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THE AGE OF PARALLELISM – CPU 

 Parallelism in CPUs

 SIMD: Data parallelism on a single thread

 Multicore: Requires Task parallelism.

 Both are required for maximum efficiency.



THE AGE OF PARALLELISM – GPU 

 Initially GPUs mostly used for graphical computing

 Could be used for other operations, but that was far too much work

 Usually have their own memory

 GPGPUs: General-Purpose Graphics Processing Unit

 Still focused on graphics, still tend to have a separate memory

 Easier to program now

 GPGPUs require parallelism:

 Take longer than CPUs for sequential tasks

 With parallelism, speedups of 1000x are possible



PROGRAMMING MODELS – DIRECTIVE-DRIVEN

 Some approaches let the programmer specify parallelism declaratively

 “This part of the code can be made parallel”

 Acceptable performance with relatively small effort.

 Code is annotated with “directives” – code that is recognized by the compiler

 Examples are OpenMP and OpenACC



 Directive-driven extensions for C, 

C++ or FORTRAN.

 Compilers automatically generate

the GPGPU code and

communications.

 Suitable for accelerators, 

including GPGPUs

 Data-transfers are explicit, using 

copyin, copyout, copy and 

present.

PROGRAMMING MODELS – OPENACC



PROGRAMMING MODELS – LANGUAGES 

 Old days:

Shader languages: HLSL, GLSL

 More recently:

GPGPU-specific languages: CUDA, OpenCL

CUDA is a language by NVIDIA, extends C, C++ or Fortran

OpenCL is a standard by Khronos, API + C-based language



PROGRAMMING MODELS – OPENCL

 Programming language 
and API (C/C++ inspired)

 Initially for GPGPU, 
currently supports 
multicore CPUs and even 
FPGAs

 Supported by Intel, AMD, 
NVIDIA,  ARM, 
Qualcomm, Apple, 
ALTERA and Xilinx

 Parallel parts in OpenCL, 
remaining code in host 
language (e.g., C)



MOTIVATION – MULTI-TARGET CODE

 To get the most performance we need low-level code (C, OpenCL)

 However, low-level code usually is not performance portable

 To maximize performance, different targets require different code

 Additionally, may have special requirements 

 Embedded systems without floating-point HW units, or with units that perform 

poorly

 HW synthesis (compliance to different tools)



MOTIVATION – MULTI-TARGET CODE

 Possible Solution:

 Start from clean implementation, specialize to target

 Problem:

 Hard to transform low-level code, too many implementation details

 Our approach:

 High-level description (MATLAB)

 Augmented with information about implementation (LARA aspects)



MATISSE – OPENCL BACKEND

 Proof-of-concept OpenCL backend

 Developed during MSc

 MATLAB compiler that generates C 

+ OpenCL code

 Based on the MATISSE framework

 MATLAB code is extended with 

OpenACC-based directives
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 Regions of code are marked as 

parallel

 Each loop iteration is independent

of the others.

 Copyin: Which variables are 

copied to the GPU before

execution begins.

 Copyout: Which variables are 

copied out of the GPU after

execution ends. 

 Other directives are supported

MATISSE – OPENCL BACKEND



MATISSE – OPENCL BACKEND

 We reuse and extend the MATISSE IRs:

 MATLAB AST

 C IR

 The MATISSE C backend handles sequential code sections.

 MATISSE CL overrides the code generator for the outlined functions.

 Generates the OpenCL code and the C wrappers.



GENERATED SAMPLE CODE (OPENCL)



GENERATED SAMPLE CODE (C WRAPPER)



BENCHMARKS

 Benchmarks:

 Reused some benchmarks already used for MATISSE C

 Most are from embedded computing

 Matmul: Naive implementation of matrix multiplication

 Monte Carlo option pricing: Adapted from a MathWorks example



 CPU: AMD A10-7850K@3.7GHz w/ GPU (integrated), GPU: R7 280X 

(discrete)

 Includes time spent on data transfers

RESULTS – TOTAL TIME



 Modified matmul (in MATLAB) with optimizations from nVidia exemple

 Loop Tiling

 Local Memory

RESULTS – MATMUL



 Modified matmul (in MATLAB) with optimizations from nVidia example

 Loop Tiling

 Local Memory

RESULTS – MATMUL

1024×1024 matmul (s) matmul_nv (s) Speedup

CPU 9.1 2.0 4.6×

GPU (int.) 0.19 0.062 3.1×

GPU (disc.) 0.028 0.035 0.8×



 We were able to compile and run our programs on an Odroid board

ARM’sbig.LITTLE configuration and a PowerVR SGX544MP3 GPU

Android 4.2.2 (though we bypassed Dalvik entirely) 

The same processor used by some smartphones.

Preliminary results, only

 Sadly, we were rarely able to obtain speedups

Only 5% faster in matrix multiplication.

75% slower for the dilate benchmark.

Monte Carlo Option Pricing can have statistically insignificant speedups (less than 
95% confidence for N = 5000), or significant slowdowns (30% slower for N = 1000)

 We hope to improve these results with future optimizations (such as thread
coarsening and use of texture memory)

RESULTS – ODROID



CONCLUSIONS

 Proof-of-concept OpenCL back-end from MATLAB

 Based on the MATISSE framework

 Good results on desktop GPUs

 Embedded systems’ SOC performance needs more time for experiments

and analysis.

 Future Work:

 Improve MATLAB compatibility (take advantage of idiomatic operations)

 Specialize code according to target



FUTURE WORK

%{

acc parallel loop

copyin(readonly Areal, readonly 

Aimag, readonly Breal, readonly 

Bimag, numElements)

copyout(Creal, Cimag)

%}

for j=1:numElements

index=j;

Ar = Areal(index);

Ai = Aimag(index);

Br = Breal(index);

Bi = Bimag(index);

Creal(index) = Ar*Br-Ai*Bi;

Cimag(index) = Ar*Bi+Ai*Br;

end

%acc end

%!parallel

Creal = Areal.*Breal-Aimag.*Bimag;

Cimag = Areal.*Bimag+Aimag.*Breal;

%!end



THANK YOU!

Questions?

Demo of MATISSE (C only):

http://specs.fe.up.pt/tools/matisse/

THE END

http://specs.fe.up.pt/tools/matisse/


 MEGHA [Prasad et al,  APPLC 2012]:

Compiles a subset of MATLAB to CUDA

HLLC/ParaM

Source-to-source [Shei et al, ICS 2011]

Outputs MATLAB with GPUmat API calls

Alternative approach: [Shei et al, INTERACT 2011]

Outputs MATLAB with calls to C++ and CUDA.

Our approach: MATLAB to C + OpenCL

RELATED WORK
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RESULTS – MATISSE C VS MATLAB

[1] A. Prasad, J. Anantpur, and R. Govindarajan, “Automatic compilation of MATLAB programs for synergistic 

execution on heterogeneous processors,” in ACM Sigplan Notices, 2011, vol. 46, pp. 152–163.
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RESULTS – KERNEL TIME

 Same computer, Kernel time only (no data transfers, no C segments)



MATLAB GPU APIS

 MathWorks Parallel Computing Toolbox:

 CUDA API for MATLAB

 Official, supported

 GPUmat

 Open-source

 CUDA API

 Open-source, last update on 2012

 Jacket

 CUDA or OpenCL

 Discontinued
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 OpenCL back-end introduced too early in the tool-chain

 Does not take advantage of current C transformations (e.g., element-wise)

 Only a small subset of functions are supported within a parallel block

 Odroid performance is poor

LIMITATIONS



MATMUL

 Idiomatic: A = B * C;

 Simple and slow, three nested loops

 Fine-tuned with directives: separate file

29



OPENMP

 OpenMP: Standard for C, 

C++ and FORTRAN.

 Very CPU-centric.

 Code is annotated with 

directives.

 Compilers automatically 

generate the code to 

launch threads.
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HOW LONG DOES MATLAB TAKE (EXAMPLE)

 Monte Carlo Option Pricing:

 MATLAB: For 100 iterations, 12 seconds

 MATLAB: For 1000 iterations, 113 seconds

 MATISSE C: For 10000 iterations, takes 24 seconds

 MATISSE OpenCL: For 10000 iterations, takes 0.02 seconds
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