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ABSTRACT

How to program a parallel machine has always been a major research prob-

lem. Many tools, languages and libraries are developed in order to make

parallel programming more accessible for most users. However, no matter

what approach is taken to program a parallel machine, there is always a

trade-off between productivity, performance and portability. It is very hard

to develop a system that only requires short and concise code to achieve

close-to-optimal performance on a wide range of parallel machines.

In this thesis, a novel programming framework is developed to achieve

a good combination of productivity, performance and portability. The pro-

gramming framework is designed based on computation patterns that contain

parallel information. The programming framework can efficiently map these

computation patterns onto a parallel machine. The programming framework

also utilizes the C++ templates to generate optimized code for different

compositions of computation patterns. It uses a novel way to implement

the computation patterns that allow automatic high-level optimization at

compile time. Through the benchmarks, it shows that the programming

framework can effectively express the computation kernels in few lines of

code and achieve the performance of their optimized C code on multi-core

CPUs.
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CHAPTER 1

INTRODUCTION

With the emergence of various kinds of parallel processors and accelerators, a

tremendous amount of attentions has been shifted into developing parallel al-

gorithms and parallel applications in recent years. Numerous programming

systems have been built showing very promising improvement over tradi-

tional sequential machines [1, 2, 3]. We have reason to believe that the new

parallel computer architectures are going to keep transforming the landscape

of various areas like scientific computing, computer vision and other fields

that require high throughput computation.

However, writing high-performance code on parallel machines is much

harder than on traditional single-core CPUs. In order to produce close-

to-optimal performance on a targeted computer architecture, it requires not

only a thorough understanding of the application itself, but also the knowl-

edge of detailed computer architecture, including memory controller, cache,

hardware scheduler and instruction pipeline. The high technical entryway

has become one of the biggest road blocks for the wider adoption of parallel

hardware.

In addition to the high development cost of parallel applications, opti-

mized parallel software is very hard to maintain. High-performance code is

usually written in low-level programming languages like C or domain-specific

languages like CUDA. The optimized code in these languages usually con-

tains manual tiling, loop unrolling and other optimization techniques. These

optimizations often obfuscate the code and decrease the readability.

Furthermore, if programmers expect good performance from several dif-

ferent parallel machines, they are required to manually tune the program for

each targeted platform; this is even true for the hardware of different gen-

erations of the same architecture with minor specification variations. Table

1.1 shows the different optimization choices across two generations of Intel

CPUs for the best performance in scan benchmark (details about the scan
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algorithm are discussed in Section 2.2.3). These choices will further increase

the size of the code base and the time of development for high-performance

parallel applications.

Table 1.1: Target specific optimizations for two Intel CPUs for the Scan
benchmark

CPUs Intel Core 2 Duo Intel Core i7

Algorithm Scan-Scan-Map Reduce-Scan-Scan

Optimizations Vectorization Parallelization,
Vectorization

Tile Size 1 MB 4 MB

There are generally three approaches to tackle the problem. One is to de-

fine a language specifically for parallel machines. One of the most influential

languages in this category is OpenCL [4]. With the support from vendors,

OpenCL has become a popular choice of parallel accelerator programming.

Being a low-level programming language, OpenCL shares the common draw-

backs of C and CUDA. Multiple studies have shown that performance is

not portable across different platforms [5]. Despite the fact that many stud-

ies show that high performance can be achieved with OpenCL on different

kinds of accelerators and also in heterogeneous environments, no evidence

shows OpenCL has better productivity and maintainability compared to C

or CUDA [6].

Other languages and tools focus on building abstractions through high-

level languages or function interfaces. Languages like Copperhead [7] and

Triolet [8] and numerous parallel libraries fall into this category. Many of

them report very good performance together with high productivity and ease

of maintenance. In those toolchains and language frameworks, the responsi-

bility of optimization will be solely dependent on the library developers and

compiler writers. Without a wider adoption of the tools or the support from

all the vendors, these languages and tools lack the ability for fine-tuning for

a wide range of chips and will have a hard time keeping up with the evolving

chip industry.

The third approach is to develop a compiler that can automatically trans-

form loops in sequential code into parallel versions and apply optimizations

to the verions [9, 10, 11]. Although this approach requires minimal effort
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from application developers, current parallel compilers are limited by their

model of analysis and can only handle very limited cases due to the limita-

tion of static analysis. For example, one of the common ways to model a

loop is using polytopes, which partially relies on alias analysis, to model the

loop iterations. Since the alias analysis problem is undecidable, the compiler

can’t always construct the polyhedral model of the loop, even if the loop is

parallelizable. Due to those limitations, these tools often can only achieve a

fraction of the speedup of the hand-tuned parallel code.

In this thesis, a different approach is explored to find a compromise between

the previous approaches while retaining many of their benefits. We observe

that there are more similarities than differences between current parallel ar-

chitectures. If we can abstract the parallelism of the application through

different computation patterns (described in Section 2.2), a framework can

be developed to map these computation patterns to different parallel ma-

chines while reusing as much common optimization as possible. TIC (Triolet

In C++), a programming framework inspired by Triolet, is built to enable

composable computation patterns in C++. With the TIC framework, ap-

plication developers will be able to produce parallel programs almost as effi-

ciently as with high-level language, and in the meantime, optimizations can

be automatically applied to get better performance. The resulting program

can achieve close-to-optimal performance compared to low-level program-

ming languages like C. This will allow programmers to be truly focusing on

algorithm development and problem solving rather than spending time ex-

ploring minor tweaks to get more performance out of parallel machines. The

TIC framework has the following contributions:

• Generalizing the common optimization techniques for the shared-memory

parallel computer architectures.

• Identifying the most used computation patterns in parallel computing

and the different implementations of them on different architectures.

• Develop a systematic way of constructing computation kernel with com-

mon computation patterns.

• The first programming framework applying optimizations using tem-

plates utilizing the high-level information available in the source code.
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• Demonstrating close-to-optimal performance on multi-core CPUs with

C++ and template metaprogramming.

The thesis is organized in the following way: Chapter 2 describes the

background and related work. Chapter 3 introduces the TIC programming

framework at a high level, and Chapter 4 describes the implementation details

of different parts in the framework. Chapter 5 analyzes the performance of

the TIC framework using common computation benchmarks, and Chapter 6

discusses further improvements that can be made to the framework for better

performance or usability. The thesis finally concludes with Chapter 7.
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CHAPTER 2

BACKGROUND

In this chapter, background of the TIC framework is introduced including the

basics of parallel architectures, general computation patterns as well as pre-

vious work in programming languages including template metaprogramming

and C++ features.

2.1 Parallel Hardware

As different kinds of parallel machines emerge, it is generally believed that

all the parallel machines are so distinct that completely different sets of

optimization should be applied. Figure 2.1 shows a generic design of a

shared-memory parallel architecture that is used in both multi-core CPUs

and mainstream GPUs. Despite the distinct design execution units, their

memory systems are similar. We observe that these shared-memory paral-

lel architectures have almost identical memory hierarchies and prefer similar

memory access patterns. If exploited properly, a well-designed set of memory

optimizations should apply to a wide-range of shared-memory architectures.

For the execution units, they are sufficiently distinct across different plat-

forms that usually the parallel kernel is impossible to represent by the same

low-level code. However, if the parallel kernel is expressed in high-level lan-

guage, it is much easier to find a mapping from the kernel to the execution

units. These two observations led to the design of the TIC framework. The

following two subsections break up the parallel architecture into memory

system and execution unit, and describe each with its own approach.
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Figure 2.1: Common design for shared-memory parallel architectures.

2.1.1 Memory System

The memory system described in the thesis includes the off-chip memory

(DRAM, either DDR3 or GDDR5) and the on-chip memory (caches, both

shared and private, and registers). Although the real hardware implemen-

tation of a memory system on different chips can be drastically different in

terms of channel numbers, burst widths, caches sizes, etc., almost all memory

systems prefer the same kind of access pattern.

A good memory access pattern includes good spatial locality and good

temporal locality. Spatial locality will fully utilize the channel and burst

from DRAM, and maximize the efficiency of cache. Good spatial locality also

means better utilization of the prefetch unit of the chip if it has one. Spatial

locality mainly results from an appropriate choice of the data structure and

the order of traversal. Temporal locality is often exploited by caching the

data in on-chip memory for future use. It is important because it helps

to reduce the number of memory requests that actually reach the DRAM,

and thereby saving the precious DRAM bandwidth. Different from spatial

locality, temporal locality is mainly determined by the algorithm.

However, there are some important differences between memory systems:

bandwidth and cache size. The differentiations will often result in different

tiling decisions and occasionally will result in different algorithms. These

qualities need to be taken into consideration if the framework is to be designed
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for close-to-optimal performance.

It has been known for a long time that computation power is growing

much faster than memory bandwidth. It is crucial to save as much memory

bandwidth as possible, and it is especially true for memory-bound applica-

tions. The TIC framework is carefully designed based on the memory system

features to achieve spatial locality and temporary locality through different

methods and make different tiling decisions based on the hardware specifica-

tions and the algorithm (see Chapter 4).

2.1.2 Execution Unit

Unlike memory systems share many common features and few differences,

execution units are sufficiently different from each other that a distinct set of

optimizations is needed. Although the framework design considers all shared-

memory based parallel hardwares, platforms like CPU is the only target in

this stage. For the execution unit, SIMD and MIMD is focused because

modern CPUs have vector units (SIMD) and multi-core (MIMD), both of

which should be exploited at the same time.

In terms of automatic compiler optimization, vectorization and paralleliza-

tion are two completely different loop transformations. Shown in Listing 2.1,

though vectorization and parallelization are both loop strip-mining, vector-

ization results in an innermost loop while parallelization results in an outer-

most loop. This also means both transformations are independent and can

be concerned separately in the framework.
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Listing 2.1: A simple vector add as the example of vectorization and

parallization, the innermost loop is mapped to a vector unit and the

outermost loop is distributed across CPUs

1 void vector add(int∗ a, int∗ b, int∗ result , int size )

2 {
3 // assume size is a multiple of CORE NUM∗VECTOR SIZE

4 // parallelization , map each iteration to a CPU core

5 for ( int core = 0; core < CORE NUM; core ++)

6 {
7 for ( int i = 0; i < size/(CORE NUM∗VECTOR SIZE); i ++)

8 {
9 // vectorization , map the entire loop to a vector unit

10 for ( int v = 0; v < VECTOR SIZE; v ++)

11 {
12 int index = core ∗ ( size/CORE NUM) + i ∗ VECTOR SIZE + v;

13 result [index] = a[index] + b[index];

14 }
15 }
16 }
17 }

In addition to the difference in terms of the granularity of parallelism,

SIMD and MIMD also handle branches differently. Consider a parallel loop

with a branch condition inside. Branch divergence is when the branch in

the loop is taken in some iterations but not taken in some other iterations.

Because SIMD units execute the same instruction across all data, SIMD

has to execute both branches with predication. MIMD does not have the

limitation of SIMD, thus MIMD allows individual threads to behave different

at the branch. However, by allowing the different behavior across the threads,

the threads will be out of synchronization over time, so it is not possible

to expect coordinations across the threads without explicit synchronization

barriers.

2.2 Computation Patterns

Although there is much research showing that the optimizations can be done

either automatically [12] or semi-automatically with user annotation [13], it

is difficult and time-consuming for the compiler to determine all the opti-
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Figure 2.2: Map computation pattern.

mization opportunities. On the other hand, if the computation is expressed

in a high-level language, the function itself might contain all the information

needed to do optimization.

Rather than use a for loop to generalize all the parallelism and rely on

the compiler to recover the information, it is more efficient to maintain as

much parallel information as possible in the source code. To express the

parallelism, programmers can use functions that implicitly suggest the par-

allel information, memory access information or the dependency information.

These functions are called computation patterns.

Some of the basic computation patterns will be discussed in the following

subsections, including map (Section 2.2.1), reduce (Section 2.2.2) and scan

(Section 2.2.3). These functions are commonly used in various benchmarks

and implemented in many other languages and frameworks. These computa-

tion patterns will serve as basics in the TIC framework. Many other patterns

are supported in the TIC framework including stencil, histogram, sorting and

permutation, but they will not be discussed here.

2.2.1 Map

Map is a computation pattern that addresses perfect parallelism (shown in

Figure 2.2). An operation is applied to every element of the input, and

there are no dependencies between each operation. In this case, the order

of traversing the elements and the order of computation can be freely rear-

ranged.

Parallelization is trivial for map since all outputs can be computed inde-

pendently. The output is naturally partitioned according to the number of

available cores and distributes these partitions evenly across all the cores.

If there are branches in the map, there can be load balancing issues. For-

tunately, there are existing tools like OpenMP and TBB [14] that take load

balancing into consideration. These tools are directly used in the TIC frame-
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work to map the workload to multi-core CPUs.

Vectorization is also obvious except when branches exist in the map. Sev-

eral consecutive input elements can be packed into a vector, and SIMD in-

structions can be used to compute the corresponding output from the input

vector. There is research showing how vectorization can be achieved by

transforming high-level language [15]. In this thesis, multi-tier dynamic par-

allelism [16] is used to effectively exploit vector units when static branches

are encountered. The technique will be described in detail in Section 4.4.

2.2.2 Reduce

Reduce in the TIC framework refers to the specific kind of reduce compu-

tation pattern that is associative, thus it can be parallelized with proper

communication or synchronization. Figure 2.3a shows the naive sequential

implementation, and Figure 2.3b shows the tree reduction algorithm that

performs the parallel reduction. On shared-memory architectures, the best

implementation is usually a hybrid of the two which takes the advantage

of 1) the benefit of the sequential version on one core which has a good

memory access pattern and computation efficiency, and 2) the benefit of the

tree version that allows the distribution of work across multiple computation

units [17]. Different parallel platforms may use different pairings of the two

patterns.

In the TIC framework, the detailed implementation of reduce is abstracted

away from the programmer so there is no concern about how to partition the

work between sequential or tree implementations. Also, the best communica-

tion or synchronization method is selected for the user. For multi-core CPUs,

vector shuffle is used to communicate between vectors within one core, and

atomics operation is used to communicate between cores but the decision can

be different for the targets with different features.

2.2.3 Scan

Scan is an all-reduce computation pattern which can be considered as a

hybrid of map and reduce. It produces one output for each input element

like map, but it has a dependence similar to reduce. Scan is hard to parallelize
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(a) Sequential reduce

(b) Tree reduce

Figure 2.3: Reduce computation patterns. (a) A sequential reduce that has
strict dependencies across the output elements but a good memory access
pattern. (b) A tree reduce where each stage can be computed separately,
but it has a less optimal memory access pattern.
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and vectorize because the naive scan is highly sequential. The most naive

scan implementation also has a good memory access pattern, so it is not

easy to get speedup for scan on the parallel machine. There is research to

show how to implement scan on different parallel platforms [18, 19]. The

approach used in the TIC framework is either scan-scan-map or reduce-scan-

scan. Scan-scan-map implementation is shown in Figure 2.4a. This is the

approach commonly seen in the literature. It computes the local partial scan

result and stores it in the destination. Then a global communication occurs to

compute the global scan using the last value from the local scan. Finally, the

partial scan result from the local scan is updated using the global scan results

through a map operation. Reduce-scan-scan is our own scan implementation

(shown in Figure 2.4b). Reduce-scan-scan only computes the local reduction

and then uses the local reduction result to compute global scan. In the

final stage, a local scan is computed using the global scan result as the

initial value. The later approach saves memory bandwidth, but it requires

more computation. The algorithm decision can be made static based on two

parameters: the computation intensity of the scan operator and the input

type to the scan operation. A computation intensive scan operator will shift

the scan to a computation bounded kernel, thus the memory bandwidth

saving from Reduce-Scan-Scan is not benefiting the overall runtime. If the

input to the scan operation is a generator, Reduce-Scan-Scan needs to call

the generator twice, both in the first reduce stage and the third scan stage.

Under this situation, Scan-Scan-Map is used because the generator is only

called once in its local scan stage.

2.3 Template Metaprogramming

Template is a very powerful feature in C++. It is designed to achieve generic

programming in C++. Programmers can write functions and classes with

template types, and the compiler will generate the actual implementation

when the data type is supplied during the compile time. STL [20] library is

the commonly used library in C++ that uses templates to provide containers

to programmers. Blitz++ uses the C++ template to drastically improve

C++ array performance. It provides Fortran-like array operations, and their

performance is comparable to that of Fortran [21]. Matrix Template Library

12



(a) Scan-scan-map.

(b) Reduce-scan-scan.

Figure 2.4: Scan computation patterns with summation operator (numbers
in the boxes represent inputs or partial sums).
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[22] is another widely used template library which provides high performance

linear algebra through template matrix types and overloaded operators.

Template metaprogramming is a technique that fully exploits the power of

the C++ template. It utilizes templates to do computation during the com-

pile time. Although the computation power that can be achieved by a C++

compiler is much slower than that achieved by actual C++ code, template

metaprogramming is still a useful technique to trade compilation time for

improved runtime. Some of the most commonly used tricks with template

metaprogramming include static polymorphism and static code generation.

Static polymorphism is achieved by using the C++ template system to

derive the correct member function to call during the compile time. It takes

advantage of the fact that many of the concrete types in the program can

be deduced during the compile time. Thus the exact member function that

gets called from a call site can be determined at compile time. Using this

approach, the runtime cost of dynamic polymorphism (using virtual functions

and vtables) can be eliminated. In the design of the TIC framework, the same

approach is used to generate faster code.

Static code generation is a technique to reorder code using the C++ tem-

plate. This technique is used in many libraries to provide a friendly interface

to the users. With static code generation, the users can write the code in

a more natural way, thus increasing the readability of the code, while the

best performance can still be achieved. Listing 2.2 shows a code generation

example that is used in C++ Boost library [23] and Thrust. In the example,

a vector of floating point numbers is created, and its content is doubled and

printed through the Thrust-style transform iterator. At line 15 and 17, the

begin and end iterators of the transform are created using the constructor

provided at line 7. The newly constructed transform iterators are used at line

19 for the comparison. In the body of the loop at line 20, the de-reference

operator is applied to the transform iterator. The compiler will de-sugar the

de-reference operator by inlining the function at line 9, which computes the

result from the vector by applying double operator. Note that no computa-

tions are done in the constructor and the transform iterator class serves as

syntactic sugar for code reordering. In the TIC framework, the similar tech-

nique is used to achieve multiple optimizations, including fusion, padding,

tiling, etc.
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Listing 2.2: An example of code generation using templates

1 template <typename BaseIter>

2 class transform iterator

3 {
4 /∗ omit constructor and other member function ∗/
5 std :: function<float( float )> func;

6 BaseIter iter ;

7 transform iterator (BaseIter a, std :: function<float( float )> f)

8 : iter (a), func(f) {}
9 float operator∗ () { return f(∗a); }

10 }
11

12 int main()

13 {
14 std :: vector<float> a(10, 1.0f) ;

15 transform iterator<std::vector<float>:: iterator> begin

16 (a.begin(), []( float x) { return x ∗ 2; });

17 transform iterator<std::vector<float>:: iterator> end

18 (a.end(), []( float x) { return x ∗ 2; });

19 for (auto i = begin; i != end; ++ i) {
20 std :: cout << ∗i << std::endl; // computation happens here

21 }
22 }

2.4 C++ Features

The TIC framework is implemented using C++ because of the following

reasons:

• C++ has a robust template system with type deduction. With some

new features of C++11, a relatively clean user interface can be designed

to hide type parameters in the templates away from the user and utilize

type deduction to fill the types.

• C++ has a large user base. A framework implemented purely with

C++ will allow it to be seamlessly integrated with existing code. Many

C++ features can be used inside the framework directly as well, e.g.

atomics.
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• C++ has a mature and powerful compiler that can eliminate most

of the language overhead. C++ is also sufficiently close to C and

compatible with C that optimal low-level code can be generated.

• C++ already has many tools to allow the user to program in parallel.

Examples include OpenMP, TBB, CUDA and CUB. These tools can

be directly utilized by the framework to target the code to different

platforms.

In the rest of the chapter, some new C++11 features are discussed. These

features are all crucial to the implementation and the usability of the frame-

work.

2.4.1 Auto Keyword

In C++11, the keyword auto is introduced to allow the compiler to deduce

the type of variables for the programmers. This feature makes the life of the

TIC framework’s user much easier. As will be described in Chapter 4, the

template type in the framework can include a lot of type parameters which

will be extremely tedious for the user to specify. For example, the auto

keyword is used at line 19 in Listing 2.2 which saves the user from specifying

the long type name for the transform iterator. Moreover, the return type of

a function can be different in different cases due to the fact that a different

set of optimizations is applied. Unless the user fully understands every detail

about the implementation of the framework, it is impossible for the users to

deduce the type themselves. With C++11, the user can simply specify the

return type of the function to be auto type and let the compiler to do all the

work.

2.4.2 Lambda Expression

In C++11, lambda expression is introduced to allow easier construction of

function objects. With lambda expression, the programmer does not need

to declare a function and pass the function pointer together with all of its

parameters. Instead, programmers can use a lambda expression to construct

a function object inside a function. Lambda expression will also capture all
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necessary variables available in the current scope and construct a Functor

class.

Figure 2.5 shows the overhead of an add operation wrapped by a function

or a lambda expression compared to the overhead of an inlined addition.

When the addition is represented by a function, a function pointer is needed

to pass the operation to the computation kernel. In this case, the compiler

creates an indirect branch in the computation kernel. However, sometimes

the compiler can statically prove that the destination function is always the

same, and the compiler will optimize the program by inlining the destination

function. Figure 2.5 shows that without automatic inlining, using a function

pointer will cause a 11.7x slowdown. Otherwise, no overhead is observed. If

a lambda expression is used to represent the addition, the lambda expression

can be passed to the computation kernel as either a std::function type or

a C++ template type. For the first case, the current compiler (Clang 3.5)

seems not able to apply the same optimization to std::function as the one it

applies to a function pointer. From the figure, a 13.7x overhead is observed.

For the second case, a C++ template will capture the lambda and inline the

lambda expression. There is no overhead for using lambda expressions and

passing them as templates.

2.4.3 Others

Some other features used in the TIC framework include variadic templates

and atomics. Variadic templates are used in tuple types and the tuples are

used inside the zip operation. Atomics are used to make atomic operation

easier to specify in the framework. Atomics are also used to implement the

synchronization barrier and the communication between threads.
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Figure 2.5: The performance comparison of a vector addition in which each
add operation is represented by different methods. The result is normalized
to the runtime of inlined version (compiled with Clang using -O3). Inline is
the baseline with inlined addition. FuncPtr is the version which uses a
function pointer to point to an add method. FuncPtr(Opt) is the version in
which the function pointer is a constant so the destination function is
inlined by the compiler. Lambda is the version which uses lambda
expression to represent the addition, and the lambda is passed to the
computation kernel as std::function type. Lambda(temp) is the version
that the lambda is passed as template.
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CHAPTER 3

FRAMEWORK

The TIC framework is designed to provide a high-performance parallel pro-

gramming environment which is capable of automatically applying various

kinds of optimization techniques while maintaining a clean and elegant in-

terface.

In this chapter, the key concepts of the TIC framework are introduced.

The chapter begins with the definitions of the terminologies and the overall

work flow of the framework, The a simple program example is introduced to

show programs are written using the framework.

3.1 Terminologies

The basic objects used in the programming framework are called computa-

tion objects. A computation object is an object containing both the input

and a set of operations that convert input to output. It has a virtual size

equivalent to the output size. It also contains all the optimizations that can

be applied to the computation as well as the information necessary to make

optimization decisions. The advantage of the computation object is that the

input data structure can be optimized and more optimization can be applied

as computations are specified to the data structure. Thus, a computation

object is not only functioning as a generator which generates value when

called, but also performs input data layout transformation and applies static

optimizations to the computation code.

Users construct, modify and transform computation objects with transform

functions. A transform function is a function that takes one data structure

or one computation object as input, applies transform and returns a new

computation object. A transform function can append new computation

to the existing computation objects, apply data layout transformations and
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apply high-level optimizations to any previous stages of the computation. All

the optimization decision is also made in the transform function. The output

computation object from the transform function is always heuristically the

most optimal implementation to generate the output.

To compute the final result, a consumer function needs to be used. A

consumer function evaluates the computation object and produces the final

output. If applicable, the input data layout transform also happens in the

consumer function.

3.2 Programming Workflow

Figure 3.1 shows the general work flow to write a kernel in the TIC frame-

work. Starting from the input, users need to transform the input data into a

computation object. If multiple inputs are present, users need to create one

computation object for each input. After that, users can specify computa-

tions by applying a transform function to the existing computation object.

Users can also combine or extend the existing computation objects using a

zip transform function or const transform function. At the meantime, trans-

form functions also take care of all the type deductions so that users are not

required to figure out the exact type of all the computation objects. After

all the computations are coded into the computation object, users need to

call a consumer function to generate the output.

3.3 Example Program

Listing 3.1 shows a code example of a simple flow of the computation objects.

A computation object is constructed from the std::vector type. The vector

computation object will not allocate any memory to store the input but only

capture a pointer to the input vector. At line 13, a stencil object is created

from the vector computation object. It is done through templating so the

actual type of the stencil object is an extended type from the input vector.

Upon the constructing of the stencil object (in make stencil transform),

it may decide to apply transformation to the input vector, e.g. padding. In

that case, the different type stencil computation object will be constructed
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Figure 3.1: The workflow of the TIC framework.

21



and it will also reconstruct the vector computation object to be padded. The

actual padding in the vector computation object will not be executed until

the consumer stage which in this case is line 18. Note this will introduce

multiple copies of the vector computation object, but since they all contain

only a pointer to the input vector and they do not have any dynamic memory

allocations, the overhead is only a few extra scalar copies and is negligible.

A detailed description of the technique is described in the next chapter.

Listing 3.1: Example code written in the TIC framework.

1 std :: vector<int>

2 simple stencil (const std :: vector<int>& input)

3 {
4 // make input vector a computation object

5 // vector computation object

6 auto input co = make vector object(input);

7 // transform input to 1D stencil object of width 3

8 // each element in stencil is 3 adjacent elements from input

9 // stencil object may requests padding to the input

10 // stencil computation object

11 auto stencil co = make stencil transform<3>(input co);

12 // map computation object

13 // reduce operation will generate a reduce functor based on

14 // element type of stencil co and reduce operator (add op)

15 auto map co = make map transform(stencil co, reduce operation<add op>());

16 // consumer that evaluate and output to vector

17 // it will pad the input vector and do map operation

18 std :: vector<int> output = Evaluate<std::vector>(map co);

19 return output;

20 }
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CHAPTER 4

IMPLEMENTATION

In this chapter, the details of how optimizations are implemented are dis-

cussed. The key optimizations include fusion, tiling, vectorization and par-

allelization. In the following sections, the optimization strategies and the

optimization parameters are introduced for each of the key optimization.

4.1 Static Optimization Using Templates

Section 2.2 suggests that computation patterns know more about the pro-

gram itself so that using the information from the high-level computation

pattern can result in better parallelization. The same argument can be made

for many other high-level compiler optimizations like loop transforms and

data layout transforms. Since the computation pattern itself contains pro-

gram information about memory access pattern and sharing, the optimiza-

tions that rely on that program information can be done better at high-level

by the language framework than at low-level by the compiler.

The approach used in the TIC framework to achieve those compile-time

optimizations is through C++ templates. The template type in C++ can

hold more than just type information. In the TIC framework, it is used

to pass optimization information. The computation object in Listing 4.1 is

an example implementation from the example code in the previous section

(Listing 3.1). All the code shown is a simpler version of the code in the TIC

framework and is hidden from the user. In this example, it shows a data

structure computation object (VectorCompObj) which associates a data

structure with its traversal order and layout transforms, a extended compu-

tation object (StencilCompObj) which extends an existing computation

object with more compile time information like sharing pattern and depen-

dency informations, and a transform function (make stencil transform)
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which makes a decision whether various optimization are requried or not. In

this example, the transform function makes the decision to always pad the

input when the stencil computation object is created. If the data structure

computation object does not suggest padding, the transform function will ask

the data structure computation object to create a padded version and use

the padded version to construct the stencil computation object. In reality,

the padding decision can be more complicated, and a different type of stencil

computation object needs to be returned. In that case, std::enable if is

used to make the compile time selection of the return type.
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Listing 4.1: Computation object template class example

1 template <typename ElementType, /∗some other types∗/, bool Pad>

2 class VectorCompObj {
3 // omit constructors and other member functions

4 // ...

5 // constexpr to evaluate at compile time

6 constexpr bool is pad() { return Pad; }
7 // member function to construct a padded type

8 VectorCompObj<ElementType, ..., true> pad() {
9 return VectorCompObj<ElementType, ..., true> new comp obj(∗this);

10 }
11 // prepare function is called by consumer before access the class

12 void prepare() {
13 if (Pad) {
14 // do padding

15 }
16 }
17 }
18

19 template <int StencilSize , typename ParentType, /∗some other types∗/, bool Pad>

20 class StencilCompObj {
21 // omit constructor and other member functions

22 // ...

23 private :

24 // need a copy of parent because type conversion

25 ParentType parent;

26 }
27

28 template <int StencilSize , typename ParentType, /∗some other types∗/, bool Pad>

29 StencilCompObj<StencilSize,ParentType,/∗some other types∗/,true>

30 make stencil transform(ParentType comp obj)

31 {
32 if (! comp obj. is pad()) {
33 return StencilCompObj<StencilSize,ParentType,...,true> (comp obj. pad());

34 } else {
35 return StencilCompObj<StencilSize,ParentType,...,true> (comp obj);

36 }
37 }
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In the extended computation object, it is required to keep a copy of the

parent computation object due to the fact that a type conversion might

happen. It is also required that the extended type calls the prepare function

before de-referencing the vector computation object. In prepare function,

since Pad can be determined in compile time, the compiler can easily reduce

the function to a NOP if Pad is false.

Using pseudo-code, Listing 4.2 shows the sequence of execution for the

example code in Listing 3.1. The transform functions in Listing 3.1 primarily

apply compile-time optimizations and create computation objects. They

serve as syntactic sugar to wrap the real computation. All the transform

functions should be optimized away by the C++ compiler. The region of

the code that is executed at runtime is inside the consumer function. At

runtime, the consumer function will execute the prepare function in the map

computation object, which will then call the prepare function in its parent

class. This will result in a sequence of prepare function calls from the top-

level computation object (vector computation object) to the bottom-level

computation object (map computation object) as shown. After that, the

consumer function will iterate through all the elements in parallel. Within

the parallel loop, the computation for each level of the computation object

hierarchy will be inlined and executed.

Many other optimizations can be applied using the same technique. The

optimizations that are used in the TIC framework include padding, transpo-

sition, tiling, fission, etc. Some of the optimizations will be discussed in the

later sections in this chapter.

Listing 4.2: Pseudo-code for example code in Listing 3.1 that is executed at

runtime

1 consumer function {
2 # a chain of prepare function

3 prepare vector compute obj();

4 prepare stencil compute obj();

5 prepare map compute obj();

6

7 parallel for element in map computation object:

8 reduce(+, stencil elements )

9 }
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4.2 Fusion

Fusion is the optimization that merges multiple loops into one. Fusion helps

to reduce the number of memory accesses and the control overhead. Fusion is

one of the main benefits obtained from an iterator-based system. In Thrust,

fusion can be achieve by concatenating multiple transform iterators. Sim-

ilar to Thrust, fusion also happens automatically when the computation is

chained together. By default, all the computation will be fused and computed

in the consumer function. However, sometimes fusion might not give the op-

timal performance due to limitation of resources. In the TIC framework,

fission, which splits the loops, can be applied automatically using static op-

timizations. In this case, an integer representing the resource usage counter

is added to the template. In the transform function, if the resource usage

counter is larger than some threshold, it can insert a consumer function to

save the intermediate result, create a new data structure computation object

and reset the resource counter.

Another problem of iterator-based fusion is show in Figure 4.1a. Figure

4.1a is a data flow graph of the computation in the kernel and the problems

happen when one generator is shared. In the iterator approach, Generator A

will be called by both Generator B and Generator C, and the computation

within the Generator A will be executed twice. This will be far from optimal

if the shared computation is very intensive. Horizontal fusion can be used

to solve the this problem. There is research [24] showing how this can be

achieved using an intelligent compiler, but figuring out the shared generator

is very hard without the data flow analysis. There are no easy ways to figure

out the data flow from C++ templates, so currently, the TIC framework re-

lies on users to supply the information by using a horizontal fusion class. By

using static optimization, the output of the shared generator is written to a

temporary storage if the computation in the generator is significant enough

(shown in Figure 4.1b). The computation intensity is currently implemented

as a constexpr function provided by the user in the Functor class which

specifies the transform operator. If the user chooses to use lambda expres-

sion, then a fixed number will be picked and the fission decision might not be

accurate. Future improvement is expected to add compiler support to esti-

mate the computation intensity. The temporary storage is implemented as a

simple software cache local to each computation unit (or as shared memory
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using CUDA terminology).

4.3 Tiling

Tiling is the optimization that contains both loop strip-mining and loop

reordering. Tiling will change the memory accesses order to improve the

temporal locality. Tiling is another basic optimization available when the

extended computation object requires tiling to improve the exploit input

sharing (for example, a 2D matrix stencil). Tiling is by default disabled

when constructing a 2D matrix because without proper data reuse in the

cache, it only adds control overhead. When an extended computation object

suggests input sharing is applied, the transform function will reconstruct the

data structure computation object to enable tiling.

In the TIC framework, tiling is handled by the data structure computation

object. A data structure computation object is the computation object out-

put by the transform function applied directly to data structure. In the data

structure computation object, multiple ways of iteration are implemented

for each kind of traversal. For example, a 2D matrix can be traversed in

following way: by elements, by rows and by columns. There are two ver-

sions of iteration implemented for each kind of traversal: tiled and non-tiled.

The tiled iteration implementation also needs knowledge of the tile size as a

parameter provided at compile time.

The iteration method is decided by the implicit access pattern provided

by the combination of computation patterns. For example, a simple element

traversal in 2D matrix does not require tiling. But if a stencil transfor-

mation is applied to the elements in the matrix, then it suggests boundary

sharing and tiling is enabled. For the tiling size, it is selected using the same

compile-time optimization technique based on the heuristic that if the ker-

nel is memory-bound, the input accesses are tiled for the last level shared

memory, else the input accesses are tiled to the private cache size. The

classification of the kernel can be derived from the ratio between memory ac-

cesses and computation. In the framework, all the memory access to the data

structure is abstracted away from the user so the expected memory accesses

to the DRAM can be acquired from the extended computation objects like

stencil objects. The computation intensity has to be defined the same way as
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(a) Problem of iterator-based fusion

(b) Fusion in the TIC framework

Figure 4.1: Fusion optimization. (a) The traditional iterator-based fusion;
Generator A will be evaluated twice in both B and C. (b) The fusion in the
TIC framework uses a temporary storage to store the output of Generator
A to avoid re-computation.
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described in the previous section. Comparing the computation and memory

access ratio with knowledge of the hardware, we can classify the kernel to be

either memory-bound or computation-bound.

4.4 Vectorization

The vectorization in the TIC framework is achieved through the specifica-

tion of the extended computation objects. Currently, the vectorization only

supports int and float and these scalar types are converted to vector types

through Intel vector intrinsics. Computations are converted to vector oper-

ations by overloading operators with the vector intrinsics.

An alternative approach will be using GCC or Clang OpenCL vector ex-

tensions. Unfortunately, the current vector extension lacks the ability to do

type conversion. GCC vector extension will return a compilation error if an

int vector is added with a float vector while Clang OpenCL vector exten-

sion will silently do a bitcast. None of the behavior matches the behavior of

adding an int type to a float in C++ and neither extension provides a man-

ual way of type conversion. With Intel vector intrinsics, the add operator

of an int vector and a float vector is overloaded with a conversion intrinsics

followed by an arithmetic intrinsics. Note the default behavior of converting

float to int is rounded to the nearest value. To comply with the behavior of

C++, the rounding mode needs to be changed to ROUND TOWARD ZERO

by setting the corresponding bits in vector CSR.

In case of branch divergence in the vector operations, the framework uses

multi-tier dynamic vectorization. Currently, only static branches can be

vectorized. The static branches are the branches captured in the computation

object like boundary checks. The static branches are not related to the

data stored in the memory. For those static branches, convergence check is

performed first. If it converges, the vector version is executed. Otherwise,

the scalar version is executed.
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4.5 Parallelization

The parallelization of the code in the TIC framework is achieved through Intel

Thread Building Block (TBB) because TBB has a similar language interface

(using functors and lambda functions) and TBB contains a set of runtime

optimizations which is not considered in the TIC framework. These dynamic

optimizations are extremely helpful for the load-balancing problem which is

difficult to solve at compile time. In the consumer functions, the computation

object will be wrapped into a functor and fed into either parallel for or

parallel reduce.

In the TIC framework, the granularity of parallelism is also tuned using

template-based static optimization. If the kernel is tiled, the granularity

equals the tile size. If the kernel is not tiled, a bigger granularity is selected

if no branch is present. If there are branches, smaller granularity is used to

allow dynamic load balancing.
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CHAPTER 5

RESULTS

In this chapter, four benchmarks are discussed together with their per-

formance and programmability. The four benchmarks are scan, convolu-

tion, matrix multiplication and histogram equalization. The benchmarks are

picked to reflect different aspects in the programming framework, and the

details are shown in the following sections.

The performance comparsion is done betweem the code written in C,

OpenCL and the TIC framework. There are two versions of C code compared

in this chapter, a naive C implementation and an optimized C implementa-

tion. Clang is used to compile the C code as well as the code written in the

TIC framework. For OpenCL implementation, the fastest existing kernels

on the CPU are selected. The OpenCL kernels are compiled with both a

commerical compiler (Intel) and a research compiler (MxPA) [25].

For all the benchmarks, the performance is measured on a quad-core CPU

(Intel Core i7-3820) running at 3.60 GHz. Other hardware specifications and

environment setups are specified in Table 5.1.

Table 5.1: The hardware specification and the environment setup

CPU Intel(R) Core(TM) i7-3820 CPU
Frequency 3.60 GHz

Number of Cores 4
Number of Threads 8

Compiler Clang 3.5
Optimization Level 3

OS Debian 3.13.7-1
TBB version 2.2 Update 3
MKL version 10.2 Update 7
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5.1 Scan

Scan is a basic computation pattern available in the TIC framework. It

is one of the computation patterns that is provided in many programming

languages and frameworks but believed to be very hard to be parallelized.

This benchmark is picked to demonstrate the performance of the TIC frame-

work in a small kernel with more communication and synchronization than

computation. On the other hand, a naive C implementation has a decent

performance due to its good memory access pattern and the minimal num-

ber of computations. In the TIC framework, vector memory access and tiling

are used to further improve the DRAM bandwidth usage.

As described in Section 2.2.3, there are two implementations of scan. The

speedup of the scan with a simple summation operator (prefix sum) is shown

in Figure 5.1a. In this case, since the scan operator is cheap in terms of

computation and the input of the scan is directly from the data structure,

the reduce-scan-scan version is used. The results show that prefix sum can

achieve 1.76x speedup on a quad-core machine compared to a naive version.

The second benchmark shows a scan on a map computation object. In this

case, the scan-scam-map implementation is used to avoid the re-computation

in the map computation object. The speedup of scan-scan-map is shown in

Figure 5.1b. The result shows the for a one-dimension stencil plus a prefix

sum achieves a 1.66x speedup. In both implementations, the code generated

from the templates has the equivalent performance compared to a hand-

optimized C version using Intel vector intrinsics and TBB library.

5.2 Convolution

The 2D convolution benchmark is one of benchmarks in the Power Efficiency

Revolution for Embedded Computing Technologies (PERFECT) Project [26]

from DARPA. The convolution kernel implemented by the TIC framework

shows its ability of handling computation-bounded kernels and how it selects

tiling size based on static information. Vectorization and parallelization are

important for computation-bounded kernels. Tiling is crucial to the convolu-

tion performance as well, since there is boundary sharing for nearby elements.

The 2D convolution kernel can be written in the TIC framework using a com-
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Figure 5.1: The speedup of scan compared to C implementations. (a) The
runtime of a reduce-scan-scan version written in naive C, optimized C and
the TIC framework. (b) The runtime of a scan-scan-map version written in
naive C, optmized C and the TIC framework.

34



bination of stencil, map and reduce. The kernel function is shown in Listing

5.1.

The results of convolution with different kernel sizes are shown in Figure

5.2. When scaling the convolution kernel size from 3x3 to 9x9, the bench-

mark turns from memory-bounded to computation-bounded, and different

tile size decisions are made. Except for the 3x3 kernel size, the tiling size is

half of the L1 capacity (due to hyper threading, private caches are shared by

two threads) to minimized the latency. From the figures, the TIC framework

achieves speedup from 16.4x to 21x. The speedup is coming from both bet-

ter memory bandwidth utilization and computation resource utilization. The

performance of convolution is also compared with OpenCL using both the

Intel OpenCL compiler and MxPA. The TIC framework shows better per-

formance than both OpenCL implementations. Compared to Intel OpenCL

implementation, the TIC framework does better work scheduling and has

a better memory access pattern. Compared to MxPA, the TIC framework

generates better vector code than the CEAN extension used by MxPA.
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Listing 5.1: 9x9 2D convolution user code

1 std :: vector<int> 2dconvolution(const std::vector<int>& input,

2 int x size , int y size ,

3 const std :: vector<float>& kernel)

4 {
5 using namespace TIC;

6 // 2D matrix of int

7 auto input co = make matrix<int, 2>(input, x size, y size) ;

8 // expend to stencil (9x9)

9 auto stencil co = make stencil transform<9,9>(input co);

10 // init kernel matrix

11 auto kernel co = make small vector<int>(kernel);

12 // extend the kernel co to the size of matrix

13 auto const co = make const transform(kernel co, x size ∗ y size ) ;

14 // zip two kernel and stencil together

15 auto zip co = make zip transform(stencil co, const co) ;

16 // multiple kernel with stencil

17 auto map co = make map transform(zip co, map operation<mul op>());

18 // reduce map result to a single value

19 auto reduce co = make map transform(map co, reduce operation<add op>());

20 // consumer function

21 std :: vector<int> output = Evaluate<std::vector, int>(reduce co);

22 }

5.3 Matrix Multiplication

Matrix multiplication is a key benchmark to measure the peak performance

of the system. The matrix multiplication can be done in the TIC framework

using row and col traversal plus permutation. The implementation of a basic

matrix multiplication is shown in Listing 5.2.
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Figure 5.2: The speedup of convolution compared to C implementations
(input image size is 3180x2160). (a) Convolution with a 3x3 kernel. (b)
Convolution with a 5x5 kernel. (c) Convolution with a 7x7 kernel. (d)
Convolution with a 9x9 kernel.
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Listing 5.2: Matrix multiplication user code

1 void mm(int m, int n, int k,

2 float ∗ A, float∗ B, float ∗C)

3 {
4 using namespace TIC;

5 auto A co = make matrix<float, 2>(A, m, k);

6 auto B co = make matrix<float, 2>(B, k, n);

7

8 auto A row = make row traversal(A);

9 auto B col = make col traversal(B);

10 auto P = make permutation(A row, B col);

11

12 auto map co = make map transform(P, map operation<mul op>());

13 auto reduce co = make map transform(map co, reduce operation<add op>());

14

15 Evaluate<float∗>(C, reduce co);

16 }

For the performance comparison, a generalized matrix multiplication (SGEMM)

is measured. The performance of SGEMM in the TIC framework is compared

with that of C, OpenCL and Intel MKL library (Figure 5.3). Using the TIC

framework, the SGEMM benchmark can achieve more than 300x speedup

over the naive C version, which does very poorly in terms of cache perfor-

mance and computation utilization. In the meantime, the TIC framework

achieves better performance than the OpenCL version using Intel OpenCL

compiler and similar performance compared to that of MxPA. However, the

TIC framework is 6x slower than Intel MKL. The reason why the TIC frame-

work cannot achieve the peak performance in SGEMM is because the TIC

framework is only capable of high-level optimization. For example, memory

tiling is considered in the TIC framework but not register tiling. In order to

achieve reliable register tiling, either assembly generation or compiler back-

end support needs to be added into the framework.

5.4 Histogram Equalization

Histogram Equalization is another benchmark from the PERFECT project.

Histogram Equalization is a benchmark composed of three stages. The kernel

first takes the image input and does a histogram from the input pixels. Then a
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Figure 5.3: The performance of SGEMM in C, OpenCL and the TIC
framework.

scan and a reduce is performed on the histogram output to generate a lookup

table. Finally, the output is generated from the input using the lookup table

from the previous stages. Two observations can be made from this specific

benchmark. First, there are full dependencies across three stages. The stage

cannot start till all previous stages are finished completely. Second, the

level of parallelism changes from stage to stage. In Stage 1 and 3, there is

parallelism across all the pixels while the Stage 2 has parallelism across all the

histogram bins. These two features from the benchmark makes it interesting

and challenging. Barriers need to be automatically generated across stages,

and the work needs to be redistributed.

The performance of histogram equalization is shown in Figure 5.4. The

kernel written in the TIC framework achieves 3x speedup compared to that

of naive C. Through detailed analysis, the runtime of this benchmark is

dominated by Stage 1 and Stage 3. In Stage 1, the performance improvement

is coming from a build-in parallel histogram using privatization. In Stage 3,

the better performance is from the parallel vector load.
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Figure 5.4: The performance of histogram equalization in naive C,
optimized C and the TIC framework.

5.5 Programmability

In terms of programmability, the TIC framework also shows an advantage

over both C and OpenCL. Table 5.2 shows the size of the kernel in the bench-

marks written in different languages and frameworks. The size is measured by

counting the lines of code excluding the write space. For the C version, only

the computation code is counted. The variable declarations are not included

because the baseline code is written in C89 standard, thus all variables are

declared in the beginning of the functions and reused across multiple stages.

For the OpenCL version, only the device code is included. The initialization

and setup code on the host side is not included in the line count.

From the table, the kernel written in the TIC framework has an even

smaller size than naive C implementation. On the other hand, the concise

code in the TIC framework can achieve the performance of an optimized C

version which is an order of magnitude longer. The results show that the

TIC framework is the most efficient way to develop the high-performance

kernel among the three choices.
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Table 5.2: A comparison of the code length in different frameworks and
languages

Framework & language Scan Map+Scan Conv SGEMM HistoEq
Naive C 3 5 37 11 38
Optimized C 54 60 61 98 120
OpenCL - - 37 16 -
TIC 2 4 8 10 14
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CHAPTER 6

FUTURE WORK

For future work, improvements can be made in the following directions:

• Auto-tuning should be supported. Currently all the optimization pa-

rameters are tuned and set manually. It is possible to set up a set

of benchmarks to time the performance across different optimization

decisions. The optimization parameters for the best performance will

be stored for the static optimization.

• A source-level compiler can further improve the usability of the frame-

work. Some information described in the previous chapters is hard to

figure out only by types and templates. For example, the shared gener-

ator problem in Section 4.2 can be easily solved by a source-level flow

analysis and a simple source-to-source transformation.

• More backend can be added to target the same source code to more

parallel hardware. The next stage will be adding GPU support. The

same computation object can be mapped to Nvida CUDA or Nvidia

CUB to support GPUs. It will also be interesting to add support for

heterogeneous computing.
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CHAPTER 7

CONCLUSION

From the benchmark results, the TIC framework demonstrates that it is a

feasible solution for programming a parallel machine. The TIC framework

proves that:

• Common benchmark kernels can be constructed from our generalized

computation patterns.

• Programmers can be highly productive in writing kernels with the TIC

framework.

• Template-base static optimization can be used to switch high-level op-

timizations effectively.

• The kernels written in the TIC framework can achieve performance

close to that of the hand-optimized C version.

However, there are limitations to the approach described in this thesis.

Three of the most important limitations are:

• Lack of flow-analysis information from the C++ template limits the

flow-sensitive optimization that can be automatically applied in the

framework.

• Lack of control over low-level code generation causes the framework to

fail to achieve peak performance on benchmarks which require clever

register tiling.

• Lack of compiler support for automatic lambda expression lining might

hurt the performance of more general computation benchmarks.

For benchmarks that do not require low-level optimizations and compli-

cated operators, the kernels written in the TIC framework show a combina-

tion of high performance, good productivity and some potential of portability.
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