
C++ Programming Tutorial
Part II: Object-Oriented

Programming

C. David Sherrill

Georgia Institute of Technology

Chapter 9: Introduction to Objects
• Declaring and Defining a Class
• Data encapsulation; public and private class members; getter/setter

methods
• Pointers to classes
• Initializing data
• Constructors and default constuctors
• The “this” pointer
• Initialization lists
• Destructors
• Shallow and deep copies, copy constructors, and copy by assignment
• Intro to move constructors
• Classes that don’t allow copying, singleton classes
• Classes only creatable on the heap
• sizeof() a class
• Friend Functions and Friend Classes
• Const member functions

Introduction to Objects

An object is a user-defined datatype like an
integer or a string. Unlike those simple
datatypes, though, an object can have much
richer functionality. It typically collects some
data (“member data”) and some functionality
(“methods”). For example, we might create a
class to handle a matrix, or a tensor, or a
student’s record in a class, etc.

Declaring and Defining a Class

Before we can use variables of a given class, we first have
to specify the class. Analogous to functions, we can
declare the class by specifying any member data it
contains and providing a list of its available functions
(along with what arguments those functions take and
their return types). This is often done in a header file
(whose name is typically the name of the class, with a
“.h” suffix). We can then define the functions in the
class in another file if we like (often with the name of
the class with a “.cc” suffix). Alternatively, some or all
of the function definitions can also go in the header file
(often this is done for short functions or inline
functions).

Example: The Student Class

• Suppose we want to keep track of students
taking a course. Each student will have a
name, a midterm grade, a final grade, and a
course project grade. These grades will be
used to compute a final course grade.

//Listing of student1.cc:
#include <iostream>
#include <string>
using namespace std;

class Student
{

private:
string Name;
double MidtermGrade;
double FinalGrade;
double ProjectGrade;

public:
void SetName(string theName)
{

Name = theName;
}
void SetMidtermGrade(double grade)
{

MidtermGrade = grade;
}
void SetFinalGrade(double grade)
{

FinalGrade = grade;
}
void SetProjectGrade(double grade)
{

ProjectGrade = grade;
}
double ComputeCourseGrade(void)
{

double courseGrade = (MidtermGrade + FinalGrade + ProjectGrade) / 3.0;
return(courseGrade);

}
string GetName(void)
{

return(Name);
}

}; // done defining and declaring Student class

Dissecting the Class

• Because this is a simple class, we forgo writing a
declaration in a header file, and we just declare and define
the class all at once in a .cc source file (here, student1.cc).

• The class is declared using the syntax “class classname { …
};” Inside the declaration, we place member data and
function declarations

• For this example, the member data for this class is found
within the “private” section, and the function declarations
are found within the “public” section. However, member
data and functions can generally be either public or private,
as desired. See below for what these keywords mean.

Public and Private

• Member data and/or functions declared
“public” are accessible by code that resides
outside the class (e.g., in main())

• Member data and/or functions declared
“private” may only be used by code contained
within the class (e.g., class member functions)

• If “private” stops you from accessing
data/functions outside the class, why would
you ever want to use it?

Data Encapsulation

One of the key tenents of object-oriented
programming is that of “data encapsulation.”
This means that (at least some) member data is
hidden within a class and is not accessible from
outside that class (at least not directly accessible).
This is considered a good thing because in a large
program, another programmer coming in and
directly manipulating data in your class might
have unexpected side-effects. By requiring other
programmers to go through an interface you (the
class programmer) provide, you lessen the
chance of such side-effects.

Getter/Setter Methods

• Of course, programmers who use your class will want
to be able to interact with it and get or set data within
it. Hence, the class programmer provides “getter” and
“setter” methods for data that a user of the class might
need to interact with.

• In our example, we provide a setter method for every
piece of member data (conveniently, all the setter
functions begin with “Set” so it’s clear what they do).
However, in this case we only provide getter functions
for the student’s name [GetName()] and the overall
course grade [ComputeCourseGrade()]. We could
certainly provide getter functions for the other data,
too, if we wanted.

Using the Class

• Ok, here’s some code in main() that allows us
to use the class

int main()
{

// Construct a student object and set some properties
Student Student1;
Student1.SetName("John Smith");
Student1.SetMidtermGrade(80.0);
cout << "Student " << Student1.GetName() << " has course grade ";
cout << Student1.ComputeCourseGrade() << "\n";

}

Program output:
Student John Smith has course grade 26.6667

Accessing Member Data and Functions

• Notice that once we create a new object of type Student
using the syntax “Student student1”, we can access its
associated functions (methods) using syntax like
“student1.SetName(“John Smith”);” The dot operator
comes between the name of the object and the name of
the data/method we want to access.

• We could try setting the name directly using something like
“student1.Name = “John Smith”;” That would normally
work, but not in this case because we declared Name to be
Private, meaning that direct access without going through
Public functions is impossible. See the next page for a
modified version of the program that would allow direct
access to the Name variable in the class.

Direct Access to Public Member Data
• Here is a list of modifications to our program that would allow direct

accessing of the Name field (see listing student1a.cc). However, keep in
mind this kind of direct access is discouraged because it breaks data
encapsulation!

class Student
{
private:
double MidtermGrade;
double FinalGrade;
double ProjectGrade;

public:
string Name;
…

}; // done defining and declaring Student class

int main()
{
Student Student1;
Student1.Name = "John Smith"; // direct access now
Student1.SetMidtermGrade(80.0);
cout << "Student " << Student1.Name << " has course grade "; // direct now
cout << Student1.ComputeCourseGrade() << "\n";

}

Access to Classes Using Pointers
• Of course, sometimes we might want to create our

new object dynamically using the “new” operator
(perhaps we want an array of type Student, for
example)

• When we have a pointer to a class, we access data
and/or methods using the “->” operator instead of the
“.” operator. For example (see listing student1b.cc):

int main()
{

// Construct a student object and set some properties
Student* Student1 = new Student(); // note parentheses
Student1->SetName("John Smith");
Student1->SetMidtermGrade(80.0);
cout << "Student " << Student1->GetName() << " has course grade ";
cout << Student1->ComputeCourseGrade() << "\n";

}

Uninitialized Data

• Note that we only bothered to set the Midterm exam
grade. Perhaps it’s early in the semester, or perhaps
the student never completed the other two
assignments. The overall course grade reflects zeroes
for these two assignments and thus yields a overall
course grade of 26.6 … unless it doesn’t!

• Note that we never initialized the grades for the other
assignments to zero. So, on some machines these
other grades might have random, nonzero values,
leading to trouble computing grades unless all of the
grades are set using the setter methods!

Initializing Data

• You might think this would be easy to fix… we
could just go into the “private” section
defining the member data and change it like
so:

• Unfortunately this won’t work! We get a
warning or error like this:

private:
string Name;
double MidtermGrade = 0.0;
double FinalGrade = 0.0;
double ProjectGrade = 0.0;

student1.cc:9: error: ISO C++ forbids initialization of member MidtermGrade
student1.cc:9: error: making MidtermGrade static

Static member data

When we provide an initialization value, the
compiler thinks we want to make this piece of
data “static”. For a class, static data is data
that is the same for all objects created from
the same class (all “instantiations” of the
class). That‘s not at all what we want here.
There must find another way to initialize the
member data when a new instantiation of a
class is created. We do this using a
“constructor”.

Constructors
• To ensure the member data of a new instantiation of a class

object is set properly, we can call a “constructor”. This is a
function that’s called automatically every time a new object
is made from the class, and it has the same name as the
class itself. It does not have a return type. If, as we have
been doing so far, we put the definition and declaration in
the same place, use this syntax:

class Student
{

public:
Student()
{

// code can go here
}

Constructors
• To separate the definition from the declaration,

use this syntax:
class Student
{

public:
Student(); // constructor declaration

};

// constructor definition
Student::Student()
{

// constructor code goes here
}

• The scope resolution operator (::) in the definition shows that the
function Student() [constructors are functions with the same name
as their class] belongs to class Student. In fact we could use this
syntax for any of the other methods of class Student to define them
separately from their declaration, e.g., Student::SetName().

Next Iteration of the Student Class

On the following page is our next version of the
student class (student2.cc) that uses a
constructor to zero out the grades when a
new Student object is constructed. We’ve also
decided that the calling program probably
only needs to print out the grades, so we’ve
moved the course grade computation and the
printing together into a new function,
PrintCourseGrade()

class Student
{
private:
string Name;
double MidtermGrade;
double FinalGrade;
double ProjectGrade;

public:
Student()
{

MidtermGrade = FinalGrade = ProjectGrade = 0.0; // initialize vars to 0
}

// setter functions same as before
…

void PrintCourseGrade(void)
{

cout << "Student " << Name << " has course grade ";
cout << (MidtermGrade + FinalGrade + ProjectGrade) / 3.0 << "\n";

}
}; // done defining and declaring Student class

int main()
{
Student Student1;
Student1.SetName("John Smith");
Student1.SetMidtermGrade(80.0);
Student1.PrintCourseGrade();

}

More Elaborate Constructors

Our constructor is pretty basic: it just sets the
grades to zero when the object is created. But
the constructor function, like other functions, can
be overloaded. This gives us the option to create
an object with certain information specified at
the time of creation. For example, we could
make a constructor that takes a string argument
to automatically set the student’s name, like this:

Student student1(“John Smith”);
The next page shows how we could implement
this.

Constructor with Arguments Example
// student3.cc
class Student
{

// private data as before
…

public:
Student() // default constructor
{

MidtermGrade = FinalGrade = ProjectGrade = 0.0;
}
Student(string theName) // constructor to set Name
{

MidtermGrade = FinalGrade = ProjectGrade = 0.0;
Name = theName;

}
…

}; // done defining and declaring Student class

int main()
{

Student Student1("John Smith");
Student1.SetMidtermGrade(80.0);
Student1.PrintCourseGrade();

}

Classes Without a Default Constructor
• In our original listing (student1.cc), we didn’t have a

constructor. That’s fine, if we have absolutely no
constructors in our code, the compiler will make a basic
default constructor one for us (although it doesn’t initialize
variables, so it’s pretty useless in that regard).

• However, if we do specify any constructors, then the
compiler will not make a default constructor. That means
that if we make a constructor that takes arguments, and we
don’t make a default constructor, then objects can only be
created with the constructor that takes arguments. Syntax
like this won’t work:

Student Student1;
Indeed, in our example, it does no good to track students
who don’t at least have a name associated with their
record; we’ll eliminate our default constructor in our next
version of the Student class.

Variable Names in Setter Methods
• We haven’t mentioned it until now, but notice that the

arguments to all our setter methods have different
names than the class member data we’re trying to set.
Why bother to make the variable names different?
After all, normally we can name function arguments
anything we want! But using a different name is
important…otherwise, we would get nonsense-looking
code like this:

void SetName(string Name)
{

Name = Name;
}

• And indeed, this doesn’t work because it’s ambiguous.
Which “Name” do we mean?

The “this” pointer
• As seen on the last page, we can run into trouble if we

use member data variable names for other uses in a
class, e.g., as the names of arguments to a setter
function. The simplest way to avoid this problem is to
use different names for the parameters.

• Another way to avoid this problem is to use the “this”
pointer to distinguish between a local variable name
(like a function parameter) and a member data variable
name. For example, we could write SetName() like
this:

void SetName(string Name)
{

this->Name = Name;
}

• Yet another way to avoid problems with using the same
name for parameters and member data is via initialization
lists (see below)

Constructors with Default Values

• Just like regular C++ functions can have default values, so
can constructors. Let’s now suppose we want to keep track
of whether a student in the class is a regular student or an
auditor, and we require this information as well as their
name when we create a new Student object. However, the
majority of the students will not be auditors, so we’ll make
the default value for the auditor argument to be false. The
relevant code is on the next page.

• Note: if the class provides a constructor in which all the
arguments have default values, then this counts as a
default constructor and it would again allow construction of
objects without specification of arguments, like Student
student1;

// student4.cc
class Student
{
private:
string Name;
bool Auditor;
…

public:
Student(string theName, bool isAuditor = false)
{

MidtermGrade = FinalGrade = ProjectGrade = 0.0;
Name = theName;
Auditor = isAuditor;

}
…
void PrintCourseGrade(void)
{

if (Auditor) cout << "Auditor ";
else cout << "Student ";
cout << Name << " has course grade ";
cout << (MidtermGrade + FinalGrade + ProjectGrade) / 3.0 << "\n";

}
}; // done defining and declaring Student class

int main()
{
Student Student1("John Smith"); // no 2nd argument given, assumes default
Student1.SetMidtermGrade(80.0);
Student1.PrintCourseGrade();
Student Student2("Jane Doe", true);
Student2.SetMidtermGrade(100.0);
Student2.PrintCourseGrade();

}

Constructors with Initialization Lists

• This is an alternative way to initialize member
data that saves a little typing by allowing us to
replace explicit statements setting member
data with an implicit initialization. It can also
be a way to utilize a base class constructor
with particular arguments (more on this later
when we discuss inheritance).

Initialization List example
// former constructor:
Student(string theName, bool isAuditor = false)

{
MidtermGrade = FinalGrade = ProjectGrade = 0.0;
Name = theName;
Auditor = isAuditor;

}

// initialization list constructor (listing student4a.cc):
Student(string theName, bool isAuditor = false)

:Name(theName), Auditor(isAuditor)
{

MidtermGrade = FinalGrade = ProjectGrade = 0.0;
}

• Note: with an initialization list, we avoid having to name
the arguments something different from the member data
variable names. We could have used Name and Auditor for
the argument names above, and that would also work

Destructors
• Just like a constructor creates/initializes an object, a

destructor deletes an object. As with constructors, if one
isn’t supplied by the programmer, then the compiler
supplies a basic one. However, the compiler-supplied
destructor does an absolute minimum and is only sufficient
for very basic classes that don’t do any dynamic memory
allocation.

• Let’s rewrite our Student class to create dynamically
allocated memory, and then use a destructor to free up
that memory (with the delete [] operation) when we’re
done with the object

• The destructor is called when an object goes out of scope
(or, if smart pointers are used, when no smart pointer
remains that points to the object --- smart pointers are
discussed later in the tutorial)

Adding Arrays to the Student Class

• Suppose instead of having member data like
MidtermGrade, FinalGrade, ProjectGrade, we
just make an array of doubles called Grades.
Now, to set a particular grade, we’ll call a new
function, SetGrade(int whichGrade, double
grade) that will set some particular element
(whichGrade) of the Grades array to the
provided value (grade), i.e.,

Grades[whichGrade] = grade;

// student5.cc

class Student
{

private:
string Name;
bool Auditor;
double *Grades;

public:
// Constructor
Student(string theName, bool isAuditor = false)

:Name(theName), Auditor(isAuditor)
{

Grades = new double[3];
for (int i=0; i<3; i++) Grades[i] = 0.0;

}
// Destructor
~Student()
{

delete [] Grades; // delete the dynamically allocated array
}
void SetGrade(int whichGrade, double grade)
{

Grades[whichGrade] = grade;
}
void PrintCourseGrade(void)
{

if (Auditor) cout << "Auditor ";
else cout << "Student ";
cout << Name << " has course grade ";
cout << (Grades[0] + Grades[1] + Grades[2]) / 3.0 << "\n";

}
}; // done defining and declaring Student class

int main()
{

Student Student1("John Smith"); // no 2nd argument given, assumes default
Student1.SetGrade(0, 80.0);
Student1.PrintCourseGrade();
Student Student2("Jane Doe", true);
Student2.SetGrade(0, 100.0);
Student2.PrintCourseGrade();

}

Comments about the Destructor

• As we can see from our example, the
destructor is called ~Student(). It has no
return type (just like a constructor), and it
takes no arguments.

• Without the destructor, our allocated array
Grades[] would never be de-allocated, and
this would eat up more and more memory the
more Student objects that were created; this
would constitute a “memory leak”

Copy Constructors

• A copy constructor is a constructor that creates a new object as a
copy of another object

• This is can be a convenient way for the programmer to create
multiple instantiations of identical objects (or similar objects --- we
could call member functions to modify the copies as desired)

• However, copy constructors are more useful and more necessary
than this; recall C++ functions use “pass by value,” in which the
values of function arguments are passed, not the actual variables
themselves. Similarly, if we pass an object as an argument to a
function, then we pass a copy of the object, not the object itself
(unless we use a pointer or reference to it). This means the
compiler has to have a way to make a copy of an object. If we
haven’t provided a copy constructor, the compiler will generate one
automatically for us.

The Problem with Default Copy
Constructors

• As you might have guessed by now, the compiler-generated copy
constructor isn’t all that great. In particular, only a simple “shallow
copy” is performed; this means that if a pointer is one of our
member data, we only copy the pointer, not the data that is being
pointed to

• At first this may seem ok, since the copy object has a pointer to the
array, and so does the original: both can access the data

• The problem is that each object might think that it “owns” the
array: in particular, if the first object goes out of scope and we call
the destructor, it will delete the array --- but now the second object
has a pointer that points to invalid memory!

• The solution is as follows: Any class that points to dynamically
allocated memory should provide a copy constructor that performs
a “deep copy” (i.e., dynamically allocated memory is copied, not
just the pointers to this memory)

// student6.cc [will not work!]

class Student
{
…
void PrintGrades(void) {

if (Auditor) cout << "Auditor ";
else cout << "Student ";
cout << Name << " grades: ";
cout << Grades[0] << "," << Grades[1] << "," << Grades[2] << endl;

}
void PrintCourseGrade(void)
{
if (Auditor) cout << "Auditor ";
else cout << "Student ";
cout << Name << " has course grade ";
cout << (Grades[0] + Grades[1] + Grades[2]) / 3.0 << endl;

}
}; // done defining and declaring Student class

void PrintStudentGrades(Student Input)
{
Input.PrintGrades();
Input.PrintCourseGrade();

}

int main()
{
Student Student1("John Smith"); // no 2nd argument given, assumes default
Student1.SetGrade(0, 80.0);
Student Student2("Jane Doe", true);
Student2.SetGrade(0, 100.0);
PrintStudentGrades(Student1);
PrintStudentGrades(Student2);

}

The Problem Manifests Itself

• Listing student6.cc will compile, but when
executed it gives an error like this:

Student John Smith grades: 80,0,0
Student John Smith has course grade 26.6667
Auditor Jane Doe grades: 100,0,0
Auditor Jane Doe has course grade 33.3333
*** glibc detected *** ./student6: double free
or corruption (fasttop): 0x00000000009ab090

Analysis of Problem in student6.cc
• We can pass the Student object down to our PrintStudentGrades()

function just fine
• However, when we pass Student1 and Student2 into this function in

main(), we don’t pass the objects themselves, we pass copies
• And since we didn’t provide a copy constructor, the compiler makes one

for us; the one it makes is poor and uses only shallow copies (pointers to
Grades are copied, but not the arrays themselves)

• This doesn’t prevent PrintStudentGrades() from printing the correct data
• But when PrintStudentGrades() is done, the local copy of the object,

“Input”, goes out of scope and we call the destructor
• But our destructor deletes the Grades array! This is a problem because

both Input and the object passed into PrintStudentGrades() point to this
same array! After we execute PrintStudentGrades(Student1), Student1’s
Grades pointer now points to invalid memory!

• And this is a problem because when main() is done, Student1 goes out of
scope and we call the destructor… but the Grades array has already been
deleted! (Same problems happen for Student2)

The Solution: Deep Copy

• We can avoid all these issues if we just copy
the dynamically allocated memory, not just
the pointers to it

• Listing student6a.cc provides an example of a
deep copy constructor

• The syntax for a copy constructor is as follows:

Student(const Student& Source)
{

// copy constructor code goes here
}

Fixed with Copy Constructor
// student6a.cc

class Student
{
public:
…
// Copy constructor
Student(const Student& Source)
{

cout << "In copy constructor!" << endl;
Name = Source.Name;
Auditor = Source.Auditor;
Grades = new double[3];
for (int i=0; i<3; i++) Grades[i] = Source.Grades[i];

}
…

}; // done defining and declaring Student class

…

Output:
In copy constructor!
Auditor grades: 80,0,0
Auditor has course grade 26.6667
In copy constructor!
Auditor grades: 100,0,0
Auditor has course grade 33.3333

Importance of const ref in Copy
Constructors

• Notice that our copy constructor took a const ref as an
argument

• const means we aren’t modifying the original object
• It’s critical that we use a reference to an object as the

argument, and not an object itself; if we didn’t use a
reference, then the copy constructor would be pass-by-
value, and the object passed into it would be copied via
a shallow copy!

Student(const Student& Source)
{

// copy constructor code goes here
}

Copy by Assignment
• So far we have been considering copy constructors that might be

called when an object is passed as an argument to a function
• We can also create one object from another via an assignment (=)

operator; operators can be overloaded to work with objects
• For exactly the same reasons that the copy constructor needs to

make deep copies of arrays, so should copies via the assignment
operator

• More on operator overloading later, but for now, analogous to the
syntax of our copy constructor, the copy assignment operator
should be defined as below.

• Copy by assignment has a couple of subtle features (e.g., we don’t
want to copy an object if we’re assigning it back to itself), so we’ll
postpone further discussion of these for now.

Student& Student::operator= (const Student& Source)
{

// copy assignment operator code here
}

Summary of Precautions for Classes
containing Pointers

• If a class contains a raw pointer, you have to exercise special caution
when copying this class via a copy constructor or an assignment
operator

• If you don’t perform deep copies of the data being pointed to, bad
things can happen; for example, if two objects contain a member
that is a pointer, then both objects might try to free that data when
the object destructors are called: the first free will succeed, and the
second one will fail

• Avoid raw pointers in classes, or write custom copy constructors
and assignment operators that perform deep copies; these
functions should take const references to the object being copied

• Replacing raw pointer member data with smart pointers is an
alternative solution (to be discussed later); also, use C++ strings
instead of C-style char* arrays for member data

Intro to C++11 Move Constructors

• Using deep copies if a class contains raw pointers is good,
but it can cause unexpected performance penalties

• This happens if a very temporary copy of the object has to
be created because of how the object is used

• Sometimes the compiler sees what’s happening and
optimizes the problem away; if not, it’s nice to improve
performance with a “move constructor”

• A move constructor is a constructor that can be invoked
when temporary instances of an object are passed as
parameters; in cases like this, we can simply move the data
from the temporary object to the permanent one

• This is a new feature of C++11
• More on this later

Classes that Don’t Allow Copying

• For some classes, a copy operation might not
make sense

• We can deny copying if we declare a private copy
constructor and a private copy assignment
operator; they don’t have to actually be defined
because they can’t be used (since they’re private)
--- declaring them just prevents the compiler
from supplying default functions

Class X
{
private:

X(const X&); // private copy constructor
X& operator= (const X&); // private copy assignment operator
…

}

Singleton Class

• Taking the ideas of the previous page a little further, we might have
a class that we want only one instance of (in the past page we
prohibited copying, but didn’t prohibit creation of multiple
instances)

• We can prohibit creation of multiple instances by also making the
constructor private

• But by itself, this would make it impossible to create any instances
of the class

• So, we make a public function that is able to create an instance, and
we use “static” keywords to (1) make the function shared among all
instances of the class, and (2) make a local variable in this function
that retains its value between function calls (see next page)

• By the way, member data declared as “static” will be shared among
all instances of the class

Singleton Class Example
Class X
{
private:

X() {}; // private constructor (means we can’t construct from outside)
X(const X&); // private copy constructor
const X& operator= (const X&); // private copy assignment operator
…

public:
static X& GetInstance() { // because static, can invoke w/out an object!

static X OnlyInstance;
return OnlyInstance;

}
… // other functions here

} ;
int main()
{

X& OnlyX = X::GetInstance();
// perform operations on OnlyX

}

Class only Creatable on the Heap

• If we have a class with very large datastructures, we
want to make sure it is created using dynamic memory
allocation (i.e., on the heap, like Student* A = new
Student()) and not on the stack (like Student A)

• We can accomplish this my making the destructor
private; the compiler will realize that objects on the
stack need to be destroyed when they go out of scope,
and that this can’t happen if the destructor is private

• Of course, this also means one can’t delete objects on
the heap, either --- at least not in the usual way. We
need the static keyword and a helper function,
analogous to how we implemented singleton classes

Heap-Only Class Example
Class X
{
private:

~X(); // private destructor
public:

static void DestroyInstance(X* instance)
{

// this static member can get at the private destructor
delete instance;

}
};

int main() {
X* pX = new X();
X::DestroyInstance(pX); // do this instead of delete pX

}

The this Pointer and static Functions

• We saw before in this chapter that the “this”
pointer is implicitly passed to all member
functions of a class and is useful to clarify
whether an operation is on the current class
object or on one passed as a parameter

• “this” is not implicitly passed to member
functions declared as static, since static functions
are shared among all members of a class

• Thus, in static functions, we do not have access to
the “this” pointer

sizeof() a Class

• Just like we can use sizeof() to get the number
of bytes taken up by a plain old data type, we
can also use it on a class

• When used on a class, sizeof() returns the
number of bytes for the basic member data,
not including the size of any dynamically
allocated memory pointed to by the class (and
also not including any space for member
functions)

Friend Functions and Classes

• We’ve seen that member functions and member
data listed as “private” are not accessible outside
the class

• We can make special exceptions using the
“friend” keyword: a friend function can access
private class data, and so can a friend class

• We declare friend functions or classes like this:

Class X
{
private:

friend void FriendlyFunction(…); // this function is a friend
friend class FriendlyClass; // this entire class is a friend
…

};

Friend Function Example
// student7.cc
class Student
{

private:
string Name;
bool Auditor;
double *Grades;

public:
….
// friend declaration gives function outside class access to private bits
friend void PrintStudentGrades(const Student& Input);

}; // done defining and declaring Student class

void PrintStudentGrades(const Student& Input)
{

if (Input.Auditor) cout << "Auditor ";
else cout << "Student ";
cout << Input.Name << " grades: ";
cout << Input.Grades[0] << "," << Input.Grades[1] << "," << Input.Grades[2];
cout << ". Course grade: ";
cout << (Input.Grades[0] + Input.Grades[1] + Input.Grades[2]) / 3.0 << endl;

}

int main()
{

Student Student1("John Smith"); // no 2nd argument given, assumes default
Student1.SetGrade(0, 80.0);
Student Student2("Jane Doe", true);
Student2.SetGrade(0, 100.0);
PrintStudentGrades(Student1);
PrintStudentGrades(Student2);

}

Friend Class Example
// friend8.cc
class Student
{

private:
string Name;
bool Auditor;
double *Grades;

public:
…
// friend declaration gives function outside class access to private bits
friend class PrintHelper;

}; // done defining and declaring Student class

class PrintHelper
{

public:
void PrintStudentGrades(const Student& Input)
{

if (Input.Auditor) cout << "Auditor ";
else cout << "Student ";
cout << Input.Name << " grades: ";
cout << Input.Grades[0] << "," << Input.Grades[1];
cout << "," << Input.Grades[2];
cout << ". Course grade: ";
cout << (Input.Grades[0] + Input.Grades[1] + Input.Grades[2]) / 3.0;
cout << endl;

}
};

int main()
{

Student Student1("John Smith");
Student1.SetGrade(0, 80.0);
PrintHelper X;
X.PrintStudentGrades(Student1);

}

const Member Functions
• In Part 1, we saw various uses of the const keyword: we can

have constants (e.g., const int), constant pointers to
variables (e.g., int* const p), constant pointers to contants
(e.g., const int* const p), or references to constants (int&
const p or equivalently const int& p, which simply means
even though we have a ref we promise not to modify p)

• When dealing with classes, we can also have constant
functions. These are functions that are guaranteed to not
modify the object. They are specified like this:
int MyFunction([args]) const { … }
The const needs to be added to the function declaration
and the definition

• Several of our previous and future examples could have
been modified to specify that the member function was
constant

Chapter 10: Inheritance

• Defining inheritance

• Base classes and derived classes

• Protected members

• Public, Protected, and Private inheritance

• Derived classes hiding base class methods

• Invoking base class methods in derived classes

• Slicing of derived classes

• Multiple inheritance

Inheritance

• In this chapter, we discuss inheritance, which
is a powerful feature of object-oriented
programming

• Inheritance allows us to specify more generic
behavior for some objects, and more specific
behavior for other objects (for example,
squares have all the properties of rectangles,
but they also have additional special
properties as well)

// polygon.cc
#include <iostream>
#include <string>
using namespace std;

class Polygon
{

public:
int NumSides;
void Draw(void) {

cout << "Drawing polygon with " << NumSides << " sides." << endl;
}
Polygon(int sides) {

NumSides = sides;
}

};

int main()
{

Polygon Triangle(3);
Polygon Square(4);
Triangle.Draw();
Square.Draw();

}

Polygon Class Example

Polygon Derived Classes

• You can imagine that it might make sense to create
Triangle, Square, etc., classes that behave as typical
polygons but also know about the special properties of
triangles, squares, etc.

• We can do this through inheritance. We will create
Triangle and Square classes that inherit from the
Polygon class.

• In this example, Polygon is the base class, and Triangle
and Square are the derived classes

• Alternatively, we can call Polygon the superclass, and
we can call Triangle and Square the subclasses

Inheritance Syntax

• We declare and define the Triangle and Square classes
just like we do for any other class; the only difference
inheritance makes is that we add some extra bits to the
class declaration line, like this:

class Triangle: public Polygon
{

…
};

This specifies that class Triangle inherits from class
Polygon (the “public” is an “access specifier” which
could also be “protected” or “private”, but usually it’s
public … we’ll explain this below)

// polygon2.cc

class Polygon
{

public:
int NumSides;
void Draw(void) {

cout << "Drawing polygon with " << NumSides << " sides." << endl;
}
Polygon(int sides) {

NumSides = sides;
}

};

class Square: public Polygon
{

public:
Square() { // problem here … see next page

NumSides = 4;
}

};

class Triangle: public Polygon
{

public:
Triangle() { // problem here … see next page

NumSides = 3;
}

};

int main()
{

Triangle MyTriangle;
Square MySquare;
Polygon MyPentagon(5);
MyTriangle.Draw();
MySquare.Draw();
MyPentagon.Draw();

}

Base Class Initialization

• The listing on the previous page won’t work;
we get an error message like the following:

polygon2.cc: In constructor Square::Square():
polygon2.cc:21: error: no matching function for call to Polygon::Polygon()
polygon2.cc:13: note: candidates are: Polygon::Polygon(int)
polygon2.cc:7: note: Polygon::Polygon(const Polygon&)
polygon2.cc: In constructor Triangle::Triangle():
polygon2.cc:29: error: no matching function for call to Polygon::Polygon()
polygon2.cc:13: note: candidates are: Polygon::Polygon(int)
polygon2.cc:7: note: Polygon::Polygon(const Polygon&)

• The problem is that derived classes always call the base
class constructor first, and we don’t have a default
constructor available to match the default constructor
for the derived classes

Base Class Initialization

• We have a default constructor for a Triangle, but
that default constructor automatically tries to call
the default constructor for Polygon (the base
class), and there isn’t one

• We need to explicitly call an allowed base class
constructor; we can do that if we just pass along
the number of sides, like this:

class Square: public Polygon
{

public:
Square(): Polygon(4) { // Call base class constructor with required args

cout << "In Square constructor" << endl;
}

};

// polygon2a.cc
…
class Polygon
{

public:
int NumSides;
void Draw(void) {

cout << "Drawing polygon with " << NumSides << " sides." << endl;
}
Polygon(int sides) {

NumSides = sides;
cout << "In Polygon constructor with " << NumSides << " sides" << endl;

}
};

class Square: public Polygon
{

public:
Square(): Polygon(4) { // Call base class constructor with required args

cout << "In Square constructor" << endl;
}

};

class Triangle: public Polygon
{

public:
Triangle(): Polygon(3) { // Call base class constructor with required args

cout << "In Triangle constructor" << endl;
}

};

int main()
{

Triangle MyTriangle;
Square MySquare;
Polygon MyPentagon(5);
MyTriangle.Draw();
MySquare.Draw();
MyPentagon.Draw();

}

Program output:
In Polygon constructor with 3 sides
In Triangle constructor
In Polygon constructor with 4 sides
In Square constructor
In Polygon constructor with 5 sides
Drawing polygon with 3 sides.
Drawing polygon with 4 sides.
Drawing polygon with 5 sides.

Constructor ordering

• Notice that when a Triangle or Square is
constructed, the base class constructor is
called first, then the constructor of the
derived class

• Destructors are called in the opposite order
(derived class first, then base class)

Protecting the Data

• In our current version of the polygons example,
there’s nothing to stop us from doing something
like this:

int main()
{

Triangle MyTriangle;
Polygon MyPentagon(5);
MyTriangle.NumSides = 4;
MyTriangle.Draw();
MyPentagon.Draw();

}

In Polygon constructor with 3 sides
In Triangle constructor
In Polygon constructor with 5 sides
Drawing polygon with 4 sides.
Drawing polygon with 5 sides.

• This seems odd to have a triangle with a variable
number of sides; how can we prevent users from
doing this?

Protecting the Class Data

• We saw in the last chapter that member data
of a class can be public (it can be accessed
outside the class) or private (it cannot be
accessed outside the class)

• This gives us a good solution --- simply make
the number of sides in the polygon
(NumSides) a private member datum

// polygon3a.cc

class Polygon
{

private:
int NumSides; // outsiders shouldn't be able to change this

public:
void Draw(void) {

cout << "Drawing polygon with " << NumSides << " sides." << endl;
}
Polygon(int sides) {

NumSides = sides;
cout << "In Polygon constructor with " << NumSides << " sides" << endl;

}
};

class Square: public Polygon
{

public:
Square(): Polygon(4) { // Call base class constructor with required args

cout << "In Square constructor" << endl;
}

};

class Triangle: public Polygon
{

public:
Triangle(): Polygon(3) { // Call base class constructor with required args

cout << "In Triangle constructor" << endl;
}

};

int main()
{

Triangle MyTriangle;
Polygon MyPentagon(5);
//MyTriangle.NumSides = 4; // Now we can't do this...good!
MyTriangle.Draw();
MyPentagon.Draw();

}

Problems Inheriting Private Members

• The previous example solves our problem of
wanting to deny outsiders the ability to change
the number of sides in one of our polygons

• However, making NumSides a private member of
Polygon has consequences we might not have
expected

• In particular, derived classes do not have access to
private members of a base class

• Let’s illustrate this with an example

// polygon3b.cc
#include <iostream>
#include <string>
using namespace std;

class Polygon
{
private:
int NumSides; // outsiders shouldn't be able to change this

public:
void Draw(void) {
cout << "Drawing polygon with " << NumSides << " sides." << endl;

}
Polygon(int sides) {
NumSides = sides;
cout << "In Polygon constructor with " << NumSides << " sides" << endl;

}
};

class Triangle: public Polygon
{
public:
Triangle(): Polygon(3) { // Call base class constructor with required args
cout << "In Triangle constructor" << endl;

}
void Report(void) {
cout << "I'm a triangle, I have " << NumSides << " sides." << endl;

}
};

int main()
{
Triangle MyTriangle;
MyTriangle.Report();

}

Compiling this program produces errors:
polygon3b.cc: In member function void Triangle::Report():
polygon3b.cc:9: error: int Polygon::NumSides is private
polygon3b.cc:27: error: within this context

Protected Member Data

• How can we fix this? We want to protect
NumSides like a private member, but we still want
our derived classes to be able to access it

• This is precisely what “protected” class members
do: they block access from outside the object, but
they still allow it for derived classes

• So, we just need to specify that NumSides is
protected.

class Polygon
{

protected:
int NumSides;

…

// polygon3c.cc

class Polygon
{

protected:
int NumSides; // outsiders shouldn't be able to change this

// but perhaps derived classes should be able to access it
public:

void Draw(void) {
cout << "Drawing polygon with " << NumSides << " sides." << endl;

}
Polygon(int sides) {

NumSides = sides;
cout << "In Polygon constructor with " << NumSides << " sides" << endl;

}
};

class Triangle: public Polygon
{

public:
Triangle(): Polygon(3) { // Call base class constructor with required args

cout << "In Triangle constructor" << endl;
}
void Report(void) {

cout << "I'm a triangle, I have " << NumSides << " sides." << endl;
}

};

int main()
{

Triangle MyTriangle;
//MyTriangle.NumSides = 4; // this won’t work
MyTriangle.Report();

} Program output:
In Polygon constructor with 3 sides
In Triangle constructor
I'm a triangle, I have 3 sides.

Derived Classes of Derived Classes

• Triangle is a derived class from base class
Polygon

• What if we derived a new class from Triangle?
Say, RightTriangle? Would it also have access
to NumSides if it was specified in Polygon as a
protected member?

• Yes! See the next example.

// Listing polygon3d.cc
[class Polygon as before, with NumSides declared as protected]

class Triangle: public Polygon
{
public:
Triangle(): Polygon(3) { // Call base class constructor with required args

cout << "In Triangle constructor" << endl;
}
void Report(void) {

cout << "I'm a triangle, I have " << NumSides << " sides." << endl;
}

};

class RightTriangle: public Triangle
{
public:
RightTriangle(): Triangle() {

cout << "In RightTriangle constructor" << endl;
}
void Report(void) {

cout << "I'm a right triangle, I have " << NumSides << " sides." << endl;
}

};

int main()
{
RightTriangle MyRightTriangle;
MyRightTriangle.Report();

}

This works! Program output:
In Polygon constructor with 3 sides
In Triangle constructor
In RightTriangle constructor
I'm a right triangle, I have 3 sides.

Summary of Accessibility of Members
of Base Classes from Derived Classes

• Public members (data or functions) of a base
class are available to a derived class and through
objects of that derived class (e.g., ns =
MyPolygon.NumSides)

• Private members of a base class are not available
to a derived class or through objects of that
derived class

• Protected members of a base class are available
to a derived class but are not available through
objects of that derived class

Private Inheritance

• So far, we have assumed “public” inheritance, e.g.,
class Derived: public Base // public inheritance

• There also exists a “private” inheritance, e.g.,
class Derived: private Base // private inheritance

• If we use “private inheritance,” then users of a derived
class have no direct access to members of the parent
class --- data or methods --- even if those members
were declared public in the base class

• Thus, the “access specifier” in an inheritance
declaration can further limit the access to the base
class from an object of a derived class

// polygon4.cc
…

class Polygon
{
public:
int NumSides;
void Draw(void) {

cout << "Drawing polygon with " << NumSides << " sides." << endl;
}
Polygon(int sides) {

NumSides = sides;
cout << "In Polygon constructor with " << NumSides << " sides" << endl;

}
};

class Triangle: private Polygon
{
public:
Triangle(): Polygon(3) { // Call base class constructor with required args

cout << "In Triangle constructor" << endl;
}

};

int main()
{
Triangle MyTriangle;
Polygon MyPentagon(5);
// MyTriangle.NumSides = 4; // won't work if we uncomment
// MyTriangle.Draw(); // this won't work either!
// MyPentagon.Draw(); // or this!

}

•Succeeds in keeping NumSides
hidden from users
•But also makes the public member
functions of Polygon inaccessible!

Private Inheritance Problems

• As seen in the previous example, private inheritance can keep
member data of a parent class safe from outsiders who have an
object of a derived class

• But it also makes any public member functions of the base class
inaccessible except through member functions of the derived class!

• This isn’t usually the behavior we want; it only makes sense when
the derived class is considered to have an instance of the base class
within it (“has a” relationship), not when the derived class is a
specific example of the base class (“is a” relationship)

• For example, a triangle “is a” polygon; it should be able to do
anything a generic polygon can do, so it should be able to access
the public members of polygon. Public inheritance is appropriate.

• On the other hand, a college course “has a” gradebook, so private
inheritance of a gradebook class by a college course parent class
might be appropriate

Private Inheritance Problems
• A further problem with private inheritance is that it

effectively allows the derived class only a single instance of
the parent class (e.g., the college course “has a”
gradebook). What if we needed the derived class to have
multiple instances of a parent class (e.g., maybe we decide
to keep two gradebooks, one of the original scores and one
with curved scores)?

• Often it’s better to simply make the derived class include
one or more actual objects of the base class instead of
using private inheritance, e.g.,
class CollegeCourse
{

GradeBook MyGradeBook;
…

};

Protected Inheritance

• Protected inheritance is much like private inheritance
• Like private inheritance, it assumes the derived class “has a”

instance of the base class
• Like private inheritance, functions of the derived class can access all

public and protected members of the base class
• Like private inheritance, users of an object of the derived class

cannot access any of the members of the base class (e.g.,
Triangle.NumSides)

• Unlike private inheritance, protected inheritance allows classes that
derive from the derived class to access public members of the
original base class

• Protected inheritance suffers from all the same problems we just
enumerated for private inheritance; making the derived class
contain objects of the base class is often a better solution than
protected inheritance

Overriding Base Class Methods

• Sometimes we want a derived class to override a
generic member function of the base class to do
something more specialized in the derived class

• We can do this by simply specifying the same
function (with the same arguments) for the
derived class

• Member functions will be called from the derived
class first (if available), and only if absent from
the derived class will the ones from the base class
be used

// polygon5.cc
#include <iostream>
#include <string>
using namespace std;

class Polygon
{
public:
int NumSides;
void Draw(void) {
cout << "Drawing polygon with " << NumSides << " sides." << endl;

}
Polygon(int sides) {
NumSides = sides;
cout << "In Polygon constructor with " << NumSides << " sides" << endl;

}
};

class Triangle: public Polygon
{
public:
Triangle(): Polygon(3) { // Call base class constructor with required args
cout << "In Triangle constructor" << endl;

}
void Draw(void) { // this routine overrides the base class Draw() routine
cout << "Using special triangle drawing routine" << endl;

}
};

int main()
{
Triangle MyTriangle;
Polygon MyPentagon(5);
MyTriangle.Draw(); // uses specialized Triangle::Draw() routine
MyPentagon.Draw(); // uses generic Polygon::Draw() routine

}

Program output:
In Polygon constructor with 3 sides
In Triangle constructor
In Polygon constructor with 5 sides
Using special triangle drawing routine
Drawing polygon with 5 sides.

Unintended Hiding of Base Class
Methods

• By a quirk of C++, if you override one form of a base class
method, you’re considered to have overridden all forms of
that method

• That is, if a base class has a function with multiple different
signatures, like this:

void DoSomething(void) {…}
void DoSomething(string message) {…}
void DoSomething(int size) {…}

and if we override the function in a derived class like this:
void DoSomething(void) { // new code here …}

then the other two signatures from the base class (the ones
taking a string or an integer as an argument) become
“hidden” and no longer directly accessible from the derived
class (even if they are declared public in the base class)

// polygon6.cc
…

class Polygon
{

public:
int NumSides;
void Draw(void) {

cout << "Drawing polygon with " << NumSides << " sides." << endl;
}
void Draw(string message) {

cout << "Drawing polygon with " << NumSides << " sides" << endl;
cout << "and writing " << message << " inside" << endl;

}
Polygon(int sides) {

NumSides = sides;
}

};

class Triangle: public Polygon
{

public:
Triangle(): Polygon(3) { // Call base class constructor with required args
}
void Draw(void) { // This routine overrides the base class Draw() routine

cout << "Using special triangle drawing routine" << endl;
}

};

int main()
{

Triangle MyTriangle;
Polygon MyPentagon(5);
MyPentagon.Draw("Hello"); // uses generic Polygon::Draw() routine
// following line won't work because we overrode Draw(void)
// and this hides all other forms of Draw() in base class from derived class
MyTriangle.Draw("Hi");

}

Resolving Hidden Base Class Methods

• How can we get around this problem?

• One solution is to override void Draw(string
message) also

• But suppose we’re actually happy with the
generic routine from the base class when there’s
a message to print; overriding just needlessly
duplicates code

• We can specify explicitly that we want to use the
base class Draw(string) method like this:

myTriangle.Pentagon::Draw(“Hi”);

// polygon6a.cc
…
class Polygon
{
public:
int NumSides;
void Draw(void) {
cout << "Drawing polygon with " << NumSides << " sides." << endl;

}
void Draw(string message) {
cout << "Drawing polygon with " << NumSides << " sides" << endl;
cout << "and writing " << message << " inside" << endl;

}
Polygon(int sides) {
NumSides = sides;

}
};

class Triangle: public Polygon
{
public:
Triangle(): Polygon(3) { // Call base class constructor with required args
}
void Draw(void) { // This routine overrides the base class Draw() routine
cout << "Using special triangle drawing routine" << endl;

}
};

int main()
{
Triangle MyTriangle;
Polygon MyPentagon(5);
MyPentagon.Draw("Hello"); // uses generic Polygon::Draw() routine
MyTriangle.Polygon::Draw("Hi"); // now this will work

}

Program output:
Drawing polygon with 5 sides
and writing Hello inside
Drawing polygon with 3 sides
and writing Hi inside

Alternative Solution to Hidden Base
Class Methods

• The previous solution works fine, but it seems
awkward for the user of the class to have to
remember they have to call
MyTriangle.Polygon::Draw("Hi");
instead of
MyTriangle.Draw(“Hi”);

• Better to handle this in the derived class
definition. There’s a way to do this without
having to cut and paste the base class method
into the derived class.

// polygon6b.cc

class Polygon
{

public:
int NumSides;
void Draw(void) {

cout << "Drawing polygon with " << NumSides << " sides." << endl;
}
void Draw(string message) {

cout << "Drawing polygon with " << NumSides << " sides" << endl;
cout << "and writing " << message << " inside" << endl;

}
Polygon(int sides) {

NumSides = sides;
}

};

class Triangle: public Polygon
{

public:
Triangle(): Polygon(3) { // Call base class constructor with required args
}
void Draw(void) { // This routine overrides the base class Draw() routine

cout << "Using special triangle drawing routine" << endl;
}
void Draw(string message) { // happy with base class method, just call it!

Polygon::Draw(message);
}

};

int main()
{

Triangle MyTriangle;
Polygon MyPentagon(5);
MyPentagon.Draw("Hello"); // uses generic Polygon::Draw() routine
MyTriangle.Draw("Hi"); // simpler syntax here now

}

Program output:
Drawing polygon with 5 sides
and writing Hello inside
Drawing polygon with 3 sides
and writing Hi inside

Slicing Problems
• What happens if we have a function expecting an object of one type, and

we pass it an object of a derived class type? That is,
void DoSomething(Base p);
…
Derived myDerived;
DoSomething(myDerived);

• Similarly, what if we tried this?
Derived myDerived;
Base myBase = myDerived;

• This is part of a larger discussion, but for now let’s note that in code like
this, the object of type Derived has to be copied (explicitly or implicitly by
a copy constructor or an assignment operator) into an object of type Base

• When this happens, the compiler only copies the part of the Derived
object that corresponds to class Base. This is called slicing and is not
usually what the programmer wants to happen.

• The simplest way to avoid slicing is to avoid passing by value; pass by
pointers or references to the base class (this also avoids issues with copy
constructors and assignment operators we’ve previously discussed)

Multiple Inheritance

• C++ (unlike Java) allows multiple inheritance;
that is, a derived class can have more than
one parent class

• The syntax for multiple inheritance is as
follows:

class Derived: access-specifier Base1, access-specifier Base 2 [, etc.]
{

// declare class members here
};

// tank.cc
#include <iostream>
#include <string>
using namespace std;

class Vehicle
{
public:
void Move(void) {

cout << "Vehicle is moving!" << endl;
}

};

class Weapon
{
public:
void Fire(void) {

cout << "Weapon is firing!" << endl;
}

};

class Tank: public Vehicle, public Weapon
{
};

int main()
{
Tank MyTank;
MyTank.Move();
MyTank.Fire();

}

Program output:
Vehicle is moving!
Weapon is firing!

Chapter 11: Polymorphism

• Introducing Polymorphism

• Virtual functions

• Pure virtual functions and abstract base
classes

• The “diamond problem” and virtual
inheritance

Introducing Polymorphism

• Polymorphism means “many forms”. In object-
oriented programming, it has to do with the fact that a
derived class can behave as its own type or as the type
of its base class(es)

• This is a good thing --- we can treat a collection of
objects with a common base class in a generic way
according to the rules of the base class

• But this also introduces a problem --- there can be
ambiguities about when we want an object to behave
generically according to its base class, and when we
want it to behave specifically according to its derived
class

// polygon7.cc

class Polygon
{

public:
int NumSides;
void Draw(void) {

cout << "Drawing polygon with " << NumSides << " sides." << endl;
}
Polygon(int sides) {

NumSides = sides;
}

};

class Triangle: public Polygon
{

public:
Triangle(): Polygon(3) {
}
void Draw(void) { // this won't get used in this example

cout << "Using special triangle drawing routine" << endl;
}

};

void DrawPolygon(Polygon& poly) {
poly.Draw();

}

int main()
{

Polygon MyPentagon(5);
Triangle MyTriangle;
DrawPolygon(MyPentagon);
// Since we pass MyTriangle as a generic Polygon to DrawPolygon,
// we wind up drawing with the generic Polygon::Draw() not the
// specialized Triangle::Draw() like you might expect!
DrawPolygon(MyTriangle);

}

Program output:
Drawing polygon with 5 sides.
Drawing polygon with 3 sides.

Ensuring Use of the Specialized
Functions

• In the previous example, we used a helper function,
DrawPolygon(), to draw our polygons … but because it
accepts generic Polygons as inputs, it calls the generic
Polygon::Draw() function

• This is a shame because we have a specialized drawing
routine for triangles that we probably want to use!

• We can explain to the compiler that we want to use the
more specific functions from the derived class when
they override functions from the base class

• We do this by declaring the base class method as a
“virtual” function … this means it will only be used if no
more specific function from a derived class is available
(even when we refer to the object as an object of the
base class type)

Virtual Functions

• To declare a virtual function, we just add
“virtual” to the beginning:

class Base {
virtual ReturnType MyFunction (params);

};
class Derived {

ReturnType MyFunction (params);
}

// polygon8.cc

class Polygon
{
public:
int NumSides;
virtual void Draw(void) {
cout << "Drawing polygon with " << NumSides << " sides." << endl;

}
Polygon(int sides) {
NumSides = sides;

}
};

class Triangle: public Polygon
{
public:
Triangle(): Polygon(3) {
}
void Draw(void) { // now this will get used
cout << "Using special triangle drawing routine" << endl;

}
};

void DrawPolygon(Polygon& poly) {
poly.Draw();

}

int main()
{
Polygon MyPentagon(5);
Triangle MyTriangle;
DrawPolygon(MyPentagon);
// Now thanks to virtual functions, the correct (more specialized)
// version of the Draw() routine will be used, i.e., Triangle::Draw()
DrawPolygon(MyTriangle);

}

Program output:
Drawing polygon with 5 sides.
Using special triangle drawing routine

The Need for Virtual Destructors

• A more dangerous situation when we need to call
the right function for a derived class is when we
need to call a destructor

• If we are treating an object generically and call
the generic (parent class) destructor, we might
not free up all the memory we’re supposed to ---
a derived class should always be calling its own
destructor

• The next example shows an example of a derived
class (Triangle) destructor not being called

// polygon9.cc

class Polygon
{

public:
int NumSides;
Polygon(int sides) {

cout << "Creating a Polygon" << endl;
NumSides = sides;

}
~Polygon() {

cout << "Destroyed Polygon" << endl;
}

};

class Triangle: public Polygon
{

public:
Triangle(): Polygon(3) {

cout << "Creating a Triangle" << endl;
}
~Triangle() {

cout << "Destroyed Triangle" << endl;
}

};

void DeletePolygon(Polygon* poly) {
delete poly;

}

int main()
{

cout << "About to create a Triangle on the heap" << endl;
Triangle* pTriangle = new Triangle;
cout << "About to destroy the Triangle on the heap" << endl;
DeletePolygon(pTriangle);

cout << "About to create a Triangle on the stack" << endl;
Triangle MyTriangle;
cout << "Triangle on stack about to go out of scope" << endl;
return 0;

}

Program output:
About to create a Triangle on the heap
Creating a Polygon
Creating a Triangle
About to destroy the Triangle on the heap
Destroyed Polygon
About to create a Triangle on the stack
Creating a Polygon
Creating a Triangle
Triangle on stack about to go out of scope
Destroyed Triangle
Destroyed Polygon

Missing “Destroyed
Triangle”!

•Recall that when constructing a
derived class, the base class
constructor is supposed to be called
first, then the derived class
constructor
•Destructors should be called in the
reverse order of constructors

Virtual Destructors

• We know how to solve this problem now… just
make the destructor of the base class virtual,
like this:
virtual ~Polygon() { … }

• See the next listing for a corrected version of
our example

// polygon9a.cc

class Polygon
{

public:
int NumSides;
Polygon(int sides) {

cout << "Creating a Polygon" << endl;
NumSides = sides;

}
virtual ~Polygon() {

cout << "Destroyed Polygon" << endl;
}

};

class Triangle: public Polygon
{

public:
Triangle(): Polygon(3) {

cout << "Creating a Triangle" << endl;
}
~Triangle() {

cout << "Destroyed Triangle" << endl;
}

};

void DeletePolygon(Polygon* poly) {
delete poly;

}

int main()
{

cout << "About to create a Triangle on the heap" << endl;
Triangle* pTriangle = new Triangle;
cout << "About to destroy the Triangle on the heap" << endl;
DeletePolygon(pTriangle);

cout << "About to create a Triangle on the stack" << endl;
Triangle MyTriangle;
cout << "Triangle on stack about to go out of scope" << endl;
return 0;

}

Program output:
About to create a Triangle on the heap
Creating a Polygon
Creating a Triangle
About to destroy the Triangle on the heap
Destroyed Triangle
Destroyed Polygon
About to create a Triangle on the stack
Creating a Polygon
Creating a Triangle
Triangle on stack about to go out of scope
Destroyed Triangle
Destroyed Polygon

Got it now!

Always Supply Virtual Destructors

• To avoid potential memory leaks, etc., you
should always supply your base classes virtual
destructors

The Virtual Function Table

• Classes use a “virtual function table” to keep track of
what function they’re supposed to be using in different
contexts

• For each class, this is just a list of function pointers,
pointing to the functions that the class is supposed to
be using (base class functions or derived class
functions)

• This only applies to functions that were declared
virtual in the base class

• This adds a little extra memory overhead (not much) to
classes that have virtual functions and to their derived
classes

Run Time Type Identification (RTTI)

• Occasionally the programmer also wants to know
whether an object of a generic class is really of
that class, or whether it actually belongs to a
derived class

• This can be done using dynamic_cast to see if a
pointer of type Base* is really of type Derived*

• More on this later

• A dynamic cast is sometimes considered a poor
programming practice and a sign that the class
hierarchy wasn’t designed optimally

Pure Virtual Functions and Abstract
Base Classes

• Sometimes we might want to ensure that every derived class has its
own special version of some function (i.e., we will never want to call
a generic version of the function from the base class)

• We can ensure this happens by declaring the base class function to
be “pure virtual”, like this:

class Base
{

public:
virtual void SomeFunction() = 0; // pure virtual

};
• A pure virtual function can’t be used … it’s just a signal that any

derived class must override this function
• A pure virtual function means that the base class can never be

instantiated (because it would have no working definition of this
pure virtual function) --- this makes the base class an Abstract Base
Class (one that can’t be instantiated)

The “Diamond Problem”

• Suppose we have an
inheritance hierarchy like
the one on the right

• This can cause a problem in
C++ because the final class
(Phablet) inherits two
instances of MobileDevice
(one from Tablet, one from
Phone) --- the compiler
doesn’t know which
instance to access if we
want to get at an inherited
variable like Memory!

Class MobileDevice
int Memory;

Class Phone Class Tablet

Class Phablet

// mobile.cc

class MobileDevice
{

public:
int Memory;
MobileDevice() {

cout << "MobileDevice constructor" << endl;
}

};

class Phone: public MobileDevice
{

public:
Phone() {

cout << "Phone constructor" << endl;
}

};

class Tablet: public MobileDevice
{

public:
Tablet() {

cout << "Tablet constructor" << endl;
}

};

class Phablet: public Phone, public Tablet
{

public:
Phablet() {

cout << "Phablet constructor" << endl;
}

};

int main()
{

cout << "About to create a Phablet on the stack" << endl;
Phablet MyPhablet;
// MyPhablet.Memory = 32; // this won't work --- ambiguous reference

}

Program output:
About to create a Phablet on the stack
MobileDevice constructor
Phone constructor
MobileDevice constructor
Tablet constructor
Phablet constructor

•Notice MobileDevice constructor is called
twice (once for each parent of Phablet)
•That means if we try to do something like
set MyPhablet.Memory = 32 it will fail
because it’s not sure which Memory we
mean, the one from Phone or the one
from Tablet!

Solving the Diamond Problem

• We really want just one instance of MobileDevice
associated with Phablet, not two

• We can accomplish this using “virtual inheritance”
• Unfortunately virtual inheritance has nothing to do

with virtual functions
• Virtual inheritance just means we want a common

instance of a base class if we have a diamond problem,
not multiple instances of the base class

• To use virtual inheritance, in the “middle-level” classes
of the diamond, specify their inheritance like this:

class Derived1: public virtual Base { … };
class Derived2: public virtual Base { … };

// mobile2.cc

class MobileDevice
{

public:
int Memory;
MobileDevice() {

cout << "MobileDevice constructor" << endl;
}

};

class Phone: public virtual MobileDevice
{

public:
Phone() {

cout << "Phone constructor" << endl;
}

};

class Tablet: public virtual MobileDevice
{

public:
Tablet() {

cout << "Tablet constructor" << endl;
}

};

class Phablet: public Phone, public Tablet
{

public:
Phablet() {

cout << "Phablet constructor" << endl;
}

};

int main()
{

cout << "About to create a Phablet on the stack" << endl;
Phablet MyPhablet;
MyPhablet.Memory = 32; // now this works!

}

Program output:
About to create a Phablet on the stack
MobileDevice constructor
Phone constructor
Tablet constructor
Phablet constructor

Just one now!

Virtual Copy Constructors

• One might imagine it would be useful to define virtual
copy constructors, so that derived classes could
implement the copy constructor appropriate to them
(with deep copies, etc., specialized to the derived class)

• Unfortunately constructors are considered a special
type of function that work only for a specified type;
hence, virtual copy constructors are not allowed in C++

• If virtual copy constructors are needed, one can use a
work-around of defining a regular virtual function that
does much the same work as a copy constructor

Chapter 12: Operator Overloading

In Chapter 4, we considered operators; now we
consider how they can be overloaded to work
on classes

• How to overload operators

Increment and Decrement Operators

• Suppose we have a Time class that keeps track
of the hour (0 to 23) and the minute (0 to 59)

• It would be really convenient to be able to
update the time by one minute using a simple
++ operator, like this:

Time myTime(0, 0); // initialize to midnight
myTime++; // add one minute!

Overloadable Operators

• There are two types of operators: unary
operators that act on a single object, and
binary operators that act on two objects

• Overloadable unary operators: ++, --, *, ->, !,
&, -, +, ~, conversion operators

• Overloadable binary operators: , (comma), !=,
%, %=, &, &&, &=, *, *=, +, +=, -, -=, ->*, /, /=,
<, <<, <<=, <=, =, ==, >, >=, >>, >>=, ^, ^=, |, |=,
||, [] (subscript operator)

Syntax to Declare Operator
Overloading Functions

• Unary operators
– Within a class:

return_type operator operator_type ();

– Outside a class:
return_type operator operator_type (param_type);

• Binary operators
– Within a class:

return_type operator_type (param1);

– Outside a class:

return_type operator_type (param1, param2);

Increment/Decrement Example

• For example, to declare a function that overloads
the prefix ++ operator, we could do this:
return_type operator ++ ();
This is the operator we use in a statement like
++i; recall this increments and then provides the
incremented value

• This is different than i++, which increments i but
provides the value before incrementing; we call
this a postfix ++ operator, and we could declare a
function to overload it like this:
return_type operator ++ (int);

• Decrement operators work similarly

Time Example

• The next example keeps track of the time (hours and
minutes) and overloads the ++ and - - operators (both
prefix and postfix)

• We also check that the minutes always stay between 0 and
59, and that the hours always stay between 0 and 23

• When we use the prefix operators, we can just
increment/decrement and then return the modified object
--- to avoid unnecessary object copies, we’ll just use a
reference return type

• When we use the postfix operators, we need access to the
value of the time before we did the increment/decrement
(because i++ gives the value of i before the increment);
here we have to copy the time before the
increment/decrement and then return this (unmodified)
copy

// timeclass.cc

class Time
{
private:

int Hours; // 0 to 23
int Minutes; // 0 to 59

public:
Time() {
Hours = Minutes = 0;

}
Time(int hrs, int mins)
:Hours(hrs),Minutes(mins) {

}
void printTime() {
cout << Hours << " hours and " << Minutes << " minutes" << endl;

}
// do any rollovers necessary on hours or minutes
void TimeCheck() {
if (Minutes > 59) {

Minutes = 0; ++Hours;
}
if (Minutes < 0) {

Minutes = 59; --Hours;
}
if (Hours > 23) Hours = 0;
if (Hours < 0) Hours = 23;

}
// prefix ++ operator, i.e., ++myTime
Time& operator ++ () {
++Minutes; TimeCheck();
return *this; // don't want to make a new object

}
// prefix -- operator, i.e., --myTime
Time& operator -- () {
--Minutes; TimeCheck();
return *this; // don't want to make a new object

}
// postfix ++ operator, i.e., myTime++
// here we need to return the state before increment
Time operator ++ (int) {
Time TmpTime(Hours, Minutes); // make a backup
++Minutes; TimeCheck();
return TmpTime;

}
// postfix -- operator, i.e., myTime--
// here we need to return the state before decrement
Time operator -- (int) {
Time TmpTime(Hours, Minutes); // make a backup
--Minutes; TimeCheck();
return TmpTime;

}
};

int main()
{

Time T1(0, 0);
--T1;
T1.printTime();
T1++;
T1.printTime();
Time T2 = T1++; // T2 will equal T1 *before* increment
T1.printTime();
T2.printTime();

}

Program output:
23 hours and 59 minutes
0 hours and 0 minutes
0 hours and 1 minutes
0 hours and 0 minutes

Conversion Operators

• We can also use operator overloading to specify
how to convert the object to various other types

• For example, it might be nice to be able to print a
Time object like this:

Time T1(0,0);
cout << “Time is “ << T1 << endl;

• For this to work, we need to be able to convert
our Time class into a C++-style string or a C-style
string (const char*); let’s consider the latter in the
next example

// timeclass2.cc
#include <iostream>
#include <sstream> // for stringstream below
#include <string>
using namespace std;

class Time
{
private:
int Hours; // 0 to 23
int Minutes; // 0 to 59
string StringForm; // time converted to a string

public:
Time() {

Hours = Minutes = 0;
}

…
operator const char*() {

ostringstream out; // stringstream lets us build strings
out << Hours << ":" << Minutes;
StringForm = out.str(); // hold this as member data so it and the

// char* to it won't disappear at end
// of this function

return StringForm.c_str(); // get C-style const char* from string
}

};

int main()
{
Time T1(0, 0);
--T1;
cout << "Time is " << T1 << endl;

}

Program output:
Time is 23:59

Binary Addition/Subtraction

• Binary addition is declared within a class like this:
X operator + (argument);

• The current object (of type X) performs an
addition with itself and argument (argument
could be another object of the same type, or a
different type) and it returns a new object of type
X

• Subtraction is analogous but with “-” instead of
“+” as the operator

// timeclass3.cc

class Time
{

private:
int Hours; // 0 to 23
int Minutes; // 0 to 59

public:
Time() {

Hours = Minutes = 0;
}
Time(int hrs, int mins)

:Hours(hrs),Minutes(mins) {
TimeCheck();

}
void printTime() {

cout << Hours << " hours and " << Minutes << " minutes" << endl;
}
// do any rollovers necessary on hours or minutes
void TimeCheck() {

if (Minutes > 59) {
Hours += Minutes / 60;
Minutes = Minutes % 60;

}
if (Minutes < 0) {

Hours -= (-Minutes / 60) + 1;
Minutes = 60 - (-Minutes % 60);

}
if (Hours > 23) Hours = Hours % 23;
if (Hours < 0) Hours = 24 - (-Hours % 24);

}
// - operator

Time operator - (const Time &otherTime) {
int newMinutes = Minutes - otherTime.Minutes;
int newHours = Hours - otherTime.Hours;
Time NewTime(newHours, newMinutes);
return NewTime;

}
};

int main()
{

Time T1(0, 0);
cout << "T1(0, 0): ";
T1.printTime();
Time T2(2, 5);
cout << "T2(2, 5): ";
T2.printTime();
Time T3 = T1 - T2;
cout << "T3 = T1-T2 = ";
T3.printTime();

}

Program output:
T1(0, 0): 0 hours and 0 minutes
T2(2, 5): 2 hours and 5 minutes
T3 = T1-T2 = 21 hours and 55 minutes

Addition/Subtraction Assignment
Operators, += and -=

• These work similarly to + and – operators except that
the result is held in one of the operands (instead of
making a new copy to hold the result)

• For example, X += Y, where both X and Y can be objects
• Alternatively, Y could actually be of another type (so

long as the += or -= operator is defined to handle its
addition/subtraction from X)

• To declare this within a class, the syntax is
void operator += (argument)
where argument can be of the same type as the class
or a different type. There’s no return type because
we’re changing the current object.

// timeclass4.cc

class Time
{

private:
int Hours; // 0 to 23
int Minutes; // 0 to 59

public:
Time() {

Hours = Minutes = 0;
}
Time(int hrs, int mins)

:Hours(hrs),Minutes(mins) {
TimeCheck();

}
void printTime() {

cout << Hours << " hours and " << Minutes << " minutes" << endl;
}
// do any rollovers necessary on hours or minutes
void TimeCheck() {

if (Minutes > 59) {
Hours += Minutes / 60;
Minutes = Minutes % 60;

}
if (Minutes < 0) {

Hours -= (-Minutes / 60) + 1;
Minutes = 60 - (-Minutes % 60);

}
if (Hours > 23) Hours = Hours % 23;
if (Hours < 0) Hours = 24 - (-Hours % 24);

}
}

// - operator
void operator -= (const Time &otherTime) {

Minutes -= otherTime.Minutes;
Hours -= otherTime.Hours;
TimeCheck();

}
};

int main()
{
Time T1(0, 0);
cout << "T1(0, 0): ";
T1.printTime();
Time T2(2, 5);
cout << "T2(2, 5): ";
T2.printTime();
T1 -= T2;
cout << "T1 -= T2 = ";
T1.printTime();

}

Program output:
T1(0, 0): 0 hours and 0 minutes
T2(2, 5): 2 hours and 5 minutes
T1 -= T2 = 21 hours and 55 minutes

Equality (==) and Inequality (!=)
Operators

• It can also be useful to overload the == and != operators so
we can see if two objects are equal or not

• If we don’t overload the equality operator, then it will
return whether or not the objects are exactly equal at a
binary level; this is usually too stringent a test and can fail
even when the objects basically are equal

• Syntax to overload == is like this:
bool operator == (const X& otherX) { [comparison code
here] }

• Since the != operator is the logical negation of the ==
operator, we can just write the == operator and then set !=
to be its logical opposite, like this:
bool operator != (const X& otherX) {

return !(this->operator==(otherX));
}

// timeclass5.cc

class Time
{

private:
int Hours; // 0 to 23
int Minutes; // 0 to 59

public:
Time() {

Hours = Minutes = 0;
}

…
bool operator == (const Time &otherTime) {

return((Minutes == otherTime.Minutes) && (Hours == otherTime.Hours));
}
bool operator != (const Time &otherTime) {

return !(this->operator==(otherTime));
}

};

int main()
{

Time T1(0, 0);
cout << "T1(0, 0): ";
T1.printTime();
Time T2(2, 5);
cout << "T2(2, 5): ";
T2.printTime();
if (T1==T2) cout << "T1 == T2" << endl;
else cout << "T1 != T2" << endl;

}

Program output:
T1(0, 0): 0 hours and 0 minutes
T2(2, 5): 2 hours and 5 minutes
T1 != T2

Inequality Operators

• We can also overload the inequality operators <,
>, <=, and >=

• In the last example, we saw that != was just the
negation of ==, so we only had to do work on one
of these

• For inequality operators, we can similarly define
some of them and then define the others in
terms of the ones already defined: for example, if
we’ve defined <=, then > is just the logical
negation of <=

// timeclass6.cc

class Time
{
…

bool operator == (const Time &otherTime) {
return((Minutes == otherTime.Minutes) && (Hours == otherTime.Hours));

}
bool operator != (const Time &otherTime) {

return !(this->operator==(otherTime));
}
bool operator < (const Time &otherTime) {

if (Hours < otherTime.Hours) return(true);
else if (Hours > otherTime.Hours) return(false);
// by now we know Hour == otherTime.Hours
else if (Minutes < otherTime.Minutes) return(true);
else return(false);

}
bool operator <= (const Time &otherTime) {

if (this->operator==(otherTime)) return(true);
else return(this->operator<(otherTime));

}
bool operator > (const Time &otherTime) {

return !(this->operator<=(otherTime));
}
bool operator >= (const Time &otherTime) {

if (this->operator== (otherTime)) return(true);
else return(this->operator>(otherTime));

}
};

int main()
{
Time T1(0, 0);
cout << "T1(0, 0): ";
T1.printTime();
Time T2(2, 5);
cout << "T2(2, 5): ";
T2.printTime();
cout << "T1 == T2 : " << (T1==T2) << endl;
cout << "T1 < T2 : " << (T1<T2) << endl;
cout << "T1 > T2 : " << (T1>T2) << endl;
cout << "T1 <= T2 : " << (T1<=T2) << endl;
cout << "T1 >= T2 : " << (T1>=T2) << endl;

}

Program output:
T1(0, 0): 0 hours and 0 minutes
T2(2, 5): 2 hours and 5 minutes
T1 == T2 : 0
T1 < T2 : 1
T1 > T2 : 0
T1 <= T2 : 1
T1 >= T2 : 0

Copy Assignment Operator (=)
• If we are creating a new object through a copy of an existing object, like this:

ClassX X;
ClassX Y = X;
that calls the copy constructor

• However, if we already have two objects and we then want to copy one into the
other, like this:
ClassX X, Y;
Y = X;
that calls the copy assignment operator

• This was briefly mentioned in our discussion of copy constructors in Chapter 9
• If our classes contain dynamically allocated memory, we need to ensure we

perform deep copies
• Copy assignment operators have the following general syntax:

ClassX& operator = (const ClassX& src) {
if (this != &src) { // don’t copy into self

// do the copying
}
return *this;

}

// grades.cc

class ClassGrades
{

private:
string Name;
int* Grades;

public:
ClassGrades(string inName) {

cout << "In constructor" << endl;
Name = inName;
Grades = new int[3]; // assume 3 assignments
for (int i=0; i<3; i++) { Grades[i] = 0; }

}
~ClassGrades() {

cout << "In destructor" << endl;
delete [] Grades;

}
ClassGrades& operator= (const ClassGrades& src) {

cout << "In Copy Assignment Operator" << endl;
if (this != &src) {

Name = src.Name;
if (Grades != NULL) delete[] Grades;
Grades = new int[3];
for (int i=0; i<3; i++) { Grades[i] = src.Grades[i]; }

}
}
void SetGrade(int id, int grade) {

Grades[id] = grade;
}
void PrintGrades() {

cout << "Student " << Name << " has grades: ";
for (int i=0; i<3; i++) {

cout << Grades[i] << " ";
}
cout << endl;

}
};

int main()
{
ClassGrades Student1("John Smith");
Student1.SetGrade(0, 99);
cout << "Student1: "; Student1.PrintGrades();
ClassGrades Student2("Jane Doe");
Student2.SetGrade(0, 100);
cout << "Student2: "; Student2.PrintGrades();
Student2 = Student1;
cout << "Student2: "; Student2.PrintGrades();

}

Program output:
In constructor
Student1: Student John Smith has grades: 99 0 0
In constructor
Student2: Student Jane Doe has grades: 100 0 0
In Copy Assignment Operator
Student2: Student John Smith has grades: 99 0 0
In destructor
In destructor

Subscript Operator []

• We can overload the [] operator; this is useful to access
elements of an array inside a class

• Typical syntax
/* const*/ return_type& operator [] (int Index) /*const*/

• In the line above, the first (optional) const would mean
we can’t modify the value that’s being returned; the
second (optional) const means that the overloaded
operator can’t modify the class attributes at all. Using
const at either or both places helps preserve data
encapsulation (although might be inconvenient or
inappropriate if we did need to allow direct access to the
data)

// grades2.cc

class ClassGrades
{

private:
string Name;
int* Grades;

public:
…
/* replaced by [] operator below
void SetGrade(int id, int grade) {

Grades[id] = grade;
}
*/
int& operator [] (int Index) {

if (Index >=0 && Index < 3) {
return Grades[Index];

}
}

…
};

int main()
{
ClassGrades Student1("John Smith");
Student1[0] = 99;
cout << "Student1: "; Student1.PrintGrades();
ClassGrades Student2("Jane Doe");
Student2[0] = 100;
cout << "Student2: "; Student2.PrintGrades();
Student2 = Student1;
cout << "Student2: "; Student2.PrintGrades();

}

Program output:
In constructor
Student1: Student John Smith has grades: 99 0 0
In constructor
Student2: Student Jane Doe has grades: 100 0 0
In Copy Assignment Operator
Student2: Student John Smith has grades: 99 0 0
In destructor
In destructor

Overloading (): The Function Operator

• We can overload the () operator to make an
object behave like a function (a “functor”)

• This is most often used to provide callback
functions (a function that will get called by
another function or object) without having to
use function pointers

• More on functors later; the next page gives a
simple example

// printclass.cc
#include <iostream>
#include <string>
using namespace std;

class PrintClass
{

public:
void operator () (string Input) const
{

cout << Input << endl;
}

};

int main()
{

PrintClass myPrintObject;
myPrintObject("Hello, World!");

}

C++11: Move Constructors

• We’ve already discussed the need to have deep copies
when we copy an object that contains dynamically
allocated memory

• However, this copying can degrade performance if it’s
called for objects that only exist temporarily

• For example, an overloaded + or – operator typically
constructs a new object of the current class and returns it --
- but the object goes out of scope when the +/- function is
done, so we wind up invoking a copy constructor (and
deep-copying dynamically allocated memory)

• It would be better if we could “move” the temporary object
about to go out of scope into the object that is now being
created from it, to avoid an otherwise unnecessary deep
copy

Move Constructor Example
Suppose we have a record of class grades for student

John Smith, and we want to see how far above or
below the Class Average John scored on each
assignment; we can make another record for the Class
Averages and then just subtract the two objects using
an overloaded subtraction operator.

int main()
{

ClassGrades Student1("John Smith");
Student1[0] = 99; Student1[1] = 85; Student1[2] = 86;
Student1.PrintGrades();
ClassGrades Avg("Class Average");
Avg[0] = 70; Avg[1] = 72; Avg[2] = 68;
Avg.PrintGrades();
// Compute how far above/below Class Avg were each of Student1's scores
ClassGrades StudentvsAvg("Label-will-be-overwritten");
StudentvsAvg = Student1 - Avg;
StudentvsAvg.PrintGrades();

}

Move Constructor Example

• We can define the subtraction operator this way:
ClassGrades operator- (const ClassGrades& ToSubtract) {

cout << "Subtracting record " << ToSubtract.Name;
cout << " from record " << Name << endl;
string NewName;
NewName = Name + " - " + ToSubtract.Name;
ClassGrades NewClassGrades(NewName);
for (int i=0; i<3; i++) {

NewClassGrades[i] = Grades[i] - ToSubtract.Grades[i];
}
return NewClassGrades;

}

• When we return NewClassGrades it goes out of scope, so in principle the
compiler should call a copy constructor to copy it into a new object in the
calling code (here, Student1 – Avg)

• Some compilers seem to be smart enough to optimize away this extra
copy automatically; if this doesn’t happen, we can use a Move Constructor

Move Constructor Example
ClassGrades(ClassGrades&& src) { // move constructor (C++11 only)

cout << "In Move Constructor moving from " << src.Name << endl;
Name = src.Name;
Grades = src.Grades; // take ownership of arrays
src.Grades = NULL;

}

• The && in the argument distinguishes this constructor as a move
constructor

• We “move” the pointer to the Grades array from being owned by src to
being owned by the current object (“this”)

• We then invalidate the src.Grades pointer in the source object, so that if it
goes out of scope, the memory won’t go away with it (this means we need
to change the destructor to free Grades[] only if the pointer isn’t NULL)

~ClassGrades() {
cout << "In destructor for record " << Name << endl;
if (Grades != NULL) delete [] Grades;

}

Move Assignment Operators

• In our example code we use a copy assignment
operator to copy the result of subtraction into an
existing object:

ClassGrades StudentvsAvg("Label-will-be-overwritten");
StudentvsAvg = Student1 - Avg;

• This can also lead to an unwanted deep copy, because Student1-Avg is
going out of scope as soon as it is copied into StudentsvsAvg

• By the way, Student1-Avg it is called an “r-value” because it has a value,
but that value can only sit on the right-hand side of an assignment
operation (i.e., it would never make sense to say Student1-Avg = X); move
operators are useful in avoiding copies of r-value expressions

• A move assignment operator lets us move (dynamically allocated member
data from) the temporary rvalue (Student1-Avg) into the existing object
StudentsvsAvg

Move Assignment Operator Example

// move assignment operator (C++11 only)
ClassGrades& operator= (ClassGrades&& src) {

cout << "In Move Assignment Operator" << endl;
cout << "Moving record " << src.Name << " into record " << Name << endl;
Name = src.Name;
if (this != &src && src.Grades != NULL) {

if (Grades != NULL) delete[] Grades;
Grades = src.Grades; // take ownership of arrays
src.Grades = NULL;

}
return *this;

}

Complete Example (w/out C++ Move Operations)
// grades3.cc

class ClassGrades
{

private:
string Name;
int* Grades;

public:
ClassGrades(string inName) {

cout << "In constructor for record " << inName << endl;
Name = inName;
Grades = new int[3]; // assume 3 assignments
for (int i=0; i<3; i++) { Grades[i] = 0; }

}
~ClassGrades() {

cout << "In destructor for record " << Name << endl;
if (Grades != NULL) delete [] Grades;

}
ClassGrades(const ClassGrades& src) {

cout << "In Copy Constructor copying from " << src.Name << endl;
Name = src.Name;
Grades = new int[3];
for (int i=0; i<3; i++) { Grades[i] = src.Grades[i]; }

}
ClassGrades& operator= (const ClassGrades& src) {

cout << "In Copy Assignment Operator" << endl;
cout << "Copying record " << src.Name << " into record " << Name << endl;
Name = src.Name;
if (this != &src && src.Grades != NULL) {

if (Grades != NULL) delete[] Grades;
Grades = new int[3];
for (int i=0; i<3; i++) { Grades[i] = src.Grades[i]; }

}
return *this;

}
int& operator [] (int Index) {

if (Index >=0 && Index < 3) {
return Grades[Index];

}
}

ClassGrades operator- (const ClassGrades& ToSubtract) {
cout << "Subtracting record " << ToSubtract.Name;
cout << " from record " << Name << endl;
string NewName;
NewName = Name + " - " + ToSubtract.Name;
ClassGrades NewClassGrades(NewName);
for (int i=0; i<3; i++) {

NewClassGrades[i] = Grades[i] - ToSubtract.Grades[i];
}
return NewClassGrades;

}
void PrintGrades() {

cout << "Student " << Name << " has grades: ";
for (int i=0; i<3; i++) {

cout << Grades[i] << " ";
}
cout << endl;

}
};

int main()
{

ClassGrades Student1("John Smith");
Student1[0] = 99; Student1[1] = 85; Student1[2] = 86;
Student1.PrintGrades();
ClassGrades Avg("Class Average");
Avg[0] = 70; Avg[1] = 72; Avg[2] = 68;
Avg.PrintGrades();
// Compute how far above/below Class Avg were each of Student1's

scores
ClassGrades StudentvsAvg("Label-will-be-overwritten");
StudentvsAvg = Student1 - Avg;
StudentvsAvg.PrintGrades();

}

Most Relevant Parts, and Output

Program output:
In constructor for record John Smith
Student John Smith has grades: 99 85 86
In constructor for record Class Average
Student Class Average has grades: 70 72 68
In constructor for record Label-will-be-overwritten
Subtracting record Class Average from record John Smith
In constructor for record John Smith - Class Average
In Copy Assignment Operator
Copying record John Smith - Class Average into record Label-will-be-overwritten
In destructor for record John Smith - Class Average
Student John Smith - Class Average has grades: 29 13 18
In destructor for record John Smith - Class Average
In destructor for record Class Average
In destructor for record John Smith

ClassGrades operator- (const ClassGrades& ToSubtract) {
cout << "Subtracting record " << ToSubtract.Name;
cout << " from record " << Name << endl;
string NewName;
NewName = Name + " - " + ToSubtract.Name;
ClassGrades NewClassGrades(NewName);
for (int i=0; i<3; i++) {
NewClassGrades[i] = Grades[i] - ToSubtract.Grades[i];

}
return NewClassGrades;

}

int main()
{

ClassGrades Student1("John Smith");
Student1[0] = 99; Student1[1] = 85; Student1[2] = 86;
Student1.PrintGrades();
ClassGrades Avg("Class Average");
Avg[0] = 70; Avg[1] = 72; Avg[2] = 68;
Avg.PrintGrades();
// Compute how far above/below Class Avg were each of Student1's

scores
ClassGrades StudentvsAvg("Label-will-be-overwritten");
StudentvsAvg = Student1 - Avg;
StudentvsAvg.PrintGrades();

}

•Compiler seems to have
optimized out the copy
constructor when we return
from the (-) operator;
excellent!
•But we are still having to do a
deep copy in the copy
assignment operator; better to
“move” the tempoarary rvalue
(Student1-Avg) into
StudentvsAvg !

• If we add the move constructor and move
assignment operators given above (example
listing grades3a.cc), we now get this output

In constructor for record John Smith
Student John Smith has grades: 99 85 86
In constructor for record Class Average
Student Class Average has grades: 70 72 68
In constructor for record Label-will-be-overwritten
Subtracting record Class Average from record John Smith
In constructor for record John Smith - Class Average
In Move Assignment Operator
Moving record John Smith - Class Average into record Label-will-be-overwritten
In destructor for record John Smith - Class Average
Student John Smith - Class Average has grades: 29 13 18
In destructor for record John Smith - Class Average
In destructor for record Class Average
In destructor for record John Smith

• The move assignment operator has replaced the copy assignment operator (and
saved us one deep copy)

• To get the C++ features of grades3a.cc working, we compiled it like this (using g++):
g++ -std=c++11 -o grades3a grades3a.cc

Chapter 13: Casts

A cast is an operation that converts one type to
another, sometimes in a way that is not
strictly safe; use with caution

• C-style casts

• static_cast

• dynamic_cast

• reinterpret_cast

• const_cast

The Reason for Casts
• In well written C++, casts should hardly ever be needed.

However, in C, they were needed somewhat frequently, and
hence they may also be needed in a C++ program if it calls
legacy C code

• For example, C originally did not support Boolean data
types; integers were usually used as stand-ins (0 for false
and 1 for true)

• If we want to call an old C routine from C++, we might need
to convert our data from Boolean types to integers

• Rather than making the programmer do the conversion
manually, we can do it automatically using a cast

• A C-style cast can still be used in C++; the syntax to convert
variable y from some type old_type to a variable x of type
new_type is

new_type x = (new_type) y;

C-Style Casting Example
// c-cast.cc
#include <iostream>
using namespace std;

int main()
{

int i;
bool b_t = true, b_f = false;

i = (int) b_t;
cout << "true casts to int as " << i << endl;
i = (int) b_f;
cout << "false casts to int as " << i << endl;

}

Program output:
true casts to int as 1
false casts to int as 0

Implicit Casts

• It is also possible to forget the cast syntax, and just let the compiler
do the conversion for you. For example,

old_type j = some_value;
new_type i = j;

• This avoids the need to add the cast specifier [e.g., new_type i =
(old_type) j]

• However, since a cast is being performed, it is considered better
form to specify the cast directly as a clue to other programmers
that a conversion is happening (especially because casts should
always be used with caution)

• Implicit casts or C-style casts can effectively convert things that
should be convertible, like between integers and Booleans, double
precision and integers (with roundoff of course), etc.

• They may not work as desired (or at all) for other examples,
especially for user-defined data types (classes)

Implicit Cast Example (not
recommended)

// implicit-cast.cc
#include <iostream>
using namespace std;

// let the compiler cast it for us automatically
int main()
{

int i;
bool b_t = true, b_f = false;

i = b_t;
cout << "true casts to int as " << i << endl;
i = b_f;
cout << "false casts to int as " << i << endl;

}
Program output:
true casts to int as 1
false casts to int as 0

Problems with C-Style Casts
• As we’ve just seen, it’s usually considered better to use casting

syntax rather than let the compiler handle it implicitly, as a way of
warning other programmers that a conversion is happening

• On the other hand, C-style casts can be very dangerous because
they can be used to write code that doesn’t really make sense

• For example, the following code won’t work in C++:
char* name = “David”;
int* buf = name; // can’t convert char* to int*

• However, we could force it to execute with a C-style cast:
int* buf = (int *)name;

• But we couldn’t (or at least shouldn’t!) use buf as an integer pointer
to do any integer operations, because the contents aren’t really
meaningful as integers

• The reason C allows such nonsense casts is that in old C, libraries
that dealt with arrays of arbitrary types had to have the pointers
cast to some common pointer type (often char* or, later, void*)

C++ Ways to do Casts

• Given the dangerous nature of C-style casts, C++
introduces several new casting operations; which one
to use depends on the situation

• Unfortunately, the C++ casts aren’t particularly safe
operations, either, and the syntax makes them a bit
more cumbersome to use than the old C-style casts

• The C++ casts are of four types: static_cast,
dynamic_cast, reinterpret_cast, and const_cast

• The syntax for all these has a common form:
new_type x = cast_type <new_type>(y)

• This casts variable y of some old datatype to variable x
of type new_type

static_cast

• static_cast will do explicit type conversion
between basic data types where it makes sense
(e.g., converting a double like 4.184 to an integer
4) and it can convert pointers between related
data types

• The validity of the cast is checked at compile type
(that’s the “static” in static_cast)

• When converting pointers, the cast is valid if the
compiler detects the data types are “related”
(e.g., they are from the same class inheritance
hierarchy)

Base and Derived Class Pointers

• Suppose we have a Base Class (say, Polygon) and a
Derived Class (say, Square)

• If we make a new Square, we can have a pointer to it of
type Square*

• We could just as easily treat this as a pointer of type
Polygon*, since of course a Square is a Polygon

• Hence, we could create a Polygon* pointer to a new
Square like this, with no problems:

Polygon* pPolygon = new Square();
• This does an implicit conversion of Square* to

Polygon*; converting a pointer to a type upwards
(towards parents) in an inheritance hierarchy is called
“upcasting” and is perfectly valid

Base and Derived Class Pointers

• However, going the other way (converting a pointer of a
parent type to a derived type) is called “downcasting”
(because it goes down in the inheritance hierarchy) is not
ok:

Square* pSquare = pPolygon; // error
after all, we don’t know the Polygon is really a square! The
line above won’t compile.

• But what if pPolygon is really a pointer to a square, e.g., if
we got it from an upcast:

Polygon* pPolygon = new Square();
• Then we should be able to convert the Polygon* pointer

back to a Square* because the object pointed to really is a
square! Can do this with static_cast:

Square* pSquare = static_cast<Square*>(pPolygon);

Dangers of static_cast

• So, static_cast gives us a way to explicitly convert basic
data types or to convert pointers for related data types,
like a Polygon* to a Square* when the Polygon* is
really pointing to a Square

• The problem is that static_cast will also allow us to
convert any Polygon* to Square*, even when Polygon*
might have been upcast from some other shape (like
Triangle*) or when Polygon* is simply pointing to a
generic Polygon

• Of course this is bad because if we had a Polygon*
pointing to a Triangle, and then cast it to a Square*, we
would get undefined, nonsensical results if we then
tried to access the Triangle like it was a Square

dynamic_cast

• The problems in using static_cast raised in the
previous slide can be remedied using
dynamic_cast, which means that the cast is
attempted at runtime, when the system can
know whether or not the cast succeeded

• Continuing the previous example, if we tried to
dynamically cast a Polygon* that points to a
Triangle down to a Square*, the cast would fail
(as it should)

• If a cast fails, the pointer resulting from the cast is
set to NULL; we can check for this before
executing code that depends on the cast working

dynamic_cast Example

Polygon* pPolygon = new Triangle();
// try a dynamic downcast
Square* pSquare =

dynamic_cast<Square*>(pPolygon);

if (pSquare) // See if cast succeeded (fails here)
pSquare->SomeSquareMethod();

dynamic_cast Example
• The previous example is a bit silly because it’s obvious to

the programmer that pPolygon* indeed points to a
Triangle, not a Square, so the dynamic cast is bound to fail

• However, you can easily imagine having a Polygon* passed
to some subroutine that handles Polygons in a mostly
generic way; maybe upcasting was done to take derived
type pointers and convert them to Polygon* types so they
could all be handled generically

• But if such upcasting was done outside the subroutine, the
subroutine doesn’t know what the original derived-type
pointer types were…fortunately dynamic_cast does

• On the other hand, one might argue the subroutine is not
well designed because it should indeed handle all the
Polygon* types generically, and not need to know what the
derived type is; virtual functions can still provide different
functionality for different derived types

reinterpret_cast

• reinterpret_cast is basically the C++ version of the C-
style cast: it says to “reinterpret” the old pointer type
as the new pointer type (i.e., pretend they are the
same), even when these types really have nothing to
do with each other

• It has all the same dangers as C-style casts, and should
therefore be avoided when possible

• It is useful for converting classes to some very basic
data type for use in low-level libraries, such as writing
out a class as a series of bytes to disk:

old_type* x;
unsigned char* buffer =

reinterpret_cast<unsigned char*>(x);

const_cast

• const_cast is a way to ignore the const properties
of an object

• This should not be used as a hack to get around
an inconsistency in how const was specified in
your code

• However, sometimes you interface with code
from another source and you can’t make
everything consistent; const_cast provides a
workaround for mismatches in const
specifications

const_cast Example
// const-cast.cc
// …
class MyClass {

public:
void Print() { // should be declared const but isn't

cout << "Object prints!" << endl;
}

};

// const below promises PrintData() won’t change X, but
// we didn’t declare MyClass::Print() as const, so X.Print() looks
// like trouble to the compiler
void PrintData(const MyClass& X) {

// X.Print(); // compiler gives error
MyClass& Y = const_cast <MyClass&>(X); // workaround
Y.Print();

}

int main()
{

MyClass X;
PrintData(X);

}

Casting Summary
• Casting is ok in some situations, like when we need to truncate a

double to an integer
• Casting is necessary in some cases when we want to interact with a

legacy library (that can only deal with bytes of type unsigned char*,
for example)

• Casting a pointer from a derived type to a parent type is called
upcasting and is ok

• Casting a pointer from a parent type to a derived type is called
downcasting and is only ok if the parent type pointer is really
already of the derived type (e.g., we got the parent pointer from an
upcast); dynamic_cast will check this for us and is safe to use as
long as we catch failures by checking if the resulting pointer is NULL
or not

• Usually it is better to use virtual functions than dynamic casts
• Using a const_cast is a bit of a hack but can be acceptable if you

don’t have control over all the code you’re using and you need a
workaround to solve a const mismatch

Chapter 14: Macros, Templates, and
Smart Pointers

• The preprocessor and #define macros
• #ifdef, #ifndef, #endif, and defining symbols (like

–D DEBUG) at compile time
• Using assert() in debugging
• Header guards
• Template functions
• Template classes
• Static member data in template classes
• shared_ptr
• unique_ptr

The C++ Preprocessor

• The preprocessor performs some basic text
substitutions on a source file before handing it
to the compiler

• It inserts the contents of header files included
with #include

• It makes substitutions specified by #define

• #include and #define are called “preprocessor
directives”

#define Macros

• #define allows one to specify shortcuts to
more complicated expressions or to name
constants. Examples:
#define PI 3.1415926
#define SQUARE(y) ((y)*(y))

• These types of uses made sense in the days of
C, but C++ offers better ways to do these
things now

#define constants

• In the days of C, it made much more sense to #define a
constant like #define PI 3.14159 and then use the symbol
PI, instead of literally hard-coding the number 3.14159 over
and over in the code

• After all, it might be important to use the same number of
digits consistently to avoid numerical issues, and we may
decide later we need to add more digits; we could
accomplish that by changing just one definition in the code

• However, with the C++ const keyword, it’s better now to
just define this as a const (which is type-safe):

const double PI 3.14159;

#define macros

• For certain simple operations, it can be convenient to create a
#define macro and use that instead of using a function call

• For example,
#define SQUARE(y) ((y)*(y))
can be used to replace something like SQUARE(42) with ((42)*(42))

• The advantage of the macro is that it will work equally well with
float, double, and int types, and it doesn’t require the overhead of
an explicit function call

• The disadvantage is that it doesn’t protect us if the user tries to
pass it a string, etc.

• If you do use #define to make a macro, you do need all those extra
parentheses: otherwise, unexpected results could occur if we pass
an expression instead of a simple argument

#ifdef, #ifndef, and #endif

• The preprocessor can “turn on” or “turn off”
(really, include or not include) a section of code
based on directives

• To include a section of code if a symbol X has
been defined, do this:

#ifdef X
[code to be included]
#endif

• To include a section of code if a symbol X has not
been defined, do this:

#ifndef X
[code to be included]
#endif

Defining Symbols

• So, #ifdef X will include code up to the
subsequent #endif directive, if symbol X is
defined. How to we define this symbol?

• (1) We can simply define it using a preprocessor
directive like this:

#define X some-value
(like in our previous SQUARE(x) macro example)

• (2) We don’t even need to give the symbol a
value; it’s enough to just say it’s defined, like this:

#define X
• (3) We can also define the symbol at compile

time; C++ compilers allow symbols to be defined
using –D SYMBOL[=VALUE]

Example: Preprocessor Directives for
Optional Debugging Code

• Frequently, we want to run a lot of extra checks when
we are debugging a code, but not necessarily when we
are running it normally (depending on what tests are
done, they might slow down the code)

• We can do this with preprocessor directives! Just wrap
the debug code in #ifdef DEBUG … #endif

• To turn on debugging, add #define DEBUG to the top of
the file (before any instances of #ifdef DEBUG), or even
better, just recompile with a compiler flag –D DEBUG
(or –DDEBUG … the space is optional)

• To turn off debugging, remove any #define DEBUG
directives and recompile without the –D DEBUG flag

-D DEBUG Example
// define_debug.cc
// for g++ compiled with:
// g++ -DDEBUG -o define_debug define_debug.cc
// -DDEBUG is equivalent to the source #define DEBUG
// If we recompile without -DDEBUG then the debug test
// below will not run
#include <iostream>
using namespace std;

int main() {
#ifdef DEBUG
cout << "I'm doing a debug test now." << endl;
#endif
cout << "Hello, world" << endl;

}

Debugging with assert()
• Alternatively, we can also add some debugging checks with

the assert() function (sometimes implemented as
preprocessor macros)

• assert(x) checks whether the expression x evaluates as true
or not, e.g., assert(5>3); if the assertion fails, then the
program prints an error message

• To use, #include <assert.h>
• Not recommended over #define DEBUG sections, which are

more flexible (can do more than check the truth of some
expression) and can be turned on or off (although some
build systems might be smart enough turn off assert() for
release builds)

• Another drawback: assert() can cause a core dump, and the
programmer and/or user might not want the core dump
files cluttering the directory

assert() example

// assert.cc
#include <iostream>
#include <assert.h>
using namespace std;

int main() {
int x=5;

assert (x>7);
cout << "End of program" << endl;

}

Program output:
assert: assert.cc:9: int main(): Assertion `x>7' failed.
Abort (core dumped)

Preprocessor Header Guards

• Another legitimate use of the preprocessor is to create
“header guards”

• Some C++ projects are complicated enough, with some
header files including other header files, that it can be
hard to track whether or not you already have included
all the header files you need

• To avoid unnecessary multiple inclusion of header files
(or even an infinite regression of header files including
each other!), we can use a “header guard”

• The header guard will make use of preprocessor
directives #ifndef and #endif

Header Guard Syntax

File myheader.h:

#ifndef MYHEADER_H
#define MYHEADER_H

[regular contents of header go here]
#endif // end of myheader.h

Now when myheader.h gets included, the contents
are only added once; this sets MY_HEADER_H, and
subsequent encounters of #include “myheader.h”
will not add anything because MYHEADER_H is
already defined

Introduction to Templates

• One advantage of a macro like #define SQUARE(y)
((y)*(y)) is that it can work with multiple data
types, like ints, floats, and doubles

• However, a disadvantage is that it is not type-safe

• Templates provide a way to perform generic
operations in a type-safe way; they also provide a
way to create generic classes that utilize different
types

Template Functions
• To create a function that deals generically with

multiple datatypes, make a “template
function” like this:

template <typename T1[, typename T2, …]>
return-type function-name ([function args])
{ … function definition … }

• If two of the types have to be identical, you
can specify it like this:
template <typename T1, typename T2 = T1>

// template_function.cc
#include <iostream>
using namespace std;

template <typename T>
T Square(const T& y)
{

T ySquared = y * y; // * operator must exist for type T
return (ySquared);

}

int main()
{

int p = 2;
int pSquared = Square(p);
cout << p << " squared = " << pSquared << endl;

double q = 0.5;
double qSquared = Square(q);
cout << q << " squared = " << qSquared << endl;

}
Program output:
2 squared = 4
0.5 squared = 0.25

Template Classes

• Just like we can use templates to create generic functions,
we can also use templates to create generic classes that
employ different types for member data and/or in their
member functions

• The syntax for specifying a template class is similar to that
for a template function:
template <typename T1[, typename T2, …]>
class MyClass
{ … class definition here, using T1, etc., to substitute for
specific type names where desired…};

• To create a template class, you have to tell it what type(s)
to use in creating it; specify these in <>:
MyClass <int> IntMyClass;

// template_class.cc
#include <iostream>
using namespace std;

template <typename T>
class MyClass
{

private:
T Val;

public:
void SetVal(const T& x) { Val = x; }
const T& GetVal() const { return(Val); }
// function above is const function: does not change obj
// returns const ref, meaning we can't change the value
// even though GetVal() is giving us a ref

};

int main()
{

MyClass <int> I; // specify what type to use with <>
I.SetVal(42);
std::cout << "I holds value " << I.GetVal() << endl;
MyClass <double> D;
D.SetVal(3.1415926);
std::cout << "D holds value " << D.GetVal() << endl;

}
Program output:
I holds value 42
D holds value 3.14159

Templates with Default Types

• We can specify default datatypes for
templates like this:
template <typename T1=int,

typename T2=int>
class MyClass { … };

• A class could be instantiated like this:
MyClass <> X(1,2); // use default type int

MyClass <double, double> Y(1.2, 3.4);

Static Member Data in
Template Classes

• Static member data in template classes have
to be defined outside the template class, even
if the data type of the static data is fixed and
doesn’t depend on the template

• We accomplish this as follows:
template<typename T[,…]>
StaticMemberType
ClassName<T[,…]>::StaticMemberName;

// template_class_static.cc
#include <iostream>
using namespace std;

// oversimplified template class example where the class doesn't
// even really depend on typename, but the point is to show
// how template classes work with static member data
template <typename T>
class MyClass
{

public:
static int S;

};

// static data has to be declared outside the class
// here's how we do it, even though in this case the
// static data is always an int and doesn't depend on typename
template <typename T> int MyClass<T>::S;

int main()
{

MyClass<int> IntClass;
MyClass<int> IntClass2;
IntClass.S = 1;

MyClass<double> DoubleClass;
DoubleClass.S = 99;

cout << "IntClass static value = " << IntClass.S << endl;
cout << "IntClass2 static value = " << IntClass2.S << endl;
cout << "DoubleClass static value = " << DoubleClass.S << endl;

}

Program output:
IntClass static value = 1
IntClass2 static value = 1
DoubleClass static value = 3

Smart Pointers

A “smart pointer” is a pointer that automates
destruction of the object it points to; consider
using smart pointers if you want to
dynamically allocate user-defined objects
(classes) with “new”

When to Use Smart Pointers

• Smart pointers are a very useful replacement for regular
pointers when you create a new object using “new”: they
work like regular pointers, but when no pointer points to
the object anymore, the object is automatically cleaned up
with “delete”

• This is extremely helpful because it removes the need for
the programmer to track when to delete the object (or who
“owns” the object and is responsible for cleaning it up)

• They are not necessarily helpful if the programmer needs
an object just within the scope of one function: there may
be no need to create the object using new, or else it may be
very simple to just call delete at the end of the function

std::shared_ptr

• A “shared pointer” is a smart pointer that tracks
all references to the object; when the reference
count gets to 0, the object is no longer needed
and is automatically deleted. This type of pointer
is called a “reference counted” pointer

• Originally standardized in the Boost library
(www.boost.org), a popular place for helpful C++
libraries; eventually moved into the standard
library as of C++11 (may need to compile with
C++11 flags like this: g++ -std=c++11)

• Need to #include <memory> to use it

http://www.boost.org/

std::shared_ptr

• Create a shared_ptr smart pointer pointing to an object
of type X using this syntax:

std::shared_ptr<X> MyPtr(new X(ctor-args));

where ctor-args are the arguments to the constructor

• We can then use MyPtr like a pointer (e.g., * and ->
operations work because they’ve been overloaded)

• However, if we pass the pointer to a function, the
function needs to be told to expect type
std::shared_ptr<X>, not type X*

Compiling with C++11 features

• Some C++11 features, like smart pointers, are
not fully implemented yet in all compilers

• To get the smart pointer examples in this
chapter to work with gcc 4.8.2, I had to specify
g++ -std=c++11

// shared_ptr.cc
#include <iostream>
#include <memory>
using namespace std;

class MyClass {
public:
MyClass() { cout << "Constructing MyClass" << endl; }
~MyClass() { cout << "Destructing MyClass" << endl; }

};

void misc_function(shared_ptr<MyClass> p);

int main()
{

shared_ptr<MyClass> myp(new MyClass);
// use_count() prints number of references the object pointed to;
// mainly used for debugging / pedagogical purposes
cout << "Just created shared pointer myp" << endl;
cout << myp.use_count() << endl;
misc_function(myp);
cout << "Back in main" << endl;
cout << myp.use_count() << endl;

}

void misc_function(shared_ptr<MyClass> p) {
// Passed p by value, so now one more reference to
// original obj while we're in this function
cout << "In misc_function." << endl;
cout << p.use_count() << endl;

}

Program output:
Constructing MyClass
Just created shared pointer myp
1
In misc_function.
2
Back in main
1
Destructing MyClass

Another shared_ptr Example

• This example revisits our “ClassGrades” class
and this time dynamically allocates the objects
and puts smart pointers (shared_ptr) pointing
to them into a standard vector

• A vector of shared pointers to objects of type
X is declared this way:
vector<shared_ptr<X>> MyVec;

// shared_ptr_grades.cc
// for g++ compiled with:
// g++ -std=c++11 -o shared_ptr_grades shared_ptr_grades.cc
#include <iostream>
#include <string>
#include <vector>
#include <memory> // for shared_ptr
using namespace std;

class ClassGrades
{

private:
string Name;
int* Grades;

public:
ClassGrades(string inName) {

cout << "In constructor for record " << inName << endl;
Name = inName;
Grades = new int[3]; // assume 3 assignments
for (int i=0; i<3; i++) { Grades[i] = 0; }

}
~ClassGrades() {

cout << "In destructor for record " << Name << endl;
if (Grades != NULL) delete [] Grades;

}
int& operator [] (int Index) {

if (Index >=0 && Index < 3) {
return Grades[Index];

}
}
void PrintGrades() {

cout << "Student " << Name << " has grades: ";
for (int i=0; i<3; i++) {

cout << Grades[i] << " ";
}
cout << endl;

}
};

int main()
{

// This time we will dynamically allocate students using new, and we
// will handle the pointers using smart pointers so we don't have to
// explicitly remember to delete the ClassGrades objects
vector<shared_ptr<ClassGrades>> StudentList;

// Just make 2 of them for simplicity
int NumStudents = 2;
for (int i=0; i<NumStudents; i++) {
// make a shared pointer to a new student
if (i==0) {

shared_ptr<ClassGrades> NewStudent(new ClassGrades("John Smith"));
(*NewStudent)[0] = 70; (*NewStudent)[1] = 72; (*NewStudent)[2] = 86;
StudentList.push_back(NewStudent);

}
else if (i==1) {

shared_ptr<ClassGrades> NewStudent(new ClassGrades("Sally Brown"));
(*NewStudent)[0] = 82; (*NewStudent)[1] = 90; (*NewStudent)[2] = 80;
StudentList.push_back(NewStudent);

}
}

// iterate through the vector
for (int i=0; i<StudentList.size(); i++) {
cout << "Grades for student #" << i << ":" << endl;
StudentList[i]->PrintGrades();

}

// we created the ClassGrades objects with new but they will delete
// themselves when the smart pointers go out of scope

}

Program output:
In constructor for record John Smith
In constructor for record Sally Brown
Grades for student #0:
Student John Smith has grades: 70 72 86
Grades for student #1:
Student Sally Brown has grades: 82 90 80
In destructor for record John Smith
In destructor for record Sally Brown

std::unique_ptr

• Also introduced into C++11, and also defined in
the header <memory>

• unique_ptr is a smart pointer that allows only
one copy of the pointer to exist; one cannot copy
a unique_ptr. However, one can move a
unique_ptr to another unique_ptr (using
std::move()) to “transfer ownership” of the
object.

• Can still pass to a function if we use type const
unique_ptr & (a reference, so we don’t have to
make a copy)

#include <memory>
using namespace std;

int main()
{

unique_ptr<int> p(new int(5)); // make a smart ptr to an int holding val 5
//unique_ptr<int> q = p; // compile error can't make copy of unique_ptr

unique_ptr<int> q = std::move(p); // Transfer ownership of p to q

q.reset(); // deletes memory pointed to by q
p.reset(); // does nothing, move operation invalidated p as pointer

}

unique_ptr Example

Chapter 15: Exception Handling

• Introduction to exception handling

• try and catch

• The std::exception class

• Custom exceptions derived from
std::exception

Introduction to Exceptions

• An “exception” is just a (hopefully) unusual
situation that might cause problems for a
program: an attempt to allocate more memory
than we have, trying to read too many lines from
a file, trying to divide by zero, etc.

• C++ provides a mechanism to try to catch these
types of errors in a generic sort of way

• If we “handle” these sorts of exceptions, we
make our code “exception safe”

Bad Allocation Example

• Suppose we want to create an array of 10
integers, but we have a typo and we accidentally
request allocation of -10 integers:

int *p = new int[-10];

• This makes no sense, and the allocation will fail,
as demonstrated in the following example
program

• A more common example of failed memory
allocation would be if we ask for too much
memory

// bad_alloc.cc
#include <iostream>
using namespace std;

int main() {
int* p = new int[-10];
p[0] = 42;
delete[] p;

}

Program output:
terminate called after throwing an instance of 'std::bad_alloc'

what(): std::bad_alloc
Abort (core dumped)

Handling the Exception

• The previous program crashes messily and we get
a core dump (creating a potentially large file with
a name like core.17820; the core file might be
useful to the programmer for debugging
purposes, but the user is just going to see it as
clutter

• We can avoid the core dump if we “handle” the
exception using the try/catch keywords:
try { [some code to execute] }
catch (catch-type) { [do this upon exception]}

// bad_alloc2.cc
#include <iostream>
using namespace std;

int main() {
try {

int* p = new int[-10];
p[0] = 42;
delete[] p;

}
catch (...) {

cout << "Some exception occurred" << endl;
}

}

Program output:
Some exception occurred

Discussion of try/catch Example

• We put the code that might cause an exception into a try{}
block

• If an exception occurs within this block, then immediately
upon the exception, the program skips to the code
specified by the catch{} block

• The core dump is avoided because the exception is caught
• Immediately after the catch keyword, the type of exception

to catch is specified in parentheses; ellipses (…) say to
catch all possible exceptions

• This try/catch handling of the exception saves us from the
core dump, but the error message is actually less
informative than what we got before! Need less generic
handling of the exception.

More Specific Catch Statements

• We can specify multiple catch{} statements after a try{},
with code appropriate to handle each of the types of
exception that might have occurred in the try{} block. For
example,
try { }
catch (exception_type_1) { … }
catch (exception_type_2) { … }
catch (…) { … } // all remaining exception types

• This will first try to handle exception_type_1, and if that
doesn’t match, it will then try to handle exception_type_2,
and if that doesn’t match, it will finally treat the exception
generically and handle all remaining types together; only
the fist matching catch() block will be executed

// bad_alloc3.cc
#include <iostream>
using namespace std;

int main() {
try {

int* p = new int[-10];
p[0] = 42;
delete[] p;

}
catch (std::bad_alloc& ex) {

cout << "Bad allocation occurred: " << ex.what() << endl;
}
catch (std::exception& ex) {

cout << "Some standard exception occurred: " << ex.what() << endl;
}
catch (...) {

cout << "Some exception occurred" << endl;
}

}
Program output:
Bad allocation occurred: std::bad_alloc

Catch Statements in the Example

• In the previous listing, we first try to catch
exceptions of the type std::bad_alloc
(corresponding to a failed memory allocation,
which is the case here)

• If that hadn’t worked, we then would have
tried exceptions of the type std::exception
(which would be virtually all of them)

• If that somehow still didn’t work, we would
catch all remaining exceptions with (…)

Common Types of Exceptions

The std::exception class is a base class for multiple types of
exceptions, including:
• bad_alloc: An attempt to create new memory using the

new keyword has failed
• bad_cast: An attempt to do a dynamic cast has failed

because objects are not of the appropriate type for a
dynamic cast

• ios_base::failure: Problems in functions from the iostream
library

Because bad_alloc is of type std::exception, in our previous
listing, either of the first two catch() statements would have
been a match; but the first match found is executed and the
others are ignored

Creating an Exception with throw

• The “throw” keyword does the opposite of
catch: instead of handling an exception, it
creates an exception

• You can “throw” an exception of any type, so
long as there is a “catch” that knows how to
catch that type (usually derived from
std::exception, but technically could also be a
simple string or an integer)

Creating a Custom Exception Class

• You might want to handle your own types of
exceptions that aren’t defined already in C++

• To do this, create a custom exception class; you will
probably want to derive from std::exception, because
then all existing handlers for that type will also work
for your exception

• Alternatively, you could also inherit from
std::logic_error (error related to the program logic) or
std::runtime_error (error detected during runtime),
which both inherit from std::exception

• With this exception class available, you can then throw
an object of this type

Custom Exception Class Example
// custom_exception.cc
#include <exception>
using namespace std;

class MyException: public std::exception
{

string Message;

public:
MyException(const char *msg):Message(msg) {}
virtual const char* what() const throw() { return Message.c_str(); }
~MyException() throw() {}

};

Custom Exception Class Explanation

• The std::exception class defines a virtual function what() that
should return an error message of what kind of exception occurred

• This function is normally defined in the class like this:
virtual const char* what() const throw() {…}

• The “const” after what() just says the function doesn’t change the
class

• The “throw()” right before the definition just means that this
function itself is not supposed to throw an exception (otherwise we
would be throwing an exception while handling another exception,
not a good situation); anything in parentheses would indicate some
type that the function could throw

• We also need to promise the exception class destructor will not
throw, either, and that’s done with this:
~MyException() throw() { } // don’t really need to define further

Custom Exception Class in Action
(using the custom exception class MyClass() defined previously)

double SafeSqrt(double x) {
if (x < 0.0)

throw MyException("MyException: Tried to take sqrt of negative number");
return sqrt(x);

}

int main() {
double x = -4.0, y;
try {

y = SafeSqrt(x);
cout << "The square root of " << x << " is " << y << endl;

}
catch (std::exception& ex) { // any std::exception incl. ours!

cout << ex.what() << endl;
}

}
Program output:
MyException: Tried to take sqrt of negative number

Uncaught Exceptions

• What if we throw an exception that we don’t catch?

• Then we’re back in the same situation we were with
our first exception example, bad_alloc.cc : we get an
error message, and possibly a core dump, but the
program terminates and we are unable to proceed

• If we handle (catch) the exception, we at least have the
option of doing something and then letting the
program proceed

• The next listing shows what happens if we throw an
exception using MyException but don’t catch it

// from listing custom_exception2.cc
// MyException still defined as previously

double SafeSqrt(double x) {
if (x < 0.0)

throw MyException("MyException: Tried to take sqrt of negative number");
return sqrt(x);

}

// run this to see what happens if exception is not caught
int main() {

double x = -4.0, y;
y = SafeSqrt(x);
cout << "The square root of " << x << " is " << y << endl;

}

Program output:
terminate called after throwing an instance of 'MyException'

what(): MyException: Tried to take sqrt of negative number
Abort (core dumped)

Which catch will Catch?

• Suppose we have an exception thrown inside multiple
try{}/catch{} statements

• The throw statement will send the thrown exception
“up the chain” (from the current, innermost try{}
statement, outwards to enveloping try{} statements)
until an appropriate catch{} is encountered

• The thrown exception will also percolate up from inner
function calls to outer function calls (eventually all the
way to main()) in search of an appropriate catch, so
long as it remains within some try{} block

// from custom_exception3.cc
double SafeSqrt(double x) {

if (x < 0.0)
throw MyException("MyException: Tried to take sqrt of negative number");

return sqrt(x);
}

void ComputeRoots() {
try {
cout << "Square root of 4 is " << SafeSqrt(4.0) << endl;
cout << "Square root of -4 is " << SafeSqrt(-4.0) << endl;

}
catch (MyException& ex) {
cout << "Caught a sqrt exception in ComputeRoots()" << endl;

}
}

int main() {
try {
ComputeRoots();

}
catch (std::exception& ex) { // any std::exception incl. ours!
cout << "Caught an exception in main()" << endl;
cout << ex.what() << endl;

}
}

Program output:
Square root of 4 is 2
Caught a sqrt exception in ComputeRoots()

Exception caught in this
“inner” function, not in
main()

// from custom_exception4.cc
double SafeSqrt(double x) {

if (x < 0.0)
throw MyException("MyException: Tried to take sqrt of negative number");

return sqrt(x);
}

void ComputeRoots() {
cout << "Square root of 4 is " << SafeSqrt(4.0) << endl;
cout << "Square root of -4 is " << SafeSqrt(-4.0) << endl;

}

int main() {
try {

ComputeRoots();
}
catch (std::exception& ex) { // any std::exception incl. ours!

cout << "Caught an exception in main()" << endl;
cout << ex.what() << endl;

}
}

Program output:
Square root of 4 is 2
Caught a sqrt exception in main()
MyException: Tried to take sqrt of negative number

Exception handler
removed from
ComputeRoots(), so
now has to be caught in
main()

When to Handle Exceptions?
• You should try to handle system-generated exceptions like bad

allocation errors; otherwise, you’ll just get a messy crash of the
program and an error message that may not be as user-friendly as
desired

• Creating your own exception classes and handling them may be
overkill for handling what might be relatively simple runtime error
situations; frequently, simpler is better. Additionally, exception
handling can cause performance issues if not used sparingly. If an
error should be handled immediately in the code where it was
encountered, you don’t need custom exceptions.

• Other times, you might not know in a subroutine how you want to
handle an error, and you want to “kick it up the chain” and let the
calling program decide what to do with it; custom exceptions can be
appropriate for this kind of situation, if the situation is more
complicated than a simple passed/failed status from the subroutine

Exceptions within Exceptions

• We want to avoid the possibility of having more than
one exception at once (otherwise the application
terminates)

• Don’t use very complex code inside a catch{}; the more
complex it is, the more likely it could throw an
exception (while handling another exception)

• Don’t throw exceptions from destructors, because
when an exception is thrown, objects on the stack are
destructed in reverse order of their construction: if one
of them throws an exception upon destruction, we
could get an exception within an exception

