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Abstract

It has been almost two decades since the first globally tracking con-
vergent adaptive controllers were derived for robot with dynamic
uncertainties. However, the problem of concurrent adaptation to
both kinematic and dynamic uncertainties has never been system-
atically solved. This is the subject of this paper. We derive a new
adaptive Jacobian controller for trajectory tracking of robot with
uncertain kinematics and dynamics. It is shown that the robot end-
effector isableto convergeto a desired trajectory with the uncertain
kinematics and dynamics parameters being updated online by pa-
rameter update laws. The algorithm requires only to measure the
end-effector position, besides the robot’s joint angles and joint ve-
locities. The proposed controller can also be extended to adaptive
visual tracking control with uncertain camera parameters, taking
into consideration the uncertainties of the nonlinear robot kinemat-
ics and dynamics. Experimental results are presented to illustrate
the performance of the proposed controllers. In the experiments, we
demonstratethat therobot’s shadow can be used to control therobot.

KEY WORDS—Adaptive control, tracking control, adaptive

Jacobian control, visual servoing

1. Introduction

Adaptive Tracking
Control for Robots
with Unknown
Kinematic and
Dynamic Properties

of new tools or objects with different and unknown kinematic
and dynamic properties, and manipulate them skillfully to
accomplish a task. We can also grip a tool at different grasp-
ing points and orientations, and use it without any difficulty.
Other examples include tennis and golf playing, and walk-
ing on stilts. In all cases, people seem to extend their self-
perception to include the unknown tool as part of the body. In
addition, humans can learn and adapt to the uncertainties from
previous experience (Arbib, Schweighofer, and Thach 1995;
Sekiyama et al. 2000). For example, after using the unknown
tool for a few times, we can manipulate it more skillfully. Re-
cent research (Pavani and Castiello 2004) also suggests that
body shadows may form part of the approximate sensorimo-
tor transformation. The way by which humans manipulate an
unknown object easily and skillfully shows that we do not
need an accurate knowledge of the kinematics and dynamics
of the arms and object. The ability of sensing and responding
to changes without an accurate knowledge of sensorimotor
transformation (Pouget and Snyder 2000) gives us a high de-
gree of flexibility in dealing with unforseen changes in the
real world.

The kinematics and dynamics of robot manipulators are
highly nonlinear. While a precisely calibrated model-based
robot controller may give good performance (Hollerbach

Humans do not have an accurate knowledge of the real word@®80; Luh, Walker, and Paul 1980; Craig 1986), the assump-
but are still able to act intelligently in it. For example, withtion of having exact models also means that the robot is not
the help of our eyes, we are able to pick up a large numbable to adapt to any changes and uncertainties in its mod-
els and environment. For example, when a robot picks up
several tools of different dimensions, unknown orientations

or gripping points, the overall kinematics and dynamics of

the robot changes and are therefore difficult to derive exactly.
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Hence, even if the kinematics and dynamics parameters of thiion, it is shown that the end-effector is able to follow a
robot manipulator can be obtained with sufficient accuracy ljesired trajectory with uncertainties in kinematics and dy-
calibrations and identification techniques (An, Atkeson, andamics. Novel adaptive laws, extending the capability of the
Hollerbach 1988; Renders et al. 1991), it is not flexible to dstandard adaptive algorithm (Slotine and Li 1987a) to deal
calibration or parameter identification for every object that with kinematics uncertainty, are proposed. A novel dynam-
robot picks up, before manipulating it. It is also not possibl&es regressor using the estimated kinematics parameters is
for the robot to grip the tool at the same grasping point analso proposed. The main new point is the adaptation to kine-
orientation even if the same tool is used again. The behavioratic uncertainty in addition to dynamics uncertainty, which
from human reaching movement shows that we do not fir something “human-like” as in tool manipulation. This gives
identify unknown mass properties, grasping points and orihe robot a high degree of flexibility in dealing with unforseen
entations of objects, and only then manipulate them. We cahanges and uncertainties in its kinematics and dynamics.
grasp and manipulate an object easily with unknown graspifdne proposed controller can also be extended to adaptive vi-
point and orientation. The development of robot controllersual tracking control with uncertain camera parameters, tak-
that can similarly cope in a fluid fashion with uncertainties ifing the nonlinearity and uncertainties of the robot kinematics
both kinematics and dynamics is therefore an important stepd dynamics into consideration. A fundamental benefit of
towards dexterous control of mechanical systems. vision-based control is to deal with uncertainties in models,
To deal with dynamic uncertainties, many robot adaptivand much progress has been obtained in the literature of visual
controllers have been proposed (Arimoto 1996; Craig, Hsaervoing (see Hutchinson and Corke 1996; Weiss, Sanderson,
and Sastry 1987; Craig 1988; Slotine and Li 1987a, 1987bnd Neuman 1987; Espiau, Chaumette, and Rives 1992; Pa-
1988; Middleton and Goodwin 1988; Koditschek 1987; Wempanikolopoulos, Khosla, and Kanade 1993; Papanikolopou-
and Bayard 1988; Paden and Panja 1988; Kelly and Cardthis and Khosla 1993; Jagersand, Fuentes, and Nelson 1996;
1988; Ortega and Spong 1989; Sadegh and Horowitz 199@alis, Chaumette and Boudet 1999; Malis and Chaumette
Niemeyer and Slotine 1991; Berghuis, Ortega, and NijmeR002; Miura et al. 2005; Gans, Hutchinson, and Corke 2003;
jer 1993; Whitcomb, Rizzi, and Koditschek 1993; WhitcomtEspiau 1993; Deng, Janabi-Sharifi, and Wilson 2002; Malis
et al. 1996; Lee and Khalil 1997; Tomei 2000; Lewis, Abdaland Rives 2003; Malis 2004 and references therein). Though
lah, and Dawson 1993; Sciavicco and Siciliano 2000). A keynage-based visual servoing techniques are known to be ro-
pointin adaptive control is that the tracking error will convergdust to modeling and calibration errors in practice, it has been
regardless of whether the trajectory is persistently exciting @ointed out in Malis (2004) that only a few theoretical re-
not (Arimoto 1996; Slotine and Li 1987a). That is, one doesults been obtained for the stability analysis in the presence of
not need parameter convergence for task convergence. In #te uncertain camera parameters (Espiau 1993; Deng, Janabi-
dition, the overall stability and convergence of the combine8harifi, and Wilson 2002; Malis and Rives 2003; Malis 2004).
on-line estimation/control (exploit/explore) process can aldm addition, these results are focusing on uncertainty in inter-
be systematically guaranteed. However, in these adaptive camtion matrix or image Jacobian matrix, and the effects of
trollers, the kinematics of the robot is assumed to be knowmcertain robot kinematics and dynamics are not considered.
exactly. Hence, no theoretical result has been obtained for the stability
Recently, several approximate Jacobian setpoint coanalysis of visual tracking control with uncertainties in cam-
trollers (Cheah, Kawamura, and Arimoto 1999; Yazarel anera parameters, taking into consideration the uncertainties of
Cheah 2002; Cheah et al. 2003; Dixon 2004) have been pithe nonlinear robot kinematics and dynamics.
posed to overcome the uncertainties in both kinematics and Section 2 formulates the robot dynamic equations and
dynamics. The proposed controllers do not require the exddéhematics; Section 3 presents the adaptive Jacobian track-
knowledge of kinematics and Jacobian matrix. However, thiag controllers; Section 4 presents some experimental results
results in Cheah, Kawamura, and Arimoto (1999), Yazarel arahd shows that the robot’'s shadow can be used to control the
Cheah (2002), Cheah et al. (2003), and Dixon (2004) are fmbot; Section 5 offers brief concluding remarks.
cusing on setpoint control or point-to-point control of robot

(Takegaki and Arimoto 1981). The research on robot contrg Robot Dynamics and Kinematics
with uncertain kinematics and dynamics is just at the begin-

ning stage (Arimoto 1999). _ _ The equations of motion of robot withdegrees of freedom

In this paper, we present an adaptive Jacobian controllgs,, pe expressed in joint coordinates: [q1, . .. , ¢,]” € R”
for trajectory tracking control of robot manipulators. The prozg (Arimoto 1996: Lewis, Abdallah, and Dawson, 1993)
posed controller does not require exact knowledge of either

kinematics or dynamics. The trajectory tracking control prob- M(q)i + <EM(q) + S(q, q-)) i+g@ =1 ()
lem in the presence of kinematic and dynamic uncertainties 2

is formulated and solved based on a Lyapunov-like analywherepm (q) € R isthe inertia matrix; € R" is the applied
sis. By using sensory feedback of the robot end-effector pgint torque to the robot,
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1 1( 9 T If a position sensor is used to monitor the position of the end-
S, 4)g = =M(q)g—= { —4"M(q)qg } effector, the task space is defined as Cartesian space and hence
2 2 10q I(q) = J.(q).

andg(g) € R" is the gravitational force. Several important A property of the kinematic equation described by eq. (2)

properties of the dynamic equation described by eq. (1) a'rseStated as follows (Cheah, Li, and Slotine, 2004).

given as follows (Arimoto 1996; Slotine and Li 1987a, 1991Property 4. The right-hand side of eq. (2) is linear in a set

Lewis, Abdallah, and Dawson, 1993). of constankinematic parameters 6, = (61, ... , 6¢,)", such

Property 1. The inertia matrixi (q) is symmetric and uni- as link lengths, link twist angles. Hence, eg. (2) can be ex-
. e pressed as

formly positive definite for aly € R".

Property 2. The matrixS(q, §) is skew-symmetric so that X =Jq)q=Yq,9)0 (4)

v'S(g,q)v =0, forallv e R". where Y, (¢,§) € R is called the kinematic regressor

Property 3. The dynamic model as described by eq. (1) ignatrix.

linear in a set of physical paramet&is= (6,1, ... , 6,,)" as Forillustration purpose, an example of a 2-link planar robot

with a fixed camera configurationis given. The interaction ma-
trix or image Jacobian matrix for the 2-link robot is given by

J, = f [ pr O }’ 5)

whereY,(-) € R"*? is called the dynamic regressor matrix. :=fL O B

o _ . whereg,, B, denote the scaling factors in pixels/mis the
In most applications of robot manipulators, a desired paherpendicular distance between the robot and the carnyiera,
for the end-effector is specified in task space, such as visyglhe focal length of the camera. The Jacobian matyi)

space or Cartesian space. et R" be a task space vector from joint space to Cartesian space for the 2-link robot is
defined by (Arimoto 1996; Cheah, Kawamura, and Arimotgjven by

1999)

1.
M(q)g§ + <§M(q) + S(q, é)) q+8(q)=Y,(q,9,4,4)6,

—l151 — ls1o —Dos1o
Ju(q) = , 6
x =h(q) @) |: hey+ bers e j| ©)

. . wherel,, [, are the link lengthsg; andg, are the joint angles,
whereh(-) € R — R" is generally a nonlinear transfor- . C015q21 5, = SiNgy, cr g= CS({)Zsl(ql+ZZ) 5p— SJin(q1+c?2).
mation describing the relation between joint space and taﬁﬂe const:;mt& L, B ’IB 2, andf are ail unknown

space. The task-space velocitys related to joint-space ve- The image s'pgcel’ve?;)c'iliycan be derived as '

locity ¢ as
. . f B O
. . == J Jm =
i =) (@ f=hh@d = 51
; ; ; i —lis1 — ls1o  —losio q:
whereJ (g) € R"*" is the Jacobian matrix from joint space to .
task space. hey+ e lherp 492
If cameras are used to monitor the position of the end- _ [ —v1l151G1 — vilas12(G1 + G2) } )
effector, the task space is defined as image space in pixels. Valic1G1 + Valac12(g1 + G2)

Let r represents the position of the end-effector in Cartesie\lll\fll
coordinates and represents the vector of image feature pa-
rameters (Hutchinson and Corke 1996). The image velocita}/
vectorx is related to the joint velocity vectgras (Hutchinson
and Corke 1996; Weiss, Sanderson and Neuman 1987;

herev, = % Uy = ff";
Hencex = J,J,(¢g)g can be written into the product of
known regressor matri¥. (¢, ¢) and an unknown constant

gg_ctor@k where

piau, Chaumette and Rives 1992; Papanikolopoulos, Khosla, _ [ —s1g1 —s12(G1+¢2) O 0
and Kanade 1993) Lo 0 c1gr c12(q1 + g2)
. . [ vl
i=101@q (3) ol
ol | = Y@ 9 ®)
whereJ, (r) is the interaction matrix (Espiau, Chaumette and v211
2t2

Rives 1992) or image Jacobian matrix (Hutchinson and Corke =
1996), and/,(g) is the manipulator Jacobian matrix of the Similar to most robot adaptive controllers, we consider the
mapping from joint space to Cartesian space. In the preserzase where the unknown parameters are linearly parameteriz-
of uncertainties, the exact Jacobian matrix cannot be obtainedble as in property 3 and property 4. If linear parameterization
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cannot be obtained due to presence of time varying paramg-(q, ék)K,,Ax = 0 tend to zero. In turn this implies thatx

ters or unknown robot structure, adaptive control using basi®nverges to zero as long #5(q, 6,) is of full rank.

functions (Sanner and Slotine 1992; Lewis 1996) is normally The above controller is only effective for point to point

used. The basic idea is to approximate the models with ugentrol. In the following development, we present an adap-

known structure or time varying parameters, by a neural nelve Jacobian tracking controller with uncertain kinematics

work where the unknown weights are adjusted online by thend dynamics. To avoid the need for measuring task-space

updated law, see Sanner and Slotine (1992) and Lewis (199@)ocity in adaptive Jacobian tracking control, we introduce

for details. a known signal based on filtered differentiation of the mea-
sured positionx,

3. Adaptive Jacobian Tracking Control Y4 Ay = A%, (10)

We now present our adaptive Jacobian tracking controller fcfrhe signaly can be computed by measuringalone. With
robots with uncertain kinematics and dynamics. Tracking CO%- the Laplace variabley can be written from eqs '(4) and

vergence is guaranteed by the combination of an adaptive ¢ TO) as

trol law of straightforward structure, an adaptation law for th

dynamic parameters, and an adaptation law for the kinematic AD

parameters. The main idea of the derivation is to introduce an Y= p+A x = Wi(0)6, (11)

adaptive sliding vector based on estimated task-space velocity,
so that kinematic and dynamic adaptation can be performéfere
concurrently. A
In the presence of kinematic uncertainty, the parameters Wi (1) = Yi(q.9)
) o : p+A
of the Jacobian matrix is uncertain and hence eq. 4) can be
expressed as with y(0) = 0 andW,(0) = 0 since the robot usually starts
o . fromarest position. Other linear filters may also be used based
x =J(q,00)q = Yi(q, )b (9)  on noise or vibration models.
Letx,(¢) € R" be the desired trajectory in task space. The

wherex € R" denotes an estimated task-space velocitg|gorithm we shall now derive is composed of (i) a control
J(q.6) € R™ is an approximate Jacobian matrix andayw

6, € R? denotes a set of estimated kinematic parameters.

To illustrate the idea of adaptive Jacobian control, let us T = —fT(q, 0)(K,Ax + K,Ax)
E(r)sr:trcc())”r;srlder the simpler setpoint control problem, and the +Y.q. 4, s ;1 606, (12)

Y a _ whereAx = x — x;, AX =% — %, Yu(q.4.4,.4,.0) is a
T=-J(q.0)K,Ax — K.g + 8(q) dynamic regressor matrix as detailed later apcandg, are
defined based on the adaptive sliding vector as detailed later,

whereAx = x — x, , x, € R" is a desired position in task .. ) .
rE AT P (i) a dynamic adaptation law

spacek, andK, are symmetric positive definite gain matri-
ces, ang(q) is known. The estimated kinematic parameter é - L7 .- 2 oA 13
vectord, of the approximate Jacobian matrix is updated by ¢ =~La¥a(q. 4. 4. G, O)s (13)

5 o and (iii) a kinematic adaptation law
0y =LY, (q,9)K,Ax

~ _ _ T A _
whereL, is a symmetric positive definite gain matrix. Let us O = LkWTk (I)I.{”(Wk(t)ek ¥)
define a Lyapunov-like function candidate as +L.Y, (q,9)(K, +aK,)Ax. (14)
V =14"M(q)g + IA0TL;"AG + LAxTK, Ax All gain matrices are symmetric positive definite. Thus, while

the expression of the controller and dynamic adaptation laws
whereAd, = 6, —6,. Using the above controller and equatiorare straightforward extensions of standard results, the key

(1), the time derivative o¥ is novelties are that the algorithm is now augmented by a com-
) . A posite kinematic adaptation law (14), and that a specific
V. = —¢'K.qg+4¢" (U (q)—J"(q,60)K,Ax choice ofg, is exploited throughout. In the proposed con-
—AOTY (q. ) K,Ax = —4"K,4 <O. troller, x is measured from a position sensor. Many commer-

cial sensors are available for measurement sfich as vision
SinceV = 0 implies thaty = 0, points on the largest in- systems, electromagnetic measurement systems, position sen-
variant set satisfy/” (¢, 6,)K,Ax = 0. Hence, bothj and sitive detectors, or laser trackers.
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Let us now detail the proof. First, define avectoe R*as and

Differentiating eq. (15) with respect to time, we have Substitutinggj, from equation (24) into eq. (26) yields

X, =X; —aAx 16 . . a . A A .
‘ (16) o= G- e+ NI @d. (27)
wherei, € R" is the desired acceleration in task space.

Next, define aradaptive task-space sliding vector using Substituting egs. (25) and (27) into eq. (1), the equations

of motion can be expressed as

eg. (9) as
R X, S 1. .
o= X4 =J 00 - % A0 M@+ GM@) +S4.)s + M@)i,
where J (¢, 6,)¢ = Yi(q,¢)d, as indicated in eq. (9). The ) .
above vector is adaptive in the sense that the parameters of +(5M9) +5(q.9)4 +8(q)
the approximate Jacobian matrix is updated by the kinematic . 1, A -
X o ; X +aM —aM(q)J ,00J =t (28
update law (14). Differentiating eq. (17) with respect to time, oM@ —aM(g)T™q. 891 (@)q (28)
we have The last six terms of eq. (28) are linear in a setpfiamics
§ —$ 5 = f(q, ék)c'j + f(q, ék)q _x (18) parameters 6, and hence can be expressed as
A R o 1. oy .
wherex denotes the derivative af Next, let M(q)q, + (EM((]) + 5(q.9))q. + 8(q) + aM(q)q
G, = g, b, (19) —aM(q)J Mq.0)7(9)q

whereJ Y(q, 6,) is the i inverse of the approximate Jacobian =Yu(q. 9. 4.4, 0)0 (29)

matrli(q 0,). Smce] Yq, 6,) is a function of the estimated
kinematic parametei&, a standard parameter projection al-
gorithm (loannou and Sun 1996) can be adopted to keep the . . .
estimated kinematic parameteksremain in an appropriate M(g)s + (EM(‘Z) +5(q.9))s
region. We also assume that thg robot is operating .in.a finite Y Vg, G, 6, 008, = 1. (30)
task space such that the approximate Jacobian matrix is of full
rank. From eq. (19), we have Consider now the adaptive control law (12), whéfe e
- . -1 . R andK, € R are symmetric positive definite matrices.
G- =J7Nq.00% +J (q.00%, (20)  The first term is an approximate Jacobian transpose feedback
T A L . law of the task-space velocity and position errors, and the

whereJ (q,6,) = —J g, 6)J(q,6)J (g, 6,). Toelim- last term is an estimated dynamic compensation term based

so dynamics (28) can be written

inate the need of task-space velocityjinwe define on eq. (29). Update the estimated dynamic paramétars-
- ing (13), and the estimated kinematic parameters using (14),
g, =J Mg, 00% +J (q.00)%, (21) whereL, and L, are symmetric positive definite matrices.
The closed-loop dynamics is obtained by substituting (12)
where into (30):
X, =%, — aAx. (22)

R . = . .oa 2
M(CI)S + (EM(Q) + S(qv 51))5 + Y(l(Qs q,4, Qrv ek)Agd

From egs. (22) and (16), we have K R R
) ) N +J"(q, 0)(K,AXx + K,Ax) =0 (31)
X, =X;—aAX +a( —x) =% + o —x) (23)
whereAed = 6, — 6,. The estimated klnematlc parameters
, of the approximate Jacobian matrj‘}(q 6,) is updated
g, = G +al g, )G -1 by the parameter update eq. (14). Note that some kinematic
_ . P14 . parameters appear in the dynamics and are updated separately
= 4 -eqtal g 07@)q (24) as the lumped dynamic parametéysising (13).
Next, we define an adaptive sliding vector in joint space as The linear parameterization of the kinematic parameters
.. el . is obtained from eq. (4). The estimated parameﬁtersthen
s = q—¢ =J g 0)((F — %) +alx — x,)) used in the inverse approximate Jacobian mairik(q, 6,)
J g, 603, (25) and hencej, andg, in the dynamic regressor matrix. Note

Substituting eq. (23) into eq. (21) and using eq. (20) y|elds
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thaté, (like ¢ andg) is just part of the states of the adap-control law (12) and the parameter update laws (14) and (13)
tive control system and hence can be used in the contifolr the robot system (1) result in the convergence of posi-
variables even if it is nonlinear in the variables (providedion and velocity tracking errors. That is,— x, — 0 and
that a linear parameterization can be found elsewhere in the- x, — 0, ast — oo. In addition, W,(1)A9, — 0 as
system model, i.e. eq. (4)). Slnoe(q 6,) and |ts inverse t — oo.

J=Y(q. 6,), are updated by andd;, J (¢, 6,) and/ (q ) = Proof.SinceM(q) is uniformly positive definitey ineq. (32)
—JXq,0)J(q,0)J (g, b, are functions of;, g, A6, and is positive definite iy, Ax, A6, andAb,. SinceV <0,V is
Ax becausék is described by eq. (14). also bounded, and therejosrgAx, A6, andAg, are bounded
vectors. This implies tha,, 6, are boundedy is bounded if

Let us define a Lyapunov-like function candidate as : % Yd ST%
x, is bounded, and, = J(q, 6;)s is bounded as seen from

vV = }STM(q)S n }AQJLzlAed n }Aeerk_lAgk eq. (25). Using eq. (35), we can conclude tiat is also
2 2 2 bounded. Sincex is boundedy, in eq. (15) is also bounded
1 if x, is bounded. Thereforg, in eq. (19) is also bounded if
—Ax"(K, K)A 32 4 . " - .
+2 XKy +ak)Ax (32) the inverse approximate Jacobian matrix is bounded. From

eg. (25)4 is bounded and the boundednessg afieans that
is bounded since the Jacobian matrix is bounded. Hekte,
is bounded and. in eq. (16) is also boundedif; is bounded.
In addition, %, in eq. (22) is bounded sinc&x is bounded.
From eq. (14), is bounded sincé\x, Ad,, ¢ are bounded

_AngLk—lék + AxT(K, +aK,)A%.  (33) andY,(-) is a trigonometric function of;. Thereforeg, in

) ) eg. (21) is bounded. From the closed-loop equation (31), we

SubstitutingV (¢)s fromeq. (31)d, fromeq. (14) and, from  can conclude thatis bounded. The boundednesssamply

eq. (13) into the above equation, using Property 2, eq. (25) atite boundedness gfas seen from eq. (27). From eq. (18),
eq. (11), we have is therefore bounded. Differentiating eq. (35) with respect to
time and re-arranging yields

whereAd, = 6, —6,. Differentiating with respect to time and
using Property 1, we have

. 1 . A
V = sTM(q)s' + ESTM(q)s — AOJL;led

V = —§TK,Ax —§TK,Ax 4+ AxT(K, + aK,)Ax X )
AX +aAx =5,
—AO W] (1)K, W, (1) A, . a
which means that\x = X — X, is also bounded.

—A6 Y (g, (K, +aK,)Ax. (34) To apply Barbalat’s lemma, let us check the uniform conti-
From egs. (17), (4) and (15), we have nuity of V. Differentiating equation (37) with respect to time

. gives

S = Ax + aAx = Ax + aAx — Y (q, §) A6, (35) . o )
V. = —-2Ax K,AX — Z(XAxTK,,A,%
where . .
AU . —2A60; W[ (1)K, (W, (1) AO, — W,(1)0,)
Yilg. A0 = J(q)g — J(q, 009 = x — X. (36)

whereW (r) and W (¢) are bounded sincg, § are bounded.
SubstitutingAt = A —Y;(q, §)A¢ ands, = At +aAx—  This shows tha¥’ is bounded since\x, A%, Ax, AX, Ab,
Yi(g, §) A6, into eq. (34), we have 6, are all bounded. Henc#, is uniformly continuous. Using
. 7 . 7 . Barbalat’s lemma (Slotine and Li 1991), we have = x —
Vo= —AFKALH 285K (g, 4) A6 x; = 0, A% = x — 3, — 0 andW,(¢) A8, — 0 ast — .
—AN0"Y!(q, )K,Yi(q, ) A6 Finally, differentiating eq. (35) with respect to time and re-
’ R arranging yields
—aAxTK,Ax — AO] W] (1)K, W, (1) Ab,.

SinceAx = Ax — Y,(q, ) A6, the above equation can be AX +alx =5+ Yi(q, 4, A0 — Yi(q, 9)6x

simplified to which means that\i = i — ¥, is also bounded. Sincax
. AT A andAX are bounded, we havex — 0 ast — oo. O
V = —Ax K,Ax —aAx"K,Ax
ReEMARK 1. If some of the kinematic parameters are known,
—AG] W[ (1)K, Wi(1) Ab. (37)  they are not adapted upon but all the proofs still apply. For
example, if the link parameters of the manipulator are known
with sufficient accuracy, we can focus on the object param-
THEOREM 1. For a finite task space such that the approxeters to save computation (unlike object parameters, link pa-
mate Jacobian matrix is non-singular, the adaptive Jacobieameters are usually fixed). In this case, note that eq. 4) is

We are now in a position to state the following theorem.
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replaced by the associated “persistent excitation” (PE) conditions are
. . . . satisfied.

X =J(g)q =Yi(q.9)0 + v(g, )

) ] o REMARK 4. In the redundant case, the null space of the ap-
wherev(q, ¢) € R" is a known vector containing the known proximate Jacobian matrix can be used to minimize a perfor-
kinematic parameters. In some cases, we can simply pyhnce index (Nakamura 1985; Niemeyer and Slotine 1991).
the known parameters into the known kinematic regressg@p)jowing Niemeyer and Slotine (1991), eq. (19) can be writ-

Y (g, ¢). Similarly, eq. (9) can be expressed as ten as
=7(4.60q = 1q. 9P+ v(g. 4) g = J*(q. 0% + (1, — J*(q. 807 (q. 60
and hence A A A A A A a " )
whereJ*(q, 6,) = J"(q,6)(J (¢, 07" (¢, 6,)) " isthe gen-
5. = Yi(q, q)ék +v(g,q) — X = Ax + aAx eralized inverse of the approximate Jacobian matrix, and
—Y(q, §) A6, ¥ € R"is minus the gradient of the convex function to be

optimized. The above formulation is especially useful in ap-

In the case of the filtered differentiation of the measured p@lication whenx represents the position in the image space.
sition x, one can define This is because the image feature is, in general, less than
) . . the number of degree of freedoms of robot. Hence, using

y+Ay =A6 —v(g.9) the generalized inverse Jacobian matrix allows our results

and hence to be immediately applied to robots beyond two degrees of

freedom.
y = Wi(®)6, . .

REMARK 5. From eq. (35), the adaptive sliding vector can

whereW, (1) = ﬁ Y (q,q). be expressed as

Forexample, consider a 2-link robot holding an object with .

uncertain length, and grasping angle,, the velocity of the 5, = AX +aAx + Yi(g, ¢)0c — Yi(q, ¢)0k- (39)

tool tip is given in Cartesian coordinates as (Cheah, Liu and . .

Slotine) Hence, the sign of the parameter update laws in egs. (14)

and (13) are different because the last term in eq. (12) is pos-
= itive while the last term in eq. (39) is negative.

Lier + e1n + 1,610 — 180512 LaCia + 1oCoC12 — 1580512 tionally simpler implementation can be obtained by replacing
Qn —(G1+ ¢2)s12 —(Gr + Go)cn Le, definitions (19) and (20) by filtered signals as
42 j| N |: (G1+ g2)c1z —(g1+ G2)s12 i| |: ]
—l151G1 — Ir512(41 + G2)
lic1g1 + Le1o(g1 + §2)
= Yi(q, 9)0 +v(q. q) (38) o o
wherec, = c09qo), s, = Sin(g,). E(J(q’ 004r) +27(q. 0q, = %, + Ak

X
[—1151 — los12 = 1,6o812 = 1,8,C12 - —12812 — 1,Cp812 — laSaClZ:| REMARK 6. As in (Niemeyer and Slotine 1991), a computa-
[ LoS,

Gr 4+ 2§, = J7Yq, 00 G, + 2%, — (g, 0)d,)

with A > 0. This implies that

REMARK 2. A standard projection algorithm (loannou andsq that/ (4, 4,)4, andits derivative tend to and its derivative.

Sun 1996; Dixon 2004) can be used to ensure that the e§fi1hjs case;j, may be used directly in the dynamic regressor.
mated kinematic parameteis remain in an appropriate re-

gion so that the control signgl in eq. (19) is defined for all REMARK 7. The kinematic update law (14) can be modi-
0, during adaptation. In addition, singularities often depentied as
only ong, noté,. We assume that the robot is operating in are- A

gion such that the approximate Jacobian matrix is of full rank. O = a— PW OK.(We@)b = y)
Note from the adaptive Jacobian control law (12) and the dy- T, -

namic parameter update law (14) thiat (¢, 6;) is used only +P Y/ (q,9)(K, +aK,)Ax,
in the definition of control variablé, in eq. (19). Therefore, ay = —LkaT(t)KU(Wk(t)ék —-y)
we should be able to control this by bounding the variable or .

using a singularity-robust inverse of the approximate Jacobian +LiY, (g, 9)(K, +aK,)Ax
matrix (Nakamura 1985).

whereP is a symmetric positive definite matrix. The adding
REMARK 3. Inthe proposed controllel, (¢) A6, converges of the “proportional adaptation term” to the usual integral
to zero. This implies parameter convergence in the case tlagtaptation term typically makes the transients faster. In this
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case, the potential energy:@[L;lAek in the Lyapunov-like actual implementations of the robot controllers, it is neces-

function candidate (32) should be replaced by an energy tesary to identify the exact parameters of matkixn eq. (40).

26 — a)" L (6, — ay). That is, However, no model can be obtained exactly. In additionis
temperature sensitive and hence may change as temperature

Vv = }STM(q)S + }AQTL—lAQ varies due to overheating of motor or changes in ambient tem-
2 27 d e T perature. In the presence of uncertaintykin position error
1 o B may result and stability may not be guaranteed.
50 —a) L (6 — @) We propose an adaptive controller based on the approxi-
1 mate Jacobian matrix and an approximate transmission matrix
—i—EAxT(Kp—i—oeKu)Ax K as
. u = KY=J"(q,0)(K,Ax + K,Ax)
This adds tovV minus the squar@-norm of W[ (1) K, (W, () _ o R
6 —y)+ L.Y] (q,4)(K, +aK,)Ax. A similar argument can +Y4(q. 4,4, 4,, 000 + Yo(r,)0.)  (41)
be applied to the dynamic parameters update law described
by eq. (13). b, = —L,Y,(1,)s, (42)

REMARK 8. In general, the interaction or image ‘JaCObiaQ/here the kinematic parameter are updated by (14), the dy-
matrix in eq. (3) can be linearly parameterized, except for(

. . ; , ) amic parameter are updated by (1B), € R"*" is a pos-
d_e_pth_lnforma'_uon parameters in .3D visual servoing or PGtive definite diagonal matrixj, € R" is an estimated pa-
sition .|nformat|o.n pgrametgrs in fish-eye lenses. In pra,Ct'C?ameter updated by the parameter update law %2},) =
ada_ptlvg control is st|IIeffec.:tlvem.caseswherethe depth mfo iag(— 7,1, 7,5, .. . , —1,,} andr,, denotes the’” element of
matloq is sIO\{v]y tlrne—vgrylng. |t.IS assumed that the de§|re e vectorr, which is defined as
endpoint position is defined in visual space when adapting to
the interaction or image Jacobian matrix. If linear parameteri-z, = J”(q, ,)(K,Ax + K,Ax) = Y.(q, 4, qn, é, 66,
zation cannot be obtained, basis functions (Sanner and Slotine (43)
1992; Lewis 1996) can be used to adaptively approximate the R
estimated image velocity. One interesting point to note is th&t the above controller, a constakit* is used to transform

image velocity or optical flow is not required in the visuathe control torque to an approximate actuator input and an
tracking control algorithm. additional adaptive inpu, (z,)0, is added to compensate for

. . . the uncertainty introduced by the estimated transmission ma-
REMARK 9. Inthe approximate Jacobian setpoint controllerﬁix e

proposed in Cheah, Kawamura, and Arimoto (1999), Yazarel pphving a similar argument as in the previous section on
and Cheah (2002), and Cheah et al. (2003) it is shown th@lﬁ- (40), and using eq. (41), we have

adaptation to kinematic parameters is not required for point- ' '

to-point control. Hence, the proposed controllers in Cheah, M(0); }M S(a. 6

Kawamura, and Arimoto (1999), Yazarel and Cheah (2002), (@)5 + (2 @)+ 5(g.9))s

and Cheah et al. (2003) can deal with time varying uncer-

- : . \ Yo(q. 4. Ger §,r 00) NG,
tainties as far as setpoint control is concerned. In most visual +Ya(9. 4. 474 0 A

servoing techniques, adaptation to camera parameters is also + J7(q.0)(K,A% + K, Ax)
not required but the effects of the uncertainties of nonlinear . A .
robot kinematics and dynamics are not taken into considera- +(KK*'=Dt,— KK 'Y,(1,)0, =0, (44)

tion in the stability analysis. Hence it is not known whether ) o ) . )

the stability can still be guaranteed in the presence of the$derer, is definedineq. (43). Sindé, K andY, (z,) are diag-

uncertainties. onal matrices, the last two terms of eq. (44) can be expressed
If a DC motor driven by an amplifier is used as actuato®S ., ., ~ _

at each joint of the robot, the dynamics of the robot can be (KK = D1, = KK Yu(7)0, = Yo (7,) A0, (45)

expressed as (Arimoto 1996; Lewis, Abdallah, and Daws Fo_1_k 7 . ;
1993) ‘Where@a, 1 2 andk;, k; are theith diagonal elements

of K, K respectivelyAd, = 6, — KK 4, and hence\d, =
. 1. R _KK-1%
M + | sM(g) + S(q, )) + = Ku, 40 - .
(@)q (2 @) @.9) )4 +8@ (40) The proof follows a similar argument as in the proof of the

L ) theorem by using a Lyapunov-like function candidate as
whereu € R" is either a voltage or current inputs to the

e nxn i . . . . l _ N _
amplifiers andk € R is a diagonal transmission matrix Vi=V+ ZATLRK 1A, (46)
that relates the actuator inputto the control torquer. In
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whereV is defined in eq. (32). Hence, we have
Vl = —A)A'CTKUA)% - anTKpr
AW (K, Wi (1)AG, <0 47)

where we note thatd, is also bounded.

4. Experiments

A series of experiments were conducted to illustrate the pe
formance of the new adaptive Jacobian tracking controller.

4.1. Experiment 1: Using Shadow Feedback

Recent psychophysical evidence by Pavani and CastieE?
(2004) suggests that our brains respond to our shadows as’
if they were another part of the body. This imply that body
shadows may form part of the approximate sensory-to-motor
transformation of the human motor control system. In this sec-
tion, we implement the proposed adaptive Jacobian controller= 200z . A sequence of the images capturing the motion of
on the first two joints of an industrial robot and show that théhe robot’s shadow are presented in Figure 2 and a video of
robot's shadow can be used to control the robot. The expetiie results is shown in Extension 1. The shadow started from
mental setup consists of a camera, a light source and a SOMN initial position as shown in Figure 2(a), followed the spec-
SCARA robot as shown in Figure 1. An object is attached tied straight line and stopped in an end point as shown in Fig-
second joint of the robot and is parallel to the second link. Are 2(f). The maximum tracking error of the experiments was
robot’'s shadow is created using the light source and projectatiout 42 mm. As seen from the results, the robot’s shadow is
onto a white screen. The camera is located under the scredie to follow the straight line closely. Note that the shadow
and the tip of the object’s shadow is monitored by the cameexperiment is also similar to using a finger with an overhead
(see Figure 1). projector to point at a specific equation for instance.

The robot’s shadow is required follow a straight line start-
ing from the initial position(X,, Yo) = (153 73) to the final 42 Experiment 2: Using Position Feedback
position(X,, Y,;) = (75, 185 specified in image space (pix-
els). The desired trajector,,, Y,) for the robot's shadow is Next, we implemented the proposed controllers on a 2-link
hence specified as direct-drive robot as shown in Figure 3. The masses of the

first and second links are approximately equal #® Kg and
Y, =mX,+c 1 kg respectively, and the masses of the firstand second motors
are approximately equal ta®kg and 3 kg respectively. The
lengths of the first and second links are approximately equal to
Xo — 6d(’—22 _ t_33) forO<r<T [, = 0.31 mand, = 0.3 m respectively. The robot is holding
Xo = { X, as s forT <t <T, an object with an length of. 00 m and a grasping angle of'60
' B A PSD camera (position-sensitive detector) manufactured by
andm = —1.448,c = 29465,d = 78 pixels,T = 5sand Hamamatsu is used to measure the position of the robot end-
T, =6s. effector.

To illustrate the idea we discussed in Remark 1, we first Therobotis requiredto hold an object with uncertainlength
assume that the lengths of the robot links were sufficiently aend grasping angle and follow a circular trajectory specified
curate in this experiment. Experiments with uncertain link pan Cartesian space as
rameters will be presented in the next section. Hence only the
object parameters were updated. The object was placed very X, = 0.33+0.1sin(0.54+ 3r)
closed to the white screen in order to cast a sharp shadow Y, = 0.41+ 0.1co050.54+ 3).
onto the screen. Therefore, the unknown mapping from the
shadow to object is just a scalar in this experiment. The In this experiment, uncertainties in both robot parame-
length of the object was initially estimated aGn. The ters and object parameters were also considered. The link
experiment was performed with, = 0.03/, L, = 0.0005/, lengths were estimated &50) = 0.25 m,[,(0) = 0.27 m
K, = diag(0.03,0.029}, K, = diag{0.1750.13}, « = 2, and the object length and grasping angle were estimated as

1. A SONY Robot with its shadow.

where
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(e} 4]

Fig. 2. Experimental results showing robot’s shadow following a line.
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Fig. 3. A 2-link direct-drive robot.

Position error (m)
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0.12 m and 20respectively. The initial position of the robot

end-effector was specified &X (0), Y(0)) = (0.28, 0.52).

Experimental results withL, = diag{0.04, 0.045 0.015}, -o1r : 1

L, = diag{0.01, 0.002 0.002 0.002 0.015 0.01, 0.01},

K, = diag2, 2}, K, = diag(450, 450}, « = 1.2, A = 2007 ; ‘ : :

are presented in Figures 4 and 5. The transient response

shown in Figure 6. As seen from the results, the tracking er-

rors converge with updating of the estimated kinematic ar]qg_ 5. Position errors.

dynamic parameters.

In the next experiments, a proportional term is added

to the kinematic update law (see Remark 7). The exper-

imental results in Figures 7 and 8 show that the track-

ing errors converge and the transient response is shov@mneters being updated online. Experimental results illustrate

in Figure 9. We used., = diag{0.075, 0.105 0.025,, P = the performance of the proposed controllers. The experiments

diag{0.00018 0.0002 0.0003}, with the rest of the control also show that a robot can be controlled using its shadow. As

gains remaining the same. pointed out in Arimoto (1999), the research on robot control
with uncertain kinematics and dynamics is just at the begin-
ning stage. Future works would be devoted to extending the

5. Concluding Remarks adaptive Jacobian controller to force tracking control and ob-
ject manipulation by robot hand with soft tips. In these control

We have proposed an adaptive Jacobian controller for robmtoblems, the Jacobian matrices are uncertain. For example,

tracking control with uncertain kinematics and dynamics. Ahe constraint Jacobian is uncertain in presence of uncertainty

novel update law is introduced to update uncertain kinematigs the constraint surface; the contact points of the robot fin-

parameters, using sensory feedback of the robot end-effecti@rs with soft tips are also difficult to estimate exactly since

position. The robot end-effector is able to track a desirethey are changing during manipulation. Due to the depres-

trajectory with the uncertain kinematics and dynamics paions at the soft contact points, the kinematics of the fingers

Time (sec)
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