
Rakudo and NQP Internals
The guts tormented implementers made

Jonathan Worthington

c© Edument AB

September 17, 2013

Course overview - Day 2

Welcome back. Today, we will cover the following topics:

6model

Bounded Serialization and Module Loading

The regex and grammar engine

The JVM backend

The MoarVM backend

6model

6model
Ingredients for cooking up object systems

What is 6model?

6model provides a set of primitives for building type and object
systems.

Rakudo’s classes, roles, enumerations and subset types are all
assembled out of these primitives. The same is true of NQP,

although NQP’s object system is simpler, just providing classes and
roles.

These primitives have been implemented on Parrot and the JVM.
MoarVM provides them also, but it goes a step further, making

6model the object system for the VM.

The primitives are more primitive than you may first imagine. For
example, 6model has no built-in concept of inheritance or role

composition. These are built at a higher level.

Object = behavior + state

Whatever language you look at, you’ll find that objects always
have:

A mechanism for making object instances, which can have
state

A mechanism for taking an object and a name, locating a
behavior with that name, and (provided it exists) invoking it

The state may be shaped by classes or freeform. The behavior may
be directly attached to the object, attached at a per-class level, or

located through a multiple dispatch mechanism.

But there will always be state and behavior.

Types

Most languages also have some notion of type. Typically, types
fall into relationships with each other. For example, given:

class Event {

has $.name;

has $.start-date;

has $.days;

}

class Hackathon is Event {

has $.topic;

has @.hackers;

}

We can say that Hackathon is a subtype of Event.

Package kinds

Not only do we have different types, we have different kinds of
type. In Perl 6, these correspond to different package and type

declarators.

package module knowhow class

grammar role enum subset

They have rather different properties, and behave in rather
different ways. For example, type-checking against a subset type

involves invoking its where clause.

The differences aside, they each result in some kind of type object
that represents the type they declare.

Meta-objects

So if 6model doesn’t natively know how things like inheritance and
role composition work, let alone subset types, where are these

things implemented?

The answer lies in meta-objects. Each object in existence has an
associated meta-object, which describes how that object works.
Many objects may have the same meta-object. In Perl 6, for

example, all objects of the same class will share a
meta-object.

What’s critical to understand is that a meta-object is just an
object. There is nothing magical about it. It just happens to have
methods with names like new type, add method, add parent,
and so forth. As such, a meta-object is not tied to a particular

target VM.

Representations

Meta-objects are interested in an object’s type and semantics.
However, they are explicitly not concerned with how an object is

laid out in memory.

The allocation, layout and access of memory related to an object is
controlled by a representation.

Representations are not objects. They are low level and
implemented in a different way per backend. The API they

provide, however, is the same.

Thus, as well as having a meta-object, each object has a
representation. While meta-objects may exist per type,

representations are much fewer in number.

STables combine meta-objects and REPRs

While an object has a meta-object and has a representation, there
is actually a level of indirection between then: the STable. We’ll

look at these more closely later on.

Our first meta-object

Here’s our very first object system. It supports types that have
methods. The types will always have the P6opaque representation.

class SimpleHOW {

has %!methods;

method new_type() {

nqp::newtype(self.new(), ’P6opaque’)

}

method add_method($obj, $name, $code) {

%!methods{$name} := $code;

}

method find_method($obj, $name) {

%!methods{$name}

}

}

Using our meta-object

First, let’s create a new type and add a single method to it.

my $Greeter := SimpleHOW.new_type();

$Greeter.HOW.add_method($Greeter, ’greet’,

-> $self, $name { say("Hello, $name") });

The $Greeter variable now contains a type object for the new
type. If we call the greet method on it:

$Greeter.greet(’Katerina’);

Then our meta-object’s find method method will be called with
the argument greet, and whatever it returns will be invoked,
passing $Greeter and the string Katerina as arguments.

HOW’s that?

The word HOW is often used in connection with meta-objects. By
convention, the meta-object for the keyword class will have a

name like ClassHOW. It’s not strictly followed, even in Rakudo and
NQP. But all of the meta-objects for types do end in HOW.

If you take an object and use .HOW on it, you get the meta-object
back. We can chase this up the chain as far as we wish.

my $mo := $Greeter.HOW;

say($mo.HOW.name($mo)); # SimpleHOW

my $momo := $mo.HOW;

say($momo.HOW.name($momo)); # NQPClassHOW

my $momomo := $momo.HOW;

say($momomo.HOW.name($momomo)); # KnowHOW

KnowHOW, the root of it all

If you chase the HOW-chain far enough back on any object,
eventually you’ll reach something that claims to be a KnowHOW.
Keep going, and you just go in circles; the end of the chain is

self-describing.

KnowHOW is the only meta-object provided by the 6model core. It
supports:

Having a name

Having attributes

Having methods

In a type check, it only type checks against itself

That’s it. No role composition. No inheritance.

The knowhow declarator

The knowhow package declarator exists in both Rakudo and NQP.
You’ve very little reason to use it yourself. However, inside of

src/how/ in NQP, you will find a bunch of meta-objects using it:

NQPModuleHOW An NQP module

NQPClassHOW An NQP class or grammar

NQPNativeHOW An NQP native type (int/num/str)

NQPParametricRoleHOW An NQP role declaration

NQPConcreteRoleHOW An NQP role made concrete for a given class

NQPCurriedRoleHOW An NQP role with some arguments pre-set

Naturally, we can’t use class until the meta-object that
implements classes is available! Thus, knowhow is all we have.

Giving Rubyish classes

We’ll take a look at the meta-objects for NQP and Rakudo in a
little bit. But first, to see something a little more manageable, let’s
return to the Rubyish compiler we worked on yesterday and add

very basic OO support:

Declaring a class

Giving it methods

Creating a class instance with a new statement

Calling the methods on the class

We’ll put inheritance and attributes aside for now; in fact, we’ll use
the NQP or Perl 6 meta-objects to study those.

Parsing a class definition

The parsing is relatively easy, however we set up a couple of extra
dynamic variables related to methods. We’ll see their usage next.

token statement:sym<class> {

:my $*IN_CLASS := 1;

:my @*METHODS;

’class’ \h+ <classbody>

}

rule classbody {

:my $*CUR_BLOCK := QAST::Block.new(QAST::Stmts.new());

<ident> \n

<statementlist>

’end’

}

Updating def for methods

Methods are declared just like functions. Inside the scope of a
class, a function definition should be added to the surrounding
class. The action method for def can be updated as follows:

method statement:sym<def>($/) {

my $install := $<defbody>.ast;

$*CUR_BLOCK[0].push(QAST::Op.new(

:op(’bind’),

QAST::Var.new(:name($install.name), :scope(’lexical’),

:decl(’var’)),

$install

));

if $*IN_CLASS {

@*METHODS.push($install);

}

make QAST::Op.new(:op(’null’));

}

That is, push the QAST::Block onto @*METHODS in a class.

A simple meta-object

The meta-object we wrote before is just about good enough. Here
it is with a couple of minor tweaks.

class RubyishClassHOW {

has $!name;

has %!methods;

method new_type(:$name!) {

nqp::newtype(self.new(:$name), ’HashAttrStore’)

}

method add_method($obj, $name, $code) {

%!methods{$name} := $code;

}

method find_method($obj, $name) {

%!methods{$name}

}

}

Building up the meta-object (1)

In Rubyish, we’ll generate code that builds up the meta-object.
First of all, let’s take care of the classbody action method.

method classbody($/) {

$*CUR_BLOCK.push($<statementlist>.ast);

$*CUR_BLOCK.blocktype(’immediate’);

make $*CUR_BLOCK;

}

Note how the blocktype is set to immediate, since we want code
in the class body to run as part of the program mainline.

Building up the meta-object (2)

We mangle the name, then use RubyishClassHOW to create a new
type object to represent it. Note that QAST::WVal is a way to

refer to an object; we’ll see much more on this later.

method statement:sym<class>($/) {

my $body_block := $<classbody>.ast;

my $class_stmts := QAST::Stmts.new($body_block);

my $ins_name := ’::’ ~ $<classbody><ident>;

$class_stmts.push(QAST::Op.new(

:op(’bind’),

QAST::Var.new(:name($ins_name), :scope(’lexical’),

:decl(’var’)),

QAST::Op.new(

:op(’callmethod’), :name(’new_type’),

QAST::WVal.new(:value(RubyishClassHOW)),

QAST::SVal.new(:value(~$<classbody><ident>),

:named(’name’)))

));

<Method code comes here>

make $class_stmts;

}

Building up the meta-object (3)

We also emit method calls to add method to build up the method
table for the class. Recall that QAST::BVal lets us reference a

QAST::Block that was installed elsewhere in the tree.

my $class_var := QAST::Var.new(:name($ins_name), :scope(’lexical’));

for @*METHODS {

$class_stmts.push(QAST::Op.new(

:op(’callmethod’), :name(’add_method’),

QAST::Op.new(:op(’how’), $class_var),

$class_var,

QAST::SVal.new(:value($_.name)),

QAST::BVal.new(:value($_))));

}

And with that, we’ve got classes and methods.

The new keyword

Parsing new is unsurprising (we skip constructor arguments):

token term:sym<new> {

’new’ \h+ :s <ident> ’(’ ’)’

}

The actions mangle the class name to look it up, and then use the
create NQP op to create an instance of it.

method term:sym<new>($/) {

make QAST::Op.new(

:op(’create’),

QAST::Var.new(:name(’::’ ~ ~$<ident>), :scope(’lexical’))

);

}

Method calls (1)

Last but not least, we need to parse method calls. These can be
handled as a kind of postfix, with a very tight precedence. First,

we add the level:

Rubyish::Grammar.O(’:prec<y=>, :assoc<unary>’, ’%methodop’);

And then the parsing, which is not too unlike how a function call
was parsed.

token postfix:sym<.> {

’.’ <ident> ’(’ :s <EXPR>* % [’,’] ’)’

<O(’%methodop’)>

}

Method calls (2)

The actions for a method call are relatively straightforward.

method postfix:sym<.>($/) {

my $meth_call := QAST::Op.new(:op(’callmethod’), :name(~$<ident>));

for $<EXPR> {

$meth_call.push($_.ast);

}

make $meth_call;

}

The key bit of “magic” that happens is that the EXPR action
method will unshift the term the postfix was applied to, meaning it

becomes the first child (and thus the invocant).

Exercise 7

In this exercise, you’ll add basic support for classes and methods to
PHPish. This will involve:

Writing a basic meta-object for a class with methods

Checking it works stand-alone

Adding parsing for classes, methods, new statements and
method calls

Adding the relevant action methods to make things work

See the exercise sheet for more information.

STables

Each object has a meta-object and a representation. However, it
does not point directly to them. Instead, each object points to an

s-table, short for shared table.

STables represent a type, and exist per HOW/REPR combination.
Here is a cut-down version of the MVMSTable struct from MoarVM:

struct MVMSTable {

MVMREPROps *REPR; /* The representation operation table. */

MVMObject *HOW; /* The meta-object. */

MVMObject *WHAT; /* The type-object. */

MVMObject *WHO; /* The underlying package stash. */

/* More... */

};

Representation Operations

The representation operations are broken down into:

Common things: creating a new type based on the
representation, composing that type (which may then
compute a memory layout), allocation, cloning, changing type
(used for mixins), serialization and deserialization

Boxing: for types that serve as boxes of native types
(int/str/num), get/set the boxed value

Attributes: for types that can do storage of object attributes,
get/bind attribute values as well as compute access hints

Positional: for types that provide array-like storage, get and
bind by index, push/pop/shift/unshift, splice, set elements

Associative: for types that provide hash-like storage, get and
bind by key, exists by key, delete by key

A representation can choose which of these it supports.

Common Representations

The most common representations you’ll encounter while working
with NQP and rakudo are:

P6opaque Opaque attribute storage; default in Perl 6

P6int A native integer; flattens into a P6opaque

P6num A native float; flattens into a P6opaque

P6str A native string reference; flattens into a P6opaque

P6bigint Big integer; flattens into a P6opaque

VMArray Automatically resizing array, type-parametric

VMHash Hash table

Uninstantiable Type object only; used for module, role, etc.

Type setup

The nqp::newtype operation is central to type creation. For
example, here is the new type method from NQPModuleHOW. It
creates a new meta-object, makes a new type based upon it and
the Uninstantiable representation, and gives it an empty Hash

as its stash.

method new_type(:$name = ’<anon>’) {

my $metaobj := self.new(:name($name));

nqp::setwho(nqp::newtype($metaobj, ’Uninstantiable’), {});

}

nqp::newtype creates a new type object and STable. It points the
type object at the STable, and the WHAT field of the STable back
at the type object. It then sets the HOW field of the STable to the
specified meta-object, and the REPROps to the operation table for

Uninstantiable.

Type composition

Various representations need types to go through a composition
phase. For others it is optional.

Representation composition typically happens at class composition
time (which is usually done at the point of the closing } of a class
declaration). It is when a meta-object has a chance to configure an

underlying representation.

For example, P6opaque must be configured with the attributes
that it should compute a layout for.

<build attribute info array up into @repr_info>

my %info := nqp::hash();

%info<attribute> := @repr_info;

nqp::composetype($obj, %info)

repr-compose-protocol.markdown documents this in detail.

Method caches

If every method call really involved a call to find method, method
dispatch would be way too slow. Therefore, many types publish a
method cache, which is a hash table mapping a method name to
the thing to call. Here it is done by walking the method resolution

order in reverse (so we get overrides correct).

method publish_method_cache($obj) {

my %cache;

my @mro_reversed := reverse(@!mro);

for @mro_reversed {

for $_.HOW.method_table($_) {

%cache{nqp::iterkey_s($_)} := nqp::iterval($_);

}

}

nqp::setmethcache($obj, %cache);

nqp::setmethcacheauth($obj, 1);

}

Method caches hang off an STable.

Authoritative method caches

We can choose if the method cache is authoritative or not:

nqp::setmethcacheauth($obj, 0); # Non-authoritative; default

nqp::setmethcacheauth($obj, 1); # Authoritative

This really just controls what happens if the method in question is
not found in the method cache. In authoritative mode, the cache

is taken as having the complete set of methods. In
non-authoritative mode, if the method is not found in the cache,

we fall back to calling find method.

It’s nice to have authoritative method caches when possible, since
it can give a fast answer to nqp::can(...). However, any type
that wants to do fallback handling cannot have this. Rakudo

decides on a type-by-type basis.

Type checking

Type checks show up in many places in Perl 6:

if $obj ~~ SomeType { ... } # Explicit check

my SomeType $obj = ...; # Variable assignment

sub foo(SomeType $obj) { ... } # Parameter binding

These all eventually boil down to the same operation,
nqp::istype. However, there are many things that SomeType

could be one of the many kinds of type:

class SomeType { } # Class type

role SomeType { } # Role type

subset SomeType where { ... } # Subset type

Left-side-knows checks

For some kinds of type, the object being checked has the answer.
This is the case with subtyping relationships.

Int ~~ Mu # Int knows it inherits from Mu

Block ~~ Callable # Block knows it does Callable

These cases are handled by a type check method.

method type_check($obj, $checkee) {

for self.mro($obj) {

return 1 if $_ =:= $checkee;

if nqp::can($_.HOW, ’role_typecheck_list’) {

for $_.HOW.role_typecheck_list($_) {

return 1 if $_ =:= $checkee;

}

}

}

return 0;

}

Type check caches

Once again, really iterating the MRO and the roles composed in at
each level would be really slow. Therefore, left-side-knows checks
are typically handled by the meta-object publishing a type-check

cache.

method publish_type_cache($obj) {

my @tc;

for self.mro($obj) {

@tc.push($_);

if nqp::can($_.HOW, ’role_typecheck_list’) {

for $_.HOW.role_typecheck_list($_) {

@tc.push($_);

}

}

}

nqp::settypecache($obj, @tc)

}

Right-side-knows checks (1)

There are other kinds of type where it’s the type that we’re
checking against that needs to drive the checking. For example,

subset types are this way:

subset Even of Int where * % 2 == 0;

We need to invoke the code associated with the Even subset type
as part of the type check:

say 11 ~~ Even # False

say 42 ~~ Even # True

Right-side-knows checks (2)

These kinds of type implement an accepts type method. For
example, here is the one from Perl 6’s SubsetHOW:

method accepts_type($obj, $checkee) {

nqp::istype($checkee, $!refinee) &&

nqp::istrue($!refinement.ACCEPTS($checkee))

}

It must also set up the appropriate type check mode for this to
work:

nqp::settypecheckmode($type, 2)

Boolification

One relatively hot-path operation, it turns out, is deciding if an
object will evaluate to true or false in boolean context. The

nqp::istrue operation is used to test an object for truthiness.
There’s also an nqp::isfalse.

How an object boolifies is set through nqp::setboolspec, which
takes a flag from the list below and an optional code object.

0 Call the specified code object, passing the object to test

1 Unbox as an int; non-zero is true

2 Unbox as a float; non-zero is true

3 Unbox as a string; non-empty is true

4 As above, but "0" is considered false

5 False if type object, true otherwise

6 Unbox or treat as a big integer; non-zero is true

7 For iterator objects; true if there are more items available

8 For VMArray/VMHash based objects; true if elems is non-zero

Invocation

There is also an invocation specification mechanism, which
indicates what happens if an object is invoked (called).

In Rakudo, and often in NQP too, we have code objects. These in
turn hold a VM level code object. When we invoke a code object,
the invocation needs to be forwarded to the contained code object.

Here’s an example from NQP’s setting:

my knowhow NQPRoutine {

has $!do;

...

}

nqp::setinvokespec(NQPRoutine, NQPRoutine, ’$!do’, nqp::null);

In Rakudo, see Perl6::Metamodel::InvocationProtocol.

NQP’s meta-objects

NQP’s meta-objects are all implemented using the knowhow
meta-object. They also cannot assume the presence of the NQP
setting, meaning you’ll find some slightly odd code in there.

The NQP iterator types for hashes that enable .key and
.value methods are not yet set up, so this code uses
nqp::iterkey s and nqp::iterval.

There is no NQPMu default for scalars to take yet, so an empty
scalar will be null; nqp::isnull is therefore used for often.

Thankfully, your chances of needing to work on this code are fairly
low. It’s also relatively compact; NQPClassHOW, the most complex
meta-object, is only around 800 lines of largely straightforward

code.

Rakudo’s meta-objects: overview

The story is much different in Rakudo. Rakudo’s meta-objects are
implemented in terms of NQP’s classes and roles. This means that

inheritance and role composition are available.

Therefore, while Rakudo’s meta-objects must handle much
more due to the richness of the Perl 6 object system, they are

very neatly factored.

There is a meta-object per declarator (so class maps to
ClassHOW), and a few extra bits for roles (which are rather
complex to implement due to their type parametricity).

However, much functionality is factored out into roles, which are
re-used amongst the different meta-objects.

Example: ClassHOW

Here are the roles that are done by
Perl6::Metamodel::ClassHOW:

Naming Documenting

Versioning Stashing

AttributeContainer MethodContainer

PrivateMethodContainer MultiMethodContainer

RoleContainer MultipleInheritance

DefaultParent C3MRO

MROBasedMethodDispatch MROBasedTypeChecking

Trusting BUILDPLAN

Mixins ArrayType

BoolificationProtocol REPRComposeProtocol

InvocationProtocol

Amongst the names, you’ll recognize many Perl 6 features, as well
as some of the 6model concepts we’ve covered in this section.

Example: EnumHOW

If we look at Perl6::Metamodel::EnumHOW, we’ll see that it
re-uses a number of these roles:

Naming Stashing

AttributeContainer MethodContainer

MultiMethodContainer RoleContainer

MROBasedMethodDispatch MROBasedTypeChecking

BUILDPLAN BoolificationProtocol

REPRComposeProtocol InvocationProtocol

In fact, it has just one extra role that it composes:

BaseType

The roles aside, ClassHOW is 250 lines of code, and EnumHOW

about 150. Thus, most interesting stuff lives in the roles.

Example: Naming

Some of the roles are extremely simple. For example, all of the
meta-objects compose the Naming role, which simply provides two

methods and a $!name attribute:

role Perl6::Metamodel::Naming {

has $!name;

method set_name($obj, $name) {

$!name := $name

}

method name($obj) {

$!name

}

}

The role with most code is C3MRO, which computes the C3 method
resolution order. It’s still only 150 lines of code, though.

Takeaway: things are divided into quite manageable pieces.

Example: GrammarHOW

This is the simplest meta-object:

class Perl6::Metamodel::GrammarHOW

is Perl6::Metamodel::ClassHOW

does Perl6::Metamodel::DefaultParent

{

}

Essentially, a grammar does everything that a class does, but
composes the DefaultParent role so as to enable grammars to be

configured with a different default parent in BOOTSTRAP:

Perl6::Metamodel::ClassHOW.set_default_parent_type(Any);

Perl6::Metamodel::GrammarHOW.set_default_parent_type(Grammar);

Container handling

So far, we’ve seen that a type can be given a boolification spec and
an invocation spec. There is one more of these: container spec.
This is used in implementing the Scalar container type in Perl 6.

Several operations relate to this:

setcontspec Configure a type as a scalar container type

iscont Check if an object is a scalar container

decont Get the value inside the container

assign Assign a value into the container

assignunchecked Assign, assuming no type-check needed

For example, Rakudo’s BOOTSTRAP does:

nqp::setcontspec(Scalar, ’rakudo_scalar’, nqp::null());

Auto-decontainerization

One may wonder why nqp::decont doesn’t need to show up
absolutely everywhere in Perl 6. The answer is that a range of

nqp::ops will automatically do a nqp::decont operation for you.

One commonly encountered exception is that attribute access
doesn’t decontainerize. This means nqp::getattr and friends

may need an explicit nqp::decont on their first argument.

nqp::getattr(nqp::decont(@list.Parcel), Parcel, ’$!storage’)

However, since self is defined to always be decontainerized
anyway, this is not normally a problem.

Exercise 8

As time allows, extend the PHPish object system to have:

A method cache (you may like to time if it makes a difference)

Single inheritance of classes (which will need updates to your
method cache code)

Interfaces (these will need a different meta-object, and you
will need to add a compose-time to the class, to check all
named methods in the interface are provided)

As usual, the exercise sheet has more hints.

Bounded Serialization and Module Loading

Bounded Serialization and
Module Loading

Let’s save the World!

A problem

When we built object support into Rubyish, we did so by emitting
code to make calls on the meta-objects. Doing this clearly has
downsides for startup time. In Perl 6, however, there are much
more serious challenges to this approach. Consider the following

example:

class ABoringExample {

method yawn() { say "This is at compile time!"; }

}

BEGIN { ABoringExample.yawn }

A BEGIN block runs while we are compiling. Therefore, the type
object and meta-object for ABoringExample needs to be available

at the point we run the BEGIN block.

Also, this must work for user-defined meta-objects.

This problem is everywhere

A subroutine declaration produces a Sub object, which in turn
refers to a Signature object which in turn has Parameter objects

inside of it.

All of these need constructing at compile time. Not only since we
could call the sub, but also because traits may need to mix into it:

role StoredProcWrapper { has $.sp_name }

multi trait_mod:<is>(Routine:D $r, :sp_wrapper($sp_name)!) {

$r does StoredProcName($sp_name)

}

...

sub LoadStuffAsObjects($id) is sp_wrapper(’LoadStuff’) {

call_sp($id).map({ Stuff.new(|%($_)) })

}

Compile-time vs. runtime

The problem, in general, is that we need to be able to build up
objects and meta-objects at compile time, then refer to them at
runtime. Moreover, this is a very common case, so we need to do

so efficiently.

That in itself wouldn’t be too bad. However, module
pre-compilation makes this a good bit trickier: the objects
created at compile time may need to cross a process

boundary, being saved to disk, then loaded at some future point.

This is where serialization contexts, bounded serialization and
Worlds come in to play.

The World

One concept our small Rubyish language lacked, but that both
NQP and Rakudo have, is a World class. While the Actions class
is focused on QAST trees, and thus the runtime semantics of a

program, a World class is focused on managing declarations and
meta-objects during the compile.

A world always has a unique handle per compilation unit. This
may be based on the original source text, such as in Rakudo.

my $file := nqp::getlexdyn(’$?FILES’);

my $source_id := nqp::sha1(

nqp::defined(%*COMPILING<%?OPTIONS><outer_ctx>)

?? self.target() ~ $sc_id++ # REPL/eval case

!! self.target()); # Common case

my $*W := Perl6::World.new(:handle($source_id), :description($file));

Serialization contexts

The key data structure at the heart of compile-time/runtime
object exchange is a serialization context. Really, a serialization

context is just three arrays, one each for:

Objects: any 6model object can appear in this list, though it
only makes sense to put those that are sensible to serialize in
there

Code objects: VM-level code objects that objects in the
serialization context may refer to (or refer to through
indirectly, due to a closure cloning)

STables: the existence of this array is an implementation
detail, and its contents is never directly manipulated outside
of VM-specific code, so you can forget about it

There is one World per compilation unit, and a World in turn
holds a serialization context. In fact, the handle given to

World.new(...) is actually used for the SC.

Placing objects in a serialization context

Both NQP::World and Perl6::World inherit from HLL::World.
It includes a method named add object, which adds an object

into the serialization context for the current compilation unit. Here
is how it is used in NQP::World, for example:

method pkg_create_mo($how, :$name, :$repr) {

my %args;

if nqp::defined($name) { %args<name> := $name; }

if nqp::defined($repr) { %args<repr> := $repr; }

my $type_obj := $how.new_type(|%args);

self.add_object($type_obj);

return $type_obj;

}

Referencing objects in a serialization context

Any object that is in a serialization context - either the one
currently being compiled or from one in another module or setting

- can be referenced using the QAST::WVal node type.

For example, here is a utility method from Perl6::World:

method add_constant_folded_result($r) {

self.add_object($r);

QAST::WVal.new(:value($r))

}

The W in QAST::WVal means “World”, which should make a little
more sense now than it did when we encountered it previously. :-)

Serialization

The compiler toolchain knows if the eventual target is to run code
in-process or generate bytecode to write to disk.

In the first case, it’s easy: we just make sure it is possible to see
the serialization context from the running code, and compile a

QAST::WVal to index into it.

The second case requires serializing all the objects in the
serialization context, and in turn serializing the objects that they

point to, traversing the object graph as needed.

They are dumped to a binary serialization format, documented in
the NQP repository.

What’s “bounded” about it

Consider pre-compiling the following module:

class Cache is Hash {

has &!computer;

submethod BUILD(:&!computer!) { }

method at_key($key) is rw {

callsame() //= &!computer($key)

}

}

Here, Hash comes from Perl 6’s CORE.setting. Clearly, we will
encounter this type in the @!parents of the meta-object for

Cache. However, we do not want to re-serialize the Hash type!

When an object is already owned by another SC, we just write a
reference to it. Ownership is the boundary of a compilation

unit’s serialization.

Deserialization and fixups

The opposite of serialization is deserialization. This involes taking
the binary blob representing objects and STables and recreating

the objects from it.

In doing this, all references to object from other serialization
contexts must be resolved. This means that they must have been
loaded first. This implies that a module’s dependencies must be

loaded before it can be deserialized.

For this reason, HLL::World has an add load dependency task,
for adding code (specified as QAST) to execute before

deserialization takes place.

There is also an add fixup task, which enables registration of
code to run after deserialization has taken place.

Another tricky problem

One tricky issue is what happens if you try to pre-compile a
module containing the following:

Ooh! Let’s pretend we’re Ruby!

augment class Int {

method times(&block) {

for ^self { block($_) }

}

}

The Int meta-object and STable are serialized in CORE.setting.
But here, another module is modifying the meta-object, and the

updated method cache is hung off the STable, meaning it too has
changed.

So what do we do?

Repossession

When an object that belongs to a serialization context, we’re at
compile time, and the serialization context it belongs to is not one

we’re curerntly in the process of compiling, a write barrier is
triggered.

This switches the ownership of the object to the serialization
context of the compilation unit we’re currently compiling. It also

records that this happened.

At serialization, the updated version of the object is serialized.

At deserialization, the object to update is located and then
overwritten with the new version of it.

Repossession conflicts

This leaves just one more issue: what happens if you load two
pre-compiled modules that both want to augment the same class?

Once, “latest won”. Thankfully, today this is detected as a
repossession conflict, the resulting exception indicating two

modules were loaded that may not be used together.

This should have been the end of the story. But it’s not. It turns
out that Stash objects started to conflict in interesting ways, when
modules used nested packages. Therefore, there is now a conflict
resolution mechanism that looks at the objects in conflict and tries

to merge them. For Stash, that is easy enough.

SC write barrier control

Most of the nqp::ops related to serialization contexts are rarely
seen, hidden away in HLL::World. However, two of them escape

into regular code:

nqp::scwbdisable disables the repossession detection write
barrier, meaning that any changes done to an owned object
will not cause it to be re-serialized. This is often done by
meta-objects that want to keep caches.

nqp::scwbenable re-enables repossession detection.

Note that this isn’t a binary flag, but rather a counter that is
incremented by the first op and decremented by the second.

Repossession detection happens only when the counter is at zero.

Accidental Repossession

It’s important to keep repossession in mind when working on
Rakudo and NQP, as it can sometimes kick in when you might not

have expected it.

For example, in Rakudo’s CORE.setting, you’ll find a BEGIN block
that looks like this:

BEGIN {

my Mu $methodcall := nqp::hash(’prec’, ’y=’);

...

trait_mod:<is>(&postfix:<i>, :prec($methodcall));

...

}

If this were done in the setting mainline, it would cause a change
to the postfix:<i> serialized in the CORE setting, which could
as a result cause a repossession of this by whatever compilation

unit triggers setting loading.

QAST::CompUnit, revisited

The various pieces assembled by the World are passed down to the
backend using QAST::CompUnit.

my $compunit := QAST::CompUnit.new(

:hll(’perl6’),

:sc($*W.sc()),

:code_ref_blocks($*W.code_ref_blocks()),

:compilation_mode($*W.is_precompilation_mode()),

:pre_deserialize($*W.load_dependency_tasks()),

:post_deserialize($*W.fixup_tasks()),

:repo_conflict_resolver(QAST::Op.new(

:op(’callmethod’), :name(’resolve_repossession_conflicts’),

QAST::Op.new(

:op(’getcurhllsym’),

QAST::SVal.new(:value(’ModuleLoader’))

)

)),

...);

How module loading works (1)

When a use statement is encountered in Perl 6 code:

use Term::ANSIColor;

The module name is parsed, any adverbs extracted (such as
:from) and then control is passed on to the load module method

in Perl6::World:

my $lnd := $*W.dissect_longname($longname);

my $name := $lnd.name;

my %cp := $lnd.colonpairs_hash(’use’);

my $module := $*W.load_module($/, $name, %cp, $*GLOBALish);

How module loading works (2)

This load module method first delegates to
Perl6::ModuleLoader to load the module right away (required as
it will probably introduce types or do other changes that we need
to continue parsing). Once the module is loaded, it also registers a
load dependency task to make sure the module is loaded if we are

in a pre-compiled situation before deserialization takes place.

method load_module($/, $module_name, %opts, $cur_GLOBALish) {

my $line := HLL::Compiler.lineof($/.orig, $/.from, :cache(1));

my $module := Perl6::ModuleLoader.load_module($module_name, %opts,

$cur_GLOBALish, :$line);

if self.is_precompilation_mode() {

self.add_load_dependency_task(:deserialize_past(...));

}

return $module;

}

How module loading works (3)

Inside Perl6::ModuleLoader, some work is done to locate where
the module is on disk. If it exists in a pre-compiled form, the

nqp::loadbytecode op is used to load it. Otherwise, the source
is slurped from disk and compiled.

Loading a pre-compiled module automatically triggers its
deserialization.

A couple of odd lines that are executed on both code paths deserve
some explanation, however:

my $*CTXSAVE := self;

my $*MAIN_CTX;

nqp::loadbytecode(%chosen<load>);

%modules_loaded{%chosen<key>} := $module_ctx := $*MAIN_CTX;

How module loading works (4)

When the mainline of the module is run, its lexical scope is
captured by some code equivalent to:

if $*CTXSAVE && nqp::can($*CTXSAVE, ’ctxsave’) {

$*CTXSAVE.ctxsave();

}

The ModuleLoader has such a method:

method ctxsave() {

$*MAIN_CTX := nqp::ctxcaller(nqp::ctx());

$*CTXSAVE := 0;

}

This is how the UNIT (outer lexical scope) of a module being
loaded is obtained. This is in turn used to locate EXPORT.

How module loading works (5)

Finally, ModuleLoader triggers global merging. This involves
taking the symbols the module wishes to contribute to GLOBAL and

incorporating them into the current view of GLOBAL.

If this sounds strange, note that Perl 6 has separate compilation,
meaning all modules start out with a completely clean and empty
view of GLOBAL. These views are reconciled (and conflicts whined

about) as modules are loaded.

Finally, the UNIT lexpad is returned.

my $UNIT := nqp::ctxlexpad($module_ctx);

if +@GLOBALish {

unless nqp::isnull($UNIT<GLOBALish>) {

merge_globals(@GLOBALish[0], $UNIT<GLOBALish>);

}

}

return $UNIT;

How module loading works (6)

What we have seen so far is what a need would do. A use then
goes on to import. This is not implemented in the module loader,

but rather lives in the import method in Perl6::World.

It does the following things:

Locates the symbols that need to be imported

If there are multiple dispatch candidates exported and there
also exist some in the target scope, merges the candidate lists

For other symbols, installs them directly into the target scope,
complaining if there is a conflict

If any operators are imported, makes sure the current
language is augmented so as to be able to parse them

The regex and grammar engine

The regex and grammar engine
Inside how Perl 6 is parsed

The pieces involved

Regex and grammar handling involves a number of components:

The Perl 6 Regex grammar/actions, from
src/QRegex/P6Regex, which parse the Perl 6 regex syntax
and produce a QAST tree from it. These are not used directly
by NQP and Rakudo, but instead subclassed (so, for example,
nested code blocks will be parsed in the correct main
language)

The QAST::Regex QAST node, which represents the whole
range of regex constructs we can compile

Cursor objects, which keep state as we parse

Match objects, which represent the result of a parse

NFA construction and evaluation, used for Longest Token
Matching

The QAST::Regex node

This node covers all of the regex constructs. It has an rxtype

property that is used to indicate the kind of regex operation to
perform.

It can be placed at any point in a QAST tree, though typically
expects to find itself inside of a QAST::Block. Furthermore, it

expects the lexical $ to have been declared.

With a few exceptions, once you reach a QAST::Regex node, the
QAST compiler will expect to find only other QAST::Regex nodes
beneath it. There is an explicit qastnode rxtype for escaping back

to the rest of QAST.

We’ll now study the rxtypes available.

literal

The literal rxtype indicates a literal string that should be
matched in a regex. The string to match is passed as a child to the

node.

QAST::Regex.new(:rxtype<literal>, ’meerkat’)

It has one subtype, ignorecase, which makes matching of the
literal be case insensitive.

QAST::Regex.new(:rxtype<literal>, :subtype<ignorecase>, ’meerkat’)

concat

The concat subtype is used to match a sequence of QAST::Regex
nodes one after the other. It expects these nodes as its children.

This will do the same as the previous slide, though will be a little
less efficient:

QAST::Regex.new(

:rxtype<concat>,

QAST::Regex.new(:rxtype<literal>, ’meer’),

QAST::Regex.new(:rxtype<literal>, ’kat’)

)

scan and pass

Regexes tend to start with a scan node and end with a pass node.

scan will generate code to work through the string, trying to
match the pattern at each offset, until either a match is
successful or it runs out of string to try. This is what makes
’slaughter’ ~~ /laughter/ match, even though
laughter is not at the start of the string. Note it will only do
this if the match is not anchored (which it will be if called by
another rule).

pass will generate a call to !cursor pass on the current
Cursor object, indicating that the regex has matched. For
named regexes, tokens and rules, this node conveys the name
of the action method to invoke also.

A simple example

If we give NQP the following regex:

/meerkat/

And use --target=ast, the resulting QAST::Regex nodes contain
all of the things we have covered so far:

- QAST::Regex(:rxtype(concat))

- QAST::Regex(:rxtype(scan))

- QAST::Regex(:rxtype(concat)) meerkat

- QAST::Regex(:rxtype(literal)) meerkat

- meerkat

- QAST::Regex(:rxtype(pass))

cclass

Used for the various common built-in character classes, typically
expressed through backslash sequences. For example, \d and \W

respectively become:

QAST::Regex.new(:rxtype<cclass>, :name<d>)

QAST::Regex.new(:rxtype<cclass>, :name<w>, :negate(1))

The available values for name are as follows:

Code Meaning

. Any character (really, any)

d Any numeric character (Unicode aware)

s Any whitespace character (Unicode aware)

w Any word character or the underscore (Unicode aware)

n A literal \n, a \r\n sequence, or a Unicode LINE_SEPARATOR

enumcharlist

Used for user-defiend character classes. Requires that the current
character class be any of those specified in the child string.

For example, \v (which matches any vertical whitespace character)
compiles into:

QAST::Regex.new(

:rxtype<enumcharlist>,

"\x[0a,0b,0c,0d,85,2028,2029]"

)

enumcharlist and user defined character classes

The enumcharlist node is also used in things like:

/<[A..Z]>/

Which, as --target=ast shows, becomes:

- QAST::Regex(:rxtype(concat))

- QAST::Regex(:rxtype(scan))

- QAST::Regex(:rxtype(concat)) <[A..Z]>

- QAST::Regex(:rxtype(enumcharlist)) [A..Z]

- ABCDEFGHIJKLMNOPQRSTUVWXYZ

- QAST::Regex(:rxtype(pass))

anchor

Used for various zero-width assertions. For example, ^ (start of
string) compiles into:

QAST::Regex.new(:rxtype<anchor>, :subtype<bos>)

The available subtypes are:

bos Beginning of string (^)

eos End of string ($)

bol Beginning of line (^^)

eol End of line ($$)

lwb Left word boundary (<<)

rwb Right word boundary (>>)

fail Always fails

pass Always passes

quant

Used for quantifiers. The min and max properties are used to
indicate how many types the child node may match. A max of -1

means “unlimited”. Thus, the regex \d+ compiles into:

QAST::Regex.new(

:rxtype<quant>, :min(1), :max(-1),

QAST::Regex.new(:rxtype<concat>, :name<d>)

)

The backtrack property can also be set to one of:

g Greedy matching (\d+:, the default)

f Frugal (minimal) matching (\d+?)

r Ratchet (non-backtracking) matching (\d+:)

altseq

Tries to match its children in order, until it finds one that matches.
This provides || semantics in Perl 6, which are the same as |

semantics in Perl 5. Thus:

the || them

Compiles into:

QAST::Regex.new(

:rxtype<altseq>,

QAST::Regex.new(:rxtype<literal>, ’the’),

QAST::Regex.new(:rxtype<literal>, ’them’)

)

There is also conjseq for Perl 6’s &&.

alt

Support Perl 6 LTM-based alternation. The regex:

the | them

Compiles into:

QAST::Regex.new(

:rxtype<alt>,

QAST::Regex.new(:rxtype<literal>, ’the’),

QAST::Regex.new(:rxtype<literal>, ’them’)

)

This will always match them if it can, because it goes for the
branch with the longest declarative prefix first.

subrule (1)

Used to call another rule, optionally capturing. For example:

<ident>

Will compile into:

QAST::Regex.new(

:rxtype<subrule>, :subtype<capture>, :name<ident>,

QAST::Node.new(QAST::SVal.new(:value(’ident’)))

)

The name property is the name to capture as, while the
QAST::SVal node is taken as the name of the method to call.
Extra children may be given to the QAST::Node, which will be

taken as arguments for the call.

subrule (2)

There are a few other things worth noting about subrule. First, it
need not capture. For example:

<.ws>

Will compile into:

QAST::Regex.new(

:rxtype<subrule>, :subtype<method>,

QAST::Node.new(QAST::SVal.new(:value(’ws’)))

)

subrule (3)

The subrule rxtype is also capable of handling zero-width
assertions. For example:

<?alpha>

Will compile into:

QAST::Regex.new(

:rxtype<subrule>, :subtype<zerowidth>,

QAST::Node.new(QAST::SVal.new(:value(’ws’)))

)

subrule (4)

Finally, there are two other properties that apply to subrule:

backtrack being set to r will prevent the subrule call being
backtracked into. This is set in token and rule, and avoids
keeping a lot of state around.

negate can also be set on this node. It is probably most
useful in combination with the zerowidth subtype, since that
is how ‘ is compiled.

Last but not least, subrule is also used for positional captures.
Instead of specifying a method to call, the contents of the capture
is compiled inside a nested QAST::Block and that is called. This
is to make sure positional matches get their own Match object.

subcapture

This is used for implementing named captures that are not
subrules. That is:

$<num>=[\d+]

Will compile into:

QAST::Regex.new(

:rx<subcapture>, :name<num>,

QAST::Regex.new(

:rxtype<quant>, :min(1), :max(-1),

QAST::Regex.new(

:rxtype<cclass>, :name<d>

)

)

)

Cursor

A Cursor is an object that holds the current state of a match.
Cursors are created at the point of entry to a token/rule/regex,
and either pass or fail. From that point on, a Cursor is immutable.

The state inside a Cursor includes:

The target string

The position we’re matching from in the current rule (-1
indicates scan)

The current position reached by the match

A stack of backtrack marks (more later)

A stack of captured cursors (more later)

Potentially, a cached Match object produced from the Cursor

For a passed Cursor that we may backtrack into later, the
code object to invoke to restart matching

NQPCursorRole

Both NQP and Rakudo have their own cursor objects, named
NQPCursor and Cursor respectively. However, they both compose

NQPCursorRole, which provides most of their methods.

The methods can be categorized as follows:

Common introspection methods: orig, target, from and
pos

Built-in rules: before, after, ws, ww, wb, ident, alpha,
alnum, upper, lower, digit, xdigit, space, blank, cntrl,
punct

Infrastructure methods: all have a name starting with a ! and
are called mostly by code generated from compiling
QAST::Regex nodes or as part of implementing the built-in
rules

It starts with !cursor init

Parsing a grammar or matching a string against a regex always
starts with a call to !cursor init, which creates a Cursor and
initializes it with the target string, setting up options (such as

whether to scan or not).

For example, here is how NQPCursor’s parse method is
implemented:

method parse($target, :$rule = ’TOP’, :$actions, *%options) {

my $*ACTIONS := $actions;

my $cur := self.’!cursor_init’($target, |%options);

nqp::isinvokable($rule) ??

$rule($cur).MATCH() !!

nqp::findmethod($cur, $rule)($cur).MATCH()

}

Inside a rule (1)

The first thing that happens on entry to a token, rule or regex
is the creation of a new Cursor to track its work. This is done by
calling the !cursor start all method, which returns an array of

state, including:

The newly created Cursor

The target string

The position to start matching from (-1 indicates scan)

The current Cursor type (generic $?CLASS)

The backtracking mark stack

A restart flag: 1 if it is a restart, 0 otherwise

Aside: this exact factoring will likely change in the future, for
performance reasons.

Inside a rule (2)

The Cursor returned by !cursor start all may have various
methods call on it as a match proceeds:

!cursor start subcapture to produce a Cursor that will
represent a sub-capture

!cursor capture pushes a Cursor onto the capture stack
(either one returned by calling a subrule or one created for a
subcapture)

!cursor pos updates the match position in the Cursor (it’s
only synchronized when needed)

!cursor pass if the match is successful; the position reached
must be passed, and if it is a named regex then the name can
be passed; this also triggers a call to an action method

!cursor fail if the match fails

Inside a rule (3)

Once a token, rule or regex has finished matching, either passing
or failing, it should return the Cursor that it worked against.

In fact, this is the protocol: anything that is called as a subrule

should return a Cursor to its caller. Failing to do so will cause an
error.

At the point a Cursor is failed, any backtracking and capture
state will be discarded. If it passes, but can not be backtracked in

to, then backtracking state can be thrown away too.

The cstack and capturing

The cstack (either Capture stack or Cursor stack) is where
Cursor objects that correspond to captures (positional or named)
are stored. It may also be used to store non-captured Cursors for

subrules we could backtrack in to.

In something like:

token xblock {

<EXPR> <.ws> <pblock>

}

The cstack will end up with two Cursors on it by the end of the
match: one returned by the call to EXPR and another returned by

the call to pblock.

The bstack and backtracking

The bstack is a stack of integers. Each “mark” actually consists
of four integers (so it only makes sense to talk about groups of 4

entries, not the individual integers):

The location in the regex to jump back to (typically
interpreted by a jump table); if 0, then the backtracker should
just go on looking at the next entry

The position in the string to go back to

Optionally, a repetition count (used by quantifiers)

The height of the cstack at the point the mark was made.
This is used to throw away any captures that we backtrack
over.

Match object production

The MATCH method on a Cursor or NQPCursor takes the Cursor
and makes a Match or NQPMatch object. These are the things our

action methods were passed as their $/ argument.

They are produced by looking at the cstack, observing the names
of each of the entries, and building up an array of positional

captures and a hash of named captures. Positional captures just
have an integer name.

Any capture qauntified with *, + or ** will produce an array of
captured results.

Most of this work is factored out by CAPHASH from
NQPCursorRole.

Longest Token Matching

All of this leaves one important regex related topic: Longest Token
Matching. We’ve already seen it in action, but now we’ll take a

few moments to consider how it works.

Every regex or branch alternation has a (possibly zero-length)
declarative prefix. It covers the region from the start of a regex up
to a construct that is deemed imperative (such as a code block,

positive lookahead, etc.)

token even { \d+ { +$/ % 2 == 0 } }

DDD IIIIIIIIIIIIIIII

The declarative prefix always forms a regular language, and as a
result can be translated into a finite automata.

NFA fragments

Once an individual token, rule or regex has been compiled to
QAST, the QAST tree is passed to QRegex::NFA.

This explores the QAST, identifies the declarative prefix, and
builds an NFA (Non-deterministic Finite Automata) out of it.

If the QAST tree contains any alternations, then each branch of
these also has an NFA build and stored.

At this point, the NFAs are not ready to evaluate. Whenever there
is a subrule call, they simply name the call. In that sense, they are
generic with regard to the grammar as a whole, and may need
to be made concrete many times (due to grammar inheritance).

Protoregex and alternation NFAs

A protoregex decides which candidate to call by building an NFA
representing the alternation of all the candidate NFAs.

This protoregex NFA is always specific to a particular type of
grammar. As a part of producing it, any subrule calls have their

NFA substituted in for the call.

Alternations go through a similar process, except this time the
NFA is built up out of the NFAs of the branches.

The result of either of these is an NFA that can be executed
against a target string.

NFA execution

There are two nqp::ops that relate to executing NFAs:

nfarunproto evaluates the NFA from a given offset in the
target string. It returns an array indicating the order in which
the candidates should be tried, excluding any that could never
possibly match.

nfarunalt evaluates the NFA from a given offset in the
target string. It then pushes marks for all the branches that
could possibly match onto the bstack in reverse order, so the
best possible candidate is at the top. The regex engine then
just immediately “backtracks” to start trying the possible
candidates.

These two really are just thin wrappers around the same underlying
NFA evaluator.

Exercise 9

In this exercise, you’ll explore some of the regex engine
implementation. Of note, you’ll encounter (time-allowing):

The Perl 6 regex grammar and actions

How embedded code blocks are implemented in NQP and
Rakudo

Where NFAs are stored and how they look

See the exercise sheet for guidance.

The JVM backend

The JVM backend
Bringing Perl 6 to the land of Java

The JVM

Virtual machine originally built to execute the Java language, and
now host to a large number of languages spanning many

paradigms, static, dynamic, etc.

Instruction set of around 200 instructions, but many class library
methods are provided natively by the VM also

Instruction set and execution model are stack based; values are
loaded on to the stack to be operated on, passed as method

arguments, etc.

The bytecode lives in a class file, which represents a single class
with fields and methods.

JVM instruction set: constants

Various instructions load constants on to the stack:

aconst null loads a null reference

iconst m1, iconst 0, iconst 1, . . . iconst 5 load 32-bit
integer -1, 0, 1, . . . 5 onto the stack

lconst 0, lconst 1 load 64-bit integer 0 and 1 onto the
stack

fconst 0, fconst 1, fconst 2 load 32-bit floating point
0.0, 1.0, 2.0 onto the stack

dconst 0, dconst 1 load 64-bit flaoting point 0.0, 1.0 onto
the stack

bipush takes a 1-byte argument and loads it as a 32-bit
integer

sipush takes a 2-byte argument and loads it as a 16-bit
integer

ldc, ldc w and ldc2 w load constants from the constant
pool (int, float or String)

JVM instruction set: locals

Local variables are either integers (32-bit), longs (64-bit), floats
(32-bit), doubles (64-bit) or object reference. There are

instructions to load and store them.

iload, lload, fload, dload and aload take an index and
load that local variable onto the stack

istore, lstore, fstore, dstore and astore take an index
and store what is currently on the stack top to that local
variable

The first four local variables (indexes 0 through 3) can be
accessed using special instructions of the form
<prefix>[load|store] [0..3], for example iload 0,
lload 3, astore 2, dstore 0

Both longs and doubles count as two slots, so two adjacent longs
might be in index 4 and 6; trying to access something at 5 will

complain about splitting a value!

JVM instruction set: arrays

Arrays can be created with types int, long, float, double byte,
char, short or any reference type. They are not resizable.

newarray creates an array of any of the native types, with a
byte to indicate type and taking the length to allocate from
the stack top

anewarray is for creating arrays of a reference type; the type
is specified as a constant pool entry

arraylength gets the length of an array

Loading an element from an array involves putting the array
on the stack, the index on the stack, and then using one of
iaload, laload, faload, daload, aaload, baload, caload
or saload

Storing an element to an array involves putting the array on
the stack, the index on the stack, the value on the stack, and
then using one of iastore, lastore, fastore, dastore,
aastore, bastore, castore, or sastore

JVM instruction set: arithmetic

The usual set of arithmetic and bitwise operations are available

Addition: iadd, ladd, fadd, dadd

Subtraction: isub, lsub, fsub, dsub

Multiplication: imul, lmul, fmul, dmul

Division: idiv, ldiv, fdiv, ddiv

Modulo: irem, lrem, frem, drem

Negation: ineg, lneg, fneg, dneg

Bit shifts: ishl, lshl, ishr, lshr, iushr, lushr

Bitwise: iand, land, ior, lor, ixor, lxor

JVM instruction set: compare/branch

Bloody irregular!

For longs, floats and doubles, you use one of lcmp, fcmpl, fcmpg,
dcmpl, or dcmpg, which give -1, 0 or 1 (like a cmp in various

languages). You then branch with one of ifeq, ifne, iflt, ifge,
ifgt, or ifle.

32-bit integer comparisons are special enough to get their own
instructions that compare and branch all in one: if icmpeq,

if icmpne, if icmplt, if icmpge, if icmpgt and if icmple.

References can be compared for equality or inequality and
branched on with if acmpeq and if acmpne. For nullness check

and branch, there are ifnull and ifnonnull.

Finally, there’s an unconditional goto and a tableswitch for
compiling a switch statement into.

JVM instruction set: objects and fields

An object is instantiated with the new instruction. Note that the
bytecode validator will enforce that its constructors are called with

invokespecial (see next slide).

There are four instructions for accessing fields (though we don’t do
this too often, as for 6model objects it’s encapsulated inside the

representation):

getstatic takes a field reference from the constant pool and
loads the static field’s value onto the stack

getfield is similar, but expects the object to access an
instance field from to be on the stack

putstatic takes a field reference from the constant pool and
stores the current stack top value to the static field

putfield is similar, but expects the object to store the
instance field on to be on the stack beneath the value

JVM instruction set: method calls

Instance method calls expect the stack to contain the object to call
a method on, followed by any extra arguments. Note that these
operate on Java objects rather than 6model objects, so we don’t

use them for Perl 6’s method dispatch!

invokevirtual does a normal virtual method call

invokespecial calls a method in an exact class (used for
super, etc.)

invokeinterface calls a method through an interface

There is also invokestatic which just expects the arguments to
be on the stack. We use this very heavily, since most nqp:: ops

are static method calls.

Finally, there’s invokedynamic, which is how actual Perl 6-level
routine and method calls are wired up.

JVM instruction set: exceptions

There is only one instruction related to exceptions, athrow. It
throws the exception object that is currently on the stack top.

Exception handlers are stored as a table rather than in the
bytecode stream.

JVM instruction set: other bits

There are various coercion instructions that convert between the
primitive types. They are of the form 2, with the same one-letter
codes used for arrays. The available ones are i2l, i2f, i2d, l2i,
l2f, l2d, f2i, f2l, f2d, d2i, d2l, d2f, i2b, i2c, and i2s.

There are also a number of instructions for manipulating the stack:

Popping: pop, pop2 (note that a long or double counts as 2
slots)

Duplicating: dup, dup2 (same rules)

Swapping: swap (nope, doesn’t exist for long/double)

Finally, a method can be returned from (taking the current stack
top as the return value) with ireturn, lreturn, freturn,

dreturn, areturn, or return (void).

JAST (1)

To generate JVM bytecode from NQP, we build a bunch of JAST
nodes (short for JVM Abstract Syntax Tree).

There are some nodes for pushing constants:

JAST::PushIVal.new(:value(42)) # 64-bit integer constant

JAST::PushIndex.new(:value(69)) # 32-bit integer constant

JAST::PushNVal.new(:value(1.5)) # 64-bit double constant

JAST::PushSVal.new(:value(’beer’)) # String constant

There is also a JAST::PushCVal, used for pushing class literals.

JAST (2)

The top level structure is made up of a JAST::Class node. It
exposes the methods add field, which expects a JAST::Field,

and add method, which expects a JAST::Method.

A JAST::Field has methods (and named constructor parameters)
to set a name, type and if it’s static.

A JAST::Method is rather more complex. Along with the name
and a flag to indicate if it’s static, it also has lists of locals and
arguments, along with a type that it returns. Additional fields
capture the set of lexicals, NQP-level exception handlers, etc.

JAST (3)

An individual instruction is expressed as a JAST::Instruction

node.

JAST::Instruction.new(:op(’aconst_null’))

Typically, these are pushed onto a JAST::InstructionList,
though they can also be pushed onto the instruction list inside a

JAST::Method too.

my $il := JAST::InstructionList.new();

$il.append(JAST::PushIVal.new(:value($target)));

$il.append(JAST::Instruction.new(:op(’aload’), ’tc’));

$il.append(JAST::Instruction.new(:op(’invokestatic’), $TYPE_OPS,

’lexotic_tc’, $TYPE_SMO, ’Long’, $TYPE_TC));

...

JAST (4)

The JAST::Label node represents a label. Within a given
JAST::Method, a label needs to be unique.

my $if_id := $qastcomp.unique($op_name);

my $else_lbl := JAST::Label.new(:name($if_id ~ ’_else’));

A JAST::Label can be used in a branch:

$il.append(JAST::Instruction.new($else_lbl,

:op($op_name eq ’if’ ?? ’ifeq’ !! ’ifne’)));

And its location is wherever it’s pushed:

$il.append($else_lbl);

JAST (5)

Finally, there is JAST::TryCatch, which represents a (JVM-level)
exception handler.

It expects two JAST::InstructionLists, one that makes up the
try, and another that makes up the catch. It also needs to haven

an exception type specified.

$il.append(JAST::TryCatch.new(

:try($try_il),

:catch($catch_il),

:type($TYPE_EX_LEX)

));

The QAST to JAST translator

JAST provides a way to produce JVM bytecode from NQP. The
frontend produces a QAST tree, however. Between them is a

QAST to JAST translator, which lives in the src/vm/jvm/QAST/
directory of NQP.

In all, including translation of all the QAST nodes (including
regexes) and nqp::ops, it weighs in at about 5,400 lines. That

may sound like a lot, yet it is only around a third of the size of the
Perl 6 CORE.setting!

Its job is complicated by a couple of factors:

It’s doing a Continuation Passing Style transform on
everything as it goes about doing the code generation -
though this is relatively well isolated

The JVM has stack-must-be-empty constraints on things that
appear in the middle of a Perl 6 expression (like try)

Types and results

There are 4 primitive types that everything revolves around, which
you will see everywhere in the compiler:

$RT_INT a JVM long; maps to ‘int‘ in NQP

$RT_NUM a JVM double; maps to ‘num‘ in NQP

$RT_STR the Java String class; maps to ‘str‘ in NQP

$RT_OBJ a 6model object (org.perl6.nqp.sixmodel.SixModelObject)

The code to compile a QAST node or an nqp::op always returns a
Result. This type pairs together a JAST::InstructionList

with one of the above types, indicating what it leaves behind on
the stack.

$RT VOID indicates the absence of a result.

Mapping nqp::ops

A handful of nqp::ops map directly to JVM ops:

QAST::OperationsJAST.map_jvm_core_op(’neg_i’, ’lneg’, [$RT_INT], $RT_INT);

Some others get mapped to functions in the Java class library:

QAST::OperationsJAST.map_classlib_core_op(’abs_i’, $TYPE_MATH, ’abs’,

[$RT_INT], $RT_INT);

Most, however, are mapped to a a call on the Ops class in the
NQP runtime, often passing the current ThreadContext object:

QAST::OperationsJAST.map_classlib_core_op(’create’, $TYPE_OPS, ’create’,

[$RT_OBJ], $RT_OBJ, :tc);

The runtime support library

Many of the nqp::ops, the JVM implementation of 6model, and
various other support code lives in the src/vm/jvm/runtime/
directory in NQP. It is built into the nqp-runtime.jar library.

If you modify this code, you typically need only re-build the JAR to
see the effects, rather than re-building all of NQP. Copy it to its

install location, and it can be updated for Rakudo too.

Rakudo also has a (much smaller) runtime support library, which is
built to rakudo-runtime.jar.

In summary. . .

The JVM support consists of translating a QAST tree into JVM
bytecode, through an intermediate form known as JAST, and a
runtime support library.

Most effort goes into providing things that the JVM does not
provide natively, such as the continuation support needed by
gather/take, 6model, exception handlers that run on the stack top
before unwinding, and so forth.

From here, work is needed on optimization, better code generation,
and better use of invokedynamic.

The MoarVM backend

The MoarVM backend
A VM built just for NQP and Rakudo

MoarVM in a nutshell

Uses 6model as its native object system

Instruction set aligned with nqp::ops

Provides generational GC with two generations: a nursery
(handled by semi-space copying) and gen2 (sized pools, except for

large objects)

Includes Unicode database support, and working towards NFG
strings

Support for threads, use of lock-free data structures where
possible

MAST

MoarVM doesn’t have an assembly or intermediate language;
instead, MAST (the MoarVM Assembly Syntax Tree) is assembled

directly into bytecode.

MAST is lower level than QAST, and rather different to JAST
(due to the rather different design of the VMs and the fact that
MoarVM isn’t stack based). However, if you are familiar with
either (or both) of these, you’ll feel at home quite quickly with
MAST. After all, MAST and JAST were designed by the same

person, and said person also contributed to the QAST design. :-)

In fact, 5 MAST nodes share exactly the same name and role as
the equivalent QAST nodes.

MAST nodes: literals

Literal integers, floating point numbers, and strings are
unsurprising in their representation.

MAST::IVal.new(:value(42))

MAST::NVal.new(:value(1.2))

MAST::SVal.new(:value(’cwrw’))

However, while their QAST equivalents can appear essentially
anywhere, these MAST nodes can only be used as arguments to

instructions that expect literals (for example, const i64,
const n64, const s, argconst [ins], parameter names in the
named parameter binding instructions, etc.) Most instructions

instead expect the argument to be in a local.

MAST: frames

A lexical scope, and the smallest invokable unit, in MoarVM is a
frame. This is represented by a MAST::Frame node.

A frame has:

A (high level) name and a (low level) compilation unit unique
ID

A list of locals/registers (there’s no distinction, and the terms
are used interchangeably). These just have integer indexes,
not names.

A list of lexicals. These have names and types.

A reference to its static outer frame (used in lexical lookup)

A list of instructions

Typically, a QAST::Block maps to a MAST::Frame.

MAST nodes: locals

There is a MAST::Local to represent locals (storage slots available
as the frame executes):

MAST::Local.new(:index($!frame.add_local($type)))

In reality, it’s very rare to see this being directly constructed in the
QAST to MAST compiler. It’s all hidden behind some helpers:

fresh_o Make a new object local

fresh_i Make a new int64 local

fresh_n Make a new num64 local

fresh_s Make a new string local

After use, a local is typically released so it can be re-used
elsewhere in the frame.

MAST nodes: lexicals

MoarVM also natively supports lexical variables, which (unlike
locals) are visible from nested frames. Again, these nodes are
rarely generated directly in the QAST compiler, but by a helper

that resolves the lexical (calculating how many frames out to look
for it):

method resolve_lexical($name) {

my $block := self;

my $out := 0;

while $block {

if ($block.lexicals()){$name} -> $lex {

return MAST::Lexical.new(:index($lex.index),

:frames_out($out));

}

$out++;

$block := $block.outer;

}

nqp::die("Could not resolve lexical $name");

}

MAST nodes: ops

A MAST::Op node represents an operation from the MoarVM
instruction set. These are often created and pushed onto an

instruction list by the push op helper sub:

sub push_op(@dest, $op, *@args) {

nqp::push(@dest, MAST::Op.new(

:op($op),

|@args

));

}

The kinds of nodes expected as arguments varies with instruction.
For example, the push o instruction expects two MAST::Local

nodes:

push_op($arr.instructions, ’push_o’, $arr_reg, $item_reg);

MAST nodes: labels

A MAST::Label can be placed in an instruction list as the target
of a branch and used as an argument to certain MAST::Ops that

branch.

A label must be unique within a given MAST::Frame, which is why
you’ll often see code like:

my $if_id := $qastcomp.unique($op_name);

my $else_lbl := MAST::Label.new(:name($if_id ~ ’_else’));

my $end_lbl := MAST::Label.new(:name($if_id ~ ’_end’));

Here’s some examples of using the labels:

push_op(@ins, ’goto’, $end_lbl);

nqp::push(@ins, $else_lbl);

MAST nodes: calls

Making a call boils down to a number of steps: getting the
arguments to pass into an arguments buffer, setting the callsite

descriptor, indicating the result register, and making the call itself.

This is abstracted behind the MAST::Call node:

nqp::push(@ins, MAST::Call.new(

:target($callee.result_reg),

:flags(@arg_flags),

|@arg_regs,

:result($res_reg)

));

The flags indicate register type, as well as named and flattening
arguments.

MAST nodes: exception handlers

Exception handlers are used both for control flow (such as
next/redo/last in loops) or true exceptions (caught by CATCH

blocks in NQP/Perl 6). Both of these are set up with a
MAST::HandlerScope, which indicates the instructions covered by
the handler, what kind of exception it’s interested in and what to

do if the handler is triggered.

MAST::HandlerScope.new(

:instructions(@loop_il),

:category_mask($HandlerCategory::redo),

:action($HandlerAction::unwind_and_goto),

:goto($redo_lbl)

)

Here, the action is to simply unwind the call stack and go to the
specified label. By contrast, a CATCH block’s action is to run a

handler block on the stack top and unwind afterwards.

MAST nodes: compilation units

Finally, the top of a MAST assembly tree is always a
MAST::CompUnit. This has a list of frames (each one added with

the add frame method).

Certain frames can be called out as special:

deserialize frame holds code that drives deserialization,
and will always be run when the compilation unit is created or
loaded

load frame holds code that should run when the compilation
unit is loaded as a module

main frame holds code that should run when the compilation
unit is the initial entry point

It also keeps track of the HLL that produced the compilation unit
and the set of serialization contexts that it depends on.

The QAST to MAST translator

Spread over three files:

QASTOperationsMAST.nqp handles compilation of nqp::ops

QASTRegexCompilerMAST.nqp handles compilation of
QAST::Regex nodes

QASTCompilerMAST.nqp handles the rest

These reference:

The MAST nodes

Meta-data about all of the ops available and the kinds of
registers they work on

MAST::InstructionList

Once again, there is a data structure used to convey the result of
compiling a QAST node: MAST::InstructionList. It holds three

pieces of information:

A list of instructions ($il.instructions)

The register (local) holding the result ($il.result reg)

The kind of result register it is (‘$il.result kind)

There are constants for the four main kinds:

$MVM reg obj (6model object)

$MVM reg int64 (int)

$MVM reg num64 (num)

$MVM reg str (str, though it’s actually a 6model object too)

Register/local allocation

There is a per-block $*REGALLOC that keeps track of register use.
Despite the name, it’s not doing register allocation in the

traditional sense (such as by graph coloring). Rather, it keeps
track of available temporaries, enabling them to be re-used.

Obtaining a new register to work with is typically done as:

my $callee_reg := $*REGALLOC.fresh_o(); # also _i, _n, _s

It can then be released when it’s no longer needed:

$*REGALLOC.release_register($callee_reg, $MVM_reg_obj);

nqp::op mapping

Many nqp::ops have similar or identical names in the MoarVM
instruction set. The operand type data is also readily available, so

does not need to be specified in the mappings:

QAST::MASTOperations.add_core_moarop_mapping(’atpos’, ’atpos_o’);

QAST::MASTOperations.add_core_moarop_mapping(’atpos_i’, ’atpos_i’);

Some instructions in MoarVM are void, but are allowed in an
r-value context as nqp::ops. Therefore, we pick one of the input

operands as the result, if one is needed.

QAST::MASTOperations.add_core_moarop_mapping(’bindpos’, ’bindpos_o’, 2);

QAST::MASTOperations.add_core_moarop_mapping(’bindpos_i’, ’bindpos_i’, 2);

Inside MoarVM

The top-level src directory doesn’t contain much directly; the
code is categorized into sub-directories:

6model contains 6model, implementations of the REPRs,
serialization. . .

core is the heart of the VM, containing the interpreter,
argument handling, bytecode decoding, thread handling,
invocation, exceptions. . .

gc is where memory allocation and garbage collection lives

io contains IO-related functionality, typically delegating the
real work to libuv

mast contains the MAST to bytecode compiler

math contains the libtommath binding for big integer support

platform is where platform-specific code goes (a different
platforms do things differently)

strings contains string operations, encoding/decoding of
ASCII, UTF-8, etc.

In summary. . .

MoarVM uses 6model as its object model and has an instruction
set that is well aligned with the nqp::op set. As a result, the
mapping from QAST down to it is comparatively straightforward.

It will also be the first place that we support NFG strings, and
should also get good Perl 5 interop.

Future developments will include 6model-aware JIT compilation,
which should give a notable performance boost.

The Road Ahead

The Road Ahead
This isn’t the end??!!!

This isn’t all. . .

We’ve covered a lot of ground in these two days.

Naturally, there are things that have been put aside. We haven’t
looked at every line of code of every file!

And, of course, we didn’t cover the things not invented yet because
we didn’t implement the bits of the Perl 6 spec that need them.

However, we have covered all of the key parts that make up
NQP and Rakudo. With careful reading of code and a little
digging, it should be possible to work out what most of NQP and
Rakudo do, and where most things are found.

The toolchain will evolve

The NQP toolchain has evolved in response to understanding
Perl 6’s needs. As we continue to learn, this knowledge will be

crunched into the tools.

In the past, there have been some fairly dramatic overhauls. These
are very likely over, though there are surely more lessons that can

be turned into better abstractions and APIs.

For example, the concurrency/parallelism work is currently done in
terms of classes from the Java Class Library directly. However, in
time, the key abstractions may well be captured into nqp:: ops

and so forth.

Remember. . .

Compilers aren’t magical. They’re just software.

Perl 6 is a large language, and implementing it is non-trivial.
However, NQP and Rakudo have made a reasonable job of trying
to manage the complexity by breaking the problem into
decoupled pieces.

In fact, that’s the only thing that keeps it manageable at all. Keep
this in mind as you hack. Good architecture takes discipline.
The first solution you think of will rarely be the best one. Things
that feel wrong, usually are.

Take pride in solving implementation problems elegantly, ask
questions, treat no code as sacred, and be sure to -Ofun.

Thank you!

Thanks for atttending the course!

Any final questions?

By the way, at Edument AB we’ve also built and deliver courses
on. . .

Perl 5

Git

Software architecture and Domain Driven Design

JavaScript and other web technologies

C# and .Net

Test Driven Development

For more, see http://edument.se/courses/.

