C AND OPENCL GENERATION FROM
MATLAB

LUIS REIS, JOAQ BISPO, JOAO CARDOSO

Faculty of Engineering 477z, Universidade do Porto

University of Porto \ T F E U P Faculdade de
SiEs Engenharia

16t of April, 2015

Multicore Software Engineering, Performance, Applications, and Tools
(MUSEPAT)

30th ACM/SIGAPP Symposium On Applied Computing (SAC'15)

OUTLINE

= [ntroduction

= Motivation

= MATISSE OpenCL back-end
= Results

m Conclusions and Future Work

THE AGE OF PARALLELISM - CPU

m Parallelism in CPUs

= SIMD: Data parallelism on a single thread

= Multicore: Requires Task parallelism.

= Both are required for maximum efficiency.

THE AGE OF PARALLELISM - GPU

= Initially GPUs mostly used for graphical computing
m Could be used for other operations, but that was far too much work
m Usually have their own memory
= GPGPUs: General-Purpose Graphics Processing Unit
= Still focused on graphics, still tend to have a separate memory
m Easier to program now
m GPGPUs require parallelism:
= Take longer than CPUs for sequential tasks

= With parallelism, speedups of 1000x are possible

PROGRAMMING MODELS - DIRECTIVE-DRIVEN

= Some approaches let the programmer specify parallelism declaratively

= "This part of the code can be made parallel”
= Acceptable performance with relatively small effort.

= Code is annotated with “directives” — code that is recognized by the compiler

m Examples are OpenMP and OpenACC

PROGRAMMING MODELS - OPENACC

Directive-driven extensions for C,
C++ or FORTRAN.

Compilers automatically generate
the GPGPU code and
communications.

Suitable for accelerators,
including GPGPUs

m Data-transfers are explicit, using
copyin, copyout, copy and
present.

#include <stdio.h>

int main() {

int buffer = { 1, 2, 2, 4, 5

int sum = 0;

#pragma acc kernels loop \
copyin (buffer[0:10]) \
reduction (+:x)

for (int i = 0; i < 10; ++1i) {

sum += i * i;

}

printf ("Result is %d\n", sum);

return 0;

PROGRAMMING MODELS - LANGUAGES

= Old days:
0 Shader languages: HLSL, GLSL
= More recently:
0 GPGPU-specific languages: CUDA, OpenCL
0 CUDA is a language by NVIDIA, extends C, C++ or Fortran
0 OpenCL is a standard by Khronos, API + C-based language

PROGRAMMING MODELS — OPENCL

= Programming language _

and API (C/C++ inspired) Void kernel name (

Initiallv for GPGPU global int* result buffer,
= Initially for ,

global int* src buffer) {
currently supports -
multicore CPUs and even

FPGAS size t thread id = get global id(0);
" SNL</IDIBIO£\te2|§h¥I Intel, AMD, int src value = src buffer[thread id];

Qualcomm, Apple :
N result buffer[thread id] =
ALTERA and Xilinx thread id < 128 2

= Parallel parts in OpenCL, src_value * 2 : src_value * 3;
remaining code in host 4

language (e.g., C)

MOTIVATION — MULTI-TARGET CODE

= To get the most performance we need low-level code (C, OpenCL)
= However, low-level code usually is not performance portable
= To maximize performance, different targets require different code

= Additionally, may have special requirements

= Embedded systems without floating-point HW units, or with units that perform
poorly

= HW synthesis (compliance to different tools)

MOTIVATION — MULTI-TARGET CODE

m Possible Solution:

m Start from clean implementation, specialize to target
= Problem:

= Hard to transform low-level code, too many implementation details
m Qur approach:

= High-level description (MATLAB)

= Augmented with information about implementation (LARA aspects)

MATISSE — OPENCL BACKEND

= Proof-of-concept OpenCL backend
= Developed during MSc

= MATLAB compiler that generates C
+ OpenCL code

m Based on the MATISSE framework

= MATLAB code is extended with
OpenACC-based directives

:L‘

MATLAB Code
\/\

:L‘
LARA Aspects

\/\ MATLAB IR + Information
1

MATLAB IR

“ MATLAB Code

MATISSE — OPENCL BACKEND

m Regions of code are marked as

paraHeI function A = my matlab func(x)
A = ones (200, 100, 'single');
= Each loop iteration is independent
of the others. e

= Copyin: Which variables are acc parallel loop

copied to the GPU before
execution begins.

copyin (A) copyout (A)
%}

for 1 = 1:200

= Copyout: Which variables are A(i, 50) = 1i;
copied out of the GPU after end
execution ends. %acc end
end

m QOther directives are supported

MATISSE — OPENCL BACKEND

m We reuse and extend the MATISSE IRs:
= MATLAB AST
= CIR

m The MATISSE C backend handles sequential code sections.

= MATISSE CL overrides the code generator for the outlined functions.

m Generates the OpenCL code and the C wrappers.

GENERATED SAMPLE CODE (OPENCL)

kernel void cpxdotprod3 extractedl mgf4d3mgf4d3mgf43mgf43sdsdmgf42mgfd2 (
global float* Arealdata, int Arealdiml, int Arealdim2, int Arealdim3,

-)

size_t thread idl;

int j;

size_t global sizel;

int tmp Iterationsl;
global float mat3 t Areal;

int index;
float Ar;
float Ai;
float Br;
float Bi;

thread idl = get global id(0);

j = thread idl + 1;

global sizel = get global size(0);
tmp Iterationsl = global sizel;
Areal .data = Arealdata;

Areal.diml = Arealdiml;

index = j;
Ar = matrix get mgf43 1 (Areal, index)

matrix set mgf42 1 (Creal, index, (Ar * Br - (Ai * Bi)))
matrix set mgf42 1 (Cimag, index, (Ar * Bi + (Ai * Br)))

AT T

GENERATED SAMPLE CODE (C WRAPPER)

void cpxdotprod3 extractedl tftftftfiitftf(...)
{

cl_mem Arealdata;

cl kernel kernel;
¢l int retval;
¢l int Arealdiml;

cl event kevt;

Arealdata = clCreateBuffer(...);
clhelper check return("clCreateBuffer", retval);

kernel = clCreateKernel (context->program,
"cpxdotprod3 extractedl mgfd43mgf43mgf43mgf4d3sdsdmgfd2mgf42", &retval) ;
clhelper check return("clCreateKernel", retval);
retval = clSetKernelArg(kernel, 0, sizeof(cl mem), &Arealdata)
clhelper check return("clSetKernelArg", retval);

retval = clEnqueueNDRangeKernel(...)
clhelper check return("clEngqueueNDRangeKernel', retval);

copy_alloc f(Creal, Creal out);
retval = clEnqueueReadBuffer(...):;
clhelper check return("clEngqueueReadBuffer", retval):;

BENCHMARKS

= Benchmarks:
m Reused some benchmarks already used for MATISSE C
= Most are from embedded computing

= Matmul: Naive implementation of matrix multiplication

Monte Carlo option pricing: Adapted from a MathWorks example

RESULTS — TOTAL TIME

= CPU: AMD A10-7850K@3.7GHz w/ GPU (integrated), GPU: R7 280X
(discrete)

m [ncludes time spent on data transfers

10000.00
1009.60 975.76
1000.00 739.32
149.08
100.00
14 .88 19.14 18.21 13 68
10.00 6.01
3.09
l 1.80 2.00
o] -
. CPU . Integrated GPU Discrete GPU
0.43
0.30 0.35 0.29
0.10 0.19 0.19

m dotprod m dilate = matmul rgb2yuv B monte_carlo m subband B Geo. Mean

RESULTS — MATMUL

= Modified matmul (in MATLAB) with optimizations from nVidia exemple
= Loop Tiling

m | ocal Memory

RESULTS — MATMUL

= Modified matmul (in MATLAB) with optimizations from nVidia example
= Loop Tiling

m | ocal Memory

1024x1024 MI Speedup

4.6x
GPU (int.) 0.19 0.062 3.1x
GPU (disc.) 0.028 0.035 0.8x

RESULTS — ODROID

= We were able to compile and run our programs on an Odroid board

[l

[l

[l

[l

ARM'’sbig.LITTLE configuration and a PowerVR SGX544MP3 GPU
Android 4.2.2 (though we bypassed Dalvik entirely)

The same processor used by some smartphones.

Preliminary results, only

= Sadly, we were rarely able to obtain speedups

M

M

M

Only 5% faster in matrix multiplication.
75% slower for the dilate benchmark.

Monte Carlo Option Pricing can have statistically insignificant speedups (less than
95% confidence for N = 5000), or significant slowdowns (30% slower for N = 1000)

= We hope to improve these results with future optimizations (such as thread
coarsening and use of texture memory)

CONCLUSIONS

= Proof-of-concept OpenCL back-end from MATLAB
m Based on the MATISSE framework

m Good results on desktop GPUs

m Embedded systems’ SOC performance needs more time for experiments
and analysis.

m Future Work:

= Improve MATLAB compatibility (take advantage of idiomatic operations)

m Specialize code according to target

FUTURE WORK

%1 % !'parallel
acc parallel loop Creal = Areal.*Breal-Aimag.*Bimag;

Cimag = Areal.*Bimag+Aimag.*Breal;
copyln (readonly Areal, readonly s lend
Aimag, readonly Breal, readonly
Bimag, numElements)

copyout (Creal, Cimag)
5}

for j=1l:numElements
index=7j;

Ar = Areal (index) ;

Al = Aimag(index) ;

Br = Breal (index) ;

Bi = Bimag(index) ;

Creal (index) = Ar*Br-Ai*Bi;
Cimag(index) = Ar*Bi+Ai*Br;
end

$acc end

THE END

THANK YOU!
Questions?

Demo of MATISSE (C only):

http://specs.fe.up.pt/tools/matisse/

http://specs.fe.up.pt/tools/matisse/

RELATED WORK

= MEGHA [Prasad et al, APPLC 2012]:
0 Compiles a subset of MATLAB to CUDA
0 HLLC/ParaM

1 Source-to-source [Shei et al, ICS 2011]
_ Outputs MATLAB with GPUmat API calls

0 Alternative approach: [Shei et al, INTERACT 2011]
_ Outputs MATLAB with calls to C++ and CUDA.

0 Our approach: MATLAB to C + OpenCL

24

20
18
16
14
12
10

o N~ O

RESULTS — MATISSE C VS MATLAB

18417049 60
68

18.2 ' 18.2
13.9
134 129 13.3
oM o 9.9 94
8.4 8.4 8
80 76 76 8'0 78 77 8.1
54 .5 s 6.0 6.1 6
] 5.0 45 47 50
: 3.2 b 335 - 49,37 3
p5 R6 B5 b 3 9 2.8
i 7
111 10 6
~ 8848588888853 3888888838 %
T = & £ £ £ 2 8 T R I IFT 5 5 5 &I 3, ¥ &8 § 3% %8 8% 8 3B
o X X0 90 9 x x X S 8 & n W 8 b b b OB S & & & & & & =9
H 8 8 ¥ o« © 83383 38 "8 8 5K 32 IIAIFT T T¥TS8S T Lo I X 38
n o N ¥ o9 o o o N < <t O — @ — o< N O - MmN O 9w
— [@V < — (@) —
capacitor closure crnich dirich editdist fdtdt finediff nbody1d nbody3d G. Mean

B MATISSE W MEGHA (Prasad et al.) [1]

[1] A. Prasad, J. Anantpur, and R. Govindarajan, “Automatic compilation of MATLAB programs for synergistic
execution on heterogeneous processors,” in ACM Sigplan Notices, 2011, vol. 46, pp. 152—-163.

RESULTS — KERNEL TIME

= Same computer, Kernel time only (no data transfers, no C segments)

10000.00
2064.92 1175.78

307.49
844.67
1000.00
161.56 3425 -
155.07 gg A9 ’
100.00 35,96 63.31
14.89
10.00 3 10 5.09
2.88 2 51 3.86 181
1 28 .)
1.00 -

Integrated GPU Discrete GPU

0.43
0.10

m dotprod m dilate = matmul rgb2yuv B monte_carlo m subband B Geo. Mean

MATLAB GPU APIS

m MathWorks Parallel Computing Toolbox:
= CUDA API for MATLAB
= Official, supported
= GPUmat
= Open-source
= CUDA API
m Open-source, last update on 2012
= Jacket
= CUDA or OpenCL

m Discontinued

27

LIMITATIONS

m OpenCL back-end introduced too early in the tool-chain

= Does not take advantage of current C transformations (e.g., element-wise)

= Only a small subset of functions are supported within a parallel block

m Odroid performance is poor

MATMUL

m [diomaticc A=B*C;
= Simple and slow, three nested loops

m Fine-tuned with directives: separate file

29

OPENMP

#include <stdio.h>

int main() {

= OpenMP: Standard for C,
C++ and FORTRAN.

= Very CPU-centric.

int max = 100;

int sum = 0;
#pragma omp parallel for \
reduction (+:x)

m Code is annotated with

. . for (int 1 = 0; 1 < max; ++1i) {
directives. sum += i * i;
. : }
= Compilers automatically
generate the code to printf ("Sum of squares up to %d is %d\n",
launch threads. max, sum);

return 0;

30

HOW LONG DOES MATLAB TAKE (EXAMPLE)

Monte Carlo Option Pricing:

MATLAB: For 100 iterations, 12 seconds

MATLAB: For 1000 iterations, 113 seconds

MATISSE C: For 10000 iterations, takes 24 seconds
MATISSE OpenCL: For 10000 iterations, takes 0.02 seconds

31

