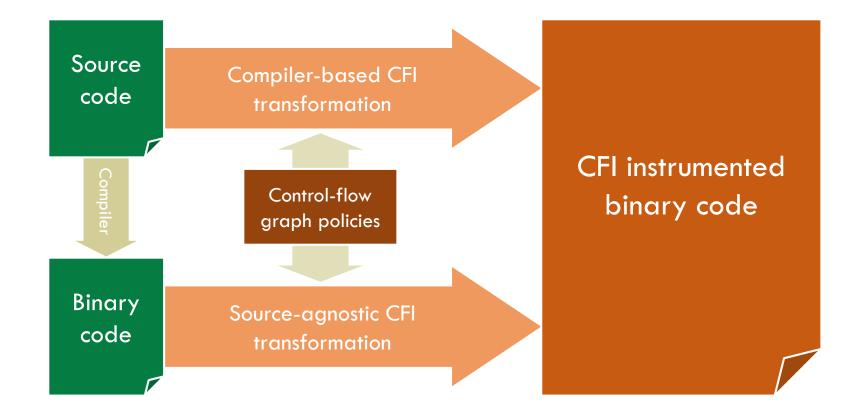
CONFIRM: EVALUATING COMPATIBILITY AND RELEVANCE OF CONTROL-FLOW INTEGRITY PROTECTIONS FOR MODERN SOFTWARE

XIAOYANG XU, MASOUD GHAFFARINIA, WENHAO WANG, AND KEVIN W. HAMLEN THE UNIVERSITY OF TEXAS AT DALLAS

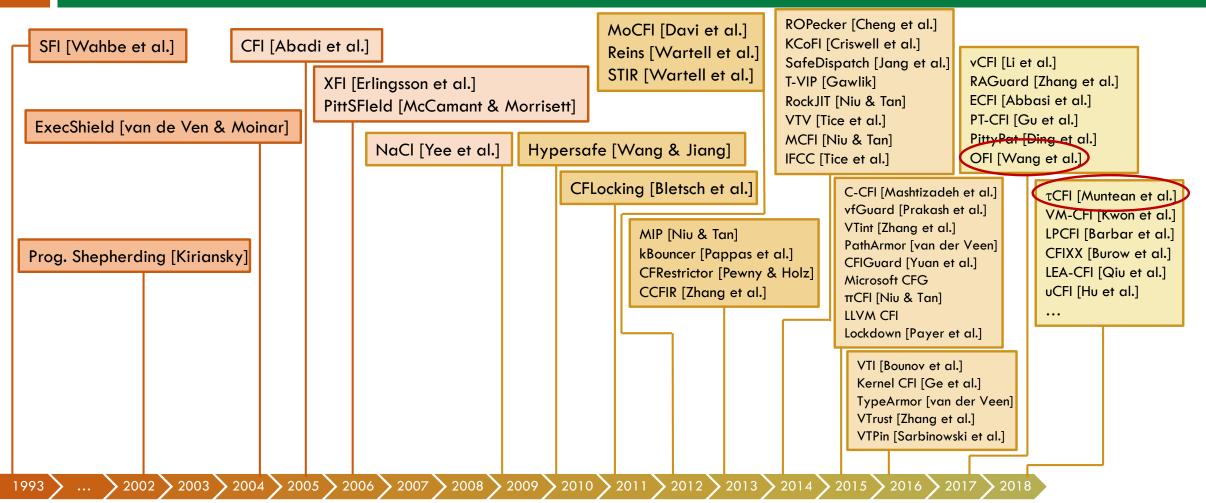
ZHIQIANG LIN

THE OHIO STATE UNIVERSITY


Supported in part by: ONR award N00014-17-2995, DARPA award FA8750-19- C-0006, NSF awards #1513704 and #1834215, and an NSF I/UCRC Award from Lockheed Martin

Any opinions, findings, conclusions, or recommendations expressed in this presentation are those of the author(s) and do not necessarily reflect the views of the ONR, DARPA, NSF, or Lockheed Martin.

Control-Flow Integrity


[M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti; CCS'05.]

2

CFI Research Timeline

3

CFI: Precision, Security, and Performance [Burow et al., CSUR'17]

Scalability Gap

CFI Research Papers (2005 - 2018)Windows Linux Other 2% *Papers containing at least one experiment where at least one COMPLETE

*Papers containing at least one experiment where at least <u>one</u> **COMPLETE** <u>non-benchmark application</u> for the indicated OS was rewritten & secured

nission-critical Windows) environments Hackers MacOS Linux "Åbout 75% of control systems are on Windows XP or other nonsupported OSes." -Daryl Haegley, Office of Assistant Secretary of Defense for Energy, Installations and Environment More than 25% of all government computers currently run an outdated Windows or MacOS operating system. [BitSight, 6/1/17] DHS, Coast Guard, and Secret Service currently store top secret information on outdated Windows 2003 servers. [OIG-18-56, 3/1/08 Hundreds of satellites run Windows 95 and or are controlled by Windows Mobile devices.

CONFIRM (CONtrol-Flow Integrity Relevance Metrics)

Problems

Our solution: CONFIRM

Compatibility of CFI solutions are under-studied

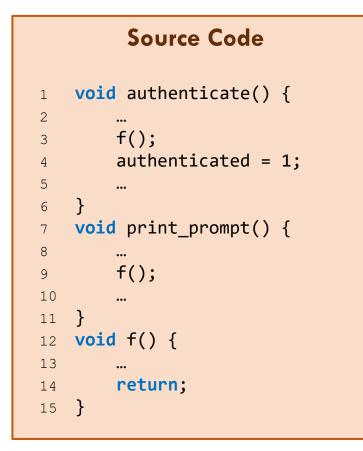
security

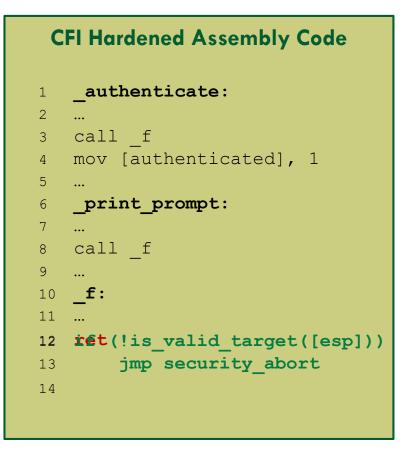
- under-studied compati**bility optibility problem** CFI implementations are commonly The firstAtense in gesuinegoles in terms of performance and for CFI spletioic celly alfort ion
 - Reevaluation of 12 CFI implementations
- CPU benchmarks are widely adopted These CFI implementations pass 53% of for CFI evaluation
 CONFIRM's compatibility and security tests
 - Correlation with CPU benchmarks

A set of A2 by streams picestuckly dosred Fdf

https://github.com/SoftwareLanguagesSecurityLab/Confirm

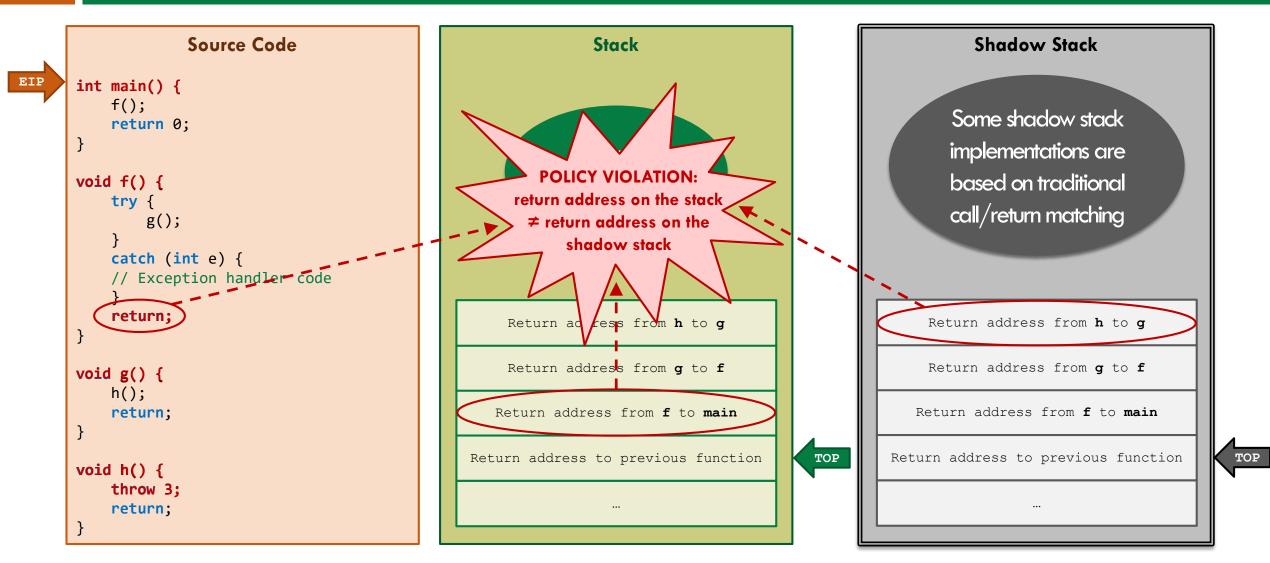
20 Widespread Classes of CFI Compatibility Problems


Compatibility Problem	Real-world Software Examples
Function Pointers	7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM,
Callbacks	7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM,
Dynamic Linking	7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM,
Delay-Loading	Adobe Reader, Calculator, Chrome, Firefox, JVM, MS Paint, MS Powerpoint,
Exporting/Importing Data Symbols	7-Zip, Apache, Calculator, Chrome, Dropbox, Firefox, MS Paint, MS Powerpoint,
Virtual Functions	7-Zip, Adobe Reader, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad,
Writable Vtables	programs with UI's based on GTK+ (Linux) or COM (Windows)
Tail Calls	programs compiled with tail-call optimization (e.g., -O2 or $/ ext{O2}$)
Switch-Case Statements	7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM,
Returns	almost every benign program
Unmatched Call/Return Pairs	Adobe Reader, Apache, Chrome, Firefox, JVM, MS PowerPoint, Visual Studio,
Exceptions	7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM,
Calling Conventions	almost every program has functions
Multithreading	7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM,
TLS Callbacks	Adobe Reader, Chrome, Firefox, MS Paint, TeXstudio, UPX
Position-Independent Code	7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM,
Memory Management	7-Zip, Adobe Reader, Apache, Chrome, Dropbox, Firefox, MS PowerPoint,
JIT Code	Adobe Flash, Chrome, Dropbox, Firefox, JVM, MS PowerPoint, PotPlayer,
Self-Unpacking	programs decompressed by self-extractors (e.g., UPX, NSIS)
Runtime API Hooking	Microsoft Office, including MS Excel, MS PowerPoint, etc.

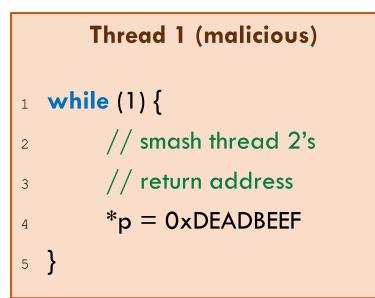

ConFIRM: <u>Control-Flow Integrity Relevance Metrics</u>

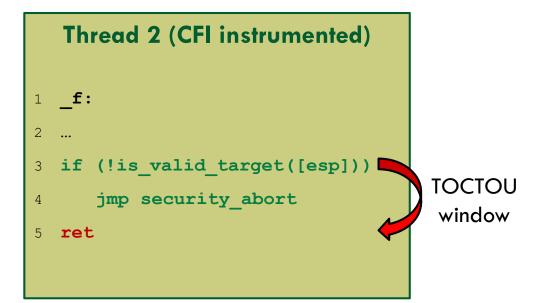
7

		A (Windows)					LLVM (Linux)						
Test	CFI	ShadowStack	MCFG	OFI	Reins	GCC-VTV	CFI	ShadowStack	MCFI	πCFI	πCFI (nto)	PathArmor	Lockdown
fptr	6.35%	\wedge	20.13%	4.35%	4.08%		6.97%	\wedge	X	-14.00%	-13.79%	\wedge	174.92%
callback	\wedge	\wedge	\wedge	128.39%	114.84%		\wedge	\wedge	X	X	×	\wedge	X
load_time_dynlnk	2.74%	\wedge	8.83%	3.36%	2.66%		1.33%	\wedge	30.83%	31.52%	34.05%	74.54%	1.45%
run_time_dynlnk	\wedge	\wedge	17.63%	12.57%	11.48%		4.44%	\wedge	X	X	X	1,221.48%	X
delay_load	N/A	N/A	8.16%	3.61%	X	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
data_symbl	1	\wedge	1	✓	X	 ✓ 	1	\triangle	1	✓	1	\checkmark	✓
vtbl_call	5.62%	\triangle	27.71%	35.94%	31.17%	33.56%	5.94%	\wedge	X	-8.19%	-9.31%	\triangle	227.82%
code_coop	\wedge	\wedge	\wedge	✓	X		\wedge	\wedge	\wedge	\wedge	\triangle	\triangle	\wedge
tail_call	6.17%	\triangle	9.51%	0.05%	0.05%		6.82%	\wedge	X	-17.69%	-17.37%	\triangle	178.06%
switch	-5.80%	\wedge	3.51%	22.82%	17.69%		-6.93%	\triangle	-29.01%	-27.19%	-28.46%	\triangle	85.85%
ret	\wedge	18.04%	\wedge	49.34%	48.49%		\wedge	20.88%	70.72%	72.40%	71.52%	\triangle	106.71%
unmatched_pair	\land	\wedge	\wedge	1	✓	\land	\wedge	\wedge	\checkmark	\checkmark	1	\triangle	\wedge
signal	1	\wedge	1	×	X	1	1	\wedge	1	\checkmark	1	X	1
cppeh	1	\wedge	1	✓	X	1	1	\wedge	\checkmark	\checkmark	1	X	✓
seh	1	\triangle	1	1	X	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
veh	\land	\wedge	\wedge	1	X	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
convention	1	\checkmark	1	1	X	1	1	1	\checkmark	\checkmark	1	\checkmark	1
multithreading	\land	\wedge	\wedge	\wedge	\wedge		\wedge	\wedge	\wedge	\wedge	\triangle	\triangle	\wedge
tls_callback	N/A	N/A	N/A	1	X	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
pic	1	\checkmark	1	\wedge	\wedge	1	1	\checkmark	\checkmark	\checkmark	1	\checkmark	\checkmark
mem	\wedge	\wedge	\wedge	\wedge	\wedge	\land	\wedge	\wedge	×	×	×	\checkmark	×
jit		\wedge	\wedge	X	X		\wedge	\wedge	×	×	X	\wedge	×
unpacking	N/A	N/A	N/A	X	X	N/A	N/A	N/A	N/A	N/A	N/A	X	X
api_hook	\wedge	\wedge	\wedge	X	X	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A


A Compatibility Problem Example — Returns

Another Compatibility Problem Example — Unmatched Call/Return Pairs





20 Widespread Classes of CFI Compatibility Problems

Compatibility Metric	Real-world Software Examples
Function Pointers	7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM,
Callbacks	7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM,
Dynamic Linking	7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM,
Delay-Loading	Adobe Reader, Calculator, Chrome, Firefox, JVM, MS Paint, MS Powerpoint,
Exporting/Importing Data Symbols	7-Zip, Apache, Calculator, Chrome, Dropbox, Firefox, MS Paint, MS Powerpoint,
Virtual Functions	7-Zip, Adobe Reader, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad,
Writable Vtables	programs with UI's based on GTK+ (Linux) or COM (Windows)
Tail Calls	programs compiled with tail-call optimization (e.g., -O2 or $/O2$)
Switch-Case Statements	7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM,
Returns	almost every benign program
Unmatched Call/Return Pairs	Adobe Reader, Apache, Chrome, Firefox, JVM, MS PowerPoint, Visual Studio,
Exceptions	7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM,
Calling Conventions	almost every program has functions
Multithreading	7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM,
TLS Callbacks	Adobe Reader, Chrome, Firefox, MS Paint, TeXstudio, UPX
Position-Independent Code	7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM,
Memory Management	7-Zip, Adobe Reader, Apache, Chrome, Dropbox, Firefox, MS PowerPoint,
JIT Code	Adobe Flash, Chrome, Dropbox, Firefox, JVM, MS PowerPoint, PotPlayer,
Self-Unpacking	programs decompressed by self-extractors (e.g., UPX, NSIS)
Runtime API Hooking	Microsoft Office, including MS Excel, MS PowerPoint, etc.

Cross-Thread Stack-Smashing Attack

ConFIRM: <u>Control-Flow Integrity Relevance Metrics</u>

12

	LLVN	A (Windows)					LLV	LLVM (Linux)					
Test	CFI	ShadowStack	MCFG	OFI	Reins	GCC-VTV	CFI	ShadowStack	MCFI	πCFI	πCFI (nto)	PathArmor	Lockdown
fptr	6.35%	\wedge	20.13%	4.35%	4.08%	\land	6.97%	\wedge	X	-14.00%	-13.79%	\wedge	174.92%
callback	\wedge	\wedge	\wedge	128.39%	114.84%	\land	\wedge	\wedge	X	X	×	\wedge	X
load_time_dynlnk	2.74%	\triangle	8.83%	3.36%	2.66%		1.33%	\triangle	30.83%	31.52%	34.05%	74.54%	1.45%
run_time_dynlnk	\wedge	\triangle	17.63%	12.57%	11.48%		4.44%	\wedge	X	X	X	1,221.48%	X
delay_load	N/A	N/A	8.16%	3.61%	X	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
data_symbl	1	\wedge	1	✓	X	1	1	\wedge	\checkmark	\checkmark	1	\checkmark	\checkmark
vtbl_call	5.62%	\wedge	27.71%	35.94%	31.17%	33.56%	5.94%	\wedge	X	-8.19%	-9.31%	\wedge	227.82%
code_coop	\wedge	\triangle	\wedge	1	X		\wedge	\wedge	\wedge	\wedge	\triangle	\wedge	\wedge
tail_call	6.17%	\wedge	9.51%	0.05%	0.05%		6.82%	\wedge	X	-17.69%	-17.37%	\wedge	178.06%
switch	-5.80%	\wedge	3.51%	22.82%	17.69%	\land	-6.93%	\wedge	-29.01%	-27.19%	-28.46%	\wedge	85.85%
ret	\wedge	18.04%	\wedge	49.34%	48.49%		\wedge	20.88%	70.72%	72.40%	71.52%	\wedge	106.71%
unmatched_pair	\land	\wedge	\wedge	✓	✓	\land	\wedge	\wedge	\checkmark	\checkmark	1	\wedge	\wedge
signal	1	\wedge	1	X	X		1	\wedge	\checkmark	\checkmark	1	X	1
cppeh	 ✓ 	\wedge	\checkmark	✓	X	1	✓	\wedge	\checkmark	\checkmark	1	X	1
seh	✓	\wedge	\checkmark	\checkmark	X	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
veh		\wedge	\wedge	\checkmark	×	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
convention	1	/	1	1	X	1	1	1	1	1	1	<u> </u>	1
multithreading	\land	Â	\wedge	\triangle	\triangle	\land	\wedge	\triangle	\wedge	\wedge	\wedge	\wedge	\wedge
tls_callback	N/A	N/A	N/A	<i>✓</i>	X	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
pic		1	~	\triangle	\wedge		~	✓	1	1	1		1
mem	\land	\triangle	\wedge	\wedge	\wedge	\land	\wedge	\triangle	X	X	×	<u> </u>	X
jit		\wedge	\wedge	X	X		\wedge	\wedge	X	X	×	\wedge	×
unpacking	N/A	N/A	N/A	X	X	N/A	N/A	N/A	N/A	N/A	N/A	X	×
api_hook		\wedge	\wedge	X	X	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

CFI Performance Measurement Problems

	CFI Solution									
SPEC CPU Benchmark	MCFG	Reins	GCC-VTV	LLVM-CFI	MCFI	πCFI	πCFI (nto)	PathArmor	Lockdown	Benchmark Correlation
perlbench				2.4	5.0	5.0	5.3	15.0	150.0	0.09
bzip2	-0.3	9.2		-0.7	1.0	1.0	0.8	0.0	8.0	-0.12
gcc					4.5	4.5	10.5	9.0	50.0	0.02
mcf	0.5	9.1		3.6	4.5	4.5	1.8	1.0	2.0	-0.39
gobmk	-0.2			0.2	7.0	7.5	11.8	0.0	43.0	-0.09
hmmer	0.7			0.1	0.0	0.0	-0.1	1.0	3.0	0.33
sjeng	3.4			1.6	5.0	5.0	11.9	0.0	80.0	-0.03
h264ref	5.4			5.3	6.0	6.0	8.3	1.0	43.0	-0.09
libquantum				-6.9	0.0	-0.3	-1.0	3.0	5.0	0.51
omnetpp	3.8		5.8		5.0	5.0	18.8			-0.52
astar	0.1		3.6	0.9	3.5	4.0	2.9		17.0	0.92
xalancbmk	5.5		24.0	7.2	7.0	7.0	17.6		118.0	0.94
milc	2.0			0.2	2.0	2.0	1.4	4.0	8.0	0.40
namd	0.1		-0.1	0.1	-0.5	-0.5	-0.5	3.0		0.98
dealII	-0.1		0.7	7.9	4.5	4.5	4.4			-0.36
soplex	2.3		0.5	-0.3	-4.0	-4.0	0.9	12.0		0.89
povray	10.8		-0.6	8.9	10.0	10.5	17.4		90.0	0.88
lbm	4.2			-0.2	1.0	1.0	-0.5	0.0	2.0	-0.22
sphinx3	-0.1			-0.8	1.5	1.5	2.4	3.0	8.0	0.31
CONFIRM median	9.51	4.59	33.56	5.19	30.83	-11.10	-11.60	648.01	140.82	0.36

Conclusions

Compatibility of CFI solutions are under-studied

- Complicated compatibility problems lurking in large COTS software products
- CFI implementations are commonly evaluated in terms of performance and security using CPU benchmarks.
- Proposed solution: CONFIRM
 - A set of 20 CFI-relevant compatibility problems
 - The first testing suite designed specifically for CFI solution evaluation
 - Reevaluation of 12 CFI implementations
 - Correlation with SPEC CPU benchmarks

https://github.com/SoftwareLanguagesSecurityLab/Confirm

THANK YOU

https://github.com/SoftwareLanguagesSecurityLab/Confirm

Supported in part by: ONR award N00014-17-2995, DARPA award FA8750-19- C-0006, NSF awards #1513704 and #1834215, and an NSF I/UCRC Award from Lockheed Martin

Any opinions, findings, conclusions, or recommendations expressed in this presentation are those of the author(s) and do not necessarily reflect the views of the ONR, DARPA, NSF, or Lockheed Martin.