users between OD pair (3, 2) are better off

in terms of lower travel time, and total system delay is also reduced. Let a feasible

flow distribution �v be a dominating flow distribution. The following linear program is

constructed to examine the existence of a nonnegative Pareto-improving toll vector to

support the dominating flow distribution �v .

P4: min
(y ,ρ,τ)

y (3–19)

s.t. �xwij
(
tij(�vij) + τij − ρwi + ρwj

)
= 0 ∀w , (i , j) ∈ L (3–20)

tij(�vij) + τij ≥ ρwi − ρwj ∀w , (i , j) ∈ L (3–21)

ρwo(w) − ρwd(w) − cUEw ≤ y ∀w (3–22)

τ , y ≥ 0 (3–23)

Constraints (3–20) and (3–21) ensure that the toll vector τ supports the flow distribution

�v as a user equilibrium, i.e., (t(�v) + τ)T (v − �v) ≥ 0,∀v ∈ V F . When the dominating

flow distribution contains no loop, it can be supported by a nonnegative toll vector.

By setting y equals to a large number, constraint (3–22) is not binding anymore. The

problem reduces to solving a system of equations to get a nonnegative toll vector that

supports the dominating flow distribution. Since the non-tolled UE flow distribution

is always feasible to the system of equations, the optimization problem always has a

solution. If the optimal objective function value is less than or equal to 0 and τ > 0,

we find a Pareto-improving toll vector τ to support the dominating flow distribution. If

the optimal objection value is strictly greater than 0, we can conclude that there is no
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Pareto-improving toll vector to support the dominating flow distribution. In the meantime,

the program also generates a nonnegative toll vector that can induce the dominating

flow distribution to a user equilibrium flow distribution.

The following example demonstrates that a nonnegative Pareto-improving toll vector

may not exist to support a dominating flow distribution even though the flow distribution

can be supported by nonnegative tolls.

The UE and dominating flow distributions are the same as the previous example

in Figure 3-2. By solving problem P4, the optimal objective function value is 12.16,

which indicates that there is no Pareto-improving toll vector to support the given

dominating flow distribution. The solutions to problem P4 also demonstrate that the

given dominating flow distribution actually can be supported by a nonnegative toll vector.

The toll vector is listed in the last column of Table 3-4. The equilibrium travel cost of OD

pair (1, 4) increases from 71.25 to 82.69 after implementing the nonnegative tolls, and

hence the equilibrium-inducing toll vector is not Pareto-improving.

Generally, there may not exist a set of Pareto-improving tolls that induces a given

dominating flow distribution. The theorem below provides a necessary and sufficient

condition under which such tolls exist.

Theorem 3: Let �v be a dominating flow distribution such that �v =
∑

w �xw , where

A�xw = Ewdw and �xw ≥ 0 for all w . Then, there exists a Pareto-improving toll vector that

induces �v if and only if the vector (�xw , 0) solves the following linear program:

min
(y ,z)

t(�v)T (
∑

w
yw) +

∑
w
cUEw zw (3–24)

s.t. Ayw + Ewzw = Ewdw ∀w (3–25)∑
w
ywij ≤ �vij ∀(i , j) ∈ L (3–26)

yw , zw ≥ 0 ∀w (3–27)

Proof: Because the Karush-Kuhn-Tucker (KKT) conditions are both necessary and

sufficient for linear programs, (�xw , 0) solves the above linear program if and only if there
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exists multipliers ρw , τ , σw and γw such that the following hold:

tij(�v) + τij − (ρwi − ρwj )− σwij = 0, ∀w , (i , j) ∈ L (3–28)

cUEw − ET
w ρw − γw = 0, ∀w (3–29)

(�xw)Tσw = 0, ∀w (3–30)

τ , γw ,σw ≥ 0 (3–31)

Because �xw > 0 when link (i , j) is on a utilized path, (3–30) implies that σwij = 0

for all (i , j) on a utilized path. By adding equations in (3–28) associated with arcs on

the same path together and using that the fact that σwij = 0 for links on utilized path, the

following must hold for every OD pair w = (o, d):

∑
(i ,j)∈�w

r

(tij(�v) + τij) = (ρwo − ρwd ), ∀r ∈ �Pw
0 (3–32)

∑
(i ,j)∈�w

r

(tij(�v) + τij) ≥ (ρwo − ρwd ), ∀r ∈ �Pw
0 (3–33)

where, similar to before, �Pw
+ = {r : r ∈ Pw and �f wr > 0} is the set of utilized paths

associated with �v and �Pw
0 = {r : r ∈ Pw and �f wr = 0} is the set of unutilized paths. Next,

observe that (3–29) implies that cUEw − ET
w ρw = γw ≥ 0 or cUEw ≥ ρwo − ρwd for all w . Thus,

letting λw = ρwo − ρwd yields a triplet (�v , τ ,λ) that satisfies (3–15) – (3–18). Because �v is

dominating, it follows that t(�v)T�v < t(vUE)TvUE and τ satisfies (3–15) – (3–18), i.e., τ is

Pareto-improving.

When the network has only one origin and tij(vij) is an increasing function for all

(i , j), the above theorem can be strengthened.

Theorem 4: Assume that there is only one origin and tij(vij) is an increasing

function for all (i , j). Let �v be a given dominating flow distribution without any single-commodity

loop. Then, there always exists a Pareto-improving toll vector that induces �v .

Proof: Because tij(vij) is an increasing function and �v contains no single-commodity

loop, the subnetwork consisting of arcs such that �vij > 0 also contains no directed cycle.
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Using the algorithm in Dial (1999) for the one origin problem, it is possible to construct

a toll vector �τ ≥ 0 such that, for each OD pair, the generalized costs of all utilized paths

are the same and at least one of which is toll-free. The latter implies that, for every OD

pair w ,
∑

(i ,j)∈�w
~r
�τij = 0 for some ~r ∈ �Pw

+ and it follows from (3–15) that, for every r ∈ �Pw
+ ,

�λw =
∑

(i ,j)∈�w
r

(tij(�v) + τij) =
∑

(i ,j)∈�w
~r

tij(�v) ≤ cUEw , ∀r ∈ �Pw
+

From the above, �τ satisfies (3–15) – (3–18), and �v is dominating. Thus, �τ is

Pareto-improving.

To illustrate, consider the five link example in Figure 3-1. Table 3-5 provides the UE

and a dominating distribution. The latter solves problem P2 and is labeled as ‘DF-F-3’ in

Table 3-5.

The algorithm in Dial (1999) constructs the longest path tree in Figure 3-5 using

the link cost tij(�v) in Table 3-5. Based on this longest path tree, Dial’s algorithm would

set the tolls on link (3, 2) and (3, 4) to be τ32 = (51.36 - 22.4) - 10.61 = 18.35 and τ34

= (71.06 - 22.4) - 42.74 = 5.91. Doing so produces the toll vector τ 1= [0.0, 0.0, 18.35,

5.91, 0.0]T and makes the generalized cost (time plus tolls) of every path equal 71.06.

However, other Pareto-improving toll vectors exist. For example, τ 2= [5.91, 0.0, 12.44,

0.0, 0.0]T and τ 3= [2.26, 0.0, 16.09, 3.65, 0.0]T are both Pareto-improving. When

considering a secondary objective, τ 1 and τ 2 may be more attractive because, e.g., they

require a smaller number of toll collection facilities than τ 3. With all three toll vectors,

λw = cwUE because the longest paths under �v and UE have the same length.

3.3.2 Existence of Discriminatory Pareto-Improving Tolls

So far in this chapter, all pricing schemes we have discussed are anonymous

pricing schemes, i.e., road users are charged the same amount of money on links that

are subject to congestion pricing regardless of their individual differences. However, as

the technology of vehicle positioning system and electric tolling advances, discriminatory

congestion pricing schemes are becoming more readily available to real-world
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implementations. One form of discriminatory pricing is to charge users differently

based on their origins and destinations, which is referred to as commodity-dependent

(OD-dependent) pricing. In this section, we will investigate the relationship between

OD-dependent tolls and dominating flow distributions.

Let �v denote a given dominating distribution. With respect to the travel costs under

UE, a OD-dependent nonnegative toll vector, τ , is Pareto-improving if it satisfies the

following conditions:

∑
(i ,j)∈�w

r

(tij(�vij) + τwij ) = λw ∀w , r ∈ �Pw
+ (3–34)

∑
(i ,j)∈�w

r

(tij(�vij) + τwij ) ≥ λw ∀w , r ∈ �Pw
0 (3–35)

τ ≥ 0 (3–36)

λw ≤ cwUE (3–37)

where �Pw
+ = {r : r ∈ Pw and �f wr > 0} and �Pw

0 = {r : r ∈ Pw and �f wr = 0}. Similar to its

anonymous pricing counterpart, a mathematical program is constructed to examine the

existence of a Pareto-improving toll vector to support the dominating flow distribution �v .

P5: min
(y ,ρ,τ)

y (3–38)

s.t. �xwij
(
tij(�vij) + τwij − ρwi + ρwj

)
= 0 ∀w , (i , j) ∈ L (3–39)

tij(�vij) + τwij ≥ ρwi − ρwj ∀w , (i , j) ∈ L (3–40)

ρwo(w) − ρwd(w) − cUEw ≤ y ∀w (3–41)

τ , y ≥ 0 (3–42)

Using the same demand and network settings as the previous example in Figure

3-4, we solve problem P5 and present the results in Table 3-5.

OD-dependent tolls are listed in the last two columns of Table 3-6. We can observe

that road users between OD pair (3, 2) are better off and total system delay is also
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reduced, therefore, the resulting OD-dependent tolling scheme is Pareto-improving.

The above numerical examples in Table 3-4 and 3-6 demonstrate that a dominating

flow distribution that cannot be supported by anonymous Pareto-improving tolls may be

supported as a tolled UE by an OD-dependent Pareto-improving toll vector.

Hagstrom and Abrams (2009) concluded that any feasible flow distribution

with no single-commodity loop can be realized as a Wardrop equilibrium using

commodity-dependent nonnegative tolls even if the flow contains a multi-commodity

loop. The following Lemma is a direct result of their conclusion.

Lemma 3: If a dominating flow distribution does not contain a single-commodity

loop, then there always exists a nonnegative OD-dependent toll vector to support it.

To explore the relationship between a given dominating flow distribution and

OD-dependent Pareto-improving toll vectors in general, we have the following Theorem.

Theorem 5: Given a dominating flow distribution without a single-commodity loop,

we can always find a nonnegative OD-dependent Pareto-improving toll vector to support

it as a Wardrop equilibrium.

Proof: The system of equations (3–34) to (3–37) can be decomposed into

separate sub-problems for each OD pair. Each sub-problem is equivalent to finding

an anonymous Pareto-improving nonnegative toll vector for a given dominating flow

distribution with single OD pair. Using the algorithm in Dial (1999), it is possible to

construct a toll vector �τw ≥ 0 for the sub-problem of OD pair w , such that all utilized

paths of OD pair w have the same cost and at least one of them is toll-free. By running

the algorithm for each OD pair, we can construct a nonnegative OD-dependent

Pareto-improving toll vector to induce any dominating flow distribution without a

single-commodity loop.

3.4 Pareto-Improving Toll Problem

The previous two sections investigated properties and existence of dominating

flow distributions and Pareto-improving tolls. To find a Pareto-improving toll vector,
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a two-step procedure can be followed. For a given network configuration, find a

dominating flow distribution first (problem P1 or P2), and if it exists then try to find

corresponding Pareto-improving toll vectors (problem P4 or P5) to induce the dominating

flow distribution to a Wardrop equilibrium flow distribution. Nevertheless, the two-step

procedure may not be particularly efficient in finding a Pareto-improving toll vector. In

this section, we introduce a new mathematical problem called Pareto-improving toll

problem to find a dominating flow distribution and equilibrium-inducing Pareto-improving

tolls simultaneously. In general, Pareto-improving pricing schemes may be classified

as second-best pricing schemes, which do not necessarily reduce congestion to the

minimum level possible.

To find an anonymous Pareto-improving toll vector, the following mathematical

program is formulated:

P6: min
(v ,x ,ρ,τ)

t(v)Tv (3–43)

s.t. v ∈ V F (3–44)

xwij
(
tij(vij) + τij − ρwi + ρwj

)
= 0 ∀w , (i , j) ∈ L (3–45)

tij(vij) + τij ≥ ρwi − ρwj ∀w , (i , j) ∈ L (3–46)

ρwo(w) − ρwd(w) ≤ cUEw ∀w (3–47)

τ ≥ 0 (3–48)

The objective function of the above problem is to minimize the total travel time or delay

in the system. When combined together, constraints (3–45) and (3–46) are the KKT

conditions associated with (t(v) + τ)T (u − v) ≥ 0,∀u ∈ V F . In other words, these two

constraints ensure flow distribution v is a tolled equilibrium flow distribution. When link

(i , j) is utilized, i.e., xwij > 0, constraint (3–45) forces the equation tij(vij)+ τij = ρwi − ρwj to

hold. Combing together this equation for each link on a utilized path yields the following:

∑
(i ,j)∈�w

r

(tij(vij) + τij) =
∑

(i ,j)∈�w
r

(ρwi − ρwj ) = ρwo(w) − ρwd(w)
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where, for OD pair w, �w
r is a set containing links on path r and o(w) and d(w)

represent the origin and destination nodes. Thus, constraint (3–44) implies that the

generalized cost (time plus tolls) of every utilized path equals (ρwo(w) − ρwd(w)) for OD pair

w. Consequently, constraint (3–47) guarantees that no utilized path costs more than

cUEw , the cost under UE, and doing so makes no one worse off. Finally, constraint (3–48)

requires the link tolls to be nonnegative.

As formulated, problem P6 is always feasible. In particular, let vUE denote a UE

distribution, i.e., vUE satisfies t(vUE)T (u − vUE) ≥ 0,∀u ∈ V F . Then, (v , ρ, τ) =

(vUE , ρUE , 0) is feasible to problem P6, where ρUE is the KKT multipliers associated with

the preceding variational inequality. On the other hand, a dominating flow distribution

or Pareto-improving tolls may not exist. Let (v ∗, ρ∗, τ ∗) denote an optimal solution to

problem P6. If
∑

(i ,j)∈L tij(v
∗
ij)v

∗
ij <

∑
(i ,j)∈L tij(v

UE
ij )vUEij , then v ∗ is a dominating flow

distribution and τ ∗ is Pareto-improving. When
∑

(i ,j)∈L tij(v
∗
ij)v

∗
ij =

∑
(i ,j)∈L tij(v

UE
ij )vUEij ,

then no dominating flow distribution and Pareto-improving toll exists.

Similar to the above problem of developing an anonymous pricing scheme,

the following mathematical program can be formulated to find an OD-dependent

Pareto-improving toll vector.

P7: min
(v ,x ,ρ,τ)

t(v)Tv (3–49)

s.t. v ∈ V F (3–50)

xwij
(
tij(vij) + τwij − ρwi + ρwj

)
= 0 ∀w , (i , j) ∈ L (3–51)

tij(vij) + τij ≥ ρwi − ρwj ∀w , (i , j) ∈ L (3–52)

ρwo(w) − ρwd(w) ≤ cUEw ∀w (3–53)

τ ≥ 0 (3–54)

Constraints (3–51) and (3–52) in the above optimization problem are KKT conditions

that ensure flow distribution v is induced by OD-dependent tolls as a tolled UE
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distribution. Constraint (3–53) confines equilibrium travel cost of each OD pair to no

more than that under original UE condition. As formulated, by setting τ = 0, vUE is

always a feasible solution to problem P7. However, an OD-dependent Pareto-improving

toll vector only exists if the optimal value of the objective function of problem P7 is strictly

less than t(vUE)TvUE .

The above Pareto-improving toll problems are formulated as MPCC, a class of

optimization problems difficult to solve (see, e.g., Scheel and Scholtes, 2000). Standard

stationarity conditions such as the KKT conditions do not hold for MPCC and many (see,

e.g., Luo et al., 1996 and references cited therein) have proposed special algorithms

to solve them. The manifold suboptimization algorithm developed by Lawphongpanich

and Yin (2010) is worth particular mentioning because it can solve large-scale MPCC

problems effectively. Their algorithm focuses on finding a strongly stationary solution by

solving a sequence of relaxed problems. More details about the algorithm can be found

in Lawphongpanich and Yin (2010).

3.5 Summary

This chapter systematically investigated Pareto-improving congestion pricing tolls.

In the beginning of the chapter, we discussed why a SO flow distribution is not appealing

to the general public. The fundamental reason that a Pareto-improving congestion

pricing scheme is achievable is that a UE flow distribution may not be Pareto-optimal.

A Pareto improvement over the UE flow distribution termed as a dominating flow

distribution was introduced in Section 2. Mathematical formulations to find dominating

flow distributions were presented. Since a dominating flow distribution is not in an

equilibrium state, how to induce a dominating flow distribution using nonnegative tolls

was discussed. The absence of loops (single- and multi-commodity) was identified as

the necessary and sufficient condition for the existence of anonymous nonnegative

tolls to support a given dominating flow distribution. For a transportation network with

one OD pair, we further concluded that there always exists a nonnegative toll vector
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to support the optimal dominating flow distribution. In Section 3, we investigated

the existence of nonnegative Pareto-improving toll vectors that can support a given

dominating flow distribution as an equilibrium flow distribution in both anonymous

and discriminatory congestion pricing settings. Two examples were used to show

that an OD-dependent Pareto-improving toll vector may exist to support a dominating

flow distribution that cannot be supported by an anonymous Pareto-improving toll

vector. These examples were particularly enlightening because they demonstrated

the potential benefits of introducing discriminatory pricing schemes. We then proved

that a nonnegative OD-dependent Pareto-improving toll vector can always be found to

induce any dominating flow distribution without a single-commodity loop as a Wardrop

equilibrium flow distribution. In Section 4, instead of following a two-step procedure to

find a dominating flow distribution and its corresponding Pareto-improving toll vector, we

formulated a MPCC that can solve both problems simultaneously.
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Figure 3-1. A five-link network

Table 3-1. Flow distributions under UE and MSC pricing for the five-link network
UE MSC pricing

Link Flow Time Flow (SO) Time Toll Gen. cost
(1, 3) 3.60 36.00 2.06 20.64 20.64 41.28
(1, 2) 0.00 50.00 1.54 51.54 1.54 53.07
(3, 2) 2.28 12.28 0.90 10.90 0.90 11.79
(3, 4) 1.32 35.06 1.17 31.21 29.21 60.43
(2, 4) 2.28 22.78 2.43 24.32 24.32 48.63

Path
1-3-4 1.32 71.06 1.17 51.85 49.85 101.70
1-3-2-4 2.28 71.06 0.90 55.85 45.85 101.70
1-2-4 0.00 72.78 1.54 75.85 25.85 101.70
Costs to users 255.80 227.11 139.02 366.13
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Table 3-2. UE and dominating flow distributions
Link flows

Link UE DF-F-1 DF-F-2 DF-F-3
(1, 3) 3.60 1.90 2.24 2.24
(1, 2) 0.00 1.70 1.36 1.36
(3, 2) 2.28 0.00 0.45 0.61
(3, 4) 1.32 1.90 1.79 1.63
(2, 5) 2.28 1.70 1.81 1.97

Cost of the longest utilized path 71.06 68.70 69.40 71.06
System cost or total delay 255.78 247.10 241.17 234.99 

 

 

Figure 3-2. Multi-commodity loop example 

 

 

Figure 3-3. Multi-commodity loop example with loop removed
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ODPair:  (1,4)  (3,2)

Demand:  3.6    1.0  

Figure 3-4. A five-link network with two OD pairs

Table 3-3. UE and optimal dominating flow distributions

Link UE Optimal dominating flow
OD 1-4 flow OD 3-2 flow OD 1-4 flow OD 3-2 flow

(1, 3) 3.60 0.00 2.13 0.00
(1, 2) 0.00 0.00 1.47 0.00
(3, 2) 2.25 1.00 0.55 1.00
(3, 4) 1.35 0.00 1.57 0.00
(2, 4) 2.25 0.00 2.03 0.00

Longest utilized path 71.75 13.25 71.75 11.55
Total delay 271.55 245.09

Table 3-4. Optimal dominating flow distribution and tolls
UE Dominating flow and toll

Link OD 1-4 OD 3-2 Time OD 1-4 OD 3-2 Time Toll
flow flow flow flow

(1, 3) 3.60 0.00 36.00 2.13 0.00 21.27 18.65
(1, 2) 0.00 0.00 50.00 1.47 0.00 51.47 0.00
(3, 2) 2.25 1.00 13.25 0.55 1.00 11.55 0.00
(3, 4) 1.35 0.00 35.75 1.57 0.00 41.31 1.46
(2, 4) 2.25 0.00 22.50 2.03 0.00 20.28 10.94

Equilibrium cost 71.75 82.69
of OD 1-4
Equilibrium cost 13.25 11.55
of OD 3-2
Total delay 271.55 245.09
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Table 3-5. UE and dominating distributions
Link flow vUE �v or DF-F-3 tij(�v)

(1, 3) 3.60 2.24 22.40
(1, 2) 0.00 1.36 51.36
(3, 2) 2.28 0.61 10.61
(3, 4) 1.32 1.63 42.75
(2, 5) 2.28 1.97 19.70

Cost of the longest utilized path 71.06 71.06
System cost or total delay 255.78 234.99

 

 

22.4

19.751.36
51.36

Travel Time

Node Potential 71.060

22.4

 

Figure 3-5. The longest path tree associated with �v
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Table 3-6. OD-dependent Pareto-improving tolls

Link
UE Pareto-improving toll

OD 1-4 OD 3-2 Time OD 1-4 OD 3-2 Time OD 1-4 OD 3-2
flow flow flow flow toll toll

(1, 3) 3.60 0.00 36.00 2.13 0.00 21.27 6.14 0.00
(1, 2) 0.00 0.00 50.00 1.47 0.00 51.47 0.00 0.00
(3, 2) 2.25 1.00 13.25 0.55 1.00 11.55 12.51 1.44
(3, 4) 1.35 0.00 35.75 1.57 0.00 41.31 3.04 0.00
(2, 4) 2.25 0.00 22.50 2.03 0.00 20.28 0.00 0.00

Equilibrium 71.75 71.75
cost OD 1-4
Equilibrium 13.25 12.99
cost OD 3-2
Total delay 271.55 245.09
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CHAPTER 4
PARETO-IMPROVING CONGESTION PRICING SCHEME FOR MULTICLASS

NETWORK

Lawphongpanich and Yin (2010) introduced and proposed an algorithm for finding

Pareto-improving tolls on general networks assuming that users are homogenous.

Because there is substantial heterogeneity in value of travel time (VOT) across the

driving population (e.g., between $20 and $40 per hour observed by Brownstone and

Small, 2005 ) and the heterogeneity may have important implications in designing

congestion pricing schemes (Small et al., 2005; Small and Yan, 2001), this chapter

extends the work of Lawphongpanich and Yin (2010) to the case with user heterogeneity.

In particular, this chapter presents optimization models that determine an anonymous

Pareto-improving toll vector or indicate that one does not exist. In the literature, tolls

are “anonymous” or “uniform” if they are the same for all user classes. Such tolls are

of interest because it is generally difficult or impractical to determine the VOT of a user

arriving at a toll facility (e.g., Yang and Huang, 2004).

For the remainder of this chapter, Section 2 introduces the definition of Multiclass

Pareto-improving congestion pricing scheme and presents two mathematical programming

models for finding a Multiclass Pareto-improving scheme. Section 3 analyzes the

problem and establishes the existence conditions of Multiclass Pareto-improving

schemes through a two-step procedure. Section 4 proposes an algorithm that can solve

the problem using manifold suboptimization procedure. Section 5 presents numerical

examples, followed by concluding remarks in Section 6.

4.1 Multiclass Pareto-Improving Pricing Scheme

This section defines a Multiclass Pareto-improving pricing scheme mathematically

and formulates the problem of finding such a scheme as a mathematical program with

complementarity constraints (MPCC). To highlight key ideas, we assume that the travel

demand for every OD pair is fixed.
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4.1.1 Multiclass Network Equilibrium

Similar to many previous studies in the literature (e.g., Dafermos, 1972; Engelson

and Lindberg, 2006; Yang and Huang, 2004), we represent user heterogeneity by a

discrete set of VOTs, and classify accordingly the users into multiple classes. For each

user class k , let dw ,k and βk denote the travel demand between OD pair w and the

corresponding VOT, respectively.

To describe feasible flow distributions, let n be the number of links in the network

and K , the number of user classes. Then, a feasible multiclass flow distribution is

represented as a K-tuple of vectors in Rn, i.e.(v 1, ... , vK), where v i ∈ Rn, i = 1, ... ,K ,

is a vector of link flows for class k with v ka as its element. Mathematically, the set of all

feasible multiclass flow distributions, denoted as vF , can be described using either path

or link flow variables. Using the former, let f w ,kr be the flows of user class k on path r for

OD pair w . Then,

V F =

{
(v 1, · · · vK) : v ka =

∑
w

∑
r∈Pw

δar f
w ,k
r ;∑

r∈Pw
f w ,kr = dw ,k ,∀w , k ; f w ,kr ≥ 0,∀w , k , r

} (4–1)

where Pw is the set of paths for OD pair w and δar = 1 if link a is on path r , 0 otherwise.

To describe the set in terms of link flows, let A be the node-arc incidence matrix for the

network and Ew denote a vector in Rm, where m is the number of nodes. Specifically,

Ew is an “input-output” vector and has exactly two non-zero components: one has a

value 1 corresponding the origin node of OD pair and the other one has a value -1 in the

component for the destination. Then, V F can be written as

V F =
{
(v 1, · · · , vK) : v k =

∑
w x

w ,k ,Axw ,k = Ewdw ,k , xw ,k ≥ 0,∀w , k
}

.

In the above, xw ,k ∈ Rn is a vector whose components are link flows of user class k for

OD pair w .

As an alternative to (v 1, · · · , vK), we also let (u1, · · · , uK) denote an element of VF .

In addition, the letters u and v without any super or subscript denote the aggregation
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of class-specific link flow vectors, i.e., u =
∑

k u
k and v =

∑
k v

k . Generally, uUE and

uSO denote the aggregate multiclass user equilibrium (UE) and system optimum (SO)

distribution.

For each link a, ta(ua) denotes the travel time function that is convex and monotonically

increasing with respect to the aggregate flow ua. The multiclass UE flow distribution uUE

can be obtained by solving the following variational inequality (e.g., Engelson and

Lindberg, 2006): ∑
k t(u

UE)T (v k − uk,UE) ≥ 0, ∀v ∈ V F

Under the above assumptions concerning the travel time functions, the aggregate vector

uUE is unique. However, the class-specific link flows uk,UE may not be unique. There

may be another K -tuple (v 1, · · · , vK) such that uUE =
∑K

k=1 v
k .

4.1.2 Definition of Multiclass Pareto-Improving Pricing Scheme

Considering a network with an anonymous pricing scheme τ ∈ Rn, we assume

that users perceive their travel costs (disutility) as a sum of travel-time cost and toll

fare, although other criteria may apply (e.g., Nagurney, 2000; Yin and Yang, 2004). We

further assume that the travel costs are additive and thus a generalized route travel

cost is the sum of generalized costs associated with links that the route comprises.

Consequently, the tolled multiclass UE distribution, ~v , can be obtained by solving the

following variational inequality:∑
k

(
βkt(~u) + τ

)T
(v k − ~uk) ≥ 0, ∀v ∈ V F

A nonnegative toll vector, τ , is “Pareto-improving” if the following conditions are

satisfied:

∑
a
δar(β

kta(~ua) + τa) = λw ,k ∀w , k , r ∈ ~Pw ,k
+ (4–2)∑

a
δar(β

kta(~ua) + τa) ≥ λw ,k ∀w , k , r ∈ ~Pw ,k
0 (4–3)

τ ≥ 0 (4–4)

λw ,k ≤ cUEw ,k ∀w , k (4–5)
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t(~u)T~u < t(uUE)TuUE (4–6)

or ∑
k
βkt(~u)T~uk <

∑
k
βkt(uUE)Tuk,UE (4–7)

where ~Pw ,k
+ = {r : r ∈ Pw and ~f w ,kr > 0}, ~Pw ,k

0 = {r : r ∈ Pw and ~f w ,kr = 0}, and cUEw ,k

denotes the travel cost of user class k for OD pair w under the UE condition without

tolling, i.e., cUEw ,k = βk
∑

a δar ta(u
UE
a ) for all paths r utilized by users in class k under UE.

For each OD pair and user class, the first two conditions ensure that, with a toll

pattern τ , the tolled UE holds and the equilibrium cost is λw ,k . Condition (4–4) requires

all tolls to be nonnegative because it is more sensible to penalize or tax negative

externalities such as traffic congestion, instead of subsidizing or rewarding. Moreover,

pricing schemes with subsidies are generally more complex to implement in practice.

Condition (4–5) requires that the generalized cost for each OD pair and user class with

tolls is no greater than the situation without, i.e., no user is made worse off. Condition

(4–6) or (4–7) guarantees a strict improvement in system performance. The former

ensures that the total system travel time will be strictly reduced while the latter is

concerned with the total system travel cost. These two objectives have different policy

implications. In the former, travel times among all users are weighted equally while

the latter weighs travel times by users’ VOT. Because VOT is positively correlated with

income, the former seems more progressive (Mayet and Hansen, 2000). To differentiate,

the former is called as time-based Pareto-improving scheme while the latter cost-based.

As stated above, condition (4–5) applies to all OD pairs and user classes. However,

this is unnecessary because it is sufficient to require (4–5) to hold only for the user class

with the lowest VOT, i.e., (4–5) can be replaced by

λw ,L ≤ cUEw ,L, ∀k (4–8)
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where L is a class index such that βL ≤ βk ,∀k . Assume that (~u, τ ,λ) satisfies (4–2) –

(4–4), (4–6), (4–7), and (4–8). Let r ∈ ~Pw ,L
+ be a path utilized by users in class L under

~u. Then, the following must hold from the fact that βL ≤ βk ,∀k :∑
a δar(ta(~ua) +

τa
βk ) ≤

∑
a δar(ta(~ua) +

τa
βL ) =

λw ,L

βL =
cUE
w ,L

βL = tUEw

When multiplied by βk , the above implies that
∑

a δar(β
kta(~ua) + τa) ≤ βktUEw = cUEw ,k .

Thus, (4–8) implies (4–5) for all r ∈ ~Pw ,L
+ . For paths not utilized by users in class L

under ~u, i.e., r ′ ∈ ~Pw ,L
0 , assume there exists a class k such that r ′ is utilized under ~u, i.e.,

r ′ ∈ ~Pw ,k
+ , and

∑
a δar ′(β

kta(~ua) + τa) = λw ,k > cUEw ,k . However, the latter implies that path

r ′ costs more than r ∈ ~Pw ,L
+ which contradicts the fact that r ′ is utilized by users in class

k and ~u is in user equilibrium.

4.1.3 Finding Multiclass Pareto-Improving Pricing Scheme

Conditions (4–2) – (4–6) or (4–7) define a Pareto-improving pricing scheme that

makes no user worse off while improving system performance and generating toll

revenue. The scheme may not always exist in a general road network. The section

presents mathematical formulations for finding such a Pareto-improving pricing scheme,

if it exists.

A multiclass time-based Pareto-improving (MTPI) scheme can be obtained by

solving the following mathematical program:

MTPI-P: min t(u)Tu (4–9)

s.t. u ∈ V F (4–10)

f w ,kr

(∑
a
δar

(
βkta(ua) + τa

)
− λw ,k

)
= 0 ∀w , k , r ∈ Pw

k (4–11)∑
a
δar

(
βkta(ua) + τa

)
≥ λw ,k ∀w , k , r ∈ Pw

k (4–12)

λw ,k ≤ cUEw ,k ∀w , k (4–13)

τ ≥ 0 (4–14)
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When the optimal objective function value of MTPI-P is strictly less than t(uUE)TuUE , the

solution τ is a Pareto-improving pricing scheme. As formulated, MTPI-P is an MPCC,

a class of optimization problems difficult to solve. Standard stationarity conditions such

as the Karush-Kuhn-Tucker conditions do not hold for MPCC and many have proposed

special algorithms to solve them (e.g., Scheel and Scholtes, 2000). Lawphongpanich

and Yin (2010) applied concepts from manifold suboptimization and proposed a new

algorithm that converges to a strongly stationary solution in a finite number of iterations.

The algorithm will be applied to solve the above MTPI-P problem for strongly stationary

solutions later in this chapter.

Although intuitive, the above formulation is not computationally convenient because

it requires knowing or generating all paths between each OD pair. An alternative

formulation using link flow variables and node potentials (see Ahuja et al., 1993) can be

formulated below:

MTPI-L: min t(u)Tu (4–15)

s.t. u ∈ V F (4–16)

xw ,ka

(
βkta(ua) + τa − ρw ,ki + ρw ,kj

)
= 0 ∀a,w , k , a = (i , j) (4–17)

βkta(ua) + τa ≥ ρw ,ki − ρw ,kj ∀a,w , k , a = (i , j) (4–18)

ρw ,k
o(w) − ρw ,k

d(w) ≤ cUEw ,k ∀w , k (4–19)

τ ≥ 0 (4–20)

In the above, ρw ,k are node potentials. Moreover, nodes i and j are the starting and

ending nodes of link a, and o(w ) and d(w ) represent the origin and destination nodes of

OD pair w. As stated above, ρw ,k are unrestricted. However, it is possible to set ρw ,k
d(w) = 0

and doing so forces ρw ,ki to be nonnegative for all i = 1, . . . , m.

Since Pareto-improving toll scheme may not always exist, when it does not exist, we

contend that a congestion pricing scheme would still be appealing if users are not worse
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off by a significant amount. This leads to the concept of approximate Pareto-improving

toll schemes, which can be determined by solving the following MPCC:

MTPI-L: min t(u)Tu (4–21)

s.t. u ∈ V F (4–22)

xw ,ka

(
βkta(ua) + τa − ρw ,ki + ρw ,kj

)
= 0 ∀a,w , k , a = (i , j) (4–23)

βkta(ua) + τa ≥ ρw ,ki − ρw ,kj ∀a,w , k , a = (i , j) (4–24)

ρw ,k
o(w) − ρw ,k

d(w) ≤ (1 + α)cUEw ,k ∀w , k (4–25)

τ ≥ 0 (4–26)

Where α is called relaxation factor, which indicates users are allowed to be worse off by

at most α comparing with their travel costs under UE condition. The above formulation

is conceptually similar as the bi-level programming formulation proposed by Yang and

Zhang (2002). Jahn et al. (2005) propose a similar formulation that uses routing instead

of tolling to achieve approximate Pareto improvement.

Similarly, a path or link-based MPCC can be formulated for finding a cost-based

Pareto-improving scheme by replacing the objective function of the above formulations

with min
∑

k β
kt(u)Tv k .

4.2 Properties and Existence of Multiclass Pareto-Improving Pricing Scheme

The section discusses the properties of a Pareto-improving scheme and establishes

the existence conditions.

The fundamental reason for the existence of a Pareto-improving pricing scheme is

that the original Wardropian user equilibrium may not be Pareto optimal. In game theory

(Fisk, 1984), a Wardropian user equilibrium corresponds to a Nash equilibrium, where a

player corresponds to a traveler or user. As the prisoner’s dilemma (Poundstone, 1992)

often used to demonstrate, a Nash equilibrium needs not be strongly Pareto optimal.

There may be another situation that is as good for everyone and strictly preferred
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by some. In network flow modeling, such a property is characterized by (Hagstrom

and Abrams, 2001) as generalized Braess’s paradox. Given a UE flow distribution in

a general road network, a generalized Braess’s paradox occurs if there exists some

other feasible flow distribution under which the total system travel time is smaller and

all utilized paths are no longer than those under UE. Such a flow distribution may be

more desirable since it dominates the UE distribution (Lawphongpanich and Yin, 2010).

Because the dominating flow distribution is not in equilibrium and thus non-sustainable,

we use tolls as a mechanism to evolve the traffic flow to the dominating distribution. In

other words, we seek a tolling scheme such that the tolled UE flow distribution is the

dominating flow distribution. If after paying the tolls, no users have larger travel costs

than before, the tolling scheme is Pareto improving.

Therefore, finding Pareto-improving congestion pricing schemes can be decomposed

into two steps: the first step is to detect whether a generalized Braess paradox occurs,

i.e., finding a dominating flow. Given a dominating distribution, we then investigate

whether there exists a nonnegative tolling scheme that induces the dominating flow

distribution without making any user worse off.

4.2.1 Multiclass Dominating Flow Distribution

A flow distribution v ∈ V Fdominates a given multiclass UE distribution or is

dominating if it strictly reduces the total system travel time or travel cost and allows all

users to use routes that are no more expensive than those under UE. Mathematically, v

and its path flows f w ,kr satisfy the following conditions:

∑
a
δarβ

kta(ua) ≤ cUEw ,k , ∀w , k , r ∈ Pw ,k
+ (4–27)

t(u)Tu < t(uUE)TuUE (4–28)

or ∑
k
βkt(u)Tv k <

∑
k
βkt(uUE)Tv k,UE (4–29)
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where Pw ,k
+ = {r : r ∈ Pw and f w ,kr > 0}. It follows immediately from condition (4–27)

that a dominating flow distribution makes no user experience longer travel time when

compared to the UE distribution. Condition (4–28) or (4–29) ensures that the system

performance is strictly improved under a dominating flow distribution, which implies that

some users will be better off.

To find a time-based multiclass dominating flow distribution, we formulate the

following path-based optimization problem:

TBDF-P: min t(u)Tu (4–30)

s.t. v ∈ V F (4–31)

f w ,kr (
∑

a
δarβ

kta(ua)− cUEw ,k) ≤ 0 ∀w , k , r ∈ Pw (4–32)

In the above, the first constraint requires v to be a feasible flow distribution and the

second ensures that, if path r is utilized, its travel cost for user k ,
∑

a δarβ
kta(ua), must

be no greater than the corresponding UE travel cost. The objective of the problem

is to minimize total system travel time. Thus, if vDF solves the TBDF–P problem and

t(uDF )TuDF < t(uUE)TuUE , then vDF is a dominating flow distribution. Otherwise, no

dominating flow distribution exists.

An equivalent but more computationally-convenient link-based formulation for

finding dominating flow distribution is as follows:

TBDF-L: min t(u)Tu (4–33)

s.t. v ∈ V F (4–34)

xw ,ka

(
ρw ,ki − ρw ,kj − βkta(ua)

)
≥ 0 ∀a,w , k , a = (i , j) (4–35)

ρw ,k
o(w) − ρw ,k

d(w) ≤ cUEw ,k ∀w , k (4–36)
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In the above, when link a is utilized by user class k , i.e., xw ,ka > 0, the second constraint

reduces to ρw ,ki − ρw ,kj − βkta(ua) ≥ 0. Collectively, this expression for each link on a

utilized path yields the following∑
a∈�w

r
βkta(ua) ≤

∑
a∈�w

r ,a=(i ,j)
(ρw ,ki − ρw ,kj ) = ρw ,k

o(w) − ρw ,k
d(w),

where �w
r is a set containing links on path r between OD pair w . Thus, the second

constraint implicitly ensures that the length of every utilized path for user class k and OD

pair w is no greater than (ρw ,k
o(w) − ρw ,k

d(w)). Consequently, the last constraint guarantees

that no utilized path has more expensive travel cost than the UE cost. Note that TBDF-P

and TBDF-L are similar in structure to MTPI-P and MTPI-L and can be transformed into

MPCC by introducing auxiliary variables. And if we replace the objective functions with

min
∑

k β
kt(u)Tv k , the problem of finding the cost-based dominating flow distributions

can be formulated.

4.2.2 Existence of Nonnegative Pareto-Improving Tolls

For a given dominating flow distribution, this section investigates whether there

exists a Pareto-improving toll vector that can induce such a flow distribution.

Let uDF denotes a given aggregate dominating flow distribution. The set of

nonnegative Pareto-improving toll patterns consists of the τ component of the solution

(τ ,λ, v̂ ) to the following system of equations and inequalities:

∑
k
βk

∑
a
(ta(u

DF
a ) + τa)v̂

k
a =

∑
k

∑
w
λw ,kdw ,k (4–37)∑

a
δar(β

kta(u
DF
a ) + τa) ≥ λw ,k ∀w , k , r ∈ Pw

k (4–38)

uDF =
∑

k
v̂ k (4–39)

v̂ ∈ V F (4–40)

λw ,k ≤ cUEw ,k ∀w , k (4–41)

In the above, for each OD pair and each user class, the first four conditions ensure that

after adding toll τ , the tolled multiclass UE holds and the equilibrium cost for user class

k and OD pair w is λw ,k . Note that v̂ is not necessarily vDF , which is the class specific
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flow distribution associated with uDF obtained by solving TBDF-L. Condition (4–41)

ensures that the generalized cost for each OD pair and each user class under the tolled

UE is no greater than the original UE travel cost.

The above toll set could be empty. To establish an existence condition, consider the

following problem for a given dominating flow uDF :

MPIT: min t(uDF )T (
∑

w

∑
k
βky

w ,k) +
∑

w

∑
k
cUEw ,kz

w ,k (4–42)

s.t. Ayw ,k + Ewzw ,k = Ewdw ,k ∀w , k (4–43)∑
w

∑
k
yw ,ka ≤ uDFa ∀a (4–44)

yw ,k , zw ,k ≥ 0 ∀w , k (4–45)

We refer to the above problem as the multiclass Pareto-improving toll (MPIT) problem

because the theorem below shows that the dual variables or multipliers associated with

the second constraint becomes Pareto-improving tolls. Observe that the MPIT problem

is linear with respect to its decision variables, yw ,ka and zw ,k , because uDF and cUEw ,k are

given. The following theorem gives a necessary and sufficient condition for the existence

of a Pareto-improving toll vector.

Theorem: Let uDF be a multiclass aggregate dominating flow distribution. A

Pareto-improving toll vector exists if and only if (x̂w ,k , 0) solves the MPIT problem and

the inequality constraints are binding, i.e.,
∑

w

∑
k x̂

w ,k = uDF .

Proof: Since KKT conditions are both necessary and sufficient for linear programs,

(x̂w ,k , 0) solves the MPIT problem if and only if there exists multipliers ρw ,ki , τa,σ
w ,k and

γw ,ka such that the following hold:

βkta(u
DF
a )− (ρw ,ki − ρw ,kj ) + τa − γw ,ka = 0 ∀w , k and a = (i , j) (4–46)

cUEw ,k − (Ew)Tρw ,k − σw ,k = 0 ∀w , k (4–47)

(x̂w ,k)Tγw ,k = 0 ∀w , k (4–48)
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τ ,σ, γ ≥ 0 (4–49)

Ax̂w ,k = Ewdw ,k (4–50)∑
w

∑
k
x̂w ,k = uDF (4–51)

Because x̂w ,ka > 0 when link a is on a utilized path, the complementary slackness

condition implies that γw ,ka = 0 for all a on a utilized path. By adding the first equation

associated with links on the same path together and using the fact that γw ,ka = 0 for links

on utilized paths, the following must hold for every user class k and OD pair w = (o, d):

∑
a
δar(β

kta(u
DF
a ) + τa) = ρw ,ko − ρw ,kd ∀w , k and r ∈ P̂w ,k

+ (4–52)∑
a
δar(β

kta(u
DF
a ) + τa) ≥ ρw ,ko − ρw ,kd ∀w , k and r ∈ P̂w ,k

0 (4–53)

where P̂w ,k
+ = {r : r ∈ Pw and f̂ w ,kr > 0}, and P̂w ,k

0 = {r : r ∈ Pw and f̂ w ,kr = 0}. Let

ρw ,ko − ρw ,kd = λw ,k . Together with (4–50) and v̂ k =
∑

w x̂
w ,k , the above two conditions

imply that conditions (4–37) and (4–38) hold (Heran and Ramana, 1998).

From equation (4–47), we have cUEw ,k − (Ew)Tρw ,kk = σw ,k ≥ 0, i.e., cUEw ,k ≥ ρw ,ko −ρw ,kd =

λw ,k for all w , k . Thus, the above equations (4–47) – (4–51) yield a solution (τ ,λ, v̂ )

satisfying conditions (4–37) – (4–41), and τ is Pareto-improving.

Notice that imposing the above toll vector τ will not necessarily replicate v̂ k ,

because the multiclass tolled UE problem may admit multiple network equilibrium.

However, the corresponding aggregate link flow pattern, the path travel times and the

generalized path travel costs are the same under these equilibrium (Proposition 2,

Engelson and Lindberg, 2006). In other words, the resulting aggregate link flow will be

uDFa for each link and the generalized travel cost λw ,k ≤ cUEw ,k for each OD pair and user

class, thereby ensuring that τ is Pareto improving.

4.3 Manifold Suboptimization Algorithm

The problems we formulated in Sections 2 and 3, namely MTPI-P, MTPI-L,

TBDF-P, and TBDF-L, are MPCC problem, which is a class of optimization problems
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difficult to solve. The reasons are two folds. One is the fact that MPCC violates

the Magasarian-Fromovitz constraint qualification (MFCQ) and the other is that its

feasible region is non-convex (see, e.g., Chen and Florian, 1995; Scheel and Scholtes,

2000). Standard algorithms for nonlinear programs become ineffective for MPCC.

Lawphongpanich and Yin (2010) developed a Manifold Suboptimization algorithm

for finding a “strongly stationary” solution to Pareto-improving problem by solving

a sequence of relaxed problems. More details about the algorithm can be found in

Lawphongpanich and Yin (2010).

Below is a version of the manifold suboptimization algorithm for solving MTPI-L

problem.

Manifold Suboptimization Algorithm

Step 0 Let v be a UE distribution and xw ,kij denotes the corresponding link flow for

OD pair w of user class k . Set n=1, 
1
x ,w ,k =

{
(i , j) : xw ,kij = 0

}
, and 
1

z ,w ,k ={
(i , j) : xw ,kij > 0

}
.

Step 1 Let (v n, ρn, βn, xn, zn)solve the following problem:

R-MTPI: min t(u)Tv (4–54)

s.t. u =
∑
w

∑
k

xw ,k (4–55)

Axw ,k = Ew ,kdw ,k ∀w , k (4–56)

zw ,kij = βktij(uij) + τij − ρw ,ki + ρw ,kj ∀w , k and (i , j) ∈ L (4–57)

ρw ,k
o(w)−ρw ,k

d(w) ≤ cUEw ,k ∀w , k (4–58)

xw ,kij = 0 ∀w , k and (i , j) ∈ 
n
x ,w ,k (4–59)

zw ,kij = 0 ∀w , k and (i , j) ∈ 
n
z ,w ,k (4–60)

xw ,kij ≥ 0 ∀w , k and (i , j) /∈ 
n
x ,w ,k (4–61)

zw ,kij ≥ 0 ∀w , k and (i , j) /∈ 
n
z ,w ,k (4–62)

τij ≥ 0 ∀(i , j) ∈ L (4–63)
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Step 2 Let �nw ,k = {(i , j) ∈ 
n
x ,w ,k : δnij ,w ,k < 0 and znij ,w ,k = 0}, where δnij ,w ,k is the

multiplier associated with the constraint xw ,kij = 0. If �nw ,k is empty for all w , k , stop

and (v n, ρn, βn, xn, zn) is strongly stationary. Otherwise, do the following and go to

Step 1:

a) Set 
n+1
x ,w ,k = 
n

x ,w ,k − �nw ,k ,

b) Set 
n+1
z ,w ,k = {(i , j) : znij ,w ,k = 0},

c) Set n=n+1.

One of the advantages of this algorithm is its fast computation time, which is very

desirable in large-scale applications. We will use this algorithm to solve MTPI problems

in three test networks in the next section.

4.4 Numerical Examples

Consider the network in Figure 4-1 in which there is only one OD pair (1, 4) and two

user classes, whose VOTs are 0.6 and 1.4 respectively. The total demand is 3.6 and

each user class has a demand of 1.8.

Instead of directly solving the Pareto-improving toll problems proposed in Section

2, we adopt the two-step procedure to gain more insights. We first solve the TBDF-F

problem for a time-based dominating flow and then obtain a Pareto-improving scheme

by solving MPIT and examining the multipliers. Table 4-1 presents the results and

comparisons with the multiclass UE flow distribution are reported in Table 4-2.

For the case with Pareto-improving tolls, the results in Table 4-2 indicate that the

travel cost for user class 1 is the same as before while the cost for class 2 decreases

from 99.48 to 94.76. In the presence of anonymous tolls, the users with lower VOTs are

more likely to be made worse off than those with higher VOTs (Yin and Yang, 2004). If

the users with the lowest VOT are no worse off, then all the other users will be better

off. At the same time, the Pareto-improving tolls reduce the total system travel time

(and cost), and generate an amount of toll revenue of 18.57. Therefore, the pricing

scheme is beneficial to society, the government and users of class 2 without hurting
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users of class 1. The total system travel time is reduced from 255.80 to 234.99, which is

very close to the total system travel time under SO condition, 227.11. The reduction is

approximately 72.53% of the maximum possible reduction. It is also interesting to note

that the time-based class-specific flow distribution from solving the TBDF-L problem,

vDF ,1 = {0.99, 0.81, 0.30, 0.69, 1.11}Tand vDF ,2 = {1.25, 0.55, 0.30, 0.94, 0.86}T , does

not solve the MPIT problem while the one reported in Table 1 does. However, since their

corresponding aggregate flows are the same (both are uDF reported in the table), the

resulting system travel time is the same.

We also solve for a cost-based dominating flow and the resulting flow distribution

along with the tolls are shown in Table 4-3. Similarly, Table 4-4 compares the resulting

performance measures with the multiclass UE. By making similar comparisons, the

results in Table 4-4 show that the Pareto-improving scheme benefits every other

stakeholder without making users of class 1 worse off. As expected, the cost-based

Pareto-improving scheme will lead to smaller total cost while the time-based scheme will

result in a smaller total system time.

To explore the existences and properties of multiclass Pareto-improving toll

schemes in general networks, we further solve three networks in the literature:

nine-node (see, e.g., Hearn and Ramana, 1998), Sioux Falls (see, e.g., Bai et al., 2004),

and Hull (see, e.g., Florian et al., 1987). We keep the original network-related settings

but introduce two classes of users, whose value of time is 0.6 and 1.4 respectively.

We further assume a uniform 60 – 40% split between the low and high VOT users

for each OD pair. Some general attributes of these three networks are listed in Table

4-5. Table 4-6 shows the total system travel time under multiclass system optimum

(MSO), multiclass user equilibrium (MUE) and multiclass time-based Pareto-improving

toll scheme (MTPI). The last column of the table reports the reduction in travel time

from MUE delay to MTPI delay as a fraction of the difference between MUE delay and

SO delay, which is the maximum possible reduction. Observe from Table 4-6 that no
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Pareto-improving toll scheme exists for nine-node and Sioux Falls network and the

resulting MTPI delay of Hull network reduces the travel delay by no more than 1% of

the maximum possible amount, i.e., Pareto-improving toll schemes do not lead to a

significant improvement in travel delay. Table 4-7 reports the results from solving the

approximate Pareto-improving toll problem or AMITPI with α = 0.05, 0.1, 0.15 and

0.20. These results illustrate that allowing users to be slightly worse off may lead to

substantially improvement in the system performance.

Although marginal cost pricing can achieve the SO flow distribution and reduce

the total system travel time to its minimum level, it may cause inequality among users,

such as spatial inequality (e.g., Yang and Zhang, 2002). Figure 4-2 and 4-3 shows

the frequencies and cumulative distributions of two ratios, CSO
w /CUE

w and CAMTPI
w /CUE

w ,

where CSO
w is the travel cost (time plus toll) between OD pair wunder the marginal cost

pricing; CUE
w and CAMTPI

w are the equilibrium travel costs under MUE and an approximate

MTPI scheme with α = 15% respectively. The data for the figure are from Sioux

Falls. Figure 4-2 shows that marginal cost pricing makes all users worst off than the

MUE condition. Even without including the tolls, around 12% of the OD pairs under

MSO will have more than 15% higher travel times than MUE. From Figure 4-3, as

expected, equilibrium travel costs of all OD pairs are no more than 15% of those under

MUE. The Gini coefficients associated with the ratio of CSO
w /CUE

w and CAMTPI
w /CUE

w are

0.122 and 0.016 respectively, suggesting that compared with marginal cost pricing,

Pareto-improving scheme may induce less spatial inequality with respect to the status

quo. It is also clear from Figure 4-3 that the high VOT users tend to be better off than the

low VOT users. Unfortunately, such social inequality may be inevitable with anonymous

tolling and can only be addressed by other subsidy schemes (e.g., Yin and Yang, 2004).

4.5 Summary

This chapter discusses Pareto-improving pricing schemes for a general network

when users belong to a discrete set of classes, each one with a different VOT. We
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determine whether an anonymous Pareto-improving pricing scheme exists by solving

an optimization and observing its optimal objective value. We provide formulations for

finding a Pareto-improving scheme as well as a dominating flow distribution. Given

a dominating flow distribution, we provide necessary and sufficient conditions for

the existence of a nonnegative Pareto-improving toll vector. The numerical results

from three networks illustrate that multiclass Pareto-improving pricing schemes are

less prevalent when compared to its single-class counterpart. The existence and

effectiveness Pareto-improving pricing schemes not only depend on the network

configurations but also on demographic features (e.g., VOT values) of the population.

To facilitate the presentation of the key ideas, this chapter assumes that travel

demand is deterministic. The theory for elastic demand can be similarly established,

e.g., see Lawphongpanich and Yin (2010) for the case with one user class.
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Figure 4-1. A five-link network with multiclass users

Table 4-1. Time-based dominating flow distribution and Pareto-improving scheme
UE Pareto-improving

Link uUE t(uUE) uDF v̂ 1 v̂ 2 t(uDF ) τ

(1, 3) 3.60 36.00 2.24 0.44 1.80 22.40 0.00
(1, 2) 0.00 50.00 1.36 1.36 0.00 51.36 0.00
(3, 2) 2.28 12.28 0.61 0.00 0.61 10.61 20.96
(3, 4) 1.32 35.06 1.63 0.44 1.19 42.75 3.55
(2, 4) 2.28 22.78 1.97 1.36 0.61 19.70 0.00
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Table 4-2. Performance comparisons with UE flow distribution
User equilibrium Pareto-improving

Class 1 Class 2 Class 1 Class 2
Path travel time
1-3-4 71.06 71.06 65.15 65.15
1-3-2-4 71.06 71.06 52.71 52.71
1-2-4 72.78 72.78 71.06 71.06
Longest utilized path 71.06 71.06 71.06 65.15

Path travel cost
1-3-4 42.64 99.48 42.64 94.76
1-3-2-4 42.64 99.48 52.59 94.76
1-2-4 43.67 101.89 42.64 99.48
Equilibrium cost 42.64 99.48 42.64 94.76

Total system travel time 255.80 234.99
Total system travel cost 255.80 228.74
Toll revenue 0.00 18.57

Table 4-3. Cost-based dominating flow distribution and Pareto-improving scheme
UE Pareto-improving

Link uUE t(uUE) uDF v̂ 1 v̂ 2 t(uDF ) τ

(1, 3) 3.60 36.00 2.15 0.35 1.80 21.49 0.00
(1, 2) 0.00 50.00 1.45 1.45 0.00 51.45 0.00
(3, 2) 2.28 12.28 0.51 0.00 0.51 10.51 21.96
(3, 4) 1.32 35.06 1.64 0.35 1.29 42.98 3.96
(2, 4) 2.28 22.78 1.96 1.45 0.51 19.61 0.00
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Table 4-4. Performance comparisons with UE flow distribution
User equilibrium Pareto-improving

Class 1 Class 2 Class 1 Class 2
Path travel time
1-3-4 71.06 71.06 64.47 64.47
1-3-2-4 71.06 71.06 51.61 51.61
1-2-4 72.78 72.78 71.06 71.06
Longest utilized path 71.06 71.06 71.06 64.47

Path travel cost
1-3-4 42.64 99.48 42.64 94.21
1-3-2-4 42.64 99.48 52.92 94.21
1-2-4 43.67 101.89 42.64 99.49
Equilibrium cost 42.64 99.48 42.64 94.21

Total system travel time 255.80 235.09
Total system travel cost 255.80 228.64
Toll revenue 0 17.68

Table 4-5. Network attributes
Network Links Nodes OD pairs
Nine-node 9 18 4
Sioux Falls 76 24 528
Hull 798 501 158
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Table 4-6. Exact Pareto-improving problem

Network MSO delay MUE delay MTPI delay Reduction
(% of Max)

Nine-node 2253.92 2455.87 2455.87 0.00%
Sioux Falls 3514.39 3654.46 3654.46 0.00%
Hull 50542.64 51350.74 51347.14 0.44%

Table 4-7. Approximate Pareto-improving problem
Nine-node Sioux Falls Hull

Relaxation AMTPI Reduction AMTPI Reduction AMTPI Reduction
factor (α) delay (% of Max) delay (% of Max) delay (% of Max)
5% 2455.87 0% 3650.73 2.67% 51279.49 8.82%
10% 2392.27 31.50% 3649.88 3.27% 51274.31 9.46%
15% 2385.81 34.70% 3614.85 28.28% 51274.31 9.46%
20% 2385.81 34.70% 3607.94 33.21% 51208.48 17.60%
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Figure 4-2. Frequencies of ratios for Sioux Falls network
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Figure 4-3. Cumulative distribution of ratios for Sioux Falls network
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CHAPTER 5
PARETO-IMPROVING HYBRID POLICY FOR TRANSPORTATION NETWORKS

Lawphongpanich and Yin (2010) proposed a Pareto-improving congestion pricing

scheme that leads a transportation system to a Pareto improvement over status quo

even before toll revenue redistribution. The fundamental reason for a nonnegative

Pareto-improving toll vector to exist is the user equilibrium (UE) flow distribution may

not be Pareto-optimal, which indicates there may exist another flow distribution that

makes at least one user better off without making any other user worse off. Song et al.

(2009) and Wu et al. (2011) extended the Pareto-improving congestion pricing model

to networks with multiclass and modes. Although it is relatively easy to implement a

nonnegative Pareto-improving pricing scheme, the existence of the pricing scheme is not

guaranteed. Even it does exist; we found the reduction in total system delay may not be

substantial.

This chapter explores the potential of combing multiple policy instruments to

achieve Pareto improvements. We consider a hybrid policy that combines travel-right

assignment and congestion pricing. In the presence of congestion tolling, the policy

allocates road users the rights of toll exemption on designated days instead of paying

tolls on every single day. On days that users are exempted (free days), they are allowed

to navigate through the road network without being charged while the others are

subject to congestion tolls. Users may experience different travel times from day to day

depending on whether they are exempted from congestion tolls on a particular day. To

make meaningful comparisons with the status quo, average travel cost is defined as

the weighted average of travel costs on free days and restricted days. Subsequently,

users are considered better off if their average travel costs are less than those before

the implementation of the hybrid policy.

From another perspective, the allocation of rights for traveling for free can be

viewed as a form of road space rationing. As a regulatory travel demand management
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strategy, road space rationing has been used to mitigate traffic congestion for decades.

Cities such as Athens, Santiago, Mexico City, Beijing and Guangzhou have resorted to

using plate-number-based road space rationing to reduce congestion and air pollution

(see, e.g., Wang et al., 2010 and Han et al., 2010). Downs (2004) concluded that the

most effective overall strategy for reducing traffic congestion probably should consist

of both market-based and regulatory elements. Daganzo (1995) proposed a scheme

that can be viewed as hybrid between pricing and rationing to control flow through a

bottleneck. Users are allowed to choose the form of the penalty they must pay for using

the bottleneck based on their personal needs and differences. The hybrid strategy could

achieve a Pareto improvement in theory.

In a similar spirit to the one by Daganzo (1995), the hybrid policy proposed in this

chapter attempts to make use of the synergistic effects of multiple policy instruments

to achieve Pareto improvements in a general network. The aim of this chapter is to

establish a mathematical framework of designing an optimal road space rationing policy

and an optimal hybrid policy for a general network and compares the performance of

these two policies. The remainder of this chapter is organized as follows. Section 2

discusses road space rationing schemes and formulates a mathematical program to

design optimal Pareto-improving road space rationing scheme. Section 3 formulates

a mathematical program to design an optimal Pareto-improving hybrid policy. Section

4 compares these two policies on a toy network. The last section offers concluding

remarks.

5.1 Pareto-Improving Pure Road Space Rationing Policy

Road space rationing has been used by many cities for years to mitigate traffic

congestion and/or air pollution. However Wang et al. (2010) is the first to demonstrate

that road space rationing schemes could lead to Pareto improvements. Furthermore, in

practice, rationing ratio, which indicates the percentage of users that are prohibited from

using the road network, is determined primarily based on engineering judgment.
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This section follows an optimization approach and provides the formulation of a

Pareto-improving pure road space rationing problem, which we believe may offer

more insights into the pure road space rationing problem.

5.1.1 Problem Setting

Let G = (N,L) be a directed transportation network, where N is the set of nodes

and L is the set of directed links. A is the node-arc incidence matrix of a multi-modal

network, which consists of two sub-networks, namely road network and transit network.

�A is the node-arc incidence matrix of the transit network only. An element of L is

denoted as (i , j) and tij(vij) represents the travel time function for link (i , j), which is

assumed to be separable, continuous and monotonically increasing respect to the

aggregate link flow vij . Let Ln and Lt denote the set of links in the road and transit

network, respectively. It is assumed that each origin-destination (OD) pair is connected

by a transit line whose travel time is constant. To be realistic, the transit travel time is

assumed to be longer than the travel time on road for the same OD pair. Let W be the

set of OD pairs and dw be the deterministic number of trips made between OD pair

w ∈ W . Users can be divided into two groups (k = 1, 2 ∈ K ), namely, general users and

restricted users. For OD pair w , xw ,kij represents the link flow of user group k on link (i , j)

and vij =
∑

w

∑
k=1,2 x

w ,k
ij .

In a pure road space rationing scheme, generally rationing is enforced on all road

links, Ln. The percentage of restricted road users who are forced to use alternative

modes, e.g., transit service, is termed as rationing ratio α. Each day a fraction of road

users (user group k = 1), 100(1 − α)% of the total demand, are allowed to access the

entire transportation network freely. The rest (user group k = 2), 100α% of the total

demand, are prohibited from using the road network.

83



5.1.2 User Equilibrium under Pure Road Space Rationing Schemes

The user equilibrium problem under a pure road space rationing policy can be

formulated as follows:

P1: min
(x ,v)

∑
(i ,j)∈Ln

∫ vij

0

tij (ω) dω +
∑

(i ,j)∈Lt

tijvij (5–1)

s.t. Axw ,1 = (1− α)Ewdw ∀w (5–2)

�Axw ,2 = αEwdw ∀w (5–3)

vij =
∑
w

∑
k

xw ,kij (5–4)

x ≥ 0 (5–5)

where constraints (5–2) and (5–3) describe flow balance constraints for general and

restricted users respectively. Ew is an input-output vector, i.e., a vector with exactly

two non-zero components, to specify the origin and destination of OD pair w . The

component of Ew corresponding the origin has a value 1 and the one corresponding

the destination has a value -1. Constraints (5–2) to (5–5) essentially are the feasible

flow region of a multiclass multimodal network, which is convex. The objective function

is strictly convex with respect to the aggregate link flow vij . Therefore, problem P1

is a strictly convex optimization problem and there is a unique solution of the user

equilibrium link flow distribution. For a strictly convex mathematical program, the

Karush–Kuhn–Tucker (KKT) conditions are both necessary and sufficient for optimality.

To show the above mathematical program is equivalent to the user equilibrium under a

pure road space rationing policy, the KKT conditions of the above optimization problem

can be stated as follows,

tij (vij) + ρw ,1i − ρw ,1j ≥ 0 ∀ (i , j) ∈ Ln,w (5–6)

xw ,1ij

[
tij (vij) + ρw ,1i − ρw ,1j

]
= 0 ∀ (i , j) ∈ Ln,w (5–7)

tij + ρw ,ki − ρw ,kj ≥ 0 ∀ (i , j) ∈ Lt ,w , k = 1, 2 (5–8)
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xw ,kij

[
tij + ρw ,ki − ρw ,kj

]
= 0 ∀ (i , j) ∈ Lt ,w , k = 1, 2 (5–9)

Axw ,1 = (1− α)Ewdw ∀w (5–10)

�Axw ,2 = αEwdw ∀w (5–11)

vij =
∑
w

∑
k

xw ,kij (5–12)

x ≥ 0 (5–13)

where ρw is a vector of Lagrange multipliers associated with the flow balance constraints

(5–2) and (5–3), which are also known as node potentials (Ahuja et al., 1993) for OD

pair w . Let’s derive the equivalence conditions for restricted users first. Restricted users

(user group k = 2) are allowed to access transit links only, therefore, only one pair of

complementarity constraints (5–8) and (5–9) applies to restricted users. When a link

(i , j) is utilized, i.e., xw ,2ij > 0, constraint (5–9) forces the equation tij + ρw ,2i − ρw ,2j = 0 to

hold. Combing together this equation for each link on a utilized path yields the following:

∑
(i ,j)∈�w ,2

r

tij =
∑

(i ,j)∈�w ,2
r

ρw ,2j − ρw ,2i = ρw ,2
d(w) − ρw ,2

o(w)

where, for OD pair w , �w ,2
r is a set containing transit links that are available to restricted

users on path r and d(w) and o(w) denote the destination and origin nodes of OD

pair w . Thus, constraints (5–9) implies that the generalized travel time of every utilized

path equals ρw ,2
d(w) − ρw ,2

o(w) for general users between OD pair w . When a link (i , j) is not

utilized, i.e., xw ,2ij = 0, constraints (5–8) to (5–9) imply the inequality tij + ρw ,2i − ρw2j ≥ 0

holds. Adding this inequality along a non-utilized path yields
∑

(i ,j)∈�w ,2
r
tij ≥ ρw ,2

d(w) − ρw ,2
o(w).

Therefore, for restricted users, we have all utilized paths have the same travel time

ρw ,2
d(w) − ρw ,2

o(w) and it is no longer than those of all non-utilized paths. For general users,

there are two pairs of complementarity constraints (5–6) to (5–9) involved because they

are allowed to use all links in the transportation network freely. Similar procedures can

be applied to construct the user equilibrium conditions for general users (user group
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k = 1). Let CUE
w ,k = ρw ,k

d(w) − ρw ,k
o(w), then CUE

w ,k is the equilibrium travel time (cost) for users

of group k between OD pair w . Hence, we prove that the KKT conditions of the above

optimization problem are equivalent to the user equilibrium conditions under pure road

space rationing schemes.

5.1.3 Pareto-Improving Pure Road Space Rationing Problem

Wang et al. (2010) demonstrated that under certain rationing ratio and network

configurations, it is possible to achieve Pareto improvements using pure road space

rationing. The following mathematical program is formulated to find the optimal rationing

ratio and its corresponding flow pattern to minimize the total system delay while ensures

that the rationing scheme can lead to a Pareto-improvement. The Pareto-improving

pure road space rationing problem can be formulated as a mathematical program with

complementarity constraints (MPCC) as follows,

P2: min
(x ,v ,ρ,α)

∑
(i ,j)∈L

tij(vij)vij (5–14)

s.t. Axw ,1 = (1− α)Ewdw ∀w (5–15)

�Axw ,2 = αEwdw ∀w (5–16)

vij =
∑
w

∑
k

xw ,kij (5–17)

x ≥ 0 (5–18)

tij (vij) + ρw ,1i − ρw ,1j ≥ 0 ∀ (i , j) ∈ Ln,w (5–19)

xw ,1ij

[
tij (vij) + ρw ,1i − ρw ,1j

]
= 0 ∀ (i , j) ∈ Ln,w (5–20)

tij + ρw ,ki − ρw ,kj ≥ 0 ∀ (i , j) ∈ Lt ,w , k = 1, 2 (5–21)

xw ,kij

[
tij + ρw ,ki − ρw ,kj

]
= 0 ∀ (i , j) ∈ Lt ,w , k = 1, 2 (5–22)

(1− α)
[
ρw ,1
d(w) − ρw ,1

o(w)

]
+ α

[
ρw ,2
d(w) − ρw ,2

o(w)

]
≤ CUE

w ∀w (5–23)

where CUE
w is the equilibrium travel time of OD pair w before the policy implementation,

i.e., status quo. The objective function minimizes the total system delay. Constraints
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(5–15) to (5–22) are the user equilibrium flow conditions under a pure road space

rationing policy. Constraint (5–23) guarantees that when averaged across restricted and

free days, no user is made worse off compared with the status quo. As formulated, the

above problem is a MPCC, which is a class of problem that is difficult to solve for mainly

two reasons. One is because MPCC violates certain constraint qualification and the

other is due to the fact that the feasible region is non-convex.

5.2 Pareto-Improving Hybrid Policy

The major drawback of a pure road space rationing policy is that as a regulatory

demand management strategy it requires users to behave according to certain

compulsory rules (taking transit when they are restricted) that apply to everyone in

the same manner. Downs (2004) pointed out it may not the most effective overall

strategy. The hybrid policy we proposed integrates regulatory and market-based

demand management strategies.

In the presence of a hybrid policy, road link set Ln can be further divided into two

mutually exclusive sets: a general link set Lg and a restricted link set Lr . We thus have

Ln = {Lg ∪ Lr}. Each day a fraction of road users (user group k = 1), 100(1 − α)%

of the total demand, are entitled to travel the entire road network for free, where α is

called restriction ratio. The remaining restricted users (user group k = 2), however, are

not forced to take transit service. They are provided with the opportunity to pay tolls to

access the restricted links, Lr and also travel on the general links for free. Nonnegative

congestion tolls, β ij , are only charged on restricted links, (i , j) ∈ Lr , for users on their

restricted days. To design a hybrid policy, transportation agencies need to specify three

crucial components: restriction ratio α, locations to set up restricted links and their

corresponding toll rates β ij .
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5.2.1 User Equilibrium under Hybrid Policies

The user equilibrium flow distribution in the presence of a hybrid policy can be

estimated by solving the following mathematical program.

P3: min
(x ,v)

∑
(i ,j)∈Ln

∫ vij

0

tij (ω) dω +
∑

(i ,j)∈Lt

vijtij +
∑

(i ,j)∈Lr

β ijv
2
ij (5–24)

s.t. Axw ,1 = (1− α)Ewdw ∀w (5–25)

Axw ,2 = αEwdw ∀w (5–26)

vij =
∑
w

∑
k

xw ,kij (5–27)

x ≥ 0 (5–28)

where constraints (5–25) to (5–26) describe flow balance constraints for general and

restricted users. For restricted users, however, they have to pay β ij if they choose

to use restricted links (i , j) ∈ Lr . Constraints (5–25) to (5–28) essentially are the

feasible flow region of a multiclass multimodal network, which is convex. The objective

function is strictly convex with respect to the aggregate link flow vij . Therefore, problem

P3 is a strictly convex optimization problem and there is a unique solution of the

user equilibrium link flow distribution. To show the above mathematical program is

equivalent to the user equilibrium under a hybrid policy, the KKT conditions of the

above optimization problem can be stated as follows. For a strictly convex mathematical

program, the KKT conditions are both necessary and sufficient for optimality.

tij (vij) + ρw ,ki − ρw ,kj ≥ 0 ∀ (i , j) ∈ Lg,w , k = 1, 2 (5–29)

xw ,kij

[
tij (vij) + ρw ,ki − ρw ,kj

]
= 0 ∀ (i , j) ∈ Lg,w , k = 1, 2 (5–30)

tij + ρw ,ki − ρw ,kj ≥ 0 ∀ (i , j) ∈ Lt ,w , k = 1, 2 (5–31)

xw ,kij

[
tij + ρw ,ki − ρw ,kj

]
= 0 ∀ (i , j) ∈ Lt ,w , k = 1, 2 (5–32)

tij (vij) + ρw ,1i − ρw ,1j ≥ 0 ∀ (i , j) ∈ Lr ,w (5–33)

xw ,1ij

[
tij (vij) + ρw ,1i − ρw ,1j

]
= 0 ∀ (i , j) ∈ Lr ,w (5–34)
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tij (vij) + β ij + ρw ,2
i

− ρw ,2j ≥ 0 ∀ (i , j) ∈ Lr ,w (5–35)

xw ,2ij

[
tij (vij) + β ij + ρw ,2i − ρw ,2j

]
= 0 ∀ (i , j) ∈ Lr ,w (5–36)

Axw ,1 = (1− α)Ewdw ∀w (5–37)

Axw ,2 = αEwdw ∀w (5–38)

vij =
∑
w

∑
k

xw ,kij (5–39)

x ≥ 0 (5–40)

where ρw is a vector of Lagrange multipliers associated with the flow balance constraints

(5–25) and (5–26), which are also known as node potentials (Ahuja et al., 1993) for OD

pair w . There are four pairs of complementarity constraints (5–29) to (5–36). Let’s derive

the equivalence conditions for general users first. General users (user group k = 1)

are allowed to access all links, i.e., {Lg ∪ Lt ∪ Lr} in the transportation network for free.

When a link (i , j) is utilized, i.e., xw ,1ij > 0, constraints (5–30), (5–32) and (5–34) force the

equation tij (vij)+ ρw ,1i − ρw ,1j = 0 to hold. Combing together this equation for each link on

a utilized path yields the following:

∑
(i ,j)∈�w ,1

r

tij (vij) =
∑

(i ,j)∈�w ,1
r

ρw ,1j − ρw ,1i = ρw ,1
d(w) − ρw ,1

o(w)

where, for OD pair w , �w ,1
r is a set containing links that are available to general users

on path r and d(w) and o(w) denote the destination and origin nodes of OD pair w .

Thus, constraints (5–30), (5–32) and (5–34) imply that the generalized travel time of

every utilized path equals ρw ,1
d(w) − ρw ,1

o(w) for general users between OD pair w . When a

link (i , j) is not utilized, i.e., xw ,1ij = 0, constraints (5–29) to (5–34) imply the inequality

tij (vij) + ρw ,1i − ρw1j ≥ 0 holds. Adding this inequality along a non-utilized path yields∑
(i ,j)∈�w ,1

r
tij (vij) ≥ ρw ,1

d(w) − ρw ,1
o(w). Therefore, we have the user equilibrium conditions

for general users. Similar procedures can be applied to complementarity constraints

(5–29) to (5–33), (5–35) and (5–36) to construct the tolled user equilibrium conditions for
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restricted users (user group k = 2). Hence, the KKT conditions of optimization problem

P1 are equivalent to the user equilibrium conditions when a hybrid policy is in place.

The above formulation also provides a way to achieve the UE solution under a

pure road space rationing scheme. Instead of solving problem P1 directly, we can put

an arbitrary large toll on all road links for restricted users to prevent them from using

road links in problem P3. Under such settings, by solving problem P3, the resulting flow

distribution should coincide with the solution to problem P1.

5.2.2 Pareto-Improving Hybrid Policy Problem

Similar to congestion pricing and other demand management instruments, the

utmost goal of a hybrid policy is to improve transportation system efficiency. While for a

Pareto-improving policy, we also have to ensure the policy lead to a Pareto-improvement

over the status quo. To design a hybrid policy, the restriction ratio α, locations of

restricted links, i.e., partitioning of Lg and Lr , and their corresponding toll rates β

for restricted users need to be specified to minimize total system delay. A MPCC is

formulated as follow,

P4: min
(x ,v ,ρ,α,β)

∑
(i ,j)∈Ln

tij(vij)vij +
∑

(i ,j)∈Lt

tijvij (5–41)

s.t. Axw ,1 = (1− α)Ewdw ∀w (5–42)

Axw ,2 = αEwdw ∀w (5–43)

vij =
∑
w

∑
k

xw ,kij (5–44)

x ≥ 0 (5–45)

tij (vij) + ρw ,1i − ρw ,1j ≥ 0 ∀ (i , j) ∈ Ln,w (5–46)

xw ,1ij

[
tij (vij) + ρw ,1i − ρw ,1j

]
= 0 ∀ (i , j) ∈ Ln,w (5–47)

tij (vij) + β ij + ρw ,2
i

− ρw ,2j ≥ 0 ∀ (i , j) ∈ Ln,w (5–48)

xw ,2ij

[
tij (vij) + β ij + ρw ,2i − ρw ,2j

]
= 0 ∀ (i , j) ∈ Ln,w (5–49)

tij + ρw ,ki − ρw ,kj ≥ 0 ∀ (i , j) ∈ Lt ,w , k = 1, 2 (5–50)
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xw ,kij

[
tij + ρw ,ki − ρw ,kj

]
= 0 ∀ (i , j) ∈ Lt ,w , k = 1, 2 (5–51)

(1− α)
[
ρw ,1
d(w) − ρw ,1

o(w)

]
+ α

[
ρw ,2
d(w) − ρw ,2

o(w)

]
≤ CUE

w ∀w (5–52)

β ij ≥ 0 ∀(i , j) ∈ Ln (5–53)

Constraints (5–42) to (5–51) are equilibrium flow conditions assuming all road links

are potential restricted links. Constraint (5–52) guarantees that when averaged across

restricted and free days, no user is made worse off compared with the status quo.

Constraint (5–53) requires the toll vector to be nonnegative. In the above formulation,

the restriction ratio and toll rates are decision variables and all road links are treated

as potential restricted links. The designation of restricted links can be determined by

referring to the optimal toll rates. If the resulting toll rate for restricted users is strictly

positive on link (i , j), the link belongs to Lr , otherwise,(i , j) ∈ Lg.

Note that the above formulation can also be used to obtain the solution to a

Pareto-improving pure rationing problem (P2) by setting an arbitrary large toll on all

road links for restricted users so that they choose not to use the road network anyhow.

Since the optimal solution to the Pareto-improving pure rationing problem (P2) is

always a feasible solution to the above formulation, we can conclude that the solution to

problem P2 should be dominated by the optimal solution to the problem P4 in theory.

It is also worth mentioning that Pareto improvements in above example are attained

before redistribution of toll revenues. In other words, we could achieve even better

improvements if certain revenue redistribution plan is integrated in the model. As an

example, let’s consider a transit subsidy plan, which directly transfers toll revenues to

subsidize transit fares. The hybrid policy with transit subsidy problem can be formulated

as a MPCC as follows:

P5: min
(x ,v ,ρ,α,β)

∑
(i ,j)∈Ln

tij(vij)vij +
∑

(i ,j)∈Lt

tijvij (5–54)

s.t. Axw ,1 = (1− α)Ewdw ∀w (5–55)
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Axw ,2 = αEwdw ∀w (5–56)

vij =
∑
w

∑
k

xw ,kij (5–57)

x ≥ 0 (5–58)

tij (vij) + ρw ,1i − ρw ,1j ≥ 0 ∀ (i , j) ∈ Ln,w (5–59)

xw ,1ij

[
tij (vij) + ρw ,1i − ρw ,1j

]
= 0 ∀ (i , j) ∈ Ln,w (5–60)

tij (vij) + β ij + ρw ,2
i

− ρw ,2j ≥ 0 ∀ (i , j) ∈ Ln,w (5–61)

xw ,2ij

[
tij (vij) + β ij + ρw ,2i − ρw ,2j

]
= 0 ∀ (i , j) ∈ Ln,w (5–62)

(tij − sij) + ρw ,ki − ρw ,kj ≥ 0 ∀ (i , j) ∈ Lt ,w , k = 1, 2 (5–63)

xw ,kij

[
(tij − sij) + ρw ,ki − ρw ,kj

]
= 0 ∀ (i , j) ∈ Lt ,w , k = 1, 2 (5–64)

(1− α)
[
ρw ,1
d(w) − ρw ,1

o(w)

]
+ α

[
ρw ,2
d(w) − ρw ,2

o(w)

]
≤ CUE

w ∀w (5–65)∑
(i ,j)∈Lt

sijvij ≤
∑

(i ,j)∈Ln

∑
w∈W

β ijx
w ,2
ij (5–66)

sij ,β ij ≥ 0 ∀(i , j) ∈ Ln (5–67)

where sij is an anonymous nonnegative subsidy to transit users using link (i , j).

Nonnegative tolls, β ij , are imposed on restricted users who choose to use restricted

links and subsidies, sij , are provided to users using the transit links. Constraint (5–66)

makes sure the total subsidy to transit users should be less than total toll revenues

collected. Constraint (5–67) requires both tolls and subsidies are nonnegative.

5.3 Numerical Examples

Consider a multimodal network in Figure 5-1, which contains four OD pairs:

(1, 3), (1, 4), (2, 3) and (2, 4). It consists of 18 auto links and 4 transit links. The link

performance functions associated with auto links are assumed to follow the BPR

function: tij (vij) = t0ij

[
1 + 0.15(vij/bij)

4
]
, where t0ij is the free-flow travel time and bij

is the capacity of that link. The parenthesis near auto link (i , j) in the figure denotes
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(t0ij , bij). Fours transit links directly connect the origin and destination node of each OD

pair. Aggregate demand of each OD pair is also shown in the Figure 5-1.

Mathematical programs formulated (P2, P4 and P5) are MPCC problems, which is a

class of problems that is difficult to solve using commercial software. In this chapter, we

revised the manifold suboptimization algorithm proposed by Lawphongpanich and Yin

(2010) to find strongly stationary solutions. The algorithm is implemented using GAMS

(Brooke et al., 2003) and non-linear sub-problems involved are solved by a commercial

nonlinear programming solver called CONOPT. As a note on the solution procedure,

it is generally not effective to use the manifold suboptimization algorithm to solve the

Pareto-improving hybrid policy problem (P4) directly. The resulting flow distribution of

the pure rationing scheme (P2) is used as an initial solution to the hybrid policy problem

because it is always a feasible solution to the later.

For the first scenario, we assume that travel times on all transit links are 150% of

their corresponding travel times under the original UE condition. By solving problem

P2, P4 and P5, these two Pareto-improving strategies are compared, and results are

summarized in Table 5-1 and 5-2.

When transit travel time is 150% the UE equilibrium travel cost, total system delay

is 4904.0961 and 5883.8004 respectively under SO and UE conditions. For comparison

purposes, results for transit links are listed in the first four rows of both tables. As shown

in the tables, both the pure rationing and hybrid policies generate Pareto improvements.

We can observe that although the average equilibrium travel cost under the hybrid

policy is slightly higher than that under pure rationing scheme, the hybrid policy provides

substantially better system performance. More importantly, we can observe that users

that are forced to use transit links, e.g., link,(2, 3) under pure rationing scheme choose

to pay tolls to access road networks under the hybrid policy, which indicates that users

are enjoying the flexibility provided by the hybrid policy. If toll revenues are used to

subsidize transit users, we observe that system efficiency can be improved even further.
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In Table 5-2, transit subsidy on transit link (2, 4) is 4.06 and system delay reduction is

87.82% of the maximum possible reduction. Also, as a note to the Pareto-improving

pricing problem proposed by Lawphongpanich and Yin (2010), no Pareto improvement is

observed under pure Pareto-improving pricing schemes.

The above numerical example demonstrates that the hybrid policy can lead to

Pareto improvements and achieve much better system efficiency than pure road space

rationing schemes. To further investigate and compare three Pareto-improving strategies

mentioned in this chapter, three problems (P2, P4 and P5) are solved for another

scenario with higher transit travel time (200% of equilibrium travel times under UE). The

results are shown in Table 5-3.

When travel times on transit links are 150% of equilibrium travel times under UE,

as shown in the first scenario, the hybrid policy can provide better system efficiency.

And, if toll revenues are used to subsidize transit users, system efficiency can be

further improved as expected. When travel times on transit links are higher, which

could happen in reality, we find that pure rationing scheme fails to generate a Pareto

improvement. On the other hand, the hybrid policy is still able to achieve a Pareto

improvement and attain 62.68% reduction of the maximum possible reduction in system

performance. In this scenario, putting money back to subsidize transit users does

not improve system efficiency further because travel times of transit service are so

long than the transit mode is not attractive even if subsidy is provided to users. The

above example demonstrates that the proposed hybrid policy is more robust than pure

rationing policy in balancing system efficiency and Pareto improvements, which is an

important feature required for real-world implementations.

5.4 Summary

This chapter proposes a new hybrid Pareto-improving policy that combines multiple

policy instruments. The proposed hybrid policy provides greater flexibility than pure

road space rationing. Generally rationing is enacted on the whole network and rationing
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ratio is uniform for all OD pairs. Travel demands are diverted to transit links at the same

ratio regardless of the network traffic conditions, which may cause inefficient allocation

of road resources. In the proposed hybrid policy, although restriction ratio is still the

same for all OD pairs, tolls are introduced to adjust roadway demand levels of different

OD pairs. For some OD pairs, users may be better off paying tolls to enter the road

network on restricted days instead of taking transit service. Furthermore, although tolls

are charged on restricted users only, their route choices may influence route choices of

non-restricted users and achieve better system performance.

The reasons that the proposed policy is more prominent in leading to a Pareto

improvement are two folds. First, only a certain portion of users have to pay tolls to use

restricted links while all users are required to pay anonymous tolls if they choose to

use tolled links in pure congestion pricing. Essentially, the hybrid policy can be viewed

as a realization of differentiated pricing schemes, although tolls being charged are still

anonymous. Second, by introducing time dimension, a Pareto-improving solution is

more likely to exist. To achieve an overall Pareto improvement, users do not necessarily

have to be better off every single day, as long as the average travel time of rationing and

non-rationing days is better than the original equilibrium travel time, i.e., the status quo.
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Figure 5-1. A multimodal transportation network
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Table 5-1. User equilibrium and Pareto-improving pure rationing problems

Link UE Pure rationing policy
User flow General user flow Restricted user flow

(1, 3) 0.00 0.00 9.00
(1, 4) 0.00 0.00 9.00
(2, 3) 0.00 0.00 12.00
(2, 4) 0.00 0.00 15.00
(1, 5) 22.94 14.50 0.00
(1, 6) 37.06 27.50 0.00
(2, 5) 48.11 43.76 0.00
(2, 6) 41.90 19.24 0.00
(5, 6) 0.00 0.00 0.00
(5, 7) 31.65 28.31 0.00
(5, 9) 39.39 29.95 0.00
(6, 5) 0.00 0.00 0.00
(6, 8) 59.12 46.74 0.00
(6, 9) 19.83 0.00 0.00
(7, 3) 45.75 42.50 0.00
(7, 4) 28.32 15.76 0.00
(7, 8) 0.00 0.00 0.00
(8, 3) 24.25 6.50 0.00
(8, 4) 51.68 40.24 0.00
(8, 7) 0.00 0.00 0.00
(9, 7) 42.42 29.95 0.00
(9, 8) 16.80 0.00 0.00

OD pairs Equilibrium cost Average equilibrium cost
(1, 3) 45.63 40.50
(1, 4) 45.33 39.45
(2, 3) 35.22 34.07
(2, 4) 34.92 33.52

Optimal ratio 0.00 0.30
Total delay 5883.80 5437.17
System delay reduction 0% 46.00%
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Table 5-2. Pareto-improving hybrid policy problems

Link
Hybrid policy Hybrid policy with subsidy

General Restricted user General Restricted user
Flow Flow Toll Flow Flow Toll

(1,3) 0.00 10.02 0.00 0.00 11.46 0.00
(1,4) 0.00 5.48 0.00 0.00 1.84 0.00
(2,3) 0.00 0.00 0.00 0.00 0.00 0.00
(2,4) 0.00 10.56 0.00 0.00 9.13 -4.06
(1,5) 12.32 3.60 22.72 8.32 9.62 26.08
(1,6) 27.64 0.94 14.32 28.76 0.00 18.96
(2,5) 43.92 0.00 10.31 41.50 0.00 11.27
(2,6) 16.01 19.50 0.00 14.12 25.25 0.00
(5,6) 0.00 0.00 0.00 0.00 0.00 0.00
(5,7) 28.55 0.00 15.90 28.51 0.00 10.41
(5,9) 27.69 3.60 0.00 21.31 9.62 0.00
(6,5) 0.00 0.00 0.00 0.00 0.00 0.00
(6,8) 43.65 0.00 22.75 42.88 0.00 17.37
(6,9) 0.00 20.45 7.34 0.00 25.25 7.00
(7,3) 38.95 0.00 1.25 33.04 0.00 7.36
(7,4) 17.29 2.77 0.00 16.78 9.12 0.00
(7,8) 0.00 0.00 0.00 0.00 0.00 0.00
(8,3) 7.66 13.36 2.80 10.22 15.28 7.52
(8,4) 35.99 7.92 3.46 32.66 10.47 4.31
(8,7) 0.00 0.24 0.00 0.00 0.00 0.00
(9,7) 27.69 2.52 15.90 21.31 9.12 10.41
(9,8) 0.00 21.52 8.68 0.00 25.75 2.89

OD pairs Average equilibrium cost Average equilibrium cost
(1,3) 41.90 43.85
(1,4) 41.00 42.87
(2,3) 34.55 34.89
(2,4) 34.92 34.92

Optimal ratio 0.33 0.38
Total delay 5078.11 5023.47
System delay 80.48% 87.82%
reduction

Table 5-3. System delay reductions under different Pareto-improving strategies
Transit time Pure rationing Hybrid policy Hybrid policy with transit subsidy
150% UE 46.00% 80.48% 87.82%
200% UE 0% 62.68% 62.68%

98



CHAPTER 6
CONCLUSIONS

6.1 Summary of Major Findings

Despite the successes of pricing projects worldwide and growing government

support, congestion pricing remains largely unappealing to the general public. A

long-standing dilemma for transportation authorities is how to enjoy the efficiency

benefits of congestion pricing while keeping the general public happy. In this dissertation,

we proposed that using a Pareto-improving congestion pricing approach will bridge the

gap between these two seemingly contradictory goals. This dissertation provides an

in-depth investigation of the-state-of-the-art of Pareto-improving pricing strategies for

general transportation networks.

The fundamental reason that a Pareto-improving congestion pricing scheme

is achievable is that a UE flow distribution may not be Pareto-optimal. If a flow

distribution is not Pareto-optimal, there may exist a dominating flow distribution that

improves system efficiency without making any user worse off. Since a dominating flow

distribution is not in equilibrium, congestion pricing can be used as an instrument for

inducing such a flow distribution. As shown Chapter 3, the absence of loops (single-

and multi-commodity) is the necessary and sufficient condition for the existence of

anonymous nonnegative tolls to support a given dominating flow distribution. Also,

the relationship between a dominating flow distribution and anonymous nonnegative

Pareto-improving toll vectors was examined. We further proved that a nonnegative

OD-dependent Pareto-improving toll vector can always be found to induce any

dominating flow distribution without a single-commodity loop as an equilibrium flow

distribution.

Chapter 4 discussed Pareto-improving pricing schemes for a general network when

users belong to a discrete set of VOT classes. Mathematical formulations for finding

a Pareto-improving scheme as well as a dominating flow distribution were developed.

99



Given a dominating flow distribution with heterogeneous users, we also provided

necessary and sufficient conditions for the existence of an anonymous nonnegative

Pareto-improving toll vector to induce the distribution. The numerical results from three

networks illustrate that multiclass Pareto-improving pricing schemes are less prevalent

when compared to its single-class counterpart.

A new hybrid Pareto-improving policy that combines congestion pricing and

free-travel-right assignment was proposed in Chapter 5. Mathematical formulations

for developing Pareto-improving pure road space rationing schemes and hybrid policies

were given. The hybrid policy proposed offers greater flexibility than pure road space

rationing. Numerical examples demonstrated that the proposed hybrid policy is more

prominent in leading to a Pareto improvement than both pure congestion pricing and

road space rationing schemes.

Three major contributions of this dissertation to the literature can be summarized as

follows:

• This dissertation provided a systematic study of the existence and properties of
Pareto-improving pricing schemes in general transportation networks.

• It explored the problem of Pareto-improving pricing schemes for networks with
heterogeneous users.

• It proposed a hybrid policy that takes advantage of the synergistic effects between
congestion pricing and free-travel-right assignment.

The congestion pricing and hybrid strategies developed in this dissertation

demonstrate that the Pareto-improving approach is a viable and promising way of

designing efficient demand management strategies that are also appealing to the

general public. The findings may make congestion pricing no longer a hard sell

to decision makers and the general public, which may eventually lead the nation’s

transportation system to a more sustainable future.
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6.2 Future Research

In Chapter 4, we assumed that road users are categorized into a discrete set of

VOT classes. Users who belong to the same user class are assumed to have the same

VOT, which is a rough approximation of the actual continuous VOT distribution. Nie and

Liu (2010) examined the existence of a Pareto-improving pricing scheme in a bottleneck

network (one OD pair) with heterogeneous users characterized by continuous VOT

distributions. It would be a valuable addition to the literature of the Pareto-improving

congestion pricing approach, if we can extend the model to general road networks.

The hybrid policy proposed in Chapter 5 combines regulatory and market-based

demand management policies. Future research could introduce heterogeneous users

into the proposed formulation. By doing so, we may obtain more insights into the policy

implications of the hybrid model. Also, it might be interesting to investigate the long-term

effects of the hybrid policy. Road users may purchase additional vehicles to bypass

restrictions. However, whether they choose to do so in the long term depends on toll

rates on restricted links and the restriction ratio. Because users are allowed to pay tolls

to use restricted links on restricted days, it may not be beneficial for them to maintain a

second vehicle to bypass the restriction. On the other hand, if the restriction ratio and

toll rates are high, users may find themselves better off purchasing a second car in the

long run.
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