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CFI Research Timeline
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XFI [Erlingsson et al.]
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NaCl [Yee et al.] Hypersafe [Wang & Jiang]
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CCFIR [Zhang et al.]
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KCoFI [Criswell et al.]
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RockJIT [Niu & Tan]

VTV [Tice et al.]

MCFI [Niu & Tan]

IFCC [Tice et al.]

C-CFI [Mashtizadeh et al.]

vfGuard [Prakash et al.]

VTint [Zhang et al.]

PathArmor [van der Veen]

CFIGuard [Yuan et al.]

Microsoft CFG

πCFI [Niu & Tan]

LLVM CFI

Lockdown [Payer et al.]

VTI [Bounov et al.]

Kernel CFI [Ge et al.]

TypeArmor [van der Veen]

VTrust [Zhang et al.]

VTPin [Sarbinowski et al.]

vCFI [Li et al.]

RAGuard [Zhang et al.]

ECFI [Abbasi et al.]

PT-CFI [Gu et al.]

PittyPat [Ding et al.]

OFI [Wang et al.]

CFI [Muntean et al.]

VM-CFI [Kwon et al.]
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CFI: Precision, Security, and Performance [Burow et al., CSUR’17]



Scalability Gap
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Exploited by Hackers in 2018
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CFI Research Papers
(2005-2018 )
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*Papers containing at least one experiment where at least one COMPLETE
non-benchmark application for the indicated OS was rewritten & secured

 Windows/MacOS in mission-critical 
environments

 “About 75% of control systems are on 
Windows XP or other nonsupported OSes.” 
–Daryl Haegley, Office of Assistant Secretary of Defense for Energy, Installations and 
Environment

 More than 25% of all government computers 
currently run an outdated Windows or 
MacOS operating system. [BitSight, 6/1/17]

 DHS, Coast Guard, and Secret Service 
currently store top secret information on 
outdated Windows 2003 servers. [OIG-18-56, 

3/1/18]

 Hundreds of satellites run Windows 95
and/or are controlled by Windows Mobile
devices.



Why are the limitations?
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 Compatibility of CFI solutions are 

under-studied

 CFI implementations are commonly 

evaluated in terms of performance and 

security

 CPU benchmarks are widely adopted 

for CFI evaluation

 A systematic study for CFI 

compatibility problems 

 A new testing suite designed 

specifically for CFI evaluation

CONFIRM (CONtrol-Flow Integrity Relevance Metrics)

GoalsOur solution: CONFIRM

 A set of 20 widespread classes of 

compatibility problems identified

 The first testing suite designed specifically 

for CFI solution evaluation

 Reevaluation of 12 CFI implementations

◼ These CFI implementations pass 53% of 

CONFIRM’s compatibility and security tests

 Correlation with CPU benchmarks

Problems

https://github.com/SoftwareLanguagesSecurityLab/Confirm



20 Widespread Classes of CFI Compatibility Problems
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Compatibility Problem Real-world Software Examples

Function Pointers 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Callbacks 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Dynamic Linking 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Delay-Loading Adobe Reader, Calculator, Chrome, Firefox, JVM, MS Paint, MS Powerpoint, …

Exporting/Importing Data Symbols 7-Zip, Apache, Calculator, Chrome, Dropbox, Firefox, MS Paint, MS Powerpoint, …

Virtual Functions 7-Zip, Adobe Reader, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad, …

Writable Vtables programs with UI’s based on GTK+ (Linux) or COM (Windows)

Tail Calls programs compiled with tail-call optimization (e.g., -O2 or /O2)

Switch-Case Statements 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Returns almost every benign program

Unmatched Call/Return Pairs Adobe Reader, Apache, Chrome, Firefox, JVM, MS PowerPoint, Visual Studio, …

Exceptions 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Calling Conventions almost every program has functions

Multithreading 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

TLS Callbacks Adobe Reader, Chrome, Firefox, MS Paint, TeXstudio, UPX

Position-Independent Code 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Memory Management 7-Zip, Adobe Reader, Apache, Chrome, Dropbox, Firefox, MS PowerPoint, …

JIT Code Adobe Flash, Chrome, Dropbox, Firefox, JVM, MS PowerPoint, PotPlayer, …

Self-Unpacking programs decompressed by self-extractors (e.g., UPX, NSIS)

Runtime API Hooking Microsoft Office, including MS Excel, MS PowerPoint, etc.



ConFIRM: Control-Flow Integrity Relevance Metrics
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A Compatibility Problem Example — Returns
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Source Code

1   void authenticate() {
2   …
3   f(); 
4   authenticated = 1;
5   …
6   }
7   void print_prompt() {
8   …
9   f(); 
10  … 
11  }
12  void f() {
13  … 
14  return; 
15  }

Assembly Code

1   _authenticate:

2   …

3   call _f

4   mov [authenticated], 1

5   …

6   _print_prompt:

7   …

8   call _f

9   …

10  _f:

11  …

12 ret12 if (!is_valid_target([esp]))

13  jmp security_abort

CFI Hardened Assembly Code

14
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Source Code

int main() {
f();
return 0;

}

void f() {
try {

g();
}
catch (int e) {
// Exception handler code
}
return;

}

void g() {
h();
return;

}

void h() {
throw 3;
return;

}

Stack

…

EIP

Return address to previous function TOP

Return address from f to main

Return address from g to f

Return address from h to g

Stack 

unwinding

Shadow Stack

…

Return address to previous function TOP

Return address from f to main

Return address from g to f

Return address from h to g

Some shadow stack 

implementations are  

based on traditional 

call/return matching

POLICY VIOLATION:

return address on the stack 

≠ return address on the 

shadow stack

Another Compatibility Problem Example — Unmatched Call/Return Pairs

int main() {

void f() {

void g() {

void h() {
throw 3;

return;



20 Widespread Classes of CFI Compatibility Problems
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Compatibility Metric Real-world Software Examples

Function Pointers 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Callbacks 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Dynamic Linking 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Delay-Loading Adobe Reader, Calculator, Chrome, Firefox, JVM, MS Paint, MS Powerpoint, …

Exporting/Importing Data Symbols 7-Zip, Apache, Calculator, Chrome, Dropbox, Firefox, MS Paint, MS Powerpoint, …

Virtual Functions 7-Zip, Adobe Reader, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad, …

Writable Vtables programs with UI’s based on GTK+ (Linux) or COM (Windows)

Tail Calls programs compiled with tail-call optimization (e.g., -O2 or /O2)

Switch-Case Statements 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Returns almost every benign program

Unmatched Call/Return Pairs Adobe Reader, Apache, Chrome, Firefox, JVM, MS PowerPoint, Visual Studio, …

Exceptions 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Calling Conventions almost every program has functions

Multithreading 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

TLS Callbacks Adobe Reader, Chrome, Firefox, MS Paint, TeXstudio, UPX

Position-Independent Code 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Memory Management 7-Zip, Adobe Reader, Apache, Chrome, Dropbox, Firefox, MS PowerPoint, …

JIT Code Adobe Flash, Chrome, Dropbox, Firefox, JVM, MS PowerPoint, PotPlayer, …

Self-Unpacking programs decompressed by self-extractors (e.g., UPX, NSIS)

Runtime API Hooking Microsoft Office, including MS Excel, MS PowerPoint, etc.



Cross-Thread Stack-Smashing Attack
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Thread 1 (malicious)

1  while (1) {

2  // smash thread 2’s

3  // return address

4  *p = 0xDEADBEEF

5  }

Thread 2 (CFI instrumented)

1  _f:

2  …

3  if (!is_valid_target([esp]))

4      jmp security_abort

5  ret

TOCTOU

window



ConFIRM: Control-Flow Integrity Relevance Metrics
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CFI Performance Measurement Problems
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Conclusions
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 Compatibility of CFI solutions are under-studied

 Complicated compatibility problems lurking in large COTS software products

 CFI implementations are commonly evaluated in terms of performance and 
security using CPU benchmarks. 

 Proposed solution: CONFIRM

 A set of 20 CFI-relevant compatibility problems

 The first testing suite designed specifically for CFI solution evaluation

 Reevaluation of 12 CFI implementations

 Correlation with SPEC CPU benchmarks

 https://github.com/SoftwareLanguagesSecurityLab/Confirm
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