
CONFIRM: EVALUATING COMPATIBILITY AND RELEVANCE OF

CONTROL-FLOW INTEGRITY PROTECTIONS FOR MODERN SOFTWARE

Supported in part by:

ONR award N00014-17-2995,

DARPA award FA8750-19- C-0006,

NSF awards #1513704 and #1834215,

and an NSF I/UCRC Award from Lockheed Martin

Any opinions, findings, conclusions, or recommendations expressed in this presentation are those of the author(s) and do not

necessarily reflect the views of the ONR, DARPA, NSF, or Lockheed Martin.

XIAOYANG XU, MASOUD GHAFFARINIA,

WENHAO WANG, AND KEVIN W. HAMLEN

THE UNIVERSITY OF TEXAS AT DALLAS

ZHIQIANG LIN

THE OHIO STATE UNIVERSITY

Compiler-based CFI

transformation

C
o
m

p
ile

r

Source-agnostic CFI

transformation

Control-Flow Integrity
[M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti; CCS’05.]

2

Source

code

Binary

code

CFI instrumented

binary codeControl-flow

graph policies

CFI Research Timeline
3

1993 … 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

SFI [Wahbe et al.]

Prog. Shepherding [Kiriansky]

ExecShield [van de Ven & Moinar]

CFI [Abadi et al.]

XFI [Erlingsson et al.]

PittSFIeld [McCamant & Morrisett]

NaCl [Yee et al.] Hypersafe [Wang & Jiang]

CFLocking [Bletsch et al.]

MIP [Niu & Tan]

kBouncer [Pappas et al.]

CFRestrictor [Pewny & Holz]

CCFIR [Zhang et al.]

MoCFI [Davi et al.]

Reins [Wartell et al.]

STIR [Wartell et al.]

ROPecker [Cheng et al.]

KCoFI [Criswell et al.]

SafeDispatch [Jang et al.]

T-VIP [Gawlik]

RockJIT [Niu & Tan]

VTV [Tice et al.]

MCFI [Niu & Tan]

IFCC [Tice et al.]

C-CFI [Mashtizadeh et al.]

vfGuard [Prakash et al.]

VTint [Zhang et al.]

PathArmor [van der Veen]

CFIGuard [Yuan et al.]

Microsoft CFG

πCFI [Niu & Tan]

LLVM CFI

Lockdown [Payer et al.]

VTI [Bounov et al.]

Kernel CFI [Ge et al.]

TypeArmor [van der Veen]

VTrust [Zhang et al.]

VTPin [Sarbinowski et al.]

vCFI [Li et al.]

RAGuard [Zhang et al.]

ECFI [Abbasi et al.]

PT-CFI [Gu et al.]

PittyPat [Ding et al.]

OFI [Wang et al.]

CFI [Muntean et al.]

VM-CFI [Kwon et al.]

LPCFI [Barbar et al.]

CFIXX [Burow et al.]

LEA-CFI [Qiu et al.]

uCFI [Hu et al.]

…

CFI: Precision, Security, and Performance [Burow et al., CSUR’17]

Scalability Gap
4

88%

2% 9%

1%

Desktop OS Market Share
(2019-07)

Windows Linux MacOS Other

0

100

200

300

400

500

600

Top 10 Security Vulnerabilities
Exploited by Hackers in 2018

4%

94%

2%

CFI Research Papers
(2005-2018)

Windows Linux Other

*Papers containing at least one experiment where at least one COMPLETE
non-benchmark application for the indicated OS was rewritten & secured

 Windows/MacOS in mission-critical
environments

 “About 75% of control systems are on
Windows XP or other nonsupported OSes.”
–Daryl Haegley, Office of Assistant Secretary of Defense for Energy, Installations and
Environment

 More than 25% of all government computers
currently run an outdated Windows or
MacOS operating system. [BitSight, 6/1/17]

 DHS, Coast Guard, and Secret Service
currently store top secret information on
outdated Windows 2003 servers. [OIG-18-56,

3/1/18]

 Hundreds of satellites run Windows 95
and/or are controlled by Windows Mobile
devices.

Why are the limitations?
5

 Compatibility of CFI solutions are

under-studied

 CFI implementations are commonly

evaluated in terms of performance and

security

 CPU benchmarks are widely adopted

for CFI evaluation

 A systematic study for CFI

compatibility problems

 A new testing suite designed

specifically for CFI evaluation

CONFIRM (CONtrol-Flow Integrity Relevance Metrics)

GoalsOur solution: CONFIRM

 A set of 20 widespread classes of

compatibility problems identified

 The first testing suite designed specifically

for CFI solution evaluation

 Reevaluation of 12 CFI implementations

◼ These CFI implementations pass 53% of

CONFIRM’s compatibility and security tests

 Correlation with CPU benchmarks

Problems

https://github.com/SoftwareLanguagesSecurityLab/Confirm

20 Widespread Classes of CFI Compatibility Problems
6

Compatibility Problem Real-world Software Examples

Function Pointers 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Callbacks 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Dynamic Linking 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Delay-Loading Adobe Reader, Calculator, Chrome, Firefox, JVM, MS Paint, MS Powerpoint, …

Exporting/Importing Data Symbols 7-Zip, Apache, Calculator, Chrome, Dropbox, Firefox, MS Paint, MS Powerpoint, …

Virtual Functions 7-Zip, Adobe Reader, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad, …

Writable Vtables programs with UI’s based on GTK+ (Linux) or COM (Windows)

Tail Calls programs compiled with tail-call optimization (e.g., -O2 or /O2)

Switch-Case Statements 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Returns almost every benign program

Unmatched Call/Return Pairs Adobe Reader, Apache, Chrome, Firefox, JVM, MS PowerPoint, Visual Studio, …

Exceptions 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Calling Conventions almost every program has functions

Multithreading 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

TLS Callbacks Adobe Reader, Chrome, Firefox, MS Paint, TeXstudio, UPX

Position-Independent Code 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Memory Management 7-Zip, Adobe Reader, Apache, Chrome, Dropbox, Firefox, MS PowerPoint, …

JIT Code Adobe Flash, Chrome, Dropbox, Firefox, JVM, MS PowerPoint, PotPlayer, …

Self-Unpacking programs decompressed by self-extractors (e.g., UPX, NSIS)

Runtime API Hooking Microsoft Office, including MS Excel, MS PowerPoint, etc.

ConFIRM: Control-Flow Integrity Relevance Metrics
7

A Compatibility Problem Example — Returns
8

Source Code

1 void authenticate() {
2 …
3 f();
4 authenticated = 1;
5 …
6 }
7 void print_prompt() {
8 …
9 f();
10 …
11 }
12 void f() {
13 …
14 return;
15 }

Assembly Code

1 _authenticate:

2 …

3 call _f

4 mov [authenticated], 1

5 …

6 _print_prompt:

7 …

8 call _f

9 …

10 _f:

11 …

12 ret12 if (!is_valid_target([esp]))

13 jmp security_abort

CFI Hardened Assembly Code

14

9

Source Code

int main() {
f();
return 0;

}

void f() {
try {

g();
}
catch (int e) {
// Exception handler code
}
return;

}

void g() {
h();
return;

}

void h() {
throw 3;
return;

}

Stack

…

EIP

Return address to previous function TOP

Return address from f to main

Return address from g to f

Return address from h to g

Stack

unwinding

Shadow Stack

…

Return address to previous function TOP

Return address from f to main

Return address from g to f

Return address from h to g

Some shadow stack

implementations are

based on traditional

call/return matching

POLICY VIOLATION:

return address on the stack

≠ return address on the

shadow stack

Another Compatibility Problem Example — Unmatched Call/Return Pairs

int main() {

void f() {

void g() {

void h() {
throw 3;

return;

20 Widespread Classes of CFI Compatibility Problems
10

Compatibility Metric Real-world Software Examples

Function Pointers 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Callbacks 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Dynamic Linking 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Delay-Loading Adobe Reader, Calculator, Chrome, Firefox, JVM, MS Paint, MS Powerpoint, …

Exporting/Importing Data Symbols 7-Zip, Apache, Calculator, Chrome, Dropbox, Firefox, MS Paint, MS Powerpoint, …

Virtual Functions 7-Zip, Adobe Reader, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad, …

Writable Vtables programs with UI’s based on GTK+ (Linux) or COM (Windows)

Tail Calls programs compiled with tail-call optimization (e.g., -O2 or /O2)

Switch-Case Statements 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Returns almost every benign program

Unmatched Call/Return Pairs Adobe Reader, Apache, Chrome, Firefox, JVM, MS PowerPoint, Visual Studio, …

Exceptions 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Calling Conventions almost every program has functions

Multithreading 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

TLS Callbacks Adobe Reader, Chrome, Firefox, MS Paint, TeXstudio, UPX

Position-Independent Code 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …

Memory Management 7-Zip, Adobe Reader, Apache, Chrome, Dropbox, Firefox, MS PowerPoint, …

JIT Code Adobe Flash, Chrome, Dropbox, Firefox, JVM, MS PowerPoint, PotPlayer, …

Self-Unpacking programs decompressed by self-extractors (e.g., UPX, NSIS)

Runtime API Hooking Microsoft Office, including MS Excel, MS PowerPoint, etc.

Cross-Thread Stack-Smashing Attack
11

Thread 1 (malicious)

1 while (1) {

2 // smash thread 2’s

3 // return address

4 *p = 0xDEADBEEF

5 }

Thread 2 (CFI instrumented)

1 _f:

2 …

3 if (!is_valid_target([esp]))

4 jmp security_abort

5 ret

TOCTOU

window

ConFIRM: Control-Flow Integrity Relevance Metrics
12

CFI Performance Measurement Problems
13

Conclusions
14

 Compatibility of CFI solutions are under-studied

 Complicated compatibility problems lurking in large COTS software products

 CFI implementations are commonly evaluated in terms of performance and
security using CPU benchmarks.

 Proposed solution: CONFIRM

 A set of 20 CFI-relevant compatibility problems

 The first testing suite designed specifically for CFI solution evaluation

 Reevaluation of 12 CFI implementations

 Correlation with SPEC CPU benchmarks

 https://github.com/SoftwareLanguagesSecurityLab/Confirm

THANK YOU

Supported in part by:

ONR award N00014-17-2995,

DARPA award FA8750-19- C-0006,

NSF awards #1513704 and #1834215,

and an NSF I/UCRC Award from Lockheed Martin

Any opinions, findings, conclusions, or recommendations expressed in this presentation are those of the author(s) and do not

necessarily reflect the views of the ONR, DARPA, NSF, or Lockheed Martin.

https://github.com/SoftwareLanguagesSecurityLab/Confirm

