
C AND OPENCL GENERATION FROM

MATLAB
LUÍS REIS, JOÃO BISPO, JOÃO CARDOSO

Faculty of Engineering

University of Porto

16th of April, 2015

Multicore Software Engineering, Performance, Applications, and Tools

(MUSEPAT)

30th ACM/SIGAPP Symposium On Applied Computing (SAC’15)

OUTLINE

 Introduction

 Motivation

 MATISSE OpenCL back-end

 Results

 Conclusions and Future Work

THE AGE OF PARALLELISM – CPU

 Parallelism in CPUs

 SIMD: Data parallelism on a single thread

 Multicore: Requires Task parallelism.

 Both are required for maximum efficiency.

THE AGE OF PARALLELISM – GPU

 Initially GPUs mostly used for graphical computing

 Could be used for other operations, but that was far too much work

 Usually have their own memory

 GPGPUs: General-Purpose Graphics Processing Unit

 Still focused on graphics, still tend to have a separate memory

 Easier to program now

 GPGPUs require parallelism:

 Take longer than CPUs for sequential tasks

 With parallelism, speedups of 1000x are possible

PROGRAMMING MODELS – DIRECTIVE-DRIVEN

 Some approaches let the programmer specify parallelism declaratively

 “This part of the code can be made parallel”

 Acceptable performance with relatively small effort.

 Code is annotated with “directives” – code that is recognized by the compiler

 Examples are OpenMP and OpenACC

 Directive-driven extensions for C,

C++ or FORTRAN.

 Compilers automatically generate

the GPGPU code and

communications.

 Suitable for accelerators,

including GPGPUs

 Data-transfers are explicit, using

copyin, copyout, copy and

present.

PROGRAMMING MODELS – OPENACC

PROGRAMMING MODELS – LANGUAGES

 Old days:

Shader languages: HLSL, GLSL

 More recently:

GPGPU-specific languages: CUDA, OpenCL

CUDA is a language by NVIDIA, extends C, C++ or Fortran

OpenCL is a standard by Khronos, API + C-based language

PROGRAMMING MODELS – OPENCL

 Programming language
and API (C/C++ inspired)

 Initially for GPGPU,
currently supports
multicore CPUs and even
FPGAs

 Supported by Intel, AMD,
NVIDIA, ARM,
Qualcomm, Apple,
ALTERA and Xilinx

 Parallel parts in OpenCL,
remaining code in host
language (e.g., C)

MOTIVATION – MULTI-TARGET CODE

 To get the most performance we need low-level code (C, OpenCL)

 However, low-level code usually is not performance portable

 To maximize performance, different targets require different code

 Additionally, may have special requirements

 Embedded systems without floating-point HW units, or with units that perform

poorly

 HW synthesis (compliance to different tools)

MOTIVATION – MULTI-TARGET CODE

 Possible Solution:

 Start from clean implementation, specialize to target

 Problem:

 Hard to transform low-level code, too many implementation details

 Our approach:

 High-level description (MATLAB)

 Augmented with information about implementation (LARA aspects)

MATISSE – OPENCL BACKEND

 Proof-of-concept OpenCL backend

 Developed during MSc

 MATLAB compiler that generates C

+ OpenCL code

 Based on the MATISSE framework

 MATLAB code is extended with

OpenACC-based directives

C Language
Specification

C Language
SpecificationMATLAB Code MATLAB Parser

MATLAB IR

MWeaver

C Language
Specification

C Language
SpecificationLARA Aspects

MATLAB
Generator

MATLAB To C
Engine

C IR

Code Generator

MATLAB To
OpenCL Engine

C IR + OpenCL Extensions

MATLAB IR + Information

C Language
Specification

C Language
SpecificationMATLAB Code

C Language
Specification

C Language
SpecificationC Code

C Language
Specification

C Language
Specification

C + OpenCL
Code

 Regions of code are marked as

parallel

 Each loop iteration is independent

of the others.

 Copyin: Which variables are

copied to the GPU before

execution begins.

 Copyout: Which variables are

copied out of the GPU after

execution ends.

 Other directives are supported

MATISSE – OPENCL BACKEND

MATISSE – OPENCL BACKEND

 We reuse and extend the MATISSE IRs:

 MATLAB AST

 C IR

 The MATISSE C backend handles sequential code sections.

 MATISSE CL overrides the code generator for the outlined functions.

 Generates the OpenCL code and the C wrappers.

GENERATED SAMPLE CODE (OPENCL)

GENERATED SAMPLE CODE (C WRAPPER)

BENCHMARKS

 Benchmarks:

 Reused some benchmarks already used for MATISSE C

 Most are from embedded computing

 Matmul: Naive implementation of matrix multiplication

 Monte Carlo option pricing: Adapted from a MathWorks example

 CPU: AMD A10-7850K@3.7GHz w/ GPU (integrated), GPU: R7 280X

(discrete)

 Includes time spent on data transfers

RESULTS – TOTAL TIME

 Modified matmul (in MATLAB) with optimizations from nVidia exemple

 Loop Tiling

 Local Memory

RESULTS – MATMUL

 Modified matmul (in MATLAB) with optimizations from nVidia example

 Loop Tiling

 Local Memory

RESULTS – MATMUL

1024×1024 matmul (s) matmul_nv (s) Speedup

CPU 9.1 2.0 4.6×

GPU (int.) 0.19 0.062 3.1×

GPU (disc.) 0.028 0.035 0.8×

 We were able to compile and run our programs on an Odroid board

ARM’sbig.LITTLE configuration and a PowerVR SGX544MP3 GPU

Android 4.2.2 (though we bypassed Dalvik entirely)

The same processor used by some smartphones.

Preliminary results, only

 Sadly, we were rarely able to obtain speedups

Only 5% faster in matrix multiplication.

75% slower for the dilate benchmark.

Monte Carlo Option Pricing can have statistically insignificant speedups (less than
95% confidence for N = 5000), or significant slowdowns (30% slower for N = 1000)

 We hope to improve these results with future optimizations (such as thread
coarsening and use of texture memory)

RESULTS – ODROID

CONCLUSIONS

 Proof-of-concept OpenCL back-end from MATLAB

 Based on the MATISSE framework

 Good results on desktop GPUs

 Embedded systems’ SOC performance needs more time for experiments

and analysis.

 Future Work:

 Improve MATLAB compatibility (take advantage of idiomatic operations)

 Specialize code according to target

FUTURE WORK

%{

acc parallel loop

copyin(readonly Areal, readonly

Aimag, readonly Breal, readonly

Bimag, numElements)

copyout(Creal, Cimag)

%}

for j=1:numElements

index=j;

Ar = Areal(index);

Ai = Aimag(index);

Br = Breal(index);

Bi = Bimag(index);

Creal(index) = Ar*Br-Ai*Bi;

Cimag(index) = Ar*Bi+Ai*Br;

end

%acc end

%!parallel

Creal = Areal.*Breal-Aimag.*Bimag;

Cimag = Areal.*Bimag+Aimag.*Breal;

%!end

THANK YOU!

Questions?

Demo of MATISSE (C only):

http://specs.fe.up.pt/tools/matisse/

THE END

http://specs.fe.up.pt/tools/matisse/

 MEGHA [Prasad et al, APPLC 2012]:

Compiles a subset of MATLAB to CUDA

HLLC/ParaM

Source-to-source [Shei et al, ICS 2011]

Outputs MATLAB with GPUmat API calls

Alternative approach: [Shei et al, INTERACT 2011]

Outputs MATLAB with calls to C++ and CUDA.

Our approach: MATLAB to C + OpenCL

RELATED WORK

24

RESULTS – MATISSE C VS MATLAB

[1] A. Prasad, J. Anantpur, and R. Govindarajan, “Automatic compilation of MATLAB programs for synergistic

execution on heterogeneous processors,” in ACM Sigplan Notices, 2011, vol. 46, pp. 152–163.

18.2

8.4 8.0

1.1 1.1 1.0

7.6 7.6

6.0

8.4 8.3 8.4

9.4 9.3 9.5 9.6

18.2

7.7

6.1

3.5
4.2

2.8

4.0 3.7 3.7

8.1

6.4 6.5 6.5

2.5 2.6 2.5

4.1

7.0
7.8

3.2

13.9
13.4

12.9
13.3

2.3

5.0

3.3

1.9 1.7 1.6

3.4

4.7 5.0
5.6

0

2

4

6

8

10

12

14

16

18

20

2
5
6
 x

 5
1
2

5
0
0
 x

 1
0
0
0

1
0
0
0
 x

 2
0
0
0

1
0
2
4
 v

e
rt

ic
e
s

2
0
4
8
 v

e
rt

ic
e
s

4
0
9
6
 v

e
rt

ic
e
s

2
0
0
0
 x

 1
0
0
0

4
0
0
0
 x

 2
0
0
0

8
0
0
0
 x

 4
0
0
0

3
0
0
x3

0
0

2
0
0
0
x2

0
0
0

4
0
0
0
x4

0
0
0

5
1
2
 c

h
a
rs

4
0
9
6
 c

h
a
rs

8
1
9
2
 c

h
a
rs

5
1
2
x5

1
2
x1

5

5
1
2
x5

1
2
x3

2

1
0
2
4
x5

1
2
x3

2

1
0
2
4
x1

0
2
4
x3

2

4
5
0
x4

5
0

2
0
0
0
x2

0
0
0

4
0
9
6
x4

0
9
6

4
0
9
6
 b

o
d

ie
s

8
1
9
2
 b

o
d

ie
s

1
6
3
8
4
 b

o
d

ie
s

5
1
2
 b

o
d

ie
s

1
0
2
4
 b

o
d

ie
s

1
5
3
6
 b

o
d

ie
s

capacitor closure crnich dirich editdist fdtdt finediff nbody1d nbody3d G. Mean

 MATISSE MEGHA (Prasad et al.) [1]

184 170 49
168

60

RESULTS – KERNEL TIME

 Same computer, Kernel time only (no data transfers, no C segments)

MATLAB GPU APIS

 MathWorks Parallel Computing Toolbox:

 CUDA API for MATLAB

 Official, supported

 GPUmat

 Open-source

 CUDA API

 Open-source, last update on 2012

 Jacket

 CUDA or OpenCL

 Discontinued

27

 OpenCL back-end introduced too early in the tool-chain

 Does not take advantage of current C transformations (e.g., element-wise)

 Only a small subset of functions are supported within a parallel block

 Odroid performance is poor

LIMITATIONS

MATMUL

 Idiomatic: A = B * C;

 Simple and slow, three nested loops

 Fine-tuned with directives: separate file

29

OPENMP

 OpenMP: Standard for C,

C++ and FORTRAN.

 Very CPU-centric.

 Code is annotated with

directives.

 Compilers automatically

generate the code to

launch threads.

30

HOW LONG DOES MATLAB TAKE (EXAMPLE)

 Monte Carlo Option Pricing:

 MATLAB: For 100 iterations, 12 seconds

 MATLAB: For 1000 iterations, 113 seconds

 MATISSE C: For 10000 iterations, takes 24 seconds

 MATISSE OpenCL: For 10000 iterations, takes 0.02 seconds

31

