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Abstract

It has been almost two decades since the first globally tracking con-
vergent adaptive controllers were derived for robot with dynamic
uncertainties. However, the problem of concurrent adaptation to
both kinematic and dynamic uncertainties has never been system-
atically solved. This is the subject of this paper. We derive a new
adaptive Jacobian controller for trajectory tracking of robot with
uncertain kinematics and dynamics. It is shown that the robot end-
effector is able to converge to a desired trajectory with the uncertain
kinematics and dynamics parameters being updated online by pa-
rameter update laws. The algorithm requires only to measure the
end-effector position, besides the robot’s joint angles and joint ve-
locities. The proposed controller can also be extended to adaptive
visual tracking control with uncertain camera parameters, taking
into consideration the uncertainties of the nonlinear robot kinemat-
ics and dynamics. Experimental results are presented to illustrate
the performance of the proposed controllers. In the experiments, we
demonstrate that the robot’s shadow can be used to control the robot.

KEY WORDS—Adaptive control, tracking control, adaptive
Jacobian control, visual servoing

1. Introduction

Humans do not have an accurate knowledge of the real world
but are still able to act intelligently in it. For example, with
the help of our eyes, we are able to pick up a large number
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of new tools or objects with different and unknown kinematic
and dynamic properties, and manipulate them skillfully to
accomplish a task. We can also grip a tool at different grasp-
ing points and orientations, and use it without any difficulty.
Other examples include tennis and golf playing, and walk-
ing on stilts. In all cases, people seem to extend their self-
perception to include the unknown tool as part of the body. In
addition, humans can learn and adapt to the uncertainties from
previous experience (Arbib, Schweighofer, and Thach 1995;
Sekiyama et al. 2000). For example, after using the unknown
tool for a few times, we can manipulate it more skillfully. Re-
cent research (Pavani and Castiello 2004) also suggests that
body shadows may form part of the approximate sensorimo-
tor transformation. The way by which humans manipulate an
unknown object easily and skillfully shows that we do not
need an accurate knowledge of the kinematics and dynamics
of the arms and object. The ability of sensing and responding
to changes without an accurate knowledge of sensorimotor
transformation (Pouget and Snyder 2000) gives us a high de-
gree of flexibility in dealing with unforseen changes in the
real world.

The kinematics and dynamics of robot manipulators are
highly nonlinear. While a precisely calibrated model-based
robot controller may give good performance (Hollerbach
1980; Luh, Walker, and Paul 1980; Craig 1986), the assump-
tion of having exact models also means that the robot is not
able to adapt to any changes and uncertainties in its mod-
els and environment. For example, when a robot picks up
several tools of different dimensions, unknown orientations
or gripping points, the overall kinematics and dynamics of
the robot changes and are therefore difficult to derive exactly.
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Hence, even if the kinematics and dynamics parameters of the
robot manipulator can be obtained with sufficient accuracy by
calibrations and identification techniques (An, Atkeson, and
Hollerbach 1988; Renders et al. 1991), it is not flexible to do
calibration or parameter identification for every object that a
robot picks up, before manipulating it. It is also not possible
for the robot to grip the tool at the same grasping point and
orientation even if the same tool is used again. The behavior
from human reaching movement shows that we do not first
identify unknown mass properties, grasping points and ori-
entations of objects, and only then manipulate them. We can
grasp and manipulate an object easily with unknown grasping
point and orientation. The development of robot controllers
that can similarly cope in a fluid fashion with uncertainties in
both kinematics and dynamics is therefore an important step
towards dexterous control of mechanical systems.

To deal with dynamic uncertainties, many robot adaptive
controllers have been proposed (Arimoto 1996; Craig, Hsu,
and Sastry 1987; Craig 1988; Slotine and Li 1987a, 1987b,
1988; Middleton and Goodwin 1988; Koditschek 1987; Wen
and Bayard 1988; Paden and Panja 1988; Kelly and Carelli
1988; Ortega and Spong 1989; Sadegh and Horowitz 1990;
Niemeyer and Slotine 1991; Berghuis, Ortega, and Nijmei-
jer 1993; Whitcomb, Rizzi, and Koditschek 1993; Whitcomb
et al. 1996; Lee and Khalil 1997; Tomei 2000; Lewis, Abdal-
lah, and Dawson 1993; Sciavicco and Siciliano 2000). A key
point in adaptive control is that the tracking error will converge
regardless of whether the trajectory is persistently exciting or
not (Arimoto 1996; Slotine and Li 1987a). That is, one does
not need parameter convergence for task convergence. In ad-
dition, the overall stability and convergence of the combined
on-line estimation/control (exploit/explore) process can also
be systematically guaranteed. However, in these adaptive con-
trollers, the kinematics of the robot is assumed to be known
exactly.

Recently, several approximate Jacobian setpoint con-
trollers (Cheah, Kawamura, and Arimoto 1999; Yazarel and
Cheah 2002; Cheah et al. 2003; Dixon 2004) have been pro-
posed to overcome the uncertainties in both kinematics and
dynamics. The proposed controllers do not require the exact
knowledge of kinematics and Jacobian matrix. However, the
results in Cheah, Kawamura, andArimoto (1999),Yazarel and
Cheah (2002), Cheah et al. (2003), and Dixon (2004) are fo-
cusing on setpoint control or point-to-point control of robot
(Takegaki and Arimoto 1981). The research on robot control
with uncertain kinematics and dynamics is just at the begin-
ning stage (Arimoto 1999).

In this paper, we present an adaptive Jacobian controller
for trajectory tracking control of robot manipulators. The pro-
posed controller does not require exact knowledge of either
kinematics or dynamics. The trajectory tracking control prob-
lem in the presence of kinematic and dynamic uncertainties
is formulated and solved based on a Lyapunov-like analy-
sis. By using sensory feedback of the robot end-effector po-

sition, it is shown that the end-effector is able to follow a
desired trajectory with uncertainties in kinematics and dy-
namics. Novel adaptive laws, extending the capability of the
standard adaptive algorithm (Slotine and Li 1987a) to deal
with kinematics uncertainty, are proposed. A novel dynam-
ics regressor using the estimated kinematics parameters is
also proposed. The main new point is the adaptation to kine-
matic uncertainty in addition to dynamics uncertainty, which
is something “human-like” as in tool manipulation. This gives
the robot a high degree of flexibility in dealing with unforseen
changes and uncertainties in its kinematics and dynamics.
The proposed controller can also be extended to adaptive vi-
sual tracking control with uncertain camera parameters, tak-
ing the nonlinearity and uncertainties of the robot kinematics
and dynamics into consideration. A fundamental benefit of
vision-based control is to deal with uncertainties in models,
and much progress has been obtained in the literature of visual
servoing (see Hutchinson and Corke 1996; Weiss, Sanderson,
and Neuman 1987; Espiau, Chaumette, and Rives 1992; Pa-
panikolopoulos, Khosla, and Kanade 1993; Papanikolopou-
los and Khosla 1993; Jägersand, Fuentes, and Nelson 1996;
Malis, Chaumette and Boudet 1999; Malis and Chaumette
2002; Miura et al. 2005; Gans, Hutchinson, and Corke 2003;
Espiau 1993; Deng, Janabi-Sharifi, and Wilson 2002; Malis
and Rives 2003; Malis 2004 and references therein). Though
image-based visual servoing techniques are known to be ro-
bust to modeling and calibration errors in practice, it has been
pointed out in Malis (2004) that only a few theoretical re-
sults been obtained for the stability analysis in the presence of
the uncertain camera parameters (Espiau 1993; Deng, Janabi-
Sharifi, and Wilson 2002; Malis and Rives 2003; Malis 2004).
In addition, these results are focusing on uncertainty in inter-
action matrix or image Jacobian matrix, and the effects of
uncertain robot kinematics and dynamics are not considered.
Hence, no theoretical result has been obtained for the stability
analysis of visual tracking control with uncertainties in cam-
era parameters, taking into consideration the uncertainties of
the nonlinear robot kinematics and dynamics.

Section 2 formulates the robot dynamic equations and
kinematics; Section 3 presents the adaptive Jacobian track-
ing controllers; Section 4 presents some experimental results
and shows that the robot’s shadow can be used to control the
robot; Section 5 offers brief concluding remarks.

2. Robot Dynamics and Kinematics

The equations of motion of robot withn degrees of freedom
can be expressed in joint coordinatesq = [q1, . . . , qn]T ∈ Rn

as (Arimoto 1996; Lewis, Abdallah, and Dawson, 1993)

M(q)q̈ +
(

1

2
Ṁ(q)+ S(q, q̇)

)
q̇ + g(q) = τ (1)

whereM(q) ∈ Rn×n is the inertia matrix,τ ∈ Rn is the applied
joint torque to the robot,
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S(q, q̇)q̇ = 1

2
Ṁ(q)q̇ − 1

2

{
∂

∂q
q̇TM(q)q̇

}T

andg(q) ∈ Rn is the gravitational force. Several important
properties of the dynamic equation described by eq. (1) are
given as follows (Arimoto 1996; Slotine and Li 1987a, 1991;
Lewis, Abdallah, and Dawson, 1993).

Property 1. The inertia matrixM(q) is symmetric and uni-
formly positive definite for allq ∈ Rn.

Property 2. The matrixS(q, q̇) is skew-symmetric so that
νT S(q, q̇)ν = 0, for all ν ∈ Rn.

Property 3. The dynamic model as described by eq. (1) is
linear in a set of physical parametersθd = (θd1, . . . , θdp)

T as

M(q)q̈ +
(

1

2
Ṁ(q)+ S(q, q̇)

)
q̇ + g(q) = Yd(q, q̇, q̇, q̈)θd

whereYd(·) ∈ Rn×p is called the dynamic regressor matrix.

In most applications of robot manipulators, a desired path
for the end-effector is specified in task space, such as visual
space or Cartesian space. Letx ∈ Rn be a task space vector
defined by (Arimoto 1996; Cheah, Kawamura, and Arimoto
1999)

x = h(q)

whereh(·) ∈ Rn → Rn is generally a nonlinear transfor-
mation describing the relation between joint space and task
space. The task-space velocityẋ is related to joint-space ve-
locity q̇ as

ẋ = J (q)q̇ (2)

whereJ (q) ∈ Rn×n is the Jacobian matrix from joint space to
task space.

If cameras are used to monitor the position of the end-
effector, the task space is defined as image space in pixels.
Let r represents the position of the end-effector in Cartesian
coordinates andx represents the vector of image feature pa-
rameters (Hutchinson and Corke 1996). The image velocity
vectorẋ is related to the joint velocity vectorq̇ as (Hutchinson
and Corke 1996; Weiss, Sanderson and Neuman 1987; Es-
piau, Chaumette and Rives 1992; Papanikolopoulos, Khosla,
and Kanade 1993)

ẋ = JI (r)Je(q)q̇ (3)

whereJI (r) is the interaction matrix (Espiau, Chaumette and
Rives 1992) or image Jacobian matrix (Hutchinson and Corke
1996), andJe(q) is the manipulator Jacobian matrix of the
mapping from joint space to Cartesian space. In the presence
of uncertainties, the exact Jacobian matrix cannot be obtained.

If a position sensor is used to monitor the position of the end-
effector, the task space is defined as Cartesian space and hence
J (q) = Je(q).

A property of the kinematic equation described by eq. (2)
is stated as follows (Cheah, Li, and Slotine, 2004).

Property 4. The right-hand side of eq. (2) is linear in a set
of constantkinematic parameters θk = (θk1, . . . , θkq)

T , such
as link lengths, link twist angles. Hence, eq. (2) can be ex-
pressed as

ẋ = J (q)q̇ = Yk(q, q̇)θk (4)

where Yk(q, q̇) ∈ Rn×q is called the kinematic regressor
matrix.

For illustration purpose, an example of a 2-link planar robot
with a fixed camera configuration is given.The interaction ma-
trix or image Jacobian matrix for the 2-link robot is given by

JI = f

z− f

[
β1 0
0 β2

]
, (5)

whereβ1, β2 denote the scaling factors in pixels/m,z is the
perpendicular distance between the robot and the camera,f

is the focal length of the camera. The Jacobian matrixJm(q)

from joint space to Cartesian space for the 2-link robot is
given by

Jm(q) =
[ −l1s1 − l2s12 −l2s12

l1c1 + l2c12 l2c12

]
, (6)

wherel1, l2 are the link lengths,q1 andq2 are the joint angles,
c1 = cosq1, s1 = sinq1, c12 = cos(q1+q2), s12 = sin(q1+q2).
The constantsl1, l2, β1, β2, z, andf are all unknown.

The image space velocitẏx can be derived as

ẋ = JIJm(q)q̇ = f

z− f

[
β1 0
0 β2

]
[ −l1s1 − l2s12 −l2s12

l1c1 + l2c12 l2c12

] [
q̇1

q̇2

]

=
[ −v1l1s1q̇1 − v1l2s12(q̇1 + q̇2)

v2l1c1q̇1 + v2l2c12(q̇1 + q̇2)

]
(7)

wherev1 = fβ1
z−f , v2 = fβ2

z−f .
Henceẋ = JIJm(q)q̇ can be written into the product of

a known regressor matrixYk(q, q̇) and an unknown constant
vectorθk where

ẋ =
[ −s1q̇1 −s12(q̇1 + q̇2) 0 0

0 0 c1q̇1 c12(q̇1 + q̇2)

]


v1l1
v1l2
v2l1
v2l2


 = Yk(q, q̇)θk. (8)

Similar to most robot adaptive controllers, we consider the
case where the unknown parameters are linearly parameteriz-
able as in property 3 and property 4. If linear parameterization
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cannot be obtained due to presence of time varying parame-
ters or unknown robot structure, adaptive control using basis
functions (Sanner and Slotine 1992; Lewis 1996) is normally
used. The basic idea is to approximate the models with un-
known structure or time varying parameters, by a neural net-
work where the unknown weights are adjusted online by the
updated law, see Sanner and Slotine (1992) and Lewis (1996)
for details.

3. Adaptive Jacobian Tracking Control

We now present our adaptive Jacobian tracking controller for
robots with uncertain kinematics and dynamics.Tracking con-
vergence is guaranteed by the combination of an adaptive con-
trol law of straightforward structure, an adaptation law for the
dynamic parameters, and an adaptation law for the kinematic
parameters. The main idea of the derivation is to introduce an
adaptive sliding vector based on estimated task-space velocity,
so that kinematic and dynamic adaptation can be performed
concurrently.

In the presence of kinematic uncertainty, the parameters
of the Jacobian matrix is uncertain and hence eq. 4) can be
expressed as

ˆ̇x = Ĵ (q, θ̂k)q̇ = Yk(q, q̇)θ̂k (9)

where ˆ̇x ∈ Rn denotes an estimated task-space velocity,
Ĵ (q, θ̂k) ∈ Rn×n is an approximate Jacobian matrix and
θ̂k ∈ Rq denotes a set of estimated kinematic parameters.

To illustrate the idea of adaptive Jacobian control, let us
first consider the simpler setpoint control problem, and the
controller

τ = −Ĵ T (q, θ̂k)Kp�x −Kvq̇ + g(q)

where�x = x − xd , xd ∈ Rn is a desired position in task
space,Kp andKv are symmetric positive definite gain matri-
ces, andg(q) is known. The estimated kinematic parameter
vectorθ̂k of the approximate Jacobian matrix is updated by

˙̂
θk = LkY

T

k
(q, q̇)Kp�x

whereLk is a symmetric positive definite gain matrix. Let us
define a Lyapunov-like function candidate as

V = 1
2
q̇TM(q)q̇ + 1

2
�θT

k
L−1
k �θk + 1

2
�xTKp�x

where�θk = θk− θ̂k. Using the above controller and equation
(1), the time derivative ofV is

V̇ = −q̇T Kvq̇ + q̇T (J T (q)− Ĵ T (q, θ̂k))Kp�x

−�θT
k
Y T
k
(q, q̇)Kp�x = −q̇T Kvq̇ ≤ 0.

SinceV̇ = 0 implies thatq̇ = 0, points on the largest in-
variant set satisfyĴ T (q, θ̂k)Kp�x = 0. Hence, botḣq and

Ĵ T (q, θ̂k)Kp�x = 0 tend to zero. In turn this implies that�x
converges to zero as long asĴ T (q, θ̂k) is of full rank.

The above controller is only effective for point to point
control. In the following development, we present an adap-
tive Jacobian tracking controller with uncertain kinematics
and dynamics. To avoid the need for measuring task-space
velocity in adaptive Jacobian tracking control, we introduce
a known signaly based on filtered differentiation of the mea-
sured positionx,

ẏ + λy = λẋ. (10)

The signaly can be computed by measuringx alone. With
p the Laplace variable,y can be written from eqs. (4) and
(10) as

y = λp

p + λ
x = Wk(t)θk (11)

where

Wk(t) = λ

p + λ
Yk(q, q̇)

with y(0) = 0 andWk(0) = 0 since the robot usually starts
from a rest position. Other linear filters may also be used based
on noise or vibration models.

Let xd(t) ∈ Rn be the desired trajectory in task space. The
algorithm we shall now derive is composed of (i) a control
law

τ = −Ĵ T (q, θ̂k)(Kv� ˆ̇x +Kp�x)

+Ȳd(q, q̇, q̇r , ˆ̈qr, θ̂k)θ̂d (12)

where�x = x − xd , � ˆ̇x = ˆ̇x − ẋd , Ȳd(q, q̇, q̇r , ˆ̈qr, θ̂k) is a
dynamic regressor matrix as detailed later andq̇r and ˆ̇qr are
defined based on the adaptive sliding vector as detailed later,
(ii) a dynamic adaptation law

˙̂
θd = −LdȲd(q, q̇, q̇r , ˆ̈qr, θ̂k)s (13)

and (iii) a kinematic adaptation law

˙̂
θk = −LkWT

k
(t)Kv(Wk(t)θ̂k − y)

+LkY Tk (q, q̇)(Kp + αKv)�x. (14)

All gain matrices are symmetric positive definite. Thus, while
the expression of the controller and dynamic adaptation laws
are straightforward extensions of standard results, the key
novelties are that the algorithm is now augmented by a com-
posite kinematic adaptation law (14), and that a specific
choice of q̇r is exploited throughout. In the proposed con-
troller, x is measured from a position sensor. Many commer-
cial sensors are available for measurement ofx, such as vision
systems, electromagnetic measurement systems, position sen-
sitive detectors, or laser trackers.
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Let us now detail the proof. First, define a vectorẋr ∈ Rn as

ẋr = ẋd − α�x. (15)

Differentiating eq. (15) with respect to time, we have

ẍr = ẍd − α�ẋ (16)

whereẍd ∈ Rn is the desired acceleration in task space.
Next, define anadaptive task-space sliding vector using

eq. (9) as

ŝx = ˆ̇x − ẋr = Ĵ (q, θ̂k)q̇ − ẋr (17)

where Ĵ (q, θ̂k)q̇ = Yk(q, q̇)θ̂k as indicated in eq. (9). The
above vector is adaptive in the sense that the parameters of
the approximate Jacobian matrix is updated by the kinematic
update law (14). Differentiating eq. (17) with respect to time,
we have

˙̂sx = ˆ̈x − ẍr = Ĵ (q, θ̂k)q̈ + ˙̂
J (q, θ̂k)q̇ − ẍr (18)

where ˆ̈x denotes the derivative ofˆ̇x. Next, let

q̇r = Ĵ−1(q, θ̂k)ẋr (19)

whereĴ−1(q, θ̂k) is the inverse of the approximate Jacobian
matrixĴ (q, θ̂k). SinceĴ−1(q, θ̂k) is a function of the estimated
kinematic parameterŝθk, a standard parameter projection al-
gorithm (Ioannou and Sun 1996) can be adopted to keep the
estimated kinematic parametersθ̂k remain in an appropriate
region. We also assume that the robot is operating in a finite
task space such that the approximate Jacobian matrix is of full
rank. From eq. (19), we have

q̈r = Ĵ−1(q, θ̂k)ẍr + ˙̂
J

−1

(q, θ̂k)ẋr (20)

where ˙̂
J

−1

(q, θ̂k) = −Ĵ−1(q, θ̂k)
˙̂
J (q, θ̂k)Ĵ

−1(q, θ̂k). To elim-
inate the need of task-space velocity inq̈r , we define

ˆ̈qr = Ĵ−1(q, θ̂k) ˆ̈xr + ˙̂
J

−1

(q, θ̂k)ẋr (21)

where

ˆ̈xr = ẍd − α� ˆ̇x. (22)

From eqs. (22) and (16), we have

ˆ̈xr = ẍd − α�ẋ + α(ẋ − ˆ̇x) = ẍr + α(ẋ − ˆ̇x) (23)

Substituting eq. (23) into eq. (21) and using eq. (20) yields

ˆ̈qr = q̈r + αĴ−1(q, θ̂k)(ẋ − ˆ̇x)
= q̈r − αq̇ + αĴ−1(q, θ̂k)J (q)q̇. (24)

Next, we define an adaptive sliding vector in joint space as

s = q̇ − q̇r = Ĵ−1(q, θ̂k)(( ˆ̇x − ẋd)+ α(x − xd))

= Ĵ−1(q, θ̂k)ŝx (25)

and

ṡ = q̈ − q̈r . (26)

Substitutingq̈r from equation (24) into eq. (26) yields

ṡ = q̈ − ( ˆ̈qr + αq̇)+ αĴ−1(q, θ̂k)J (q)q̇. (27)

Substituting eqs. (25) and (27) into eq. (1), the equations
of motion can be expressed as

M(q)ṡ + (
1

2
Ṁ(q)+ S(q, q̇))s +M(q) ˆ̈qr

+ (
1

2
Ṁ(q)+ S(q, q̇))q̇r + g(q)

+ αM(q)q̇ − αM(q)Ĵ−1(q, θ̂k)J (q)q̇ = τ (28)

The last six terms of eq. (28) are linear in a set ofdynamics
parameters θ̄d and hence can be expressed as

M(q) ˆ̈qr + (
1

2
Ṁ(q)+ S(q, q̇))q̇r + g(q)+ αM(q)q̇

− αM(q)Ĵ−1(q, θ̂k)J (q)q̇

= Ȳd(q, q̇, q̇r , ˆ̈qr, θ̂k)θ̄d (29)

so dynamics (28) can be written

M(q)ṡ + (
1

2
Ṁ(q)+ S(q, q̇))s

+ Ȳd(q, q̇, q̇r , ˆ̈qr, θ̂k)θ̄d = τ. (30)

Consider now the adaptive control law (12), whereKv ∈
Rn×n andKp ∈ Rn×n are symmetric positive definite matrices.
The first term is an approximate Jacobian transpose feedback
law of the task-space velocity and position errors, and the
last term is an estimated dynamic compensation term based
on eq. (29). Update the estimated dynamic parametersθ̂d us-
ing (13), and the estimated kinematic parameters using (14),
whereLk andLd are symmetric positive definite matrices.
The closed-loop dynamics is obtained by substituting (12)
into (30):

M(q)ṡ + (
1

2
Ṁ(q)+ S(q, q̇))s + Ȳd(q, q̇, q̇r , ˆ̈qr, θ̂k)�θd

+ Ĵ T (q, θ̂k)(Kv� ˆ̇x +Kp�x) = 0 (31)

where�θd = θ̄d − θ̂d . The estimated kinematic parameters
θ̂k of the approximate Jacobian matrix̂J (q, θ̂k) is updated
by the parameter update eq. (14). Note that some kinematic
parameters appear in the dynamics and are updated separately
as the lumped dynamic parametersθ̂d using (13).

The linear parameterization of the kinematic parameters
is obtained from eq. (4). The estimated parametersθ̂k is then
used in the inverse approximate Jacobian matrixĴ−1(q, θ̂k)

and hencėqr and ˆ̈qr in the dynamic regressor matrix. Note



288 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / March 2006

that θ̂k (like q and q̇) is just part of the states of the adap-
tive control system and hence can be used in the control
variables even if it is nonlinear in the variables (provided
that a linear parameterization can be found elsewhere in the
system model, i.e. eq. (4)). SincêJ (q, θ̂k) and its inverse

Ĵ−1(q, θ̂k), are updated byq andθ̂k,
˙̂
J (q, θ̂k) and ˙̂

J
−1

(q, θ̂k) =
−Ĵ−1(q, θ̂k)

˙̂
J (q, θ̂k)Ĵ

−1(q, θ̂k) are functions ofq, q̇,�θk and

�x becausė̂θk is described by eq. (14).
Let us define a Lyapunov-like function candidate as

V = 1

2
sTM(q)s + 1

2
�θT

d
L−1
d
�θd + 1

2
�θT

k
L−1
k
�θk

+1

2
�xT (Kp + αKv)�x (32)

where�θk = θk − θ̂k. Differentiating with respect to time and
using Property 1, we have

V̇ = sTM(q)ṡ + 1

2
sT Ṁ(q)s −�θT

d
L−1
d

˙̂
θd

−�θT
k
L−1
k

˙̂
θk +�xT (Kp + αKv)�ẋ. (33)

SubstitutingM(q)ṡ from eq. (31),̇̂θk from eq. (14) anḋ̂θd from
eq. (13) into the above equation, using Property 2, eq. (25) and
eq. (11), we have

V̇ = −ŝT
x
Kv� ˆ̇x − ŝT

x
Kp�x +�xT (Kp + αKv)�ẋ

−�θT
k
WT

k
(t)KvWk(t)�θk

−�θT
k
Y T
k
(q, q̇)(Kp + αKv)�x. (34)

From eqs. (17), (4) and (15), we have

ŝx = � ˆ̇x + α�x = �ẋ + α�x − Yk(q, q̇)�θk (35)

where

Yk(q, q̇)�θk = J (q)q̇ − Ĵ (q, θ̂k)q̇ = ẋ − ˆ̇x. (36)

Substituting� ˆ̇x = �ẋ−Yk(q, q̇)�θk andŝx = �ẋ+α�x−
Yk(q, q̇)�θk into eq. (34), we have

V̇ = −�ẋTKv�ẋ + 2�ẋTKvYk(q, q̇)�θk

−�θT Y T
k
(q, q̇)KvYk(q, q̇)�θk

−α�xTKp�x −�θT
k
WT

k
(t)KvWk(t)�θk.

Since� ˆ̇x = �ẋ − Yk(q, q̇)�θk, the above equation can be
simplified to

V̇ = −� ˆ̇xTKv� ˆ̇x − α�xTKp�x

−�θT
k
WT

k
(t)KvWk(t)�θk. (37)

We are now in a position to state the following theorem.

THEOREM 1. For a finite task space such that the approxi-
mate Jacobian matrix is non-singular, the adaptive Jacobian

control law (12) and the parameter update laws (14) and (13)
for the robot system (1) result in the convergence of posi-
tion and velocity tracking errors. That is,x − xd → 0 and
ẋ − ẋd → 0, ast → ∞. In addition,Wk(t)�θk → 0 as
t → ∞.

Proof. SinceM(q) is uniformly positive definite,V in eq. (32)
is positive definite ins,�x,�θk and�θd . SinceV̇ ≤ 0,V is
also bounded, and therefores,�x,�θk and�θd are bounded
vectors. This implies that̂θk, θ̂d are bounded,x is bounded if
xd is bounded, and̂sx = Ĵ (q, θ̂k)s is bounded as seen from
eq. (25). Using eq. (35), we can conclude that� ˆ̇x is also
bounded. Since�x is bounded,̇xr in eq. (15) is also bounded
if ẋd is bounded. Therefore,̇qr in eq. (19) is also bounded if
the inverse approximate Jacobian matrix is bounded. From
eq. (25),q̇ is bounded and the boundedness ofq̇ means thaṫx
is bounded since the Jacobian matrix is bounded. Hence,�ẋ

is bounded and̈xr in eq. (16) is also bounded ifẍd is bounded.
In addition, ˆ̈xr in eq. (22) is bounded since� ˆ̇x is bounded.

From eq. (14),̇̂θk is bounded since�x, �θk, q̇ are bounded
andYk(·) is a trigonometric function ofq. Therefore,ˆ̈qr in
eq. (21) is bounded. From the closed-loop equation (31), we
can conclude thaṫs is bounded. The boundedness ofṡ imply
the boundedness ofq̈ as seen from eq. (27). From eq. (18),˙̂sx
is therefore bounded. Differentiating eq. (35) with respect to
time and re-arranging yields

� ˆ̈x + α�ẋ = ˙̂sx
which means that� ˆ̈x = ˆ̈x − ẍd is also bounded.

To apply Barbalat’s lemma, let us check the uniform conti-
nuity of V̇ . Differentiating equation (37) with respect to time
gives

V̈ = −2� ˆ̇xTKv� ˆ̈x − 2α�xTKp�ẋ

−2�θT
k
WT

k
(t)Kv(Ẇk(t)�θk −Wk(t)

˙̂
θk)

whereW(t) andẆ (t) are bounded sincėq, q̈ are bounded.
This shows thaẗV is bounded since�x, �ẋ, � ˆ̇x, � ˆ̈x, �θk,˙̂
θk are all bounded. Hence,̇V is uniformly continuous. Using
Barbalat’s lemma (Slotine and Li 1991), we have�x = x −
xd → 0,� ˆ̇x = ˆ̇x − ẋd → 0 andWk(q)�θk → 0 ast → ∞.
Finally, differentiating eq. (35) with respect to time and re-
arranging yields

�ẍ + α�ẋ = ˙̂sx + Ẏk(q, q̇, q̈)�θk − Yk(q, q̇)
˙̂
θk

which means that�ẍ = ẍ − ẍd is also bounded. Since�x
and�ẍ are bounded, we have�ẋ → 0 ast → ∞. �
REMARK 1. If some of the kinematic parameters are known,
they are not adapted upon but all the proofs still apply. For
example, if the link parameters of the manipulator are known
with sufficient accuracy, we can focus on the object param-
eters to save computation (unlike object parameters, link pa-
rameters are usually fixed). In this case, note that eq. 4) is
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replaced by

ẋ = J (q)q̇ = Yk(q, q̇)θk + v(q, q̇)

wherev(q, q̇) ∈ Rn is a known vector containing the known
kinematic parameters. In some cases, we can simply put
the known parameters into the known kinematic regressor
Yk(q, q̇). Similarly, eq. (9) can be expressed as

ˆ̇x = Ĵ (q, θ̂k)q̇ = Yk(q, q̇)θ̂k + v(q, q̇)

and hence

ŝx = Yk(q, q̇)θ̂k + v(q, q̇)− ẋr = �ẋ + α�x

−Yk(q, q̇)�θk.
In the case of the filtered differentiation of the measured po-
sitionx, one can define

ẏ + λy = λ(ẋ − v(q, q̇))

and hence

y = Wk(t)θk

whereWk(t) = λ

p+λ Yk(q, q̇).
For example, consider a 2-link robot holding an object with

uncertain lengthlo and grasping angleqo, the velocity of the
tool tip is given in Cartesian coordinates as (Cheah, Liu and
Slotine)

ẋ =[−l1s1 − l2s12 − locos12 − losoc12 −l2s12 − locos12 − losoc12

l1c1 + l2c12 + lococ12 − losos12 l2c12 + lococ12 − losos12

]
[
q̇1

q̇2

]
=

[ −(q̇1 + q̇2)s12 −(q̇1 + q̇2)c12

(q̇1 + q̇2)c12 −(q̇1 + q̇2)s12

] [
loco
loso

]

+
[ −l1s1q̇1 − l2s12(q̇1 + q̇2)

l1c1q̇1 + l2c12(q̇1 + q̇2)

]

= Yk(q, q̇)θk + v(q, q̇) (38)

whereco = cos(q0), so = sin(qo).

REMARK 2. A standard projection algorithm (Ioannou and
Sun 1996; Dixon 2004) can be used to ensure that the esti-
mated kinematic parametersθ̂k remain in an appropriate re-
gion so that the control signalq̇r in eq. (19) is defined for all
θ̂k during adaptation. In addition, singularities often depend
only onq, notθ̂k. We assume that the robot is operating in a re-
gion such that the approximate Jacobian matrix is of full rank.
Note from the adaptive Jacobian control law (12) and the dy-
namic parameter update law (14) thatĴ−1(q, θ̂k) is used only
in the definition of control variablėqr in eq. (19). Therefore,
we should be able to control this by bounding the variable or
using a singularity-robust inverse of the approximate Jacobian
matrix (Nakamura 1985).

REMARK 3. In the proposed controller,Wk(t)�θk converges
to zero. This implies parameter convergence in the case that

the associated “persistent excitation” (PE) conditions are
satisfied.

REMARK 4. In the redundant case, the null space of the ap-
proximate Jacobian matrix can be used to minimize a perfor-
mance index (Nakamura 1985; Niemeyer and Slotine 1991).
Following Niemeyer and Slotine (1991), eq. (19) can be writ-
ten as

q̇r = Ĵ+(q, θ̂k)ẋr + (In − Ĵ+(q, θ̂k)Ĵ (q, θ̂k))ψ

whereĴ+(q, θ̂k) = Ĵ T (q, θ̂k)(Ĵ (q, θ̂k)Ĵ
T (q, θ̂k))

−1 is the gen-
eralized inverse of the approximate Jacobian matrix, and
ψ ∈ Rn is minus the gradient of the convex function to be
optimized. The above formulation is especially useful in ap-
plication whenx represents the position in the image space.
This is because the image feature is, in general, less than
the number of degree of freedoms of robot. Hence, using
the generalized inverse Jacobian matrix allows our results
to be immediately applied to robots beyond two degrees of
freedom.

REMARK 5. From eq. (35), the adaptive sliding vector can
be expressed as

ŝx = �ẋ + α�x + Yk(q, q̇)θ̂k − Yk(q, q̇)θk. (39)

Hence, the sign of the parameter update laws in eqs. (14)
and (13) are different because the last term in eq. (12) is pos-
itive while the last term in eq. (39) is negative.

REMARK 6. As in (Niemeyer and Slotine 1991), a computa-
tionally simpler implementation can be obtained by replacing
definitions (19) and (20) by filtered signals as

q̈r + λq̇r = Ĵ−1(q, θ̂k)(ẍr + λẋr − ˙̂
J (q, θ̂k)q̇r )

with λ > 0. This implies that

d

dt
(Ĵ (q, θ̂k)q̇r )+ λĴ (q, θ̂k)q̇r = ẍr + λẋr

so thatĴ (q, θ̂k)q̇r and its derivative tend tȯxr and its derivative.
In this case,̈qr may be used directly in the dynamic regressor.

REMARK 7. The kinematic update law (14) can be modi-
fied as

θ̂k = āk − PWT

k
(t)Kv(Wk(t)θ̂k − y)

+P Y T
k
(q, q̇)(Kp + αKv)�x,

˙̄ak = −LkWT

k
(t)Kv(Wk(t)θ̂k − y)

+LkY Tk (q, q̇)(Kp + αKv)�x

whereP is a symmetric positive definite matrix. The adding
of the “proportional adaptation term” to the usual integral
adaptation term typically makes the transients faster. In this
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case, the potential energy1
2
�θT

k
L−1
k �θk in the Lyapunov-like

function candidate (32) should be replaced by an energy term
1
2
(θk − āk)

T L−1
k (θk − āk). That is,

V = 1

2
sTM(q)s + 1

2
�θT

d
L−1
d
�θd

+1

2
(θk − āk)

T L−1
k
(θk − āk)

+1

2
�xT (Kp + αKv)�x

This adds toV̇ minus the squareP -norm ofWT
k
(t)Kv(Wk(t)

θ̂k −y)+LkY Tk (q, q̇)(Kp +αKv)�x. A similar argument can
be applied to the dynamic parameters update law described
by eq. (13).

REMARK 8. In general, the interaction or image Jacobian
matrix in eq. (3) can be linearly parameterized, except for
depth information parameters in 3D visual servoing or po-
sition information parameters in fish-eye lenses. In practice,
adaptive control is still effective in cases where the depth infor-
mation is slowly time-varying. It is assumed that the desired
endpoint position is defined in visual space when adapting to
the interaction or image Jacobian matrix. If linear parameteri-
zation cannot be obtained, basis functions (Sanner and Slotine
1992; Lewis 1996) can be used to adaptively approximate the
estimated image velocity. One interesting point to note is that
image velocity or optical flow is not required in the visual
tracking control algorithm.

REMARK 9. In the approximate Jacobian setpoint controllers
proposed in Cheah, Kawamura, and Arimoto (1999), Yazarel
and Cheah (2002), and Cheah et al. (2003) it is shown that
adaptation to kinematic parameters is not required for point-
to-point control. Hence, the proposed controllers in Cheah,
Kawamura, and Arimoto (1999), Yazarel and Cheah (2002),
and Cheah et al. (2003) can deal with time varying uncer-
tainties as far as setpoint control is concerned. In most visual
servoing techniques, adaptation to camera parameters is also
not required but the effects of the uncertainties of nonlinear
robot kinematics and dynamics are not taken into considera-
tion in the stability analysis. Hence it is not known whether
the stability can still be guaranteed in the presence of these
uncertainties.

If a DC motor driven by an amplifier is used as actuator
at each joint of the robot, the dynamics of the robot can be
expressed as (Arimoto 1996; Lewis, Abdallah, and Dawson
1993)

M(q)q̈ +
(

1

2
Ṁ(q)+ S(q, q̇)

)
q̇ + g(q) = Ku, (40)

whereu ∈ Rn is either a voltage or current inputs to the
amplifiers andK ∈ Rn×n is a diagonal transmission matrix
that relates the actuator inputu to the control torqueτ . In

actual implementations of the robot controllers, it is neces-
sary to identify the exact parameters of matrixK in eq. (40).
However, no model can be obtained exactly. In addition,K is
temperature sensitive and hence may change as temperature
varies due to overheating of motor or changes in ambient tem-
perature. In the presence of uncertainty inK, position error
may result and stability may not be guaranteed.

We propose an adaptive controller based on the approxi-
mate Jacobian matrix and an approximate transmission matrix
K̂ as

u = K̂−1(−Ĵ T (q, θ̂k)(Kv� ˆ̇x +Kp�x)

+Ȳd(q, q̇, q̇r , ˆ̈qr, θ̂k)θ̂d + Ya(τo)θ̂a) (41)

˙̂
θa = −LaYa(τo)s, (42)

where the kinematic parameter are updated by (14), the dy-
namic parameter are updated by (13),La ∈ Rn×n is a pos-
itive definite diagonal matrix,̂θa ∈ Rn is an estimated pa-
rameter updated by the parameter update law (42),Ya(τo) =
diag{−τo1,−τo2, . . . ,−τon} andτoi denotes theith element of
the vectorτo which is defined as

τo = Ĵ T (q, θ̂k)(Kv� ˆ̇x +Kp�x)− Ȳd(q, q̇, q̇r , ˆ̈qr, θ̂k)θ̂d .
(43)

In the above controller, a constantK̂−1 is used to transform
the control torque to an approximate actuator input and an
additional adaptive inputYa(τo)θ̂a is added to compensate for
the uncertainty introduced by the estimated transmission ma-
trix K̂.

Applying a similar argument as in the previous section on
eq. (40), and using eq. (41), we have

M(q)ṡ + (
1

2
Ṁ(q)+ S(q, q̇))s

+ Ȳd(q, q̇, q̇r , ˆ̈qr, θ̂k)�θd
+ Ĵ T (q, θ̂k)(Kv� ˆ̇x +Kp�x)

+ (KK̂−1 − I )τo −KK̂−1Ya(τo)θ̂a = 0, (44)

whereτo is defined in eq. (43). SinceK, K̂ andYa(τo)are diag-
onal matrices, the last two terms of eq. (44) can be expressed
as

(KK̂−1 − I )τo −KK̂−1Ya(τo)θ̂a = Ya(τo)�θ̄a (45)

whereθ̄ai = 1 − ki

k̂i
andki, k̂i are theith diagonal elements

ofK, K̂ respectively,�θ̄a = θ̄a −KK̂−1θ̂a and hence� ˙̄θa =
−KK̂−1 ˙̂θa.

The proof follows a similar argument as in the proof of the
theorem by using a Lyapunov-like function candidate as

V1 = V + 1

2
�θ̄T

a
L−1
a
K̂K−1�θ̄a (46)
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whereV is defined in eq. (32). Hence, we have

V̇1 = −� ˆ̇xTKv� ˆ̇x − α�xTKp�x

−�θT
k
WT

k
(t)KvWk(t)�θk ≤ 0 (47)

where we note that�θ̄a is also bounded.

4. Experiments

A series of experiments were conducted to illustrate the per-
formance of the new adaptive Jacobian tracking controller.

4.1. Experiment 1: Using Shadow Feedback

Recent psychophysical evidence by Pavani and Castiello
(2004) suggests that our brains respond to our shadows as
if they were another part of the body. This imply that body
shadows may form part of the approximate sensory-to-motor
transformation of the human motor control system. In this sec-
tion, we implement the proposed adaptive Jacobian controller
on the first two joints of an industrial robot and show that the
robot’s shadow can be used to control the robot. The experi-
mental setup consists of a camera, a light source and a SONY
SCARA robot as shown in Figure 1. An object is attached to
second joint of the robot and is parallel to the second link. A
robot’s shadow is created using the light source and projected
onto a white screen. The camera is located under the screen
and the tip of the object’s shadow is monitored by the camera
(see Figure 1).

The robot’s shadow is required follow a straight line start-
ing from the initial position(X0, Y0) = (153,73) to the final
position(Xf , Yf ) = (75,185) specified in image space (pix-
els). The desired trajectory(Xd, Yd) for the robot’s shadow is
hence specified as

Yd = mXd + c

where

Xd =
{
X0 − 6d( t2

2T 2 − t3

3T 3 ) for 0 ≤ t ≤ T

Xf for T < t ≤ Tf

andm = −1.448,c = 294.65, d = 78 pixels,T = 5 s and
Tf = 6 s.

To illustrate the idea we discussed in Remark 1, we first
assume that the lengths of the robot links were sufficiently ac-
curate in this experiment. Experiments with uncertain link pa-
rameters will be presented in the next section. Hence only the
object parameters were updated. The object was placed very
closed to the white screen in order to cast a sharp shadow
onto the screen. Therefore, the unknown mapping from the
shadow to object is just a scalar in this experiment. The
length of the object was initially estimated as 0.5 m. The
experiment was performed withLk = 0.03I , Ld = 0.0005I ,
Kv = diag{0.03,0.029}, Kp = diag{0.175,0.13}, α = 2,

Camera

Object tip 

Shadow 

Fig. 1. A SONY Robot with its shadow.

λ = 200π . A sequence of the images capturing the motion of
the robot’s shadow are presented in Figure 2 and a video of
the results is shown in Extension 1. The shadow started from
an initial position as shown in Figure 2(a), followed the spec-
ified straight line and stopped in an end point as shown in Fig-
ure 2(f). The maximum tracking error of the experiments was
about 4.2 mm. As seen from the results, the robot’s shadow is
able to follow the straight line closely. Note that the shadow
experiment is also similar to using a finger with an overhead
projector to point at a specific equation for instance.

4.2. Experiment 2: Using Position Feedback

Next, we implemented the proposed controllers on a 2-link
direct-drive robot as shown in Figure 3. The masses of the
first and second links are approximately equal to 1.6 kg and
1 kg respectively, and the masses of the first and second motors
are approximately equal to 9.5 kg and 3 kg respectively. The
lengths of the first and second links are approximately equal to
l1 = 0.31 m andl2 = 0.3 m respectively. The robot is holding
an object with an length of 0.10 m and a grasping angle of 60◦.
A PSD camera (position-sensitive detector) manufactured by
Hamamatsu is used to measure the position of the robot end-
effector.

The robot is required to hold an object with uncertain length
and grasping angle and follow a circular trajectory specified
in Cartesian space as

Xd = 0.33+ 0.1 sin(0.54+ 3t)

Yd = 0.41+ 0.1 cos(0.54+ 3t).

In this experiment, uncertainties in both robot parame-
ters and object parameters were also considered. The link
lengths were estimated asl̂1(0) = 0.25 m, l̂2(0) = 0.27 m
and the object length and grasping angle were estimated as
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(X,Y)=(155, 75) 

(X,Y)=(72, 188) 

Fig. 2. Experimental results showing robot’s shadow following a line.
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Object tip 

PSD Camera 

Fig. 3. A 2-link direct-drive robot.

0.12 m and 20◦ respectively. The initial position of the robot
end-effector was specified as(X(0), Y (0)) = (0.28,0.52).
Experimental results withLk = diag{0.04,0.045,0.015},
Ld = diag{0.01, 0.002, 0.002, 0.002, 0.015, 0.01, 0.01},
Kv = diag{2,2}, Kp = diag{450,450}, α = 1.2, λ = 200π
are presented in Figures 4 and 5. The transient response is
shown in Figure 6. As seen from the results, the tracking er-
rors converge with updating of the estimated kinematic and
dynamic parameters.

In the next experiments, a proportional term is added
to the kinematic update law (see Remark 7). The exper-
imental results in Figures 7 and 8 show that the track-
ing errors converge and the transient response is shown
in Figure 9. We usedLk = diag{0.075,0.105,0.025}, P =
diag{0.00018,0.0002,0.0001}, with the rest of the control
gains remaining the same.

5. Concluding Remarks

We have proposed an adaptive Jacobian controller for robot
tracking control with uncertain kinematics and dynamics. A
novel update law is introduced to update uncertain kinematics
parameters, using sensory feedback of the robot end-effector
position. The robot end-effector is able to track a desired
trajectory with the uncertain kinematics and dynamics pa-
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Fig. 4. Path of the end-effector.
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Fig. 5. Position errors.

rameters being updated online. Experimental results illustrate
the performance of the proposed controllers. The experiments
also show that a robot can be controlled using its shadow. As
pointed out in Arimoto (1999), the research on robot control
with uncertain kinematics and dynamics is just at the begin-
ning stage. Future works would be devoted to extending the
adaptive Jacobian controller to force tracking control and ob-
ject manipulation by robot hand with soft tips. In these control
problems, the Jacobian matrices are uncertain. For example,
the constraint Jacobian is uncertain in presence of uncertainty
in the constraint surface; the contact points of the robot fin-
gers with soft tips are also difficult to estimate exactly since
they are changing during manipulation. Due to the depres-
sions at the soft contact points, the kinematics of the fingers
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Fig. 6. Position errors (transient).
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Fig. 7. Path of the end-effector.

also become uncertain. It is also interesting to investigate the
applicability of the proposed adaptive Jacobian control theory
to the study of internal model in sensorimotor integration (Tin
and Poon 2005; Imamizu, Uno and Kawato 1998).

Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.
ijrr.org.

Table of Multimedia Extensions
Extension Type Description

1 Video Experimental results of robot
tracking control using shadow’s
feedback
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Fig. 8. Position errors.
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Fig. 9. Position errors (transient).
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