
Danese Cooper & Klaas-Jan Stol
with foreword by Tim O’Reilly

Principles and Case Studies

Adopting
InnerSource

Compliments of

http://innersourcecommons.org

Danese Cooper and Klaas-Jan Stol

Adopting InnerSource
Principles and Case Studies

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04183-2

[LSI]

Adopting InnerSource
by Danese Cooper and Klaas-Jan Stol

Copyright © 2018 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online edi‐
tions are also available for most titles (http://oreilly.com/safari). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Justin Billing
Copyeditor: Octal Publishing, Inc. and Charles
Roumeliotis

Proofreader: Jasmine Kwityn
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Melanie Yarbrough

July 2018: First Edition

Revision History for the First Edition
2018-06-15: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Adopting InnerSource, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s
views. While the publisher and the authors have used good faith efforts to ensure that the informa‐
tion and instructions contained in this work are accurate, the publisher and the authors disclaim all
responsibility for errors or omissions, including without limitation responsibility for damages
resulting from the use of or reliance on this work. Use of the information and instructions contained
in this work is at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and PayPal. See our statement of editorial inde‐
pendence.

http://oreilly.com/safari
mailto:corporate@oreilly.com
http://www.oreilly.com/about/editorial_independence.html
http://www.oreilly.com/about/editorial_independence.html

Table of Contents

Foreword. vii

1. The InnerSource Approach to Innovation and Software Development. 1
Old Patterns of Development: Closed and Slow 1
Factors Driving Open Source 4
Proprietary Hierarchies 4
The Open Source Way 6
What Is InnerSource? 9
Why Do Companies Adopt InnerSource? 12
InnerSource Today 15
Why We Wrote This Book 16
Who Should Read This Book 17
How This Book Is Organized 18

2. The Apache Way and InnerSource. 21
Origins of The Apache Way 21
Fundamentals of The Apache Way 22

3. From Corporate Open Source to InnerSource: A Serendipitous
Journey at Bell Laboratories. 29
Background on Internet Protocols for Voice Communication 30
SIP: A Brief Background 32
The Project: The Common SIP Stack (CSS) 34
Reflections, Insights, and Discussion 42
Acknowledgments 45

4. Living in a BIOSphere at Robert Bosch. 47
Why InnerSource 48
Starting the BIOS Journey 48

iii

Establishing and Growing the BIOSphere 49
From BIOS to Social Coding 53
Success Stories 55
Success Factors 57
Challenges 59
Lessons Learned 60
Conclusion 62
Acknowledgments 62

5. Checking Out InnerSource at PayPal. 63
A Little Background 64
Attributes of InnerSource 64
The CheckOut Experiment 69
The Onboarding Experiment 71
Executive Air Cover 72
Meanwhile, in India 73
Beginning Symphony and InnerSource Brand Dilution 74
Initial Symphony Training 75
The Contributing.md File 77
Cadence of Check-Ins 78
Outcomes 80
The Rhythm of InnerSource Work 82
The Future of InnerSource at PayPal 83
Acknowledgments 86

6. Borrowing Open Source Practices at Europace. 87
Looking for New Ways of Organizing 88
Starting the Journey Toward InnerSource 89
Steps Toward InnerSource 93
InnerSource Principles 96
InnerSource Challenges 99
Conclusion and Future Outlook 101
Acknowledgments 102

7. Connecting Teams with InnerSource at Ericsson. 103
The Changing Telecommunications Landscape 103
Why InnerSource? 105
Starting the Community Developed Software Program 106
Selecting Components and Development Models 109
Making Collaborations Happen 112
Pillars of Community-Developed Software 113
Success: The User Interface SDK Framework 115
Lessons Learned 115

iv | Table of Contents

The Future of InnerSource at Ericsson 117
Acknowledgments 117

8. Adopting InnerSource. 119
Comparison of the Case Studies 120
Guidelines for Adopting InnerSource 129
The InnerSource Commons 137

9. Epilogue. 139

Glossary. 141

Table of Contents | v

Foreword

Tim O’Reilly

I’m told that I coined the term “InnerSource” in 2000, and sure enough there’s a
blog post to prove it. I don’t remember writing it. What I do remember is an ear‐
lier conversation, in the summer or fall of 1998, not long after the so-called Open
Source Summit in April of that year, to talk to an IBM team that was thinking of
embracing this new movement.

They were cautious. How might it affect IBM’s business? How would they con‐
tinue to own, control, and profit from their software? What kind of license might
they use to get the benefit of user contribution but still manage and control their
creations? The GNU Public License seemed hostile to business; the Berkeley
Unix and MIT X Window System licenses were permissive but perhaps gave too
much freedom. The just-released Mozilla Public License tried to find a new bal‐
ance between the needs of a corporate owner and a community of developers.
Should they use that or develop their own license?

I was never a big fan of the idea that licenses defined what was most important
about free and Open Source software. I’d begun my career in computing in the
heady days of the Berkeley Software Distribution of Unix, BSD 4.1, and AT&T’s
Version 7. I had seen how Unix, based on the original architecture developed by
Ken Thompson and Dennis Ritchie at Bell Labs, could attract a wide range of
outside contributions from university computer science researchers despite being
owned by AT&T. Many of the features that made the system most valuable had
been developed at UC Berkeley and other universities. It was the architecture of
Unix, not its license, that allowed these contributions to be treated as first-class
components of the system. The system defined a protocol, so to speak, for the
cooperation between programs, a design by which anyone could bring a new
program to the party, and it just worked, as long as it followed that protocol.

I’d then watched as the Internet and its killer application, the World Wide Web,
had followed the same model, defining itself not by license but by the rules of
interoperability and cooperation. I loved Linux, but it seemed a kind of blindness

vii

in Open Source advocates to focus so much on it. Open Source was the native
development methodology of the internet, and the internet was its greatest suc‐
cess story. Network-centric architectures require interoperability and loose cou‐
pling. And the Internet allowed distributed development communities to evolve,
and shifted power from corporations to individuals.

I’d also been steeped in the culture of the Perl programming language, the idea
that “there’s more than one way to do it,” and the sprawling extensibility of
CPAN, the Comprehensive Perl Archive Network, which allowed programmers
to share modules they’d built on top of Perl without ever touching the source
code of the language interpreter itself.

So I was convinced that much of the magic of Open Source was independent of
the license. The things to think about were collaboration, community, and low
barriers to entry for those who wanted to share with each other. And so I told
Dan Frye, Pierre Fricke, and the other attendees at that IBM meeting, that yes,
they could and should release software under Open Source licenses, but if they
weren’t ready to do so, there was no reason that they couldn’t take advantage of
these other elements. Given a large enough pool of customers using the same
software, I told them, there was no reason they couldn’t create a “Gated Open
Source Community.”

For that matter, given a large enough pool of developers inside a company, there
was no reason, I told them, why they couldn’t apply many of the principles and
practices of Open Source within their own walls. That was what later came to be
called InnerSourcing. I defined it at the time as as “helping [companies] to use
Open Source development techniques within the corporation, or with a cluster of
key customers—even if they aren’t ready to take the step all the way to releasing
their software as a public Open Source project.”

Not long afterwards, I heard the first stories of InnerSourcing in the wild. And as
is so often the case, they weren’t planned. In 1998 or 1999, two Microsoft devel‐
opers, Scott Guthrie and Mark Anders, wanted to create a tool that would make it
easier to build data-backed websites. They built a project on their own time over
the Christmas holidays; other Microsoft developers heard about their work and
adopted it, and eventually word reached Bill Gates. When the CEO called the two
into his office, they didn’t know what to expect. In the end, their project became
one of Microsoft’s flagship software offerings, ASP.NET. Twenty years later, Scott
Guthrie heads all software development at Microsoft, and what was once a rene‐
gade InnerSource project is now a major part of Microsoft’s software strategy.

Eric Raymond, the author of The Cathedral and The Bazaar, and one of the first
theorists of the Open Source movement, once coined what he called Linus’ Law,
“Given enough eyeballs, all bugs are shallow.” I propose a corollary, which we
might call Scott’s Law, or The Law of Innersourcing: “Given enough connected

viii | Foreword

developers, all software development emulates the best practices of Open Source
software.”

Foreword | ix

CHAPTER 1

The InnerSource Approach to Innovation
and Software Development

With Andy Oram

InnerSource is a software development strategy rapidly spreading throughout
large corporations—and it is also more. At its essence, InnerSource enables soft‐
ware developers to contribute to the efforts of other teams, fostering transpar‐
ency and openness to contributions from others. But beyond that, InnerSource
represents a collaborative and empowering way of involving employees in mak‐
ing and implementing decisions throughout the corporation. It embodies a phi‐
losophy of human relations, an approach to rewards and motivations, and a
loose, adaptable set of tools and practices.

This book presents case studies at a range of companies to show when and why
InnerSource may be useful to your organization. The case studies candidly dis‐
cuss the difficulties of getting InnerSource projects started, along with the pro‐
gress so far and the benefits or negative fallout. We hope that readers will be
inspired to advocate for InnerSource within their software development groups
and organizations.

InnerSource is an adaptation of Open Source practices to code that remains pro‐
prietary and can be seen only within a single organization, or a small set of col‐
laborating organizations. Thus, InnerSource is a historical development drawing
on the Open Source movement along with other trends in software. This chapter
introduces InnerSource and locates it in the history of software.

Old Patterns of Development: Closed and Slow
Most people still think of the normal software development model as a team
working by itself, communicating with the outside world merely by accepting
lists of requirements and feature requests, then shipping prototypes and final ver‐

1

1 Winston W. Royce, “Managing the Development of Large Software Systems,” Proceedings of IEEE WES‐
CON (August 1970): 1–9. Reprinted in the Proceedings of the International Conference on Software
Engineering, 1987.

sions of the software for testing. Many newer models of development challenge
this norm, specifically the free and open software movement and various Agile
and Lean development strategies such as Scrum, Extreme Programming, and
Kanban.

The closed model is neither as old nor as rigid as usually thought. Early software
developers shared their code. In the first decades of computing, it was hard
enough to get the code working in the first place. Developers saw no commercial
value in the code, or held an academic attitude toward open publication, or just
lacked a business model for licensing it and collecting money. In addition, com‐
panies outsourced much development and every team depended on libraries
from third parties, leading to much frustration and gnashing of teeth because of
mismatches in requirements.

Commercial software—Microsoft being the obvious poster child—became com‐
monplace during the 1970s and 1980s. In response, a conscious free software
movement emerged, codified in Richard Stallman’s GNU Manifesto of 1985. It
formalized code sharing, and the Open Source movement added a recognition
that there was tangible business value to sharing. InnerSource taps into this busi‐
ness value while sharing code just within the walls of a single institution, or a
consortium.

In a parallel historical development, software got bigger and more complex,
eventually crying out for some kind of formal development model. Practitioners
attempted to enforce strict adherence to a model of requirements definition, cod‐
ing, and testing, spawning the movement called “software engineering” whose
historical milestones include a 1968 NATO conference and a 1970 paper by Win‐
ston W. Royce1 listing the rigid order of events in what he derisively termed a
“waterfall model.”

Much derided now, the waterfall model and other accoutrements of software
engineering made sense given the coding constraints of that era. Here are some
reasons that the waterfall model caught on, along with the changes in the envi‐
ronment that render it inappropriate for most software development today (even
where high-risk products such as cars and power plants are concerned):

Coding speed
Early computer languages, although astonishing advances over assembly lan‐
guage, required many lines of code. Modern strategies such as modules and
patterns were slow in coming. Any small change in requirements could add
weeks to the schedule. And loose language definitions, weakly supported by

2 | Chapter 1: The InnerSource Approach to Innovation and Software Development

https://www.gnu.org/gnu/manifesto.en.html

compilers, meant that a typo in a variable could lead to subtle errors requir‐
ing hours of investigation.

Nowadays, common coding activities have been encapsulated so expertly
that one can implement a web server or a machine learning algorithm in a
dozen or so lines of code. Tweaking and updating are routine activities and
are expected.

Testing speed
Coding was not originally the most time-consuming part of development—
testing took that prize. For much of computer history, developers tested their
code by inserting temporary PRINT statements. Submitting code to quality
assurance and developing tests included many manual steps.

Test frameworks, mocking tools, continuous integration, and branch support
in version control systems make testing go much faster. Any change can be
integrated into the project and run through automated tests quickly. The
degree of automation makes test-driven development—where the developer
creates tests in tandem with the code being tested, and strives for complete
coverage—appealing to many organizations. Static and dynamic code check‐
ing also help.

Speed of build and deployment
Old applications were monolithic and might require overnight builds. They
had to be manually installed on physical systems, and any change meant
downtime and lost revenue.

Nowadays, most organizations strive for some form of modularization and
packaging—aided by new tools and practices such as containers and virtuali‐
zation, and infrastructure-as-code—the most recent instantiation of this
trend being microservices. One can make a trivial fix and replace all running
instances without the end users noticing at all.

As you can see, trends in hardware speed, software development, and networking
have made collaboration methods feasible that are suppler than the waterfall
method. Less obviously, they facilitate coding communities and collaborative
development as well, and thus lead to the power of Open Source. The waterfall
method always appealed to managers, sales forces, and customers because it
promised products on supposedly reliable deadlines, but all too often those dead‐
lines proved laughable (a constant theme of the popular Dilbert cartoon, for
instance). Less rigid development methods have proven to be actually more relia‐
ble.

Old Patterns of Development: Closed and Slow | 3

2 Eric S. Raymond, The Cathedral and the Bazaar (Sebastopol: O’Reilly Media, 1999).
3 Yochai Benkler, Wealth of Networks (New Haven: Yale University Press, 2007).

Factors Driving Open Source
The story behind Open Source has often been told, in works ranging from the
popular book The Cathedral and the Bazaar2 to the more academic Wealth of Net‐
works.3 Some communities definitely aired philosophical views that code should
be free like speech, but others sensed early in the movement an even more pow‐
erful incentive: that they could achieve more by working together than by having
each organization set up barriers around their code and figure out a way to mon‐
etize it. Environmental factors that contributed to the tremendous growth of free
and Open Source software included:

Ubiquitous networking
As more of the world joined the internet, and connections got geometrically
faster in the 1990s and 2000s, more and more developers could download
code and submit changes. Collaboration on mailing lists, chat channels, and
other forums also became relatively frictionless.

Faster computers
Even the cheapest laptop could run a GNU/Linux operating system (in fact,
that operating system was more suited to a low-resource environment than
proprietary systems) fully loaded with cost-free development tools.

Improvements in collaboration
Free and Open Source developers took advantage of all common communi‐
cation tools to create worldwide communities. A simple innovation made
communication much more valuable: archives for mailing lists, which pre‐
serve the history of every decision made by a group potentially for decades.
Centralized version control was supplanted by distributed version control,
making it easy to work on a separate branch of common code and create
extensive new features in isolation from the larger community.

Cascading effects of coding
Each advance in languages, libraries, and tools allowed more developers to
pile on to projects and enhance their efficiency. Current Open Source devel‐
opers stand on the shoulders of the giants who came before.

Proprietary Hierarchies
But how can communities compete with hierarchical environments? Critically, a
set of best practices developed over time. Lost in history are the thousands of
poorly run Open Source projects that did not handle their communities well:

4 | Chapter 1: The InnerSource Approach to Innovation and Software Development

4 Rachel Mendelowitz, “Here’s What So Many Leaders Get Wrong about Motivating Employees,” Fortune,
July 3, 2016, http://fortune.com/2016/07/03/leaders-motivate-employees-business/.

projects torn apart by nasty mailing list exchanges, projects whose leaders did not
respond in a timely manner to contributions, projects that developed an inner
sanctum mentality and stopped attracting new developers. Successful Open
Source projects today share a number of healthy behaviors, which translate well
to InnerSource and will be covered in this book.

InnerSource has to compete with hierarchical and closed development models,
and there are certainly traits in those models that appeal to hierarchical organiza‐
tions:

• Managers like to know who is responsible for a given task or deadline, a
mentality associated with the distasteful phrase “one throat to choke.” The
adversarial competitiveness denoted by that phrase contrasts strongly with
the ethos of Open Source and InnerSource. Managers’ comfort with that sit‐
uation is illusory: placing the responsibility on one team leader, or even one
team, does not guarantee that goals will be met.

• Resources are easier to plan and distribute when work is assigned to a single
team with a known set of developers. But this simplicity is also illusory,
because schedules in software development are notoriously unreliable.

• Small, geographically colocated teams can be astonishingly efficient. How‐
ever, they can also lack diversity and develop groupthink. In the long run,
software projects can suffer because end users were not sufficiently repre‐
sented during design decisions, and because the tacit knowledge within the
team gets lost over time, disrupting maintenance.

• If software is developed to be licensed and monetized, it’s tempting to define
the investment and compare it to the expected income. But because of unan‐
ticipated changes of direction, results may be disappointing.

This review of corporate practices leads to a more general look at the research
into knowledge workers, economic motivators, and innovation. Although the lit‐
erature in these areas is huge, we can pick out a few common themes:

• Creative people like to feel in control and empowered to experiment. Inner‐
Source gives them free rein while ensuring their work meets corporate stand‐
ards before going into the product.

• Beyond a basic salary and set of benefits, intrinsic motivations drive more
innovation and participation than extrinsic ones.4 The chance provided by
InnerSource to see one’s idea adopted, and the ability to work directly on a

Proprietary Hierarchies | 5

http://fortune.com/2016/07/03/leaders-motivate-employees-business/

5 David Rock and Heidi Grant, “Why Diverse Teams Are Smarter,” Harvard Business Review, November 4,
2016, https://hbr.org/2016/11/why-diverse-teams-are-smarter.

project that matters, are powerful incentives to positive behavior among con‐
tributors.

• Diverse teams produce more useful products that meet a greater range of
needs.5 This diversity includes demographic considerations (race, nationality,
gender, etc.) as well as diverse viewpoints and experiences. Open Source and
InnerSource maximize diversity, although project managers must con‐
sciously aim for it and take steps to nurture diverse participants.

The Open Source Way
What makes Open Source software development different? Initially, of course,
the difference came from the sheer topology of the teams. Asynchronous collab‐
oration over the internet ran in direct opposition to the then-recommended opti‐
mal way to build software. This sort of peer-based massive collaboration relies on
the complete transparency of both the actual code and the project’s governance.
This transparency is important to several aspects of Open Source: it allows peo‐
ple donating work to see how their donation is governed, it allows self-selection
of tasks and self-organization of developers, and it allows work to be distributed
globally in an asynchronous fashion, constructed holistically.

Open Source also promotes higher quality code, since transparent code and pro‐
cesses open every line up to wider review than is practical within a single propri‐
etary team. This massive peer review has famously given rise to Linus’s law,
coined by Eric Raymond, “given enough eyeballs, all bugs are shallow,” meaning
that defects are fixed more readily in Open Source because more people can read
the code and come up with a broader array of possible fixes. In other words, with
a sufficiently large workforce, there is bound to be someone who knows the solu‐
tion for a given defect. This is not a perfect guarantee, of course. The famous
Heartbleed Bug, which remained in the Open Source OpenSSL security library
for years, showed that subtle issues can be missed by the community.

As work on an Open Source project progresses, a natural meritocracy emerges.
The best contributors are given more responsibility for the running of the
project. They are rewarded for excellent technical contributions, but also for tak‐
ing time to mentor new contributors. Open Source communities are increasingly
paying attention to the tone of mentor interactions, seeking to increase civility to
be as welcoming as possible to the largest pool of contributors. For the same rea‐
son, communities are taking documentation more seriously. Traditionally a sepa‐
rate, labor-intensive effort (and therefore relegated to an afterthought), it now

6 | Chapter 1: The InnerSource Approach to Innovation and Software Development

https://hbr.org/2016/11/why-diverse-teams-are-smarter
http://heartbleed.com/

6 Chris DiBona and Sam Ockman, Open Sources: Voices from the Open Source Revolution (Sebastopol:
O’Reilly Media, 1999).

emerges semi-spontaneously as Open Source projects archive communications
between mentor and mentee. In fact, all project-related communication is collec‐
ted, indexed, and archived, creating de facto documentation that allows rapid
onboarding of new contributors.

Another difference between Open Source and traditional methods of software
development is “mission attachment,” held in common by a majority of the par‐
ticipants. This is partly nurtured by the idealistic philosophy of “free software,”
which pins itself on ensuring “code freedom” so that contributed code is perpetu‐
ally available to the whole community to use, modify, distribute, and deploy.
These “4 Freedoms” first recognized the value of freedom in code, but other con‐
tributions are also recognized. Ideally, nontechnical contributions such as clean‐
ing up documentation count as well in the meritocracy. The 4 Freedoms also
allow contributors to “fork” the project, cloning a complete copy so that the per‐
son initiating the fork can make modifications as desired. This is a failsafe meas‐
ure to protect contributors from misuse of their contributions—they can always
fork and start a new project if they disagree with the direction of the original
project to which they contributed. This is what has happened, for example, to the
OpenOffice.org project, which led to the LibreOffice fork of the project and the
community.

The concept of Enlightened Self-Interest must be introduced to explain the moti‐
vations behind Open Source development. This is the idea that all participants
are ultimately motivated not only by altruism, but also by personal needs to get
something specific done—what Raymond characterized as “scratching an itch.”
Many well-known Open Source projects started out because of the creators’ per‐
sonal “itches”: Larry Wall had to create reports but wasn’t quite happy with the
tools available to him, which included C, Awk, and the Bash shell, and so he cre‐
ated Perl. Linus Torvalds created the Linux kernel simply because no Unix imple‐
mentation was available for his 80386 machine (see Open Sources by O’Reilly6 for
a more detailed history). These motivations to start projects can be personal
needs, but projects may also be driven by other types of motivations, such as
curiosity, the directives of an employer, or the desire to increase personal reputa‐
tion.

Why Does Open Source Development Succeed?
While a detailed explanation of why Open Source development succeeds is
beyond the scope of this chapter, Open Source software development seems to
have found solutions to some of the long-standing challenges in the software
industry: notably developer motivation and timing.

The Open Source Way | 7

7 Tim O’Reilly, “The Open Source Paradigm Shift,” in Perspectives on Free and Open Source Software, eds.
Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani (Cambridge: MIT Press, 2005).

A key challenge of large software development projects is coordination: how can
large Open Source communities deliver complex products such as the Linux
operating system without project plans, requirements documents, and a large
number of managers who would ensure that the necessary work gets done?

The answer is of course not straightforward, but a number of key factors play a
role. For starters, when Linux was first announced, it attracted many other volun‐
teer developers who were also interested in getting a Unix clone on their personal
computers. Developers are motivated for several reasons: they have a sincere
interest, they may use coding as a form of learning (which seemed to be Tor‐
valds’s original motivation), or they simply enjoy contributing. In any case, the
motivation to contribute is reinforced by the sense of achievement engendered
when contributions are adopted and used by others. This level of involvement is
not something that you would typically find on a commercial software develop‐
ment project—hired developers are told what software to develop, and while this
doesn’t mean they can’t enjoy their work, it is unlikely that developers are pas‐
sionate about all the software they are developing.

A second factor that facilitates the implicit coordination found in large projects is
modular design, or what Tim O’Reilly has called the “Architecture of Participa‐
tion.”7 Modularity refers to the level of independence of different subsystems. For
example, the Linux kernel comprises several different subsystems, and further‐
more there is a clear distinction (inherited from Unix) between the kernel and
external drivers that communicate with hardware. Modularity enables a large
number of people to work on different subsystems without getting in each other’s
way. Having good tool support (e.g., configuration management tools and ver‐
sion control systems) is of course important too.

Traditionally software development projects commonly face the famous three-
way tension between delivering high-quality software in a timely fashion and
within budget. Open Source projects tend to deal with this tension in a different
way.

Open Source projects have a strong emphasis on quality, for several reasons.
Open Source projects generally rely on rigorous peer review. And while Open
Source projects increasingly see contributions from firm-employed developers,
many traditional volunteer developers are intrinsically motivated and take pride
in their code—they won’t take shortcuts so that they can deliver more quickly.
Whereas commercial software development projects usually have a delivery date
—either announced to the market, or agreed with a paying customer—Open
Source projects often don’t have a deadline. Because there is no paying customer,
it is far easier to simply delay a release if developers aren’t quite satisfied with the

8 | Chapter 1: The InnerSource Approach to Innovation and Software Development

8 Frederick P. Brooks Jr., “No Silver Bullet – Essence and Accident in Software Engineering,” Proceedings
of the IFIP Tenth World Computing Conference (1986): 1069–1076.

quality, although such delays may affect the project’s credibility if that happens
too often. Indeed, Linus Torvalds has delayed releases of the Linux kernel when
he wasn’t confident the code was sufficiently stable.

Frederick Brooks describes in his famous essay “No Silver Bullet” that adding
more staff to a project that is already late will make it later—this has been coined
Brooks’s law.8 The explanation for this is that adding more people to a project
adds significant communication overhead. The induction of new staff will effec‐
tively delay the current project team in getting the project finished in time. In
Open Source software projects this isn’t so much of an issue, because much of the
discussion and information about design decisions is captured online. Granted,
not all Open Source projects succeed in capturing this well, and when the
amount of information exchange becomes too large, it should be formalized in
well-structured documentation to summarize the essence. But due to the dis‐
persed nature of the community, developers are more independent and forced to
figure things out on their own.

We can now turn to the big question: can we borrow the best practices of Open
Source to solve the challenges of software development in industry? This idea
was suggested about 20 years ago, and is called InnerSource.

What Is InnerSource?
InnerSource is, simply, the use of Open Source principles and practices inside
proprietary organizations. InnerSource empowers individual engineers to con‐
tribute code from within their team to another team in order to speed up the
process of adding functionality (features) or fixing defects. InnerSource also
democratizes development and control over the direction of the project by
encouraging pull requests over feature requests. The traditional development
practice put all decision making and control in the hands of a single team that
maintained the code, who were petitioned by users to add enhancements through
feature requests. In contrast, with Open Source and InnerSource, anyone who
wants to make a change downloads his or her own version of the code through a
pull request (a term popularized by the prevailing code management system Git‐
Hub), adds the desired feature, and submits the code for approval.

Mirroring the Open Source approach, submitted contributions are reviewed by
someone sufficiently knowledgeable to determine whether the submission is
ready to integrate into the master codebase, and to guide the contributor to make
any necessary changes. This process of review and providing guidance is prefera‐
bly done in writing so that the exchange of information can be indexed into a

What Is InnerSource? | 9

9 Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb, “Managing a Corporate Open Source Software
Asset,” Communications of the ACM 53, no. 2 (2010): 155–159, https://doi.org/10.1145/1646353.1646392.

persistent, searchable archive, supporting the desired Open Source attribute of
lazy accretion of actionable documentation.

Companies adopt InnerSource in different ways. Vijay Gurbani and his collea‐
gues9 described a simple taxonomy that distinguished two different modes of
adoption:

Project-specific InnerSource
A dedicated team has responsibility for a particular software asset, typically
something that is a key asset to the business (as opposed to simply a develop‐
ment tool, for example). The dedicated team is funded by other business
units.

Infrastructure-based InnerSource
In this model, the organization provides the necessary infrastructure for
storing and sharing source code and documentation, and to facilitate com‐
munication. Anybody can create a new project, but each project initiator is
responsible for maintaining their projects. This means that the level of sup‐
port that a user can expect will vary greatly.

This taxonomy is useful because it established some basic terminology that we
can use when we discuss InnerSource programs.

It’s also useful to briefly discuss what InnerSource is not. InnerSource is not sim‐
ply adopting GitHub or GitLab within your organization and arguing that all
source code is now transparent. While tooling is important, it’s only an enabler
and not a guarantee for success. Also, InnerSource does not mean paying your
developers to work on Open Source projects: that’s simply sponsoring Open
Source development. When you release the source code you’re working on to the
public with an Open Source license, it’s not InnerSource.

InnerSource is also not a development method like Rapid Application Develop‐
ment (RAD) or Scrum, which defines a number of roles (e.g., Scrum Master),
ceremonies (e.g., the daily standup), and artifacts (e.g., the sprint backlog). No
fixed set of “roles” and “ceremonies” constitute InnerSource.

Instead, InnerSource represents a different philosophy for developing software
in-house, which can complement existing methods such as Scrum. Rather than
simply adopting new tools and practices per se, InnerSource involves changing
the philosophy of working and of leveraging and empowering the developers
within your organization. Because every organization is different, there is no sin‐
gle recipe to adopt InnerSource, and that’s what makes it so hard!

10 | Chapter 1: The InnerSource Approach to Innovation and Software Development

https://doi.org/10.1145/1646353.1646392

10 The term “Inner Source” was coined in a response to Matt Feinstein’s question on O’Reilly’s attitude on
Open Source and OpenGL. The original response is available online. To make the term easier to find
(try searching for “inner source” and you’ll find references that are not software related), we’ve removed
the space in between and adopted “camel case” capitalization.

11 HP’s program is documented in a paper by Jamie Dinkelacker, Pankaj Garg, Rob Miller, and Dean Nel‐
son, “Progressive Open Source,” Proceedings of the 24th International Conference on Software Engineering
(2002): 177–184.

12 Philips’s program is documented in an article by Jacco Wesselius, “The Bazaar Inside the Cathedral:
Business Models for Internal Markets,” IEEE Software 25, no. 3 (2009): 60–66.

13 See Frederick Brooks’s essay, “No Silver Bullet: Essence and Accidents of Software Engineering.”
14 Klaas-Jan Stol, Paris Avgeriou, Muhammad Ali Babar, Yan Lucas, and Brian Fitzgerald, “Key Factors for

Adopting Inner Source,” ACM Transactions on Software Engineering and Methodology 23, no. 2 (2014).

A History of InnerSource
The term “Inner Source” was originally coined by Tim O’Reilly in 2000.10 At the
time, O’Reilly served on the Board of Directors of CollabNet, a company he co-
founded with Apache Software Foundation cofounder Brian Behlendorf and Bill
Portelli in 1999. CollabNet’s mission “is to bring Open Source–style collaborative
development to the software industry as a whole.” As such, CollabNet was the
first company that helped its customers to engage strategically with Open Source
software, and among its first customers were Hewlett-Packard11 and Philips,12

both of which implemented InnerSource programs.

It’s vital to have an appreciation for how important tooling was back in those
days. Although software version control systems were already widely used in
industry in the 1990s, there was a confusing array of systems, both Open Source
and commercial. Among the commercial offerings were ClearCase and Rational,
and Open Source solutions included CVS and Subversion (SVN). (Git’s first
release was in 2005, and GitHub, the company that made Git available to the
masses, was only founded in 2008.) When the first InnerSource programs were
started, the diversity of version control systems was far more prevalent than
today. This variety in tools was, to use Frederick Brooks’s terminology, an “acci‐
dental” complexity of software development rather than an “essential” complex‐
ity.13 Difficulties arising from tooling are not inherent to software development,
but they can represent major challenges to software teams.

Though the term “Inner Source” was coined by a single person, different organi‐
zations that started InnerSource programs in the early 2000s did so independ‐
ently. As such, different organizations used different terms.14 Hewlett-Packard
used an umbrella term “Progressive Open Source” within which “Inner Source”
refers to one approach; the program at Bell Labs has been named “Corporate
Open Source,” and other terms in use included “Internal Open Source” or “Com‐
munity Source,” although those names were also used to describe variants of

What Is InnerSource? | 11

https://bit.ly/2Jfg7Zb
https://en.wikipedia.org/wiki/Brian_Behlendorf

15 Klaas-Jan Stol and Brian Fitzgerald, “Inner Source—Adopting Open Source Development Practices
within Organizations: A Tutorial,” IEEE Software 32, no. 2 (2015): 55–63.

16 Melvin Conway, “How Do Committees Invent?” Datamation 14, no. 4 (April 1968): 28–31.

Open Source practiced publicly by proprietary organizations that were mostly
unsuccessful.

These early visionary individuals, teams, and companies were the first ones to
adopt InnerSource. However, InnerSource did not attract attention from the
wider software industry immediately. Younger companies, particularly ones
founded in the “Internet Age”—Google and Facebook are the archetypal exam‐
ples—were of course more agile and were already familiar with “The Open
Source Way.” Other organizations, however, were not paying attention to this
trend, and so the adoption of the “InnerSource paradigm” was quite limited until
after the triumph of Open Source in the marketplace.

Why Do Companies Adopt InnerSource?
There are many reasons why companies adopt InnerSource.15 Here we discuss
some of the most important ones.

Breaking Down Silos and Bottlenecks
Perhaps the most important motivation to adopt InnerSource is to break down
the silos that inevitably exist in large organizations that have optimized at some
point for specialization or ownership culture. Partly this is explained by Conway’s
law, which states that organizations tend to build systems that are structured
according to the organization’s communication structures.16 Having different
teams take ownership of a specific component with a well-defined interface
makes a lot of sense, as long as the interface is respected by both the implementer
of the component and its users. After an interface is defined, communication
between different teams can be minimized, leading to a high level of specializa‐
tion within those organizational units. The very existence of hierarchy and differ‐
ent organizational units usually leads to an “us versus them” attitude, for several
reasons:

Local optimization
Mid-level managers who are responsible for a team tend to be concerned
mostly with the performance of their team, because ultimately that is consid‐
ered to reflect their performance as managers. This is a clear example of
“local optimization,” rather than optimizing for the company as a whole.
Consequently, there is no direct motivation for these managers to help other
teams.

12 | Chapter 1: The InnerSource Approach to Innovation and Software Development

http://bit.ly/2LQ7kdW

Not invented here
The “not invented here” syndrome seems to be a fixture of the software engi‐
neering profession, to the point that many professionals are suspicious of the
quality and maintainability of any software they didn’t personally write.

Developer incentives
Engineers who have in the past been measured and rewarded solely on their
individual coding skill and speed are often reluctant to spend time reviewing
others’ code.

Developer priesthood
A division into units and teams inevitably leads to a high degree of speciali‐
zation. Engineers who work on their specific product or component have a
deep understanding of their code, including its function, form, glitches, and
shortcomings. They know the rationale for why the software is the way it is.
Outsiders tend to lack that, which may lead to misunderstandings and disa‐
greements.

Perceived job security
Finally, the software engineering industry has long been plagued by practi‐
tioners who believe that hoarding expertise is the only job security.

All of these impediments must be mitigated for InnerSource to effectively reduce
bottlenecks, and to improve collaboration across an organization.

Reuse
An important reason to adopt InnerSource is to increase reuse, which software
engineering researchers and professionals have long considered the Holy Grail of
software engineering. After all, constructing software is a lot faster when you can
reuse already-extant high-quality components developed elsewhere in your orga‐
nization. A key barrier to reuse, of course, is the lack of transparency that simply
leaves developers unaware of other potentially similar efforts within your organi‐
zation. The increased level of transparency that InnerSource provides takes away
at least this barrier. Another issue is that available components tend to have
slightly different use cases, or different features from the ones required in other
teams. Again, the transparency offered by InnerSource can help here, by enabling
and facilitating closer collaboration between a component’s “owner” and its users.
For example, teams might suggest—and help implement—additional features, or
rearchitect an existing component in collaboration with its owner. Sure, this is
easier said than done, and other things will have to be put into place, in particular
organizational commitment at the highest level manifested as time and budget.

Why Do Companies Adopt InnerSource? | 13

17 See the Wikipedia entry on Joy’s law.

Knowledge Sharing and Full Stack Teams
Specialization and ownership culture both drive the creation of silos of knowl‐
edge. Over time, cross-silo knowledge can be lost within an organization, which
can be damaging if you need to quickly mobilize resources to another area of the
stack (onboarding can be difficult). Best practices, such as establishing an effec‐
tive DevOps practice, assume that at least some full-stack or cross-platform
experts exist to take a holistic view when considering sweeping changes. Once
full-stack knowledge has been lost to a specialization and ownership culture, it
can be difficult to stimulate regrowth. InnerSource mentoring and extrinsic
rewards can begin to break down silos and reward cross-stack collaboration.

Innovation
At least one very large organization originally implemented InnerSource to help
break down barriers to innovation. In very regimented organizations, thinking
innovatively may have been intentionally suppressed until it is effectively extin‐
guished. Giving engineers who were previously closely managed a measure of
autonomy, emotional safety, and the sanctions to pursue unorthodox hunches via
InnerSource methods can unleash their innovative creativity in productive ways
while protecting production outcomes through applied mentorship and review.
Sun Microsystems’ Cofounder and Chief Scientist Bill Joy famously had the
insight that “no matter who you are, most of the smartest people work for some‐
one else.”17 This is true within a company, as well, and allowing input from out‐
side your silo can really open your eyes to new possibilities.

Improving Quality
As previously mentioned, the effect of Open Source on the quality of the result‐
ing software has been summarized as Linus’s law, which talks about increasing
the resources brought to bear for code review. But the mere awareness that code
will potentially be reviewed by a large number of strangers has the effect of caus‐
ing us to strive to put our best foot forward, because nobody wants public humil‐
iation. It has been well documented that Open Source developers tend to be more
careful when developing code they will post for the world to see. Another Open
Source maxim, “release [code] early, release often,” means important defects that
could negatively affect an entire project, such as security holes, are generally dis‐
covered and patched much more rapidly than in proprietary settings.

14 | Chapter 1: The InnerSource Approach to Innovation and Software Development

http://bit.ly/2JLGxim

Staff Mobility and Process Standardization
Most InnerSource implementations assume transparent code hosting using a dis‐
tributed development platform such as GitHub Enterprise, Bitbucket, Mercurial,
or the like. That standardization of tooling reaps an inherent benefit of making it
quite a bit easier to onboard new hires or transferred employees. Recruitment
and onboarding are both easier because the development environment and pro‐
cesses, such as the review cycle and merge and deploy protocols, are now much
more standardized within the organization.

InnerSource Today
The role of software has become much more important for many organizations
that have not traditionally developed software. For example, software is trans‐
forming sectors where software did not loom large originally, such as the auto‐
motive sector: the amount of software in cars has risen exponentially in recent
decades, and this trend is likely to continue. So, organizations outside the soft‐
ware industry now also find themselves in a position where they have to deliver
complex and innovative software of high quality and within budget. These
organizations that are new to software are now eagerly looking for new
approaches that can help them overcome the bottlenecks found in traditional
development approaches.

The limited attention for InnerSource changed in recent years. In 2014, one of us
(Danese) was hired by PayPal to head the company’s Open Source programs. She
quickly came to the conclusion that PayPal would benefit greatly from an Inner‐
Source practice. In 2015 she gave an influential keynote at the annual OSCON
conference stating her conclusion that InnerSource would be an important prac‐
tice going forward as more organizations undertake work to modernize their
engineering practices in the direction of Open Source. In that talk, she also
announced the creation of the InnerSource Commons, an industry group that
seeks to bring together like-minded professionals who are interested in imple‐
menting InnerSource.

Since then, we have seen a significant increase in interest and momentum. To
establish the community, we started a Slack channel that now (mid-2018) counts
over 270 individuals representing over 70 different companies—and these num‐
bers are growing fast. Twice a year, the InnerSource Commons community
organizes a Summit during which attendants share their knowledge and experi‐
ences. The community follows the Chatham House Rule, which states:

When a meeting, or part thereof, is held under the Chatham House Rule, partici‐
pants are free to use the information received, but neither the identity nor the
affiliation of the speaker(s), nor that of any other participant, may be revealed.

InnerSource Today | 15

http://bit.ly/2sUIAKG
http://bit.ly/2sUIAKG
http://www.innersourcecommons.org/
http://bit.ly/2JSllKB

18 Erin Bank et al., “InnerSource Patterns for Collaboration,” Proceedings of the 24th Conference on Pattern
Languages of Programs, 2017.

PayPal also sponsored the publication of two booklets with O’Reilly. The first one
is a brief introduction, titled Getting Started with InnerSource, authored by Andy
Oram. The second one, by Silona Bonewald, also currently employed by PayPal,
is titled Understanding the InnerSource Checklist, in which Bonewald presents a
checklist of preconditions that must be in place before organizations can adopt
InnerSource successfully.

A dedicated team within the InnerSource Commons community has also started
to document the various lessons learned and has adopted the concept of “pat‐
terns” to encode this knowledge. Ultimately, our goal is to develop an Inner‐
Source pattern language. The work on distilling patterns is an ongoing activity,
and this “patterns subcommittee” is actively disseminating its work in various
ways, including webinars, videos, and papers.18

Why We Wrote This Book
Our work with the InnerSource Commons community has taught us that there is
broad interest in a collection of case studies that both illuminate the motivations
of organizations on their InnerSource journey and justify experimentation with
InnerSource as a practice. Many individuals have told us they are seeking permis‐
sion to start InnerSource experiments at their places of work, but they need per‐
suasive examples. Others have already begun experimenting but aren’t sure how
to plan for scaling out the practice across the organization or how to measure
success and justify broader adoption. Still others are unsure how to get started.

In order to get InnerSource to flourish inside an organization, you must first
understand what aspects of the existing culture stand in the way of transparent
collaboration and acceptance of contributions from outside a team. Some com‐
mon cultural impediments to InnerSource include (but are not limited to):

• A general fear of change
• The “not invented here” syndrome
• A belief that developers external to a team are less skilled or will submit

defect-ridden code
• A lack of sufficient time or resources to get existing work done
• An unwillingness to engage in mentorship, or lack of knowledge on how to

be a mentor
• Mid-managerial conflict over the team’s charter

16 | Chapter 1: The InnerSource Approach to Innovation and Software Development

http://bit.ly/get-started-innersource
http://bit.ly/2lcwdoS
http://www.oreilly.com/pub/e/3884
http://bit.ly/2JDCxV5

These existing cultural forces will vary per organization, and even per business
unit or team. Identifying and providing extrinsic motivators to change away from
deeply ingrained beliefs and behaviors can be tricky (but necessary).

With so many people and companies interested in this topic, we feel the time is
ripe to present a set of interesting case studies of InnerSource in practice. Because
each case of InnerSource differs from the next, together these cases represent
many different experiences in different contexts. This can be very useful to other
individuals and companies who want to learn what other companies have done.
Furthermore, while each chapter presents a rich description of one specific case
study, we also think that you, the reader, may want to get some support in start‐
ing off in your own organization. So we’ve included a chapter with practical tips
for crafting your first experiment.

Who Should Read This Book
This book targets professionals at all levels. For executive managers, this book
presents convincing evidence (we believe!) that InnerSource is the way to develop
software in the future. Yes, InnerSource adoption will cost resources: you need to
make available some budget to roll out InnerSource and provide support to the
people on the ground. But, we ask you to see this as a long-term investment. No
community has ever ramped up within a short time. Things like learning to col‐
laborate and building trust take time. Additionally, money alone isn’t enough:
InnerSource is not a product or service that you simply purchase; hiring a con‐
sultant alone is not enough. You need to identify and support the “change agents”
that make things happen—these are the champions you’ll need to evangelize and
talk to the naysayers. Remember, ultimately InnerSource is about empowering
people, and Good Things will happen.

For mid-level managers, we hope this book provides inspiring stories that
encourage you to revisit your responsibilities as a team manager. We’re not saying
to take on more responsibilities, but instead to redefine them. Rather than opti‐
mizing for the team you’re responsible for, we’ll try to convince you that support‐
ing your developers to participate in an InnerSource initiative is ultimately a
Good Thing. Obviously, we also recognize that you as a manager will need to get
the means and resources, and therefore we also wrote this book for your bosses.

For developers, we think this book is interesting because it tells the stories of so
many other developers, who also don’t have decision-making powers, and who
increased their productivity, their happiness, and the ability to use their creativ‐
ity. As we’ve already pointed out, InnerSource is about empowering people, and
ultimately this means developers and users of software. The various case studies
in this book illustrate how individual developers were empowered, how they
increased their job satisfaction, and how they overcame the various challenges
that resulted of lacking any decision-making power. For developers, initiating an

Who Should Read This Book | 17

InnerSource program that gets full management support is not trivial, but we
hope the stories in this book provide some inspiration. Furthermore, Inner‐
Source gives companies a taste of the benefits of Open Source, which has become
an essential part of the software engineering ecosystem that can’t be ignored.
InnerSource offers an internal training ground for companies on the way to a full
Open Source investment, either by joining existing Open Source foundations or
by open-sourcing their own assets.

Finally, as the first dedicated book on InnerSource, we believe it will be of interest
to software engineering students and academics who study software development
methods and tools. As we mentioned before, we consider InnerSource to be the
future of software development, and as such we think students should learn
about it, just like they learn about traditional and agile methods. For researchers,
we believe this book is useful because it compiles a series of detailed case studies
of InnerSource.

How This Book Is Organized
This book tells the stories of several companies that have started the journey to
adopt InnerSource. As we mentioned, InnerSource is not a defined development
method or framework, such as Scrum. Instead, it’s a development paradigm, and
each instance is unique and tailored to the specific context of the organization.

InnerSource often refers to the “Open Source development paradigm”—and in
particular we refer to “The Apache Way.” In Chapter 2, Jim Jagielski, cofounder
and director of the Apache Software Foundation (ASF), discusses InnerSource
and introduces “The Apache Way.”

Chapter 3 presents one of the early cases of InnerSource. It describes the Session
Initiation Protocol (SIP) stack project at Bell Laboratories, which was part of
Lucent Technologies at the time the project originated 20 years ago. This chapter,
contributed by the project’s “Benevolent Dictator for Life” (BDFL) Vijay K. Gur‐
bani, and his co-authors James D. Herbsleb and Anita Garvert, describes the ori‐
gins, motivations, and evolution of the project.

In Chapter 4, Georg Grütter, Diogo Fregonese, and Jason Zink present the Inner‐
Source initiative at Robert Bosch GmbH, or “Bosch” for short. Bosch is a large
German company that operates in many different domains, including the auto‐
motive sector and consumer electronics. Bosch started the Bosch Internal Open
Source (BIOS) program around 2009 within a specific R&D setting.

Chapter 5 presents a case at PayPal, which started adopting InnerSource back in
2014 when the company hired Danese Cooper as Director of Open Source. Pay‐
Pal has run a number of InnerSource experiments to evaluate process improve‐
ments. In 2016 PayPal’s InnerSource Team ran a large experiment to determine
whether an InnerSource mandate would work on a core component where the

18 | Chapter 1: The InnerSource Approach to Innovation and Software Development

teams had previously been reluctant to do InnerSource. In that same year, a small
grassroots InnerSource experiment quietly launched and ran itself out of PayPal’s
Chennai office. The two cases confirmed each other’s findings.

In Chapter 6, Isabel Drost-Fromm presents the journey of Europace toward
InnerSource. Europace is a medium-sized company in the financial sector that
was searching for new ways to become more self-organizing.

Chapter 7 presents the case of Ericsson, a global leader in the telecommunica‐
tions domain. John Landy discusses his experiences and lessons learned with set‐
ting up the Community Developed Software (CDS) program. The case presents a
greenfield development project, in which Ericsson adopted a platform-based
architecture, but without the corresponding platform organization. The key rea‐
son for doing so is that platform teams tend to become bottlenecks, as feature
teams make a large number of feature requests.

Finally, after reading these exciting cases, we hope you feel sufficiently inspired to
try InnerSource in your own company. For that reason, we lay out a set of guide‐
lines for adopting InnerSource in Chapter 8. Based on the recurring patterns that
we observe in the case studies, we offer advice about how to choose and structure
your first InnerSource experiment.

Visit Us Online
On this book’s website you’ll find much more information. We’d also very much
like to hear from you—any suggestions, feedback, or comments are welcome. We
hope you enjoy reading this book as much as we enjoyed writing it!

Acknowledgments
This book isn’t just the result of a couple of months of writing. Klaas has conduc‐
ted research in this domain for about 10 years, during which his research has
been kindly supported by the Irish Research Council (under IRCSET grant RS/
2008/134 and New Foundations grants in 2013 and 2014) and Science Founda‐
tion Ireland (grant 15/SIRG/3293 and 13/RC/2094 to Lero—the Irish Software
Research Centre), allowing him to travel across the globe to visit many compa‐
nies for his field research. The insights gained from these field trips have been
foundational for this book.

How This Book Is Organized | 19

http://www.innersourcecommons.org

CHAPTER 2

The Apache Way and InnerSource

With Jim Jagielski

At its core, InnerSource applies the “lessons learned” from successful, healthy
Open Source projects to guide and direct enterprise IT development. Another
way to look at InnerSource is applying the principles and tenets of Open Source
development to internal processes and principles. With this in mind, it’s critical
for those adopting InnerSource to understand the what and how, but even more
importantly the why of those tenets, as well as which particular ones to emulate.
We have found that the best model by far are tenets used by the Apache Software
Foundation (ASF), collectively termed “The Apache Way.”

In a nutshell, The Apache Way can be condensed into what is the unofficial
motto of the ASF: Community Before Code. This does not mean that the code
(or the software project) is unimportant, but rather that secure, innovative,
enterprise-quality, and healthy code depends on the health and vitality of the
community around it. This realization emerged at the origin of the Apache Web
Server project and the Apache Group.

Origins of The Apache Way
Back in 1995, the most popular web server was the NCSA Webserver (HTTPd),
which was written and maintained pretty much exclusively by Rob McCool.
There was a large and growing user community, but no real developer commu‐
nity at all. When Rob left to join Netscape, this left the development of HTTPd
stagnant. Here was a large, incredibly important software project that countless
people and businesses depended on, but that was now no longer actively devel‐
oped or maintained. Out of necessity, as well as self-interested altruism, a small
group of individuals, the Apache Group, started to exchange fixes and improve‐
ments (called “patches”) and started collaborating on a mailing list. Like a phoe‐
nix, the project itself slowly was reborn. Although this rebirth was incredibly

21

http://bit.ly/2LPN0cF

successful, in fact, more successful than we ever anticipated, we realized how
lucky and fortunate we were that we just happened to have the right group of
people, at the right time, to be able to achieve this. We also realized how unlikely
it would be to catch lightning in a bottle a second time. What was clear was that
we wanted to create a development environment that could weather the coming
and going of developers, corporate interests, and other external factors, to ensure
that no one else dependent on that project, individual or company, would ever be
left in a lurch like we were.

The way we accomplished that was to focus on the community around that soft‐
ware project, to make facile collaboration a priority, to encourage a flat hierarchy,
to value consensus, to make unaligned volunteers first-class citizens, and to
maintain an incredibly tight “feedback loop” between users and developers (after
all, those of us who formed the Apache Group were users in the first place, and
became developers by necessity). Basically, our path was a recognition that vol‐
unteers were the life-blood of successful Open Source projects and the source of
its energy, health, and innovation.

This understanding, and the focus on volunteers and contributors as a basis for
measuring and instilling community health, serves as the basis for the main core
values of The Apache Way.

Fundamentals of The Apache Way
Three fundamentals lie at the core of The Apache Way:

• Meritocracy
• Transparency
• Community

Let’s look at each of these in turn.

Meritocracy
In some circles, the phrase “meritocracy” is avoided, due to negative connota‐
tions caused by experiences where it is abused and perverted, restricting diversity
and inclusion instead of expanding them. Because this concept is so important to
The Apache Way, it is crucial that it be clearly understood.

Within Apache, meritocracy means that the more you do, the more merit you
gain, and the more merit you gain, the more you are able to do. You are recog‐
nized and rewarded for your contributions, independent and separate from other
factors. In other words, merit is based on the actions and contributions of the
person, and not who or “what” the person is.

22 | Chapter 2: The Apache Way and InnerSource

We want members of our community to actively participate, not just passively
observe. By contributing in some way—code, documentation, fundraising, publi‐
city—they gain an understanding of the project’s needs and challenges, and
become more committed to it as individuals or organizations. If our project was
a restaurant we wouldn’t just let people review its recipes; we’d invite them into
the kitchen. This is central not only to the goal of meritocracy, but to the others
as well.

This definition of merit, and meritocracy, allows for an extremely flat, level, and
nonhierarchical playing field for all contributors. Within the ASF, and within all
Apache projects, peers have “proven” themselves and thus are worthy of, and
given, respect and trust. Also important in this concept is that once earned and
awarded, merit does not “expire.” When looking back at the origins of The
Apache Way, when all contributions were provided by volunteers doing work “on
the side,” one can see how vital this was. After all, life happens and it was not
unheard of that a contributor would step away for months at a time, only to
return as their time freed up. If they were required to “regain merit,” it would dis‐
courage them from returning. The principle is part of the larger goal of making
the bar as low as possible for involvement within a project.

Another aspect of meritocracy is that, when done correctly as within Apache, it
avoids a self-sustaining oligarchy, where those with power and merit maintain
and consolidate it. By creating an environment and culture where new contribu‐
tions and new contributors are encouraged and welcomed, and where a gover‐
nance structure makes it clear what benefits and rewards they gain via their
contributions, the community itself will thrive and grow. Key in this is that no
one’s “vote” or opinion is more valued, or weighted more heavily, than someone
else’s. Whether one has been a member of the project for six months or six years,
their vote and their voice carries the same weight.

Treating newcomers and marginal participants equal to established members is a
principle that might not seem productive, but it has proven its importance again
and again. Its basis is the recognition that contributors will come and go. If, when
joining a project, someone knows that they cannot “compete” with someone who
has been there longer, they really have no incentive to join. People want a say in
the projects they join; they want to exercise some influence on the direction of
the project. If potential influence is squashed simply due to being “new” in the
project, why bother in the first place? This risk of repelling contributors is ele‐
gantly avoided by Apache’s very flat peer system.

The final value of meritocracy is that it provides the encouragement and incen‐
tive to get involved. It sends a clear signal to the external community and ecosys‐
tem that contributions are not only welcomed and wanted, but actually
rewarded. It is the core path in that incredibly important feedback loop between
users and developers/contributors.

Fundamentals of The Apache Way | 23

Transparency
To describe how the Apache Group approaches this fundamental, let’s first con‐
sider software development in a typical enterprise environment. A roadmap is
created by marketing and management, which defines what features and capabil‐
ities the software must have. Next that roadmap is presented to the software
development team, which consists of individuals who are assigned work and
tasks toward the development effort. Discussion is limited to that specific team,
usually via face-to-face meetings or the normal “hallway/water-cooler” conversa‐
tions, with little, if any, of it documented. Very little collaboration is done within
the team, and certainly not external to the team. In effect, we have the standard
siloed, self-contained, and insular software development scheme so prevalent
even today.

Now compare this with how software development is done via community-based
Open Source projects. The roadmaps are not as detailed or stringent, and the cre‐
ation and adjustment of the roadmap are done by the developers and users of the
project, usually via mailing lists or wikis. The “team” is geographically and cultur‐
ally diverse, spread out over time zones and locations that make face-to-face
meetings impossible. The people on the “team,” rather than being assigned, are
there by choice, a self-selected group of individuals who are also self-organized.
Areas of responsibility are fluid, with contributors working on areas that interest
them. Instead of working on the project because it is their “job,” they ideally work
on it because they are personally invested at an emotional level with the project
(and its community). Even in situations where the person is paid for their work,
there is a fundamental difference between someone who contributes because they
are paid to do so (a “hired gun,” so to speak, or, alternatively, a “line cook”), and
one who is lucky enough to be paid for something they would do on their own
free time, and frequently still do (“a chef ”). We have noticed that people working
on Open Source projects on company time often are volunteers or at least
empowered to choose the project to which they contribute, not people assigned
by their managers. This shows a high level of identification with the project.

Comparing the top-down and Open Source scenarios just shown, it looks as
though the “Open Source Way” would never succeed, and yet today it is clear that
it is the optimal way to do software development. But this is possible only when
transparency within and beyond the project is valued. In fact, it is vital.

Transparency, of course, is basic to Open Source because the source code must be
available. In other words, the code itself is transparent, in that it is visible to all.
But when doing software development, that is only one small facet of true trans‐
parency. Not only the code but the decisions must be visible: the decision-making
process itself, the discussions and conversations—all of this must be transparent.

Transparency is important because it prevents a culture and environment that
disenfranchises those not currently in the group; it enables those “outside” to

24 | Chapter 2: The Apache Way and InnerSource

have a clear and accurate insider’s view, which fosters a development community
that people feel empowered to join and contribute to. Transparency is required
for collaboration not only within the team, but with other teams as well, which
drives innovation and reuse. Transparency ensures that all discussions and points
of view are represented, with everyone having the ability to understand and ques‐
tion them. Transparency, almost more than anything, drives the required culture
inherent within InnerSource, one which breaks down the wall between “us” and
“them.”

Within Apache, this focus on transparency exhibits itself in several ways. First is
the reliance on mailing lists as the primary method of communication. Mailing
lists are preferred first and foremost because they are asynchronous, being
unbiased in regard to location and time zone. Mailing lists are also self-
documenting (all Apache mailing lists are archived), which ensures that the
“tribal knowledge” held within the current group is shared and known univer‐
sally. It provides a view into development history and the reasoning behind deci‐
sions. Mailing lists are also useful for their ability to thread conversations and
topics, making it easier to follow items of interest and avoid others.

Another way transparency is encouraged is via the public nature of the code
itself. When contributors know that their contributions will be seen “by the
whole world,” the tendency is to put one’s best effort into it, which results in bet‐
ter code. This also has two other benefits. The first is letting contributors learn
from others. The ability to mentor and be mentored is feasible only if one’s work
product is visible to a wider group.

The second benefit is maintaining the crucial personal attachment between a
contributor and their contribution. The importance of keeping a history of who
contributed what is unfortunately seldom recognized. Open Source recognizes
and acknowledges that developers are really artists, whose medium of choice is
code. As with all artists, they want to hone their skills as well as share their craft,
and the Open Source movement provides the environment to do so. In most typ‐
ical software shops, the developers write their code and then “throw it over the
wall” to QA or production; that breaks the connection between the artist and the
art, to the detriment of all. Many practical disadvantages can be observed: devel‐
opers lose control and insight into their code and how it is actually used in pro‐
duction; QA and testing are done by those unfamiliar with the code and its
requirements; and developers lack “responsibility” for the code they produce—in
many cases they don’t get the 3 a.m. beeper call when their code breaks in pro‐
duction, for example. Transparency—the ability for the contributor to point to
their contribution, open and visible to all—maintains that vital connection.

Finally, transparency eases the concerns over the provenance of code inherent in
all software development for licensing reasons.

Fundamentals of The Apache Way | 25

Community
The third leg of The Apache Way is community. Although the other two could
also be bundled as subitems under community, this aspect is somewhat deeper. In
The Apache Way, community could almost be defined as the entire ecosystem
around a software project. It is a recognition that not only is the community
larger than the developer community, or even the developer and user commu‐
nity, but encompasses the wider world. Software today impacts everybody, even
people (and other creatures) who don’t directly use that software.

In essence, our fundamental of community concerns a shared culture that all
members of that community understand and promote. The genesis of that cul‐
ture, and the model of that community, must spring from the contributors.

Within Apache projects, we do several things to reinforce that. I mentioned ear‐
lier the concept of collaboration, but it is easy to minimize its meaning, or see it
as simply “working together.” Collaboration, as it relates to community, is about
seeing the individual merit of each person and seeing each person as a vital part
of the project itself. It means ensuring an environment, both in culture and in
infrastructure, where each person can influence the project and can drive certain
tasks or efforts, while still engaging the other community members as well.

One rule of thumb we use toward this goal is to discourage large, substantial
“code dumps” into Apache projects. A code dump, for example, could take place
if I were to refactor the code or create a new feature completely independently,
and then, once complete, commit that to the codebase. In that scenario, I’m not
really working with the rest of the contributors, I’m simply doing my own thing
and adding stuff as the mood strikes. At Apache, what I would do is create a
thread on the development mailing list describing what I was considering, maybe
commit a preliminary work-in-progress (or, alternatively, create a public branch
of that work-in-progress), and encourage others to work on it with me. That is
true collaboration. That is a true community.

Another major part of community is driving consensus. In an environment such
as Apache, no single person decides what feature to add, or what patches and
contributions to accept. Instead, it is a community decision, which implies that
there needs to be consensus on that decision. Within Apache we use voting to
gauge this consensus; usually someone will propose something and ask for a vote,
at which point people will post email messages saying +1 (“sounds good to me; I
support it”), +0 (“no opinion”), −0 (“I don’t like it, but don’t want to stop it from
happening”), or −1 (“I am against this and don’t think we should do this”). Now
you may expect that what we do is tally up the votes and let the majority vote
“win.” But you would be wrong. In general, if someone, even one person, votes a
−1, we step back and continue to discuss the issue. We work on resolving disa‐
greements and ensuring consensus within the group. Again, this is how a com‐
munity should be run.

26 | Chapter 2: The Apache Way and InnerSource

The Apache Way serves as the base model for InnerSource. Understanding The
Apache Way, and using it to guide one’s InnerSource strategy, has been the basis
for successful InnerSource journeys for countless companies. The next several
chapters present several of these journeys.

Fundamentals of The Apache Way | 27

CHAPTER 3

From Corporate Open Source to
InnerSource: A Serendipitous

Journey at Bell Laboratories

Vijay K. Gurbani, James D. Herbsleb, and Anita Garvert

Year, place founded: 1996, Murray Hill, New Jersey (USA)
Area(s) of business: Telecommunications equipment manufacturer (software
and hardware)
Revenues: US$9.44 billion (2005)
Offices: Global, headquartered in New Jersey (USA)
Number of employees worldwide: 30,500 (2006)
Number of R&D engineers: 10,000+
Year of InnerSource adoption: 1998

Although the radical disruption posed in the 1990s by internet voice calls may
now be forgotten (everyone is now used to crossing continents through Skype or
similar services), the innovation known as Voice over IP (VoIP) was a major
extension of the internet’s capabilities. On an economic level, VoIP challenged
the incumbent telecom companies and their business model of high settlement
costs to carry voice traffic across local and international boundaries. These settle‐
ment costs were, in turn, passed to the people making long-distance and overseas
calls. In this environment arose an internet multimedia signaling protocol that
enabled everyday internet users to bypass the telecom service providers for an
essentially cost-free means to communicate with anyone in the world. This chap‐
ter traces the development methodology that, in anticipation of InnerSource,

29

1 Henning Schulzrinne, Eve Schooler, Jonathan Rosenberg, and Mark J. Handley, “SIP: Session Initiation
Protocol,” IETF RFC 2543 (1999), http://bit.ly/2JD1v76.

2 Susan R. Harris and Elise Gerich, “Retiring the NSFNET Backbone Service,” ConneXions 10, no. 4 (April
1996), http://bit.ly/2JES7zG.

3 3GPP is a collaboration between telecommunications service providers and vendors to develop a stand‐
ardized, globally acceptable specification for the third-generation (3G) mobile phone network. The 3G
mobile phone network was envisioned to use internet as the transport; voice would be packetized and
delivered as data packets end to end. We are currently in the 4G era, with 5G looming ahead as a stan‐
dard by 2020.

enabled VoIP at Lucent Technologies, Inc., and its research arm, Bell Laborato‐
ries.

Background on Internet Protocols for Voice
Communication
In March 1999, the Internet Engineering Task Force (IETF) released a multime‐
dia signaling protocol called Session Initiation Protocol (SIP).1 The standardiza‐
tion of SIP in 1999 coincided with the burgeoning use of the internet. By 1995,
the last NSFNET backbone service was dismantled, and the internet as we know
it today—composed of multiple backbones operated by different service provid‐
ers and linked at inter-exchange points—started to take shape.2 One of the most
promising technologies of the time was Voice over IP (VoIP). The dominant pro‐
tocol for VoIP in the mid-1990s was ITU-T’s H.323. SIP appeared as a light‐
weight alternative to H.323 and soon gained mindshare and marketshare when
the 3rd Generation Partnership Project (3GPP)3 chose it as the signaling protocol
for the IP Multimedia Subsystem (IMS) architecture in November 2000.

The choice of SIP as the signaling protocol for 3GPP/IMS certainly gave the pro‐
tocol a boost in visibility, but the choice also implied that SIP, originally designed
as a lightweight, peer-to-peer rendezvous protocol, would over time morph into a
more carrier-grade protocol that supported centralized control of telecommuni‐
cation services. Over the upcoming decade, telecom companies—equipment ven‐
dors such as Lucent Technologies (and its descendant, Alcatel-Lucent), Ericsson,
Avaya, as well as service providers such as AT&T, Verizon, Sprint, Vodafone,
France Telecom—gradually adopted SIP, jettisoning previous protocols like
H.323. While incumbent protocols like H.323 were more complex than SIP was
at the time, there was another reason for gravitating toward SIP: it was a tradi‐
tional internet-style protocol with text (UTF-8) encoding, and therefore its use fit
in well with the pantheon of other internet-style protocols like the World Wide
Web and email.

In this chapter, we discuss our work on a SIP server written by Vijay Gurbani,
one of the authors of this chapter, and the effort that propelled the SIP server

30 | Chapter 3: From Corporate Open Source to InnerSource: A Serendipitous Journey at Bell Laboratories

http://bit.ly/2JD1v76
http://bit.ly/2JES7zG

4 Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb, “Managing a Corporate Open Source Software
Asset,” Communications of the ACM 53, no. 2 (2010): 155–159.

5 Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb, “A Case Study of a Corporate Open Source
Development Model,” ACM International Conference on Software Engineering (2006): 472–481.

6 Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb, “A Case Study of Open Source Tools and Prac‐
tices in a Commercial Setting,” 5th ACM workshop on Open Source Software Engineering (2005): 1–6.

from a standalone asset used by one division in a large company (Lucent Tech‐
nologies, Inc.) to a shared resource used by the entire corporation. We trace the
evolution of the project that lasted eight years (1998–2006), and spanned the
merger of Lucent Technologies, Inc., and Alcatel to form a new corporation,
Alcatel-Lucent.

Vijay started the work on the SIP server as part of a research mandate on how the
relationship between the two prevalent networks at that time—the incumbent
circuit-switched network that provided the ubiquitous dial tone in people’s
homes and the new internet that was fast becoming equally ubiquitous—could
lead to novel services. We describe the work as it proceeded in research divisions
of the corporation, including Bell Laboratories, the R&D arm of Lucent Technol‐
ogies, Inc., and later, Alcatel-Lucent, and highlight its contributions to what is
now known as InnerSource. The asset that we created was intrinsic to the core
business of the company, which was to manufacture telecommunication devices
(gateways, firewall devices, base stations, application servers) and foster innova‐
tive services over the newly emerging VoIP network. The telecommunication
evolution toward IP was inexorably tied to SIP, as it was the canonical protocol
spoken between the network devices and software applications. In our work, we
characterized this phenomenon as Corporate Open Source and established a
taxonomy of projects under it.4,5 Our taxonomy (briefly explained in Chapter 1)
classified the corporate use of Open Source in two classifications: a lightweight
infrastructure-based InnerSource and a more rigorous project-specific Inner‐
Source. In this chapter, we further describe the latter to examine lessons learned
and insights from our work.

As documented by the chapters in this book, InnerSource is used widely within
corporations. However, we believe that our work, as described in this chapter and
related literature,456 represents an early experiment in using large-scale Inner‐
Sourcing to effectively create a software platform that was endemic to the core
business of the company (telecommunications signaling) and intimately tied to
the product strategy of the company. Many of the products that the company
sold, and continues to sell, use the assets created as part of this InnerSource
experiment.

Background on Internet Protocols for Voice Communication | 31

SIP: A Brief Background
Here we provide a very brief background on SIP to help readers appreciate some
of the intricacies and complexities of the protocol that can clarify decisions made
at a later stage of our effort.

SIP is a multimedia signaling protocol. Its job is to find the intended recipient
with whom a multimedia session is to be established by routing a SIP request
over a SIP network. More generally, one can think of SIP as the underlying proto‐
col when a mobile phone subscriber dials a number and reaches his or her
intended recipient; the protocol interprets the digits that constitute the dialed
number and routes the session request to the recipient. The session established is
not limited to a voice session, and neither are phone numbers the only way to
indicate a session recipient. SIP is versatile enough to set up video, gaming, and
instant messaging sessions. Besides phone numbers, it can route requests to
email-like identifiers such as “sip:vkg@acm.org,” called SIP URIs (Uniform
Resource Identifiers). In fact, most people use SIP already even if they are not
explicitly aware of this: when they dial mobile phones, or phones in an enterprise
setting, or VoIP home phones, the network uses SIP to route multimedia session
requests. SIP is also used in Apple’s Facetime application and serves as a signaling
protocol for the Jitsi application from Atlassian enterprise productivity software.

The SIP network is composed of the following key roles, each requiring a com‐
plete implementation of a SIP stack:

SIP user agents (UAs)
A user agent is a SIP endpoint, i.e., it is the artifact that a human user inter‐
acts with to set up a session, receive notification of an incoming session, or
tear down an existing session. Examples of SIP user agents are a mobile
phone and a VoIP application.

SIP registrar
A SIP registrar is a network server that stores a mapping from a SIP URI to
an IP address where the recipient UA can be found.

SIP proxy
A SIP proxy is a network server that aids in the routing of SIP messages.
Under normal circumstances, a SIP UA indicates interest in setting up a ses‐
sion to its nearest proxy server. The proxy server then routes the request
downstream to the next proxy server responsible for the recipient’s address
of record. A SIP proxy can be logically viewed as a conjoined UA server and
a client. As a server it receives requests from an upstream client, and as a cli‐
ent it sends requests to a downstream server.

32 | Chapter 3: From Corporate Open Source to InnerSource: A Serendipitous Journey at Bell Laboratories

mailto:sip:vkg@acm.org

SIP redirect server
A SIP redirect server is a SIP UA that redirects incoming session requests to
an alternate set of URIs.

SIP back-to-back user agent (B2BUA)
A SIP B2BUA is a conjoined UA client (can initiate session requests) and UA
server (can accept, or reject, or redirect session requests). B2BUAs are used
in service provider networks to implement certain centralized services. The
difference between SIP proxies and B2BUAs is that the latter maintain
detailed session state that the former does not; a B2BUA may also be privy to
the media stream that a proxy is normally not concerned with.

A SIP session is established through a three-way acknowledgment similar to that
used by TCP. It starts when a UA client sends a request called an INVITE. The
INVITE request is routed from the UA client to its nearest proxy, and from there
the request is routed over the SIP network to the proxy responsible for the recipi‐
ent’s domain. Each intermediary SIP server that handles the request will subse‐
quently be in the path of the response. When the request reaches the recipient’s
domain, the proxy consults the SIP registrar responsible for the domain and for‐
wards the request to the recipient UA server. The server optionally issues a series
of 100-class responses that are known as provisional responses because they
attempt to set up a session. The provisional response is followed by exactly one
final response, which (similar to other internet protocols such as HTTP and
SMTP) can be chosen from the classes 200 through 600. The final response is
routed over the same set of SIP intermediaries that the request traversed to get to
the UA server. Upon receiving the final response, the UA client sends an ACK
request, thereby finishing the three-way SIP session setup handshake. Other SIP
requests (like BYE and REGISTER) do not require an ACK. This grouping—
sending an INVITE request, receiving one or more provisional responses fol‐
lowed by a final response, and then sending an ACK—constitutes a SIP transac‐
tion. (A non-INVITE request will not have an ACK as part of its transaction.)
Every SIP entity described requires a SIP transaction layer to handle the protocol
machinery that sends out requests and responses, performs retransmissions, and
so on.

The transaction layer is, essentially, the heart of SIP processing. Every SIP entity
has one, and every SIP entity’s transaction layer behaves differently depending on
its role in the SIP ecosystem. A SIP UA client’s transaction layer is responsible for
routing requests to the UA server and matching incoming responses to outstand‐
ing requests. A SIP UA server’s transaction layer must be prepared to handle
requests that arrive over one of the multiple transports supported by SIP: UDP,
TCP, TLS, DTLS, and SCTP. It must also send provisional and final responses to
the outstanding requests. A proxy’s transaction layer is more complex because it
accepts requests as a UA server and routes those requests toward the intended
UA server while acting as a UA client. In SIP, a proxy may fork an incoming

SIP: A Brief Background | 33

7 Schulzrinne et al., “SIP: Session Initiation Protocol.”
8 Eve Schooler, Jonathan Rosenberg, Henning Schulzrinne, Alan Johnston, Gonzalo Camarillo, Jon Peter‐

son, Robert Sparks, and Mark J. Handley, “SIP: Session Initiation Protocol,” IETF RFC 3261 (2002),
http://bit.ly/2yaZNnU.

9 IETF’s guiding credo is “rough consensus and running code;” practically speaking, this means that any‐
one writing an IETF protocol specification has all the rights and privileges to seek consensus on chang‐
ing the protocol behavior if he or she can technically demonstrate that a portion of the protocol does not
work as expected, or the portion can be improved and he or she can quantify that improvement in a
technically unambiguous manner.

request to multiple downstream branches, so a proxy’s transaction layer must be
prepared to match incoming responses and ACK requests to the right branch.
SIP transaction handling can get arbitrarily complex given the rules of SIP pro‐
cessing and support for multiple transports.

The Project: The Common SIP Stack (CSS)
Bell Lab’s SIP implementation project lasted for a period of eight years, from
1998–2006, and proceeded in three phases, as described in the following subsec‐
tions.

Phase 1 (1998–2000): The Foundational Years
In 1998, SIP was not yet a standard. It was proceeding through the process to
become a standard in the Internet Engineering Task Force (IETF), the main
standards body for protocols that run on the internet. The IETF process defines a
series of intermediate protocol documents called Internet-Drafts (I-Ds), which
are successively refined until a critical mass is reached for the I-D to become a
standard document called Request for Comment (RFC).

Vijay’s home R&D department was, at the time, exploring the interplay between
this new protocol and the rest of the traditional telephone infrastructure. Thus,
he started to write the code that would eventually lead to a standards-compliant
SIP proxy server and a SIP registrar. Vijay attended SIP working group IETF
meetings, where the protocol was successively refined. He participated in the 4th,
5th, and 6th SIP bakeoffs (see the sidebar “SIP Bakeoffs” on page 35) held in
April 2000, August 2000, and December 2000, respectively. By 1999, SIP had
become an RFC,7 although work on the iterative IETF model of refining the pro‐
tocol continued until a second SIP RFC,8 which was released in 2002 and is still
in force. Because of Vijay’s sustained participation in the IETF and the iterative
nature of protocol development in the IETF, the SIP code benefited greatly from
the insights and experience gained by developing protocols in the consensus-
based approach epitomized by the IETF.9 By the end of 2000, Vijay had produced
an RFC-compliant SIP proxy server that interoperated with other vendor

34 | Chapter 3: From Corporate Open Source to InnerSource: A Serendipitous Journey at Bell Laboratories

http://bit.ly/2yaZNnU

10 The need for other vendors to interoperate their assets with a standards-compliant SIP server was so
acute that Vijay ran the SIP proxy server on the DMZ of the company’s network so external vendors
could use his server to test their implementation’s interoperability with the specification.

implementations, and in fact, was used to find bugs in many vendor implementa‐
tions.10

SIP Bakeoffs
IETF organized a series of bakeoffs, or interoperability events, where implement‐
ers brought their SIP assets and tested them against each other. Bugs in imple‐
mentations were fixed in real time. The interoperability test suite consisted of
both simple (three-way SIP handshake) and complex (forking, response aggrega‐
tion) SIP operations. The bakeoff allowed the IETF to focus on problematic areas
with the protocol that could be better specified, or even completely replaced by
an alternative, when the next revision of the I-D came out. The IETF maintains a
list of issues found at each SIP bakeoff.

At this time, the reach of the SIP assets developed by Vijay was mostly limited to
his home business division; ideas were crafted around the SIP proxy server and
subsequently productized, but the source code was mostly available only within
Vijay’s department. He was the primary developer working on the SIP codebase
during Phase 1, with the home department providing the partial time of 1–2
additional developers to work with him toward the end of Phase 1.

With the burgeoning acceptance of SIP by 2000, Vijay started to contemplate
sharing the SIP code widely within the company. Two conditions in the company
and the larger environment prompted his decision: first, his management was
supportive of Open Source in general, including the need to share the codebase.
Second, as SIP became the mandatory signaling protocol in 3GPP, it became the
lifeblood of the various products being sold by the company (at that time, Lucent
Technologies). Given that the telecommunications ecosystem was steadily mov‐
ing toward using SIP as the core signaling protocol, it was evident that most
telecommunication equipment would use it in some form: line cards would use
SIP, telephony gateways would use SIP, as would phones and even software VoIP
applications.

The stage was thus set for Phase 2.

Phase 2 (2001–2003): Opportunistic Partnering
During this phase, the SIP code started to be shared widely and found its way
into the critical path of projects such that a more organized approach would be

The Project: The Common SIP Stack (CSS) | 35

https://www.sipit.net/SIPitSummaries

needed (Phase 3). But before we go into Phase 3, several consequential steps
occurred in Phase 2, which we describe here.

First, the code started to be shared widely by Vijay with the rest of the company.
A website was established from where the technical community could download
pre-compiled binaries of the SIP server and registrar, or they could download the
source code. The source code was written to be portable across the Linux operat‐
ing system and Solaris. The only requirement that Vijay imposed on the product
groups and individual researchers for using the code was that they feed back the
bug fixes to him as well as any new features developed using the source code as
the base, a provision similar to the well-known GNU GPL. The code started to
benefit in three very important ways:

Linus’s law
“Given enough eyeballs, all bugs are shallow.” This ensured that the code was
peer reviewed and tested by other researchers and developers.

Contribution of experts
The code was already architected to execute on multiple processors to meet
the needs of concurrency (using the thread pool software design pattern) and
scalability (using the dispatcher software design pattern); ideas on making
these better started trickling in. The code started to benefit from the collec‐
tive wisdom of the deep R&D culture prevalent in the company, especially
the tips, techniques, and strategies that permeated the company with respect
to telecommunications signaling. For example, developers across the com‐
pany who were experts in performance would offer heuristics and tricks on
using atomic instructions for certain operations to help with concurrency. In
one instance, a researcher offered insights into high-performance parsing
strategies as SIP is computationally expensive to parse. Developers and
researchers versed in security would offer insights on better techniques for
the cryptographic hashing algorithms used in SIP digest authentication. Yet
other developers contributed an asynchronous approach to Domain Name
Service (DNS) queries, so that a thread did not block for a DNS response to
arrive.

Enhanced code portability to heterogeneous platforms
The code was ported to other platforms beyond Linux and Solaris; for
instance, developers ported the code to the Windows operating system and
contributed the changes to the mainline effort.

Second, and perhaps just as important as the first step, was that the ratification of
SIP by 3GPP as the mandatory signaling protocol drove the business divisions to
seek a SIP stack upon which to build their products. Consequently, Vijay and his
management started to reach out to the business divisions to acclimate them to
the SIP asset, and to share the experience gained by contributing to the core pro‐
tocol development in the IETF and attending the bakeoffs. With Vijay becoming

36 | Chapter 3: From Corporate Open Source to InnerSource: A Serendipitous Journey at Bell Laboratories

11 Refactoring of the code was done before, albeit in a limited manner. Because all SIP entities need to
parse SIP messages, an early change request was to create a standalone SIP parser library. This library
was subsequently used by many projects and assets in Lucent Technologies, including the 5ESS Digital
Switch and the Alcatel-Lucent OmniSwitch 9900 Wireless Network Guardian.

the de facto “SIP expert” in the company, different business divisions started to
use the source code developed by him.

Requests started to trickle in for establishing a framework approach to the source
code. As a SIP proxy, the transaction layer was embedded in the behavior of the
proxy. Consequently, the code was refactored11 to separate the logical behavior of
a SIP entity (proxy, registrar, etc.) from the transactional handling required by
the entity. Because all SIP entities operate on the notion of a transaction, the code
was refactored to extract a transaction library called siptrans that handled all the
transaction-related complexities, including forking and heterogeneous transport
support. siptrans retained the concurrency, scalability, and security features that
were put into the codebase earlier, but added an event-driven model where the
framework would raise an event when a certain message arrived at the transac‐
tion layer. The application writer would register a C function callback, which
would be invoked by siptrans to service the event. With siptrans, all a new project
or user that wanted to use SIP had to do was to implement the logical behavior of
the SIP entity using the transaction library.

Third, official change requests from product groups started to arrive; while Vijay
provided support for interested users and product groups as they came in, the
assets had organically grown and dispersed within the company to an extent that
siptrans became a critical path for many businesses. These product groups sought
organized support as they integrated the code into their development environ‐
ment and sold products based on it.

Phase 3 (2004–2006): Corporate Open Source
By this time, the SIP assets were feature-rich and mature. The SIP stack con‐
tained many features and additions being standardized by IETF. The code had, by
now, been taken to three additional SIP bakeoffs: 7th (March 2001), 9th (Decem‐
ber 2001), and 11th (October 2002). By the 11th bakeoff, Vijay felt that the utility
of participating in them decreased based on the metric of number of changes
required in the base SIP stack to be compliant; there simply weren’t many
changes required anymore because the core of siptrans was stable in terms of pro‐
tocol conformance.

The Common SIP Stack group
Meanwhile, the various projects that had used siptrans continued to contribute
the changes back to the master source. Because the project had matured, the

The Project: The Common SIP Stack (CSS) | 37

12 Gurbani et al., “Managing a Corporate Open Source Software Asset.”
13 Gurbani et al., “A Case Study of a Corporate Open Source Development Model.”
14 Gurbani et al., “A Case Study of Open Source Tools and Practices.”

changes being contributed now were more than software patches; instead, entire
features were being added to the SIP stack. In addition, other product groups
wanted to use the SIP assets but were hesitant to invest in the integration of the
source code in their development environment without considerable support
from the base SIP team, which consisted of Vijay and 1 to 2 developers helping
out on an ad hoc basis. The need for organized support led to the creation of a
group that would coordinate the code drops to the different organizations and
projects and provide support for these groups to start using the shared asset. This
group was called the Common SIP Stack (CSS) group and was headed by Anita
(another author of this chapter), working in conjunction with Vijay. At the same
time, Vijay and Anita started an academic collaboration with James Herbsleb (the
second author of this chapter) to document how the asset was being used across
the corporation, and more importantly, to understand how we applied traditional
Open Source development techniques and tools to a corporate environment.121314

The CSS had two goals:

• Maintain an independent and common source code repository such that all
projects take their deliverable from CSS.

• Evangelize the technology and the implementation by creating awareness of
the resource within the company.

To do these things, the division coordinating SIP assembled a core team and cre‐
ated a SIP Center of Excellence (COE), which was envisioned as a one-stop shop
for SIP assets in the company. The SIP COE was a company-central website from
which other product groups and projects within the company could obtain infor‐
mation on the shared asset and instructions on how to download, compile, and
execute the source code. Furthermore, it had a release schedule for the upcoming
version of the SIP stack, as well as links to bug reports and developers assigned to
each bug.

The core team
The core team consisted of three individuals in anchor roles and a dynamic pop‐
ulation of developers, a quality assurance team, and trusted lieutenants as
described next. The three anchor roles were composed of the product manager
(and liaison, a role played by Anita), a chief architect and benevolent dictator (a
role played by Vijay), and a project manager who was responsible for release
schedules and feature arbitrage.

38 | Chapter 3: From Corporate Open Source to InnerSource: A Serendipitous Journey at Bell Laboratories

The primary responsibility of evangelizing the product fell on the product man‐
ager and the chief architect; evangelization of the technology was a multipronged
affair. The product manager coordinated with the product groups that wanted to
adopt the code in order to convince them of the utility of using an in-home, best-
of-breed SIP asset owned by the company. A primary issue here was whether a
product group would help defray the costs of developing some new feature that
was specifically needed by that group. The defrayal could be through in-kind
contribution (by lending a developer to the CSS to code, integrate, and test the
feature) or through some monetary contribution. All such interactions were han‐
dled by the product manager.

The chief architect and benevolent dictator helped evangelize the asset by focus‐
ing on the technical contributions of the asset compared to third-party SIP
stacks, many of which the chief architect had encountered as part of the SIP
bakeoffs. The chief architect also made a presentation to the senior leadership
team of the company to convince them of the advantages of having a homegrown
SIP asset, namely:

• A feature-rich, standards-compliant server developed by in-house experts
knowledgeable in signaling, security, scalability, and reliability

• No licensing encumbrances
• No dependency on a third-party vendor’s release schedule, and thereby more

control on planning and releasing products
• Strategic advantage in being at the forefront of developing and deploying the

protocol

The presentation was quite successful, because in February 2006, an email mes‐
sage went out from the then president of Bell Laboratories, Alcatel-Lucent to the
R&D community of the company asking that each product group first evaluate
the internal SIP asset before requisitioning a third-party SIP stack. The chief
architect also established communication channels with the company’s supply-
chain management (SCM) that allowed SCM to redirect third-party SIP stack
requisition requests to the SIP COE.

Trusted lieutenants
Besides evangelization, the chief architect was involved in two other important
tasks: working with trusted lieutenants to add new features in the code, and
architecting the SIP code such that it served multiple constituencies.

The chief architect worked closely with a set of trusted lieutenants, individual
developers who spearheaded nontrivial features in the codebase. For example,
one new feature that was added in the code had to do with signaling compression
(sigcomp). The process of sigcomp compressed the signaling messages at the

The Project: The Common SIP Stack (CSS) | 39

15 Klaas-Jan Stol, Paris Avgeriou, Muhammad Ali Babar, Yan Lucas, and Brian Fitzgerald, “Key Factors for
Adopting Inner Source,” ACM Transactions on Software Engineering and Methodology 23, no. 2 (2014).

16 Jonathan D. Rosenberg, “A Hitchhiker’s Guide to the Session Initiation Protocol (SIP),” RFC 5411 (Feb‐
ruary 2009).

17 Service providers are the companies that (e.g., AT&T, Sprint, Vodafone, etc.) provide wireless network
service to the users.

sender side and decompressed them on the receiver side. The product group that
wanted this feature contributed a developer to the CSS who worked closely with
the chief architect to seamlessly engineer the compression and decompression in
the appropriate threads that received and transmitted the messages.

Another example involved a trusted lieutenant for high-performance SIP pars‐
ing. This phenomenon of key developers that rise through a meritocracy to
become responsible for substantial portions of the software has been observed in
both Open Source and InnerSource projects.15 In our project, it exhibited itself
on multiple occasions with an interesting outcome: some of the developers who
were volunteered by their home product group to the CSS to finish a feature rose
to become trusted lieutenants within the project and expressed interests in stay‐
ing on in the CSS project even after the feature was completed.

By this point in its trajectory, SIP as a protocol was evolving rapidly as new
extensions were being added into the protocol by IETF and 3GPP; between the
issuance of RFC 3261 in 2002 and the end of Phase 3, more than 80 extensions
were proposed to the protocol.16 The products built on the SIP stack were targe‐
ted mostly to the national (and international) service providers,17 who were inter‐
ested in the 3GPP extensions being added to the protocol. With the acceptance of
SIP for use by 3GPP, the protocol morphed from an inherent peer-to-peer ren‐
dezvous protocol to a carrier-grade telecommunication signaling protocol that
supported centralized control of telecommunication services. Individual
researchers and a few product groups were, instead, keen on vanilla RFC3261 SIP
assets (i.e., not encumbered by 3GPP extensions).

An immediate consequence of this was that the codebase had to be modular and
interfaces had to be well defined, such that 3GPP extensions could be added in
without perturbing the mainline RFC3261 behavior of the protocol. Further‐
more, these extensions, once added, were not used uniformly by all product
groups. Depending on the specific SIP role (user agent, proxy, B2BUA) that a
product group would be developing into products, certain extensions would need
to be pulled in while others left out. Thus, architecting the system to make it
modular, agile, and applicable to both constituencies was an early requirement.

40 | Chapter 3: From Corporate Open Source to InnerSource: A Serendipitous Journey at Bell Laboratories

A growing community
In this phase, the size of the development community around the SIP asset
increased dramatically, with 30 developers and testers working on the asset. As
the asset became more widely used, it became apparent that certain roles were
needed to ensure a smooth delivery of the codebase from the CSS to an individ‐
ual product group:

• Construction, verification, and load bring-up engineers who worked directly
with the product group to provide support for release management tasks.

• A release advocate to ensure that the code changes for all features were sub‐
mitted on time, and to keep track of all business division–specific impacts
for the particular release.

• Delivery advocates, assigned to each business division that intended on using
the common asset but was new to the concept of InnerSource. They helped
in the surprisingly difficult task of build integration of the SIP assets into the
infrastructure used by the business division.

• A feature advocate to see a particular feature to completion.

The delivery advocate played a crucial role: he or she served as a bridge between
the CSS and the specific product group. The delivery advocate was assigned to
the product group to ensure that the SIP asset could be integrated into the spe‐
cific tools, processes, collected lore, and compilation dependencies of the product
group. Furthermore, the delivery advocate worked with the particular product
group to ensure that its contributions to the common asset were assimilated in a
manner conducive to the architecture of the common asset. The delivery advo‐
cate was the subject matter expert in load building of the common asset and had
to understand the requirements and business infrastructure of the product group
to successfully integrate the common asset into the processes of the product
group.

A member of the core team was also assigned as feature advocate to shepherd a
particular feature to completion. In this role, the feature advocate approves
design documents, performs code inspections, and ensures that the change aligns
with the overall software architecture. While the delivery advocate handled the
load building and integration issues, the feature advocate worked closely with the
product group to specify the particular feature of interest to the product group.
Often, the feature advocate would work closely with the developers of the prod‐
uct group to specify and implement the new feature in a manner consistent with
the modular architecture of the common asset. We believe that this pattern of
assigning specific roles for an InnerSource project that is intimately tied to a
product strategy of the company will endure as more corporations use Inner‐
Source. All but nontrivial InnerSource projects will require the core team to act
as shepherds to foster the adoption and integration of the common asset within a

The Project: The Common SIP Stack (CSS) | 41

product group, leaving the product group freer to focus on its specific business
needs.

The roles of release, delivery, and feature advocates rotated among the developers
working in CSS to allow them a breadth of experience managing a software
release life cycle. On a cursory look, it appears that these roles are associated
more with traditional software development than the agile, lightweight, and
process-free methodology for developing Open Source software. However, as we
argue in just a moment, these roles were essential for our InnerSource project to
succeed.

Reflections, Insights, and Discussion
Our work was an early experiment of a large-scale InnerSource project that
exhibits one crucial difference from other InnerSource projects. At the time we
were conducting our experiment, early concepts of InnerSourcing were being
used by other corporations but in a limited fashion: their visibility and effect
were limited to a project or a department. The software assets we created, by con‐
trast, were intimately tied to the product strategy of the company.

This reality led to an important insight from our work: for an InnerSource soft‐
ware asset that is tied to the product strategy of a company, it does not suffice to
simply hand a product group an archive file with instructions to compile and
install the source code. The processes for work assignment, feature prioritization,
and product deliverable planning are optimized within that product group to
match its business structure. Furthermore, different product groups have specific
affinities for build- and bug-reporting tools and source code control systems. All
of this makes it infeasible to simply “toss the source code over the wall” and
expect that a product group will integrate it into their environment without any
support. The roles of delivery and feature advocates evolved primarily to deal
with the complexity of differing expectations and varied tool sets used by product
groups.

Advertising and Encouragement
The chief architect and the product manager should always be on the forefront of
ensuring that the common assets are known widely within the company. This can
be accomplished by establishing alliances with SCM and educating the sales and
marketing teams on the benefit of having a best-of-breed in-house software asset.
Beyond that, another insight from our work was the need for a top-down
approach to help foster the use of the common asset. During Phase 1 and 2,
Vijay’s department leadership team encouraged the sharing of the asset within—
and even outside—the department. During Phase 3, such encouragement arrived
from the senior leadership team of the company in the form of an email message
by the then president of Bell Laboratories. Without such momentum and encour‐

42 | Chapter 3: From Corporate Open Source to InnerSource: A Serendipitous Journey at Bell Laboratories

agement, common assets will have limited impacts. The technical staff of a cor‐
poration can create common assets and ensure that they are the best-of-breed
(the bottom-up approach), but at some point, an inflection will be required from
the top to elevate these projects within the company.

Establishing alliances with SCM and garnering top-down encouragement is
admittedly easier to do when the common asset is tied to the product strategy of
the company, but even if that turns out not to be the case, department-wide or
product-group wide sponsorship and championing is essential for the asset to
succeed.

The SIP Asset: By the Numbers
We conclude this section with a brief objective look at the numbers behind the
project. Figure 3-1 shows the software release frequency by the year, starting
from 2000–2001, when the project entered Phase 2. The number of releases
accelerated during Phase 3 as there were many developers doing active and paral‐
lel development to the software while delivering it to multiple business divisions.

Figure 3-1. Software release frequency

Figure 3-2 shows the number of unique downloads during each phase—we con‐
sider only the first time a new project or business division downloaded the soft‐
ware, with no counting of subsequent downloads by the same project or business
unit. Here, Phase 2 witnessed the most downloads: 87. Phase 3 witnessed about
half the number of downloads (40). This could be attributed to the elevation of
the software from being downloaded by individuals to being used primarily on a
project-wide basis by each business division.

Reflections, Insights, and Discussion | 43

18 Gurbani et al., “A Case Study of a Corporate Open Source Development Model.”

Figure 3-2. Unique software downloads

Figure 3-3 shows the evolution of the codebase across the phases in terms of nor‐
malized lines of code. We define normalized lines of code as the subset of the
source code tree that is required to compile the software base completely. Specifi‐
cally, this count does not include comments in the code, nor does it include all
the support software that was built in parallel to test the functionality of the
server.18

Figure 3-3. Normalized lines of code

44 | Chapter 3: From Corporate Open Source to InnerSource: A Serendipitous Journey at Bell Laboratories

19 Maximilian Capraro and Dirk Riehle, “Inner Source Definition, Benefits, and Challenges,” ACM Com‐
put. Surv. 49, no. 4 (2016): 1–36.

20 Gurbani et al., “A Case Study of Open Source Tools and Practices.”
21 Gurbani et al., “Managing a Corporate Open Source Software Asset.”

The top curve in Figure 3-3 corresponds to the increase in the size of the code
across the phases; by and large, it has a positive slope reflecting the constant
addition of new functionality. The curve at the bottom of the figure tracks the
changes in the lines of code (the delta) as the software progressed. The largest
positive slope of the delta is between April 20, 2000, and November 1, 2001,
which constitutes the formative stage of the software during which the asset was
evolving to serve a larger set of audiences, including various business divisions.

Looking Back
With the passage of time, it is gratifying to reflect that our work has proved to be
foundational for the larger InnerSource community19 in three ways: first, it
served as one of the initial detailed and successful case studies of InnerSource,20

second, it presented the first known taxonomy of classifying InnerSource
projects as project-based or infrastructure-based (see Chapter 1), and finally, it
identified a set of roles to formalize an InnerSource core team.21

Our success is due to many factors, some that we controlled and others that acted
as controlling influences on us. Certainly, we were lucky to be at the cusp of a
technology (internet telephony and VoIP) that was poised to extend its reach as
networks became faster and far more pervasive. However, luck alone does not
account for the success we had with our work in creating a shared software asset
and the associated artifacts like the SIP COE, whose main objective was to propa‐
gate and evangelize the software in various business divisions of the company.
Business divisions in a large corporation are almost autonomous entities with
their own budget, vision, headcount, and development methodologies. The asset
we created was deemed fundamental to the operation of many business divisions
within a company whose primary output was to manufacture communication
products that used a canonical, standards-compliant communication protocol.
To effectively do so, there was simply an advantage to nurturing core expertise
across the company that allowed it to create and leverage a best-of-breed, inter‐
nally developed SIP stack.

Acknowledgments
Vijay would like to thank Warren Montgomery and Jack Kozik for providing a
department where sharing of code and serendipitous experimentation was the
norm, the absence of which would have limited the success of the project. The

Acknowledgments | 45

authors also thank the many contributors to the project, including developers
and testers and all others who collectively ensured the success of the project. The
authors gratefully acknowledge support from NSF grants 1546393, 1633083, the
Alfred P. Sloan Foundation, and the Google Open Source Program Office.

46 | Chapter 3: From Corporate Open Source to InnerSource: A Serendipitous Journey at Bell Laboratories

CHAPTER 4

Living in a BIOSphere at Robert Bosch

With Georg Grütter, Diogo Fregonese, and Jason Zink

Year, place founded: 1886, Stuttgart, Germany
Area(s) of business: Automotive, consumer goods, industry technology,
energy and buildings
Revenues: ca. €78.1 billion (2017)
Offices: 440 subsidiaries in 60 countries, 125 R&D locations
Number of employees worldwide: 402,000
Number of software engineers: 20,000
Year of InnerSource adoption: 2009

Robert Bosch GmbH is a large corporation active in areas ranging from mobility
and industrial solutions to energy and building technology and consumer goods.
Like any true startup, Bosch was founded in a garage; it all began in Stuttgart,
Germany, in 1886. Since then, Bosch has grown to over 400,000 employees, called
“associates,” who are distributed across 120 research and development offices
spanning five continents. Due to the extremely distributed nature of the com‐
pany, Bosch, like any other distributed organization, faces challenges in achieving
collaboration across business units (often called “silos”), across different loca‐
tions, and across different time zones. For such a large company to remain suc‐
cessful, it is essential to facilitate and improve collaboration. In pursuit of that
goal, two associates in corporate research who were interested in free and Open
Source software started playing with the idea that the Open Source development
model could address many of the issues associated with distributed development.
And so the seed for the Bosch Internal Open Source (BIOS) initiative was plan‐
ted.

47

Why InnerSource
Being a large organization, the company owns many assets such as buildings and
machines, but what is far more important is the knowledge base that the com‐
pany has built up over the years: sharing this knowledge among its associates is
key for the company to innovate and continue to prosper. Like any company,
Bosch continuously aims to improve its processes to achieve better efficiency.
The BIOS initiative fit well with that goal. The company saw a number of benefits
of the Open Source development model, and hoped to achieve these through the
BIOS initiative:

• InnerSource helps to increase the efficiency of distributed software develop‐
ment, by fostering collaboration across different business units, and to
increase knowledge sharing.

• InnerSource offers an internal training ground for staff to learn how to par‐
ticipate in Open Source communities, which is becoming important for any
software organization.

• InnerSource as a modern approach to software development helps to attract
talented software developers. Bosch is moving to become an Internet of
Things company, and as such it depends on being able to hire new develop‐
ers.

Further benefits were discovered as the BIOS project succeeded. In particular, we
found that developers were more innovative because they could develop software
for other teams without requiring approval and resources from those teams’
managers.

Starting the BIOS Journey
Like many other large companies that are distributed across the globe, Bosch has
experienced the common challenges caused by geographic and time distances,
which can make software development processes quite inefficient. The stories of
several hugely successful Open Source projects—the Linux kernel being a prime
example—which mastered the challenge of distribution did not go unnoticed.
These successes inspired a few associates to study how Bosch could benefit from
the lessons learned in Open Source software development, not just internally but
with the ultimate goal of making Bosch a successful player in the Open Source
arena itself. At the time, Bosch didn’t have any expertise or experience with
engaging in existing Open Source projects and communities, or starting new
ones. Instead, they started a number of other Open Source–inspired initiatives,
including a wiki to share knowledge, an issue tracker, and an internal research
project which, among other things, explored how software development within
Bosch could benefit from adopting Open Source development practices: the

48 | Chapter 4: Living in a BIOSphere at Robert Bosch

Bosch Internal Open Source (BIOS) initiative. The prospect of increasing the
efficiency of distributed software development was what convinced management
to support this initiative.

The BIOS initiative was started in 2009 and has evolved since then. We can iden‐
tify roughly two main phases.

Establishing and Growing the BIOSphere
The first phase started with the official sponsorship of the BIOS initiative by the
company’s executive management in 2009. In this phase, the BIOS initiative was
positioned as an “experiment,” and was put under the stewardship of Corporate
Research, who were in charge of the overall research project. As such, they man‐
aged the budget and bore final responsibility. The initial experiment started very
small, with the specific goal to evaluate whether the application of the Open
Source development paradigm could help overcome the challenges of distributed
development, and in particular, help to overcome any bottlenecks to efficiency.
For the first years, up to the end of 2015, “entry” of new communities was guar‐
ded by a formal review committee. The number of communities it could approve
was limited by the committee’s budget for funding community leaders and con‐
tributors.

This first experiment booked a number of successes (which we will describe),
eventually leading to an extension in 2012 that provided another three years of
funding for the BIOS initiative under the same conditions. The original question
as to whether Open Source development practices could be leveraged within
Bosch was answered positively, so the program left the research stage. The initia‐
tive’s stewardship changed from Corporate Research to the Corporate Engineer‐
ing Department as a result.

BIOS Values
The BIOS initiative was originally set up as a bubble within the company, a “safe
space” in which to apply and experiment with the Open Source working model.
We called this safe space the “BIOSphere.” Rather than focusing on Open Source
tools and technologies, the main focus was on re-creating the culture that under‐
pins Open Source development. Within BIOS, the culture is based on five values:

Openness
We make it easy for any associate to join and contribute to a BIOS commu‐
nity. We lower the barriers for entry into BIOS communities as much as we
can.

Transparency
We aim to be radically transparent and share our work products, our com‐
munication, and our decision making with all associates in the company. So,

Establishing and Growing the BIOSphere | 49

while openness is about getting people in, transparency is about being sure
that all product and process artifacts are accessible.

Voluntariness
The decision to join and contribute to a BIOS community is left to each asso‐
ciate. Associates should work within BIOS because they are intrinsically
motivated, not because their manager told them so.

Self-determination
Associates are free to choose what to work on, which tools and processes to
use, and when they work on the projects.

Meritocracy
Power is vested in BIOS project members based solely on their merits, that is,
based on the quality and quantity of contributions made.

These values stood in stark contrast with how Bosch ran other projects at the
time. It was quite obvious to us that this would engender quite a bit of friction
and risk undermining the “safe space.” In order to protect the bubble, we created
a protective layer around it by introducing two mechanisms that were instru‐
mental for the success that BIOS eventually enjoyed: the BIOS Review Commit‐
tee and the BIOS Governance Office (BGO).

BIOS Review Committee
The first mechanism was what we called the Review Committee, which comprised
vice presidents of the engineering business units. This was the interface between
the pilot BIOS communities and management. It served as a gatekeeper to the
BIOSphere in terms of which communities would be a part of it, thereby giving
managers a constructive way to influence what would happen within the bubble
while avoiding micromanagement. The Review Committee also made manage‐
ment support for the BIOS initiative official and thereby provided the necessary
executive air cover.

Any Bosch associate was able to propose a new community for the BIOSphere.
The Review Committee would meet twice per year. One of these meetings was
used to review and approve (or decline) new community proposals; the other
meeting would be used solely to review active communities. Proposed communi‐
ties are evaluated based on a set of clearly defined criteria—the “BIOSness crite‐
ria”—so as to ensure that accepted communities contribute to the aim of the
BIOS initiative:

• A proposed community must have a clearly defined vision and mission in
line with the overall mission of the BIOS initiative. This served two main
purposes: first, it ensured that the community goals were aligned with
Bosch’s overall goals and strategy, and second, it ensured that the BIOSphere

50 | Chapter 4: Living in a BIOSphere at Robert Bosch

would be used only for communities that helped the BIOS initiative in its ini‐
tial mission. (The initial mission was to evaluate the suitability and effective‐
ness of Open Source practices in the confines of the corporation; the mission
evolved as the benefits of InnerSource became apparent.) We especially
examined whether the community’s topic was attractive for a large enough
group of associates to increase the chances of actually receiving voluntary
contributions.

• The community must have a full-time community leader so as to ensure that
there was someone who would try to build a community and inspire others
in the company to join. Having a clearly identified community leader would
also help ensure the community would be viable and prevent hosting “zom‐
bie” communities that would simply take up resources but not contribute to
the goals of BIOS.

• The proposed community must adhere to the five BIOS values described ear‐
lier.

• The community must be geographically distributed. Because the remit of the
BIOS initiative was to evaluate how the Open Source development paradigm
could help improve collaboration across locations, it was important to ensure
that the space created for this purpose would be used with that aim in mind,
rather than providing a playground for just any project.

• The community must be cross-departmental. Similar to the previous crite‐
rion, the aim of BIOS was to stimulate cross-departmental collaboration, and
thus BIOSphere resources should be reserved for those communities that
aim to achieve that.

The Review Committee also had the option to retire (or “sunset”) a community,
but that happened only once during the six-year period that the Review Commit‐
tee was active, and in that particular case, the community itself chose to retire
due to a lack of participation.

BIOS Governance Office
The second mechanism to keep BIOS on track was the BIOS Governance Office
(BGO), which provided a legal framework within the organization and developed
the ground rules for the BIOSphere, including the entry criteria discussed earlier.
The BGO was responsible for the BIOS license, procurement of hardware and
software, and contractings between communities and contributors wherever they
were needed. The BGO also tackled organizational tasks, such as organization of
Review Committee meetings, coordinating the overall communication between
the various stakeholders (such as Bosch management and the community’s lead‐
ers and developers), managing budgets, and documenting and maintaining a
body of knowledge about BIOS. Finally, the BGO supported developers who were
applying for a new community by helping them develop a community vision that

Establishing and Growing the BIOSphere | 51

was aligned with the BIOSness criteria and, once approved, supporting them
with building and evolving their respective communities.

The initiative had an annual budget of about 1.5 million euro, which was used to
fund community leaders and contracted contributors. A small portion of it was
used to buy hardware and software, specifically when it was not in the standard
product catalog at the time. Such technology included development boards such
as Raspberry Pis or BeagleBones, smartphones, smartwatches, and other gadgets.
Because this was completely within control of the BIOSphere and purchases
wouldn’t have to go through standard processes, such purchases could be done
much more quickly. All BGO tasks were handled by only a single person. Thanks
to the BGO, the administrative overhead for developers was minimal, which
allowed them to focus their limited time on development. There is a parallel here
to Open Source projects; while many community members focus on contributing
code, it is not uncommon for some members to support the community by look‐
ing after administrative work.

Attracting Contributors
The vast majority of developers working within business units are allocated to
one or more projects, and as such their time is completely planned, with virtually
no “slack time.” In other words, normal developers tend not to have any time to
do anything else beyond the work assigned by their managers within their teams.
This also means that a proposed community, which would necessarily include a
community leader (as one of the acceptance criteria) and perhaps also some
developers from one or more business units, could find it difficult to get develop‐
ers committed. The BIOS Governance Office could use its funding to reimburse
a business unit for the engineer’s time, effectively buying out the developer for
10, 20, and in some cases even 50 percent of their time. BIOS community leaders
were funded 100 percent by the BGO. Because the BIOS budget was corporate
money rather than money from a specific business unit, those bought-out devel‐
opers would enjoy a great deal of independence—in other words, those develop‐
ers would not be expected to serve their business unit, and instead would have
complete freedom to self-direct.

Any developer time buyout and reimbursement arrangement with a business
unit was supported by a formal contract. Formal contracts are a traditional
mechanism for organizations that managers recognize, so this facilitated a
smooth process for managers to sign off on those. While reimbursement of
developer time can help convince a manager to let an engineer spend time in the
BIOSphere, a more compelling reason is if the business unit stands to benefit
from the community work directly—for example, by being able to improve their
internal processes or productize it.

52 | Chapter 4: Living in a BIOSphere at Robert Bosch

All communities in the BIOSphere publish their work products under a special‐
ized BIOS license, which protects all BIOSphere developers from any liability
claims. The BIOS License (BIOSL) was created by the BGO based on existing
Open Source licenses, and later improved by the central legal department. The
license clarifies what developers and business units can do with the software,
what they cannot do, and what they must do. For example, it prescribes that all
assets created by any BIOS community must be available to all business units
within our company. This means that a business unit that did not contribute in
any way to a BIOS community would still be able to “free-ride” and incorporate
its assets into their products. Ultimately, a business unit is responsible for ensur‐
ing compliance, such as ensuring that intellectual property is protected or that
OSS license obligations are met, thereby relieving the communities of this
responsibility. This means, for example, that business units cannot publish any
source code from BIOS communities outside of Bosch, and business units
remain liable for their products (which includes any warranty claims), even if the
product uses any BIOS assets. In effect, business units must follow the same pro‐
cedures with BIOS software as they would for Open Source software components
in such areas as licensing and accounting.

From BIOS to Social Coding
After the first six years, the BIOS initiative saw a number of changes, which we
characterize as Phase 2. Before 2016, the BIOSphere was guarded by the Review
Committee mentioned earlier and facilitated and funded through the BGO. At
the end of 2015, a consensus formed in top-level management that BIOS was
mature enough to continue without both, so they decided to dissolve both the
Review Committee and the BGO. Effectively, this removed the “protective layer”
around the BIOSphere. With the closing of the BGO, we also lost funding for the
community leaders, who subsequently were not able to continue dedicating
themselves completely to their respective communities anymore. On the bright
side, without the Review Committee, everybody could now start a BIOS commu‐
nity without having to wait for and go through a formal vetting process.

Having experienced the value that BIOS brought to the organization firsthand
and fearing that the lack of organizational support for BIOS would endanger
what we had built, a group of former BIOS community leaders and the BIOS
governance officer started a new bottom-up initiative to further drive the adop‐
tion of BIOS. After much lobbying with top-level management we eventually
established the Social Coding initiative. The goals of this initiative are:

Changing the norm
Drive the cultural change toward a more open organization in which the
BIOS way of working will become the norm, rather than the exception.

From BIOS to Social Coding | 53

Establishing infrastructure
Provide a platform for our coders to collaborate across divisional bound‐
aries.

Offering organizational support
Help the organization use that platform and implement the new culture.

BIOS did not prescribe the use of any specific tools, following the principle of
self-determination, but after a couple of years a consensus emerged that using a
single collaboration platform would be beneficial. We started to use Stash and
eventually migrated to Bitbucket, when the Social Coding initiative was estab‐
lished. Our main reason for using Stash and later Bitbucket was that Bosch had
already heavily invested in the Atlassian tools suite.

Access to the platform was provided completely free of charge to any individual
and department, unlike the standard infrastructure for which departments were
charged monthly fees. By subsidizing the platform, we made sure that people
who wanted to start a new community could do so at no cost. This meant that
developers didn’t have to ask their department managers for permission to get
involved.

To convince business units that are hesitant to “open up,” and to build a critical
mass of developers, the platform now also allows “traditional” projects that were
not open to the rest of the company—that is, non-InnerSource projects. Ulti‐
mately, we hope that those projects will convert to a true BIOS community by
way of exposure to the new culture and by promoting existing BIOS communi‐
ties as the “Gold Standard” and a role model for collaboration within Bosch.

Finally, and unlike many other companies, we didn’t require projects or com‐
munities to use our platform. Instead, we opted to make it an offer to everybody
to use at their discretion, because we think this is more in line with our values,
especially self-determination.

Sustaining Social Coding
The year 2018 saw another change in the funding of the initiative. Both the BIOS
and Social Coding initiatives were funded with corporate money, which kept the
accounting overhead to a minimum. Beginning in 2018, the Social Coding initia‐
tive has to finance itself with business unit money. While we were successful in
collecting enough funding for the Social Coding team by way of an internal
crowdfunding campaign, the effort for running that campaign, and subsequently
for the necessary internal accounting, turned out to be prohibitively high. This is
why we decided to take the idea of community one step further, and push for
replacing the central Social Coding team with a decentralized community of
Social Coding advocates beginning in 2019. Every business unit that would like
to hold a stake in (and influence the evolution of) Social Coding and the accom‐

54 | Chapter 4: Living in a BIOSphere at Robert Bosch

panying infrastructure will be encouraged to provide capacity to at least one
Social Coding advocate to represent the business unit in the community. It
remains to be seen whether that approach to sustaining Social Coding will be
successful.

Success Stories
BIOS and Social Coding led to a number of success stories. Here we describe
some of these.

Widespread Adoption
Within the time span of the first experiment and its extension (a total of six
years), 11 communities were accepted within the BIOSphere, involving a total of
300 developers from 15 business units in 11 countries across three continents. As
the BIOS initiative evolved into the Social Coding initiative, the number of users
on our platform has increased from 300 to almost 8,000 in the past two years and
is continuing to grow constantly. We now facilitate collaboration of developers in
more than 150 business units in 28 countries. The total number of projects grew
to over 600, almost one third of which are organized as BIOS communities—that
is, they are accessible by all Bosch associates. The remaining two thirds of
projects on the platform, however, are closed projects, accessible only by a spe‐
cific business unit or project. Despite this, many business units that are running
closed projects have adopted elements of the Open Source style working models
that Social Coding promotes for their product development as well. Interestingly,
the ratio of open versus closed projects on our platform approaches that of Git‐
Hub.

Diverse Ecosystem of Communities
The topics of communities varies greatly, ranging from production and engineer‐
ing tools, to technology and product demonstrators, libraries and APIs, and new
products. We develop throwaway prototypes and demonstrators very quickly, but
also mission-critical software running in our production plants. Some examples
include:

Teleheater
An app for remotely controlling our HVAC systems, including the required
infrastructure and embedded hardware. The system was presented as the
flagship innovation at a major trade fair in 2011 and won an international
design award for its interaction concept as well as an internal innovation
award.

Success Stories | 55

COM4T IP-Stack
A networking stack for resource-constrained devices, allowing them to take
part in the Internet of Things without requiring much of the devices’ very
precious and limited RAM. It is now used in a variety of IoT-related products
—for example, the XDK Cross Domain Development Kit (xdk.io).

Tram Collision Avoidance
A visualization for a collision avoidance system for trams building on Bosch
radar and optical sensors used in the automotive domain and an API for
accessing the CAN bus developed in the BIOSphere. The BIOS team rapidly
developed the visualization in cooperation with the potential customer and
was instrumental in eventually acquiring new business. The system is now
being field-tested in many European cities by public transport authorities.

This type of innovation happened both in existing business units and in com‐
pletely new areas that emerged spontaneously.

Improved Collaboration
At a technical level, the collaborations across different business units became
smooth and frictionless. Previously existing technical barriers for this kind of
collaboration were effectively removed.

BIOS communities were given complete autonomy with respect to how they per‐
formed their work. Initially, there was a general expectation that this would lead
to a lack of formal planning and quality control, neglect of corporate processes,
and a plethora of non-standardized toolsets in the BIOSphere which would ulti‐
mately lead to chaos. However, in fact the opposite happened: a strong culture of
craftsmanship and apprenticeship emerged. BIOS now has a well-deserved repu‐
tation of producing high-quality software and many business units have modeled
aspects of their development processes after processes common in BIOS projects.

Personal Growth
The BIOS initiative became a great success, not only for the involved business
units, but also for the associates. Many associates reported they felt their personal
growth accelerated dramatically through their BIOS activities. These associates
consistently reported that the BIOS work in turn led to increased happiness and
work satisfaction. The BIOSphere and its communities very clearly radiated a
“coolness” factor, which attracted many excellent developers. Engineers were able
to find a new purpose and renew the enthusiasm that they might have lost over
the years.

56 | Chapter 4: Living in a BIOSphere at Robert Bosch

Increased Productivity
The level of engagement and motivation of developers in BIOS communities
were extraordinarily high. It is therefore not surprising that the productivity that
BIOS communities achieved was far above average. The reduced administration
work offered to developers by the BGO, and the permission to let developers
adopt only processes that they felt were necessary and helpful, also contributed to
that increase in productivity. As a result, a number of small teams and communi‐
ties had a very disproportionate impact on the organization.

Alignment with Business
A key issue in adopting InnerSource is the potential disconnect between devel‐
oper self-determination on the one hand and aligning work with the company’s
business objectives on the other. Interestingly, we found that this alignment hap‐
pened quite naturally. Many BIOS projects have made direct or indirect contribu‐
tions to reaching Bosch business objectives and this was recognized by our
management. We also discovered that the vast majority of BIOS developers con‐
sider it to be the ultimate reward for their engagement if their software is used in
a product or brings value to fellow associates by making their daily work simpler,
more enjoyable, or more efficient.

Success Factors
In hindsight, we can identify a number of factors that led to the success of the
BIOS initiative.

The timing of the BIOS initiative was good, because our management wanted to
develop a strategy for Open Source around the time the BIOS initiative started.
This was a major success factor for rallying support for the BIOS initiative and
getting it off the ground. Although InnerSource is not the same as Open Source,
InnerSource can help to create a culture that values transparency and meritoc‐
racy and thus help the organization to work with communities of developers.
Furthermore, the BIOS initiative addressed an urgent need of the organization: to
improve the efficiency of distributed software development in general.

BIOS started as an experiment with low expectations—and perhaps most impor‐
tantly, it was declared as an experiment. Managers were more likely to sign off on
it because it was time-limited and because declaring it as an experiment clearly
communicated that failure was an acceptable option. For executive managers,
such an experiment with a budget for a fixed time period is simply an investment
with a risk. Without such limitations, managers are likely more wary that such an
experiment might spiral out of control.

The experiment was completely funded by corporate management rather than a
specific business unit. This helped to give the initiative the autonomy needed to

Success Factors | 57

ensure that it could pursue a direction that wouldn’t necessarily be dominated by
any one business unit. By minimizing the influence of individual business units,
the corporate-level initiative avoided political or budget-related conflicts that
might hamper any cross-business unit collaborations. This is one of the key
things that BIOS aimed to improve.

A second success factor was the focus on attracting self-selected and motivated
“volunteers.” This completely aligns with one of the values we defined previously:
voluntariness. Perhaps most importantly (and most impressive), many contribu‐
tors would contribute to these projects in addition to their normal, daily work‐
load. This self-selection of highly motivated people naturally meant that their
motivation was intrinsic and that they were highly enthusiastic. This in turn
acted as a natural filter and allowed the recruitment of the most driven associates
who were passionate about what they did.

The support rendered by the BGO was an important success factor as well. It
unburdened the developers in the BIOSphere of the many administrative pro‐
cesses common in large organizations and thus allowed them to focus entirely on
delivering their best work and make the most of the sometimes limited amount
of time they had. More importantly, the BGO successfully managed to maintain
the protective layer around the BIOSphere as a whole. As a result, the developers
in the BIOSphere were able to implement the five values to the fullest extent,
which contributed greatly to the extraordinarily high level of motivation and thus
productivity we observed.

Another major success factor was the choice of leaders: the BIOS communities
were led by enthusiastic and competent community leaders that were able to ded‐
icate 100 percent of their time to establish, promote, and grow their respective
communities. They were instrumental in attracting and retaining contributors,
which is probably more difficult than in Open Source communities where the
number of potential contributors is much higher to begin with. The importance
of the 100 percent community leader became even more apparent when we lost
the capability to fund them in 2016 and the number of contributions and overall
productivity of their communities decreased significantly as a result.

Finally, giving the communities in the BIOSphere the autonomy to decide them‐
selves what to work on and which tools and processes to use contributed to the
success of the BIOS initiative. By using a dogfooding approach (i.e., the develop‐
ers who created processes also used them), only those processes that really helped
the community were implemented and continuously refined; everything else
went out of the window. Communities also had and made use of the freedom to
quickly act when a project opportunity presented itself. Chance favors the pre‐
pared.

58 | Chapter 4: Living in a BIOSphere at Robert Bosch

Challenges
The BIOS initiative has been very successful, overall, but there were certainly also
some challenges, some of which we have not yet been able to meet.

One of the primary challenges is to grow communities. It can be really hard to
attract contributors from throughout the company when people are focused on
their specific business units, and when their time is completely allocated to spe‐
cific projects owned by that business unit.

We also found that getting buy-in and commitment from management, espe‐
cially of middle management, was quite challenging. This is because many of the
benefits of InnerSource—productivity as a result of developer happiness,
employee retention, and personal growth, to name a few—are hard to quantify.
Another, more systemic reason for the lack of buy-in is that mid-level managers
simply have different goals and motivations, as they are responsible for only a
slice of the company. Even if they buy into the goal of the whole organization,
supporting cross-team collaboration and allowing their subordinates to contrib‐
ute to business outside of their area of responsibility may not be in their interest,
because offering developer time to outside projects can incur a cost to their own
business unit’s performance.

In terms of developer career path, one shortcoming of the BIOS initiative was
that it was not coordinated with Human Resources. As a consequence, work per‐
formed within this initiative was often not rewarded in terms of advancing devel‐
opers’ careers. Time spent voluntarily on BIOS work was sometimes time not
spent on reaching the goals set by their organization. Although several individu‐
als have been able to leverage the increased visibility they enjoyed, there was no
formal promotion track that was facilitated by HR policy.

We found it very challenging initially to get internal publicity for BIOS. Even
after the first six years, very few associates overall were familiar with the BIOS
initiative. This challenge later changed to a more interesting issue of brand dilu‐
tion. The success stories that we shared within the company inadvertently led
other teams to use the brand BIOS to suggest they were part of the success,
without them actually practicing the values that BIOS advocates. This is not an
uncommon phenomenon, and in a conflicted way, an indicator of success:
clearly, our InnerSource initiative is perceived as successful, and others want to
share in this success. However, if teams simply identify themselves as part of the
success without actually practicing it, the BIOS brand is diluted. Worse, business
units may simply claim they “do InnerSource” but not make the effort that is
required.

Although cross-company collaboration improved, we still faced a cultural divide
between BIOS and business units that could cause some friction. In particular,
one of the BIOS values is meritocracy, and for that to work well, it is very impor‐

Challenges | 59

tant to acknowledge high-quality contributions, because such credit is the “cur‐
rency” for BIOS developers. At the outset, most business units were not familiar
with this culture. And so when business units simply use BIOS assets to develop
their products (and they are free to do so, as mentioned earlier), and don’t give
credit where credit is due, this leads to feelings of betrayal among BIOS develop‐
ers because their work is taken without any recognition. Another facet of this
challenge is that it was at times hard to sell work on APIs and libraries, work that
many software developers gravitate to naturally. The reason for this is that API
developers are usually so far removed from where money is actually made in the
company that the value can be hard to quantify, and therefore, hard to justify.
This is exacerbated by the fact that few managers have experience in software
development that would allow them to appreciate the importance of high-quality
APIs.

In addition to the challenges just described, a number of other issues emerged
related to laws and regulations. First, we had to engage with the legal department
and develop a license for all assets that would be created within the BIOSphere.
This wasn’t straightforward because of the sheer number of legal entities and
countries involved. For the same reason, we also had to consider things such as
export control: if code is being shared across legal entities in different countries,
you must observe export control regulations, such as US laws controlling the
export of strong encryption algorithms. Furthermore, we had to consider the
federal tax authorities and address the problem of transfer pricing.

A concern that should not be taken lightly is the potential misuse of an increased
level of transparency regarding individual developer’s activities and performance
that InnerSource offers. In Germany, for example, the Workers’ Council serves as
an “ombudsman” to ensure that such transparency is not abused for inappropri‐
ate performance evaluations.

Lessons Learned
Based on our experiences with setting up BIOS and the BIOSphere, we’ve learned
a number of lessons that could be useful for other organizations that aim to set
up an InnerSource initiative:

Ensure good stewardship
Our initial steward, Corporate Research, was a perfect fit for what we were
trying to do. They had a full understanding of the culture change that we
were trying to make, and they shared our enthusiasm for software and Open
Source. Furthermore, we had sufficient “executive air cover” through the
Review Committee. Such support from a high level within the organization
was very important for getting things done.

60 | Chapter 4: Living in a BIOSphere at Robert Bosch

Create a compelling business case
One problem for any centrally funded change initiative is sustainability.
While the BIOS initiative initially received corporate funding, over time we
were expected to become self-sustaining, which meant that we would some‐
how have to get funding support from the various business units. However,
creating a compelling business case to those business units that would con‐
vince them to give us a portion of their budget is really challenging.

Start measuring, but with care
While any change initiative will get a bit of slack, after a while, managers will
expect some evidence that whatever improvements are promised are also
actually achieved. Measuring participation and progress is therefore an
important thing to do. We didn’t do metrics from the outset for a number of
reasons: the risk of metrics being gamed, the lack of control about interpreta‐
tion of measurements and also the difficulty to objectively quantify the less
tangible, and in our opinion most important, value contributions we made.
However, we eventually arrived at the conclusion that one should try and
quantify the less tangible value contributions, such as employee retention or
increased learning from the beginning, possibly based on some broad
assumptions, rather than giving up on quantifying those value contributions
at all.

Think about marketing
We found that getting a clear message out to all business units in a large
organization such as Bosch can be very challenging. Even after several years
of advocacy, some associates still aren’t familiar with BIOS. At the same time,
one mistake we made was that we muddied the water ourselves by having too
much branding. While BIOS and the BIOSphere were very useful (and play‐
ful) terms that had real meaning within Bosch, we caused confusion by
introducing the term Social Coding, which referred to the second phase of
the BIOS initiative.

Plan for early decentralization
We have learned the hard way that it is unlikely that a central team driving
change initiatives such as BIOS and Social Coding will be funded for exten‐
ded periods of time, regardless of whether they have fully realized their goals.
Changing the culture of an organization, especially a large one like ours, will
almost certainly take much longer than management is willing to fund the
change initiative. Therefore, rather than relying on a continuously funded
central team, we think it makes sense to spend significant effort early on to
build up and empower a community in the organization that will continue to
drive the initiatives even if the central team eventually ceases to exist. The
bottom-up nature of both the BIOS and the Social Coding initiatives is now
proving advantageous with respect to the community building effort. We are
convinced that setting up the BIOSphere as a “safe space” in the organization

Lessons Learned | 61

was instrumental in getting the initiative off the ground. However, it is easy
to be lulled into a false sense of security regarding the longevity of this bub‐
ble. We feel it is important to communicate early on that a “safe space” like
our initial BIOSphere can be only a temporary solution that eventually needs
to be replaced with something else to help sustain InnerSource in the long
run.

Seek alternative funding models
While we have been successful in establishing stable and long-term funding
for our collaboration infrastructure, we have been less successful in doing so
for BIOS communities. Remember that we used BGO funding for contract‐
ing community leaders and contributors and that it was a key factor in grow‐
ing and sustaining our InnerSource communities. Getting business units to
provide funding on the other hand, especially for permissionless innovation
projects where the benefit to the business unit is not necessarily obvious,
turned out to be hard, even if the overall benefit for Bosch was apparent. At
the time, we decided to make our collaboration platform available for free to
both open and closed projects, mostly for the sake of organizational simplic‐
ity and speeding up the decision process. In retrospect, it would probably
have been better if we asked the owners of closed projects to pay a small fee
for using the platform, which we could have then used to fund the BIOS
communities.

Conclusion
At the time of writing, we are nine years into our InnerSource journey. We have
seen tremendous successes and have also encountered major challenges and frus‐
trations. But most of all, we experienced firsthand how InnerSource can truly
change the way we work for the better. Today, we can observe promising signs
that our culture is indeed changing in the direction we envisioned at the begin‐
ning. We are encountering more and more projects at Bosch that “get” the BIOS
idea and develop in the open from the very beginning.

For many of us, our time working in the BIOSphere and leading the first BIOS
communities was the most productive, the most fun, and quite simply the best
time in our careers up to now. At this point, we can’t imagine working in any
other way and are convinced that InnerSource, similar to Open Source, will con‐
tinue to make a difference and is ultimately here to stay.

Acknowledgments
We’d like to express our gratitude to Stefan Ferber and Hans Malte Kern for lob‐
bying for, and introducing, InnerSource at Bosch. Thanks to Gerd Zanker and
Robert Hansel for their pivotal roles in BIOS and Social Coding.

62 | Chapter 4: Living in a BIOSphere at Robert Bosch

CHAPTER 5

Checking Out InnerSource at PayPal

Year, place founded: 1998, Palo Alto, California (USA)
Area(s) of business: Financial services
Revenues: US$13.09 billion (2017)
Reach of business: 200 countries worldwide
Number of employees worldwide: 18,100
Number of engineers: 8,000
Year of InnerSource adoption: 2015

Much has already been published about PayPal’s journey with InnerSource, the
idea that using Open Source collaboration methods inside proprietary engineer‐
ing organizations could go a long way towards improving quality and reducing
resource bottlenecks while building competency in collaborative development.
This, in turn, should increase the chances of successful Open Source participa‐
tion down the road; the first booklet PayPal wrote is the most-downloaded non‐
code asset on public GitHub at the moment.

After a little background, this chapter will describe the year-long experiment with
the Symphony module, PayPal’s longest and most intentional InnerSource
experiment to date. Symphony helped to convince senior executives within the
company that the InnerSource method is an effective way to increase collabora‐
tion in a heavily siloed engineering organization. We’ll also describe a parallel
experiment by the India Domestic team, which independently decided to employ
InnerSource to gain agency for a focused regional effort.

63

A Little Background
In 2014, longtime Open Source activist Danese Cooper was hired by PayPal to set
up an Open Source programs office and to develop an Open Source strategy both
as a way of giving back to the movement that had helped PayPal launch itself and
also to attract more “Alpha Geek” engineering employees. A scan of the compa‐
ny’s potential Open Source assets revealed that the biggest impediment to trans‐
formational Open Source participation was the internal engineering culture,
which had been optimized over a number of years for deep specialization and
very aggressively schedules for task completion. Engineers who were already
under intense time pressures were reluctant to serve as mentors or evaluate out‐
side code contributions.

In 2015 Danese and her team started evangelizing inside PayPal about Inner‐
Source. PayPal had already decided to retool with GitHub Enterprise to increase
code transparency, and there were already a few PayPal teams wanting to work
more collaboratively, particularly teams working with Open Source technologies
such as Node.js. Most of these Open Source–aware teams worked on the
customer-facing portions of the PayPal product stack (e.g., new customer
onboarding), but they often faced significant pushback when they tried to collab‐
orate with more traditional core teams.

PayPal’s past engineering management had chosen to optimize for ownership,
believing that each team’s pride in owning its code would help drive quality. One
universal side effect of ownership culture is the mistaken belief that only your
team is qualified to work on your code. Gifts of code from contributors outside a
silo elicited confusion at best, and at worst derision, particularly if the contribu‐
tor normally worked on the frontend but was trying to contribute to the backend
code. It is a common bias to unconsciously rank the expertise of one’s immediate
team above any unbidden contributor’s work.

Attributes of InnerSource
It is worth clarifying what is meant by InnerSource—after all, each organization
adopting InnerSource has its own specific way of doing so. For PayPal, Inner‐
Source meant the following:

• Encouraging the use of pull requests instead of feature requests.
• Trusted Committers who review submitted code and return advice if

changes are needed.
• Written communication that is archived and searchable, in place of verbal

communication that is lost to future potential contributors.

64 | Chapter 5: Checking Out InnerSource at PayPal

http://bit.ly/2l7JChT

• Suitable extrinsic rewards to overcome reticence and kickstart collaborative
work.

Because people learn in a variety of ways, Danese developed a diagram to explain
InnerSource, centered on the legacy issues experienced by many large companies
with software practices of a certain age. PayPal had recently undertaken a well-
publicized Agile transformation, but Agile didn’t address the practice of allowing
executive escalation to interrupt planned work. A key feature of the PayPal Agile
practice is the use of Scrum across all engineering teams, so work is organized
into two-week sprints with a demo at the end of each sprint. Frustration about
being evaluated on planned work completion, when in any given sprint those
plans could be blown up by an escalation, was a serious pain point for engineer‐
ing middle management. The diagram therefore starts with a depiction of two
wedges of cheese (i.e., executives) escalating a feature request to preempt planned
work. Recognition of that problem and its high cost was universal among view‐
ers.

PayPal’s initial experiment was driven by this problem alone, and by using Inner‐
Source, the team was able to reduce the time they were spending during each
sprint on escalation-driven interrupts from 65% before InnerSource, to under
5%, allowing them to focus on completing planned work. For this reason, this
diagram is most often called the “Cheese Story” (Figure 5-1).

Figure 5-1. Escalation to “cheeses” to get work integrated

Attributes of InnerSource | 65

http://bit.ly/2tcYe3o
http://bit.ly/2tcYe3o

1 João Miranda, “InnerSource: Internal Open Source at PayPal,” InfoQ, October 30, 2015, http://bit.ly/
2JK0RAt.

The diagram builds to depict the feature request morphing into a pull request
(e.g., the engineer who needs the feature attempts to write it him or herself, and
contributes that code to the target silo). Borrowing from The Apache Way (see
Chapter 2), the engineer on the receiving side becomes a “Trusted Committer”
(TC),1 meaning he is responsible for reviewing contributed code and determin‐
ing whether it can be merged. If it isn’t yet acceptable to merge, instead of rewrit‐
ing that contributed code, the TC returns written feedback about what the
contributor needs to do to make it acceptable. The pair iterate until the contribu‐
tion is good enough to merge (Figure 5-2).

Figure 5-2. Mentorship—a Trusted Committer sends written advice to a contributor
about how to improve his contribution so it can be accepted into the larger silo

What happens next in the diagram reveals one of the hidden benefits of The
Apache Way. The written conversation between the contributor and TC is collec‐
ted into a persistent, searchable archive (Figure 5-3).

66 | Chapter 5: Checking Out InnerSource at PayPal

http://bit.ly/2JUSYeS
http://bit.ly/2JK0RAt
http://bit.ly/2JK0RAt

Figure 5-3. Documentation—the entire mentorship conversation is archived in a
persistent, discoverable way and becomes de facto documentation, mirroring the
function of Mailman archives at the Apache Software Foundation (ASF)

Although the time it takes to have the initial conversation can seem expensive,
this actionable documentation (actionable because it focuses on real information
about how to write code that can be merged into that silo) can then be referenced
by the TC the next time a potential contributor tries to submit code, which
greatly reduces the time cost of mentoring subsequent contributors. Moreover,
tracking which conversations are searched most often can help determine where
development of more formal documentation could be useful.

The diagram continues building to highlight other benefits of InnerSource that
were discovered during the first InnerSource experiment at PayPal. A first benefit
is that the practice of InnerSource granted the different silos insight into the
question of how to best modularize their codebase, a task that had formerly
seemed difficult to undertake. Second is noticing that as contributors become
adept at writing code for the silo, they can start to act as TCs for aspiring new
contributors, thus further freeing up the original TC. Thus, increasing full-stack
knowledge in the company is seen as another benefit of InnerSource at PayPal. A
third benefit is seen by teams that decide to divert all their own work through the
TCs, as more careful code inspections result when you make the TC responsible
for the merge of their team members’ code and there is a resulting bump in over‐
all quality (Figure 5-4).

Attributes of InnerSource | 67

2 Richard M. Ryan and Edward L. Deci, “Intrinsic and Extrinsic Motivations: Classic Definitions and New
Directions,” Contemporary Educational Psychology 25, no. 1 (2000): 54–67.

Figure 5-4. Other benefits of InnerSource include increased velocity due to accretion
of actionable documentation, deeper understanding of where/how to modularize,
and building of full-stack knowledge as serial contributors become guest Trusted
Committers

The last part of the diagram build addresses motivations of the players involved
and how to introduce extrinsic motivators2 to deal with asymmetry of motiva‐
tion. Of course, the contributor has an intrinsic motivation (he needs the feature
to complete his assigned work, as indicated by the gold star he gets when he com‐
pletes his work), but the TC’s motivations aren’t so clear. Initially most engineers
don’t want to be confined to code review and mentoring for even just one two-
week sprint, because in the past they’ve been rewarded mostly for the code they

68 | Chapter 5: Checking Out InnerSource at PayPal

3 Andy Oram, Getting Started with InnerSource (Sebastopol: O’Reilly Media, 2015), http://
www.oreilly.com/programming/free/getting-started-with-innersource.csp.

produce. An extrinsic motivator such as explicit recognition for excellent men‐
toring can really help to overcome TC reticence (Figure 5-5).

Figure 5-5. Possible extrinsic rewards

The CheckOut Experiment
The first InnerSource experiment within PayPal was started by the CheckOut
team (some of these experiences were documented in the first booklet we co-
wrote with O’Reilly editor Andy Oram).3 CheckOut was one of the busiest core
teams. A majority of PayPal’s customer flows routed through CheckOut (because
most customers use PayPal to buy and sell things), and with an elite team of only
25 engineers it was difficult for the CheckOut team to consider budgeting time to
review and merge other teams’ submitted code, preferring to write any code
aimed at fulfilling requests for changes themselves.

But those types of requests were increasing. In an effort to enrich diversity of
experience, PayPal engineering started engaging in “Accu-hiring”: acquiring
smaller companies at least in part as a way of bringing in whole teams of new
engineering employees at once. These new employees were often very comforta‐
ble with more modern development methodologies, and some of them began
submitting pull requests rather than feature requests when they needed changes
in legacy code. Pressures on the team intensified as PayPal ramped up new fea‐
ture development and delivery, and often the urgency of completing such
requests was increased by executive escalation. Such escalation is a common anti-
pattern where planned work goes uncompleted because all resources are diverted
to address a somewhat artificial emergency created by executives using their aur‐
thority to circumvent planning procedures and demand preference for their
team’s request. This practice is common in companies wherever serious resource
bottlenecks hamper the timely resolution of feature requests, or wherever strict
hierarchies create opportunities for such power plays, because people throughout

The CheckOut Experiment | 69

http://www.oreilly.com/programming/free/getting-started-with-innersource.csp
http://www.oreilly.com/programming/free/getting-started-with-innersource.csp

the company judge effectiveness as a function of the individual executives’ ability
to “cut through red tape.” Realizing that they wouldn’t be able to keep up with this
increasing demand while still completing improvements they planned them‐
selves, the CheckOut team began to experiment with InnerSource.

Luckily, most of PayPal’s codebases had recently been made visible to all engi‐
neering employees through a company-wide GitHub Enterprise implementation
spearheaded by the CTO. Removing barriers to engineers freely accessing all
company code is a necessary first step to InnerSource, regardless of which code
management tool is used. But just making it possible to see all the code doesn’t
automatically increase collaboration by itself, because old patterns are hard to
change.

The first change CheckOut made was identifying 10% of the engineers on the
team to take on the role of Trusted Committer. These staff members were tasked
with reviewing not only guest pull requests submitted in InnerSource fashion,
but all pull requests, even those written by their own team. So that none of the
Trusted Committers would object to being pulled away from actually coding,
they assigned the Trusted Committer role on a revolving basis, each member
serving as a TC for one or sometimes two two-week sprints at a time. They
advertised which of the team members were currently serving as Trusted Com‐
mitter in an About.md document in their GitHub repository. This way, anybody
outside the team taking an interest in the project would know to whom Inner‐
Source pull requests should be submitted. The team also took the bold step of
announcing they would no longer respond to executive escalations unless there
was a showstopping bug involved. To make this last piece work, they requested
support from the CTO’s office for the duration of the experiment.

Their results were amazing! As mentioned before, they managed to reduce the
amount of escalation-driven work they did per sprint down to less than 5% (from
a pre-InnerSource high of 65%). They also significantly increased overall quality
by instituting real code reviews across the board and were able to prove that
reducing escalations was key to addressing perceived bottlenecks. Moreover, as
guests started querying the structure of this monolithic system, the original
developers found themselves explaining design decisions. These conversations
helped them gain missing insight into how to restructure those systems to make
them more modular, where initially they had been struggling to decide about
how and where to modularize. Lastly, they were able to identify guest contribu‐
tors whose diligence and excellent contributions entitled them to assume guest
Trusted Committer status, further distributing the workload of mentoring new
guest contributors. Almost everyone was very pleased with this new way of work‐
ing.

Unfortunately, PayPal’s first InnerSource experiment ended in an anti-pattern les‐
son. The experiment had been designed to only address “Engineer to Engineer”

70 | Chapter 5: Checking Out InnerSource at PayPal

workflows and left out Product Management Owner (PMO) roles. The PMOs
were officially tasked with assigning and tracking work (stories in Agile parlance)
to complete new features, and they still believed escalation was the most effective
method for them to get their work done. The ensuing struggle ended with several
of the members of the CheckOut team opting to leave PayPal rather than return
to the old way of working.

The Onboarding Experiment
Around the time the CheckOut team started their experiment, another PayPal
group was trying a different method to bootstrap collaboration more quickly.
Onboarding is the process of signing up a new customer or merchant with PayPal.
Since Onboarding is practically the first interaction people have with PayPal’s
services, it strives to be easy to understand and frictionless in every market.
Regional differences mean the Onboarding experience needs to be tailored to
reduce friction. Originally that tailoring was handled by feature request, but it
was inefficient to describe a desired change and then wait for the core Onboard‐
ing team to write it. So Regional Sales Engineers (RSEs) started wanting to get
directly involved in tweaking the Onboarding experience for their region by con‐
tributing code to make the feature happen instead of waiting for someone else to
write the code.

But instead of setting up InnerSource between the teams as it was done for
CheckOut, the decision was made to run a one-time bootcamp for all potential
guest contributors (such as RSEs) to more quickly bring them up to speed all at
once. Seventy-five engineers converged at PayPal’s headquarters in San Jose, Cali‐
fornia, from all over the world to spend two weeks building relationships and
learning about Onboarding’s architecture and codebase. This mass training
period greatly increased mutual understanding, but it brought up another anti-
pattern. Because the content was delivered mostly verbally, a persistently
archived and searchable knowledge base was not created as a byproduct (as it
would have been if the training had been delivered in writing through mentoring
sessions as code was submitted and reviewed, e.g., in InnerSource style).
Although the engineers who went through the program did gain knowledge and
relationships, there was a significant productivity cost on both host and guest
teams. Moreover, because the conversations were not captured in writing, the loss
of productivity during training would necessarily be repeated each time a new
group of engineers needed the training. This experience reaffirmed the desirabil‐
ity of written mentoring, which can be archived and made discoverable so the
experts need only take the productivity hit one time.

The Onboarding Experiment | 71

Executive Air Cover
These limited successes meant that pressure to increase effective collaboration
continued to build within the company, but most core teams were still pushing
back due to competing pressure to complete work in progress, and in some cases
a belief that InnerSource wouldn’t work or was more trouble than it was worth.
Proponents realized we needed some executive “air cover” to set up a wider and
hopefully more definitive experiment. PayPal’s CTO at the time worked with his
lieutenants to identify core codebases for a higher profile experiment. His
involvement went a long way to guarantee cooperation and allow a longer-term
study of the effects of InnerSource on PayPal Engineering processes and practi‐
ces.

Symphony, the codebase that was ultimately chosen for the next InnerSource
experiment, was a key component in the PayPal software stack that was both
monolithic and commonly involved in serving customers. Symphony was already
scheduled to be divided into frontend and backend components, and there would
be tendrils of code that needed rewriting to accommodate that split, even as there
would also be guest contributions coming in to allow new features to be written.
In December 2015 meetings started between the CTO, relevant engineering exec‐
utives, senior managers and Product Owners, and the InnerSource team about
how to accomplish the transformation of Symphony.

The first work was exposing everyone’s misgivings about InnerSource collabora‐
tion. One of the senior executives had previously worked at Google and felt
strongly that we were talking about using the much storied “20% time” concept
to, in essence, extract more work out of the same employees. There were also
fears about the capability of different types of engineers (for instance, the back‐
end engineers felt the frontend engineers were less capable of grasping backend
complexities). Everybody wanted some type of Service-Level Agreement (SLA)
from the others, be it for expected wait time before getting an answer to a query,
or for a contributor’s willingness to fix any issues that might arise from incorpo‐
ration of contributed code. There was much interest in what we would be meas‐
uring to assess success of the experiment, and a universal desire to be shielded
from executive escalations for the duration of the experiment. Danese helped the
meeting attendees negotiate a set of working agreements in a Contributing.md
file, delivered some training to newly minted Trusted Committers and guest con‐
tributors, and set up a regular weekly cadence of Scrum meetings to keep every‐
body on track. In January 2016 we started tracking the Symphony InnerSource
experiment.

72 | Chapter 5: Checking Out InnerSource at PayPal

http://bit.ly/2JJsIRl

Meanwhile, in India
One of the interesting team dynamics within PayPal Engineering is created by
having a large engineering organization in Chennai, India. This arrangement can
actually be an aid to InnerSource, as time-zone and physical distances between
team members encourages written rather than verbal communication, but it still
requires training about how to work differently. About two-thirds of the Sym‐
phony team was Chennai-based, so as part of setting up the Symphony experi‐
ment Danese spent significant time in India delivering training to Trusted
Committers and guest contributors. Some of the people attending the training
were not involved in Symphony but were looking to understand InnerSource and
why we were using it. One of these who became a real champion of InnerSource
at PayPal was a Senior Director charged with leading a team to build new prod‐
ucts for the domestic India market.

With a population of over 1.3 billion people and a rising middle class, India had
long been identified as a potential growth region for PayPal. However, efforts to
address this potential market were slow to coalesce. The original plan for 2016
was to spin up a large coordinated effort in Chennai, but during annual plan
review other work became more urgent and, in the end, the India Domestic
project was only partially funded for 2016. Since the team was now under-
resourced, they knew they would have to work differently to still achieve their
goal of being restored to full funding in the following planning year. Toward this
end, they voluntarily took advantage of InnerSource training in early 2016 and
undertook their own InnerSource experiment.

Learning Goals
We knew from the CheckOut and Onboarding experiments that InnerSource
could be an effective strategy to reduce unplanned work interruptions while
building full-stack knowledge (i.e., broader knowledge of all the parts of PayPal’s
software stack, not just isolated knowledge of a specific assigned area), and we
had a theory that capturing written mentorship advice in a persistent and search‐
able archive would build the actionable documentation we needed to increase
velocity in the future. But, we still had major questions that needed answers
before we could commit to rolling out InnerSource at a company-wide scale.
These included:

• Could InnerSource work in situations where there was a lot of initial push‐
back?

• Could InnerSource work along with other methodology initiatives such as
Agile and Continuous Integration (CI)?

• What kinds of training or coaching would be most effective?

Meanwhile, in India | 73

https://oreil.ly/2MsYdRJ

• What extrinsic rewards would best overcome reticence?
• What metrics would be most useful?
• What cultural impediments to successful InnerSource would be encountered

and how would we mitigate them?

At PayPal we use the metaphor of hospitality to help InnerSource participants
think about how to behave. Hosts welcome guests, but only if they obey the
house rules. Guests expect hospitality in return for respect for the host. Sym‐
phony was chosen for our official experiment, in part, because many of the devel‐
opers on both guest and host sides were skeptical about the value of the exercise.
It was thought that if we could win the Symphony team over, we could proceed to
scale out across the company with some confidence. Even the VP in charge of
Symphony was skeptical. He had worked at companies where cross-company pull
requests are relatively common, and he said that in his experience they got
merged only when executives from the outside teams exerted direct pressure, so
he wasn’t a believer that we could live without executive escalation.

The India Domestic team, meanwhile, was just trying to prove that their project
could work. They needed to make progress with minimal resources, and much of
the work they needed to do was within codebases they neither owned nor could
directly influence through escalation. They saw practicing InnerSource as the
only way to gain enough agency as guest contributors to achieve their goals.

Beginning Symphony and InnerSource Brand Dilution
The kickoff meeting for Symphony happened in late December 2015 and
included all the executives who would be supplying air cover, including the CTO,
all the VPs whose employees would be touching Symphony code, and the origi‐
nal ownership organization including directors, senior managers, and managers
whose employees had written Symphony. InnerSource contributions were meas‐
ured in sprints, and the first work started early in 2016.

The Symphony InnerSource pilot lasted a whole year. Throughout 2016 there
were competing pressures on the InnerSource team with regard to focus. Many
of our air cover executives wanted us to focus solely on Symphony and the les‐
sons it was teaching us about PayPal’s engineering culture for the year, while oth‐
ers wanted us to continue to take on, train, and support additional teams in
addition to working with Symphony. The InnerSource team tried to keep both
camps happy by lending only limited support to non-Symphony teams. Pressures
were eased with this minimum progress and advocacy for continued focus on
Symphony from executive sponsors, but there was also significant brand dilution
for the term “InnerSource.”

74 | Chapter 5: Checking Out InnerSource at PayPal

4 Silona Bonewald, Understanding the InnerSource Checklist (Sebastopol: O’Reilly Media, 2017), http://
bit.ly/understand-IS-checklist.

Teams not yet trained in InnerSource concepts started declaring they were “doing
InnerSource” without a real understanding of the methods developing around
Symphony, and through lack of understanding they fell into the trap of reinforc‐
ing rather than mitigating people’s fears. People were having bad experiences and
blaming our InnerSource program. In particular, rumors grew among rank-and-
file engineers that InnerSource was a form of “forced conscription” where one
team could force another to do their work for them. Interestingly, when we stud‐
ied this claim, we found the actual problem was straight out of Lost in Transla‐
tion. An aspiring guest contributor would write an Agile story for a proposed
InnerSource contribution (signaling their intention to write the code and con‐
tribute it to a Host). When considering the request, the Host team would rewrite
the story so it made engineering sense from their point of view. Once approved
for InnerSource, the original submitters would sometimes not recognize the
rewritten story as one they had initiated and would end up feeling exploited
when they were asked to code up the story. “This InnerSource sucks!” was a com‐
mon response to the misunderstanding. The InnerSource brand was suffering.

To stem this brand dilution, we wrote the “InnerSource Checklist”4 and spun up
a special 15-minute briefing presentation which was delivered top down starting
at the CTO’s staff meeting (to catch engineering executives not involved in Sym‐
phony) and filtering down to middle managers in a 12-week-long push just to
establish a baseline understanding of what the term “InnerSource” actually
means at PayPal, and hopefully to stop people from claiming they were “doing
InnerSource” when they actually were not.

Initial Symphony Training
But before Symphony’s InnerSource experiment could get started, the first job
was getting everyone involved aligned, which meant training all participants in
their InnerSource roles early in the first quarter of 2016. Although we now have
developed many training assets, at that point in time we were starting from
scratch. We identified four trainings that everyone would eventually need:

Introduction to InnerSource
This includes some history, a discussion of the “Cheese Drawing” and the
issues it touches on about working around bottlenecks and excessive escala‐
tions while improving quality, and some projected goals for the methodol‐
ogy. This also formed the basis for later training developed for Senior
Management to combat brand dilution.

Initial Symphony Training | 75

http://bit.ly/understand-IS-checklist
http://bit.ly/understand-IS-checklist
http://bit.ly/2t9ULCm
http://bit.ly/2t9ULCm
http://www.innersourcecommons.org/resources/
http://bit.ly/get-started-innersource

The Role of the Contributor
A primer on how to be a good guest, including seeking advice early and
often, accepting a written critique and working through it, and staying avail‐
able to support your work for 30 days after deployment of a contributed pull
request.

Trusted Committership
A primer on how to be a good host, including why the role of Trusted Com‐
mitter is important, why and how to mentor a contributor, and why written
advice is important. It also touches on how achieving Guest Trusted Com‐
mittership could help your PayPal career.

InnerSource for Product Managers
A discussion of how the role of Product Manager changes under Inner‐
Source, and how to negotiate with other PMOs to get InnerSource work
scheduled.

The InnerSource team developed a set of slides and a Q&A for each of the four
trainings, then delivered each of them in two-hour sessions (eight hours total per
person!) in both San Jose and Chennai. We advertised these internal trainings
widely within each location and allowed as many employees per session as the
rooms could hold. We kept track of the actual Symphony participants’ attendance
in order to satisfy the requirement that all directly involved parties receive train‐
ing, but most sessions included about 20% self-selected interested others. Cur‐
rently the InnerSource Commons community and PayPal are working on online
versions of these four trainings, to support scaling up InnerSource across the
company, with the first one completed by this writing.

In general, the trainings are about uncovering and addressing fears evoked by a
new methodology. Change is hard for most people, and InnerSource is no excep‐
tion. Trainees had a number of understandable fears, and the trainers (members
of the InnerSource team) found the most effective way to mitigate those fears was
to get trainees to articulate and then take the time to really discuss and work
through the fears. People need to feel heard. Trainers took a nondefensive stance
and tried to value all the feelings people were sharing. Over the span of several
weeks when the trainings were originally delivered, several common fears sur‐
faced, including:

• Skepticism that escalations would actually cease
• Fear of increased workload, of being conscripted, of having code publicly

scrutinized, or of being shamed for lack of code quality
• Fear of losing agency associated with their position
• Fear of insufficient ability with written English, since written comments

would persist

76 | Chapter 5: Checking Out InnerSource at PayPal

• Fear of wasting time on unsuitable code, that gift code wouldn’t have accept‐
able quality

• Fear of accepting gift code and then having the burden to maintain it

The training presentations were designed to test comprehension and stimulate
conversation. They featured quizzes describing possible scenarios (taken from
real life) and offering multiple-choice nonobvious answers. This method proved
very fruitful for getting people to admit their fears. For example, this question
emerged at the “InnerSource for Product Managers” training.

InnerSource as practiced at PayPal is:

• A way to conscript extra resources into your project
• A magical way of creating programmers to help you make your deadlines
• Outsourcing internally
• Open Source at PayPal
• A way to increase collaboration, cross stack knowledge, ease bottlenecks, and

assist teams in getting needed changes implemented in stacks they don’t own

These possible answers usually caused a deep discussion of why conscription
doesn’t work, how InnerSource is different from Open Source, and whether the
last answer (which happens to be the correct one) is magical thinking.

The Contributing.md File
The need for mutually agreed-on rules of engagement to help address common
fears and skepticism about InnerSource was fulfilled by the contributing.md file
(the “md” extension signals it’s written in Markdown) as the main place to
memorialize those agreements. We held a meeting with key executives, managers,
and developers to negotiate and document the rules of engagement (see
Figure 5-6).

The Contributing.md File | 77

Figure 5-6. List of agreements: Symphony contributing.md v1.0

This list tells you a lot about the fears that were most prevalent and the mitiga‐
tions we identified together, including:

• The ability to refuse escalations
• The “30 days after deploy” warranty that the guest contributor must honor
• Threat of a blacklist that any contributor can land on if she is unwilling or

unable to follow mentorship advice (note this has never actually been
employed)

• The “2-day Service-Level Agreement (SLA)” within which submitted pull
requests must receive feedback from a Trusted Committer

• The escalation path if that SLA fails

The InnerSource team added a weekly 15-minute check-in call (as a specialized
Scrum) with the actual team leads to listen to any issues they were encountering,
and monthly 30-minute check-ins with the sponsoring executives to keep them
in the loop and ask their advice or support on specific issues.

Cadence of Check-Ins
The 15-minute check-ins were most useful because they were a chance for engi‐
neers enduring pain points to alert us about them. It was during the check-ins
that we first figured out the brand dilution described earlier within the planning

78 | Chapter 5: Checking Out InnerSource at PayPal

process, which led guest contributors to conclude that InnerSource was forced
conscription.

Although we were officially trying to forestall development of a comprehensive
metrics package (because we weren’t sure we knew enough to establish meaning‐
ful measures that wouldn’t drive anti-patterns), we identified a light set of metrics
to collect per sprint (chiefly lines of code successfully merged per sprint and
InnerSource stories completed per sprint), so as to have something to track in the
monthly executive meetings. We chose lines of code per sprint as our primary
metric because it was easy to collect manually (by counting all lines associated
with stories tagged as InnerSource) and did give some indication of relative pro‐
gress within the pilot. It is important to be careful with metrics, because you
influence behavior by what you measure. The tendency to optimize for any met‐
ric is strong, especially among engineers. Measuring lines of code can influence
engineers to be more verbose in their writing, just as measuring number of
check-ins can influence engineers to check in smaller and more frequent patches.
Nevertheless, we decided ease of collection outweighed these risks.

Even the best training must be reinforced. Deeply ingrained cultural norms have
a way of showing up in practices long after teams should be following new pat‐
terns. Weekly check-ins helped us keep Symphony on track. Some examples of
issues that came up include:

Cheating on InnerSource processes in an attempt to optimize
In an ongoing effort to streamline and waste no effort, we heard several
times that teams wanted to limit InnerSource to stories with an estimated 2.5
or more “story points.” They figured they could fulfill small requests the old-
fashioned way, by writing those themselves (since they could code them up
faster than explaining how to someone else). We had to remind them that
teaching a man to fish was more efficient than fishing for him in the long
run.

Staff turnover, resulting in a need to retrain
During the year we were working closely with Symphony, the senior staff
changed three times. Frequent job shifts were another cultural norm at Pay‐
Pal, which management is currently working to curtail. The net effect of
these staffing changes was that we had to completely retrain three times.

Workload of reporting metrics
Even though we were only asking for lines of code committed per sprint, the
Symphony team noticed that they could automate collection of those metrics
with a lightweight tool. “Mr. Gherkins” is a set of scripts that tag repos for
InnerSource (to make them easily discoverable), collect and report metrics,
and let the contributor know when code has been deployed and the 30-day
warranty countdown has begun. We open-sourced Mr. Gherkins through
InnerSource Commons in 2016.

Cadence of Check-Ins | 79

Difficulty scheduling stories
This example was already partially covered, but it was a serious problem so
I’m including it here for completeness. The Symphony team was experienc‐
ing pushback from guest teams asked to submit code for requested features
(e.g., to handle them through InnerSource). By joining scheduling calls, the
InnerSource team were able to trace the problem to the practice by the Sym‐
phony team and PMOs of restating a given story from their point of view.
The originators of the story could no longer recognize their story when it
was pushed back to them for InnerSourcing, and that shock led to circula‐
tion of the rumor mentioned earlier that “InnerSource equals forced con‐
scription.” The InnerSource team was able to make a case for stories going
through less transformation to mitigate this issue.

Difficulty scheduling meetings
This issue was reported by the India Domestic team and was a consequence
of geographically separated teams. India Domestic found out early on that
getting San Jose to honor meeting commitments took extra work. They
developed a habit of sending reminders and tight agendas to make sure they
made the meetings as effective as possible for all parties. They figured out
through trial and error which days of the week were most advantageous.

Prevetting planned contributions
This is another best practice out of India Domestic that the Symphony team
also found useful. Contributor teams were encouraged to notify the receiving
Trusted Committers by filing an issue as soon as an InnerSource contribu‐
tion is contemplated. This allowed both sides to maximize resource plan‐
ning. It also allowed the receiving Trusted Committers to fend off any
misguided planned contributions. Once we started doing this with all Inner‐
Source projects, we saw a higher throughput of contributed and merged lines
of code.

Outcomes
Figures 5-7 and 5-8 present two graphs derived from actual InnerSource code
merged as a function of time for both the Symphony and India Domestic
projects. These were prepared for executive review and clearly show that signifi‐
cant amounts of code can be produced by guests for a host that participates in an
InnerSource program. This is code that the host would have been asked to write,
so it represents a real offloading of work for the host teams. But it also represents
less unproductive time spent waiting on behalf of the guests and also significant
learning on both sides.

80 | Chapter 5: Checking Out InnerSource at PayPal

Figure 5-7. InnerSource code merged by Trusted Committers into Symphony in 2016
as a function of time (organized by two-week sprint)

Figure 5-8. InnerSource code merged between Q2 2016–Q2 2018 by the India
Domestic project team (organized by quarterly sprints)

In both cases, significant contributions of code were successfully merged from
InnerSource pull requests, although it took both teams a while to get into the
swing of it. In the Symphony graph (Figure 5-7), the yellow line represents num‐
ber of InnerSource pull requests per sprint. Tracking this number, we learned
that as the Symphony team gained comfort with the InnerSource process, they
were able to effectively review and mentor in larger and more complex (and
hence fewer) pull requests per sprint. So, the process was gaining efficiency as

Outcomes | 81

trust in the process grew. Over the year, Symphony averaged about 4,728 lines of
merged InnerSource code per sprint for a total of 113,471 total lines of code
merged. The average number of InnerSource pull requests merged per sprint was
about 11.

India Domestic’s graph (Figure 5-8) also shows significant progress but with a
different pattern with a single noticeable spike. The spike occurred because there
was an accretion of contributions ready to merge during a feature freeze. PayPal
has long used a seasonal moratorium on merging new code to control risk of
production destabilization during the most critical periods of customer activity,
such as the holiday shopping season. Since the engineers continue to code during
a feature freeze, this necessary practice of merge moratorium engenders a surge
in new code merges whenever a moratorium is lifted. As with Symphony, it also
took some time for the team to really hit their stride in terms of alignment and
working cadence to produce and gain acceptance for their InnerSource contribu‐
tions, and that stride was optimal in the quarter before product launch after they
had learned the lessons of submitting smaller changes and working within the
host’s guidelines for the best outcomes.

The Rhythm of InnerSource Work
Along with the discipline of working in two-week sprints, overlaying Inner‐
Source work into the equation seems to have created a specific cadence. Trusted
Committer was a rolling responsibility on Symphony and India Domestic teams,
with most engineers taking on TC duties in shifts in this project lasting one or at
most two consecutive sprints. The “sawtooth” graph shape (where a single very
successful sprint is followed by a much lower number of lines of code merged in
the next sprint) is common across both projects. This indicates a break in the
mentorship pipeline, as large merges actually take multiple sprints to review
before they can be merged, and often teams change Trusted Committers just
after a big merge. The new Trusted Committer begins the next large piece of code
review, but very little is merged in the interim.

Along with the passive accretion of actionable documentation as a consequence
of written mentorship from Host Trusted Committer to guest contributor, there
are a couple of additional benefits of InnerSource. One is gaining new insight on
the part of Hosts into the complexities of their software silo. The CTO’s office
had long been requesting that all silos modularize their code, but many struggled
with refactoring and modularization before InnerSource and it was slow going to
achieve adequate modularization. As mentioned before, answering guest contrib‐
utor questions proved invaluable in providing insight to where modularization
would have the biggest impact to make a given piece of functionality easier to
understand and contribute to.

82 | Chapter 5: Checking Out InnerSource at PayPal

Another benefit is identification and indoctrination of remote talent. In both
experiments, Hosts learned of one or more Guests who achieved a high level of
reliability in pull requests they submitted after an initial round of TC mentor‐
ship. One engineer in Singapore so distinguished himself that he became a Guest
Trusted Committer on the Symphony team!

Thus, we determined that InnerSource brought several benefits, some of which
have already been mentioned:

• Useful documentation generated through the mentoring process without
extra effort

• New insight by Hosts into their software’s complexity and where best to
modularize it

• Identification and training of remote talent
• Most of all, developer satisfaction

Of course, the biggest win is when engineers express a preference to continue
with InnerSource. The Symphony team ended the year by announcing a rearchi‐
tecting plan that would be run using only InnerSource methods from the start.
Once team members see the potential of InnerSource realized in their daily work,
they are generally hungry to continue to work this way.

The Future of InnerSource at PayPal
The InnerSource experiments that PayPal ran in 2016 proved that InnerSource
could work even at the very center of PayPal’s stack, although of course with sig‐
nificant mentorship to keep the team moving in the right direction. It was recog‐
nized by senior management that InnerSource would involve both cultural and
procedural changes. Based on these results, the company decided in 2017 to
devote resources to scaling InnerSource across all of PayPal.

The India Domestic team was also able to make enough progress exclusively
using InnerSource that their 2017 plan was fully funded.

Through our experiments at PayPal, we gained many insights and experiences.
We conclude this chapter with the most important takeaway lessons that may be
useful to other companies who are considering adopting InnerSource:

Peer support and training are crucial
It’s easy to dismiss a new approach as “too time consuming” or “too much
work” until you’ve sat in a room with enthusiastic participants. Time and
again during training we saw skeptics swayed to at least give InnerSource a
try after they heard from peer colleagues who had previously worked on the
CheckOut team (or on Symphony) that our claims for this new paradigm
were true in their experience. Since the training for InnerSource is really an

The Future of InnerSource at PayPal | 83

exercise in confessing and debunking fears, it’s a very important conversation
to set up the exercise for maximum chance of success. Without such training
sessions to inform people about InnerSource, they may form their opinions
based on hearsay or misinterpretations from others.

Regular check-ins help you keep the InnerSource train on the tracks
It’s unrealistic to expect that team members will remember everything dis‐
cussed during training. They will fall back on the optimizations with which
they are already comfortable. Checking in and listening carefully to what
teams report in their regular check-ins, along with timely reminders of
nuances in the new approach, can save time and frustration.

Metrics matter
In the beginning you can use simple metrics to sanity check that InnerSource
will work for you. One outcome of our Symphony year was a plan for a more
comprehensive tool, “SeazMe,” which will not only be the aggregation point
and persistent archive for our passively accreted documentation, but will also
be where we watch at scale for the emergence of anomalies and anti-patterns.

Scaling out InnerSource takes planning
Management commonly underestimates the amount of work involved in
scaling out InnerSource as a practice across the whole company. After Sym‐
phony, senior management wanted the InnerSource Team to turn on a magic
spigot that would spread InnerSource throughout the rest of the company,
but without increasing the size of the InnerSource team and without com‐
pleting any of the necessary tools.

The India Domestic team further proved that with sufficient guest motivation,
InnerSource can work at PayPal even without executive mandate. In the end, that
team submitted InnerSource code to no fewer than 23 silos within the company,
each of which had varying levels of experience and bias when it came to Inner‐
Source. They developed a number of tactics, including:

Adopt a win-win mindset when approaching InnerSource
Their focus was not only on getting work done, but also on exploring and
articulating how InnerSource contributions would strengthen the host code-
base and product. A case in point was enablement of two-factor-
authentication experiences during card transactions. Once enabled as part of
the India Domestic project, the feature was rolled out in other geographical
regions and is adding tremendous value to various markets, such as Europe,
with zero code change.

Be patient when scheduling with a Host team
The India Domestic team proved that being a respectful but persistent guest
was a viable tactic within PayPal to eventually gain agency with a given Host.
Early initial contact, regular follow-ups with host teams, and scheduling

84 | Chapter 5: Checking Out InnerSource at PayPal

actual meetings to close out pull requests on a pre-consented basis can keep
the InnerSource project moving forward, if slowly.

Plan for rebasing after a pull-request merge
Early on, the India Domestic team had to circle back and rework previously
merged guest contributions when the host undertook a major codebase reor‐
ganization. They learned it was best to get in front of likely rebasing activi‐
ties. They worked with the host team to gain access to automated test
regression suites (which were still not included as visible code in GitHub). If
no test suites were shared with the guest team, it had to plan for increased
capacity regression. Scheduling a “Plan & Review” of identified regression
test cases with domain Product Owner and product management teams can
give early warning of any issues in an InnerSource plan. If this involves
undue effort, then working on ways to further automate the regression suites
might be preferable and could benefit both the teams.

Know release cycles and plan to fit in
Merge moratoriums caused some headaches for the India Domestic team,
resulting in that big spike on their graph and apprehension that could have
been avoided. Working early with the host team to involve all stakeholders,
including the product owner and the architecture review teams, in the plan‐
ning process would have facilitated better coordination. Another best prac‐
tice would be host teams publishing release cycles for each quarter.

In the end, PayPal’s InnerSource experiments in 2016 proved that InnerSource
could work at PayPal for core components under restructuring and could be very
helpful in determining how and where to modularize. The Symphony project
also exposed anti-patterns such as too frequent job changes (which necessitates
constant retraining to create continuity of effort) and how brand dilution can
occur when a new practice is co-opted by hopeful imitators adopting buzzwords
without understanding, which can create bad experiences and kill adoption.
Looking back at the questions we sought to answer, we developed some answers:

Could InnerSource work in situations where there was a lot of initial pushback?
Yes, but it requires careful training, executive support, and timely efforts to
combat brand dilution in overcoming pushback.

Could InnerSource work along with other initiatives such as Agile and CI?
Yes! The only issue in harmonizing with Agile was that the standard Agile
advice to physically co-locate teams tends to cause too much verbal trans‐
mission of knowledge. Geographically diverse teams tend to build up better
documentation as a result of asynchronous written communication patterns.

What kinds of training or coaching would be most effective?
In-person training is still the most effective, but it doesn’t scale. Experiments
in scalable online training were under way as this chapter was being written.

The Future of InnerSource at PayPal | 85

What extrinsic rewards would best overcome reticence?
For PayPal, enlightened self-interest is the best motivator. Coming up with
ways to link increased collaboration with career gains will be key to contin‐
ued uptake of InnerSource as a method.

What metrics would be most useful?
Since you are what you measure, you want to make sure you’re tracking met‐
rics that reinforce key behaviors you want to encourage. Now that the ways
InnerSource can work inside of PayPal are better understood, a metrics suite
is under development. It focuses on counting effective collaboration, men‐
torship, improved quality, and increased velocity due to the accretion of
actionable documentation in the form of mentorship/code review advice.

What cultural impediments to successful InnerSource would be encountered and
how would we mitigate them?

As mitigations have been sought for the various challenges encountered and
described in this chapter, it has become clear that fitting InnerSource into a
complex organization with some history and a clearly defined culture takes
diligence, patience, and skill. But those very qualities also make the work
rewarding.

Acknowledgments
The InnerSource Program at PayPal has enjoyed many champions. First, I’d like
to thank the members of the original InnerSource Team: Duane O’Brien, Cedric
Williams, and Silona Bonewald. Kanchana Welagedara was an early team mem‐
ber, and more recently Cia Gilbert has joined as well. Bill Scott and Arnold Gold‐
berg, along with Edwin Aoki, have provided executive-level air cover, funding,
and support. Lastly the India Domestic team who did such a great job of building
their grassroots InnerSource experiment was led by Satish Vaidyanatha, and
included Shankari Sadhasivam, Harish Annam, and Siddick Ebramsha.

86 | Chapter 5: Checking Out InnerSource at PayPal

1 A service that comes with APIs for integration in external applications as well as two web fronts that can
directly be used by customer employees.

CHAPTER 6

Borrowing Open Source
Practices at Europace

With Isabel Drost-Fromm

Year, place founded: 2011, Berlin, Germany (subsidiary of Hypoport AG,
founded in 1999)
Area(s) of business: Financial services
Revenues: ca. €78 million (2017)
Offices: One location (with several remote colleagues)
Number of employees worldwide: 150
Number of software engineers: 70
Year of InnerSource adoption: 2017

Europace AG is a medium-sized FinTech company founded in 1999 in Berlin,
Germany, employing about 150 people. It operates Germany’s largest financial
marketplace for mortgages and consumer loans in Germany, as well as related
insurances. With its transaction platform,1 Europace creates and develops mar‐
kets for its customers. Its fully integrated system is a digital marketplace that con‐
nects financial advisors with almost 500 partners, including banks, building
societies, and insurance companies. Financial advisors use the EUROPACE
frontend to choose from the best financing offers for their clients, and Europace
APIs enable partners to build their own applications based on the company’s sys‐
tem. Several thousand users are involved in more than 35,000 transactions, rep‐
resenting a total value of approximately four billion Euro each month. Europace’s

87

platform is compliant with German and European financial (e.g., WIKR/BAFin)
and General Data Protection Regulation (GDPR) laws and standards. The com‐
pany is a fully owned subsidiary of Hypoport AG, a corporation listed at the Ger‐
man stock market prime standard. This standard has been part of the SDAX
since 2015, a German stock market index of 50 small and medium-sized compa‐
nies.

Looking for New Ways of Organizing
The company has a long track record in using Agile methods such as XP and
Scrum at the software development level. The next step was bringing the same
agility to the entire organization. In 2015, the company started its journey toward
decentralized self-organization. We started looking at different governance forms
such as Holacracy and Sociocracy, which seek alternative forms of organizational
governance based on consent for decision making. Our goal was to build a lively
self-organizing outfit supported by frameworks that allowed us to shift responsi‐
bility to personnel with the most expertise. We found the ideals of Holacracy and
Sociocracy appealing, but could not find comprehensive guidelines for applying
these principles to software development. Ultimately, management’s research into
Holacracy and Sociocracy helped it to accept the InnerSource mission and
worldview more easily than most companies would. At the same time, the emerg‐
ing practices of the InnerSource community enabled us to fulfill our broader
mission on empowering and giving responsibility to our frontline developers.

Our fundamental belief is that Europace employees are experts in their field, and
very capable of making the right decisions. After all, they are close to the business
and have profound knowledge of their customers. What used to be one software
development team was split into four autonomous units with roughly 30 employ‐
ees each. Every unit has their own set of customers and priorities. After the split,
each unit became fully responsible for their products and end-to-end process,
and each adopted a DevOps culture to secure the collaboration needed between
customer-facing team members and operations staff.

At Europace, we dedicate much attention to growth, organizational development,
and improvement. The four units are getting support from several central teams,
including one called People and Organization (PnO). PnO supports teams in the
transformation from a hierarchical, centralized decision-making organization to
a higher degree of self-organization. In addition, PnO coaches support our
employees with personal coaching and leadership development. Many other
companies offer such a level of support and coaching only to senior leadership
and management.

Being a medium-sized company, most of our colleagues are located in one build‐
ing in Berlin. A few colleagues are located in a city nearby (Lübeck), while
another few are telecommuting. Because most colleagues that collaborate on a

88 | Chapter 6: Borrowing Open Source Practices at Europace

http://bit.ly/2y9Y7Lv
https://www.holacracy.org/constitution
http://www.sociocracyforall.org/sociocracy/

day-to-day basis are co-located, much information sharing and decision making
traditionally happened face-to-face. As the company grows, we are looking to
become more facilitating to remote workers, so that we can hire from a larger
pool of potential employees who may not want to move to Berlin. We also think
that supporting people to work from anywhere makes us a more attractive
employer. Ultimately, we believe that happy employees who can find a good bal‐
ance between work and family perform better.

The decision to support remote workers, however, meant that we had to identify
new patterns for collaboration and decision making. While an increased level of
team autonomy meant that a lot of decisions could be taken locally, a downside
was that development units were getting increasingly isolated and “siloed.” While
best practices such as code reviews, and in some cases pair programming were
already being adopted, thus facilitating knowledge sharing, we still relied heavily
on face-to-face communication. Failing to record decisions and their rationales
meant that they were hard to track down over time.

Furthermore, there still was a high technical interdependence of teams. Because
of our growth, what once was one team developing one software product was
split into four units, each with separate customers. As a result, the product teams
are still technologically interdependent, and some components have several
dependent teams. Despite our efforts to decouple this into several subsystems,
development prioritization today cannot happen entirely autonomously.

Starting the Journey Toward InnerSource
Europace had been using some InnerSource practices, but had not formulated a
formal InnerSource program. Starting early in 2017, we established our efforts in
a more systematic way.

Europace had been using best practices, such as continuous integration and con‐
tinuous deployment, and modern tools such as Git for version control, issue
trackers (some teams had adopted JIRA, others had moved to Trello), and Slack
for communication. Some of the teams had been using the hosted version of Git‐
Hub, while others still hosted their code on an internal Git server. All developers
had read access to almost every code repository or could get such access fairly
easily. Technical foundations to work with pull requests were in place but were
being used inconsistently.

Adoption of services and tools was mostly driven by a need for automation. Git
interacts with automated tools more easily than Subversion, the source control
system we used previously. Even though Europace operates in the traditionally
conservative financial services sector, the company has a progressive culture of
keeping an eye open for new technologies, and we adopt them when it makes our
internal work faster and easier. One example of that attitude is our adoption of

Starting the Journey Toward InnerSource | 89

Docker, which we adopted during a time when it still suffered from instability on
nonmainstream platforms. Initially, we used Docker only for a greenfield project
on the fringe to limit risk for our core product. As the upstream project matured
and we got more experienced, we rolled Docker out on a wider scale. We con‐
sider ourselves lucky to have some engineers in our teams who understand the
value of being involved upstream—watching the projects that are vital to our
platform, and occasionally even getting active in these projects. Being active in
upstream projects made our engineers train and appreciate Open Source work‐
flows.

Why InnerSource?
As mentioned, Europace already had a lot of the important tooling in place, but
the way it was being used varied a lot. For us, adopting InnerSource as a branded
concept that we could market within the company helped us to consolidate these
efforts into one bigger initiative using this label. It also helped to draw in every‐
one who previously might not have worked together on these separate efforts and
make collaboration something that we could design actively. There were a num‐
ber of challenges that we hoped to be able to address by adopting InnerSource,
which we discuss next.

Capturing communication and decisions
While we had been using Slack for communication, a lot of communication was
still happening face-to-face because we were all based in the same building.
While this is in the spirit of good Agile practices (one of the 12 principles behind
the Agile Manifesto states: “The most efficient and effective method of conveying
information to and within a development team is face-to-face conversation”), the
extent to which we captured the outcome of this communication in some written
form varied a lot. Furthermore, the degree to which people could search and find
this archive of our communication and decisions varied even more. As a result, it
could be very difficult to trace certain development and product decisions back
to their origin, unless you were part of the meeting where those decisions were
taken—and you could still remember it.

A clear focus on writing decisions down over verbally communicating them
helps to alleviate this problem. If convenient, employees were taught to use Slack,
GitHub discussions, or other archived media for discussion; if they found it more
convenient to engage face-to-face, on the phone, or in a video call, they were
urged to summarize the key points afterward in an archive. In order to achieve
that focus, we started with a core group of InnerSource enthusiasts who were
leading by example. Going forward, those people were helping their peers to
adopt this communication style. The insights learned by those leading employees
were gathered and finally published on our company tech blog—with nonsensi‐

90 | Chapter 6: Borrowing Open Source Practices at Europace

2 See http://bit.ly/2HPofLf for the basics and http://bit.ly/2JLKbZA for the first cross-team insights.

tive content posted publicly,2 and access to sensitive content restricted to employ‐
ees only.

Improving task transparency
Most teams used either Trello boards or JIRA for planning. Although these tools
can be configured to make decisions visible to outsiders, teams often deliberately
limited both read and write access to these resources to their team only. Standard
workflows for these tools are designed around one cohesive team instead of invit‐
ing collaborators from the outside to participate. That made cross-team collabo‐
ration unnecessarily hard and we’ve found this to be a common source of
misunderstandings. GitHub does a much better job of exposing information by
default: it encourages you to keep source code and issue management in one
project, makes it easy to link relevant discussions (commits, issues, and pull
requests) together from any location, and makes it easy to search across issues,
communications on pull requests, and code. Our goal with InnerSource was to
make these discussions as transparent as possible. This goal was supported by a
general trend toward an increased level of transparency in our organization at all
levels of the company. This included support from our senior leadership, who
wanted to move away from traditional hierarchical decision-making processes in
favor of self-organizing teams.

Finding a better balance of autonomy and collaboration
While we wanted teams to become as autonomous as possible, our pursuit of this
goal led to the point where they became isolated silos. This in turn hampered
cross-team collaboration because teams had different priorities. Starting a con‐
versation about InnerSource was one of the forces that brought our focus back to
collaboration—even across unit boundaries—while at the same time it provided
the tools, patterns, and processes for units to remain as autonomous as possible.

Evolving teams and accountability
Teams grow and evolve as members may join and leave a team once features are
finished or projects come to an end. When people leave, they take their knowl‐
edge and expertise with them, and this can become a real problem if there is
nobody left on a team who can be held accountable for certain parts of the code.
Introducing the concept of Trusted Committership helped make accountability
transparent and self-selected. For one thing, introducing the concept of a Trusted
Committer removed the tension between wanting to collaborate, without hand‐
ing out write access to the codebase from the beginning. That way, mentoring
new developers was built into the process, independent of whether they were new

Starting the Journey Toward InnerSource | 91

http://bit.ly/2HPofLf
http://bit.ly/2JLKbZA

hires or seasoned developers who were working in a different team. This in turn
meant that mentoring itself gained in value as a contribution. Frequent contribu‐
tors to a project were invited to serve as Trusted Committers as well. We found
that people took it upon themselves to take responsibility for what was now their
project. This self-selected responsibility is much preferred over inheriting
responsibility by virtue of simply being hired into a certain team, because people
who do so are signaling that they want to develop as leaders within the commu‐
nity. As someone evolves and rises to become a Trusted Committer, they will
become part of the movement, which helps to increase their motivation.

InnerSource Experiments
The first thing that changed a couple weeks after the introduction of the Inner‐
Source program was the more widespread adoption of pull requests as a model
for collaboration: having a name for collaboration that comprised that workflow
made it easier to talk about it and convince others to join.

Europace units each work to fulfill the needs for one type of platform user (offer‐
ing mortgage products through our platform; selling mortgage products; offering
and selling loan products; and exclusively supporting our biggest customer).
Typically one unit has at least ten team members. As units grew, teams of two to
eight people were formed. A team would take responsibility for adding new fea‐
tures to the platform, or would improve and refactor existing features. Typically
such a task takes from a couple weeks up to a few months to complete. Once a
team’s task is finished and has reached a stable state in production, team mem‐
bers are (at least as of today) free to form new teams or join other teams.

In one of the units, developers were already striving for a four-eye principle in
code development. Although that level of oversight was not strictly enforced,
people were strongly encouraged to work in pairs for all development work. Each
team would also strive to have at least one more seasoned developer as well as
someone who could serve as a product owner for that functionality. As this unit
grew toward 30 members, it became unfeasible to get support and guidance from
experienced members through pairing alone. Finding a common time slot where
people could work on the same piece of code became increasingly a challenge.
Instead of pairing up, people could resort to an asynchronous workflow. Using
pull requests meant that people could still benefit from a second pair of eyes and
receive mentoring and feedback before merging.

The second change happened a couple months later. This time InnerSource was a
means to improve cross-unit collaboration. One team within unit A had devel‐
oped a microservice that a team within unit B wanted to reuse. Deployment of
the microservices remained separate, but coding happened in the same reposi‐
tory. Resorting to InnerSource meant that people could stay at their desks and
within their teams, but still be able to collaborate. The developers working on

92 | Chapter 6: Borrowing Open Source Practices at Europace

that project were coming from a world where write access to repositories was
granted as soon as developers were assigned to a project. In this project, we made
a few changes that people had to get used to. Write access was handed out in a
meritocratic way, rather than by default. Only after contributors had earned the
trust of the maintainers of that service did they get write access to the repository.
This essentially converted the new contributors to Trusted Committers; as such
they were publicly recognized for their contributions, but they also became
responsible and accountable for the further development of that service.

As we were increasingly working from different locations, much of the discus‐
sions around requirements, architectural design, and deployment already hap‐
pened in written form—though in this iteration separate from the code, stored
either in a Trello board that wasn’t linked to code development or in an ad hoc
Slack channel that was created just for this collaboration project. Working across
units required us to improve our documentation to onboard new developers as
well as to document best practices for making contributions.

The third change was brought about by the second cross-unit collaboration. This
time, we decided to get coding discussions closer to the repository, linking issues
and the surrounding discussion to the commits made.

Steps Toward InnerSource
At first, the definition of “InnerSource” wasn’t much more specific than “apply
Open Source collaboration principles to projects inside a company.” The practi‐
ces that we established at Europace aligned closely to best practices within the
Apache Software Foundation (ASF) (see Chapter 2) as well as in Open Source
projects in general. But to explain practices internally to team members who
didn’t have much knowledge of the ASF, what helped communicate the bigger
picture and identify a viable language were observations and best practices
shared by the InnerSource Commons community.

The path toward a more formal InnerSource initiative at Europace started with
establishing a specific role responsible for coordinating these efforts. With over a
decade close to and within the ASF, I was brought onto the team to give members
a deep dive into how globally distributed organizations work. Hiring someone
with several years of experience in running Open Source projects, mentoring
contributors, and mentoring projects that joined the ASF helped us understand
the reasoning behind the principles and patterns InnerSource suggests.

However, it also meant that from the start it was clear that collaboration patterns
would have to be evaluated for their utility within our context, namely, a
medium-sized company, operating in Germany, located almost exclusively in one
office building (with a handful of remote colleagues), subject to German employ‐
ment and privacy laws. As one obvious example, that means not leaking any pri‐

Steps Toward InnerSource | 93

http://bit.ly/2JUUXQm
https://producingoss.com/
https://producingoss.com/

3 A special thanks here to Henri Yandell for mentoring through my first days and weeks in the role as
Open Source Strategist.

vate data from customers or employees to third-party services like Slack or
GitHub (unless they have agreed to this data being processed on the respective
service).

We started our approach by focusing on two goals. First, we needed to get people
on board with the idea. Second, we had to provide an environment that was sepa‐
rate from the production environment so that we could try out new processes
and roles.

Getting People on Board
To get people on board, we first identified different groups of people that would
be affected by our InnerSource program.3 We identified four different groups of
stakeholders:

• People who had already been independently leading some of these efforts,
prior to our InnerSource program

• People who were likely to block these efforts
• People who likely would greet these efforts with enthusiasm and joy
• People who knew a lot about the company history and context for the initia‐

tive, its potential roadblocks, and its benefits

The first step was to get one-on-one conversations going to understand where
people stood, what benefits InnerSource could bring to them, and what concerns
they might have. To make these conversations happen in a casual manner, we
usually had them as lunch conversations.

After it was clear that almost everyone was facing similar challenges in collabora‐
tion—in particular when crossing unit boundaries—we brought interested devel‐
opers, team leaders, and project managers together, again in an informal out-of-
office, pay for your own lunch setting. This meeting turned into a monthly
recurring roundtable where InnerSource (and Open Source) enthusiasts would
exchange their ideas, share experiences, and provide general support to each
other. What we managed to achieve was to retain at least one motivated partici‐
pant from each unit over the course of the entire first year.

To make transparent who was helping drive the InnerSource initiative, we deci‐
ded to use the concept of Trusted Committership also at the meta level: those
who regularly served as InnerSource mentors for their teams, answered questions
on InnerSource questions, and encouraged others to adopt InnerSource best
practices were asked to become Trusted Committers. Giving them this role in a

94 | Chapter 6: Borrowing Open Source Practices at Europace

4 Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb, “Managing a Corporate Open Source Software
Asset,” Communications of the ACM 53, no. 2 (2010) 155–159.

formal way highlighted what they had been doing all along. In many cases it led
to increased motivation, because people now felt part of a movement. As a result,
we anticipated that they would spend more time and energy driving InnerSource
adoption with their peers.

Leading by Example
When starting the InnerSource program formally, the first question that we had
to address was: how do we organize the InnerSource program itself? In particu‐
lar, we had to address questions such as:

• How should InnerSource tasks be made transparent?
• How do we get people to ask questions to the community out in the open?
• How should we track documentation that we collect over time?

We made a conscious decision to design communication processes independ‐
ently of existing internal communication practices, but reuse tools that were
already available in the organization. The goal was to establish a project environ‐
ment that was as close to your typical (Apache) Open Source project as possible,
so others could experience the benefits (but also the challenges) firsthand,
instead of just hearing about them. We made that environment as open as possi‐
ble to invite everyone to participate and shape the InnerSource initiative. It also
meant that people who were unfamiliar with the technology and process could
try them out in a safe environment that didn’t affect any production systems—
just in case they would break anything. As a result, we decided to first create what
Vijay Gurbani and his colleagues have described as an “infrastructure-based”
InnerSource program (see Chapter 1).4

We set up a GitHub repository (called “ep-innersource”) to track everything
related to our InnerSource work. We also created a dedicated Slack channel for
discussions about the InnerSource program. Initially, we also mirrored all activity
coming from the InnerSource GitHub repository over to that channel. But
because this soon became overwhelming, activity from the InnerSource GitHub
repository was forwarded instead to a second separate Slack channel. This was
inspired by how Apache projects work with mailing lists: any change to the
repository, issue tracker, or on the wiki is mirrored to a dedicated commits mail‐
ing list. That way, there is a single source to trace back decisions and modifica‐
tions to project artifacts. In other words, if it didn’t happen on the mailing list, it
didn’t happen.

Steps Toward InnerSource | 95

The content and function of the GitHub repository focused on the InnerSource
initiative itself. The repository’s purpose was twofold. First, it served as a place to
list current items that we worked on, in order to be fully transparent. The issue
tracker in GitHub proved to be quite useful for this purpose. Second, the GitHub
repository served as a place to collect persistent documentation of previous dis‐
cussions and decisions. Storing these in Markdown format in the repository itself
worked well for that purpose.

After running the first two experimental InnerSource projects, we noticed some
recurring issues. One issue was deciding who would become responsible for
monitoring the service that was being developed as an InnerSource project. At
some point I documented what we learned in the pattern format she had first
seen on the InnerSource Commons website, and posted the resulting text as a
pull request to be included in our internal InnerSource documentation. Through
regular GitHub review comments, others who had participated in those experi‐
mental InnerSource projects could make suggestions on how to change the text
to better reflect reality. After the document was finalized, I submitted it publicly
as an InnerSource pattern. The ability for anyone to participate in the process of
content creation, seeing the result published externally, and giving credit to con‐
tributors, increased the motivation, engagement, and participation of those
involved.

InnerSource Principles
Developing a common internal understanding of what InnerSource meant for
Europace required some more effort. Together with one of our UX experts, we
developed a concise set of six principles of InnerSource at our organization.
Again, the resulting draft was shared as widely as possible within Europace. We
announced it on the internal InnerSource Slack channel. At the same time, I cre‐
ated a GitHub issue in the ep-innersource project tracking progress on develop‐
ment, and put a link including a brief explanation out on the “general/smalltalk”
Slack channel. Finally, I reached out personally to people with the specific request
to get the document reviewed. Again, everyone was invited to give feedback, ask
questions, and make changes. As the document stabilized, a final message was
sent out in the spirit of Lazy Consensus. Everyone was invited to go through one
more cycle of review until a week from that message. A lack of response from any
particular person implied you agreed to the current state.

The processes described here show how we learned to make decisions out in the
open, for everyone to see and participate in, much as described in Jim Whitehur‐
st’s book The Open Organization Workbook. This meant that people were much
less surprised when a certain decision was finally announced, and that those
interested in the topic could participate freely and openly. The result was a shared
and earnestly accepted set of principles and rules:

96 | Chapter 6: Borrowing Open Source Practices at Europace

http://bit.ly/2MtuW9h
http://bit.ly/2t9VfIG
http://bit.ly/2laVwHM
http://bit.ly/2JRw2xb
https://red.ht/2l86Vbt

Make everything open, transparent, and findable
Project artifacts (source code, documentation, etc.) should be accessible to
anyone within the company and easy to find. Barriers to participate in a
project should be as low as possible.

Encourage contributions over feature requests
All stakeholders of a product see themselves as potential contributors—and
are being treated as such by the project. In the spirit of a meritocracy, we
assume that good contributions can come from anywhere. Contributions
remain suggestions—communication and coordination remain important
before investing large amounts of time in an implementation that might be
rejected later for reasons that in retrospect look trivial. Contribution rules for
participating in a project are openly documented and binding on those par‐
ticipating.

Favor written over verbal communication
It should be possible to participate asynchronously in a project. In order to
enable asynchronous decision making at the project level, communication
needs to happen in written form. Project-relevant discussions that don’t hap‐
pen via the project’s selected main communication channel should be sum‐
marized and archived. That way, all relevant communication can be read and
followed by all colleagues, even long after the discussion happened, ensuring
that a larger number of people can participate in the project. As a side prod‐
uct, a basic level of documentation of the project history will start to accrete.
There are exceptions to the rule, in particular for discussions related to peo‐
ple issues or security issues, so communication needs to happen as publicly
as possible, but as private as necessary.

Embrace mistakes
When communicating in mainly written form, mistakes can no longer be
erased but potentially remain readable company-wide. This requires a cul‐
ture where mistakes are seen as learning opportunities and chances for
improvement.

Welcome all contributions
All contributions (source code, documentation, bug reports, constructive
discussion, marketing, user support, UX design, operations) are valued.
Contributions to projects are rewarded: those who add value to the project
are invited to become Trusted Committers. All Trusted Committers are visi‐
ble throughout the company.

Maintain a project memory
Written advice is allowed to accrete in a persistent, searchable archive. All
project-relevant decisions, design documents, and other artifacts are kept in

InnerSource Principles | 97

that archive. All communication can be referenced by stable URLs, which
ideally can be searched and accessed by all employees.

InnerSource Results
Over time, we saw some major benefits in how our InnerSource projects were
collaborating. Adopting InnerSource principles meant that the process of coding
as well as the decisions that led to code changes became more transparent. Previ‐
ously, our culture focused too much on the “minimal documentation” side of the
Agile principle of “Working software over comprehensive documentation,” and it
was often unclear why a certain piece of code had been written the way it was.
Moving decision making, architecture design discussions, documentation, and
code closer together meant that changes were easier to track without the need to
introduce many formal requirements for documentation up front. This in turn
raised the interest in InnerSource among people who were not developing source
code on a daily basis—notably project management and UX designers.

Using best practices for asynchronous decision making helped to reduce our
dependencies on face-to-face communication. It became easier to pull in exper‐
tise from people initially not involved in the development of a feature without
having to repeat verbally what had been discussed about that feature earlier.
Those practices also improved transparency: they helped everyone see which
projects were currently under development, what state they were currently in,
and what challenges they faced. Making challenges visible helped resolve them
more quickly. Also, that way, it became less likely that teams would go off and
develop different solutions for the same technological challenges.

Valuing pull requests as a means to collaborate meant that senior project mem‐
bers were able to provide input and support even when not assigned to work on
the same feature as the developer who had questions. It also meant that newcom‐
ers to the team could get up to speed faster: the ease of getting code reviews
through pull requests meant that there was a safety net that encouraged new
team members to make valuable contributions quickly after starting on the team.
The asynchronicity meant that developers could collaborate across unit bound‐
aries, across different locations, and across different time zones. We no longer
had to first colocate people, synchronize their meeting schedules, and release
plans.

Establishing Trusted Committership as a reward led to developers feeling more
accountable for the projects they had contributed to. They became more engaged
with the projects they had gained trusted committership for. Handing it out as
something that had to be accepted by the nominee helped with making that
accountability something that is self-selected and a conscious decision.

At the code level, we observed an increase in cross-unit collaboration and outside
contributions to projects. Both the quality of reviews and the quality of the code

98 | Chapter 6: Borrowing Open Source Practices at Europace

itself improved substantially. We observed a speedup in development, because the
work shown on a pull request was a clearer basis for discussion than informal
requirements communicated across unit boundaries. Iterating on actual code,
even if in a draft state, helped speed up mutual understanding, decision making,
and thus implementation.

InnerSource: One Year Later
At the time of writing, about a year after we started our formal InnerSource pro‐
gram, we are seeing that cross-team collaboration is happening. People are using
pull requests and have started to see the value of having documentation produced
as a side effect of simply communicating online, using either Slack channels, Git‐
Hub issues, or pull requests for communication.

Currently our InnerSource projects are relying heavily on GitHub for collabora‐
tion. As a result of the GitHub workflow, source code, issues, and code review
comments are easy to link together. Particularly where some of the participants
are working remotely, in other units, or on different time schedules, much of the
regular project communication is happening in written asynchronous form
within GitHub issues and pull request code reviews. As a result, there’s a lot more
communication that automatically accretes over time.

Some projects have started using the concept of Trusted Committers. The con‐
cept serves two purposes: as a way to communicate that Trusted Committers are
the ones accountable for the project, but also as a way of rewarding valuable con‐
tributions to InnerSource projects.

InnerSource Challenges
While InnerSource has brought several benefits, we’ve also identified some chal‐
lenges during our transformation.

Building Trust in Written Communication
It can be challenging to trust the judgments of people you work with if you don’t
meet on a day-to-day basis. It can also be intimidating to expose yourself to cri‐
tique from others if you don’t know them very well, which, again, is an effect of
not meeting them every day. In one early experiment involving two units, we had
five engineers collaborating on a microservice that was needed by both units. Ini‐
tially, some of the developers were using GitHub, but still committing directly to
master without going through a pull request model that would have allowed oth‐
ers to review and comment on the code. After considerable encouragement,
everyone finally agreed to work with pull requests.

I had the chance though to observe people’s behavior both online and offline. I
noticed a difference between how reviews were conducted online in GitHub

InnerSource Challenges | 99

repositories, and what people on the InnerSource project were chatting about
offline at their desks: some of the technical issues that people were complaining
about in person never seemed to make it into the digital archive. In addition,
people were discussing about how certain reactions they had gotten in their code
review should be understood.

I concluded that there was still an invisible barrier between participants in differ‐
ent units. As a quick fix, we organized a shared, informal lunch session to get
everyone together to chat and socialize as a form of team-building. The goal was
for people to get to know each other, to get participants in the InnerSource
project more familiar with how we were communicating, and hopefully to make
people realize just how much common ground they shared.

In the days and weeks that followed, we saw that communication steadily
improved. Spotting friction in a distributed, online setting tends to be much
harder than in a co-located setting. In our experience, finding ways to remove
that friction in a distributed setting is also more important than in a colocated
setting, because textual communication has far less bandwidth than personal
communication. As a result, misunderstandings can arise more easily. Making
sure that people have met each other in person makes communication through
written channels easier.

Scaling InnerSource Beyond First Experiments
One challenge we face is to achieve a more widespread adoption of these best
practices. Some people have started to communicate the benefits of those
changes in the way they work, inspiring others to pick up this mode as well. Oth‐
ers have started to give presentations on their experiences and write blog posts to
spread the word further. However, we need to do more work to evangelize our
InnerSource program. We also need to spend more time teaching our colleagues
the values and principles that InnerSource brings as well as the tooling and work‐
flow that our initial experiments showed to be effective.

Another challenge that we face in scaling up our InnerSource program is related
to the nature of our industry. While for many projects there are no legal restric‐
tions before moving to private repositories on GitHub, there are other codebases
for which the situation is not so clear. Currently discussions are ongoing around
questions such as:

• Which parts of our codebase must be hosted on-premises?
• Can we host our source code on an external platform at all?
• What kind of information has ended up in our codebase over time: is it only

code, or do our repositories contain any access keys, or worse, any kind of
personal data that made it into test data?

100 | Chapter 6: Borrowing Open Source Practices at Europace

Getting Other, Nondeveloper Colleagues on Board
Another challenge lies in getting product managers on board as well. Managers
often don’t perceive themselves as potential contributors, because they don’t write
any code. However, it makes perfect sense for someone with a deep understand‐
ing of project priorities and customer needs to become a Trusted Committer for
other types of contributions, including requirements and documentation.

Crossing the Boundary Toward Open APIs and Open Source
At the time of writing, people are starting to see the potential of InnerSource
when combined with Open Source activity. Colleagues already active in upstream
Open Source projects have an easier time switching between their work at Euro‐
pace and in those Open Source communities, because they use similar develop‐
ment and communication processes and tooling. This makes it very easy to
switch back and forth.

We also saw how our InnerSource program became a “training ground” for par‐
ticipating in Open Source projects. The opportunity to engage in Open Source
practices within our organization helped lower the barriers to start contributing
to Open Source projects. Some of our colleagues who hadn’t been active in Open
Source projects became motivated to participate upstream. Other colleagues who
worked on external APIs of our platform are using what is being developed
through our InnerSource initiative as a basis to streamline communication and
collaboration with external partners, as well.

Conclusion and Future Outlook
Although rolling out InnerSource in an organic as opposed to a top-down fash‐
ion meant that things were moving fairly slowly in the beginning, we found the
change it brought to be sustainable. Moving forward, it helps tremendously to
have people on the team that have Open Source experience, because many of the
best practices can be carried out without too much tailoring or adapting. It also
helps a great deal to turn people into ambassadors to spread the word.

Although it’s quite easy to explain the processes and tooling of Open Source and
transfer that to an internal development environment, the real challenge lies in
instilling an attitude and mindset in downstream users so that they feel empow‐
ered as active contributors instead of passive consumers. Despite the challenge of
making such a cultural change within the company, this is also where the value of
InnerSource lies, because as a company we’re interested in improving collabora‐
tion and leveraging the motivation, expertise, and creativity of our staff. Further‐
more, InnerSource also helps to get more people active in contributing to
upstream Open Source projects, which benefits the wider Open Source ecosys‐

Conclusion and Future Outlook | 101

tem. Ultimately, this leads to better collaborations within communities, with
partners, and with customers.

Acknowledgments
A big thank you to my colleagues at Europace who helped with this chapter:
Tobias Gesellchen, Leif Hanack, Anja Jesiersky, David Rehman, Sandra Sauske,
Julia Schenk, Heike Schmidt, and many more who supported the InnerSource
initiative.

102 | Chapter 6: Borrowing Open Source Practices at Europace

CHAPTER 7

Connecting Teams with InnerSource
at Ericsson

With John Landy

Year, place founded: 1876, Sweden
Area(s) of Business: Telecommunications
Revenues: ca. €18.9 billion (2017)
Offices: Serves customers in 180 countries
Number of employees worldwide: ca. 97,500
Number of R&D engineers: 23,600
Year of InnerSource adoption: 2013

Ericsson is a Swedish multinational company operating in the telecommunica‐
tions industry. Founded in 1876, the company now has operations in about 180
countries. Ericsson is a global player in communication network solutions, and
its networks carry about 40% of the world’s mobile traffic. Ericsson R&D
employs about 23,600 people worldwide. Ericsson’s R&D operations in Ireland
are based in Athlone, which employs over 800 software engineers working on
Ericsson OSS (Operation Support Systems).

The Changing Telecommunications Landscape
The telecommunications landscape has changed dramatically in the past 30 years
or so. A key driver in this evolution is the emergence of new standards and tech‐
nologies for mobile networks, which have seen very dramatic growth since the
early nineties. Telecommunications traditionally focused on fixed networks that
were managed through large exchange stations, but mobile networks play an

103

increasingly important role, with new standards emerging continuously (GSM,
3G, 4G, and 5G). The nature of this infrastructure is significantly different as
well: rather than a relatively small number of fixed network exchanges, mobile
networks consist of a very large number of base stations.

As mobile networks continued to grow and evolve in the 1990s and into the 21st
century, shaping the world of communication, many other new technologies
started to emerge and influence the growth of telecom. IT technologies, the
cloud, virtualization, microservices, containers, AI/ML, adaptive policy, and the
recently emerging serverless computing are fundamentally changing the telecom
networks. The pace of change is enormous and future telecom networks will
deliver services across industries.

These technologies are changing the entire telecom network architecture, bring‐
ing innovation, agility, and automation to telecom networks. The networks now
consist of a cloud-based infrastructure, accelerated data plane, virtual switches,
controllers, and orchestrators, providing enormous flexibility.

Network equipment vendors need to absorb and induct all these new technolo‐
gies into their products and solutions, R&D, and various processes. If a common
architecture and reuse of platforms across various solutions and products is not
leveraged, the cost of creating and delivering these products will be unsustaina‐
ble. This is where InnerSource plays a major role within an organization. Inner‐
Source has become vital more than ever in this time of highly accelerated growth
and rapidly changing technologies. In this chapter, we investigate various areas
where Ericsson teams leveraged InnerSource.

As new standards and technologies emerge, the management systems for these
networks (which are called “operations support systems”) evolve as they are
extended and merged over time. While considerable work has been done to
ensure the architectural integrity of these systems as well as to scale up their
capacity and performance, it became clear to us at Ericsson that a new operations
support system would be needed to support future technologies and trends such
as the Internet of Things, which differ dramatically from the older, fixed-network
technologies in terms of capacity and performance.

Around 2010, a decision was made to develop a new operations support system
called Ericsson Network Management (ENM) to replace the legacy platform.
Development of ENM started in 2012 as a greenfield project to replace the legacy
systems. Around the same time, Ericsson had started a large-scale Agile transfor‐
mation using the Scrum development approach. Before this, Ericsson followed a
rigorous plan-driven waterfall approach, which included clearly defined phases
such as pre-study, feasibility study, execution, and verification. As many other
companies following the waterfall approach have experienced, this often led to
projects going over time and budget, which is why we started our Agile transfor‐
mation.

104 | Chapter 7: Connecting Teams with InnerSource at Ericsson

1 Dirk Riehle, Maximilian Capraro, Detlef Kips, and Lars Horn, “Inner Source in Platform-Based Product
Engineering,” IEEE Transactions on Software Engineering 42, no. 12 (2016): 1162–1177.

Why InnerSource?
ENM has a layered architecture, each layer consisting of one or more compo‐
nents that offer services to the next layer. In essence, each layer provides platform
functionality to enable feature development. As a Product Development Unit
(PDU), we decided to create this set of architecture layers without creating corre‐
sponding, dedicated platform teams. We didn’t want to create platform teams that
would shift development efforts from being product-focused to platform-focused.
From experience in the past, we’ve seen that feature teams tend to have highly
demanding expectations about what features a platform should have, which can
lead to large numbers of requests for features that would flood the platform
team’s backlog, causing it to become a major bottleneck. This is a common prob‐
lem in platform organizations.1 Our customers are interested in features, not nec‐
essarily in the platforms. Our organizational choice was also informed by our
Agile and Lean transformation journey. It made us more aware of the principles
of Agile and Lean development, which emphasize simplicity and prevention of
wasteful effort. Therefore, our normal development teams were organized as fea‐
ture teams who are responsible for delivering features across the layered architec‐
ture.

When a team decided that it needed support within an underlying platform for
something new—or decided that some code they were developing could benefit
other teams by being included in the platform—they would insert the necessary
code into the platform. This was the architectural decision that drove our Inner‐
Source program. We recognized that having multiple teams work on shared code
required new forms of coordination and decision making. We also realized that
Open Source projects offered a good deal of guidance for how to make such col‐
laboration effective.

To this end, the PDU created a small unit called “Community Developed Soft‐
ware” (CDS). The role of CDS was not to provide a traditional platform team, but
to espouse and facilitate collaborative development using Open Source develop‐
ment practices.

Scaling Up Development Capacity
Because each horizontal component was potentially a bottleneck, within CDS we
were very keen on helping feature teams implement all the functionality that they
needed. This way, we would be able to scale up the development capacity, both
internally and externally. In CDS, we established core teams (which we discuss
later) responsible for providing components with well-defined interfaces that fea‐

Why InnerSource? | 105

2 James P. Womack and Daniel T. Jones, Lean Thinking (New York: Simon and Schuster, 2003).
3 Eric S. Raymond, The Cathedral and the Bazaar (Sebastopol: O’Reilly Media, 1999).

ture teams could use and extend to implement their features. Changes to these
components would no longer be sitting on a dedicated platform team’s backlog,
but on the feature team’s own backlog.

We hoped that this would lead to a scaling of development capacity, because any
team within Ericsson (not just ENM) could use any of the assets and might con‐
tribute to its development or improve it. Furthermore, we considered the idea
that individual people who were interested in contributing to Open Source might
also be interested in contributing improvements to our InnerSource components.
The latter didn’t really materialize on a large scale.

Reducing Waste
Initially, we were focused on reducing the wasted time and energy negotiating
between platform and feature teams, but we also had an unexpected result. If a
Product Owner’s team worked on a contribution for the platform, it would be on
their backlog, rather than on the platform team’s backlog. As a result, Product
Owners became much more pragmatic and critical when deciding whether they
needed certain features. Features were built only if they were really necessary to
bring the product to market—therefore, we built far fewer features that weren’t
really needed. In terms of “lean thinking,”2 this helped us to reduce waste.

Improving Quality
Once we settled on this idea of applying Open Source techniques within our
company, we had to address skepticism at different levels, including management
and projects. As we started to investigate the best practices of Open Source devel‐
opment, we identified other motivations that could help us to get management
buy-in. One reason was to improve quality—or what Eric Raymond has famously
called Linus’s law: “Many eyeballs make all bugs shallow.”3 Our argument was that
openness wasn’t to be feared but to be embraced, because it could lead to better
quality simply by having more engineers look at the source code. Having a higher
level of reuse of our components would also help to achieve this because those
components would be tested in more contexts.

Starting the Community Developed Software Program
When we started out in early 2013, we weren’t aware that other companies, such
as Bosch (Chapter 4) and PayPal (Chapter 5), had similar initiatives. We weren’t
aware that this idea of adopting Open Source development practices to improve
internal development was called InnerSource. At this time, the InnerSource

106 | Chapter 7: Connecting Teams with InnerSource at Ericsson

Commons community hadn’t been founded yet, and so we were finding our own
way.

We started out by investigating the principles of the Open Source development
paradigm. We realized that we could easily adopt Open Source tooling as well as
Open Source development practices and techniques to streamline our processes.
However, a more important aspect was that of the development culture. We
looked at the Apache Software Foundation (ASF) (see Chapter 2), and attended
the 2013 FOSDEM conference (a leading annual convocation of European free
and Open Source developers in Brussels) to meet people working in Open Source
communities in order to get a feel for the culture of Open Source. We also looked
at some successful Open Source communities such as Jenkins.

Creating Core Teams
Our new initiative created core teams responsible for platform components.
However, unlike traditional platform teams, these core teams aimed to build a
community to develop their components. This was done by adapting our Open
Source learnings to work within our organization. We decided to keep core teams
small. This was to avoid the expectation they would implement all requirements
for feature teams. Instead, they would create the environment for feature teams
to extend components as needed.

The core team for a component was responsible for creating a “minimal extensi‐
ble component” and the environment to support feature teams in successfully
extending that component. The core team was empowered to determine how to
create this environment, but common tasks included:

• Identifying and staffing key roles
• Establishing the rules of the game, including design rules, test requirements,

and review and approval for a contribution
• Onboarding of new members of the community
• Assisting contributors
• Codevelopment of new functionality
• Comaintenance
• Managing technical debt
• Modernization as new technologies emerged

As the CDS unit and process evolved, we identified some common roles:

Product Owner
A core team’s Product Owner looks after the component’s backlog, just like a
Product Owner in feature teams does. The Product Owner has a “feature

Starting the Community Developed Software Program | 107

mindset,” and engages with the feature teams to help identify and implement
their changes on the component.

Architect
The Architect ensures that the component has an appropriate architecture
and maintains its interfaces, so that its desired quality attributes (or “ilities”),
such as performance, scalability, and extensibility, can be achieved. For CDS
components, extensibility was a particularly important quality.

Code Guardian
The Code Guardian is responsible for making sure that all code contributed
to the component is of sufficient quality and complies with coding standards
and rules.

Some core teams may have a few core developers, known in Open Source as
“trusted lieutenants” and by some InnerSource programs as “Trusted Commit‐
ters” (see, for example, Chapter 5). But even their code contributions are rigor‐
ously reviewed before committing to the repository to ensure high quality.

The three roles that make up the core team would each be given to people with
the extensive expertise that would be needed for that role, and together these
roles complement each other. When the goals of these three roles occasionally
come into conflict, they find ways to resolve the conflict. While Architects are
important to establish a vision for a component and are experts in their specific
domain, any tendency to “overengineer” a component would be opposed by the
Product Owner, who makes sure that components offer the interfaces that the
feature teams really need. Code Guardians play an important role, as well, and
typically the people serving as Code Guardian would know the component well.

Setting Up Contribution Rules
Within CDS, we anticipated anxiety among the core teams that contributions
wouldn’t be of sufficient quality. To prevent this, we knew that it was important to
establish clear coding standards and rules to reassure the core teams, who ulti‐
mately bear responsibility for the components. This way, contributors would
have clear guidance while preparing their contributions, while the core teams
would be more confident that contributions were of good quality. This would
mean that they wouldn’t have to waste any time reviewing any contributions of
poor quality. After drafting these coding standards and rules, we had them
reviewed by the Governance Council (discussed next) before we published them
to our internal community. We also looked at Open Source governance practices
such as Apache for inspiration.

108 | Chapter 7: Connecting Teams with InnerSource at Ericsson

4 Roy T. Fielding and Richard N. Taylor, “Principled Design of the Modern Web Architecture,” ACM
Transactions on Internet Technology 2, no. 2 (2002): 115–150.

Setting Up a Flexible CDS Infrastructure
Once the coding standards were in place, we launched a beta version of our por‐
tal and infrastructure to host code repositories, and to facilitate workflows for
making contributions. Based on what we observed in Open Source projects, we
felt that it was important to have a “one-stop shop” portal that developers could
visit to find out about our InnerSource components.

Rather than enforcing a specific infrastructure (such as a specific code repository
and issue tracker) on the community, we designed a frontend that encapsulated
and hid the specific tools that were used by different component teams. We didn’t
want to reinvent existing tools, processes, and build systems, and we wanted
teams to be able to keep using whatever tools they were using already. Our portal
facilitated this, as long as the tool chosen by a team had a programmable inter‐
face, such as REST,4 that permitted programmatic access to the tool. Further‐
more, the build infrastructure of many of the components was already in place,
and this was often quite a complex setup, due to the complexity of the product.
Requiring teams to reinvent their processes and build systems would have ham‐
pered participation in our CDS program.

Creating the Governance Council
When we proposed our initiative to the CTO Office, one recommendation we
got was to create a Governance Council to oversee our CDS program. The CTO
Office felt that a strong technical drive and technical ownership was very impor‐
tant, so the council consisted mainly of technical experts. This would prevent too
much involvement from nontechnical managers, who wouldn’t focus on the
potential benefits but might instead be distracted by focusing on their specific
team’s resources. We identified people in key technical roles and who we thought
were key technical influencers, asking for their input and inviting them to take
place on the council. We purposely didn’t simply invite all people within a given
role. Instead, we handpicked those people who stood out for their technical
expertise and reputation within the company.

Selecting Components and Development Models
Once we had the portal in place, we had to populate it with components. When
we started out, we handpicked a number of common components that we identi‐
fied in the overall architecture. As we selected components to be incorporated
into the CDS program, we were looking for the low-hanging fruit: those that
seemed to be most suitable and could lead to quick wins to build up some

Selecting Components and Development Models | 109

momentum. These tended to be components that were common to different
applications and could be easily extended.

One exercise we used to identify changes to components that could be developed
as InnerSource components was what we called the “Architectural Runway.” This
exercise involved Product Owners and Architects from a number of teams who
would identify candidate changes needed for their requirements. By physically
overlaying the different roadmaps, we could identify common changes. This
exercise also helped to establish a timeline based on when teams would need each
change, and who would implement the change.

Most engineers would be well aware of the shortcomings of having dedicated
platform teams. The traditional scenario to get a feature into a platform would be
to create a requirement and have it approved, after which it would sit in the plat‐
form’s backlog. However, it wouldn’t necessarily be delivered if the development
team didn’t rank it as a high enough priority. This experience helped us to con‐
vince people to adopt our new approach of having application teams implement
functionality themselves, rather than waiting for a platform team to do it.

Development Zones
Because we recognized and acknowledged that not all components would be suit‐
able for InnerSource development, we defined a number of development models.
We refer to our CDS environment as the “green zone”: anyone within Ericsson is
free to download these components and make changes as they see fit. We pursue
the CDS model when we believe a viable community can form around the com‐
ponent, when we think that following this model would avoid a bottleneck, and if
the component’s architecture is amenable for cross-unit collaboration. Obviously,
whether these expectations will hold is not always clear in advance. We can’t tell
whether a community will form. If it doesn’t, we change the component’s devel‐
opment model to the traditional way of working.

When a community does form, however, this doesn’t mean it will last. It may
enjoy a successful series of development bursts, after which the community falls
into a natural decline once the component no longer needs further work. In such
cases, we simply revert to the standard, non-CDS development approach.

There’s a few situations in which the InnerSource approach isn’t used. We don’t
have the authority to force the CDS approach on any one component—as we
mentioned, the best we can do is to sit down with the Product Owner and con‐
vince them of our case. But for some components we understand that Inner‐
Source simply isn’t the best approach, and for those components a dedicated
team provides the full implementation. For example, some components play a
critical role in achieving certain quality attributes such as performance, and real‐
izing those benefits requires a high degree of specialized knowledge. If a feature

110 | Chapter 7: Connecting Teams with InnerSource at Ericsson

5 Scott A. Hissam, Robert C. Seacord, and Kurt C. Wallnau, Building Systems from Commercial Compo‐
nents (Boston: Addison-Wesley Professional, 2001).

team requires additional functionality or changes, the feature team and compo‐
nent team would discuss what changes are necessary.

We also don’t pursue the CDS approach for those components that we want to
control more tightly in terms of their evolution and versioning. Typically, these
aren’t individual components, but “component ensembles,”5 which were precon‐
figured and preassembled components that represented a part of a vertical fea‐
ture. We have moved those component ensembles out of the CDS environment
and created a separate space for them, which we call the “blue zone.” Any compo‐
nent in the blue zone can only be used “as is”—treating them as more traditional
off-the-shelf components—and as such these aren’t pure InnerSource compo‐
nents. While these blue zone components can be extended in limited ways, any
changes to the core of a blue zone component have to be done in close collabora‐
tion with the component’s owner.

Collaboration Workflow
Once we identified components and a Code Guardian for each one, we ensured
there was a clear branching and merging strategy. While the “one-stop shop” por‐
tal provided the necessary infrastructure to access the source code, this wasn’t
enough to get teams to make contributions. We realized early on that we needed
to take away any barriers that could hamper collaborations. We knew that the
“user experience” for potential contributors had to be very smooth. They had to
easily understand the process for submitting contributions and how Code
Guardians would review them.

Luckily, Continuous Integration (CI) was already used by most components, and
we leveraged that toolset. A CI infrastructure that would help contributors
understand the impact of their contribution (for example, whether it breaks the
build) was essential to establishing a community. We documented the collabora‐
tion workflow for the CDS to make it easy for developers to navigate the source
code and understand the contribution process. Our workflow defined the follow‐
ing activities:

Discover
We make sure that each InnerSource project is well documented, so that
interested engineers and teams can discover projects that may be of interest
to them. Getting familiar with the projects on the CDS platform is the first
step to participation.

Selecting Components and Development Models | 111

Discuss
We provide discussion forums so that engineers can propose and discuss
issues or contributions. A contribution typically starts with a discussion
between a contributing team and a core team’s Product Owner and Archi‐
tect.

Issues
As an Agile shop, we use the widely adopted JIRA issue tracker from Atlas‐
sian, which developers can use to create and communicate issues. Once the
discussions on the message board lead to agreement on the what and how of
a contribution, the contributing team can take control of the story.

Clone and implement
Once the discussion agrees on the story and a contributor takes on the
assignment, development follows a fairly standard process of cloning the
source code and making the necessary changes.

Submit
Once implemented, the change is submitted for peer review through the
Gerrit central server. A Code Guardian reviews the code to ensure that the
contribution is of sufficient quality and follows our agreed coding standards
and rules.

Community-developed software CI
Once the code passes the CI build system successfully, the contribution is
committed, and will become a part of the next release.

Making Collaborations Happen
Our CDS program focused heavily on scaling up our development capacity and
preventing bottlenecks. While we were hoping that individual engineers would
contribute as well, similar to how individuals contribute to Open Source projects,
this didn’t really manifest. Instead, we saw that contributions followed a more
systematic process of “pre-negotiation,” similar to how contributions are dis‐
cussed in The Apache Way (see Chapter 2). Contributions were usually in the
form of user stories or feature requests that were planned together with a compo‐
nent’s Product Owner, rather than ad hoc changes to the code. Feature teams
would discuss ahead with a core team what contribution they’d make (the “dis‐
cuss” phase in the contribution workflow outlined previously).

Fostering cross-unit collaborations isn’t easy, for a number of reasons. One major
issue that often arises in large organizations (and our company is no exception)
concerns component ownership. In traditional organizations, business units have
clearly defined responsibilities to deliver certain products and services. In order
to achieve this, such product-driven units will pursue full control over their soft‐
ware stack. This product-driven nature of the organization leads to business

112 | Chapter 7: Connecting Teams with InnerSource at Ericsson

https://jira.atlassian.com/
https://gerrit.googlesource.com/gerrit

6 Klaas-Jan Stol, Muhammad Ali Babar, Paris Avgeriou, and Brian Fitzgerald, “A Comparative Study of
Challenges in Integrating Open Source Software and Inner Source Software,” Information and Software
Technology 53, no. 12 (2011): 1319–1336.

units that follow their own lead. This, however, presents a major barrier for
cross-unit collaborations, because collaborating with other units implies that
teams become dependent on others: they will perceive a “loss of control.” In real‐
ity, InnerSource can empower a team to reuse common software, and make
changes themselves as needed.

Second, although organizations may have an overall enterprise architecture,
depending on the organizational culture, business units may not perceive such a
centralized architecture as “binding.” So the relative independence of business
units can lead to independent and fully owned software stacks. InnerSource can
help overcome this by making the common architecture available as an Inner‐
Source code repository, rather than just a specification to comply with.

When we proposed our InnerSource way of working, it didn’t come without
some resistance. Engineers who had worked in the domain for a long time would
be skeptical, because they interpreted our proposed way of working as requiring
them to do the platform team’s work in addition to their normal job. Product
Owners were also very skeptical of CDS, because they thought that developers
would randomly pull stories from everywhere, rather than their own product
backlog. These reactions are natural and understandable and have also been
reported by other companies that have adopted InnerSource.6

The best way we found for a team to make a contribution was to persuade the
Product Owner that doing so would be to their own benefit. The key is to sit
down with them and explain that putting requested features on their own back‐
log would be a faster way of getting work done. This change in mindset is a big
cultural change, and trying to convince teams to work in this new way didn’t
always work. There were teams who believed they were working on key critical
parts of the software stack and were afraid the CDS program would not meet
their product’s quality or deadline requirements.

Pillars of Community-Developed Software
Around 2015, in an attempt to reflect on what we achieved with our CDS efforts
and to further champion them throughout the organization, we tried to capture
the principles of what we were doing. We defined a set of five “pillars” that we
believe are key to our CDS program:

Community portal
The first pillar is the community portal, a one-stop shop with completely
open access for all Ericsson engineers worldwide to software, documenta‐

Pillars of Community-Developed Software | 113

tion, and infrastructure. The portal provides a step-by-step guide that helps
developers get started. As the portal evolved and matured, it provided infor‐
mation dashboards such as contribution statistics by region and the portion
of contributions that came from core teams versus external teams.

Skilled people
Having the right people in place is key to making InnerSource a success.
We’re an Agile shop using Scrum, so we already had Product Owners in
place for our feature teams. InnerSource provides a way to scale up the Agile
way of working to the enterprise level. In our InnerSource implementation,
we designed a flexible framework that provided a workflow for feature teams
to get their work done while interacting with multiple component core
teams. We made sure that each of the key roles in our core teams was per‐
formed by highly skilled and committed people, because this helped to estab‐
lish the credibility of the program and demonstrated our level of
commitment to InnerSource.

Best-in-class SDKs
Our InnerSource implementation isn’t only about the openness and trans‐
parency of our components within the organization. Simply sharing the
source code isn’t enough, because developers could still run into problems
when they want to extend a feature but don’t have a full understanding of the
codebase to implement an extension. We observed that for a particular com‐
ponent it would be regularly extended in the same way. In these cases, we
created software development kits (SDKs) that made it easier to extend the
component without knowledge of the overall codebase.

Responsive Agile
We are committed to constantly improve our processes so that we can deliver
useful functionality to our customers. One key aspect of an Agile approach is
to make the project’s progress clearly visible. For that, we’re using the stan‐
dard Agile practices and techniques such as burndown charts and sprint
demos. Our InnerSource program scales up our agility across application
teams. Application teams that want to use specific components can do so—
our CDS platform provides complete access to a range of reusable compo‐
nents. The CDS portal also provides quality dashboards, and our develop‐
ment environments depend heavily on Continuous Integration. A
community backlog provides full visibility in the plans for the InnerSource
components, and we’re using bug trackers as a standard way to report any
issues with our InnerSource components.

Active community
The final pillar represents our efforts to build a vibrant developer commu‐
nity, which is perhaps the hardest aspect of adopting InnerSource. While
establishing a portal and support channels to help people getting started

114 | Chapter 7: Connecting Teams with InnerSource at Ericsson

takes some time and effort, the hardest part is to convince people and teams
to trust other teams, and to let go of the “us versus them” and “not invented
here” mindsets. There’s no checklist to follow in achieving this. Instead, it’s
important to nurture the community, to listen to feedback, and to respond
promptly to concerns. At Ericsson, we use communication mechanisms
commonly found in Open Source projects, such as forums and mailing lists.
Other practices we adopted from the Open Source world were to organize
hackathons and run face-to-face onboarding workshops. These practices hel‐
ped our teams actively engage with the community.

Success: The User Interface SDK Framework
One of our most successful InnerSource components is our User Interface SDK
(UISDK). Every company needs a consistent look and feel in all customer-facing
products to ensure brand alignment. Furthermore, most applications need some
UI, and creating a UI can require considerable development time, so it makes
sense to develop this through a community effort. By making the UISDK an
InnerSource project, we were able to better support UX experts, at lower cost.

UISDK is one of the most active CDS projects, used by over 60 teams. In the past
year alone, the project received over 360 contributions. We’ve run over 20
onboarding workshops and 10 hackathons to get teams started with UISDK. The
community is very active, with about one million page views since the project
started in 2013, and close to 20,000 forum posts.

Lessons Learned
Our CDS program has seen a number of successes that keep inspiring us—as well
as our management—to continue our journey. While our journey hasn’t been
without challenges, we’ve learned some valuable lessons.

A key lesson that we learned was that our approach to developing platforms
without dedicated platform teams can work. Using appropriate architectural pat‐
terns, we had well-defined interfaces and SDKs that provided hooks for applica‐
tion teams to develop the features they needed in the platform. So our goal of
preventing bottlenecks was achieved. The InnerSource process wasn’t suitable for
all components, and for those that it didn’t fit, we followed more traditional
approaches.

We found that when a core team “jelled,” we could create a community around
the CDS component. The three roles in the core teams were well balanced: the
Product Owner helped to prioritize those features that offered maximum busi‐
ness value, the Architect helped to maintain architectural consistency, and the
Code Guardian maintained a high level of code quality. But if the personalities

Success: The User Interface SDK Framework | 115

and opinions of these three key roles diverged too much, the resulting conflict
reduced the effectiveness of CDS development.

While we achieved cross-organization collaborations, the hope that individuals
(rather than teams) would browse the code and polish it, identify defects, and
offer improvements to the documentation didn’t materialize in our program.
Ultimately, all contributions on our InnerSource projects remained in the
domain of “work,” and this idea that engineers would nurture a “pet project”
didn’t happen at scale.

In some components, contributions were rejected or didn’t pass the code review.
When this happens, it’s hugely important to have transparency and a clear under‐
standing why. Otherwise, there may be a perception that it is difficult to contrib‐
ute. The core team must be clear when there is an issue. To aid this, the best
contributions are small and frequent. Discipline is key, including always follow‐
ing CI and avoiding shortcuts (reviewing one’s own code, etc.).

We found that InnerSource works well for the right deliverable. In particular, we
found it very suitable for components that are common to multiple teams and
easy to extend. A focus on extensibility in the architecture of the component is
critical. If the correct interfaces for collaboration are hard to identify, the compo‐
nent may need to be refactored.

We also found involving the application teams in developing the platform
spawned a much clearer focus on building the things that teams actually needed,
rather than having “nice-to-have” features. This was a great way to reduce waste
in our organization.

InnerSource may not be the answer for all software. For those components that
require more control, we simply defined the separate “blue zone” development
and contribution model.

We booked a number of successes with cross-team collaborations that we other‐
wise wouldn’t have seen. Although sometimes we’ve had to convince teams to try
to work together, once they did and the result was successful, we made sure to
celebrate those successes. The idea here was to let teams and developers experi‐
ence the collaboration, hoping they wanted to repeat such successes.

Our Agile and Lean transformation has helped us improve development teams’
ability to organize their work and deliver software in a timely manner. Our Con‐
tinuous Integration machinery plays a critical role in this. Agile teams are back‐
log driven. InnerSource provides another level of collaboration between units by
sharing backlogs. This leads to an enterprise-wide agility.

As the CDS portal was gaining wider recognition throughout the company, teams
in other countries also started to download and use the CDS components. How‐
ever, initially those teams were “passive” users rather than active contributors. We

116 | Chapter 7: Connecting Teams with InnerSource at Ericsson

made an effort to “onboard” these teams so that they, too, could start contribu‐
ting. In order to better track who was using the CDS components, we started
recording their usage, simply by requiring users to log in into the portal.

The Future of InnerSource at Ericsson
InnerSource has attracted a considerable amount of momentum within our orga‐
nization. While our journey hasn’t been without any bumps in the road, the idea
of learning from Open Source communities has started to fuel a change in our
organizational culture. It takes time, patience, and perseverance to introduce new
ways of working in any organization—and we are no exception to this rule.
Despite some natural resistance that comes along with any type of change, our
InnerSource program has sufficient momentum to sustain it. The CDS program
has become a mature software ecosystem within our organization.

We are now taking the lessons that we learned and applying them to a new Appli‐
cation Development Platform (ADP), which like the ENM is a greenfield project.
As we’re doing this, we’re “reinventing” what InnerSource means for our com‐
pany. We envisage this new project becoming a similarly successful ecosystem,
but we are now increasingly focused on improving the delivery pipeline. As we
mentioned, simply sharing the source code is not enough. You also need a deliv‐
ery mechanism so that users of a component can simply take an existing compo‐
nent and plug it into their system. We’re using contemporary technologies such
as Docker containers to simplify the delivery of our components and applica‐
tions. With the seed for changes in our organizational culture planted, we keep
working at building communities within Ericsson.

Acknowledgments
A big thank you to all my colleagues at Ericsson. In particular, thanks to our first
Community Developed Software team of Matt Hamilton, Dermot Hughes, Tom
Curran, and Pat Mulchrone, who started this journey and contributed to the
findings in this chapter.

The Future of InnerSource at Ericsson | 117

CHAPTER 8

Adopting InnerSource

We hope that the case studies in this book have given you some inspiration to
start an InnerSource experiment at your organization. As should be clear by now,
each InnerSource program is unique, and what might work for some companies
may not work for yours. Some of the case studies will seem a better fit with your
organization than others. But while we recognize there is great variety in how
InnerSource is adopted, we can also see great similarities.

Indeed, as we mentioned in Chapter 1, the InnerSource Commons (ISC) has a
dedicated working group striving to extract the similarities among approaches
and capture them as patterns, much like the software engineering community has
done for years with design patterns. The ISC’s patterns community has regular
meetings to discuss new patterns, which they document in public.

Although we don’t present any patterns in this final chapter, we do offer you
some guidance based on the lessons learned in the case studies. We’ll present a
comparative analysis of the five case studies in order to extract some commonali‐
ties and differences.

This chapter will also attempt to give you some practical advice about how to
bootstrap your first InnerSource experiment. There are many resources available
to support you at http://InnerSourceCommons.org as well, and using the pointers
given in this chapter you should be able to get started.

As we mentioned before, InnerSource isn’t a defined method like, for example,
Scrum, which has a number of standard roles (Product Owner, Scrum Master),
events or “ceremonies” (like the daily stand-up), and artifacts (such as a sprint
backlog). While Agile consultants will admit that any company adopting Scrum
must tailor it to their context, these roles and events are foundational to the
method—without a Scrum Master and a sprint backlog, you can’t really do
Scrum.

119

http://InnerSourceCommons.org

1 Klaas-Jan Stol, Paris Avgeriou, Muhammad Ali Babar, Yan Lucas, and Brian Fitzgerald, “Key Factors for
Adopting Inner Source,” ACM Transactions on Software Engineering and Methodology 23, no. 2 (2014).

InnerSource is different. InnerSource is a strategy, or for the more philosophi‐
cally inclined (which we are), a paradigm. It’s a different way of thinking about
how to do large-scale software development. This, however, means that there’s no
one-size-fits-all approach to adopt InnerSource; as the nuanced case studies in
this book clearly demonstrate, InnerSource is as varied as corporate culture.
That’s why we can’t give you a fixed recipe that gives you a successful InnerSource
program. There is no set of recommendations to follow, nor is adopting Inner‐
Source a problem that can be solved by simply throwing a lot of funding its way
(although the latter helps if it’s targeted at the right things). So, where does that
leave us?

What we can do is offer a set of guidelines based on long-range analyses of multi‐
ple projects. We can back up our recommendations with comparisons and justifi‐
cations. This doesn’t mean that our set of guidelines is complete—nor does it
mean they will always work. Instead, we emphasize that adopting InnerSource
represents creating an internal community, which consists of different types of
actors, both at the individual and aggregate level (e.g., teams and departments).
Each of these has motivations, resources, and constraints. Balancing these wisely
will lead to success.

Comparison of the Case Studies
We’re organizing our analysis using a framework that one of us developed before
as part of his research on InnerSource.1 The framework defines nine “key factors”
for adopting InnerSource, which are organized under three themes: product,
processes and tools, and community and management. We’re not suggesting you
limit your thinking to these nine points, but rather use them as “intellectual bins”
to arrange your thoughts, develop tactics, and focus your efforts.

Product
The first theme is the product, by which we mean the actual software to be Inner‐
Sourced. Three factors are important to consider here: seed product, stakehold‐
ers, and modularity.

Seed product
In order to start building a community, you need to have an initial product or
early version of that product—a seed product. Without it, contributors have
nothing to play with, nothing to run, and nothing to contribute to. You can’t
design software with a community from scratch; there must be one person, or

120 | Chapter 8: Adopting InnerSource

2 Eric S. Raymond, The Cathedral and the Bazaar (Sebastopol: O’Reilly Media, 1999).

perhaps a few people, who have a vision and who can create an early implemen‐
tation or prototype of that vision. As Eric Raymond2 pointed out: “It’s fairly clear
that one cannot code from the ground up in bazaar-style. One can test, debug
and improve in bazaar-style, but it would be very hard to originate a project in
bazaar mode.”

Despite the variety of communities that we’ve seen in the case studies, most of
the communities were built around some existing software. At Bell Labs, the ini‐
tial version of the SIP server was written by a single person before it was Inner‐
Sourced. At Ericsson, creating the Community Developed Software portal wasn’t
enough—it was populated with a number of components that had been selected
because they had a high potential to benefit from contributions by feature teams.
The setup at Bosch (see Chapter 4) is an exception here, because initially, com‐
munities had to be proposed without an actual product. However, even in those
cases, before any contributors could be attracted, the community leader and per‐
haps a few core developers would have to create the initial prototype before it
could attract any contributors.

Most of the cases in this book started out as experiments. PayPal ran a series of
experiments, each of which led to new lessons learned and increased confidence
in the value of InnerSource. At Bosch, the whole BIOS initiative (represented by a
group of associates) started as a three-year, time-limited experiment with an
explicit goal of evaluating the suitability of Open Source development practices.
Europace also started with running some experimental InnerSource projects. The
teams learned some valuable lessons that were subsequently documented and
shared on an internal website, and which was later publicly shared as an pattern
to the InnerSource Commons patterns community.

Stakeholders
InnerSource aims to facilitate and improve internal collaborations within the
organization. However, collaboration on software assets makes sense only in the
presence of multiple stakeholders. If only one team needs a certain, perhaps
highly specialized component, there’s no point in pursuing InnerSource, because
contributions by other teams simply won’t be made.

A good example of this requirement was the shared need for a common SIP
server at Bell Labs. This case study demonstrates that a new, emerging standard
that is needed by many different business units offers good opportunities to pool
resources. The project benefited greatly from different types of expertise (cryp‐
tography, parsing technology) in the company. Within Europace, the different
teams serve different types of customers, but they all do so through a common

Comparison of the Case Studies | 121

3 David L. Parnas, “On the Criteria to Be Used in Decomposing Systems into Modules,” Communications
of the ACM 15, no. 12, (1972) 1053–1058.

4 Tim O’Reilly, “The Open Source Paradigm Shift,” in Perspectives on Free and Open Source Software, eds.
Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani (Cambridge: MIT Press, 2005).

platform. We also saw this at Ericsson: the new architecture provides a set of
common platforms, each of which could be used by a range of feature teams. As
different feature teams required different features, the common components
grew as needed, while the core teams maintained architectural integrity.

Modularity
Modularity refers to the degree to which code is organized into independent
modules. It is a desirable system attribute that has been studied for decades.3 The
higher the degree of coupling between modules, the more modules a developer
may have to touch when making changes to the system. A high degree of modu‐
larity—or loose coupling—is generally preferred because it facilitates parallel
work by teams on different modules in the same code base, without getting in
each other’s way. It also promotes software reuse and simplifies the integration of
systems. As more teams get involved in collaboration on a codebase, modularity
is becoming an increasingly important attribute of systems—and this is especially
true for InnerSource. Tim O’Reilly has referred to this idea as the “Architecture of
Participation.”4 A common implementation strategy is to replace or transform
legacy monolithic systems to a microservices architecture.

We’ve seen modularity as a recurring theme in the case studies, though it loomed
larger in some cases than in others. At Bell Labs, the original implementation was
refactored to make the SIP assets more reusable. At Europace, the single, large
team was split up into four smaller teams and the company made efforts to make
the software more modular, although this wasn’t without its challenges. At Pay‐
Pal, management had previously mandated that all code be made more modular;
few teams complied until InnerSource. The involvement of guest contributors
actually helped in this effort, as their pre-contribution questions about how the
systems were structured forced hosts to reflect and reconstruct some of the
design decisions, which in turn helped them to rearchitect the systems. The
teams at Ericsson, having the luxury of starting afresh in their greenfield project
(which isn’t that common in the software industry) made a strong effort to estab‐
lish well-defined interfaces and maintain a high level of modularity in the archi‐
tecture.

Table 8-1 summarizes how the companies in this book reflected key require‐
ments described in this section for the product.

122 | Chapter 8: Adopting InnerSource

Table 8-1. Comparison of InnerSource projects across the case studies

Case Seed product Stakeholders Modularity
Bell Labs SIP server, an emerging

technology that became a
key asset to many parts of
the company.

Variety of business units that were
in need of a SIP stack (“the
lifeblood of various products”).
Experts from across the company
contributed variety of
improvements, e.g., in the parser
and cryptography.

Over time the SIP server was
refactored to improve reusability. The
SIP parser was spun out as a separate
module. The standalone SIP server was
refactored into a library (framework).

Robert
Bosch

Range of innovative
prototypes, some of which
were productized.
Set up as an experimental
initiative in which anyone
could propose a project.

Any business unit was free to use
any BIOS asset as long as its use
complied with the BIOS license.

Architectures of different projects
varied. Most projects were innovation
prototypes, with less attention to
optimizing the product’s modularity
given the relatively small size of
communities. Many projects created
embedded software for specialized
hardware.

PayPal Series of experiments by
different teams, including
CheckOut, Onboarding, and
Symphony.

There was considerable demand for
increased collaboration and
transparency, coming from recent
hires with more experience using
Open Source methods. At the same
time, C-level management wanted
to overhaul duplicative practices.

The CTO office had requested that all
code be refactored to increase
modularity. As guest contributors
started asking questions about the
structure of monolith systems, key
developers’ explanations of the design
decisions helped them to reflect on
possible modules.

Europace EUROPACE platform, which
connects the company’s
partners.

Units serve different types of
customers, all through the same
platform.

The original development team was
split up into four smaller units with a
high level of autonomy. Efforts are
underway to divide these further into
smaller subsystems.

Ericsson Central portal populated
with selected components
within a larger
architecture; the
components make up the
“horizontal” layers, which
are used by application
teams that develop
application “verticals.”

Any application team that requires
services from the components
positioned across the different
layers. Applications are “verticals”
that cut across the horizontal layers
of the system.

The core components were designed to
have well-defined interfaces that were
essential for the application teams to
implement their functionality.

Processes and Tools
The second theme refers to the processes and tools. Three factors are important:
defining a development process that fits with organizational standards and facili‐
tates InnerSource collaborations, quality assurance, and tools that help teams
adhere to those processes and maintain quality.

Comparison of the Case Studies | 123

5 Martin Michlmayr, Brian Fitzgerald, and Klaas-Jan Stol, “Why and How Should Open Source Projects
Adopt Time-Based Releases?” IEEE Software 32, no. 2 (2015): 55–63.

Development process
Many organizations have established ways of developing software. Whether they
use a classic waterfall or more modern Agile methods such as Scrum, Inner‐
Source requires that these processes be augmented to facilitate cross-unit collabo‐
rations. What’s important here is a clear and simple collaboration process,
because a complex process will act as a barrier for people to make contributions
—or even to use an InnerSource asset.

The case studies demonstrate a variety of ways to adopt new practices and pro‐
cesses. At Bell Labs, an increasing stream of defect reports and patches led the
chief architect to expand the core team with trusted lieutenants, very similar to
what happens in large Open Source projects. PayPal and Europace also reported
the use of Trusted Committers. Bosch’s BIOS program emphasized self-
determinism, so that different communities could define their own processes.

Quality assurance (QA)
Closely related to the development process, QA practices are extremely impor‐
tant, and Open Source communities have contributed a number of process inno‐
vations to improve QA. Two of these innovations are peer review and time-based
releases. Traditional approaches to QA are formal code reviews and walk‐
throughs, which are quite heavyweight approaches. Peer review, on the other
hand, is shown to be a very effective and lightweight method to identify defects
because it doesn’t require any planning, nor does it require attendance of a team
in the same room. Time-based releases improve on the traditional feature-based
release approach, because a time-based release schedule offers a regular heartbeat
to projects.5 Software releases can be very big events, especially if they don’t hap‐
pen often. The principle underpinning time-based releases is to do them regu‐
larly so they become less of a big deal.

To support QA, PayPal introduced an InnerSource process innovation called the
30-day warranty. Under this process, a guest contributor is responsible for fixing
any important bugs reported during the 30 days after the contribution is first
deployed to customers. This should reassure the host team that they’re not
accepting just any code, but code that the guest contributor is confident enough
to support. It also addresses a common fear among host teams that they will be
held responsible for defects in other people’s code, which can hamper their will‐
ingness to accept contributions in the first place.

124 | Chapter 8: Adopting InnerSource

Tools
Having the right tools in place makes or breaks any collaboration effort. While
this may seem like a simple technical issue, it can be remarkably complex to get
new tools installed at a company. Ensuring that you have compatible tools so that
teams from different business units can collaborate is essential, but not sufficient.
Certainly, good tool support can greatly help to improve teams’ workflow. Many
companies today are adopting GitHub or GitLab, though we’ve also seen compa‐
nies who use Microsoft Team Foundations or BitBucket. On the other hand, sim‐
ply installing one of these popular code collaboration platforms isn’t enough.

At Bell Labs, the SIP assets were downloaded by different teams, and sometimes
teams stored a copy in their own version control system. Any changes made had
to be ported back to the master repository, which could prove difficult simply
because the version control systems weren’t compatible. Bosch’s BIOS project
decided to let teams use whatever tools they wanted. This was also the case at
Ericsson, where a central portal was created behind which teams could use what‐
ever tools they had already—as long as those tools had a programmable interface
(such as REST). Several other case studies reported the adoption of GitHub
Enterprise (Europace, PayPal). Table 8-2 summarizes how the companies in this
book reflected key requirements described in this section for process and tools.

Table 8-2. Comparison of practices and tools across the case studies

Case Development process Quality assurance Tools
Bell Labs Initial implementation was

done in “Cathedral mode,”
taking feature requests from
teams and contributions from
experts.
The architect worked with
trusted lieutenants on
nontrivial features. Teams that
needed features would “lend” a
developer to the CSS group.
Over time the size of the
community grew to around 30.

The only precondition for sharing
code was to share back any bug
fixes.
Code had been taken to “bakeoffs”
with other companies.
Trusted lieutenants helped the
benevolent dictator review
contributions.
Specialized roles emerged to
maintain quality and help others to
integrate the software assets.
Feature advocates performed code
inspections and reviewed design
documentation.

SIP assets were implemented in
C and were portable across two
platforms initially, with further
support for other platforms
contributed by others.
One of the CSS group’s
responsibilities was to maintain
the canonical source repository.
Some teams stored their
changes to their own copy of the
source code in a different version
control system, which
complicated the “buy-back”
process that was supposed to
integrate those contributions
back into the main branch.

Robert
Bosch

Communities emphasized self-
determinism, free to use any
methods, practices, and tools.

Focus of efforts was on developing
innovative prototypes, some of
which led to products in the market.
For prototypes, traditional QA
processes did not loom large.

BIOS initially allowed full
freedom of tools, but with Social
Coding all collaborators in the
company moved to a common
collaboration platform that is
free of charge.

Comparison of the Case Studies | 125

Case Development process Quality assurance Tools
PayPal Mentoring happens through

written communication, which
leads to passive accretion of
documentation.
Contributors are encouraged to
notify of planned contributions,
allowing TCs to “pre-vet” them
as well as plan time for
reviewing those.

Trusted Committers mentor
contributors to write code that can
be more easily accepted.
About 10% of engineers are Trusted
Committers, whose responsibility is
to review code contributions from
other teams.
All contributions come with a 30-day
warranty provided by the
contributing team. If any issues are
identified during this period, the
contributing team is expected to
provide fixes.

A large-scale retooling effort
adopted GitHub Enterprise prior
to PayPal’s InnerSource
experiments.

Europace Units develop features for
different types of customers.
Teams develop specific features,
after which members can join
other teams. Practices include
pair programming.

Trusted Committership as a reward
to developers made them take that
role seriously. More cross-unit
collaboration led to better quality
code reviews and better quality
code.

The company previously used
SVN, but moved to GitHub,
which provided better
integration with automation
tools.

Ericsson Feature teams develop
functionality that fits within the
architecture of components that
core teams have set out.

Review process enforced by a Code
Guardian; strong dependence on
continuous integration
infrastructure.

CDS portal as a frontend that
enabled any unit to use their
own tools as long as they have a
programmable interface (e.g.,
REST).

Community and Management
Ultimately, it’s people who develop software and manage the process. This theme
addresses aspects related to the human factors: coordination and leadership,
transparency, and management support and motivation.

Coordination and leadership
Although each case study emerged from a unique context, all demonstrate the
utility of dedicated roles and teams to help organize development efforts. Inner‐
Source doesn’t mean copying an “onion” governance structure that is often asso‐
ciated with Open Source projects (that is, concentric circles of contribution that
grow in responsibility as one moves inward), but companies can find hybrid ways
to balance a company’s business interests and the flexibility that a meritocracy
offers. Several of the cases have core teams that are “in charge” of InnerSource
projects, and which consist of specialized roles. Both R&D settings (e.g., Bell
Labs) and “normal” commercial development (e.g., PayPal) made successful use
of a facilitating core team. In PayPal, leadership remains with the traditional cor‐
porate roles, but this is augmented with the Trusted Committer role, who serves
as a mentor to contributors outside the team.

126 | Chapter 8: Adopting InnerSource

Transparency
Perhaps one of the most common patterns we can detect in the case studies is
their implementation of transparency. All case studies recognized the importance
of opening up the environment and making it as easy as possible for anyone to
find resources and make contributions. Many of the case studies established a
central portal that provides access to InnerSource development artifacts and
communication channels. The interfaces differ. Modern platforms such as Git‐
Hub and GitLab already provide user-friendly interfaces. But at Ericsson, the
portal was simply a frontend for existing tools that were developed in-house. Bell
Laboratories’ SIP project had a dedicated “Center of Excellence,” an intranet web‐
site that provided a one-stop shop for anyone interested.

Opening up the artifacts of a project (source code, documentation) is one thing,
but transparency also means opening up communication and the decision-
making processes. Some companies, such as Europace, have adopted Slack to
facilitate such asynchronous and archived communication so that others can
consult what was discussed at a later point in time.

Management support and motivation
All case studies reported support from management, though the timing, level,
and extent of commitment varied. Some companies (PayPal, Europace) have
hired Open Source advocates as change agents. In other cases, management rec‐
ognized the importance of investing in Open Source technology (Bosch), and
others were simply open-minded and supportive of Open Source (Bell Labs), or
recognized the benefits of the Open Source paradigm (PayPal, Ericsson). Some of
the cases report true grassroots initiatives; for example, Bell Labs’ SIP stack was a
clear case of “bottom up” InnerSource, which later on became more formalized.
Others were initiated from a corporate management level; for example, manage‐
ment at Europace had been investigating alternative ways to make teams more
independent.

The case studies report different levels of support, which evolved over time for
some. For example, the BIOS program at Bosch received central corporate fund‐
ing (as opposed to sponsorship from the business units) to create the BIOSphere
environment and fund full-time community leaders.

Management support is essential to give credibility to any software process
improvement initiative, including InnerSource. Because most large corporations
are divided into a set of business units or other types of subdivisions with their
own profit and loss sheets, these divisions tend to be managed as silos—the
rationale being that, if each of the individual divisions operates optimally, then
the company as a whole does so too. However, there is an essential difference
between executive management (who see the big picture) and mid-level manag‐
ers (who are evaluated on how well their division performs).

Comparison of the Case Studies | 127

Although management support is essential, it’s not enough to simply declare that
the company now adopts an InnerSource strategy. You need motivated people to
step up, and they need to be provided the means to do so. One of the BIOS prin‐
ciples at Bosch emphasized the voluntary nature of involvement. As a result, the
BIOS program attracted highly motivated associates.

Table 8-3 summarizes how the companies in this book reflected key require‐
ments described in this section for community and management.

Table 8-3. Comparison of community and management factors across the case studies

Case Coordination and leadership Transparency Management support and developer
motivation

Bell Labs Core team of three: architect (and
initiator) who served as
Benevolent Dictator; product
managers; and project manager
supported by trusted lieutenants.
Additional roles emerged: project
liaison and delivery, feature, and
release advocates.
As more contributions came in, a
Common SIP Stack (CSS) group
was formed.
Product manager/liaison worked
with business units

Center of Excellence (COE)
as one-stop shop that
provided source code,
documentation,
instructions, and a release
schedule.

Management was generally supportive
of Open Source and sharing source code
with other business units.
Chief architect convinced executive
management of the many benefits of a
homegrown implementation of the SIP
stack.
The project borrowed experts from
across the company, which is an in-kind
contribution of business units.
Sometimes BUs made monetary
contributions.

Robert
Bosch

In BIOS any associate could
propose a community, which
would be evaluated by the
Review Committee.
Each community had a full-time
community leader. Strong
emphasis on meritocracy.
BIOS Governance Office performed
administrative support tasks that
shielded developers from this
task.

BIOS as a “radically
transparent” community,
sharing all work products
and communication to
anyone within the
company.
Creation of new
communities was initially
guarded by a Review
Committee (in BIOS), but
with Social Coding this
became a completely open
platform.

Stewardship by Corporate Research.
Corporate funding to support program,
primarily for funding community leaders
so they were not dependent of business
units, but also to buy out contributors
for 10% to 50% of their normal job.
Highly motivated and self-selected
developers.
BIOS’s Review Committee comprised of
Vice Presidents of the engineering
business units; this provided necessary
air cover.

PayPal 10% of developers as Trusted
Committers, which is a role
assigned to developers on a
revolving basis. Guest
contributors can earn Trusted
Committership.

Company-wide access
through GitHub Enterprise
for all source code; much
communication is written
down, archived, and
searchable.

CTO and several other executives hired
Open Source advocate Danese Cooper to
help the company engage with Open
Source and InnerSource. This action
formed automatic air cover for the
project.
Intrinsic motivators, such as scratching
your own itch, were augmented by
extrinsic motivators designed to further
appeal to enlightened self-interest, such
as taking demonstrated InnerSource
mastery into account when advancing
careers.

128 | Chapter 8: Adopting InnerSource

Case Coordination and leadership Transparency Management support and developer
motivation

Europace Leaders sought new
organizational forms to support
self-organizing teams with a high
degree of autonomy.
Flexible teams form and disband
as features are needed and
completed, respectively.

All repositories are open.
Use of Slack for
communication. Explicit
emphasis on written (over
verbal) communication.
Task transparency was a
key goal to facilitate
remote workers.

Strong support from company
leadership, and units supported by a
central People & Organization team that
strongly emphasizes growth and
development of staff. InnerSource fit
well within this goal.

Ericsson Governance Council to oversee the
Community Developed Software
initiative.
Core teams consisted of a Product
Owner, Architect, and Code
Guardian, emphasizing facilitation
of feature implementation by
application teams.
Development activity was pre-
negotiated between feature and
core teams.

Community Developed
Software as a one-stop
shop portal, accessible to
anyone within the
company.

Business units have high degree of
autonomy. CDS is supported by the
product line that developed the new
platform.
Budget was redistributed to give feature
teams the means to develop the
functionality they need in the
components.

Guidelines for Adopting InnerSource
Many companies have decided to start adopting InnerSource—and commonly
they start out with a pilot project, or an experiment. We think that introducing
InnerSource with one or more experiments with some limited scope is a good
idea because it allows you to learn lessons and adapt accordingly. Once some ini‐
tial success is achieved and InnerSource is gaining some momentum in terms of
enthusiasm of people involved, we often see that others within organizations
show an eagerness to also get involved.

So, in this section we offer a set of guidelines to get started with an experiment in
your organization. We’ve based these guidelines on our extensive experience in
studying InnerSource as a phenomenon, our collaborations with companies that
have started InnerSource initiatives (some more successful than others), and the
five case studies that we presented in this book.

Product
The first thing we suggest you do to start an experiment is to select a seed project.
It’s important to start an experiment with the right seed project that has some
potential for cross-team collaboration, because a project that does not have such
potential may have trouble gaining any momentum in building a community. A
good seed project is one that does the following:

Guidelines for Adopting InnerSource | 129

Removes a bottleneck
A suitable seed project is one that can solve a known bottleneck or other
potentially costly resource-related problem. Bottlenecks tend to form when
one team is dependent upon another; rather than waiting for the bottleneck
team to do all the work, the InnerSource paradigm encourages dependent
teams to “do it themselves.”

Has development potential
A suitable seed project is one that has development opportunities, ranging
from low-hanging fruit to adding significant features. What’s very important
is that a project isn’t “finished” or feature-complete or worse, abandoned,
because other people may not see any opportunities to contribute. What
won’t work is picking a software asset that is in maintenance mode or
orphaned, and hoping that an army of developers will start to improve the
software. In order to attract developers, there needs to be potential for devel‐
opers to make their mark, something by which they can identify with the
project—rather than simply cleaning up someone else’s old crufty code.

Has different stakeholders
It is ideal to select a first experiment with a diverse set of stakeholders in
order to maximize your learning opportunities. This point may not be obvi‐
ous to newbies, but your eventual InnerSource strategy needs to take into
account all potential stakeholders, lest the ones you omit end up undermin‐
ing your program. InnerSource works best when all stakeholders are aligned,
which means they have to see tangible value in supporting the initiative. Typ‐
ical stakeholders include, but are not limited to, host engineers, Guest con‐
tributors from other teams, Trusted Committers, Product Owners or
managers, quality assurance engineers, DevOps or deployment engineers,
software architects, middle and senior managers, human resource managers,
and technical writers.

Has sufficiently modular structure, or seeks to become more modular
Peer-based collaboration models such as Open Source have proven that
smaller, more loosely coupled modules that are designed to work together
make the overall function and performance of a collection of code more
coherent and maintainable throughout the necessary changes that future fea‐
tures might require. InnerSource collaboration has proven very helpful in
guiding host engineers to see how a monolithic codebase could be modular‐
ized to best advantage. So, when designing an experiment, previous lack of
success in introducing modularity can indicate where you would expect
InnerSource to create tangible value.

You may want to consider a range of experiments, or to set up an “infrastructure-
centric” InnerSource program (see Chapter 1), where anyone within your com‐
pany can upload their software assets. In order to prevent this from becoming a

130 | Chapter 8: Adopting InnerSource

graveyard of dead projects, we suggest curating these assets based on the
attributes just discussed. Alternatively, if you wish to allow the unrestricted cre‐
ation of projects, you could also divide the repository into two parts: an actively
curated part that fosters active communities, and a completely open section that
allows anyone to start a community. Hybrid models are possible, of course; for
example, you could set a condition (as was done in Bosch’s BIOS program) that
all participating communities appoint a community leader and a Trusted Com‐
mitter (who could be the same person), and that they actively aim to grow a com‐
munity and make sure they maintain a “major branch” that always works.

Process and Tools
Once you’ve designed one or more experiments that have a strong potential to
grow as an InnerSource project, it’s important to document how people can con‐
tribute, to provide tooling to support collaboration, and to ensure the delivery of
consistently high-quality software. It’s also important to realize that there is no
one-size-fits-all development process. Instead, whatever process you define needs
to fit the context of your organization. We’ve stated several times that Inner‐
Source borrows heavily from The Apache Way (see Chapter 2), but this doesn’t
mean that every organization needs to adopt those exact collaboration methods
dogmatically. Instead, we seek inspiration in The Apache Way. As you design a
workflow to make InnerSource work for you, we suggest a process that features
the following attributes:

Simplicity
Simplicity is better because you can explain it clearly and quickly. Simple
doesn’t mean trivial or weak. Simplicity is important because jumping
through a lot of hoops represents a barrier to entry.

Facilitate synchronized schedules
Make sure your process considers all stakeholders’ roles and timing require‐
ments. Pre-vetting planned work and pre-negotiating expected outcomes
will allow teams to fit InnerSource activities into existing scheduling.
Remember that you’re still in a business setting, so an open-ended “it’s done
when it’s done” ethos, although typical in Open Source, will likely meet with
pushback inside a company.

Put quality assurance in place
Introduce peer code review (at a minimum through Trusted Committers, or
as a formal practice between pairs of team members) because one truism that
Open Source clearly proved is that “many eyes make all bugs shallow”
(though, as we pointed out in Chapter 1, it’s not a guarantee that your soft‐
ware doesn’t contain any critical bugs). Institute regular time-based releases
such as sprints to organize work into discrete short timeframes, then evaluate
quality before each release. Make sure there is a code branch that always

Guidelines for Adopting InnerSource | 131

works, to counteract backlash. Something like PayPal’s 30-day warranty
might be useful to provide a minimum quality threshold to ensure that teams
are serious before launching InnerSource projects.

Deploy compatible code management tools
It is very important to manage code with tools that allow transparent access
to all parties, because incompatibility (and workarounds such as cutting and
pasting across company tools) inevitably hampers collaboration. Adopting
new tools in a company today can be a major issue, but many InnerSource
projects depend on the previous implementation of a transparently dis‐
tributed code management tool like GitHub, GitLab, or Bitbucket. Instituting
new tools can also help drive other code improvement efforts such as Con‐
tinuous Integration (CI) and Test-Driven Development (TDD) and can give
teams confidence in the quality of resulting code.

Community and Management
So, now that you’ve done all the setup, how do you get this InnerSource machine
working? This third theme, community and management, suggests that you start
by focusing on the people.

This is also where most of the challenges lay in our case studies. Many companies
that we’ve worked with over the past years have engineering cultures featuring
clearly delineated silos. Silos must compete for resources, and typically that com‐
petition breeds a general lack of trust, an “us versus them” mentality, and even a
sort of xenophobia toward anyone not within the silo. When we explain the con‐
cept of InnerSource, teams and business units tend to agree that it’s the right way
forward—except for their particular team or business unit, because they self-
identify as “different.” The range of excuses is endless, but common ones include:

• “Our team uses a different language, and we’re afraid it’s too difficult for
other developers to pick it up.”

• “The code that our team produces is far better than that of other teams.”
• “Our software is more business-critical, and so we couldn’t possibly share.”
• “Our implementation of common functionality is far superior to that of

other teams against whom we must compete.”

Here are some factors to consider when addressing community and management
issues in your InnerSource experiment.

Coordination and leadership
The first factor refers to getting people on board, and establishing how projects
are coordinated and led. Open Source communities often use the term meritoc‐
racy, and to some extent this can be adopted within InnerSource, as well.

132 | Chapter 8: Adopting InnerSource

Identify champions
You will likely be more successful if you build an internal community within
your company, a collection of enthusiasts who are willing to pursue the
effort. A best practice for identifying “champions” is to look for people who
have shown an interest in Open Source or are effective influencers with a
good combination of technical and social skills—both of which are impor‐
tant in order to be able to build bridges across different teams within the
organization.

Establish new roles
It pays to get in front of charter conflict (where team members frustrate each
other by duplicating effort in a misguided attempt to establish ownership) by
taking the time to clearly define and apportion out leadership roles. Consider
the following guidelines for Trusted Committers:

• Make them discoverable, by listing their contact information.
• Make them responsive, by establishing agreements about turnaround

time for their work.
• Sequester their time to allow them to focus solely on code review and

mentorship during one or more sprints.
• Set out guidelines or even a Code of Conduct for mentorship to make

sure contributors feel supported, not shamed, by the review process.

Consider seeking support for a moratorium on most executive escalations
during your InnerSource experiment. Executive escalation (as described in
the Cheese Story) is generally a signal that the normal workflow is failing to
keep up with the pace of the business. Since InnerSource is a reengineering
of a process, it needs to be sheltered from the bad habit of executive escala‐
tion, at least until the new process has become cemented in practice. Ideally,
InnerSource should erase the need for executive escalation by making self-
directed engineering more normal, more efficient, and better aligned with
planning.

Lastly, the role of Trusted Committer is particularly important to get right,
but you may want to define the roles of champion, contributor, and product
manager or owner within the InnerSource context, as well.

Prevent brand dilution
Organizational change is generally challenging, and InnerSource is not
immune. We’ve seen on several occasions that once an InnerSource program
starts to catch on, or once the term InnerSource becomes a buzzword within
a company, suddenly everybody seems to be “doing InnerSource”… except
that they aren’t actually doing it. For example, they implement the principle
of transparency (discussed momentarily), but don’t accept any contributions
from outside the team. Instead, these people tend to implement new ideas

Guidelines for Adopting InnerSource | 133

based on their own assumptions or impressions without seeking understand‐
ing, and then seek to deflect blame for bad experiences by blaming the buzz‐
word. It can be important to counter this tendency before the company
“antibodies” manage to expel InnerSource without ever actually practicing it.

Transparency
The second factor is transparency, which is critical to leveling the internal playing
field so that every engineer can learn about and contribute to a host’s code or
documentation. Open Source has taught us that transparency feeds the commu‐
nity as well, because people invest more of themselves if they have unfettered
access. It is true that some developers initially prefer not to see their code poten‐
tially subjected to wide scrutiny, but these few are often won over when real code
review catches human errors before code merge, saving both money and time
downstream. Likewise, some companies still harbor concerns about bad actors,
so we suggest some guidelines for increasing safety along with transparency:

Open up everything
Transparency is often interpreted as “opening up the source code,” but
actually, for InnerSource to flourish optimally, everything needs to be open
by default. This means that you need communication channels such as “chat
rooms” (IRC is the classic and freely available solution, but commercial
offerings such as Slack are popular today), archived emailing lists (in Open
Source the default tool is ezmlm), and possibly also wikis. Communication
channels must be archived, so that discussions can be discovered later on by
new contributors seeking to solve a similar problem. In addition, it’s also
important to document how decisions are made: rather than making deci‐
sions “behind closed doors” (or at the water cooler), the rule is “take it to the
mailing list,” so that the community at large can engage in decision-making
processes. Finally, almost all cases of InnerSource that we’ve seen provide a
central portal that provides information and pointers to the various resour‐
ces (including code, documentation, and communication channels). Portals
are essential for making the InnerSource program accessible throughout a
company.

Note that many companies persist in the belief that there is danger in allow‐
ing all employees to view all code, whether because of trade secrets expressed
in the code, or other security concerns such as a fear that employees will fail
to realize potential harm from sharing production code snippets as “real-
world examples” on public blogs or even illegally contributing them to Open
Source projects. In reality these types of problems are very rare. More com‐
mon is injection of malicious code and other sabotage by disgruntled
employees, but the increased likelihood that such sabotage will be detected
earlier in code review or by another employee studying the altered code
more than compensates for the perceived risk.

134 | Chapter 8: Adopting InnerSource

https://en.wikipedia.org/wiki/Ezmlm
http://bit.ly/2ylce0P

Establish house rules
Simply designing an InnerSource project will not cause a vibrant community
to spring to life automatically. Some people will misunderstand or abuse
your initiative, interpreting InnerSource as an opportunity to assign tasks to
other teams. Or they may “dump” their code contributions into your frame‐
work without paying much attention to providing test cases, documentation,
and coding standards. So you need to establish some house rules that capture
the “etiquette” that will reduce friction from participation in InnerSource. A
common practice for articulating house rules is via a contributing.md file,
negotiated between hosts and guests and maintained in the common reposi‐
tory. Furthermore, while any team may be able to download a copy of the
source, just like Open Source, it may be important to clarify the conditions
under which they can use that source code by providing an InnerSource
license.

Market your program
We have learned that marketing matters to the ultimate success of Inner‐
Source within a company, because the way a program is presented affects
how people perceive it. For example, the names Bosch Internal Open Source
(BIOS), and subsequently the term BIOSphere to refer to an internally pro‐
tected bubble, were well-chosen. They established the initiative as a brand,
with a logo, and an overall philosophy that gave participants a pleasing sense
of identity. Creating some “swag” like T-shirts and stickers may also help
people to self-identify with and spread the message. So picking an appropri‐
ate name that fits with the company, something that clearly delineates and
defines what it is you’re trying to do, may help people to understand your
efforts. One common recipe for failure is not planning for scaling the mar‐
keting of your InnerSource program once your initial experiments are judged
successful. It is a best practice to recruit team members with marketing expe‐
rience to help design and implement message amplification.

Management support and motivation
The last factor is management support and motivation. As we will posit here,
simply establishing real management support can be challenging, but it’s not suf‐
ficient if there is no interest on the ground from engineers who might want to
participate. You want to make sure you find both “air cover” and ground support
if your end goal is company-wide InnerSource. Here are some tactics you can
adopt to mitigate risk until you can assemble enough support to go wide:

Executive management commitment
It’s important to eventually get commitment from at least a couple of execu‐
tives, because they can provide “air cover.” In hierarchical organizations,
messaging and visible participation from a senior leader can drive awareness
and adoption, and their direct advocacy can preserve funding through suc‐

Guidelines for Adopting InnerSource | 135

cessive budget cycles. However, gaining attention from executive managers
means you will need to speak their language. Reporting progress in terms of
value created can be effective, since showing accumulated progress will help
them justify their commitment over the long haul. Pitching and securing
funding for discrete parts of a large roadmap on a “fixed-time, fixed-
funding” basis may help them compartmentalize risk. While several of the
case studies in this book present very successful grassroots programs with
only a minimal level of executive sponsorship, in our experience those pro‐
grams can’t scale past a certain point without eventually securing executive
sponsorship.

Staying under the radar
Occasionally your well-designed InnerSource experiment may stall because
key executives or middle managers just don’t get it. Or perhaps your com‐
pany still harbors unjustified misinterpretations of what Open Source is
(metaphorical comparisons such as “Cathedral versus Bazaar” don’t help).
Or, we’ve also seen scenarios where your senior executive champion changes
role, and can no longer provide you with air cover. This doesn’t mean you
have to give up. We suggest you keep going, but learn to “stay under the
radar” for a while until you have more promising results. Sometimes it’s a
matter of using different language and terminology. We’ve seen successful
tactics involving renaming a project “technology transfer”; or leveraging
more acceptable terms that exploit known strategies, such as “enterprise agil‐
ity.” It may be possible to start your InnerSource efforts with one module of a
generally usable component such as deployment infrastructure or a library
that would eventually be useful to every business unit, and then gradually
widen the scope within that component to grow your program. Although
these tactics are certainly not foolproof or a guarantee for success, many suc‐
cessful InnerSource programs started out as grassroots initiatives and grew
after proving value creation.

Strategic humility
It’s always a good idea to underpromise and overdeliver. Asking for a “small
budget” while promising major benefits sets up a potentially fatal backlash.
Some InnerSource programs have succeeded in evading attack from corpo‐
rate culture antibodies by tactically underplaying the value and goals of the
program until localized proof of value is established. Let happy participants
evangelize through word of mouth at the beginning of your experiment.
Eventually, you should implement a more extensive internal marketing effort
but wait to unleash it until you’ve collected some local success.

Address Fear, Uncertainty, and Doubt
Fear, Uncertainty, and Doubt (FUD) is a classic marketing tactic meant to
discredit something by presenting it in an undeservedly bad light. Spreading
FUD can hinder the adoption of any product. When Open Source wasn’t yet

136 | Chapter 8: Adopting InnerSource

generally accepted by the mainstream software industry, it suffered a lot
from organized FUD. We see a similar thing happening with InnerSource,
where skeptics at all levels of organizations sow discontent without direct
experience, out of a general aversion to change. For example, it’s not uncom‐
mon for business units to refuse to contribute to shared repositories because
they fear that other business units will “steal” their code and effectively their
business. This highlights an extreme distrust between teams within the same
corporation, which in turn warns of deeper dysfunction: an inability to
mobilize employees to work together across the company to achieve any sort
of common goal or major change, including responding appropriately to
external market forces.

Feed participant motivations
At the end of the day, InnerSource is about shifting power away from mana‐
gerial command and control toward individual autonomy to give resources a
method and permission to work around existing bottlenecks. Relearning
how to work is such a fundamental shift that participants will probably expe‐
rience some discomfort during the transition. Typical expressions of that dis‐
comfort manifest as fears about host team sovereignty, the respect awarded
to guest contributors by the host team responsible for evaluating their work,
impact on people’s schedules, service-level promises and time commitments,
change and rotation of duties, rejection of unsuitable contributions, and
maintenance expectations for merged contributions. It’s important to listen
to, acknowledge, and then try to mitigate participant discomforts and fears.
Qualitative data (success stories) collected from initial experiments can be
really helpful.

The InnerSource Commons
We believe the guidelines and tips we set out in this chapter are useful to start up
an InnerSource experiment. But we’d like to add a disclaimer that we’re not mak‐
ing any promises! As we said before, this isn’t just a simple recipe that will lead to
success. As the various case studies have reported in very frank ways, there are
considerable challenges in making the cultural changes that are needed to
improve collaboration within any organization. We believe the benefits more
than outweigh the challenges presented by InnerSource, which is why we’re advo‐
cating for it.

The very best practice we can recommend is joining the InnerSource Commons
at www.innersourcecommons.org to connect with the network of your Inner‐
Source peers across the tech industry. Together, the Members of the ISC are
learning about and documenting patterns and practices associated with Inner‐
Source. All the stories we’ve told in this book and more have been discussed

The InnerSource Commons | 137

http://www.innersourcecommons.org

within the ISC. It really is the best way to prepare yourself for success with Inner‐
Source, and we hope to see you there.

138 | Chapter 8: Adopting InnerSource

CHAPTER 9

Epilogue

Brian Behlendorf

InnerSource is an idea that has been long in the main, and it is really gratifying to
see it finally gaining widespread momentum.

In 1998, the same year the term “Open Source” was coined, I had just sold my
interest in the first company I co-founded, Organic Online. It was the same year
that I and the group of volunteer developers known informally as the Apache
Group, who built the Apache HTTP Server, began the work of forming a formal
nonprofit corporation around our efforts, which led to founding the Apache
Software Foundation (ASF) in 1999. But I also needed a new full-time gig, and I
believed strongly that the way ASF engineers were using the internet to work
together on what became the world’s most popular web server—this “Apache
Way” of working (see Chapter 2)—was more efficient, agile, and powerful than
any other software engineering process. I felt it was possible to make lightning
not just strike twice, but over and over again.

So, I joined up with Tim O’Reilly (of O’Reilly and Associates), a venture capital
firm named Benchmark, and a number of other collaborators and friends and
started a company named CollabNet, to bring Open Source practices and princi‐
ples to the rest of the software world. While I was perhaps more motivated to
help companies publicly release their code, it became clear that enabling private
software collaboration within corporate walls was just as valuable, if not more so.
Tim coined the term “InnerSource” for this. InnerSource differs from Open
Source only in that it has no public code sharing component. It happens privately
within the confines of a company’s firewall, or between companies in a shared
but exclusive space.

There is a significant benefit to fostering cross-team collaboration; to fostering
reuse and continuous improvements; to allowing teams to see “below the API”
when calling into another team’s interfaces or code; to allowing one team to

139

“fork” the code of another and then ask their modifications to be pulled back
upstream after some work is done (but not require it); to recognize when starting
work on a component that there likely are other teams with a need for that same
component, triggering an effort to find them and work together; and to many
other patterns that were common in Open Source development even in the
1990s, but unheard of in the enterprise. This was a revelation to teams tradition‐
ally driven by a “waterfall” software development mentality, intense political
pressures, and tool decisions with unintended consequences such as silos and
separation, even within leading technology firms for whom software collabora‐
tion should have been second nature.

But collaboration is hard. It requires stepping outside of one’s immediate pres‐
sures of deadlines and milestones and looking around at others in the organiza‐
tion for opportunities—opportunities to reuse what someone else has done (even
if it needs more work), as well as opportunities to promote what you’ve built to
the rest of the org (so they hear about it and come to use it, thereby improving
your code along the way). Even when you do have multiple parts of an organiza‐
tion eager to work together, everything from tool choices to time zones to prefer‐
red code formatting styles can stymie collaboration.

Solving this does not require charity or selflessness, but it does require a form of
enlightened self-interest—a faith that a bit more investment in the short term
pays off in greater reuse, fewer architectural errors, and a more agile dev team
than you’d have otherwise. It also requires humility, which is always in short sup‐
ply! And until this book was written, it required an innate, informally shared
understanding of how to make it all work.

Today most of the innovation happening in tech wouldn’t exist without Open
Source, and the methods we discovered back in the 1990s are more relevant than
ever. Older companies need to keep up with the pace of change to stay relevant,
and that’s why I’m so pleased to see this book of stories about how InnerSource
can still transform engineering practices and solve problems across a wide range
of long-established companies. I’m expecting to see the InnerSource movement
continue to grow. I hope that one day every software engineer is taught these
techniques in order to realize the true value of peer-based collaboration at scale.

140 | Chapter 9: Epilogue

Glossary

Air cover
Refers to executive management sup‐
port for a potentially vulnerable change
initiative, such as an InnerSource pro‐
gram. Having support at the highest
level helps to get things done and to
ensure that mid-level managers cannot
block an initiative.

Apache Software Foundation (ASF)
An American nonprofit organization
that supports Apache Open Source
software projects, including the Apache
HTTPd web server. Founded in 1999,
the ASF is home to the world’s largest
single-license Open Source software
repository with over 350 projects and
more than 5,000 contributors. The
Apache Way is a documented method
for transparent peer-based collaborative
software development upon which
InnerSource is based (see Chapter 2).

Benevolent Dictator for Life (BDFL)
The term BDFL is commonly used in
Open Source projects with a single
leader, who is often (but not necessar‐
ily) its original creator. The term first
appeared in 1995 referring to Python’s
creator Guido van Rossum. A BDFL
oversees a project and has the final say
in key decisions related to a project’s
future development direction. Not all
Open Source projects have BDFLs.

BIOS
BIOS stands for Bosch Internal Open
Source, which is the name for Bosch’s
first InnerSource program. Starting in
2009, the BIOS program was a three-
year experiment (later extended by an
additional three years) to evaluate the
utility of Open Source development
practices for corporate software devel‐
opment. BIOS evolved into Bosch’s
Social Coding program.

Bosch Internal Open Source (BIOS)
See BIOS.

Bottleneck
A metaphor that denotes when the
capacity of a system or organization is
limited by one component or team—
the bottleneck.

Brooks’s Law
An observation by Frederick Brooks,
who was project manager for IBM’s
OS/360 project, that adding more peo‐
ple to a project that is already late, will
make it later. The explanation for this is
that new people need to be onboarded
onto the project, the combinatorial
explosion of the number of communi‐
cation links in larger groups of people,
and the limited extent to which tasks
can be divided over multiple people.

Champion
A person who helps advocate an Inner‐
Source program, by serving as a contact

141

point, a domain expert, or a leader to
help other teams onboard and even
arbitrate in an InnerSource program.

Charter conflict
Charter conflict is a common manage‐
ment problem where two or more indi‐
viduals or teams each believe a given
area of effort is their sole responsibility,
which leads to both working in the
same problem space, often with dupli‐
cated effort, and eventual hurt feelings.
Clear guidance from leadership can
avoid or resolve charter conflict.

Cheese, wedge of cheese
A metaphor for an executive manager
(see Cheese Story).

Cheese Story
The Cheese Story describes how disa‐
greements and conflicts get escalated
up the management chain to execu‐
tives, which are drawn as a wedges of
cheese. When escalation occurs, one
division’s “cheese” discusses the team’s
wishes with the other division’s cheese,
who will then discuss the issue with his
or her engineers. This out-of-band
intervention runs counter to Inner‐
Source communication, collaboration,
and decision-making processes, all of
which are generally more direct.

Chief Architect
A key role in the core team in Bell Lab‐
oratories’ SIP project. The Chief Archi‐
tect typically has intimate knowledge of
the software asset.

Code Guardian
A role in Ericsson’s CDS initiative. The
Code Guardian is one of three roles
(besides Product Owner and Architect)
in Ericsson’s core teams. The Code
Guardian is to “guard the quality of the
code” by reviewing contributions from
individuals and teams.

Community Developed Software (CDS)
CDS is an InnerSource program within
Ericsson that started with the compa‐
ny’s attempt to build a platform without

a platform organization. Within the
CDS, core teams are responsible for
designing and delivering components
with well-defined interfaces that feature
teams can use to implement the func‐
tionality they need.

Continuous Integration (CI)
First coined as a term by Grady Booch,
IBM Fellow and co-inventor of the Uni‐
fied Modeling Language (UML), and
also one of the original 12 practices of
Extreme Programming (XP), CI is the
practice of integrating code changes
into the master code repository to
ensure that no defects are introduced
that break the system as a whole.

Contributing.md file
A file offered in every project setup that
memorializes working agreements
between guest contributors and host
code owners, as well as the process for
making, reviewing, merging, and sup‐
porting contributions (the .md exten‐
sion suggests it’s written in Markdown,
which is supported in many modern
version control systems).

Core Team
Many successful Open Source projects
have a core team that consists of a rela‐
tively small number of key contribu‐
tors. Some projects define a core team
to consist of a BDFL and Trusted Lieu‐
tenants. Others define a core team by
the architecture of the project, for
instance, the core team may work on
the core engine while everyone else
works on modules that the core engine
acts on. Companies adopting Inner‐
Source sometimes adopt the concept of
a core team, but they may redefine what
that means for their context.

Corporate Open Source (COS)
The term originally used at Bell Labora‐
tories for InnerSource.

Delivery advocate
A role in Bell Laboratories’ SIP project’s
core team that assists business units in

Charter conflict

142 | Glossary

the task of integrating the shared assets
into the business units’ software. We’ve
also seen the concept of a delivery
advocate in other companies, though
they didn’t use the term.

Executive air cover
See Air cover.

Feature advocate
A role defined in Bell Laboratories’ SIP
project’s core team. The feature advo‐
cate is responsible for seeing a certain
feature to completion.

Guest contributor
A term used in PayPal’s InnerSource
program, to refer to a contributor
external to the owning team (Host
team).

Host team
A term used in PayPal’s InnerSource
program, to refer to the team that men‐
tors, accepts, and reviews contributions
from guest contributors. See also Guest
Contributor.

Infrastructure-based InnerSource
A variant of InnerSource whereby an
organization provides the necessary
infrastructure for anyone to start a new
community. In this model, the organi‐
zation doesn’t provide any resources to
support a dedicated core team to
develop or maintain a specific project.
See also Project-specific InnerSource.

Inner Source
The term coined by Tim O’Reilly in
2000 to refer to the idea of leveraging
Open Source development practices for
corporate software development. The
InnerSource Commons has adopted
“camel case” spelling: InnerSource.

InnerSource
Alternative spelling for “Inner Source”
(the original spelling coined by Tim
O’Reilly). The one-word spelling was
chosen by the InnerSource Commons
community to make the term more
searchable on the internet.

InnerSource Commons
Founded in 2015, the InnerSource
Commons is an organization of indi‐
viduals working on sharing experien‐
ces, developing public educational
materials, and supporting each other as
they work on InnerSource implementa‐
tions either for their employers or as
consultants. This group meets online at
http://innersourcecommons.org.

IRC
Internet Relay Chat. Chat server soft‐
ware that was invented in 1988 and is
still commonly used by Free and Open
Source projects. Many alternative com‐
munication and collaboration platforms
exist today with similar features. One of
the better known commercial platforms
is Slack.

Liaison
A formalized role in Bell Laboratories’
SIP InnerSource project. The Liaison
plays a key role in managing the core
team’s activities, and is the interface to
business units who wish to discuss new
work requests. Within the SIP project,
the liaison works closely with the Chief
Architect.

Linus’s law
Originally coined by Eric Raymond in
his essay The Cathedral and the Bazaar:
“Given enough eyeballs, all bugs are
shallow.” In other words, bugs that may
seem inexplicable to some might be
obvious to others, as long as a sufficient
number of people that look at the code.
The limitations of Linus’s law were
demonstrated when the “Heartbleed”
bug was introduced into OpenSSL in
December 2011, released in March
2012, and neither noticed nor fixed
until April 2014.

Markdown
A lightweight markup language to
structure text that can be easily con‐
verted to other formats, such as HTML.
The file extension is .md. Many modern
tools have native support for it; GitHub

Markdown

Glossary | 143

http://innersourcecommons.org

and GitLab both support Markdown
with specific extensions.

Modularity
Modularity refers to the extent to which
a software program’s parts are coupled.
A high degree of modularity means that
modules are very loosely coupled,
which in turn means that changes in
one module result in a minimal num‐
ber of changes in other modules. A low
degree of modularity means that mod‐
ules are tightly coupled, which in turn
means that a change in one module
may require significant changes in all
coupled modules.

Product Owner (PO or PMO)
A key role in the Scrum development
framework, the most popular Agile
development method. The PO repre‐
sents the voice of the customer, and has
as a key responsibility the maintenance
of the product backlog of planned fea‐
tures expressed as “stories”—the role
also typically includes setting develop‐
ment priorities for the product.

Project-specific InnerSource
A variant of InnerSource that focuses
specifically on one or a few projects that
have dedicated teams, typically sup‐
ported by corporate funding or by busi‐
ness units. The dedicated “core team” is
responsible for maintaining a roadmap
and the asset’s architectural consistency.
See also Infrastructure-based Inner‐
Source.

Pull request (PR)
A set of proposed changes to source
code that includes metadata such as
review comments. A PR is the mecha‐
nism used in distributed (or decentral‐
ized) source code management systems
such as Git and Bitbucket. In central‐
ized code management systems (such as
Subversion), changes to source code
would typically be captured in a patch
that does not include the metadata that
a PR has.

Release advocate
A formalized role in the core team of
Bell Laboratories’ SIP InnerSource
project. The release advocate is respon‐
sible for ensuring that all features that
were planned for a release are submit‐
ted on time, and keeping track of
division-specific impacts of a specific
release.

Scrum
Possibly the most popular Agile
method for software development.
Scrum defines a number of roles (see
Scrum Master, Product Owner), arti‐
facts (e.g., product backlog), and cere‐
monies, such as the Daily Standup (or
Daily Scrum). Being an Agile method
that recommends a maximum team size
of about 7 to 9 people and that empha‐
sizes face-to-face communication,
many companies that adopted Scrum
have difficulty scaling up their software
development efforts. InnerSource can
help in this regard.

Scrum Master (SM)
A key role in the Scrum development
framework, the Scrum Master works to
ensure a given team is following all the
steps of Scrum, including regular short
meetings to discuss daily work, pulling
specific assignments from a backlog of
feature descriptions called stories, and
completing a show and tell of progress
called a “demo” at the end of every
planned work interval (a sprint), typi‐
cally two to four weeks in duration.

SeazMe
An Open Source tool developed and
released by PayPal that collects infor‐
mation (and ad hoc documentation)
from a variety of sources into a persis‐
tent and indexed archive, in order to
make information discoverable and to
enable collecting metrics on Inner‐
Source collaboration between teams.

Silo
Metaphor to describe the typical
arrangement in large corporations,

Modularity

144 | Glossary

where each division (or large collection
of code) is a separate, independent
entity with very little collaboration and
communication between them. Silos
often compete for budget and resour‐
ces, and this competition further
undermines collaboration and commu‐
nication.

Slack
A commercial collaboration platform
that shares many of the features of IRC,
but also allows the sharing of many
document and image types in addition
to plain text. Slack is currently widely
used by companies as a collaboration
and communication tool. Slack stands
for “Searchable Log of All Conversation
and Knowledge.”

Social Coding
Bosch’s current InnerSource program,
which descended from BIOS.

Symphony
The subject of one of the key Inner‐
Source experiments at PayPal. Sym‐
phony was a year-long project to
rearchitect a key service used by most
PayPal features.

Test-Driven Development (TDD)
Test-Driven Development is one of the
original 12 practices of Extreme Pro‐

gramming (XP), one of the most popu‐
lar Agile development approaches. In
TDD, you write the tests for a feature
first, and then the feature itself, after
which the test should pass, which sug‐
gests the feature is complete.

Trusted Committer
See Trusted Lieutenant.

Trusted Contributor
See Trusted Lieutenant.

Trusted Lieutenant
In an Open Source context, the term
Trusted Lieutenant can refer to a mem‐
ber of an Open Source project’s core
team who has merge access to the
major branch of the source code man‐
agement system. Trusted Lieutenants
may assist a project leader (or BDFL) or
may be themselves solely responsible
for reviewing, critiquing, accepting and
merging contributions to a project.
Trusted Committer is a synonym. A
Trusted Contributor has achieved a
level of trust in their contributions,
which is a step on the path to Trusted
Lieutenant.

Trusted Lieutenant

Glossary | 145

About the Authors
Despite her B.A. in French literature, Danese Cooper has a 30-year career in
tech, including senior engineering management and open source strategy posi‐
tions at Apple, Microsoft, Symantec, Sun, Intel, and most recently, PayPal. She is
a recognized leader in the Open Source movement, for her work at Sun and as
CTO of Wikimedia Foundation (home of Wikipedia), and for her many years of
service on Boards of Directors or as an advisor to well-known Open Source
projects including the Open Source Initiative, Open Hardware Association,
Mozilla, Drupal, and Apache. Currently she serves as the Chairperson of the
Node.js Foundation. Danese founded InnerSourceCommons.org in 2015 as part of
a bootstrapping effort for PayPal. She developed and delivers training for organi‐
zations and individuals working with InnerSource through DaneseWorks, her
consultancy. She speaks internationally on Open Source and InnerSource trends
and evangelizes the Open Source ethos far and wide.

As an academic, Klaas-Jan Stol has conducted research on Open Source and
InnerSource for the last 10 years. He is a lecturer with the School of Computer
Science and Information Technology at University College Cork, a Funded Inves‐
tigator with Lero—the Irish Software Research Centre, and a Science Foundation
Ireland Principal Investigator. The goal of his research is to better understand
these novel modes of development work, and what their implications are for the
software industry. For example, when Open Source was just emerging as a
research topic, most companies didn’t show much interest primarily due to a
misunderstanding of what Open Source was. It was also not clear how companies
could benefit from Open Source. Over the years, this has changed dramatically
due to many research studies on this topic, which are published in academic con‐
ferences, journals, and textbooks, which in turn are used in university courses. A
similar thing is now happening with InnerSource. While it has been a topic of
research for years, there are still many misconceptions about what InnerSource
is, and how companies can benefit from adopting it. Klaas tries to close this gap
by writing books like this one.

http://innersourcecommons.org

	Cover
	InnerSource
	Copyright
	Table of Contents
	Foreword
	Chapter 1. The InnerSource Approach to Innovation and Software Development
	Old Patterns of Development: Closed and Slow
	Factors Driving Open Source
	Proprietary Hierarchies
	The Open Source Way
	Why Does Open Source Development Succeed?

	What Is InnerSource?
	A History of InnerSource

	Why Do Companies Adopt InnerSource?
	Breaking Down Silos and Bottlenecks
	Reuse
	Knowledge Sharing and Full Stack Teams
	Innovation
	Improving Quality
	Staff Mobility and Process Standardization

	InnerSource Today
	Why We Wrote This Book
	Who Should Read This Book
	How This Book Is Organized
	Visit Us Online
	Acknowledgments

	Chapter 2. The Apache Way and InnerSource
	Origins of The Apache Way
	Fundamentals of The Apache Way
	Meritocracy
	Transparency
	Community

	Chapter 3. From Corporate Open Source to InnerSource: A Serendipitous Journey at Bell Laboratories
	Background on Internet Protocols for Voice Communication
	SIP: A Brief Background
	The Project: The Common SIP Stack (CSS)
	Phase 1 (1998–2000): The Foundational Years
	Phase 2 (2001–2003): Opportunistic Partnering
	Phase 3 (2004–2006): Corporate Open Source

	Reflections, Insights, and Discussion
	Advertising and Encouragement
	The SIP Asset: By the Numbers
	Looking Back

	Acknowledgments

	Chapter 4. Living in a BIOSphere at Robert Bosch
	Why InnerSource
	Starting the BIOS Journey
	Establishing and Growing the BIOSphere
	BIOS Values
	BIOS Review Committee
	BIOS Governance Office
	Attracting Contributors

	From BIOS to Social Coding
	Sustaining Social Coding

	Success Stories
	Widespread Adoption
	Diverse Ecosystem of Communities
	Improved Collaboration
	Personal Growth
	Increased Productivity
	Alignment with Business

	Success Factors
	Challenges
	Lessons Learned
	Conclusion
	Acknowledgments

	Chapter 5. Checking Out InnerSource at PayPal
	A Little Background
	Attributes of InnerSource
	The CheckOut Experiment
	The Onboarding Experiment
	Executive Air Cover
	Meanwhile, in India
	Learning Goals

	Beginning Symphony and InnerSource Brand Dilution
	Initial Symphony Training
	The Contributing.md File
	Cadence of Check-Ins
	Outcomes
	The Rhythm of InnerSource Work
	The Future of InnerSource at PayPal
	Acknowledgments

	Chapter 6. Borrowing Open Source Practices at Europace
	Looking for New Ways of Organizing
	Starting the Journey Toward InnerSource
	Why InnerSource?
	InnerSource Experiments

	Steps Toward InnerSource
	Getting People on Board
	Leading by Example

	InnerSource Principles
	InnerSource Results
	InnerSource: One Year Later

	InnerSource Challenges
	Building Trust in Written Communication
	Scaling InnerSource Beyond First Experiments
	Getting Other, Nondeveloper Colleagues on Board
	Crossing the Boundary Toward Open APIs and Open Source

	Conclusion and Future Outlook
	Acknowledgments

	Chapter 7. Connecting Teams with InnerSource at Ericsson
	The Changing Telecommunications Landscape
	Why InnerSource?
	Scaling Up Development Capacity
	Reducing Waste
	Improving Quality

	Starting the Community Developed Software Program
	Creating Core Teams
	Setting Up Contribution Rules
	Setting Up a Flexible CDS Infrastructure
	Creating the Governance Council

	Selecting Components and Development Models
	Development Zones
	Collaboration Workflow

	Making Collaborations Happen
	Pillars of Community-Developed Software
	Success: The User Interface SDK Framework
	Lessons Learned
	The Future of InnerSource at Ericsson
	Acknowledgments

	Chapter 8. Adopting InnerSource
	Comparison of the Case Studies
	Product
	Processes and Tools
	Community and Management

	Guidelines for Adopting InnerSource
	Product
	Process and Tools
	Community and Management

	The InnerSource Commons

	Chapter 9. Epilogue
	Glossary
	About the Authors

