

C2000™ Delfino™ Workshop

Workshop Guide and Lab Manual

Technical Training

Organization

F28xDmdw
Revision 8.1
November 2010

Important Notice

Important Notice
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute TI’s approval, warranty or
endorsement thereof.

Copyright © 2001 – 2010 Texas Instruments Incorporated

Revision History
October 2001 – Revision 1.0

January 2002 – Revision 2.0

May 2002 – Revision 3.0

June 2002 – Revision 3.1

October 2002 – Revision 4.0

December 2002 – Revision 4.1

July 2003 – Revision 4.2

August 2003 – Revision 4.21

February 2004 – Revision 5.0

May 2004 – Revision 5.1

January 2005 – Revision 5.2

June 2005 – Revision 6.0

September 2005 – Revision 6.1

October 2005 – Revision 6.2

May 2006 – Revision 6.21

February 2007 – Revision 6.22

July 2008 – Revision 7.0

October 2008 – Revision 7.1

February 2009 – Revision 7.2

July 2010 – Revision 8.0

November 2010 – Revision 8.1

Mailing Address
Texas Instruments
Training Technical Organization
7839 Churchill Way
M/S 3984
Dallas, Texas 75251-1903

ii C2000 Delfino Workshop - Introduction

 C2000™ Delfino™ Workshop

C2000™ Delfino™ Workshop

C2000™ Delfino™ Workshop

Texas Instruments
Technical Training

Copyright © 2010 Texas Instruments. All rights reserved.Technical Training
Organization

T TO
C2000 and Delfino are trademarks of Texas Instruments.

Introductions

Introductions

Name

Company

Project Responsibilities

DSP / Microcontroller Experience

TI Processor Experience

Hardware / Software - Assembly / C

Interests

C2000 Delfino Workshop - Introduction iii

C2000™ Delfino™ Workshop

C2000™ Delfino™ Workshop Outline

C2000™ Delfino™ Workshop Outline
1. Architecture Overview
2. Programming Development Environment

Lab: Linker command file
3. Peripheral Register Header Files
4. Reset and Interrupts
5. System Initialization

Lab: Watchdog and interrupts
6. Analog-to-Digital Converter

Lab: Build a data acquisition system
7. Control Peripherals

Lab: Generate and graph a PWM waveform
8. Numerical Concepts and IQ Math

Lab: Low-pass filter the PWM waveform
9. Direct Memory Access (DMA)

Lab: Use DMA to buffer ADC results
10. System Design

Lab: Run the code from flash memory
11. Communications
12. DSP/BIOS

Lab: Change the code to use DSP/BIOS
13. Support Resources

C2000™ Experimenter Kit

Delfino™ Experimenter Kit

ControlCARD

USB Docking Station

iv C2000 Delfino Workshop - Introduction

Architecture Overview

Introduction
This architecture overview introduces the basic architecture of the TMS320C28x (C28x) series of
microcontrollers from Texas Instruments. The C28x series adds a new level of general purpose
processing ability unseen in any previous DSP chips. The C28x is ideal for applications
combining digital signal processing, microcontroller processing, efficient C code execution, and
operating system tasks.

Unless otherwise noted, the terms C28x and C2833x refer to TMS320F2833x (with FPU) and
TMS320F2823x (without FPU) devices throughout the remainder of these notes. For specific
details and differences please refer to the device data sheet and user’s guide.

Learning Objectives
When this module is complete, you should have a basic understanding of the C28x architecture
and how all of its components work together to create a high-end, uniprocessor control system.

Learning Objectives

Review the F28x block diagram
and device features
Describe the F28x bus structure
and memory map
Identify the various memory
blocks on the F28x
Identify the peripherals available
on the F28x

C2000 Delfino Workshop - Architecture Overview 1 - 1

Module Topics

Module Topics
Architecture Overview.. 1-1

Module Topics... 1-2
What is the TMS320C28x?.. 1-3

TMS320C28x Internal Bussing .. 1-4
C28x CPU... 1-5

Special Instructions... 1-6
Pipeline Advantage... 1-7
FPU Pipeline... 1-8

Memory ... 1-9
Memory Map .. 1-9
Code Security Module (CSM)...1-10
Peripherals ...1-10

Fast Interrupt Response ...1-11
C28x Mode...1-12
Summary ..1-13

1 - 2 C2000 Delfino Workshop - Architecture Overview

 What is the TMS320C28x?

What is the TMS320C28x?
The TMS320C28x is a 32-bit fixed point microcontroller that specializes in high performance
control applications such as, robotics, industrial automation, mass storage devices, lighting,
optical networking, power supplies, and other control applications needing a single processor to
solve a high performance application.

TMS320F2833x Block Diagram

32x32 bit
Multiplier

Sectored
Flash

Program Bus

Data Bus

RAM
Boot
ROM

32-bit
Auxiliary
Registers

3
32-bit

Timers

Real-Time
JTAG

Emulation CPU
Register Bus

R-M-W
Atomic

ALU

PIE
Interrupt
Manager

eQEP

12-bit ADC

Watchdog

CAN 2.0B

I2C

SCI

SPI

GPIO

ePWM

eCAP

FPU

McBSP

DMA
6 Ch.

A(19-0)

D(31-0) X
IN

TF DMA Bus

The C28x architecture can be divided into 3 functional blocks:

• CPU and busing

• Memory

• Peripherals

C2000 Delfino Workshop - Architecture Overview 1 - 3

What is the TMS320C28x?

TMS320C28x Internal Bussing
As with many DSP-type devices, multiple busses are used to move data between the memories
and peripherals and the CPU. The C28x memory bus architecture contains:

• A program read bus (22-bit address line and 32-bit data line)

• A data read bus (32-bit address line and 32-bit data line)

• A data write bus (32-bit address line and 32-bit data line)

Program-read Data Bus (32)

F28x CPU Internal Bus Structure

Data-write Address Bus (32)

Program Address Bus (22)

Execution

R-M-W
Atomic

ALU

Real-Time
JTAG

Emulation

Program

Decoder
PC

XAR0
to

XAR7

SP
DP @X

ARAU MPY32x32

XT
P

ACC

ALU

Registers Debug

Register Bus / Result Bus

Data/Program-write Data Bus (32)

Data-read Address Bus (32)

Data-read Data Bus (32)

FPU

R0H
to

R7H

Program
Memory

Data
Memory

Peripherals

External
Interface

The 32-bit-wide data busses enable single cycle 32-bit operations. This multiple bus architecture,
known as a Harvard Bus Architecture enables the C28x to fetch an instruction, read a data value
and write a data value in a single cycle. All peripherals and memories are attached to the memory
bus and will prioritize memory accesses.

1 - 4 C2000 Delfino Workshop - Architecture Overview

 C28x CPU

C28x CPU
The C28x is a highly integrated, high performance solution for demanding control applications.
The C28x is a cross between a general purpose microcontroller and a digital signal processor,
balancing the code density of a RISC processor and the execution speed of a DSP with the
architecture, firmware, and development tools of a microcontroller.

The DSP features include a modified Harvard architecture and circular addressing. The RISC
features are single-cycle instruction execution, register-to-register operations, and a modified
Harvard architecture. The microcontroller features include ease of use through an intuitive
instruction set, byte packing and unpacking, and bit manipulation.

F28x CPU + FPU

MCU/DSP balancing code
density & execution time

16-bit instructions for
improved code density
32-bit instructions for
improved execution time

32-bit fixed-point CPU + FPU
32x32 fixed-point MAC,
doubles as dual 16x16 MAC
IEEE Single-precision floating
point hardware and MAC
Floating-point simplifies
software development and
boosts performance
Fast interrupt service time
Single cycle read-modify-write
instructions
Unique real-time debugging
capabilities

Data Bus

3
32-bit

Timers
CPU

Register Bus

Program Bus

PIE
Interrupt
Manager32x32 bit

Multiplier

32-bit
Auxiliary
Registers

R-M-W
Atomic

ALU
FPU

The C28x design supports an efficient C engine with hardware that allows the C compiler to
generate compact code. Multiple busses and an internal register bus allow an efficient and
flexible way to operate on the data. The architecture is also supported by powerful addressing
modes, which allow the compiler as well as the assembly programmer to generate compact code
that is almost one to one corresponded to the C code.

The C28x is as efficient in DSP math tasks as it is in system control tasks. This efficiency
removes the need for a second processor in many systems. The 32 x 32-bit MAC capabilities of
the C28x and its 64-bit processing capabilities, enable the C28x to efficiently handle higher
numerical resolution problems that would otherwise demand a more expensive solution. Along
with this is the capability to perform two 16 x 16-bit multiply accumulate instructions
simultaneously or Dual MACs (DMAC). Also, some devices feature a floating-point unit.

The, C28x is source code compatible with the 24x/240x devices and previously written code can
be reassembled to run on a C28x device, allowing for migration of existing code onto the C28x.

C2000 Delfino Workshop - Architecture Overview 1 - 5

C28x CPU

Special Instructions

F28x Atomic Read/Modify/Write

Registers ALU / MPY

LOAD

STORE

WRITE

READ

CPU Mem

Atomic Instructions Benefits

Simpler programming

Smaller, faster code

Uninterruptible (Atomic)

More efficient compiler

AND *XAR2,#1234h

2 words / 1 cycles

Atomic Read/Modify/Write

MOV AL,*XAR2
AND AL,#1234h
MOV *XAR2,AL

DINT

EINT

6 words / 6 cycles

Standard Load/Store

Atomics are small common instructions that are non-interuptable. The atomic ALU capability
supports instructions and code that manages tasks and processes. These instructions usually
execute several cycles faster than traditional coding.

1 - 6 C2000 Delfino Workshop - Architecture Overview

 C28x CPU

Pipeline Advantage

F1 F2 D1 D2 R1 R2 E

F28x CPU Pipeline

Protected Pipeline

Order of results are as written in
source code

Programmer need not worry about
the pipeline

8-stage pipeline
F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

A
B
C

D
E
F
G

W

W

W

W

W

W

W

W

E & G Access
same address

R1 R2 E W

D2 R1 R2 E W

F1: Instruction Address
F2: Instruction Content
D1: Decode Instruction
D2: Resolve Operand Addr
R1: Operand Address
R2: Get Operand
E: CPU doing “real” work
W: store content to memory

H

The C28x uses a special 8-stage protected pipeline to maximize the throughput. This protected
pipeline prevents a write to and a read from the same location from occurring out of order.

This pipelining also enables the C28x to execute at high speeds without resorting to expensive
high-speed memories. Special branch-look-ahead hardware minimizes the latency for conditional
discontinuities. Special store conditional operations further improve performance.

C2000 Delfino Workshop - Architecture Overview 1 - 7

C28x CPU

FPU Pipeline

F28x CPU + FPU Pipeline

Floating Point Unit has an unprotected pipeline
i.e. FPU can issue an instruction before previous instruction
has written results

Compiler prevents pipeline conflicts
Assembler detects pipeline conflicts
Performance improvement by placing non-conflicting
instructions in floating-point pipeline delay slots

F1 F2 D1 D2 R1 R2 E WF28x Pipeline

Fetch Decode Read Exe Write

Load
Store

0 delay slot instruction
1 delay slot instruction

Floating-point math operations and conversions between integer
and floating-point formats require 1 delay slot – everything else
does not require a delay slot (load, store, max, min, absolute, negative, etc.)

D R E1 E2/WFPU Instruction

Floating-point operations are not pipeline protected. Some instructions require delay slots for the
operation to complete. This can be accomplished by insert NOPs or other non-conflicting
instructions between operations.

In the user’s guide, instructions requiring delay slots have a ‘p’ after their cycle count. The 2p
stands for 2 pipelined cycles. A new instruction can be started on each cycle. The result is valid
only 2 instructions later.

Three general guideslines for the FPU pipeline are:

Math MPYF32, ADDF32,
SUBF32, MACF32

2p cycles
One delay slot

Conversion I16TOF32, F32TOI16,
F32TOI16R, etc…

2p cycles
One delay slot

Everything else* Load, Store, Compare,
Min, Max, Absolute and
Negative value

Single cycle
No delay slot

* Note: MOV32 between FPU and CPU registers is a special case.

1 - 8 C2000 Delfino Workshop - Architecture Overview

 Memory

Memory
The memory space on the C28x is divided into program memory and data memory. There are
several different types of memory available that can be used as both program memory and data
memory. They include the flash memory, single access RAM (SARAM), OTP, off-chip memory,
and Boot ROM which is factory programmed with boot software routines or standard tables used
in math related algorithms.

Memory Map
The C28x CPU contains no memory, but can access memory both on and off the chip. The C28x
uses 32-bit data addresses and 22-bit program addresses. This allows for a total address reach of
4G words (1 word = 16-bits) in data memory and 4M words in program memory. Memory blocks
on all C28x designs are uniformly mapped to both program and data space.

This memory map shows the different blocks of memory available to the program and data space.

TMS320F28335 Memory Map

XINTF Zone 6 (1Mw)

XINTF Zone 7 (1Mw)

0x000000
0x000400
0x000800

M1 SARAM (1Kw)
M0 SARAM (1Kw)

Data Program

PIE Vectors
(256 w)

PF 0 (6Kw)

XINTF Zone 0 (4Kw)

reserved

PF 1 (4Kw)
PF 2 (4Kw)

PF 3 (4Kw)

L0 SARAM (4Kw)
L1 SARAM (4Kw)
L2 SARAM (4Kw)
L3 SARAM (4Kw)
L4 SARAM (4Kw)
L5 SARAM (4Kw)
L6 SARAM (4Kw)
L7 SARAM (4Kw)

reserved

0x000D00

0x002000

0x006000
0x007000
0x008000
0x009000
0x00A000

0x00C000

0x000E00

0x005000

0x00B000

0x00D000
0x00E000
0x00F000

0x004000

0x010000

0x010000
0x100000

0x200000

reserved

Data Program

FLASH (256Kw)

0x300000

0x33FFF8
0x340000 PASSWORDS (8w)

reserved

User OTP (1Kw)
0x380800

ADC calibration data0x380080
0x380090

reserved
0x380400

reserved
0x3F8000

Boot ROM (8Kw)

L0 SARAM (4Kw)
L1 SARAM (4Kw)
L2 SARAM (4Kw)
L3 SARAM (4Kw)

reserved

0x3F9000
0x3FA000
0x3FB000
0x3FC000
0x3FE000

0x3FFFFF

DMA Accessible:
L4, L5, L6, L7,

XINTF Zone 0, 6, 7

Dual Mapped:
L0, L1, L2, L3

CSM Protected:
L0, L1, L2, L3, OTP
FLASH, ADC CAL,
Flash Regs in PF0

0x3FFFC0
BROM Vectors (64w)

C2000 Delfino Workshop - Architecture Overview 1 - 9

Memory

Code Security Module (CSM)

Code Security Module
Prevents reverse engineering and
protects valuable intellectual property

128-bit user defined password is stored in Flash
128-bits = 2128 = 3.4 x 1038 possible passwords
To try 1 password every 8 cycles at 150 MHz, it
would take at least 5.8 x 1023 years to try all
possible combinations!

Dual
Mapped

0x008000
0x009000
0x00A000

0x300000

0x340000

0x3F8000

0x3FA000

0x33FFF8

0x00C000

0x380400

0x3F9000

reserved

FLASH (256Kw)
128-Bit Password

reserved

OTP (1Kw)

L0 SARAM (4Kw)
L1 SARAM (4Kw)
L2 SARAM (4Kw)
L3 SARAM (4Kw)

L0 SARAM (4Kw)
L1 SARAM (4Kw)
L2 SARAM (4Kw)
L3 SARAM (4Kw)

0x00B000

0x010000

0x3FB000

Peripherals
The C28x comes with many built in peripherals optimized to support control applications. These
peripherals vary depending on which C28x device you choose.

• ePWM • SPI

• eCAP • SCI

• eQEP • I2C

• Analog-to-Digital Converter • CAN

• Watchdog Timer • GPIO

• McBSP • DMA

1 - 10 C2000 Delfino Workshop - Architecture Overview

 Fast Interrupt Response

Fast Interrupt Response
The fast interrupt response, with automatic context save of critical registers, resulting in a device
that is capable of servicing many asynchronous events with minimal latency. C28x implements a
zero cycle penalty to do 14 registers context saved and restored during an interrupt. This feature
helps reduces the interrupt service routine overheads.

F28x Fast Interrupt Response Manager

96 dedicated PIE
vectors
No software decision
making required
Direct access to RAM
vectors
Auto flags update
Concurrent auto
context save

28x CPU Interrupt logic

28x
CPUINTMIFR IER96

P
er

ip
he

ra
l I

nt
er

ru
pt

s
 1

2x
8

=
96

12 interrupts

INT1 to
INT12

PIE
Register

Map

PIE module
For 96

interrupts

T ST0
AH AL
PH PL
AR1 (L) AR0 (L)
DP ST1
DBSTAT IER
PC(msw) PC(lsw)

Auto Context Save

C2000 Delfino Workshop - Architecture Overview 1 - 11

C28x Mode

C28x Mode
The C28x is one of several members of the TMS320 digital signal controller/processors family.
The C28x is source code compatable with the 24x/240x devices and previously written code can
be reassembled to run on a C28x device. This allows for migration of existing code onto the
C28x.

F28x Operating Modes

C28x Native Mode 1 0

C24x Compatible Mode 1 1

Test Mode (default) 0 0

Reserved 0 1

OBJMODE AMODE
Mode Bits Compiler OptionMode Type

Almost all users will run in C28x Native Mode
The bootloader will automatically select C28x Native Mode after reset
C24x compatible mode is mostly for backwards compatibility with an
older processor family

-v28 –m20

-v28

1 - 12 C2000 Delfino Workshop - Architecture Overview

 Summary

Summary
Summary

High performance 32-bit DSP
32x32 bit or dual 16x16 bit MAC
IEEE single-precision floating point unit
Atomic read-modify-write instructions
Fast interrupt response manager
256Kw on-chip flash memory
Code security module (CSM)
Control peripherals
12-bit ADC module
Up to 88 shared GPIO pins
Watchdog timer
DMA and external memory interface
Communications peripherals

C2000 Delfino Workshop - Architecture Overview 1 - 13

Summary

1 - 14 C2000 Delfino Workshop - Architecture Overview

Programming Development Environment

Introduction
This module will explain how to use Code Composer Studio (CCS) integrated development
environment (IDE) tools to develop a program. Creating projects and setting building options
will be covered. Use and the purpose of the linker command file will be described.

Learning Objectives
Learning Objectives

Use Code Composer Studio to:
Create a Project
Set Build Options

Create a user linker command file which:
Describes a system’s available memory
Indicates where sections will be placed
in memory

C2000 Delfino Workshop - Programming Development Environment 2 - 1

Module Topics

Module Topics
Programming Development Environment .. 2-1

Module Topics... 2-2
Code Composer Studio ... 2-3

Software Development and COFF Concepts.. 2-3
C/C++ and Debug Perspective (CCSv4) .. 2-5
CCSv4 Projects... 2-6
Creating a New CCSv4 Project .. 2-7
CCSv4 Build Options – Compiler / Linker .. 2-8

Creating a Linker Command File ... 2-9
Sections .. 2-9
Linker Command Files (.cmd) ...2-12
Memory-Map Description ...2-12
Section Placement..2-13
Summary: Linker Command File ..2-14

Lab 2: Linker Command File...2-15
Lab 2: Solution – lab2.cmd..2-22

2 - 2 C2000 Delfino Workshop - Programming Development Environment

 Code Composer Studio

Code Composer Studio

Software Development and COFF Concepts
In an effort to standardize the software development process, TI uses the Common Object File
Format (COFF). COFF has several features which make it a powerful software development
system. It is most useful when the development task is split between several programmers.

Each file of code, called a module, may be written independently, including the specification of
all resources necessary for the proper operation of the module. Modules can be written using
Code Composer Studio (CCS) or any text editor capable of providing a simple ASCII file output.
The expected extension of a source file is .ASM for assembly and .C for C programs.

Code Composer Studio

Code Composer Studio includes:
Integrated Edit/Debug GUI
Code Generation Tools
DSP/BIOS

Asm Link

Editor

Debug

Compile

Graphs,
Profiling

Code
Simulator

External
Emulator

MCU
Board

Libraries

lnk.cmd
Build

Development
Tool

Code Composer Studio includes a built-in editor, compiler, assembler, linker, and an automatic
build process. Additionally, tools to connect file input and output, as well as built-in graph
displays for output are available. Other features can be added using the plug-ins capability

Numerous modules are joined to form a complete program by using the linker. The linker
efficiently allocates the resources available on the device to each module in the system. The
linker uses a command (.CMD) file to identify the memory resources and placement of where the
various sections within each module are to go. Outputs of the linking process includes the linked
object file (.OUT), which runs on the device, and can include a .MAP file which identifies where
each linked section is located.

The high level of modularity and portability resulting from this system simplifies the processes of
verification, debug and maintenance. The process of COFF development is presented in greater
detail in the following paragraphs.

C2000 Delfino Workshop - Programming Development Environment 2 - 3

Code Composer Studio

The concept of COFF tools is to allow modular development of software independent of
hardware concerns. An individual assembly language file is written to perform a single task and
may be linked with several other tasks to achieve a more complex total system.

Writing code in modular form permits code to be developed by several people working in parallel
so the development cycle is shortened. Debugging and upgrading code is faster, since
components of the system, rather than the entire system, is being operated upon. Also, new
systems may be developed more rapidly if previously developed modules can be used in them.

Code developed independently of hardware concerns increases the benefits of modularity by
allowing the programmer to focus on the code and not waste time managing memory and moving
code as other code components grow or shrink. A linker is invoked to allocate systems hardware
to the modules desired to build a system. Changes in any or all modules, when re-linked, create a
new hardware allocation, avoiding the possibility of memory resource conflicts.

Code Composer Studio: IDE

Integrates: edit, code generation,
and debug

Single-click access using buttons

Powerful graphing/profiling tools

Automated tasks using Scripts

Built-in access to BIOS functions

Based on the Eclipse open
source software framework

2 - 4 C2000 Delfino Workshop - Programming Development Environment

 Code Composer Studio

C/C++ and Debug Perspective (CCSv4)
A perspective defines the initial layout views of the workbench windows, toolbars, and menus
that are appropriate for a specific type of task, such as code development or debugging. This
minimizes clutter to the user interface.

C/C++ and Debug Perspective (CCSv4)
Each perspective provides a set of functionality
aimed at accomplishing a specific task

C/C++ Perspective
Displays views used
during code development

C/C++ project, editor, etc.

Debug Perspective
Displays views used for
debugging

Menus and toolbars
associated with debugging,
watch and memory
windows, graphs, etc.

C2000 Delfino Workshop - Programming Development Environment 2 - 5

Code Composer Studio

CCSv4 Projects
Code Composer works with a project paradigm. Essentially, within CCS you create a project for
each executable program you wish to create. Projects store all the information required to build
the executable. For example, it lists things like: the source files, the header files, the target
system’s memory-map, and program build options.

CCSv4 Project

List of files:
Source (C, assembly)
Libraries
DSP/BIOS configuration file
Linker command files

Project settings:
Build options (compiler,
assembler, linker, and
DSP/BIOS)
Build configurations

Project files contain:

To create a new project, you need to select the following menu items:

File New CCS Project

Along with the main Project menu, you can also manage open projects using the right-click
popup menu. Either of these menus allows you to modify a project, such as add files to a project,
or open the properties of a project to set the build options.

2 - 6 C2000 Delfino Workshop - Programming Development Environment

 Code Composer Studio

Creating a New CCSv4 Project
A graphical user interface (GUI) is used to assist in creating a new project. The four windows for
the GUI are shown in the slide below.

Creating a New CCSv4 Project

File New CCS Project

1

2

3

4

C2000 Delfino Workshop - Programming Development Environment 2 - 7

Code Composer Studio

CCSv4 Build Options – Compiler / Linker
Project options direct the code generation tools (i.e. compiler, assembler, linker) to create code
according to your system’s needs. When you create a new project, CCS creates two sets of build
options – called Configurations: one called Debug, the other Release (you might think of as
Optimize).

To make it easier to choose build options, CCS provides a graphical user interface (GUI) for the
various compiler and linker options. Here’s a sample of the configuration options.

CCSv4 Build Options – Compiler / Linker

Compiler
16 categories for code
generation tools
Controls many aspects of
the build process, such as:

Optimization level
Target device
Compiler / assembly / link
options

Linker
9 categories for linking

Specify various link
options

${PROJECT_ROOT}
specifies the current
project directory

There is a one-to-one relationship between the items in the text box on the main page and the GUI
check and drop-down box selections. Once you have mastered the various options, you can
probably find yourself just typing in the options.

There are many linker options but these four handle all of the basic needs.
• -o <filename> specifies the output (executable) filename.
• -m <filename> creates a map file. This file reports the linker’s results.
• -c tells the compiler to autoinitialize your global and static variables.

• -x tells the compiler to exhaustively read the libraries. Without this option libraries are
searched only once, and therefore backwards references may not be resolved.

To help make sense of the many compiler options, TI provides two default sets of options
(configurations) in each new project you create. The Release (optimized) configuration invokes
the optimizer with –o3 and disables source-level, symbolic debugging by omitting –g (which
disables some optimizations to enable debug).

2 - 8 C2000 Delfino Workshop - Programming Development Environment

 Creating a Linker Command File

Creating a Linker Command File

Sections
Looking at a C program, you'll notice it contains both code and different kinds of data (global,
local, etc.).

Sections

All code consists of
different parts called
sections
All default section
names begin with “.”
The compiler has
default section
names for initialized
and uninitialized
sections

int x = 2;

int y = 7;

void main(void)

{

long z;

z = x + y;

}

Global vars (.ebss) Init values (.cinit)

Local vars (.stack) Code (.text)

In the TI code-generation tools (as with any toolset based on the COFF – Common Object File
Format), these various parts of a program are called Sections. Breaking the program code and
data into various sections provides flexibility since it allows you to place code sections in ROM
and variables in RAM. The preceding diagram illustrated four sections:
• Global Variables
• Initial Values for global variables
• Local Variables (i.e. the stack)
• Code (the actual instructions)

C2000 Delfino Workshop - Programming Development Environment 2 - 9

Creating a Linker Command File

Following is a list of the sections that are created by the compiler. Along with their description,
we provide the Section Name defined by the compiler.

Compiler Section Names

Name Description Link Location
.text code FLASH
.cinit initialization values for FLASH

global and static variables
.econst constants (e.g. const int k = 3;) FLASH
.switch tables for switch statements FLASH
.pinit tables for global constructors (C++) FLASH

Initialized Sections

Name Description Link Location
.ebss global and static variables RAM
.stack stack space low 64Kw RAM
.esysmem memory for far malloc functions RAM

Uninitialized Sections

Note: During development initialized sections could be linked to RAM since
the emulator can be used to load the RAM

Sections of a C program must be located in different memories in your target system. This is the
big advantage of creating the separate sections for code, constants, and variables. In this way,
they can all be linked (located) into their proper memory locations in your target embedded
system. Generally, they’re located as follows:

Program Code (.text)

Program code consists of the sequence of instructions used to manipulate data, initialize system
settings, etc. Program code must be defined upon system reset (power turn-on). Due to this basic
system constraint it is usually necessary to place program code into non-volatile memory, such as
FLASH or EPROM.

Constants (.cinit – initialized data)

Initialized data are those data memory locations defined at reset.It contains constants or initial
values for variables. Similar to program code, constant data is expected to be valid upon reset of
the system. It is often found in FLASH or EPROM (non-volatile memory).

Variables (.ebss – uninitialized data)

Uninitialized data memory locations can be changed and manipulated by the program code during
runtime execution. Unlike program code or constants, uninitialized data or variables must reside
in volatile memory, such as RAM. These memories can be modified and updated, supporting the
way variables are used in math formulas, high-level languages, etc. Each variable must be
declared with a directive to reserve memory to contain its value. By their nature, no value is
assigned, instead they are loaded at runtime by the program.

2 - 10 C2000 Delfino Workshop - Programming Development Environment

 Creating a Linker Command File

Placing Sections in Memory

.ebss

.cinit

.text

Memory
M0SARAM

(0x400)
0x00 0000

0x30 0000

0x00 0400 M1SARAM
(0x400)

FLASH
(0x40000)

Sections

.stack

Linking code is a three step process:

1. Defining the various regions of memory (on-chip SARAM vs. FLASH vs. External Memory).

2. Describing what sections go into which memory regions

3. Running the linker with “build” or “rebuild”

C2000 Delfino Workshop - Programming Development Environment 2 - 11

Creating a Linker Command File

Linker Command Files (.cmd)
The linker concatenates each section from all input files, allocating memory to each section based
on its length and location as specified by the MEMORY and SECTIONS commands in the linker
command file.

Linking

Linker

Link.cmd

.map

.obj .out

Memory description
How to place s/w into h/w

Memory-Map Description
The MEMORY section describes the memory configuration of the target system to the linker.

The format is: Name: origin = 0x????, length = 0x????

For example, if you placed a 64Kw FLASH starting at memory location 0x3E8000, it would read:

MEMORY
{
 FLASH: origin = 0x300000 , length = 0x040000
}

Each memory segment is defined using the above format. If you added M0SARAM and
M1SARAM, it would look like:

MEMORY
{
 M0SARAM: origin = 0x000000 , length = 0x0400
 M1SARAM: origin = 0x000400 , length = 0x0400
}

2 - 12 C2000 Delfino Workshop - Programming Development Environment

 Creating a Linker Command File

Remember that the DSP has two memory maps: Program, and Data. Therefore, the MEMORY
description must describe each of these separately. The loader uses the following syntax to
delineate each of these:

Linker Page TI Definition

Page 0 Program

Page 1 Data

Linker Command File

SECTIONS
{

.text:> FLASH PAGE = 0

.ebss:> M0SARAM PAGE = 1

.cinit:> FLASH PAGE = 0

.stack:> M1SARAM PAGE = 1
}

MEMORY
{

PAGE 0: /* Program Memory */
FLASH: origin = 0x300000, length = 0x40000

PAGE 1: /* Data Memory */
M0SARAM: origin = 0x000000, length = 0x400
M1SARAM: origin = 0x000400, length = 0x400

}

Section Placement
The SECTIONS section will specify how you want the sections to be distributed through
memory. The following code is used to link the sections into the memory specified in the
previous example:

SECTIONS
{
 .text:> FLASH PAGE 0
 .ebss:> M0SARAM PAGE 1
 .cinit:> FLASH PAGE 0
 .stack:> M1SARAM PAGE 1
}

The linker will gather all the code sections from all the files being linked together. Similarly, it
will combine all ‘like’ sections.

Beginning with the first section listed, the linker will place it into the specified memory segment.

C2000 Delfino Workshop - Programming Development Environment 2 - 13

Creating a Linker Command File

Summary: Linker Command File
The linker command file (.cmd) contains the inputs — commands — for the linker. This
information is summarized below:

Linker Command File Summary

Memory Map Description
Name
Location
Size

Sections Description
Directs software sections into named
memory regions
Allows per-file discrimination
Allows separate load/run locations

2 - 14 C2000 Delfino Workshop - Programming Development Environment

 Lab 2: Linker Command File

Lab 2: Linker Command File
 Objective

Create a linker command file and link the C program file (Lab2.c) into the system described
below.

Lab 2: Linker Command File

System Description:
• TMS320F28335
• All internal RAM

blocks allocated

Placement of Sections:
• .text into RAM Block L0123SARAM on PAGE 0 (program memory)
• .cinit into RAM Block L0123SARAM on PAGE 0 (program memory)
• .ebss into RAM Block L4SARAM on PAGE 1 (data memory)
• .stack into RAM Block M1SARAM on PAGE 1 (data memory)

F28335

Memory

on-chip
memory

0x00 8000 L0SARAM
(0x1000)

0x00 0400 M1SARAM
(0x400)

0x00 C000 L4SARAM
(0x1000)

0x00 B000 L3SARAM
(0x1000)

0x00 0000 M0SARAM
(0x400)

0x00 9000 L1SARAM
(0x1000)

0x00 A000 L2SARAM
(0x1000)

0x00 D000 L5SARAM
(0x1000)

0x00 E000 L6SARAM
(0x1000)

0x00 F000 L7SARAM
(0x1000)

System Description
• TMS320F28335
• All internal RAM blocks allocated

Placement of Sections:
• .text into RAM Block L0123SARAM on PAGE 0 (program memory)
• .cinit into RAM Block L0123SARAM on PAGE 0 (program memory)
• .ebss into RAM Block L4SARAM on PAGE 1 (data memory)
• .stack into RAM Block M1SARAM on PAGE 1 (data memory)

Initial Boot Mode Jumper Settings

Note: Initially, either the controlCARD or the Docking Station boot mode must be configured
to “Jump to M0SARAM” for the workshop lab exercises. Set the “2833x Boot Mode”
controlCARD switch SW2 or the Docking Station jumpers as shown in the following
table (see Appendix A for the switch or jumper position details):

C2000 Delfino Workshop - Programming Development Environment 2 - 15

Lab 2: Linker Command File

Position 1 /
Jumper 84
(GPIO-84)

Position 2 /
Jumper 85
(GPIO-85)

Position 3 /
Jumper 86
(GPIO-86)

Position 4 /
Jumper 87
(GPIO-87)

M0 SARAM
Boot Mode

Down – 0 Down – 0 Up – 1 Down – 0 controlCARD

Right – 0 Right – 0 Left – 1 Right – 0 Docking Station

 Procedure

Start Code Composer Studio and Open a Workspace
1. Start Code Composer Studio (CCS) by double clicking the icon on the desktop or

selecting it from the Windows Start menu. When CCS loads, a dialog box will prompt
you for the location of a workspace folder. Use the default location for the workspace
and click OK.

This folder contains all CCS custom settings, which includes project settings and views
when CCS is closed so that the same projects and settings will be available when CCS is
opened again. The workspace is saved automatically when CCS is closed.

2. The first time CCS opens a “Welcome to Code Composer Studio v4” page appears.
Close the page by clicking on the CCS icon in the upper right or by clicking the X on the
“Welcome” tab. You should now have an empty workbench. The term workbench refers
to the desktop development environment. Maximize CCS to fill your screen.

The workbench will open in the “C/C++ Perspective” view. Notice the C/C++ icon in
the upper right-hand corner. A perspective defines the initial layout views of the
workbench windows, toolbars, and menus which are appropriate for a specific type of
task (i.e. code development or debugging). This minimizes clutter to the user interface.
The “C/C++ Perspective” is used to create or build C/C++ projects. A “Debug
Perspective” view will automatically be enabled when the debug session is started. This
perspective is used for debugging C/C++ projects.

Setup Target Configuration
3. Open the emulator target configuration dialog box. On the menu bar click:

Target New Target Configuration…

In the file name field type F28335_ExpKit.ccxml. This is just a descriptive name
since multiple target configuration files can be created. Leave the “Use shared location”
box checked and select Finish.

4. In the next window that appears, select the emulator using the “Connection” pull-down
list and choose “Texas Instruments XDS100v1 USB Emulator”. In the box
below, check the box to select “Experimenter’s Kit – Delfino F28335”.

2 - 16 C2000 Delfino Workshop - Programming Development Environment

 Lab 2: Linker Command File

Click Save to save the configuration, then close the “Cheat Sheets” and
“F28335_ExpKit.ccxml” setup window by clicking the X on the tabs.

5. To view the target configurations, click:

View Target Configurations

and click the plus sign (+) to the left of User Defined. Notice that the
F28335_ExpKit.ccxml file is listed and set as the default. If it is not set as the
default, right-click on the .ccxml file and select “Set as Default”. Close the Target
Configurations window by clicking the X on the tab.

Create a New Project
6. A project contains all the files you will need to develop an executable output file (.out)

which can be run on the MCU hardware. To create a new project click:

File New CCS Project

In the Project name field type Lab2. Uncheck the “Use default location” box. Click the
Browse… button and navigate to:

C:\C28x\Labs\Lab2\Project

Click OK and then click Next.

7. The next window that appears selects the platform and configurations. Select the
“Project Type” using the pull-down list and choose “C2000”. In the “Configurations”
box below, leave the “Debug” and “Release” boxes checked. This will create folders that
will hold the output files. Click Next.

8. In the next window, inter-project dependencies (if any) are defined. Select Next.

9. In the last window, the CCS project settings are selected. Change the “Device Variant”
using the pull-down list to “TMS320F28335”. Next, using the pull-down list change
the “Linker Command File” to “<none>”. We will be using our own linker command
file, rather than the one supplied by CCS. The “Runtime Support Library” will be
automatically set to “rts2800_fpu32.lib”. This will select the runtime support
library for floating-point devices. Click Finish.

10. A new project has now been created. Notice the C/C++ Projects window contains
Lab2. The project is set Active and the output files will be located in the Debug
folder. At this point, the project does not include any source files. The next step is to add
the source files to the project.

11. To add the source files to the project, right-click on Lab2 in the C/C++ Projects
window and select:
Add Files to Project…

 or click: Project Add Files to Active Project…

C2000 Delfino Workshop - Programming Development Environment 2 - 17

Lab 2: Linker Command File

and make sure you’re looking in C:\C28x\Labs\Lab2\Files. With the “files of
type” set to view all files (*.*) select Lab2.c and Lab2.cmd then click OPEN. This
will add the files to the project.

12. In the C/C++ Projects window, click the plus sign (+) to the left of Lab2 and notice
that the files are listed.

Project Build Options
13. There are numerous build options in the project. Most default option settings are

sufficient for getting started. We will inspect a couple of the default options at this time.
Right-click on Lab2 in the C/C++ Projects window and select Properties or
click:

Project Properties

14. A “Properties” window will open and in the section on the left be sure that “C/C++
Build” category is selected. In the “Configuration Settings” section make sure that the
Tool Settings tab is selected. Next, under “C2000 Linker” select the “Basic
Options”. Notice that .out and .map files are being specified. The .out file is the
executable code that will be loaded into the MCU. The .map file will contain a linker
report showing memory usage and section addresses in memory.

15. Next in the “Basic Options” set the Stack Size to 0x200.

16. Under “C2000 Compiler” select the “Runtime Model Options”. Notice the “Use
large memory model” and “Unified memory” boxes are checked. Also, the “Specify
floating point support” is set to fpu32. Select OK to save and close the Properties
window.

Edit the Linker Command File - Lab2.cmd
17. To open and edit Lab2.cmd, double click on the filename in the C/C++ Projects

window.

18. Edit the Memory{} declaration by describing the system memory shown on the “Lab2:
Linker Command File” slide in the objective section of this lab exercise. Combine the
memory blocks L0SARAM, L1SARAM, L2SARM, and L3SARAM into a single
memory block called L0123SARAM. Place this combined memory block into program
memory on page 0. Place the other memory blocks into data memory on page 1.

19. In the Sections{} area, notice that a section called .reset has already been allocated.
The .reset section is part of the rts2800_fpu32.lib, and is not needed. By putting the
TYPE = DSECT modifier after its allocation, the linker will ignore this section and not
allocate it.

20. Place the sections defined on the slide into the appropriate memories via the
Sections{} area. Save your work and close the file.

2 - 18 C2000 Delfino Workshop - Programming Development Environment

 Lab 2: Linker Command File

Build and Load the Project
21. Three buttons on the horizontal toolbar control code generation. Hover your mouse over

each button as you read the following descriptions:

 Button Name Description_____________________________________

 1 Build Incremental build and link of only modified source files
 2 Rebuild Full build and link of all source files
 3 Debug Automatically build, link, load and launch debug-session

22. Click the “Build” button and watch the tools run in the Console window. Check for
errors in the Problems window (we have deliberately put an error in Lab2.c). When
you get an error, you will see the error message (in red) in the Problems window, and
simply double-click the error message. The editor will automatically open to the source
file containing the error, and position the mouse cursor at the correct code line.

23. Fix the error by adding a semicolon at the end of the “z = x + y” statement. For
future knowledge, realize that a single code error can sometimes generate multiple error
messages at build time. This was not the case here.

24. Build the project again. There should be no errors this time.

25. CCS can automatically save modified source files, build the program, open the debug
perspective view, connect and download it to the target, and then run the program to the
beginning of the main function.

Click on the “Debug” button (green bug) or click Target Debug Active
Project.

Notice the Debug icon in the upper right-hand corner indicating that we are now in the
“Debug Perspective” view. The program ran through the C-environment initialization
routine in the rts2800_fpu32.lib and stopped at main() in Lab2.c.

Debug Environment Windows
It is standard debug practice to watch local and global variables while debugging code. There
are various methods for doing this in Code Composer Studio. We will examine two of them
here: memory windows, and watch windows.

26. Open a “Memory” window to view the global variable “z”.

Click: View Memory on the menu bar.

Type &z into the address field and select “Data” memory page. Note that you must use
the ampersand (meaning “address of”) when using a symbol in a memory window
address box. Also note that Code Composer Studio is case sensitive.

Set the properties format to “Hex 16 Bit – TI Style Hex” in the window. This will give
you more viewable data in the window. You can change the contents of any address in
the memory window by double-clicking on its value. This is useful during debug.

C2000 Delfino Workshop - Programming Development Environment 2 - 19

Lab 2: Linker Command File

27. Notice the “Local(1)” window automatically opened and the local variables x and y are
present. The local window will always contain the local variables for the code function
currently being executed.

(Note that local variables actually live on the stack. You can also view local variables in
a memory window by setting the address to “SP” after the code function has been
entered).

28. We can also add global variables to the watch window if desired. Let's add the global
variable “z”.

Click the “Watch (1)” tab at the top of the watch window. In the empty box in the
“Name” column, type z and then enter. An ampersand is not used here. The watch
window knows you are specifying a symbol. (Note that the watch window can be
manually opened by clicking: View Watch Window on the menu bar).

Check that the watch window and memory window both report the same value for “z”.
Trying changing the value in one window, and notice that the value also changes in the
other window.

Single-stepping the Code
29. Click the “Local (1)” tab at the top of the watch window. Single-step through main()

by using the <F5> key (or you can use the Step Into button on the horizontal
toolbar). Check to see if the program is working as expected. What is the value for “z”
when you get to the end of the program?

Terminate Debug Session and Close Project
30. The Terminate All button will terminate the active debug session, close the

debugger and return CCS to the “C/C++ Perspective” view.

Click: Target Terminate All or use the Terminate All icon:

Close the Terminate Debug Session “Cheat Sheet” by clicking on the X on the tab.

31. Next, close the project by right-clicking on Lab2 in the C/C++ Projects window
and select Close Project.

End of Exercise

2 - 20 C2000 Delfino Workshop - Programming Development Environment

 Lab 2: Linker Command File

C2000 Delfino Workshop - Programming Development Environment 2 - 21

Lab 2: Solution – lab2.cmd

Lab 2: Solution – lab2.cmd
Lab 2: Solution - lab2.cmd

MEMORY
{

PAGE 0: /* Program Memory */
L0123SARAM: origin = 0x008000, length = 0x4000
PAGE 1: /* Data Memory */
M0SARAM: origin = 0x000000, length = 0x0400
M1SARAM: origin = 0x000400, length = 0x0400
L4SARAM: origin = 0x00C000, length = 0x1000
L5SARAM: origin = 0x00D000, length = 0x1000
L6SARAM: origin = 0x00E000, length = 0x1000
L7SARAM: origin = 0x00F000, length = 0x1000

}

SECTIONS
{

.text: > L0123SARAM PAGE = 0

.ebss: > L4SARAM PAGE = 1

.cinit: > L0123SARAM PAGE = 0

.stack: > M1SARAM PAGE = 1

.reset: > L0123SARAM PAGE = 0, TYPE = DSECT
}

2 - 22 C2000 Delfino Workshop - Programming Development Environment

Peripherial Registers Header Files

Introduction
The purpose of the DSP2833x C-code header files is to simplify the programming of the many
peripherals on the C28x device. Typically, to program a peripheral the programmer needs to
write the appropriate values to the different fields within a control register. In its simplest form,
the process consists of writing a hex value (or masking a bit field) to the correct address in
memory. But, since this can be a burdensome and repetitive task, the C-code header files were
created to make this a less complicated task.

The DSP2833x C-code header files are part of a library consisting of C functions, macros,
peripheral structures, and variable definitions. Together, this set of files is known as the ‘header
files.’

Registers and the bit-fields are represented by structures. C functions and macros are used to
initialize or modify the structures (registers).

In this module, you will learn how to use the header files and C programs to facilitate
programming the peripherals.

 Learning Objectives
Learning Objectives

Understand the usage of the F2833x
C-Code Header Files
Be able to program peripheral
registers
Understand how the structures are
mapped with the linker command file

C2000 Delfino Workshop - Peripheral Registers Header Files 3 - 1

Module Topics

Module Topics
Peripherial Registers Header Files .. 3-1

Module Topics... 3-2
Traditional and Structure Approach to C Coding .. 3-3
Naming Conventions... 3-6
F2833x C-Code Header Files ... 3-7

Peripheral Structure .h File ... 3-7
Global Variable Definitions File .. 3-9
Mapping Structures to Memory...3-10
Linker Command File..3-10
Peripheral Specific Routines..3-11

Summary ..3-12

3 - 2 C2000 Delfino Workshop - Peripheral Registers Header Files

 Traditional and Structure Approach to C Coding

Traditional and Structure Approach to C Coding
Traditional Approach to C Coding
#define ADCTRL1 (volatile unsigned int *)0x00007100

#define ADCTRL2 (volatile unsigned int *)0x00007101

...

void main(void)

{

*ADCTRL1 = 0x1234; //write entire register

*ADCTRL2 |= 0x4000; //reset sequencer #1

}

Disadvantages - Requires individual masks to be generated to
manipulate individual bits

- Cannot easily display bit fields in debugger window
- Will generate less efficient code in many cases

Advantages - Simple, fast and easy to type
- Variable names exactly match register names (easy

to remember)

Structure Approach to C Coding
void main(void)

{

AdcRegs.ADCTRL1.all = 0x1234; //write entire register

AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; //reset sequencer #1

}

Disadvantages - Can be difficult to remember the structure names
(Editor Auto Complete feature to the rescue!)

- More to type (again, Editor Auto Complete feature
to the rescue)

Advantages - Easy to manipulate individual bits
- Watch window is amazing! (next slide)
- Generates most efficient code (on C28x)

C2000 Delfino Workshop - Peripheral Registers Header Files 3 - 3

Traditional and Structure Approach to C Coding

Built-in CCSv4 Register Window

CCSv4 Watch Window using Structures

3 - 4 C2000 Delfino Workshop - Peripheral Registers Header Files

 Traditional and Structure Approach to C Coding

Is the Structure Approach Efficient?

You could not have coded this example any more efficiently with hand assembly!

The structure approach enables efficient compiler use of
DP addressing mode and C28x atomic operations

C Source Code
// Stop CPU Timer0
CpuTimer0Regs.TCR.bit.TSS = 1;

// Load new 32-bit period value
CpuTimer0Regs.PRD.all = 0x00010000;

// Start CPU Timer0
CpuTimer0Regs.TCR.bit.TSS = 0;

Generated Assembly Code*
MOVW DP, #0030
OR @4, #0x0010

MOVL XAR4, #0x010000
MOVL @2, XAR4

AND @4, #0xFFEF

5 words, 5 cycles- Easy to read the code w/o comments
- Bit mask built-in to structure

* C28x Compiler v5.0.1 with -g and either -o1, -o2, or -o3 optimization level

Compare with the #define Approach
The #define approach relies heavily on less-efficient pointers for
random memory access, and often does not take advantage of
C28x atomic operations

C Source Code
// Stop CPU Timer0
*TIMER0TCR |= 0x0010;

// Load new 32-bit period value
*TIMER0TPRD32 = 0x00010000;

// Start CPU Timer0
*TIMER0TCR &= 0xFFEF;

Generated Assembly Code*
MOV @AL,*(0:0x0C04)
ORB AL, #0x10
MOV *(0:0x0C04), @AL

MOVL XAR5, #0x010000
MOVL XAR4, #0x000C0A
MOVL *+XAR4[0], XAR5

MOV @AL, *(0:0x0C04)
AND @AL, #0xFFEF
MOV *(0:0x0C04), @AL

9 words, 9 cycles- Hard to read the code w/o comments
- User had to determine the bit mask

* C28x Compiler v5.0.1 with -g and either -o1, -o2, or -o3 optimization level

C2000 Delfino Workshop - Peripheral Registers Header Files 3 - 5

Naming Conventions

Naming Conventions
The header files use a familiar set of naming conventions. They are consistent with the Code
Composer Studio configuration tool, and generated file naming conventions

Structure Naming Conventions

The DSP2833x header files define:
All of the peripheral structures
All of the register names
All of the bit field names
All of the register addresses

PeripheralName.RegisterName.all // Access full 16 or 32-bit register

PeripheralName.RegisterName.half.LSW // Access low 16-bits of 32-bit register

PeripheralName.RegisterName.half.MSW // Access high 16-bits of 32-bit register

PeripheralName.RegisterName.bit.FieldName // Access specified bit fields of register

Notes: [1] “PeripheralName” are assigned by TI and found in the DSP2833x header files.
They are a combination of capital and small letters (i.e. CpuTimer0Regs).

[2] “RegisterName” are the same names as used in the data sheet.
They are always in capital letters (i.e. TCR, TIM, TPR,..).

[3] “FieldName” are the same names as used in the data sheet.
They are always in capital letters (i.e. POL, TOG, TSS,..).

Editor Auto Complete to the Rescue!

3 - 6 C2000 Delfino Workshop - Peripheral Registers Header Files

 F2833x C-Code Header Files

F2833x C-Code Header Files
The C-code header files consists of .h, c source files, linker command files, and other useful
example programs, documentations and add-ins for Code Composer Studio.

DSP2833x Header File Package
(http://www.ti.com, literature # SPRC530)

Contains everything needed to use the
structure approach
Defines all peripheral register bits and
register addresses
Header file package includes:

\DSP2833x_headers\include .h files
\DSP2833x_headers\cmd linker .cmd files
\DSP2833x_headers\gel .gel files for CCS
\DSP2833x_examples CCS3 examples
\DSP2833x_examples_ccsv4 CCS4 examples
\DSP2823x_examples CCS3 examples
\DSP2823x_examples_ccsv4 CCS4 examples
\doc documentation

A peripheral is programmed by writing values to a set of registers. Sometimes, individual fields
are written to as bits, or as bytes, or as entire words. Unions are used to overlap memory
(register) so the contents can be accessed in different ways. The header files group all the
registers belonging to a specific peripheral.

A DSP2833x_Peripheral.gel GEL file can provide a pull down menu to load peripheral data
structures into a watch window. Code Composer Studio can load a GEL file automatically. To
include fuctions to the standard F28335.gel that is part of Code Composer Studio, add:

GEL_LoadGel(“base_path/gel/DSP2833x_Peripheral.gel”)

The GEL file can also be loaded during a Code Composer Studio session by clicking:

File Load GEL…

Peripheral Structure .h File
The DSP2833x_Device.h header file is the main include file. By including this file in the .c
source code, all of the peripheral specific .h header files are automatically included. Of course,
each specific .h header file can included individually in an application that do not use all the
header files, or you can comment out the ones you do not need. (Also includes typedef
statements).

C2000 Delfino Workshop - Peripheral Registers Header Files 3 - 7

F2833x C-Code Header Files

Peripheral Structure .h files (1 of 2)

/* ADC Individual Register Bit Definitions */
struct ADCTRL1_BITS { // bits description

Uint16 rsvd1:4; // 3:0 reserved
Uint16 SEQ_CASC:1; // 4 Cascaded sequencer mode
Uint16 SEQ_OVRD:1 // 5 Sequencer override
Uint16 CONT_RUN:1; // 6 Continuous run
Uint16 CPS:1; // 7 ADC core clock prescaler
Uint16 ACQ_PS:4; // 11:8 Acquisition window size
Uint16 SUSMOD:2; // 13:12 Emulation suspend mode
Uint16 RESET:1; // 14 ADC reset
Uint16 rsvd2:1; // 15 reserved

};

/* Allow access to the bit fields or entire register */
union ADCTRL1_REG {

Uint16 all;
struct ADCTRL1_BITS bit;

};

// ADC External References & Function Declarations:
extern volatile struct ADC_REGS AdcRegs;

DSP2833x_Adc.h

#include "DSP2833x_Device.h"

Void InitAdc(void)
{

/* Reset the ADC module */
AdcRegs.ADCTRL1.bit.RESET = 1;

/* configure the ADC register */
AdcRegs.ADCTRL1.all = 0x0710;

};

Your C-source file (e.g., Adc.c)

Contain bits field structure definitions for each peripheral register

Peripheral Structure .h files (2 of 2)

The header file package contains a .h file
for each peripheral in the device

DSP2833x_Device.h
Main include file (for ‘2833x and ‘2823x devices)
Will include all other .h files
Include this file (directly or indirectly)
in each source file:

#include “DSP2833x_Device.h”

DSP2833x_Device.h DSP2833x_DevEmu.h DSP2833x_SysCtrl.h
DSP2833x_PieCtrl.h DSP2833x_Adc.h DSP2833x_CpuTimers.h
DSP2833x_ECan.h DSP2833x_ECap.h DSP2833x_EPwm.h
DSP2833x_EQep.h DSP2833x_Gpio.h DSP2833x_I2c.h
DSP2833x_Sci.h DSP2833x_Spi.h DSP2833x_XIntrupt.h
DSP2833x_PieVect.h DSP2833x_DefaultIsr.h DSP2833x_DMA.h
DSP2833x_Mcbsp.h DSP2833x_Xintf.h

3 - 8 C2000 Delfino Workshop - Peripheral Registers Header Files

 F2833x C-Code Header Files

Global Variable Definitions File
With DSP2833x_GlobalVariableDefs.c included in the project all the needed variable definitions
are globally defined.

Global Variable Definitions File
DSP2833x_GlobalVariableDefs.c

Declares a global instantiation of the structure
for each peripheral
Each structure is placed in its own section
using a DATA_SECTION pragma to allow
linking to the correct memory (see next slide)

Add this file to your CCS project:
DSP2833x_GlobalVariableDefs.c

#include "DSP2833x_Device.h"
…
#pragma DATA_SECTION(AdcRegs,"AdcRegsFile");
volatile struct ADC_REGS AdcRegs;
…

DSP2833x_GlobalVariableDefs.c

C2000 Delfino Workshop - Peripheral Registers Header Files 3 - 9

F2833x C-Code Header Files

Mapping Structures to Memory
The data structures describe the register set in detail. And, each instance of the data type (i.e.,
register set) is unique. Each structure is associated with an address in memory. This is done by
(1) creating a new section name via a DATA_SECTION pragma, and (2) linking the new section
name to a specific memory in the linker command file.

Linker Command Files for the Structures
DSP2833x_nonBIOS.cmd and DSP2833x_BIOS.cmd

Links each structure to
the address of the
peripheral using the
structures named
section

non-BIOS and BIOS
versions of the .cmd file

Add one of these files to
your CCS project:
DSP2833x_nonBIOS.cmd

or
DSP2833x_BIOS.cmd

MEMORY
{

PAGE1:
...
ADC: origin=0x007100, length=0x000020
...

}

SECTIONS
{

...
AdcRegsFile: > ADC PAGE = 1
...

}

DSP2833x_Headers_nonBIOS.cmd

#include "DSP2833x_Device.h"
…
#pragma DATA_SECTION(AdcRegs,"AdcRegsFile");
volatile struct ADC_REGS AdcRegs;
…

DSP2833x_GlobalVariableDefs.c

Linker Command File
When using the header files, the user adds the MEMORY regions that correspond to the
CODE_SECTION and DATA_SECTION pragmas found in the .h and global-definitons.c file.

The user can modify their own linker command file, or use the pre-configured linker command
files such as EzDSP_RAM_lnk.cmd or F28335.cmd. These files have the peripheral memory
regions defined and tied to the individual peripheral.

3 - 10 C2000 Delfino Workshop - Peripheral Registers Header Files

 F2833x C-Code Header Files

Peripheral Specific Routines
Peripheral Specific C functions are used to initialize the peripherals. They are used by adding the
appropriate .c file to the project.

Peripheral Specific Examples
Example projects for each peripheral
Helpful to get you started
Separate projects for ‘2833x and ‘2823x

‘2823x projects configured for no FPU

C2000 Delfino Workshop - Peripheral Registers Header Files 3 - 11

Summary

Summary
Peripheral Register Header Files

Summary
Easier code development
Easy to use
Generates most efficient code
Increases effectiveness of CCS watch window
TI has already done all the work!

Use the correct header file package for your device:
F2803x # SPRC892
F2802x # SPRC832
F2833x and F2823x # SPRC530
F280x and F2801x # SPRC191
F2804x # SPRC324
F281x # SPRC097

Go to http://www.ti.com and enter the literature number in the keyword search box

3 - 12 C2000 Delfino Workshop - Peripheral Registers Header Files

Reset and Interrupts

Introduction
This module describes the interrupt process and explains how the Peripheral Interrupt Expansion
(PIE) works.

Learning Objectives
Learning Objectives

Describe the F28x reset process
and post-reset device state
List the event sequence during an
interrupt
Describe the F28x interrupt
structure

C2000 Delfino Workshop - Reset and Interrupts 4 - 1

Module Topics

Module Topics
Reset and Interrupts ... 4-1

Module Topics... 4-2
Reset.. 4-3

Reset - Bootloader .. 4-3
Interrupts .. 4-5

Interrupt Processing.. 4-5
Peripheral Interrupt Expansion (PIE) ... 4-7
PIE Interrupt Vector Table ... 4-9
Interrupt Response and Latency ..4-10

4 - 2 C2000 Delfino Workshop - Reset and Interrupts

 Reset

Reset
Reset Sources

Watchdog Timer

XRS pin active

To XRS pin

XRS

F28x Core

Reset - Bootloader

Reset – Bootloader

Reset
OBJMODE = 0 AMODE = 0

ENPIE = 0 INTM = 1

Boot determined by
state of GPIO pins

Reset vector fetched
from boot ROM

0x3F FFC0

Execution Bootloading
Entry Point Routines

FLASH SCI-A / SPI-A
M0 SARAM I2C

OTP eCAN-A
XINTF McBSP-A

GPIO / XINTF

Bootloader sets
OBJMODE = 1

AMODE = 0

C2000 Delfino Workshop - Reset and Interrupts 4 - 3

Reset

Bootloader Options

1 1 1 1 jump to FLASH address 0x33 FFF6
1 1 1 0 bootload code to on-chip memory via SCI-A
1 1 0 1 bootload external EEPROM to on-chip memory via SPI-A
1 1 0 0 bootload external EEPROM to on-chip memory via I2C
1 0 1 1 Call CAN_Boot to load from eCAN-A mailbox 1
1 0 1 0 bootload code to on-chip memory via McBSP-A
1 0 0 1 jump to XINTF Zone 6 address 0x10 0000 for 16-bit data
1 0 0 0 jump to XINTF Zone 6 address 0x10 0000 for 32-bit data
0 1 1 1 jump to OTP address 0x38 0400
0 1 1 0 bootload code to on-chip memory via GPIO port A (parallel)
0 1 0 1 bootload code to on-chip memory via XINTF (parallel)
0 1 0 0 jump to M0 SARAM address 0x00 0000
0 0 1 1 branch to check boot mode
0 0 1 0 branch to Flash without ADC calibration (TI debug only)
0 0 0 1 branch to M0 SARAM without ADC calibration (TI debug only)
0 0 0 0 branch to SCI-A without ADC calibration (TI debug only)

87 /
XA15

86 /
XA14

85 /
XA13

84 /
XA12

GPIO pins

Reset Code Flow - Summary

M0 SARAM (1Kw)

FLASH (256Kw)

OTP (1Kw)

0x33 FFF6

0x38 0400

0x30 0000

0x00 0000

0x3F E000

0x3F FFC0

Boot ROM (8Kw)

BROM vector (64w)
0x3F F9CE

Boot Code

•
•

•
•

RESET

Execution Entry
Point Determined

By GPIO Pins

Bootloading
Routines

(SCI-A, SPI-A, I2C,
eCAN-A, McBSP-A

GPIO, XINTF)

0x3F F9CE

XINTF Zone 6
(x16 / x32)
0x10 0000

0x00 0000

4 - 4 C2000 Delfino Workshop - Reset and Interrupts

 Interrupts

Interrupts
Interrupt Sources

ePWM, eCAP,
eQEP, ADC, SCI,
SPI, I2C, eCAN,

McBSP, DMA, WD

Internal Sources

External Sources

XINT1 – XINT7

TZx

XRS

XNMI_XINT13

NMI

F28x CORE

INT1

INT13

INT2
INT3

INT12

INT14

XRS

••
•

PIE
(Peripheral

Interrupt
Expansion)

TINT2
TINT1
TINT0

Interrupt Processing

A valid signal on a specific interrupt line causes the latch
to display a “1” in the appropriate bit

Maskable Interrupt Processing
Conceptual Core Overview

1

0

1

(IFR)
“Latch”

INT1

INT2

INT14

Core
Interrupt

F28x
Core

(INTM)
“Global Switch”

(IER)
“Switch”

If the individual and global switches are turned “on” the
interrupt reaches the core

C2000 Delfino Workshop - Reset and Interrupts 4 - 5

Interrupts

Interrupt Flag Register (IFR)

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9
89101112131415

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1
01234567

Pending : IFR Bit = 1
Absent : IFR Bit = 0

Compiler generates atomic instructions (non-interruptible) for setting/clearing IFR
If interrupt occurs when writing IFR, interrupt has priority
IFR(bit) cleared when interrupt is acknowledged by CPU
Register cleared on reset

/*** Manual setting/clearing IFR ***/
extern cregister volatile unsigned int IFR;

IFR |= 0x0008; //set INT4 in IFR
IFR &= 0xFFF7; //clear INT4 in IFR

Interrupt Enable Register (IER)

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9
89101112131415

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1
01234567

Enable: Set IER Bit = 1
Disable: Clear IER Bit = 0

Compiler generates atomic instructions (non-interruptible)
for setting/clearing IER
Register cleared on reset

/*** Interrupt Enable Register ***/
extern cregister volatile unsigned int IER;

IER |= 0x0008; //enable INT4 in IER
IER &= 0xFFF7; //disable INT4 in IER

4 - 6 C2000 Delfino Workshop - Reset and Interrupts

 Interrupts

Interrupt Global Mask Bit

INTM used to globally enable/disable interrupts:
Enable: INTM = 0
Disable: INTM = 1 (reset value)

INTM modified from assembly code only:

INTMST1
Bit 0

/*** Global Interrupts ***/
asm(“ CLRC INTM”); //enable global interrupts
asm(“ SETC INTM”); //disable global interrupts

Peripheral Interrupt Expansion (PIE)

Peripheral Interrupt Expansion - PIE

Pe
ri

ph
er

al
 In

te
rr

up
ts

12

x8
 =

 9
6

IF
R

IE
R

IN
TM 28x

Core

28x Core Interrupt logic

PIE module for 96 Interrupts

INT1.x interrupt group
INT2.x interrupt group
INT3.x interrupt group
INT4.x interrupt group
INT5.x interrupt group
INT6.x interrupt group
INT7.x interrupt group
INT8.x interrupt group
INT9.x interrupt group
INT10.x interrupt group

INT11.x interrupt group
INT12.x interrupt group

INT1 – INT12

12 Interrupts

96

INT1.1

INT1.2

INT1.8

1

0

1

•
•
•

•
•
•

INT1

PIEIFR1 PIEIER1
Interrupt Group 1

INT13 (TINT1 / XINT13)
INT14 (TINT2)
NMI

C2000 Delfino Workshop - Reset and Interrupts 4 - 7

Interrupts

F2833x PIE Interrupt Assignment Table
INTx.8 INTx.7 INTx.6 INTx.5 INTx.4 INTx.3 INTx.2 INTx.1

INT1 WAKEINT TINT0 ADCINT XINT2 XINT1 SEQ2INT SEQ1INT

INT2 EPWM6
_TZINT

EPWM5
_TZINT

EPWM4
_TZINT

EPWM3
_TZINT

EPWM2
_TZINT

EPWM1
_TZINT

INT3 EPWM6
_INT

EPWM5
_INT

EPWM4
_INT

EPWM3
_INT

EPWM2
_INT

EPWM1
_INT

INT4 ECAP6
_INT

ECAP5
_INT

ECAP4
_INT

ECAP3
_INT

ECAP2
_INT

ECAP1
_INT

INT5 EQEP2
_INT

EQEP1
_INT

INT6 MXINTA MRINTA MXINTB MRINTB SPITXINTA SPIRXINTA

INT7 DINTCH6 DINTCH5 DINTCH4 DINTCH3 DINTCH2 DINTCH1

INT8 SCITXINTCSCIRXINTC I2CINT2A I2CINT1A

INT9 ECAN1
_INTB

ECAN0
_INTB SCITXINTB SCIRXINTB SCITXINTA SCIRXINTA

INT10

INT11

INT12 LUF LVF XINT7 XINT6 XINT5 XINT4 XINT3

ECAN0
_INTA

ECAN1
_INTA

PIE Registers

INTx.2INTx.3INTx.4INTx.5INTx.6INTx.7INTx.8 INTx.1
0123456715 - 8

reserved

PIEIFRx register (x = 1 to 12)

INTx.2INTx.3INTx.4INTx.5INTx.6INTx.7INTx.8 INTx.1
0123456715 - 8

reserved

PIEIERx register (x = 1 to 12)

reserved PIEACKx

PIE Interrupt Acknowledge Register (PIEACK)
124 356789 0101115 - 12

ENPIEPIEVECT

PIECTRL register 015 - 1

#include “DSP2833x_Device.h”
PieCtrlRegs.PIEIFR1.bit.INTx4 = 1; //manually set IFR for XINT1 in PIE group 1
PieCtrlRegs.PIEIER3.bit.INTx5 = 1; //enable EPWM5_INT in PIE group 3
PieCtrlRegs.PIEACK.all = 0x0004; //acknowledge the PIE group 3
PieCtrlRegs.PIECTRL.bit.ENPIE = 1; //enable the PIE

4 - 8 C2000 Delfino Workshop - Reset and Interrupts

 Interrupts

PIE Interrupt Vector Table

Vector Offset

Default Interrupt Vector Table at Reset

Memory
0

BROM Vectors
64w

ENPIE = 0

0x3F FFC0

0x3F FFFF

PIE Vectors
256w

0x00 0D00

DATALOG
RTOSINT
EMUINT
NMI

02
04
06
08
0A
0C
0E
10
12
14
16
18
1A
1C
1E
20
22
24
26
28-3E

ILLEGAL
USER 1-12

INT1
INT2
INT3
INT4
INT5
INT6
INT7
INT8
INT9
INT10
INT11
INT12
INT13
INT14

RESET 00 Default Vector Table
Re-mapped when

ENPIE = 1

PieVectTableInit{ }
Used to initialize PIE vectors

PIE Vector Mapping (ENPIE = 1)

PIE INT12.8 Interrupt Vector0x00 0DFEINT12.8
………
PIE INT12.1 Interrupt Vector0x00 0DF0INT12.1
………
PIE INT1.8 Interrupt Vector0x00 0D4EINT1.8
………
PIE INT1.1 Interrupt Vector0x00 0D40INT1.1
User Defined Trap0x00 0D3EUSER12
………
CPU Data Logging Interrupt0x00 0D1EDATALOG
CPU Timer 20x00 0D1CINT14
CPU Timer 10x00 0D1AINT13
INT12 remapped to PIE group below0x00 0D18INT12
INTx remapped to PIE group below……
INT1 remapped to PIE group below0x00 0D02INT1
Reset fetched from Boot ROM 0x3F FFC00x00 0D00Reset
PIE Vector DescriptionPIE AddressVector Name

R
em

ap
pe

d

PIE vector location – 0x00 0D00 – 256 words in data memory
RESET and INT1-INT12 vector locations are re-mapped
CPU vectors are re-mapped to 0x00 0D00 in data memory

C2000 Delfino Workshop - Reset and Interrupts 4 - 9

Interrupts

Device Vector Mapping - Summary

_c_int00:
. . .

CALL main()

main()
{ initialization();

. . .
}

Initialization()
{
Load PIE Vectors
Enable the PIE
Enable PIEIER
Enable Core IER
Enable INTM

}

PIE Vector Table
256 Word RAM

0x00 0D00 – 0DFF

RESET
<0x3F FFC0>

Reset Vector <0x3F F9CE> = Boot Code
Flash Entry Point <0x33 FFF6 > = LB _c_int00
User Code Start < _c_int00 >

Interrupt Response and Latency

Interrupt Response - Hardware Sequence

Note: some actions occur simultaneously, none are interruptible

CPU Action Description

T ST0
AH AL
PH PL
AR1 AR0
DP ST1
DBSTAT IER
PC(msw) PC(lsw)

Registers → stack 14 Register words auto saved
0 → IFR (bit) Clear corresponding IFR bit
0 → IER (bit) Clear corresponding IER bit
1 → INTM/DBGM Disable global ints/debug events
Vector → PC Loads PC with int vector address
Clear other status bits Clear LOOP, EALLOW, IDLESTAT

4 - 10 C2000 Delfino Workshop - Reset and Interrupts

 Interrupts

Interrupt Latency

Latency

Depends on wait states, INTM, etc.Maximum latency:

Recognition
delay (3), SP
alignment (1),

interrupt
placed in
pipeline

4

Minimum latency (to when real work occurs in the ISR):
Internal interrupts: 14 cycles

External interrupts: 16 cycles

Get vector
and place

in PC
(3 reg.
pairs

saved)

3
F1/F2/D1 of

ISR
instruction

(3 reg. pairs
saved)

3
Save
return

address

1
D2/R1/R2 of

ISR
instruction

3
Sync ext.

signal
(ext.

interrupt
only)

2
cycles

Assumes ISR in
internal RAM

Internal
interrupt
occurs
here

ext.
interrupt
occurs
here

ISR
instruction
executed
on next
cycle

C2000 Delfino Workshop - Reset and Interrupts 4 - 11

Interrupts

4 - 12 C2000 Delfino Workshop - Reset and Interrupts

System Initialization

Introduction
This module discusses the operation of the OSC/PLL-based clock module and watchdog timer.
Also, the general-purpose digital I/O ports, external interrups, various low power modes and the
EALLOW protected registers will be covered.

Learning Objectives
Learning Objectives

OSC/PLL Clock Module

Watchdog Timer

General Purpose Digital I/O

External Interrupts

Low Power Modes

Register Protection

C2000 Delfino Workshop - System Initialization 5 - 1

Module Topics

Module Topics
System Initialization.. 5-1

Module Topics... 5-2
Oscillator/PLL Clock Module... 5-3
Watchdog Timer.. 5-5
General-Purpose Digital I/O .. 5-9
External Interrupts...5-12
Low Power Modes..5-13
Register Protection ..5-15
Lab 5: System Initialization ...5-17

5 - 2 C2000 Delfino Workshop - System Initialization

 Oscillator/PLL Clock Module

Oscillator/PLL Clock Module
F2833x Oscillator / PLL Clock Module

(lab file: SysCtrl.c)

PLL

XCLKIN

Watchdog
Module

VCOCLK

OSCCLK•

C28x
Core

CLKIN

SYSCLKOUT

HISPCP LOSPCP

HSPCLK LSPCLK

• •

DIV CLKIN
0 0 0 0 OSCCLK / n * (PLL bypass)
0 0 0 1 OSCCLK x 1 / n
0 0 1 0 OSCCLK x 2 / n
0 0 1 1 OSCCLK x 3 / n
0 1 0 0 OSCCLK x 4 / n
0 1 0 1 OSCCLK x 5 / n
0 1 1 0 OSCCLK x 6 / n
0 1 1 1 OSCCLK x 7 / n
1 0 0 0 OSCCLK x 8 / n
1 0 0 1 OSCCLK x 9 / n
1 0 1 0 OSCCLK x 10 / n

(PLL bypass)

HSPCLK LSPCLK

Input Clock Fail Detect Circuitry
PLL will issue a “limp mode”
clock (1-4 MHz) if input clock is
removed after PLL has locked.
An internal device reset will also
be issued (XRSn pin not driven).

SysCtrlRegs.PLLSTS.bit.DIVSEL

•

SysCtrlRegs.PLLCR.bit.DIV ADC SCI, SPI, I2C,
McBSP

All other peripherals
clocked by SYSCLKOUT

crystal

X2

XT
A

L
O

SC

X1
1/nM

U
X

DIVSEL n

0x /4 *
10 /2
11 /1

* default
Note: /1 mode can
only be used when
PLL is bypassed

The OSC/PLL clock module provides all the necessary clocking signals for C28x devices. The
PLL has a 4-bit ratio control to select different CPU clock rates. Two modes of operation are
supported – crystal operation, and external clock source operation. Crystal operation allows the
use of an external crystal/resonator to provide the time base to the device. External clock source
operation allows the internal oscillator to be bypassed, and the device clocks are generated from
an external clock source input on the XCLKIN pin. The watchdog receives a clock signal from
OSCCLK. The C28x core provides a SYSCLKOUT clock signal. This signal is prescaled to
provide a clock source for some of the on-chip peripherals through the high-speed and low-speed
peripheral clock prescalers. Other peripherals are clocked by SYSCLKOUT and use their own
clock prescalers for operation.

C2000 Delfino Workshop - System Initialization 5 - 3

Oscillator/PLL Clock Module

High / Low – Speed Peripheral Clock
Prescaler Registers (lab file: SysCtrl.c)

H/LSPCLK Peripheral Clock Frequency
0 0 0 SYSCLKOUT / 1
0 0 1 SYSCLKOUT / 2 (default HISPCP)
0 1 0 SYSCLKOUT / 4 (default LOSPCP)
0 1 1 SYSCLKOUT / 6
1 0 0 SYSCLKOUT / 8
1 0 1 SYSCLKOUT / 10
1 1 0 SYSCLKOUT / 12
1 1 1 SYSCLKOUT / 14

2 - 015 - 3

HSPCLKreserved

SysCtrlRegs.HISPCP

2 - 015 - 3

LSPCLKreserved

SysCtrlRegs.LOSPCP ADC

SCI / SPI /
I2C / McBSP

NOTE:
All Other
Peripherals
Clocked By
SYSCLKOUT

The peripheral clock control register allows individual peripheral clock signals to be enabled or
disabled. If a peripheral is not being used, its clock signal could be disabled, thus reducing power
consumption.

Peripheral Clock Control Registers
(lab file: SysCtrl.c)

15 14 13 11 10 9 812

7 6 5 4 3 2 1 0

SysCtrlRegs.PCLKCR0

SysCtrlRegs.PCLKCR1

SysCtrlRegs.PCLKCR3

15 14 13 11 10 9 812

7 6 5 4 3 2 1 0

15 - 14 13 12 10 9 8 7 - 011

ECANB
ENCLK

ECANA
ENCLK

SCIB
ENCLK

SCIA
ENCLK

SPIA
ENCLK

MA
ENCLK

MB
ENCLK

I2CA
ENCLK

ADC
ENCLK

TBCLK
SYNC

SCIC
ENCLK

EQEP2
ENCLK

EQEP1
ENCLK

ECAP4
ENCLK

ECAP3
ENCLK

ECAP2
ENCLK

ECAP1
ENCLK

ECAP5
ENCLK

ECAP6
ENCLK

EPWM6
ENCLK

EPWM5
ENCLK

EPWM4
ENCLK

EPWM3
ENCLK

EPWM2
ENCLK

EPWM1
ENCLK

CPUTIMER0
ENCLK

CPUTIMER1
ENCLK

CPUTIMER2
ENCLK

DMA
ENCLK

XINTF
ENCLK

GPIOIN
ENCLK

reserved

reservedreserved

reservedreservedreserved

reserved

reserved

reserved

Module Enable Clock Bit
0 = disable (default) 1 = enable

5 - 4 C2000 Delfino Workshop - System Initialization

 Watchdog Timer

Watchdog Timer
Watchdog Timer

Resets the C28x if the CPU crashes
Watchdog counter runs independent of CPU
If counter overflows, a reset or interrupt is
triggered (user selectable)
CPU must write correct data key sequence to
reset the counter before overflow

Watchdog must be serviced or disabled
within 131,072 WDCLK cycles after reset
This translates to 4.37 ms with a 30 MHz
WDCLK

The watchdog timer provides a safeguard against CPU crashes by automatically initiating a reset
if it is not serviced by the CPU at regular intervals. In motor control applications, this helps
protect the motor and drive electronics when control is lost due to a CPU lockup. Any CPU reset
will revert the PWM outputs to a high-impedance state, which should turn off the power
converters in a properly designed system.

The watchdog timer is running immediately after system power-up/reset, and must be dealt with
by software soon after. Specifically, you have 4.37ms (for a 150 MHz device) after any reset
before a watchdog initiated reset will occur. This translates into 131,072 instruction cycles,
which is a seemingly tremendous amount! Indeed, this is plenty of time to get the watchdog
configured as desired and serviced. A failure of your software to properly handle the watchdog
after reset could cause an endless cycle of watchdog initiated resets to occur.

C2000 Delfino Workshop - System Initialization 5 - 5

Watchdog Timer

Watchdog Timer Module
(lab file: Watchdog.c)

WDCLK

System
Reset

8-bit Watchdog
Counter

CLR

Watchdog
Reset Key
Register

55 + AA
Detector

1 0 1
/
/3

3

WDDIS

WDCHK

Bad WDCHK Key

/512

Output
Pulse

WDRST

WDINT

WDOVERRIDE

Good Key

Watchdog
Prescaler

WDPS

WDPS FRC WD timeout period
Bits rollover @ 30 MHz OSCCLK

00x: 1 4.37 ms *
010: 2 8.74 ms
011: 4 17.48 ms
100: 8 34.96 ms
101: 16 69.92 ms
110: 32 139.84 ms
111: 64 279.68 ms

Watchdog Period Selection

Remember: Watchdog starts counting immediately
after reset is released!
Reset default with WDCLK = 30 MHz computed as

(1/30 MHz) * 512 * 256 = 4.37 ms

* reset default

5 - 6 C2000 Delfino Workshop - System Initialization

 Watchdog Timer

Watchdog Timer Control Register
SysCtrlRegs.WDCR (lab file: Watchdog.c)

WDFLAG WDDIS

7 6 5 - 3 2 - 0

WDPSWDCHK

Logic Check Bits
Write as 101 or reset
immediately triggered

WD Prescale
Selection Bits

Watchdog Disable Bit
Write 1 to disable

(Functions only if WD OVERRIDE
bit in SCSR is equal to 1)

reserved

15 - 8

WD Flag Bit
Gets set when the WD causes a reset

• Writing a 1 clears this bit
• Writing a 0 has no effect

WDPS WDCLK =
0 0 0 OSCCLK / 512 / 1
0 0 1 OSCCLK / 512 / 1
0 1 0 OSCCLK / 512 / 2
0 1 1 OSCCLK / 512 / 4
1 0 0 OSCCLK / 512 / 8
1 0 1 OSCCLK / 512 / 16
1 1 0 OSCCLK / 512 / 32
1 1 1 OSCCLK / 512 / 64

Resetting the Watchdog
SysCtrlRegs.WDKEY (lab file: Watchdog.c)

WDKEY write values:
55h - counter enabled for reset on next AAh write
AAh - counter set to zero if reset enabled

Writing any other value has no effect
Watchdog should not be serviced solely in
an ISR

If main code crashes, but interrupt continues to
execute, the watchdog will not catch the crash
Could put the 55h WDKEY in the main code, and
the AAh WDKEY in an ISR; this catches main
code crashes and also ISR crashes

reserved
7 - 015 - 8

WDKEY

C2000 Delfino Workshop - System Initialization 5 - 7

Watchdog Timer

WDKEY Write Results

Sequential
Step

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Value Written
to WDKEY

AAh
AAh
55h
55h
55h
AAh
AAh
55h
AAh
55h
23h
AAh
55h
AAh

Result

No action
No action
WD counter enabled for reset on next AAh write
WD counter enabled for reset on next AAh write
WD counter enabled for reset on next AAh write
WD counter is reset
No action
WD counter enabled for reset on next AAh write
WD counter is reset
WD counter enabled for reset on next AAh write
No effect; WD counter not reset on next AAh write
No action due to previous invalid value
WD counter enabled for reset on next AAh write
WD counter is reset

System Control and Status Register
SysCtrlRegs.SCSR (lab file: Watchdog.c)

WD Override (protect bit)
Protects WD from being disabled

0 = WDDIS bit in WDCR has no effect (WD cannot be disabled)
1 = WDDIS bit in WDCR can disable the watchdog

• This bit is a clear-only bit (write 1 to clear)
• The reset default of this bit is a 1

01215 - 3

WDOVERRIDEWDENINTWDINTSreserved

WD Enable InterruptWD Interrupt Status
(read only)

0 = active
1 = not active

0 = WD generates a DSP reset
1 = WD generates a WDINT interrupt

5 - 8 C2000 Delfino Workshop - System Initialization

 General-Purpose Digital I/O

General-Purpose Digital I/O
F2833x GPIO Grouping Overview

(lab file: Gpio.c)

GPIO Port A Mux1
Register (GPAMUX1)

[GPIO 0 to 15] GPIO Port A
Direction Register

(GPADIR)
[GPIO 0 to 31]

G
PIO

 Port A
G

PIO
 P

ort B

Internal B
us

GPIO Port A Mux2
Register (GPAMUX2)

[GPIO 16 to 31]

GPIO Port B Mux1
Register (GPBMUX1)

[GPIO 32 to 47]

GPIO Port B Mux2
Register (GPBMUX2)

[GPIO 48 to 63]

GPIO Port B
Direction Register

(GPBDIR)
[GPIO 32 to 63]

G
PIO

 Port C

GPIO Port C Mux1
Register (GPCMUX1)

[GPIO 64 to 79]

GPIO Port C Mux2
Register (GPCMUX2)

[GPIO 80 to 87]

GPIO Port C
Direction Register

(GPCDIR)
[GPIO 64 to 87]

Input
Qual

Input
Qual

•

F2833x GPIO Pin Block Diagram
(lab file: Gpio.c)

• •
01

00
MUX Control Bits *
00 = GPIO
01 = Peripheral 1
10 = Peripheral 2
11 = Peripheral 3

Peripheral
1

I/O DAT
Bit (R/W) In

Out

I/O DIR Bit
0 = Input
1 = Output

GPxMUX1
GPxMUX2

GPxDIR

GPxDAT

GPxSET
GPxCLEAR

GPxTOGGLE

•• 10

11

Peripheral
2

Peripheral
3

Pin

Internal Pull-Up
0 = enable (default GPIO 12-31)
1 = disable (default GPIO 0-11)

GPxPUD

Input
Qualification

(GPIO 0-63 only) GPxQSEL1
GPxQSEL2
GPxCTRL

* See device datasheet for pin function selection matrices

C2000 Delfino Workshop - System Initialization 5 - 9

General-Purpose Digital I/O

Qualification available on ports A & B (GPIO 0 - 63) only
Individually selectable per pin

no qualification (peripherals only)
sync to SYSCLKOUT only
qualify 3 samples
qualify 6 samples

Port C pins are fixed as
‘sync to SYSCLKOUT’

F2833x GPIO Input Qualification

Input
Qualificationpin

to GPIO and
peripheral
modules

SYSCLKOUT

T T T

samples taken

T = qual period

F2833x GPIO Input Qual Registers
GpioCtrlRegs.register (lab file: Gpio.c)

00 = sync to SYSCLKOUT only *
01 = qual to 3 samples
10 = qual to 6 samples
11 = no sync or qual (for peripheral only; GPIO same as 00)

00h no qualification (SYNC to SYSCLKOUT) *
01h QUALPRD = SYSCLKOUT/2
02h QUALPRD = SYSCLKOUT/4
… … …

FFh QUALPRD = SYSCLKOUT/510

GPAQSEL1 / GPAQSEL2 / GPBQSEL1 / GPBQSEL2
16 pins configured per register

031

QUALPRD0QUALPRD1QUALPRD2QUALPRD3

GPACTRL / GPBCTRL
31 24 16 8 0

B: GPIO63-56 GPIO55-48 GPIO47-40 GPIO39-32
A: GPIO31-24 GPIO23-16 GPIO15-8 GPIO7-0

* reset default

5 - 10 C2000 Delfino Workshop - System Initialization

 General-Purpose Digital I/O

C2833x GPIO Control Registers
GpioCtrlRegs.register (lab file: Gpio.c)

Register Description
GPACTRL GPIO A Control Register [GPIO 0 – 31]
GPAQSEL1 GPIO A Qualifier Select 1 Register [GPIO 0 – 15]
GPAQSEL2 GPIO A Qualifier Select 2 Register [GPIO 16 – 31]
GPAMUX1 GPIO A Mux1 Register [GPIO 0 – 15]
GPAMUX2 GPIO A Mux2 Register [GPIO 16 – 31]
GPADIR GPIO A Direction Register [GPIO 0 – 31]
GPAPUD GPIO A Pull-Up Disable Register [GPIO 0 – 31]
GPBCTRL GPIO B Control Register [GPIO 32 – 63]
GPBQSEL1 GPIO B Qualifier Select 1 Register [GPIO 32 – 47]
GPBQSEL2 GPIO B Qualifier Select 2 Register [GPIO 48 – 63]
GPBMUX1 GPIO B Mux1 Register [GPIO 32 – 47]
GPBMUX2 GPIO B Mux2 Register [GPIO 48 – 63]
GPBDIR GPIO B Direction Register [GPIO 32 – 63]
GPBPUD GPIO B Pull-Up Disable Register [GPIO 32 – 63]
GPCMUX1 GPIO C Mux1 Register [GPIO 64 – 79]
GPCMUX2 GPIO C Mux2 Register [GPIO 80 – 87]
GPCDIR GPIO C Direction Register [GPIO 64 – 87]
GPCPUD GPIO C Pull-Up Disable Register [GPIO 64 – 87]

C2833x GPIO Data Registers
GpioDataRegs.register (lab file: Gpio.c)

Register Description
GPADAT GPIO A Data Register [GPIO 0 – 31]
GPASET GPIO A Data Set Register [GPIO 0 – 31]
GPACLEAR GPIO A Data Clear Register [GPIO 0 – 31]
GPATOGGLE GPIO A Data Toggle [GPIO 0 – 31]
GPBDAT GPIO B Data Register [GPIO 32 – 63]
GPBSET GPIO B Data Set Register [GPIO 32 – 63]
GPBCLEAR GPIO B Data Clear Register [GPIO 32 – 63]
GPBTOGGLE GPIO B Data Toggle [GPIO 32 – 63]
GPCDAT GPIO C Data Register [GPIO 64 – 87]
GPCSET GPIO C Data Set Register [GPIO 64 – 87]
GPCCLEAR GPIO C Data Clear Register [GPIO 64 – 87]
GPCTOGGLE GPIO C Data Toggle [GPIO 64 – 87]

C2000 Delfino Workshop - System Initialization 5 - 11

External Interrupts

External Interrupts
External Interrupts

8 external interrupt signals: XNMI, XINT1-7

The signals can be mapped to a variety of pins
XNMI, XINT1-2 can be mapped to any of GPIO0-31
XINT3-7 can be mapped to any of GPIO32-63

The eCAP pins and their interrupts can be used
as additional external interrupts if needed

XNMI, XINT1, and XINT2 also each have a free-
running 16-bit counter that measures the
elapsed time between interrupts

The counter resets to zero each time the interrupt
occurs

External Interrupt Registers

Interrupt Pin Selection Register Configuration Register Counter Register
(GpioIntRegs.register) (XIntruptRegs.register) (XIntruptRegs.register)

XNMI GPIOXNMISEL XNMICR XNMICTR
XINT1 GPIOXINT1SEL XINT1CR XINT1CTR
XINT2 GPIOXINT2SEL XINT2CR XINT2CTR
XINT3 GPIOXINT3SEL XINT3CR -
XINT4 GPIOXINT4SEL XINT4CR -
XINT5 GPIOXINT5SEL XINT5CR -
XINT6 GPIOXINT6SEL XINT6CR -
XINT7 GPIOXINT7SEL XINT7CR -

Pin Selection Register chooses which pin(s) the signal comes out on
Configuration Register controls the enable/disable and polarity
Counter Register holds the interrupt counter

5 - 12 C2000 Delfino Workshop - System Initialization

 Low Power Modes

Low Power Modes
Low Power Modes

Low Power
Mode

CPU Logic
Clock

Peripheral
Logic Clock

Watchdog
Clock

PLL /
OSC

Normal Run

IDLE

STANDBY

HALT

on

off

off

off

on

on

off

off

on

on

on

off

on

on

on

off

See device datasheet for power consumption in each mode

Low Power Mode Control Register 0
SysCtrlRegs.LPMCR0 (lab file: SysCtrl.c)

1 - 07 - 214 - 8

LPM0WDINTE QUALSTDBYreserved

Low Power Mode Selection
00 = Idle (default)
01 = Standby
1x = Halt

Wake from STANDBY
GPIO signal qualification *

000000 = 2 OSCCLKs
000001 = 3 OSCCLKs

111111 = 65 OSCCLKS (default)

...

15

Watchdog Interrupt
wake device from

STANDBY
0 = disable (default)
1 = enable

Low Power Mode Entering
1. Set LPM bits
2. Enable desired exit interrupt(s)
3. Execute IDLE instruction
4. The power down sequence of the hardware

depends on LP mode

* QUALSTDBY will qualify the GPIO wakeup signal in series with the GPIO port qualification.
This is useful when GPIO port qualification is not available or insufficient for wake-up purposes.

C2000 Delfino Workshop - System Initialization 5 - 13

Low Power Modes

Low Power Mode Exit

IDLE

STANDBY

HALT

RESET
or

XNMI

yes

yes

yes

Any
Enabled
Interrupt

yes

no

no

yes

yes

no

Exit
Interrupt

Low Power
Mode

Watchdog
Interrupt

GPIO
Port A
Signal

yes

yes

yes

GPIO Low Power Wakeup Select
SysCtrlRegs.GPIOLPMSEL

Wake device from
HALT and STANDBY mode

(GPIO Port A)
0 = disable (default)
1 = enable

0

GPIO2

GPIO14 GPIO8GPIO11

GPIO5
1234567

89101112131415

GPIO0GPIO1GPIO4 GPIO3

GPIO9

GPIO6

GPIO10

GPIO7

GPIO12GPIO13GPIO15

16

GPIO18

GPIO30 GPIO24GPIO27

GPIO21
17181920212223

2425262728293031

GPIO16GPIO17GPIO20 GPIO19

GPIO25

GPIO22

GPIO26

GPIO23

GPIO28GPIO29GPIO31

5 - 14 C2000 Delfino Workshop - System Initialization

 Register Protection

Register Protection

CPU pipeline protects W-R order for the same address
Write-Read protection mechanism protects W-R order
for different addresses

Configured by PROTSTART
and PROTRANGE registers
Default values for these
registers protect the address
range 0x4000 to 0x7FFF
Default values typically
sufficient

XINTF Zone 0

Write-Read Protection
DevEmuRegs.PROTSTART & DevEmuRegs.PROTRANGE

Suppose you need to write to a peripheral register and
then read a different register for the same peripheral
(e.g., write to control, read from status register)?

0x00 0800
0x00 0D00

0x00 2000

0x00 6000
0x00 7000

0x00 0E00

0x00 5000

PF 1
PF 2

PF 3

PF 0
reserved

PIE Vectors

0x00 4000

0x00 8000

Note: PF0 is not protected by default because the flexibility of PROTSTART and PROTRANGE are such that
M0 and M1 SARAM blocks would also need to be protected, thereby reducing the performance of this RAM.
See TMS320x2833x, 2823x System Control and Interrupts Reference Guide, #SPRUFB0

M0SARAM
M1SARAM

0x00 0000
0x00 0400

EALLOW Protection (1 of 2)

EALLOW stands for Emulation Allow
Code access to protected registers allowed
only when EALLOW = 1 in the ST1 register
The emulator can always access protected
registers
EALLOW bit controlled by assembly level
instructions

‘EALLOW’ sets the bit (register access enabled)
‘EDIS’ clears the bit (register access disabled)

EALLOW bit cleared upon ISR entry, restored
upon exit

C2000 Delfino Workshop - System Initialization 5 - 15

Register Protection

EALLOW Protection (2 of 2)

asm(" EALLOW"); // enable protected register access

SysCtrlRegs.WDKEY=0x55; // write to the register

asm(" EDIS"); // disable protected register access

EALLOW register access C-code example:

Device Emulation
Flash
Code Security Module
PIE Vector Table
DMA (most registers)
eCANA/B (control registers only; mailbox RAM not protected)
ePWM1 - 6 (some registers)
GPIO (control registers only)
System Control

See device datasheet and peripheral users guides for detailed listings

The following registers are protected:

5 - 16 C2000 Delfino Workshop - System Initialization

 Lab 5: System Initialization

Lab 5: System Initialization
 Objective

The objective of this lab is to perform the processor system initialization. Additionally, the
peripheral interrupt expansion (PIE) vectors will be initialized and tested using the information
discussed in the previous module. This initialization process will be used again in all of the lab
exercises throughout this workshop. The system initialization for this lab will consist of the
following:

• Setup the clock module – PLL, HISPCP = /1, LOSPCP = /4, low-power modes to default
values, enable all module clocks

• Disable the watchdog – clear WD flag, disable watchdog, WD prescale = 1
• Setup watchdog system and control register – DO NOT clear WD OVERRIDE bit, WD

generate a CPU reset
• Setup shared I/O pins – set all GPIO pins to GPIO function (e.g. a "00" setting for GPIO

function, and a “01”, “10”, or “11” setting for a peripheral function.)

The first part of the lab exercise will setup the system initialization and test the watchdog
operation by having the watchdog cause a reset. In the second part of the lab exercise the PIE
vectors will be added and tested by using the watchdog to generate an interrupt. This lab will
make use of the DSP2833x C-code header files to simplify the programming of the device, as
well as take care of the register definitions and addresses. Please review these files, and make use
of them in the future, as needed.

 Procedure

Create a New Project
1. Create a new project (File New CCS Project) and name it Lab5.

Uncheck the “Use default location” box. Using the Browse… button navigate to:
C:\C28x\Labs\Lab5\Project. Click OK and then click Next. The next three
windows should default to the options previously selected (project type C2000, no inter-
project dependencies selected, and device variant TMS320F28335 – be sure to set the
“Linker Command File” to <none>). Use the defaults and at the last window click
Finish.

2. Right-click on Lab5 in the C/C++ Projects window and add the following files to
the project (Add Files to Project…) from C:\C28x\Labs\Lab5\Files:

CodeStartBranch.asm Lab.h
DelayUs.asm Lab_5_6_7.cmd
DSP2833x_DefaultIsr.h Main_5.c
DSP2833x_GlobalVariableDefs.c SysCtrl.c
DSP2833x_Headers_nonBIOS.cmd Watchdog.c
Gpio.c

C2000 Delfino Workshop - System Initialization 5 - 17

Lab 5: System Initialization

Do not add DefaultIsr_5.c, PieCtrl_5_6_7_8_9_10.c, and
PieVect_5_6_7_8_9_10.c. These files will be added and used with the interrupts
in the second part of this lab exercise.

Project Build Options
3. Setup the build options by right-clicking on Lab5 in the C/C++ Projects window

and select Properties. Then select the “C/C++ Build” Category. Be sure that the
Tool Settings tab is selected.

4. Under “C2000 Linker” select “Basic Options” and set the Stack Size to 0x200.

5. Next we need to setup the include search path to include the peripheral register header
files. Under “C2000 Compiler” select “Include Options”. In the box that opens
click the Add icon (first icon with green plus sign). Then in the “Add directory path”
window type:

${PROJECT_ROOT}/../../DSP2833x_headers/include

Click OK to include the search path. Finally, click OK to save and close the build options
window.

Modify Memory Configuration
6. Open and inspect the linker command file Lab_5_6_7.cmd. Notice that the user

defined section “codestart” is being linked to a memory block named BEGIN_M0.
The codestart section contains code that branches to the code entry point of the project.
The bootloader must branch to the codestart section at the end of the boot process. Recall
that the “Jump to M0 SARAM” bootloader mode branches to address 0x000000 upon
bootloader completion.

Modify the linker command file Lab_5_6_7.cmd to create a new memory block
named BEGIN_M0: origin = 0x000000, length = 0x0002, in program memory. You will
also need to modify the existing memory block M0SARAM in data memory to avoid any
overlaps with this new memory block.

Setup System Initialization
7. Modify SysCtrl.c and Watchdog.c to implement the system initialization as

described in the objective for this lab.

8. Open and inspect Gpio.c. Notice that the shared I/O pins have been set to the GPIO
function. Save your work and close the modified files.

Build and Load
9. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window.

5 - 18 C2000 Delfino Workshop - System Initialization

 Lab 5: System Initialization

10. Click the “Debug” button (green bug). The “Debug Perspective” view should open, the
program will load automatically, and you should now be at the start of main().

Run the Code – Watchdog Reset
11. Place the cursor in the “main loop” section (on the asm(“ NOP”); instruction line)

and right click the mouse key and select Run To Line. This is the same as setting a
breakpoint on the selected line, running to that breakpoint, and then removing the
breakpoint.

12. Place the cursor on the first line of code in main() and set a breakpoint by right clicking
the mouse key and select Toggle Breakpoint. Notice that line is highlighted with a
blue dot indicating that the breakpoint has been set. Alternately, you can double-click in
the line number field to the left of the code line to set the breakpoint. The breakpoint is
set to prove that the watchdog is disabled. If the watchdog causes a reset, code execution
will stop at this breakpoint.

13. Run your code for a few seconds by using the Run button on the toolbar, or using
Target Run on the menu bar. After a few seconds halt your code by using the
Halt button on the toolbar, or by using Target Halt. Where did your code stop?
Are the results as expected? If things went as expected, your code should be in the
“main loop”.

14. Switch to the “C/C++ Perspective” view by clicking the C/C++ icon in the upper right-
hand corner. Modify the InitWatchdog() function to enable the watchdog (WDCR).
This will enable the watchdog to function and cause a reset. Save the file.

15. Click the “Build” button. Select Yes to “Reload the program automatically”. Switch
back to the “Debug Perspective” view by clicking the Debug icon in the upper right-
hand corner.

16. Like before, place the cursor in the “main loop” section (on the asm(“ NOP”);
instruction line) and right click the mouse key and select Run To Line.

17. Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should have stopped at the breakpoint. What happened is as
follows. While the code was running, the watchdog timed out and reset the processor.
The reset vector was then fetched and the ROM bootloader began execution. The
bootloader transferred execution to the beginning of our code at address 0x000000 in the
M0SARAM, and execution continued until the breakpoint was hit in main().

Setup PIE Vector for Watchdog Interrupt
The first part of this lab exercise used the watchdog to generate a CPU reset. This was tested
using a breakpoint set at the beginning of main(). Next, we are going to use the watchdog
to generate an interrupt. This part will demonstrate the interrupt concepts learned in the
previous module.

C2000 Delfino Workshop - System Initialization 5 - 19

Lab 5: System Initialization

18. In the “C/C++ Perspective” view add the following files to the project from
C:\C28x\Labs\Lab5\Files:

DefaultIsr_5.c
PieCtrl_5_6_7_8_9_10.c
PieVect_5_6_7_8_9_10.c

Check your files list to make sure the files are there.

19. In Main_5.c, add code to call the InitPieCtrl() function. There are no passed
parameters or return values, so the call code is simply:

 InitPieCtrl();

20. Using the “PIE Interrupt Assignment Table” shown in the previous module find the
location for the watchdog interrupt, “WAKEINT”. This will be used in the next step.

PIE group #: # within group:

21. Modify main() to do the following:
- Enable global interrupts (INTM bit)

Then modify InitWatchdog() to do the following:
- Enable the “WAKEINT” interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

22. In Watchdog.c modify the system control and status register (SCSR) to cause the
watchdog to generate a WAKEINT rather than a reset. Save all changes to the files.

23. Open and inspect DefaultIsr_5.c. This file contains interrupt service routines. The
ISR for WAKEINT has been trapped by an emulation breakpoint contained in an inline
assembly statement using “ESTOP0”. This gives the same results as placing a breakpoint
in the ISR. We will run the lab exercise as before, except this time the watchdog will
generate an interrupt. If the registers have been configured properly, the code will be
trapped in the ISR.

24. Open and inspect PieCtrl_5_6_7_8_9_10.c. This file is used to initialize the PIE
RAM and enable the PIE. The interrupt vector table located in
PieVect_5_6_7_8_9_10.c is copied to the PIE RAM to setup the vectors for the
interrupts. Close the modified and inspected files.

Build and Load
25. Click the “Build” button and select Yes to “Reload the program automatically”.

Switch to the “Debug Perspective” view.

Run the Code – Watchdog Interrupt
26. Place the cursor in the “main loop” section, right click the mouse key and select Run

To Line.

5 - 20 C2000 Delfino Workshop - System Initialization

 Lab 5: System Initialization

27. Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should stop at the “ESTOP0” instruction in the WAKEINT ISR.

Terminate Debug Session and Close Project
28. Terminate the active debug session using the Terminate All button. This will close

the debugger and return CCS to the “C/C++ Perspective” view.

29. Next, close the project by right-clicking on Lab5 in the C/C++ Projects window
and select Close Project.

End of Exercise

Note: By default, the watchdog timer is enabled out of reset. Code in the file
CodeStartBranch.asm has been configured to disable the watchdog. This can be
important for large C code projects (ask your instructor if this has not already been
explained). During this lab exercise, the watchdog was actually re-enabled (or disabled
again) in the file Watchdog.c.

C2000 Delfino Workshop - System Initialization 5 - 21

Lab 5: System Initialization

5 - 22 C2000 Delfino Workshop - System Initialization

Analog-to-Digital Converter

Introduction
This module explains the operation of the analog-to-digital converter. The system consists of a
12-bit analog-to-digital converter with 16 analog input channels. The analog input channels have
a range from 0 to 3 volts. Two input analog multiplexers are used, each supporting 8 analog input
channels. Each multiplexer has its own dedicated sample and hold circuit. Therefore, sequential,
as well as simultaneous sampling is supported. Also, the ADC system features programmable
auto sequence conversions with 16 results registers. Start of conversion (SOC) can be performed
by an external trigger, software, or an ePWM event.

Learning Objectives
Learning Objectives

Understand the operation of the
Analog-to-Digital converter (ADC)
Use the ADC to perform data acquisition

C2000 Delfino Workshop - Analog-to-Digital Converter 6 - 1

Module Topics

Module Topics
Analog-to-Digital Converter... 6-1

Module Topics... 6-2
Analog-to-Digital Converter... 6-3

Analog-to-Digital Converter Registers... 6-5
Example – Sequencer “Start/Stop” Operation ...6-10
ADC Conversion Result Buffer Register...6-11
Signed Input Voltages ...6-11
ADC Calibration..6-12

Lab 6: Analog-to-Digital Converter ..6-14

6 - 2 C2000 Delfino Workshop - Analog-to-Digital Converter

 Analog-to-Digital Converter

Analog-to-Digital Converter

ADC Module Block Diagram (Cascaded Mode)

12-bit A/D
Converter

SOC EOC

Software

ADCINA0
ADCINA1

ADCINA7

ADCINB0
ADCINB1

ADCINB7

S/H
A

S/H
B

M
UX

MUX
A

RESULT0
RESULT1
RESULT2

RESULT15

Result
MUX

External Pin
(GPIO/XINT2_ADCSOC)

ePWM_SOC_A
ePWM_SOC_B

MUX
B

Ch Sel (CONV00)
Ch Sel (CONV01)
Ch Sel (CONV02)
Ch Sel (CONV03)

Ch Sel (CONV15)

MAX_CONV1

Autosequencer

Start Sequence
Trigger

SEQ1
ADC full-scale
input range is

0 to 3V

ADC Module Block Diagram (Dual-Sequencer mode)

RESULT8
RESULT9

RESULT15

Result
MUX

RESULT0
RESULT1

RESULT7

Result
MUX12-bit A/D

Converter

S/H
A

S/H
B

M
UX

Software
ePWM_SOC_A

External Pin

SOC1/
EOC1

Sequencer
Arbiter

SOC2/
EOC2

Software
ePWM_SOC_B

ADCINA0
ADCINA1

ADCINA7

ADCINB0
ADCINB1

ADCINB7

MUX
A

MUX
B

M
UX

MUX

Ch Sel (CONV00)
Ch Sel (CONV01)

Ch Sel (CONV07)

MAX_CONV1

Autosequencer

Start Sequence
Trigger

SEQ1

(GPIO/XINT2_ADCSOC)

Ch Sel (CONV08)
Ch Sel (CONV09)

Ch Sel (CONV15)

MAX_CONV2

Autosequencer

Start Sequence
Trigger

SEQ2
ADC full-scale
input range is

0 to 3V

C2000 Delfino Workshop - Analog-to-Digital Converter 6 - 3

Analog-to-Digital Converter

ADC Operating Mode Choices

The user can make one choice from
each category below
Choices are completely independent *

Sequencer Mode
Cascaded

Dual

Sampling Mode
Sequential

Simultaneous

Run Mode
Start/Stop

Continuous

* Note that using Continuous Run mode with Dual Sequencer generally doesn’t make sense
since sequencer #2 will not get to do any conversions!

ADC Clocking Flow
CLKIN

(30 MHz)
HSPCLK

(150 MHz)

ADCCLKPS
bits

ADCTRL3

0110b

FCLK
(12.5 MHz)

FCLK = HSPCLK/(2*ADCCLKPS) ADCCLK =
FCLK/(CPS+1)

ADCCLK
(12.5 MHz)

CPS bit

ADCTRL1

0b

To ADC
pipeline

sampling
windowACQ_PS

bits

ADCTRL1

0111b

Note: Maximum F2833x ADCCLK is 25 MHz, but INL (integral nonlinearity error) is greater
above 12.5 MHz. See the device datasheet for more information.

SYSCLKOUT
(150 MHz)

PLLSTS

DIVSEL
bits

10b (/2)
To CPU

sampling window = (ACQ_PS + 1)*(1/ADCCLK)

PCLKCR0.ADCENCLK = 1

HISPCP

HSPCLK
bits

000b (/1)

PLLCR

DIV
bits

1010b (x10)

6 - 4 C2000 Delfino Workshop - Analog-to-Digital Converter

 Analog-to-Digital Converter

Analog-to-Digital Converter Registers

Analog-to-Digital Converter Registers
AdcRegs.register (lab file: Adc.c)

ADCTRL1 ADC Control Register 1
ADCTRL2 ADC Control Register 2
ADCTRL3 ADC Control Register 3
ADCMAXCONV ADC Maximum Conversion Channels Register
ADCCHSELSEQ1 ADC Channel Select Sequencing Control Register 1
ADCCHSELSEQ2 ADC Channel Select Sequencing Control Register 2
ADCCHSELSEQ3 ADC Channel Select Sequencing Control Register 3
ADCCHSELSEQ4 ADC Channel Select Sequencing Control Register 4
ADCASEQSR ADC Autosequence Status Register
ADCRESULT0 ADC Conversion Result Buffer Register 0
ADCRESULT1 ADC Conversion Result Buffer Register 1
ADCRESULT2 ADC Conversion Result Buffer Register 2

ADCRESULT14 ADC Conversion Result Buffer Register 14
ADCRESULT15 ADC Conversion Result Buffer Register 15
ADCREFSEL ADC Reference Select Register
ADCOFFTRIM ADC Offset Trim Register
ADCST ADC Status and Flag Register

Register Description

C2000 Delfino Workshop - Analog-to-Digital Converter 6 - 5

Analog-to-Digital Converter

ADC Control Register 1
AdcRegs.ADCTRL1

Emulation Suspend Mode
00 = free run (do not stop)
01 = stop after current sequence
10 = stop after current conversion
11 = stop immediately

ADC Module Reset
0 = no effect
1 = reset (set back to 0

by ADC logic)

Acquisition Time Prescale (S/H)
ACQ Window = (ACQ_PS + 1)*(1/ADCCLK)

SUSMOD ACQ_PS CPS
7

RESET
15

reserved

11 - 813 - 1214

Conversion Prescale
0: ADCCLK = FCLK / 1
1: ADCCLK = FCLK / 2

Upper Register:

ADC Control Register 1
AdcRegs.ADCTRL1

Sequencer Mode
0 = dual mode
1 = cascaded mode

Continuous Run
0 = stops after reaching

end of sequence
1 = continuous (starts all over

again from “initial state”)

Sequencer Override
(functions only if CONT_RUN = 1)
0 = sequencer pointer resets to “initial state” at end of MAX_CONVn
1 = sequencer pointer resets to “initial state” after “end state”

SEQ_OVRD SEQ_CASC
3 - 0

CONT_RUN reserved

456

Lower Register:

6 - 6 C2000 Delfino Workshop - Analog-to-Digital Converter

 Analog-to-Digital Converter

ADC Control Register 2
AdcRegs.ADCTRL2

Interrupt Enable (SEQ1)
0 = interrupt disable
1 = interrupt enable

ePWM SOC B
(cascaded mode only)
0 = no action
1 = start by ePWM

signal

Reset SEQ1
0 = no action
1 = immediate reset

SEQ1 to “initial state”

Start Conversion (SEQ1)
0 = clear pending SOC trigger
1 = software trigger-start SEQ1

ePWM SOC A
SEQ1 Mask Bit
0 = cannot be started

by ePWM trigger
1 = can be started

by ePWM trigger

Interrupt Mode (SEQ1)
0 = interrupt every EOS
1 = interrupt every other EOS

RST_SEQ1

9
ePWM_SOCB

_SEQ

12
reserved

1115
SOC_SEQ1 INT_ENA

_SEQ1
INT_MOD

_SEQ1 reserved ePWM_SOCA
_SEQ1

814 13 10

Upper Register:

ADC Control Register 2
AdcRegs.ADCTRL2

Interrupt Enable (SEQ2)
0 = interrupt disable
1 = interrupt enable

External SOC (SEQ1)
0 = no action
1 = start by signal from

ADCSOC pin

Start Conversion (SEQ2)
(dual-sequencer mode only)
0 = clear pending SOC trigger
1 = software trigger-start SEQ2

ePWM SOC B
SEQ2 Mask Bit
0 = cannot be started

by ePWM trigger
1 = can be started

by ePWM trigger

Interrupt Mode (SEQ2)
0 = interrupt every EOS
1 = interrupt every other EOS

RST_SEQ2

1
EXT_SOC

_SEQ1

4
reserved

37
SOC_SEQ2 INT_ENA

_SEQ2
INT_MOD

_SEQ2 reserved ePWM_SOCB
_SEQ2

06 5 2

Lower Register:

Reset SEQ2
0 = no action
1 = immediate reset

SEQ2 to “initial state”

C2000 Delfino Workshop - Analog-to-Digital Converter 6 - 7

Analog-to-Digital Converter

ADC Control Register 3
AdcRegs.ADCTRL3

Sampling Mode Select
0 = sequential sampling mode
1 = simultaneous sampling mode

ADC Clock Prescale
0 : FCLK = HSPCLK

1 to F: FCLK = HSPCLK / (2*ADCCLKPS)

ADC Bandgap and
Reference Power Down
00 = powered down
11 = powered up

ADC Power Down
(except Bandgap & Ref.)
0 = powered down
1 = powered up

ADCBGRFDN ADCCLKPS SMODE_SEL
015 - 8

reserved
4 - 17 - 6

ADCPWDN
5

Maximum Conversion Channels Register
AdcRegs.ADCMAXCONV

MAX_
CONV 2_2

MAX_
CONV 2_1

MAX_
CONV 2_0

MAX_
CONV 1_3

MAX_
CONV 1_2

MAX_
CONV 1_1

MAX_
CONV 1_0reserved

Cascaded Mode

Dual ModeSEQ2 SEQ1

♦ Bit fields define the number of conversions per trigger (binary+1)

♦ Each sequencer starts at the “initial state” and advances sequentially
♦ Each will wrap at the “end state” unless software resets it sooner

SEQ1 SEQ2 Cascaded
Initial state CONV00 CONV08 CONV00
End state CONV07 CONV15 CONV15

012345615-7

6 - 8 C2000 Delfino Workshop - Analog-to-Digital Converter

 Analog-to-Digital Converter

ADC Input Channel Select
Sequencing Control Registers

AdcRegs.ADCCHSELSEQx

ADCCHSELSEQ1

15 - 12 11 - 8 7 - 4 3 - 0

CONV03 CONV02 CONV01 CONV00

ADCCHSELSEQ2 CONV07 CONV06 CONV05 CONV04

ADCCHSELSEQ3 CONV11 CONV10 CONV09 CONV08

ADCCHSELSEQ4 CONV15 CONV14 CONV13 CONV12

For purposes of these registers, channel numbers are:
0 = ADCINA0 8 = ADCINB0

7 = ADCINA7 15 = ADCINB7

C2000 Delfino Workshop - Analog-to-Digital Converter 6 - 9

Analog-to-Digital Converter

Example – Sequencer “Start/Stop” Operation

Example - Sequencer Configuration (1 of 2)

Configuration Requirements:
ePWM triggers the ADC

Three autoconversions (V1, V2, V3) off trigger 1 (CTR = 0)
Three autoconversions (I1, I2, I3) off trigger 2 (CTR = PRD)

ADC in cascaded sequencer and sequential sampling modes

V1, V2, V3 I1, I2, I3 V1, V2, V3 I1, I2, I3

ePWM
Time Base
Counter

ePWM
Output

Example - Sequencer Configuration (2 of 2)

Bits → 15-12 11-8 7-4 3-0
I1 V3 V2 V1 ADCCHSELSEQ1
x x I3 I2 ADCCHSELSEQ2

RESULT0 V1

RESULT1 V2

RESULT2 V3

RESULT3 I1
RESULT4 I2
RESULT5 I3

MAX_CONV1 is set to 2 and Channel Select Sequencing Control Registers are set to:

Once reset and initialized, SEQ1 waits for a trigger
First trigger, three conversions performed: CONV00 (V1), CONV01 (V2), CONV02 (V3)
MAX_CONV1 value is reset to 2 (unless changed by software)
SEQ1 waits for second trigger
Second trigger, three conversions performed: CONV03 (I1), CONV04 (I2), CONV05 (I3)
End of second sequence, ADC Results registers have the following values:

SEQ1 waits at current state for another trigger
User can reset SEQ1 by software to state CONV00 and repeat same trigger 1,2 session

6 - 10 C2000 Delfino Workshop - Analog-to-Digital Converter

 Analog-to-Digital Converter

ADC Conversion Result Buffer Register

ADC Conversion Result Registers

LSBMSB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LSBMSB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AdcRegs.ADCRESULTx, x = 0 - 15 (2 wait-state read)

Input Digital AdcRegs. AdcMirror.
Voltage Result ADCRESULTx ADCRESULTx

3.0 FFFh 1111|1111|1111|0000 0000|1111|1111|1111
1.5 7FFh 0111|1111|1111|0000 0000|0111|1111|1111
0.00073 1h 0000|0000|0001|0000 0000|0000|0000|0001
0 0h 0000|0000|0000|0000 0000|0000|0000|0000

AdcMirror.ADCRESULTx, x = 0 - 15 (1 wait-state read)

Signed Input Voltages

How Can We Handle Signed Input Voltages?
Example: -1.5 V ≤ Vin ≤ +1.5 V

1) Add 1.5 volts to the
analog input

Vin

1.5V ADCINx

GND

ADCLO

-
+

R

R

R
-
+

R

R
C28x

#include “DSP2833x_Device.h”
#define offset 0x07FF
void main(void)
{

int16 value; // signed

value = AdcMirror.ADCRESULT0 – offset;
}

2) Subtract “1.5” from the digital result

C2000 Delfino Workshop - Analog-to-Digital Converter 6 - 11

Analog-to-Digital Converter

ADC Calibration

Built-In ADC Calibration
TI reserved OTP contains device specific ADC
calibration data (2 words)
The Boot ROM contains an ADC_cal() routine (6 words)
that copies the calibration data to the ADCREFSEL and
ADCOFFTRIM registers
ADC_cal() must be run to meet the ADC specs in the
datasheet

The Bootloader automatically calls ADC_cal() such that no
action is normally required by the user
If the bootloader is bypassed (e.g., during development)
ADC_cal() should be called by the application:

#define ADC_cal_func_ptr (void (*)(void))0x380080

void main(void)

{

(*ADC_cal_func_ptr)(); // call ADC_cal()

}

If the offset and gain errors in the datasheet * are unacceptable for
your application, or you want to also compensate for board level
errors (e.g., sensor or amplifier offset), you can manually calibrate
Offset error

Compensated in analog with
the ADCOFFTRIM register
No reduction in full-scale range
Ground an input pin, set
ADCOFFTRIM to maximum
offset error, and take a reading
Re-adjust ADCOFFTRIM to
make result zero

Gain error
Compensated in software
Some loss in full-scale range
Requires use of a second ADC input pin and an upper-range reference
voltage on that pin; see “TMS320280x and TMS320F2801x ADC
Calibration” appnote #SPRAAD8 for more information

Tip: To minimize mux-to-mux variation effects, put your most critical
signals on a single mux and use that mux for calibration inputs

Manual ADC Calibration

ADCOFFTRIM
CH

CH

12-bit A/D
ConverterM

UX

* +/-15 LSB offset, +/-30 LSB gain. See device datasheet for exact specifications

6 - 12 C2000 Delfino Workshop - Analog-to-Digital Converter

 Analog-to-Digital Converter

ADC Reference Selection
AdcRegs.ADCREFSEL

The F28335 ADC has an internal reference with
temperature stability of ~50 PPM/°C *
If this is not sufficient for your application, there is the
option to use an external reference *

External reference choices: 2.048 V, 1.5 V, 1.024 V
The reference value DOES NOT change the 0 - 3 V full-scale
range of the ADC

The ADCREFSEL register controls the reference choice

* See device datasheet for exact specifications and ADC reference hardware connections

13 - 0
reserved

15 - 14
REF_SEL

ADC Reference Selection
00 = internal (default)
01 = external 2.048 V
10 = external 1.5 V
11 = external 1.024 V

C2000 Delfino Workshop - Analog-to-Digital Converter 6 - 13

Lab 6: Analog-to-Digital Converter

Lab 6: Analog-to-Digital Converter
 Objective

The objective of this lab is to become familiar with the programming and operation of the on-chip
analog-to-digital converter. The MCU will be setup to sample a single ADC input channel at a
prescribed sampling rate and store the conversion result in a memory buffer. This buffer will
operate in a circular fashion, such that new conversion data continuously overwrites older results
in the buffer.

Lab 6: ADC Sampling

ADC

ADCINA0

RESULT0

...

data
memory

po
in

te
r

re
w

in
d

CPU copies result
to buffer during
ADC ISR

ePWM2

ePWM2 triggering
ADC on period match
using SOCA trigger every
20.833 µs (48 kHz)

GND
+3.3 V

(GPIO20)
Toggle

(GPIO18)

connector
wire

View ADC
buffer PWM
Samples

Code Composer
Studio

Recall that there are three basic ways to initiate an ADC start of conversion (SOC):
1. Using software

a. SOC_SEQ1/SOC_SEQ2 bit in ADCTRL2 causes an SOC upon completion of the current
conversion (if the ADC is currently idle, an SOC occurs immediately)

2. Automatically triggered on user selectable ePWM conditions
a. ePWM underflow (CTR = 0)
b. ePWM period match (CTR = PRD)
c. ePWM compare match (CTRU/D = CMPA/B)

3. Externally triggered using a pin
a. ADCSOC pin

One or more of these methods may be applicable to a particular application. In this lab, we will
be using the ADC for data acquisition. Therefore, one of the ePWMs (ePWM2) will be
configured to automatically trigger the SOCA signal at the desired sampling rate (SOC method 2b
above). The ADC end-of-conversion interrupt will be used to prompt the CPU to copy the results
of the ADC conversion into a results buffer in memory. This buffer pointer will be managed in a
circular fashion, such that new conversion results will continuously overwrite older conversion
results in the buffer. In order to generate an interesting input signal, the code also alternately
toggles a GPIO pin (GPIO18) high and low in the ADC interrupt service routine. The ADC ISR

6 - 14 C2000 Delfino Workshop - Analog-to-Digital Converter

 Lab 6: Analog-to-Digital Converter

will also toggle LED LD3 on the controlCARD as a visual indication that the ISR is running.
This pin will be connected to the ADC input pin, and sampled. After taking some data, Code
Composer Studio will be used to plot the results. A flow chart of the code is shown in the
following slide.

Lab 6: Code Flow Diagram

Start General Initialization
• PLL and clocks
• watchdog configure
• GPIO setup
• PIE initialization

ADC Initialization
• convert channel A0 on

ePWM2 period match
• send interrupt on

every conversion
• setup a results buffer

in memory

ePWM2 Initialization
• clear counter
• set period register
• set to trigger ADC on
period match

• set the clock prescaler
• enable the timer

Main Loop
while(1)
{
}

ADC ISR
• read the ADC result
• write to result buffer
• adjust the buffer pointer
• toggle the GPIO pin
• return from interrupt

ADC interrupt

return

Notes
• Program performs conversion on ADC channel A0 (ADCINA0 pin)
• ADC conversion is set at a 48 kHz sampling rate
• ePWM2 is triggering the ADC on period match using SOCA trigger
• Data is continuously stored in a circular buffer
• GPIO18 pin is also toggled in the ADC ISR
• ADC ISR will also toggle the controlCARD LED LD3 as a visual indication that it is running

 Procedure

Open the Project
1. A project named Lab6 has been created for this lab. Open the project by clicking on

Project Import Existing CCS/CCE Eclipse Project. The “Import”
window will open then click Browse… next to the “Select root directory” box. Navigate
to: C:\C28x\Labs\Lab6\Project and click OK. Then click Finish to import the
project. All build options have been configured the same as the previous lab. The files
used in this lab are:

C2000 Delfino Workshop - Analog-to-Digital Converter 6 - 15

Lab 6: Analog-to-Digital Converter

Adc_6_7_8.c Gpio.c
CodeStartBranch.asm Lab.h
DefaultIsr_6.c Lab_5_6_7.cmd
DelayUs.asm Main_6.c
DSP2833x_DefaultIsr.h PieCtrl_5_6_7_8_9_10.c
DSP2833x_GlobalVariableDefs.c PieVect_5_6_7_8_9_10.c
DSP2833x_Headers_nonBIOS.cmd SysCtrl.c
EPwm_6.c Watchdog.c

Setup ADC Initialization and Enable Core/PIE Interrupts
2. In Main_6.c add code to call InitAdc() and InitEPwm() functions. The

InitEPwm() function is used to configure ePWM2 to trigger the ADC at a 48 kHz rate.
Details about the ePWM and control peripherals will be discussed in the next module.

3. Edit Adc.c to implement the ADC initialization as described in the objective for the
lab by configuring the following registers: ADCTRL1, ADCTRL2, ADCMAXCONV
and ADCCHSELSEQ1. (Set ADC for cascaded sequencer mode, CPS = CLK/1, and
acquisition time prescale = 8 * (1/ADCCLK), ePWM2 triggering the ADC on period
match using SOCA trigger).

4. Using the “PIE Interrupt Assignment Table” find the location for the ADC interrupt
“ADCINT” and fill in the following information:

PIE group #: # within group:

This information will be used in the next step.

5. Modify the end of Adc.c to do the following:
- Enable the “ADCINT” interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

6. Open and inspect DefaultIsr_6.c. This file contains the ADC interrupt service
routine. Save your work and close the modified files.

Build and Load
7. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window.

8. Click the “Debug” button (green bug). The “Debug Perspective” view should open, the
program will load automatically, and you should now be at the start of main().

Run the Code
9. In Main_6.c place the cursor in the “main loop” section, right click on the mouse

key and select Run To Line.

10. Open a memory window to view some of the contents of the ADC results buffer. The
address label for the ADC results buffer is AdcBuf in the “Data” memory page.

6 - 16 C2000 Delfino Workshop - Analog-to-Digital Converter

 Lab 6: Analog-to-Digital Converter

Note: Exercise care when connecting any wires, as the power to the USB Docking Station is
on, and we do not want to damage the controlCARD!

11. Using a connector wire provided, connect the ADCINA0 (pin # ADC-A0) to “GND” (pin
GND) on the Docking Station. Then run the code again, and halt it after a few seconds.
Verify that the ADC results buffer contains the expected value of ~0x0000. Note that
you may not get exactly 0x0000 if the device you are using has positive offset error.

12. Adjust the connector wire to connect the ADCINA0 (pin # ADC-A0) to “+3.3V” (pin #
GPIO-20) on the Docking Station. (Note: pin # GPIO20 has been set to “1” in Gpio.c).
Then run the code again, and halt it after a few seconds. Verify that the ADC results
buffer contains the expected value of ~0x0FFF. Note that you may not get exactly
0x0FFF if the device you are using has negative offset error.

13. Adjust the connector wire to connect the ADCINA0 (pin # ADC-A0) to GPIO18 (pin #
GPIO-18) on the Docking Station. Then run the code again, and halt it after a few
seconds. Examine the contents of the ADC results buffer (the contents should be
alternating ~0x0000 and ~0x0FFF values). Are the contents what you expected?

14. Open and setup a graph to plot a 48-point window of the ADC results buffer.
Click: Tools Graph Single Time and set the following values:

Acquisition Buffer Size 48

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 48000

Start Address AdcBuf

Display Data Size 48

Time Display Unit μs

 Select OK to save the graph options.

15. Recall that the code toggled the GPIO18 pin alternately high and low. (Also, the ADC
ISR is toggling the LED LD3 on the controlCARD as a visual indication that the ISR is
running). If you had an oscilloscope available to display GPIO18, you would expect to
see a square-wave. Why does Code Composer Studio plot resemble a triangle wave?
What is the signal processing term for what is happening here?

C2000 Delfino Workshop - Analog-to-Digital Converter 6 - 17

Lab 6: Analog-to-Digital Converter

16. Recall that the program toggled the GPIO18 pin at a 48 kHz rate. Therefore, a complete
cycle (toggle high, then toggle low) occurs at half this rate, or 24 kHz. We therefore
expect the period of the waveform to be 41.667 μs. Confirm this by measuring the period
of the triangle wave using the “measurement marker mode” graph feature. Right-click on
the graph and select Measurement Marker Mode. Move the mouse to the first
measurement position and left-click. Again, right-click on the graph and select
Measurement Marker Mode. Move the mouse to the second measurement position
and left-click. The graph will automatically calculate the difference between the two
values taken over a complete waveform period. When done, clear the measurement
points by right-clicking on the graph and select Remove All Measurement
Marks.

Using Real-time Emulation
Real-time emulation is a special emulation feature that offers two valuable capabilities:

A. Windows within Code Composer Studio can be updated at up to a 10 Hz rate while the
MCU is running. This not only allows graphs and watch windows to update, but also
allows the user to change values in watch or memory windows, and have those
changes affect the MCU behavior. This is very useful when tuning control law
parameters on-the-fly, for example.

B. It allows the user to halt the MCU and step through foreground tasks, while specified
interrupts continue to get serviced in the background. This is useful when debugging
portions of a realtime system (e.g., serial port receive code) while keeping critical
parts of your system operating (e.g., commutation and current loops in motor control).

We will only be utilizing capability “A” above during the workshop. Capability “B” is a
particularly advanced feature, and will not be covered in the workshop.

17. The memory and graph windows displaying AdcBuf should still be open. The connector
wire between ADCINA0 (pin # ADC-A0) and GPIO18 (pin # GPIO-18) should still be
connected. In real-time mode, we will have our window continuously refresh at the
default rate. To view the refresh rate click:

Window Preferences…

and in the section on the left select the “CCS” category. Click the plus sign (+) to the left
of “CCS” and select “Debug”. In the section on the right notice the default setting:

• “Continuous refresh interval (milliseconds)” = 1000

Click OK.

Note: Increasing the “Continuous refresh interval” causes all enabled continuous refresh
windows to refresh at a faster rate. This can be problematic when a large number of
windows are enabled, as bandwidth over the emulation link is limited. Updating too
many windows can cause the refresh frequency to bog down. In this case you can just
selectively enable continuous refresh for the individual windows of interest.

6 - 18 C2000 Delfino Workshop - Analog-to-Digital Converter

 Lab 6: Analog-to-Digital Converter

18. Next we need to enable the graph window for continuous refresh. In the upper right-hand
corner of the graph window, left-click on the yellow icon with the arrows rotating in a
circle over a pause sign. Note when you hover your mouse over the icon, it will show
“Enable Continuous Refresh”. This will allow the graph to continuously
refresh in real-time while the program is running.

19. Enable the memory window for continuous refresh using the same procedure as the
previous step.

20. Code Composer Studio includes Scripts that are functions which automate entering and
exiting real-time mode. Four functions are available:
• Run_Realtime_with_Reset (reset CPU, enter real-time mode, run CPU)
• Run_Realtime_with_Restart (restart CPU, enter real-time mode, run CPU)
• Full_Halt (exit real-time mode, halt CPU)
• Full_Halt_with_Reset (exit real-time mode, halt CPU, reset CPU)
These Script functions are executed by clicking:
Scripts Realtime Emulation Control Function

In the remaining lab exercises we will be using the first and third above Script functions
to run and halt the code in real-time mode.

21. Run the code and watch the windows update in real-time mode. Click:

Scripts Realtime Emulation Control Run_Realtime_with_Reset

Carefully remove and replace the connector wire from GPIO18. Are the values updating
as expected?

22. Fully halt the CPU in real-time mode. Click:

Scripts Realtime Emulation Control Full_Halt

23. So far, we have seen data flowing from the MCU to the debugger in realtime. In this
step, we will flow data from the debugger to the MCU.
• Open and inspect Main_6.c. Notice that the global variable DEBUG_TOGGLE is

used to control the toggling of the GPIO18 pin. This is the pin being read with the
ADC.

• Highlight DEBUG_TOGGLE with the mouse, right click and select “Add Watch
Expression”. The global variable DEBUG_TOGGLE should now be in the watch
window with a value of “1”.

• Enable the watch window for continuous refresh
• Run the code in real-time mode and change the value to “0”. Are the results shown

in the memory and graph window as expected? Change the value back to “1”. As
you can see, we are modifying data memory contents while the processor is running
in real-time (i.e., we are not halting the MCU nor interfering with its operation in any
way)! When done, fully halt the CPU.

C2000 Delfino Workshop - Analog-to-Digital Converter 6 - 19

Lab 6: Analog-to-Digital Converter

Terminate Debug Session and Close Project
24. Terminate the active debug session using the Terminate All button. This will close

the debugger and return CCS to the “C/C++ Perspective” view.

25. Next, close the project by right-clicking on Lab6 in the C/C++ Projects window
and select Close Project.

End of Exercise

6 - 20 C2000 Delfino Workshop - Analog-to-Digital Converter

Control Peripherals

Introduction
This module explains how to generate PWM waveforms using the ePWM unit. Also, the eCAP
unit, and eQEP unit will be discussed.

Learning Objectives

Learning Objectives

Pulse Width Modulation (PWM) review
Generate a PWM waveform with the
Pulse Width Modulator Module (ePWM)
Use the Capture Module (eCAP) to
measure the width of a waveform
Explain the function of Quadrature
Encoder Pulse Module (eQEP)

Note: Different numbers of ePWM, eCAP, and eQEP modules are available on F2833x and
F2823x devices. See the device datasheet for more information.

C2000 Delfino Workshop - Control Peripherals 7 - 1

Module Topics

Module Topics

Control Peripherals... 7-1

Module Topics... 7-2
PWM Review... 7-3
ePWM.. 7-5

ePWM Time-Base Sub-Module ... 7-6
ePWM Compare Sub-Module .. 7-9
ePWM Action Qualifier Sub-Module..7-11
Asymmetric and Symmetric Waveform Generation using the ePWM..7-16
PWM Computation Example...7-17
ePWM Dead-Band Sub-Module..7-18
ePWM PWM Chopper Sub-Module..7-21
ePWM Trip-Zone Sub-Module..7-24
ePWM Event-Trigger Sub-Module ...7-27
Hi-Resolution PWM (HRPWM) ...7-29

eCAP ..7-30
eQEP..7-36
Lab 7: Control Peripherals..7-38

7 - 2 C2000 Delfino Workshop - Control Peripherals

 PWM Review

PWM Review

What is Pulse Width Modulation?

PWM is a scheme to represent a
signal as a sequence of pulses

fixed carrier frequency
fixed pulse amplitude
pulse width proportional to
instantaneous signal amplitude
PWM energy ≈ original signal energy

t

Original Signal
T

t

PWM representation

Pulse width modulation (PWM) is a method for representing an analog signal with a digital
approximation. The PWM signal consists of a sequence of variable width, constant amplitude
pulses which contain the same total energy as the original analog signal. This property is
valuable in digital motor control as sinusoidal current (energy) can be delivered to the motor
using PWM signals applied to the power converter. Although energy is input to the motor in
discrete packets, the mechanical inertia of the rotor acts as a smoothing filter. Dynamic motor
motion is therefore similar to having applied the sinusoidal currents directly.

C2000 Delfino Workshop - Control Peripherals 7 - 3

PWM Review

Why use PWM with Power
Switching Devices?

Desired output currents or voltages are known
Power switching devices are transistors

Difficult to control in proportional region
Easy to control in saturated region

PWM is a digital signal ⇒ easy for DSP to output

PWM approx.
of desired
signal

DC Supply

Desired
signal to
system

?
DC Supply

Unknown Gate Signal Gate Signal Known with PWM

PWM

7 - 4 C2000 Delfino Workshop - Control Peripherals

 ePWM

ePWM
ePWM Module Signals and Connections

ePWMx

ePWMx+1

EPWMxSYNCI

EPWMxSYNCO

PIEEPWMxINT

EPWMxTZINT

ePWMx-1

EPWMxSOCB

EPWMxSOCA

ADC

EPWMxA

EPWMxB
GPIO
MUX

TZ1

GPIO
MUX

TZ2
TZ3
TZ4
TZ5
TZ6

ePWM Block Diagram

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT

TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

C2000 Delfino Workshop - Control Peripherals 7 - 5

ePWM

ePWM Time-Base Sub-Module

ePWM Time-Base Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

SYSCLKOUT

EPWMxSYNCI EPWMxSYNCO

TBCLK

Trip
Zone

EPWMxA

EPWMxB

TZy

ePWM Time-Base Count Modes
TBCTR

TBCTR

TBCTR

TBPRD

TBPRD

TBPRD

Count Up Mode

Count Down Mode

Count Up and Down Mode

Asymmetrical
Waveform

Asymmetrical
Waveform

Symmetrical
Waveform

7 - 6 C2000 Delfino Workshop - Control Peripherals

 ePWM

ePWM Phase Synchronization

SyncIn

SyncOut

CTR=zero
CTR=CMPB

X

En

o
o

o

o
o

ooφ=120°
Phase . EPWM2A

EPWM2B

SyncIn

SyncOut

CTR=zero
CTR=CMPB

X

En

o
o

o

o
o

ooφ=240°
Phase . EPWM3A

EPWM3B

SyncIn

SyncOut

CTR=zero
CTR=CMPB

X

En

o
o

o

o
o

ooφ=0°
Phase . EPWM1A

EPWM1B

φ=120°

φ=120°

φ=240°

Ext. SyncIn
(optional)

To eCAP1
SyncIn

ePWM Time-Base Sub-Module Registers
(lab file: EPwm.c)

Name Description Structure
TBCTL Time-Base Control EPwmxRegs.TBCTL.all =
TBSTS Time-Base Status EPwmxRegs.TBSTS.all =
TBPHS Time-Base Phase EPwmxRegs.TBPHS =
TBCTR Time-Base Counter EPwmxRegs.TBCTR =
TBPRD Time-Base Period EPwmxRegs.TBPRD =

C2000 Delfino Workshop - Control Peripherals 7 - 7

ePWM

ePWM Time-Base Control Register
EPwmxRegs.TBCTL

Upper Register:

FREE_SOFT PHSDIR CLKDIV HSPCLKDIV
15 - 14 13 12 - 10 9 - 7

TBCLK = SYSCLKOUT / (HSPCLKDIV * CLKDIV)

TB Clock Prescale
000 = /1 (default)
001 = /2
010 = /4
011 = /8
100 = /16
101 = /32
110 = /64
111 = /128

High Speed TB
Clock Prescale
000 = /1
001 = /2 (default)
010 = /4
011 = /6
100 = /8
101 = /10
110 = /12
111 = /14

Emulation Halt Behavior
00 = stop after next CTR inc/dec
01 = stop when:

Up Mode; CTR = PRD
Down Mode; CTR = 0
Up/Down Mode; CTR = 0

1x = free run (do not stop)

Phase Direction
0 = count down after sync
1 = count up after sync

(HSPCLKDIV is for legacy compatibility)

ePWM Time-Base Control Register
EPwmxRegs.TBCTL

Lower Register:

CTRMODESWFSYNC SYNCOSEL PRDLD PHSEN
6 5 - 4 3 1 - 02

Software Force Sync Pulse
0 = no action
1 = force one-time sync

Sync Output Select
(source of EPWMxSYNC0 signal)
00 = EPWMxSYNCI
01 = CTR = 0
10 = CTR = CMPB
11 = disable SyncOut

Counter Mode
00 = count up
01 = count down
10 = count up and down
11 = stop – freeze (default)

Period Shadow Load
0 = load on CTR = 0
1 = load immediately

Phase Reg. Enable
0 = disable
1 = CTR = TBPHS on

EPWMxSYNCI signal

7 - 8 C2000 Delfino Workshop - Control Peripherals

 ePWM

ePWM Compare Sub-Module

ePWM Compare Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

SYSCLKOUT

EPWMxSYNCI EPWMxSYNCI

TBCLK

Trip
Zone

EPWMxA

EPWMxB

TZy

ePWM Compare Event Waveforms
TBCTR

TBCTR

TBCTR

TBPRD

TBPRD

TBPRD

Count Up Mode

Count Down Mode

Count Up and Down Mode

Asymmetrical
Waveform

Asymmetrical
Waveform

Symmetrical
Waveform

CMPA

CMPA

CMPA

CMPB

CMPB

CMPB

.

.

..

. = compare events are fed to the Action Qualifier Module

C2000 Delfino Workshop - Control Peripherals 7 - 9

ePWM

ePWM Compare Sub-Module Registers
(lab file: EPwm.c)

Name Description Structure
CMPCTL Compare Control EPwmxRegs.CMPCTL.all =
CMPA Compare A EPwmxRegs.CMPA =
CMPB Compare B EPwmxRegs.CMPB =

ePWM Compare Control Register
EPwmxRegs.CMPCTL

6 5 4 1 - 0
LOADBMODE LOADAMODEreserved

3 - 2
SHDWBMODE SHDWAMODE

CMPA and CMPB Operating Mode
0 = shadow mode;

double buffer w/ shadow register
1 = immediate mode;

shadow register not used

CMPA and CMPB Shadow Load Mode
00 = load on CTR = 0
01 = load on CTR = PRD
10 = load on CTR = 0 or PRD
11 = freeze (no load possible)

SHDWBFULL
15 - 10 9 8

SHDWAFULL
7

reservedreserved

CMPA and CMPB Shadow Full Flag
(bit automatically clears on load)
0 = shadow not full
1 = shadow full

7 - 10 C2000 Delfino Workshop - Control Peripherals

 ePWM

ePWM Action Qualifier Sub-Module

ePWM Action Qualifier Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

SYSCLKOUT

EPWMxSYNCI EPWMxSYNCO

TBCLK

Trip
Zone

EPWMxA

EPWMxB

TZy

ePWM Action Qualifier Actions
for EPWMA and EPWMB

Z
↓

Z
↑

Z
X

Z
T

CA
↓

CA
↑

CA
X

CA
T

CB
↓

CB
↑

CB
X

CB
T

P
↓

P
↑

P
X

P
T

SW
↓

SW
↑

SW
X

SW
T

Do Nothing

Clear Low

Set High

Toggle

S/W
Force

EPWM
Output
Actions

Time-Base Counter equals:

Zero CMPA CMPB TBPRD

C2000 Delfino Workshop - Control Peripherals 7 - 11

ePWM

ePWM Count Up Asymmetric Waveform
with Independent Modulation on EPWMA / B

Z
↑

P
X

CB
X

CA
↓

Z
↑

P
X

CB
X

CA
↓

Z
↑

P
X

Z
↑

P
X

CB
↓

CA
X

Z
↑

P
X

CB
↓

CA
X

Z
↑

P
X

TBCTR

TBPRD

. . . .

EPWMA

EPWMB

ePWM Count Up Asymmetric Waveform
with Independent Modulation on EPWMA

CA
↑

CB
↓

CA
↑

CB
↓

Z
T

Z
T

Z
T

TBCTR

TBPRD

. . . .

EPWMA

EPWMB

7 - 12 C2000 Delfino Workshop - Control Peripherals

 ePWM

ePWM Count Up-Down Symmetric
Waveform

with Independent Modulation on EPWMA / B
TBCTR

TBPRD

CA
↑

CA
↓

CA
↑

CA
↓

CB
↑

CB
↓

CB
↑

CB
↓

EPWMA

EPWMB

ePWM Count Up-Down Symmetric
Waveform

with Independent Modulation on EPWMA
TBCTR

TBPRD

. .. .

CA
↑

CB
↓

CA
↑

CB
↓

Z
↓

P
↑

Z
↓

P
↑

EPWMA

EPWMB

C2000 Delfino Workshop - Control Peripherals 7 - 13

ePWM

ePWM Action Qualifier Sub-Module
Registers
(lab file: EPwm.c)

Name Description Structure
AQCTLA AQ Control Output A EPwmxRegs.AQCTLA.all =
AQCTLB AQ Control Output B EPwmxRegs.AQCTLB.all =
AQSFRC AQ S/W Force EPwmxRegs.AQSFRC.all =
AQCSFRC AQ Cont. S/W Force EPwmxRegs.AQCSFRC.all =

ePWM Action Qualifier Control Register
EPwmxRegs.AQCTLy (y = A or B)

ZROCBU CAD CAU PRD
1 - 0

CBD
15 - 12

reserved
3 - 25 - 47 - 69 - 811 - 10

00 = do nothing (action disabled)
01 = clear (low)
10 = set (high)
11 = toggle (low → high; high → low)

Action when
CTR = CMPB

on DOWN Count

Action when
CTR = CMPB
on UP Count

Action when
CTR = CMPA

on DOWN Count

Action when
CTR = CMPA
on UP Count

Action when
CTR = 0

Action when
CTR = PRD

7 - 14 C2000 Delfino Workshop - Control Peripherals

 ePWM

ePWM Action Qualifier
S/W Force Register

EPwmxRegs.AQSFRC

ACTSFARLDCSF OTSFB ACTSFB OTSFA
1 - 015 - 8

reserved
24 - 357 - 6

AQSFRC Shadow Reload Options
00 = load on event CTR = 0
01 = load on event CTR = PRD
10 = load on event CTR = 0 or CTR = PRD
11 = load immediately (from active reg.)

One-Time S/W Force on Output B / A
0 = no action
1 = single s/w force event

Action on One-Time S/W Force B / A
00 = do nothing (action disabled)
01 = clear (low)
10 = set (high)
11 = toggle (low → high; high → low)

ePWM Action Qualifier Continuous
S/W Force Register

EPwmxRegs.AQCSFRC

CSFACSFB
1 - 015 - 4

reserved
3 - 2

Continuous S/W Force on Output B / A
00 = forcing disabled
01 = force continuous low on output
10 = force continuous high on output
11 = forcing disabled

C2000 Delfino Workshop - Control Peripherals 7 - 15

ePWM

Asymmetric and Symmetric Waveform Generation using
the ePWM
PWM switching frequency:
The PWM carrier frequency is determined by the value contained in the time-base period register,
and the frequency of the clocking signal. The value needed in the period register is:

Asymmetric PWM: 1
periodtimer

period switchingregister period −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Symmetric PWM:
period)2(timer

period switchingregister period =

Notice that in the symmetric case, the period value is half that of the asymmetric case. This is
because for up/down counting, the actual timer period is twice that specified in the period register
(i.e. the timer counts up to the period register value, and then counts back down).

PWM resolution:
The PWM compare function resolution can be computed once the period register value is
determined. The largest power of 2 is determined that is less than (or close to) the period value.
As an example, if asymmetric was 1000, and symmetric was 500, then:

Asymmetric PWM: approx. 10 bit resolution since 210 = 1024 ≈ 1000

Symmetric PWM: approx. 9 bit resolution since 29 = 512 ≈ 500

PWM duty cycle:
Duty cycle calculations are simple provided one remembers that the PWM signal is initially
inactive during any particular timer period, and becomes active after the (first) compare match
occurs. The timer compare register should be loaded with the value as follows:

Asymmetric PWM: TxCMPR TxPR cycle)duty - (100% = ∗

Symmetric PWM: TxPR cycle)duty - (100% = TxCMPR ∗

Note that for symmetric PWM, the desired duty cycle is only achieved if the compare registers
contain the computed value for both the up-count compare and down-count compare portions of
the time-base period.

7 - 16 C2000 Delfino Workshop - Control Peripherals

 ePWM

PWM Computation Example

Symmetric PWM Computation Example
Determine TBPRD and CMPA for 150 kHz, 25% duty
symmetric PWM from a 150 MHz time base clock

CMPA = (100% - duty cycle)*TBPRD = 0.75*500 = 375

TBPRD = fTBCLK
fPWM 22

11
150 kHz

150 MHz.. = 500=

Counter

Compare

Period

PWM Pin
fTBCLK = 150 MHz

CA
↑

CA
↓

..
fPWM = 150 kHz

(TPW M = 6.67 μs)

(TTBCLK = 6.67 ns)

Asymmetric PWM Computation Example
Determine TBPRD and CMPA for 150 kHz, 25% duty
asymmetric PWM from a 150 MHz time base clock

CMPA = (100% - duty cycle)*(TBPRD+1) - 1 = 0.75*(999+1) - 1 = 749

TBPRD =
fTBCLK
fPWM 150 kHz

150 MHz - 1 = 999- 1 =

Counter

Compare
Period

PWM Pin

P
↓

CA
↑

fTBCLK = 150 MHz

..

(TTBCLK = 6.67 ns)

fPWM = 150 kHz
(TPW M = 6.67 μs)

C2000 Delfino Workshop - Control Peripherals 7 - 17

ePWM

ePWM Dead-Band Sub-Module

ePWM Dead-Band Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

SYSCLKOUT

EPWMxSYNCI EPWMxSYNCO

TBCLK

Trip
Zone

EPWMxA

EPWMxB

TZy

Motivation for Dead-Band

to power
switching
device

supply rail

gate signals are
complementary PWM

♦ Transistor gates turn on faster than they shut off
♦ Short circuit if both gates are on at same time!

7 - 18 C2000 Delfino Workshop - Control Peripherals

 ePWM

Dead-band control provides a convenient means of combating current shoot-through problems in
a power converter. Shoot-through occurs when both the upper and lower gates in the same phase
of a power converter are open simultaneously. This condition shorts the power supply and results
in a large current draw. Shoot-through problems occur because transistors open faster than they
close, and because high-side and low-side power converter gates are typically switched in a
complimentary fashion. Although the duration of the shoot-through current path is finite during
PWM cycling, (i.e. the closing gate will eventually shut), even brief periods of a short circuit
condition can produce excessive heating and over stress in the power converter and power supply.

ePWM Dead-Band Block Diagram

Rising
Edge
Delay

In Out
(10-bit

counter)

Falling
Edge
Delay

In Out
(10-bit

counter)

°
° °
0

1

°
° °
0

1

°
° °
0

1

°
° °
1

0
°

°

.

.

.

.

PWMxA

PWMxB

PWMxB

PWMxAS1

S0

S2

S3 FED

RED

OUT-MODEPOLSEL

°
° °
0

1

°
° °
0

1

S4

S5

IN-MODE

Two basic approaches exist for controlling shoot-through: modify the transistors, or modify the
PWM gate signals controlling the transistors. In the first case, the opening time of the transistor
gate must be increased so that it (slightly) exceeds the closing time. One way to accomplish this
is by adding a cluster of passive components such as resistors and diodes in series with the
transistor gate, as shown in the next figure.

PWM
signal

R

by-pass diode

Shoot-through control via power circuit modification

The resistor acts to limit the current rise rate towards the gate during transistor opening, thus
increasing the opening time. When closing the transistor however, current flows unimpeded from
the gate via the by-pass diode and closing time is therefore not affected. While this passive
approach offers an inexpensive solution that is independent of the control microprocessor, it is

C2000 Delfino Workshop - Control Peripherals 7 - 19

ePWM

imprecise, the component parameters must be individually tailored to the power converter, and it
cannot adapt to changing system conditions.

The second approach to shoot-through control separates transitions on complimentary PWM
signals with a fixed period of time. This is called dead-band. While it is possible to perform
software implementation of dead-band, the C28x offers on-chip hardware for this purpose that
requires no additional CPU overhead. Compared to the passive approach, dead-band offers more
precise control of gate timing requirements. In addition, the dead time is typically specified with
a single program variable that is easily changed for different power converters or adapted on-line.

ePWM Dead-Band Sub-Module Registers
(lab file: EPwm.c)

Rising Edge Delay = TTBCLK x DBRED
Falling Edge Delay = TTBCLK x DBFED

Name Description Structure
DBCTL Dead-Band Control EPwmxRegs.DBCTL.all =
DBRED 10-bit Rising Edge Delay EPwmxRegs.DBRED =
DBFED 10-bit Falling Edge Delay EPwmxRegs.DBFED =

7 - 20 C2000 Delfino Workshop - Control Peripherals

 ePWM

ePWM Dead Band Control Register
EPwmxRegs.DBCTL

Polarity Select
00 = active high
01 = active low complementary (RED)
10 = active high complementary (FED)
11 = active low

Out-Mode Control
00 = disabled (DBM bypass)
01 = PWMxA = no delay

PWMxB = FED
10 = PWMxA = RED

PWMxB = no delay
11 = RED & FED (DBM fully enabled)

OUT_MODEPOLSEL
1 - 015 - 6

reserved
3 - 2

IN_MODE
5 - 4

In-Mode Control
00 = PWMxA is source for RED and FED
01 = PWMxA is source for FED

PWMxB is source for RED
10 = PWMxA is source for RED

PWMxB is source for FED
11 = PWMxB is source for RED and FED

ePWM PWM Chopper Sub-Module

ePWM PWM Chopper Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

SYSCLKOUT

EPWMxSYNCI EPWMxSYNCO

TBCLK

Trip
Zone

EPWMxA

EPWMxB

TZy

C2000 Delfino Workshop - Control Peripherals 7 - 21

ePWM

Purpose of the PWM Chopper

Allows a high frequency carrier
signal to modulate the PWM
waveform generated by the Action
Qualifier and Dead-Band modules
Used with pulse transformer-based
gate drivers to control power
switching elements

ePWM Chopper Waveform
EPWMxA

EPWMxB

CHPFREQ

EPWMxA

EPWMxB

OSHT

EPWMxA

Programmable
Pulse Width
(OSHTWTH)

Sustaining
Pulses

With One-Shot Pulse on EPWMxA and/or EPWMxB

7 - 22 C2000 Delfino Workshop - Control Peripherals

 ePWM

ePWM Chopper Sub-Module Registers
(lab file: EPwm.c)

Name Description Structure
PCCTL PWM-Chopper Control EPwmxRegs.PCCTL.all =

ePWM Chopper Control Register
EPwmxRegs.PCCTL

CHPENCHPDUTY CHPFREQ OSHTWTH
015 - 11

reserved

4 - 17 - 510 - 8

Chopper Enable
0 = disable (bypass)
1 = enable

One-Shot Pulse Width
0000 = 1 x SYSCLKOUT/8 1000 = 9 x SYSCLKOUT/8
0001 = 2 x SYSCLKOUT/8 1001 = 10 x SYSCLKOUT/8
0010 = 3 x SYSCLKOUT/8 1010 = 11 x SYSCLKOUT/8
0011 = 4 x SYSCLKOUT/8 1011 = 12 x SYSCLKOUT/8
0100 = 5 x SYSCLKOUT/8 1100 = 13 x SYSCLKOUT/8
0101 = 6 x SYSCLKOUT/8 1101 = 14 x SYSCLKOUT/8
0110 = 7 x SYSCLKOUT/8 1110 = 15 x SYSCLKOUT/8
0111 = 8 x SYSCLKOUT/8 1111 = 16 x SYSCLKOUT/8

Chopper Clk Freq.
000 = SYSCLKOUT/8 ÷ 1
001 = SYSCLKOUT/8 ÷ 2
010 = SYSCLKOUT/8 ÷ 3
011 = SYSCLKOUT/8 ÷ 4
100 = SYSCLKOUT/8 ÷ 5
101 = SYSCLKOUT/8 ÷ 6
110 = SYSCLKOUT/8 ÷ 7
111 = SYSCLKOUT/8 ÷ 8

Chopper Clk Duty Cycle
000 = 1/8 (12.5%)
001 = 2/8 (25.0%)
010 = 3/8 (37.5%)
011 = 4/8 (50.0%)
100 = 5/8 (62.5%)
101 = 6/8 (75.0%)
110 = 7/8 (87.5%)
111 = reserved

C2000 Delfino Workshop - Control Peripherals 7 - 23

ePWM

ePWM Trip-Zone Sub-Module

ePWM Trip-Zone Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

SYSCLKOUT

EPWMxSYNCI EPWMxSYNCO

TBCLK

Trip
Zone

EPWMxA

EPWMxB

TZy

Trip-Zone Features
♦ Trip-Zone has a fast, clock independent logic path to high-impedance

the EPWMxA/B output pins
♦ Interrupt latency may not protect hardware when responding to over

current conditions or short-circuits through ISR software
♦ Supports: #1) one-shot trip for major short circuits or over

current conditions
#2) cycle-by-cycle trip for current limiting operation

CPU
core P

W
M

O
U
T
P
U
T
S

EPWMxTZINT

EPWM1A

TZ6
TZ5
TZ4
TZ3
TZ2
TZ1

Over
Current
Sensors

Cycle-by-Cycle
Mode

One-Shot
Mode

EPWM1B
EPWM2A
EPWM2B
EPWM3A
EPWM3B
EPWM4A
EPWM4B
EPWM5A
EPWM5B
EPWM6A
EPWM6B

The power drive protection is a safety feature that is provided for the safe operation of systems
such as power converters and motor drives. It can be used to inform the monitoring program of

7 - 24 C2000 Delfino Workshop - Control Peripherals

 ePWM

motor drive abnormalities such as over-voltage, over-current, and excessive temperature rise. If
the power drive protection interrupt is unmasked, the PWM output pins will be put in the high-
impedance state immediately after the pin is driven low. An interrupt will also be generated.

ePWM Trip-Zone Sub-Module Registers
(lab file: EPwm.c)

Name Description Structure
TZCTL Trip-Zone Control EPwmxRegs.TZCTL.all =
TZSEL Trip-Zone Select EPwmxRegs.TZSEL.all =
TZEINT Enable Interrupt EPwmxRegs.TZEINT.all =
TZFLG Trip-Zone Flag EPwmxRegs.TZFLG.all =
TZCLR Trip-Zone Clear EPwmxRegs.TZCLR.all =
TZFRC Trip-Zone Force EPwmxRegs.TZFRC.all =

ePWM Trip-Zone Control Register
EPwmxRegs.TZCTL

TZATZB
1 - 015 - 4

reserved
3 - 2

TZ1 to TZ6 Action on EPWMxB / EPWMxA
00 = high impedance
01 = force high
10 = force low
11 = do nothing (disable)

C2000 Delfino Workshop - Control Peripherals 7 - 25

ePWM

ePWM Trip-Zone Select Register
EPwmxRegs.TZSEL

OSHT1OSHT5 OSHT4 OSHT3 OSHT2
8

OSHT6
15 - 14

reserved
910111213

CBC1CBC5 CBC4 CBC3 CBC2
0

CBC6
7 - 6

reserved
12345

Cycle-by-Cycle Trip Zone
(event cleared when CTR = 0;
i.e. cleared every PWM cycle)
0 = disable as trip source
1 = enable as trip source

One-Shot Trip Zone
(event only cleared under S/W
control; remains latched)
0 = disable as trip source
1 = enable as trip source

ePWM Trip-Zone Enable Interrupt
Register

EPwmxRegs.TZEINT

OST CBCreserved
15 - 3 02 1

reserved

Cycle-by-Cycle
Interrupt Enable
0 = disable
1 = enable

One-Shot
Interrupt Enable
0 = disable
1 = enable

7 - 26 C2000 Delfino Workshop - Control Peripherals

 ePWM

ePWM Event-Trigger Sub-Module

ePWM Event-Trigger Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

SYSCLKOUT

EPWMxSYNCI EPWMxSYNCO

TBCLK

Trip
Zone

EPWMxA

EPWMxB

TZy

ePWM Event-Trigger Interrupts and SOC
TBCTR

TBPRD

EPWMA

EPWMB

CMPB
CMPA

CTR = 0

CTR = PRD

CTRU = CMPA

CTRD = CMPA

CTRU = CMPB

CTRD = CMPB

C2000 Delfino Workshop - Control Peripherals 7 - 27

ePWM

ePWM Event-Trigger Sub-Module
Registers
(lab file: EPwm.c)

Name Description Structure
ETSEL Event-Trigger Selection EPwmxRegs.ETSEL.all =
ETPS Event-Trigger Pre-Scale EPwmxRegs.ETPS.all =
ETFLG Event-Trigger Flag EPwmxRegs.ETFLG.all =
ETCLR Event-Trigger Clear EPwmxRegs.ETCLR.all =
ETFRC Event-Trigger Force EPwmxRegs.ETFRC.all =

ePWM Event-Trigger Selection Register
EPwmxRegs.ETSEL

15 11 7 - 4 2 - 0
INTEN INTSELreserved

3
SOCBSEL SOCASELSOCAENSOCBEN

10 - 814 - 12

Enable SOCB / A
0 = disable
1 = enable

EPWMxSOCB / A Select
000 = reserved
001 = CTR = 0
010 = CTR = PRD
011 = reserved
100 = CTRU = CMPA
101 = CTRD = CMPA
110 = CTRU = CMPB
111 = CTRD = CMPB

Enable EPWMxINT
0 = disable
1 = enable

EPWMxINT Select
000 = reserved
001 = CTR = 0
010 = CTR = PRD
011 = reserved
100 = CTRU = CMPA
101 = CTRD = CMPA
110 = CTRU = CMPB
111 = CTRD = CMPB

7 - 28 C2000 Delfino Workshop - Control Peripherals

 ePWM

ePWM Event-Trigger Prescale Register
EPwmxRegs.ETPS

15 - 14 11 - 10 7 - 4 1 - 0
INTCNT INTPRDreserved

2 - 3
SOCBPRD SOCAPRDSOCACNTSOCBCNT

9 - 813 - 12

EPWMxSOCB / A Counter
(number of events have occurred)
00 = no events
01 = 1 event
10 = 2 events
11 = 3 events

EPWMxSOCB / A Period
(number of events before SOC)
00 = disabled
01 = SOC on first event
10 = SOC on second event
11 = SOC on third event

EPWMxINT Counter
(number of events have occurred)
00 = no events
01 = 1 event
10 = 2 events
11 = 3 events

EPWMxINT Period
(number of events before INT)
00 = disabled
01 = INT on first event
10 = INT on second event
11 = INT on third event

Hi-Resolution PWM (HRPWM)

Hi-Resolution PWM (HRPWM)

Significantly increases the resolution of conventionally derived digital PWM
Uses 8-bit extensions to Compare registers (CMPxHR) and Phase register
(TBPHSHR) for edge positioning control
Typically used when PWM resolution falls below ~9-10 bits which occurs at
frequencies greater than ~300 kHz (with system clock of 150 MHz)
Not all ePWM outputs support HRPWM feature (see device datasheet)

PWM Period

Device Clock
(i.e. 150 MHz)

Regular
PWM Step

(i.e. 6.67 ns)

HRPWM
Micro Step (~150 ps)

HRPWM divides a clock
cycle into smaller steps

called Micro Steps
(Step Size ~= 150 ps)

ms ms ms ms ms ms

Calibration Logic

Calibration Logic tracks the
number of Micro Steps per

clock to account for
variations caused by
Temp/Volt/Process

C2000 Delfino Workshop - Control Peripherals 7 - 29

eCAP

eCAP
Capture Module (eCAP)

The eCAP module timestamps transitions on a
capture input pin

Timer

Timestamp
Values

Trigger

pin

The capture units allow time-based logging of external TTL signal transitions on the capture input
pins. The C28x has up to six capture units.

Capture units can be configured to trigger an A/D conversion that is synchronized with an
external event. There are several potential advantages to using the capture for this function over
the ADCSOC pin associated with the ADC module. First, the ADCSOC pin is level triggered,
and therefore only low to high external signal transitions can start a conversion. The capture unit
does not suffer from this limitation since it is edge triggered and can be configured to start a
conversion on either rising edges or falling edges. Second, if the ADCSOC pin is held high
longer than one conversion period, a second conversion will be immediately initiated upon
completion of the first. This unwanted second conversion could still be in progress when a
desired conversion is needed. In addition, if the end-of-conversion ADC interrupt is enabled, this
second conversion will trigger an unwanted interrupt upon its completion. These two problems
are not a concern with the capture unit. Finally, the capture unit can send an interrupt request to
the CPU while it simultaneously initiates the A/D conversion. This can yield a time savings
when computations are driven by an external event since the interrupt allows preliminary
calculations to begin at the start-of-conversion, rather than at the end-of-conversion using the
ADC end-of-conversion interrupt. The ADCSOC pin does not offer a start-of-conversion
interrupt. Rather, polling of the ADCSOC bit in the control register would need to be performed
to trap the externally initiated start of conversion.

7 - 30 C2000 Delfino Workshop - Control Peripherals

 eCAP

Some Uses for the Capture Module

Problem: At low speeds, calculation of speed
based on a measured position change at
fixed time intervals produces large estimate
errors

Alternative: Estimate the speed using a measured time interval
at fixed position intervals

Signal from one
quadrature
encoder channel

Low speed velocity estimation from incr. encoder:
Measure the time width of a pulse

vk ≈ Δx
tk - tk-1

vk ≈
Δt

xk - xk-1

Δx

Auxiliary PWM generation

eCAP Module Block Diagram – Capture Mode

32-Bit
Time-Stamp

Counter

Capture 1
Register

Event
Prescale

Polarity
Select 1

Polarity
Select 2

Polarity
Select 3

Polarity
Select 4

Capture 2
Register

Capture 3
Register

Capture 4
Register

E
ve

nt
 L

og
ic

ECAPx
pin

SYSCLKOUT

CAP1POL

CAP2POL

CAP3POL

CAP4POL

PRESCALE

C2000 Delfino Workshop - Control Peripherals 7 - 31

eCAP

eCAP Module Block Diagram – APWM Mode

32-Bit
Time-Stamp

Counter

Period
Register

(CAP3)
Period

Register
(CAP1)

Compare
Register

(CAP4)

Compare
Register
(CAP2)

PWM
Compare

Logic ECAP
pin

Shadowed

Shadowed

SYSCLKOUT

immediate
mode

shadow
mode

shadow
mode

immediate
mode

eCAP Module Registers
(lab file: ECap.c)

Name Description Structure
ECCTL1 Capture Control 1 ECapxRegs.ECCTL1.all =
ECCTL2 Capture Control 2 ECapxRegs.ECCTL2.all =
TSCTR Time-Stamp Counter ECapxRegs.TSCTR =
CTRPHS Counter Phase Offset ECapxRegs.CTRPHS =
CAP1 Capture 1 ECapxRegs.CAP1 =
CAP2 Capture 2 ECapxRegs.CAP2 =
CAP3 Capture 3 ECapxRegs.CAP3 =
CAP4 Capture 4 ECapxRegs.CAP4 =
ECEINT Enable Interrupt ECapxRegs.ECEINT.all =
ECFLG Interrupt Flag ECapxRegs.ECFLG.all =
ECCLR Interrupt Clear ECapxRegs.ECCLR.all =
ECFRC Interrupt Force ECapxRegs.ECFRC.all =

7 - 32 C2000 Delfino Workshop - Control Peripherals

 eCAP

eCAP Control Register 1
ECapxRegs.ECCTL1

CAPLDENFREE_SOFT PRESCALE
15 - 14 13 - 9 8

Upper Register:

Emulation Control
00 = TSCTR stops immediately
01 = TSCTR runs until equals 0
1X = free run (do not stop)

Event Filter Prescale Counter
00000 = divide by 1 (bypass)
00001 = divide by 2
00010 = divide by 4
00011 = divide by 6
00100 = divide by 8

11110 = divide by 60
11111 = divide by 62

CAP1 – 4 Load
on Capture Event
0 = disable
1 = enable

eCAP Control Register 1
ECapxRegs.ECCTL1

Lower Register:

CTRRST4 CAP4POL
7 3 2

CTRRST3 CAP3POL CTRRST2 CAP2POL CTRRST1 CAP1POL
01456

Counter Reset on Capture Event
0 = no reset (absolute time stamp mode)
1 = reset after capture (difference mode)

Capture Event Polarity
0 = trigger on rising edge
1 = trigger on falling edge

C2000 Delfino Workshop - Control Peripherals 7 - 33

eCAP

eCAP Control Register 2
ECapxRegs.ECCTL2

Upper Register:

SWSYNCAPWMPOL CAP_APWM

10 815 - 11

reserved

9

APWM Output Polarity
(valid only in APWM mode)
0 = active high output
1 = active low output

Capture / APWM mode
0 = capture mode
1 = APWM mode

Software Force
Counter Synchronization
0 = no effect
1 = TSCTR load of current

module and other modules
if SYNCO_SEL bits = 00

eCAP Control Register 2
ECapxRegs.ECCTL2

Lower Register:

SYNCO_SEL SYNCI_EN

7 - 6 3 02 - 1

TSCTRSTOP REARM STOP_WRAP CONT_ONESHT

45

Sync-Out Select
00 = sync-in to sync-out
01 = CTR = PRD event

generates sync-out
1X = disable

Counter Sync-In
0 = disable
1 = enable

Time Stamp
Counter Stop
0 = stop
1 = run

Re-arm
(capture mode only)
0 = no effect
1 = arm sequence

Stop Value for One-Shot Mode/
Wrap Value for Continuous Mode
(capture mode only)
00 = stop/wrap after capture event 1
01 = stop/wrap after capture event 2
10 = stop/wrap after capture event 3
11 = stop/wrap after capture event 4

Continuous/One-Shot
(capture mode only)
0 = continuous mode
1 = one-shot mode

7 - 34 C2000 Delfino Workshop - Control Peripherals

 eCAP

The capture unit interrupts offer immediate CPU notification of externally captured events. In
situations where this is not required, the interrupts can be masked and flag testing/polling can be
used instead. This offers increased flexibility for resource management. For example, consider a
servo application where a capture unit is being used for low-speed velocity estimation via a
pulsing sensor. The velocity estimate is not used until the next control law calculation is made,
which is driven in real-time using a timer interrupt. Upon entering the timer interrupt service
routine, software can test the capture interrupt flag bit. If sufficient servo motion has occurred
since the last control law calculation, the capture interrupt flag will be set and software can
proceed to compute a new velocity estimate. If the flag is not set, then sufficient motion has not
occurred and some alternate action would be taken for updating the velocity estimate. As a
second example, consider the case where two successive captures are needed before a
computation proceeds (e.g. measuring the width of a pulse). If the width of the pulse is needed as
soon as the pulse ends, then the capture interrupt is the best option. However, the capture
interrupt will occur after each of the two captures, the first of which will waste a small number of
cycles while the CPU is interrupted and then determines that it is indeed only the first capture. If
the width of the pulse is not needed as soon as the pulse ends, the CPU can check, as needed, the
capture registers to see if two captures have occurred, and proceed from there.

eCAP Interrupt Enable Register
ECapxRegs.ECEINT

CTR=CMP CTR=PRD
7 3 2

CTROVF CEVT4 CEVT3 CEVT2 CEVT1
01456

reserved
15 - 8

reserved

0 = disable as interrupt source
1 = enable as interrupt source

CTR = CMP
Interrupt Enable

CTR = PRD
Interrupt Enable

CTR = Overflow
Interrupt Enable

Capture Event 3
Interrupt Enable

Capture Event 1
Interrupt Enable

Capture Event 4
Interrupt Enable

Capture Event 2
Interrupt Enable

C2000 Delfino Workshop - Control Peripherals 7 - 35

eQEP

eQEP

What is an Incremental Quadrature
Encoder?

A digital (angular) position sensor

slots spaced θ deg. apart

photo sensors spaced θ/4 deg. apart

light source (LED)

shaft rotation

Ch. A

Ch. B

Quadrature Output from Photo Sensors

θ

θ/4

Incremental Optical Encoder

The eQEP circuit, when enabled, decodes and counts the quadrature encoded input pulses. The
QEP circuit can be used to interface with an optical encoder to get position and speed information
from a rotating machine.

How is Position Determined from
Quadrature Signals?

Ch. A

Ch. B

(00) (11)
(10) (01)(A,B) =

00

01

11

10

Quadrature Decoder
State Machine

increment
counter

decrement
counter

Position resolution is θ/4 degrees

Illegal
Transitions;

generate
phase error

interrupt

7 - 36 C2000 Delfino Workshop - Control Peripherals

 eQEP

eQEP Module Block Diagram

Quadrature
Decoder

EQEPxA/XCLK

EQEPxB/XDIR

EQEPxI

EQEPxS

Position/Counter
Compare

Quadrature
Capture

32-Bit Unit
Time-Base

QEP
Watchdog

SYSCLKOUT

Generate the direction and
clock for the position counter
in quadrature count modeGenerate a sync output

and/or interrupt on a
position compare match

Measure the elapsed time
between the unit position events;
used for low speed measurement

Generate periodic
interrupts for velocity
calculations

Monitors the quadrature
clock to indicate proper
operation of the motion
control system

Quadrature -
clock mode

Direction -
count mode

eQEP Module Connections

Ch. A

Ch. B

Index
Quadrature

Decoder

EQEPxA/XCLK

EQEPxB/XDIR

EQEPxI

EQEPxS

Position/Counter
Compare

Quadrature
Capture

32-Bit Unit
Time-Base

QEP
Watchdog

SYSCL KOUT

Strobe
from homing sensor

C2000 Delfino Workshop - Control Peripherals 7 - 37

Lab 7: Control Peripherals

Lab 7: Control Peripherals
 Objective

The objective of this lab is to become familiar with the programming and operation of the control
peripherals and their interrupts. ePWM1A will be setup to generate a 2 kHz, 25% duty cycle
symmetric PWM waveform. The waveform will then be sampled with the on-chip analog-to-
digital converter and displayed using the graphing feature of Code Composer Studio. Next,
eCAP1 will be setup to detect the rising and falling edges of the waveform. This information will
be used to determine the width of the pulse and duty cycle of the waveform. The results of this
step will be viewed numerically in a memory window.

Lab 7: Control Peripherals

ADC
RESULT0

...

data
memory

po
in

te
r

re
w

in
d

CPU copies
result to
buffer during
ADC ISR

ePWM2

connector
wire

Capture 1 Register
ADC-
INA0

TB Counter
Compare

Action Qualifier

ePWM1

eCAP1

Capture 2 Register

Capture 3 Register

Capture 4 Register
View ADC
buffer PWM
Samples

Code Composer
Studio

ePWM2 triggering
ADC on period match
using SOCA trigger every
20.833 µs (48 kHz)

 Procedure

Open the Project
1. A project named Lab7 has been created for this lab. Open the project by clicking on

Project Import Existing CCS/CCE Eclipse Project. The “Import”
window will open then click Browse… next to the “Select root directory” box. Navigate
to: C:\C28x\Labs\Lab7\Project and click OK. Then click Finish to import the
project. All build options have been configured the same as the previous lab. The files
used in this lab are:

7 - 38 C2000 Delfino Workshop - Control Peripherals

 Lab 7: Control Peripherals

Adc_6_7_8.c Gpio.c
CodeStartBranch.asm Lab.h
DefaultIsr_7.c Lab_5_6_7.cmd
DelayUs.asm Main_7.c
DSP2833x_DefaultIsr.h PieCtrl_5_6_7_8_9_10.c
DSP2833x_GlobalVariableDefs.c PieVect_5_6_7_8_9_10.c
DSP2833x_Headers_nonBIOS.cmd SysCtrl.c
ECap_7_8_9_10_12.c Watchdog.c
EPwm_7_8_9_10_12.c

Note: The ECap_7_8_9_10_12.c file will be added and used with eCAP1 to detect
the rising and falling edges of the waveform in the second part of this lab exercise.

Setup Shared I/O and ePWM1
2. Edit Gpio.c and adjust the shared I/O pin in GPIO0 for the PWM1A function.

3. In EPwm_7_8_9_10_12.c, setup ePWM1 to implement the PWM waveform as
described in the objective for this lab. The following registers need to be modified:
TBCTL (set clock prescales to divide-by-1, no software force, sync and phase disabled),
TBPRD, CMPA, CMPCTL (load on 0 or PRD), and AQCTLA (set on up count and clear
on down count for output A). Software force, deadband, PWM chopper and trip action
has been disabled. (Hint – notice the last steps enable the timer count mode and enable
the clock to the ePWM module). Either calculate the values for TBPRD and CMPA (as a
challenge) or make use of the global variable names and values that have been set using
#define in the beginning of Lab.h file. Notice that ePWM2 has been initialized earlier
in the code for the ADC lab. Save your work and close the modified files.

Build and Load
4. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window.

5. Click the “Debug” button (green bug). The “Debug Perspective” view should open, the
program will load automatically, and you should now be at the start of main().

Run the Code – PWM Waveform
6. Open a memory window to view some of the contents of the ADC results buffer. The

address label for the ADC results buffer is AdcBuf in the “Data” memory page. We will
be running our code in real-time mode, and we will need to have the memory window
continuously refresh.

7. Using a connector wire provided, connect the PWM1A (pin # GPIO-00) to ADCINA0
(pin # ADC-A0) on the Docking Station.

8. Run the code (real-time mode) using the Script function: Scripts Realtime
Emulation Control Run_Realtime_with_Reset. Watch the window
update. Verify that the ADC result buffer contains the updated values.

C2000 Delfino Workshop - Control Peripherals 7 - 39

Lab 7: Control Peripherals

9. Open and setup a graph to plot a 48-point window of the ADC results buffer.
Click: Tools Graph Single Time and set the following values:

Acquisition Buffer Size 48

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 48000

Start Address AdcBuf

Display Data Size 48

Time Display Unit μs

 Select OK to save the graph options.

10. The graphical display should show the generated 2 kHz, 25% duty cycle symmetric
PWM waveform. The period of a 2 kHz signal is 500 μs. You can confirm this by
measuring the period of the waveform using the “measurement marker mode” graph
feature. Disable continuous refresh for the graph before taking the measurements. Right-
click on the graph and select Measurement Marker Mode. Move the mouse to the
first measurement position and left-click. Again, right-click on the graph and select
Measurement Marker Mode. Move the mouse to the second measurement position
and left-click. The graph will automatically calculate the difference between the two
values taken over a complete waveform period. When done, clear the measurement
points by right-clicking on the graph and select Remove All Measurement
Marks. Then enable continuous refresh for the graph.

Frequency Domain Graphing Feature of Code Composer Studio
11. Code Composer Studio also has the ability to make frequency domain plots. It does this

by using the PC to perform a Fast Fourier Transform (FFT) of the DSP data. Let's make
a frequency domain plot of the contents in the ADC results buffer (i.e. the PWM
waveform).

Click: Tools Graph FFT Magnitude and set the following values:

Acquisition Buffer Size 48

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 48000

Start Address AdcBuf

Data Plot Style Bar

FFT Order 10

7 - 40 C2000 Delfino Workshop - Control Peripherals

 Lab 7: Control Peripherals

 Select OK to save the graph options.

12. On the plot window, hold the mouse left-click key and move the marker line to observe
the frequencies of the different magnitude peaks. Do the peaks occur at the expected
frequencies?

13. Fully halt the CPU (real-time mode) by using the Script function: Scripts
Realtime Emulation Control Full_Halt.

Setup eCAP1 to Measure Width of Pulse
The first part of this lab exercise generated a 2 kHz, 25% duty cycle symmetric PWM
waveform which was sampled with the on-chip analog-to-digital converter and displayed
using the graphing feature of Code Composer Studio. Next, eCAP1 will be setup to detect
the rising and falling edges of the waveform. This information will be used to determine the
period and duty cycle of the waveform. The results of this step will be viewed numerically in
a memory window and can be compared to the results obtained using the graphing features of
Code Composer Studio.

14. Switch to the “C/C++ Perspective” view by clicking the C/C++ icon in the upper right-
hand corner. Add the following file to the project from
C:\C28x\Labs\Lab7\Files:

ECap_7_8_9_10_12.c

Check your files list to make sure the file is there.

15. In Main_7.c, add code to call the InitECap() function. There are no passed
parameters or return values, so the call code is simply:

InitECap();

16. Edit Gpio.c and adjust the shared I/O pin in GPIO5 for the ECAP1 function.

17. Open and inspect the eCAP1 interrupt service routine (ECAP1_INT_ISR) in the file
DefaultIsr_7.c. Notice that PwmDuty is calculated by CAP2 – CAP1 (rising to
falling edge) and that PwmPeriod is calculated by CAP3 – CAP1 (rising to rising edge).

18. In ECap_7_8_9_10_12.c, setup eCAP1 to calculate PWM_duty and PWM_period.
The following registers need to be modified: ECCTL2 (continuous mode, re-arm disable,
and sync disable), ECCTL1 (set prescale to divide-by-1, configure capture event polarity
without reseting the counter), and ECEINT (enable desired eCAP interrupt).

19. Using the “PIE Interrupt Assignment Table” find the location for the eCAP1 interrupt
“ECAP1_INT” and fill in the following information:

 PIE group #: # within group:

This information will be used in the next step.

20. Modify the end of ECap_7_8_9_10_12.c to do the following:
- Enable the “ECAP1_INT” interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

C2000 Delfino Workshop - Control Peripherals 7 - 41

Lab 7: Control Peripherals

Build and Load
21. Save all changes to the files and click the “Build” button. Select Yes to “Reload the

program automatically”. Switch back to the “Debug Perspective” view by clicking the
Debug icon in the upper right-hand corner.

Run the Code – Pulse Width Measurement
22. Open a memory window to view the address label PwmPeriod. (Type &PwmPeriod in

the address box). The address label PwmDuty (address &PwmDuty) should appear in the
same memory window.

23. Set the memory window properties format to “32-Bit Unsigned Integer”.

24. Using the connector wire provided, connect the PWM1A (pin # GPIO-00) to ECAP1 (pin
GPIO-05) on the Docking Station.

25. Run the code (real-time mode) by using the Script function: Scripts Realtime
Emulation Control Run_Realtime_with_Reset. Notice the values for
PwmDuty and PwmPeriod.

26. Fully halt the CPU (real-time mode) by using the Script function: Scripts
Realtime Emulation Control Full_Halt.

Questions:
• How do the captured values for PwmDuty and PwmPeriod relate to the compare register

CMPA and time-base period TBPRD settings for ePWM1A?
• What is the value of PwmDuty in memory?
• What is the value of PwmPeriod in memory?
• How does it compare with the expected value?

Terminate Debug Session and Close Project
27. Terminate the active debug session using the Terminate All button. This will close

the debugger and return CCS to the “C/C++ Perspective” view.

28. Next, close the project by right-clicking on Lab7 in the C/C++ Projects window
and select Close Project.

End of Exercise

7 - 42 C2000 Delfino Workshop - Control Peripherals

Numerical Concepts

Introduction

In this module, numerical concepts will be explored. One of the first considerations concerns
multiplication – how does the user store the results of a multiplication, when the process of mul-
tiplication creates results larger than the inputs. A similar concern arises when considering accu-
mulation – especially when long summations are performed. Next, floating-point concepts will
be explored and IQmath will be described as a technique for implementing a “virtual floating-
point” system to simplify the design process.

The IQmath Library is a collection of highly optimized and high precision mathematical
functions used to seamlessly port floating-point algorithms into fixed-point code. These C/C++
routines are typically used in computationally intensive real-time applications where optimal
execution speed and high accuracy is needed. By using these routines a user can achieve
execution speeds considerable faster than equivalent code written in standard ANSI C language.
In addition, by incorporating the ready-to-use high precision functions, the IQmath library can
shorten significantly a DSP application development time. (The IQmath user's guide is included
in the application zip file, and can be found in the /docs folder once the file is extracted and
installed).

Learning Objectives
Learning Objectives

Integers and Fractions
IEEE-754 Floating-Point
IQmath
Format Conversion of ADC Results

C2000 Delfino Workshop - Numerical Concepts 8 - 1

Module Topics

Module Topics
Numerical Concepts .. 8-1

Module Topics... 8-2
Numbering System Basics ... 8-3

Binary Numbers.. 8-3
Two's Complement Numbers ... 8-3
Integer Basics ... 8-4
Sign Extension Mode.. 8-5

Binary Multiplication.. 8-6
Binary Fractions ... 8-8

Representing Fractions in Binary ... 8-8
Fraction Basics ... 8-8
Multiplying Binary Fractions ... 8-9

Fraction Coding...8-11
Fractional vs. Integer Representation..8-12
Floating-Point..8-13
IQmath ...8-16

IQ Fractional Representation...8-16
Traditional “Q” Math Approach..8-17
IQmath Approach ..8-19

IQmath Library ..8-24
Converting ADC Results into IQ Format...8-26
AC Induction Motor Example ..8-28
IQmath Summary ...8-34
Lab 8: IQmath & Floating-Point FIR Filter..8-35

8 - 2 C2000 Delfino Workshop - Numerical Concepts

 Numbering System Basics

Numbering System Basics
Given the ability to perform arithmetic processes (addition and multiplication) with the C28x, it is
important to understand the underlying mathematical issues which come into play. Therefore, we
shall examine the numerical concepts which apply to the C28x and, to a large degree, most
processors.

Binary Numbers
The binary numbering system is the simplest numbering scheme used in computers, and is the
basis for other schemes. Some details about this system are:

• It uses only two values: 1 and 0
• Each binary digit, commonly referred to as a bit, is one “place” in a binary number

and represents an increasing power of 2.
• The least significant bit (LSB) is to the right and has the value of 1.
• Values are represented by setting the appropriate 1's in the binary number.
• The number of bits used determines how large a number may be represented.

Examples:
01102 = (0 * 8) + (1 * 4) + (1 * 2) + (0 * 1) = 610
111102 = (1 * 16) + (1 * 8) + (1 * 4) + (1 * 2) + (0 * 1) = 3010

Two's Complement Numbers
Notice that binary numbers can only represent positive numbers. Often it is desirable to be able to
represent both positive and negative numbers. The two's complement numbering system modifies
the binary system to include negative numbers by making the most significant bit (MSB)
negative. Thus, two's complement numbers:

• Follow the binary progression of simple binary except that the MSB is negative — in
addition to its magnitude

• Can have any number of bits — more bits allow larger numbers to be represented

Examples:
0110 = (0 * -8) + (1 * 4) + (1 * 2) + (0 * 1) = 62 10

111102 = (1 * -16) + (1 * 8) + (1 * 4) + (1 * 2) + (0 * 1) = -210

The same binary values are used in these examples for two's complement as were used above for
binary. Notice that the decimal value is the same when the MSB is 0, but the decimal value is
quite different when the MSB is 1.

Two operations are useful in working with two's complement numbers:
• The ability to obtain an additive inverse of a value
• The ability to load small numbers into larger registers (by sign extending)

C2000 Delfino Workshop - Numerical Concepts 8 - 3

Numbering System Basics

To load small two's complement numbers into larger
registers:
The MSB of the original number must carry to the MSB of the number when represented in the
larger register.

1. Load the small number “right justified” into the larger register.

2. Copy the sign bit (the MSB) of the original number to all unfilled bits to the left in the
register (sign extension).

Consider our two previous values, copied into an 8-bit register:

Examples:
Original No. 0 1 1 02 = 610 1 1 1 1 02 = -210

1. Load low 0 1 1 0 1 1 1 1 0

2. Sign Extend 0 0 0 0 0 1 1 0 = 4 + 2 = 6 1 1 1 1 1 1 1 0 = -128 + 64 + ... + 2 = -2

Integer Basics

Integer Basics

Unsigned Binary Integers
0100b = (0*23)+(1*22)+(0*21)+(0*20) = 4
1101b = (1*23)+(1*22)+(0*21)+(1*20) = 13

Signed Binary Integers (2’s Complement)
0100b = (0*-23)+(1*22)+(0*21)+(0*20) = 4
1101b = (1*-23)+(1*22)+(0*21)+(1*20) = -3

2323±2n-1±2n-1 2222 2121 2020

8 - 4 C2000 Delfino Workshop - Numerical Concepts

 Numbering System Basics

Sign Extension Mode
The C28x can operate on either unsigned binary or two's complement operands. The “Sign
Extension Mode” (SXM) bit, present within a status register of the C28x, identifies whether or
not the sign extension process is used when a value is brought into the accumulator. It is good
programming practice to always select the desired SXM at the beginning of a module to assure
the proper mode.

What is Sign Extension?
When moving a value from a narrowed width location
to a wider width location, the sign bit is extended to fill
the width of the destination
Sign extension applies to signed numbers only
It keeps negative numbers negative!
Sign extension controlled by SXM bit in ST0 register;
When SXM = 1, sign extension happens automatically

4 bit Example: Load a memory value into the ACC

1101memory = -23 + 22 + 20 = -3

ACC = -27 + 26 + 25 + 24 + 23 + 22 + 20

= -128 + 64 + 32 + 16 + 8 + 4 + 1
= -3

Load and sign extend

1111 1101

C2000 Delfino Workshop - Numerical Concepts 8 - 5

Binary Multiplication

Binary Multiplication
Now that you understand two's complement numbers, consider the process of multiplying two
two's complement values. As with “long hand” decimal multiplication, we can perform binary
multiplication one “place” at a time, and sum the results together at the end to obtain the total
product.

Note: This is not the method the C28x uses in multiplying numbers — it is merely a way of observing
how binary numbers work in arithmetic processes.

The C28x uses 16-bit operands and a 32-bit accumulator. For the sake of clarity, consider the
example below where we shall investigate the use of 4-bit values and an 8-bit accumulation:

Integer Multiplication (signed)

0100
x 1101

00000100
0000000
000100
11100
11110100

Accumulator

Data Memory

1111010011110100

4
x -3

4
x -3

-12-12

?

In this example, consider the following:
• What are the two input values, and the expected result?
• Why are the “partial products” shifted left as the calculation continues?
• Why is the final partial product “different” than the others?
• What is the result obtained when adding the partial products?
• How shall this result be loaded into the accumulator?
• How shall we fill the remaining bit? Is this value still the expected one?
• How can the result be stored back to memory? What problems arise?

8 - 6 C2000 Delfino Workshop - Numerical Concepts

 Binary Multiplication

Note: With two’s complement multiplication, the leading “1” in the second multiplicand is a
sign bit. If the sign bit is “1”, then take the 2’s complement of the first multiplicand.
Additionally, each partial product must be sign-extended for correct computation.

Note: All of the above questions except the final one are addressed in this module. The last
question may have several answers:

• Store the lower accumulator to memory. What problem is apparent using this

method in this example?
• Store the upper accumulator back to memory. Wouldn't this create a loss of

precision, and a problem in how to interpret the results later?
• Store both the upper and lower accumulator to memory. This solves the above

problems, but creates some new ones:
− Extra code space, memory space, and cycle time are used
− How can the result be used as the input to a subsequent calculation? Is such a

condition likely (consider any “feedback” system)?

From this analysis, it is clear that integers do not behave well when multiplied. Might some other
type of number system behave better? Is there a number system where the results of a
multiplication are bounded?

C2000 Delfino Workshop - Numerical Concepts 8 - 7

Binary Fractions

Binary Fractions
Given the problems associated with integers and multiplication, consider the possibilities of using
fractional values. Fractions do not grow when multiplied, therefore, they remain representable
within a given word size and solve the problem. Given the benefit of fractional multiplication,
consider the issues involved with using fractions:

• How are fractions represented in two's complement?
• What issues are involved when multiplying two fractions?

Representing Fractions in Binary
In order to represent both positive and negative values, the two's complement process will again
be used. However, in the case of fractions, we will not set the LSB to 1 (as was the case for
integers). When one considers that the range of fractions is from -1 to ~+1, and that the only bit
which conveys negative information is the MSB, it seems that the MSB must be the “negative
ones position.” Since binary representation is based on powers of two, it follows that the next bit
would be the “one-halves” position, and that each following bit would have half the magnitude
again. Considering, as before, a 4-bit model, we have the representation shown in the following
example.

1 . 0 1 1 = -1 + 1/4 + 1/8 = -5/8

-1 1/2 1/4 1/8

Fraction Basics

Fraction Basics

-20-20 2-12-1 2-22-2 2-32-3

•
1101b = (1*-20)+(1*2-1)+(0*2-2)+(1*2-3)

= -1 + 1/2 + 1/8
= -3/8

Fractions have the nice property that
fraction x fraction = fraction

2-(n-1)2-(n-1)

8 - 8 C2000 Delfino Workshop - Numerical Concepts

 Binary Fractions

Multiplying Binary Fractions
When the C28x performs multiplication, the process is identical for all operands, integers or
fractions. Therefore, the user must determine how to interpret the results. As before, consider the
4-bit multiply example:

Fraction Multiplication

0100
x 1101

00000100
0000000
000100
11100
11110100

1111010011110100

1/2
x -3/8

-3/16

Accumulator

.

.

Data Memory -1/41110.

As before, consider the following:
• What are the two input values and the expected result?
• As before, “partial products” are shifted left and the final is negative.
• How is the result (obtained when adding the partial products) read?
• How shall this result be loaded into the accumulator?
• How shall we fill the remaining bit? Is this value still the expected one?
• How can the result be stored back to memory? What problems arise?

To “read” the results of the fractional multiply, it is necessary to locate the binary point (the base
2 equivalent of the base 10 decimal point). Start by identifying the location of the binary point in
the input values. The MSB is an integer and the next bit is 1/2, therefore, the binary point would
be located between them. In our example, therefore, we would have three bits to the right of the
binary point in each input value. For ease of description, we can refer to these as “Q3” numbers,
where Q refers to the number of places to the right of the point.

When multiplying numbers, the Q values add. Thus, we would (mentally) place a binary point
above the sixth LSB. We can now calculate the “Q6” result more readily.

C2000 Delfino Workshop - Numerical Concepts 8 - 9

Binary Fractions

As with integers, the results are loaded low and the MSB is a sign extension of the seventh bit. If
this value were loaded into the accumulator, we could store the results back to memory in a
variety of ways:

• Store both low and high accumulator values back to memory. This offers maximum
detail, but has the same problems as with integer multiply.

• Store only the high (or low) accumulator back to memory. This creates a potential for
a memory littered with varying Q-types.

• Store the upper accumulator shifted to the left by 1. This would store values back to
memory in the same Q format as the input values, and with equal precision to the
inputs. How shall the left shift be performed? Here’s three methods:
− Explicit shift (C or assembly code)
− Shift on store (assembly code)
− Use Product Mode shifter (assembly code)

8 - 10 C2000 Delfino Workshop - Numerical Concepts

 Fraction Coding

Fraction Coding
Although COFF tools recognize values in integer, hex, binary, and other forms, they understand
only integer, or non-fractional values. To use fractions within the C28x, it is necessary to describe
them as though they were integers. This turns out to be a very simple trick. Consider the
following number lines:

Coding Traditional 16-bit Q15 Fractions

Fraction

⇒
∗ 32768

(215)

C-code example: y = 0.707 * x
void main(void)
{

int16 coef = 32768*707/1000; // 0.707 in Q15
int16 x, y;
y = (int16)((int32)coef * (int32)x) >> 15);

}

~1

½

0

-½

-1

0x7FFF

0x4000

0x0000

0xC000

0x8000

32767

16384

0

-16384

-32768
Integer

By multiplying a fraction by 32K (32768), a normalized fraction is created, which can be passed
through the COFF tools as an integer. Once in the C28x, the normalized fraction looks and
behaves exactly as a fraction. Thus, when using fractional constants in a C28x program, the coder
first multiplies the fraction by 32768, and uses the resulting integer (rounded to the nearest whole
value) to represent the fraction.

The following is a simple, but effective method for getting fractions past the assembler:

1. Express the fraction as a decimal number (drop the decimal point).

2. Multiply by 32768.

3. Divide by the proper multiple of 10 to restore the decimal position.

Examples:
• To represent 0.62: 32768 x 62 / 100
• To represent 0.1405: 32768 x 1405 / 10000

This method produces a valid number accurate to 16 bits. You will not need to do the math
yourself, and changing values in your code becomes rather simple.

C2000 Delfino Workshop - Numerical Concepts 8 - 11

Fractional vs. Integer Representation

Fractional vs. Integer Representation
Integer vs. Fractions

Range Precision

Integer determined 1
by # of bits

Fraction ~+1 to -1 determined
by # of bits

Integers grow when you multiply them
Fractions have limited range

Fractions can still grow when you add them
Scaling an application is time consuming

Are there any other alternatives?

The C28x accumulator, a 32-bit register, adds extra range to integer calculations, but this
becomes a problem in storing the results back to 16-bit memory.

Conversely, when using fractions, the extra accumulator bits increase precision, which helps
minimize accumulative errors. Since any number is accurate (at best) to ± one-half of a LSB,
summing two of these values together would yield a worst case result of 1 LSB error. Four
summations produce two LSBs of error. By 256 summations, eight LSBs are “noisy.” Since the
accumulator holds 32 bits of information, and fractional results are stored from the high
accumulator, the extra range of the accumulator is a major benefit in noise reduction for long
sum-of-products type calculations.

8 - 12 C2000 Delfino Workshop - Numerical Concepts

 Floating-Point

Floating-Point
IEEE-754 Single Precision Floating-Point

Example: 0x41200000 = 0 100 0001 0 010 0000 0000 ... 0000 b
s e = 130 f = 2-2 = 0.25

⇒ Case 3 v = (-10)*2(130-127)*1.25 = 10.0

s eeeeeeee fffffffffffffffffffffff
031 30 23 22

23 bit mantissa (fraction)8 bit exponent1 bit sign

Case 1: if e = 255 and f ≠ 0, then v = NaN
Case 2: if e = 255 and f = 0, then v = [(-1)s]*infinity
Case 3: if 0 < e < 255, then v = [(-1)s]*[2(e-127)]*(1.f)
Case 4: if e = 0 and f ≠ 0, then v = [(-1)s]*[2(-126)]*(0.f)
Case 5: if e = 0 and f = 0, then v = [(-1)s]*0

Advantage ⇒ Exponent gives large dynamic range
Disadvantage ⇒ Precision of a number depends on its exponent

Normalized
values

Number Line Insight

Floating-Point:

0+∞ -∞0+∞ -∞

Non-uniform distribution
Precision greatest near zero
Less precision the further you get from zero

C2000 Delfino Workshop - Numerical Concepts 8 - 13

Floating-Point

Using Floating-Point

Adds the floating-point
RTS library(s) to the
CCS project

standard RTS lib
(required)

rts2800_fpu32.lib
comes with compiler

fast RTS lib (optional)
C28x_FPU_FastRTS.lib
on TI web, #SPRC664
improved performance
Strongly
Recommended

Selects ‘fpu32’ support
in CCS build
configuration settings

Note: You must be using a C28x Delfino device with hardware
floating-point support!
Selecting a floating-point device variant when creating a new CCS
project automatically adds the FPU RTS library and selects ‘fpu32’
support in build configuration settings

#define AdcFsVoltage float(3.0) // ADC full scale voltage

float Result; // ADC result

void main(void)

{

// Convert unsigned 16-bit result to 32-bit float. Gives value of 0 to 4095.

// Scale result by 1/4096. Gives value of 0 to ~1.

// Scale result by AdcFsVoltage. Gives value of 0 to ~3.0.

Result = (AdcFsVoltage/4096.0)*(float)AdcMirror.ADCRESULT0;

}

Getting the ADC Result into
Floating-Point Format

AdcMirror.
ADCRESULTx

x x x xx x x xx x x x0 0 0 0

32-bit float
15 031

f f f ff f f ff f f ff f f fs e e e e f f fe e e e f f f f

ASM:
I16TOF32

C:
(float)

Compiler will pre-compute at build-time.
No runtime division!

8 - 14 C2000 Delfino Workshop - Numerical Concepts

 Floating-Point

Floating-Point Pros and Cons

Advantages
Easy to write code
No scaling required

Disadvantages
Somewhat higher device cost
May offer insufficient precision for some
calculations due to 23 bit mantissa and
the influence of the exponent

What if you don’t have the luxury of
using a floating-point C28x device?

C2000 Delfino Workshop - Numerical Concepts 8 - 15

IQmath

IQmath
Implementing complex digital control algorithms on a Digital Signal Processor (DSP), or any
other DSP capable processor, typically come across the following issues:
• Algorithms are typically developed using floating-point math
• Floating-point devices are more expensive than fixed-point devices
• Converting floating-point algorithms to a fixed-point device is very time consuming
• Conversion process is one way and therefore backward simulation is not always possible

The design may initially start with a simulation (i.e. MatLab) of a control algorithm, which
typically would be written in floating-point math (C or C++). This algorithm can be easily ported
to a floating-point device, however because of cost reasons most likely a 16-bit or 32-bit fixed-
point device would be used in many target systems.

The effort and skill involved in converting a floating-point algorithm to function using a 16-bit or
32-bit fixed-point device is quite significant. A great deal of time (many days or weeks) would
be needed for reformatting, scaling and coding the problem. Additionally, the final
implementation typically has little resemblance to the original algorithm. Debugging is not an
easy task and the code is not easy to maintain or document.

IQ Fractional Representation
A new approach to fixed-point algorithm development, termed “IQmath”, can greatly simplify the
design development task. This approach can also be termed “virtual floating-point” since it looks
like floating-point, but it is implemented using fixed-point techniques.

IQ Fractional Representation

S IIIIIIII fffffffffffffffffffffff
031

32 bit mantissa

Advantage ⇒ Precision same for all numbers in an IQ format
Disadvantage ⇒ Limited dynamic range compared to floating-point

-2I + 2I-1 + … + 21 + 20 . 2-1 + 2-2 + … + 2-Q

I8Q24 Example: 0x41200000
= 0100 0001 . 0010 0000 0000 0000 0000 0000 b
= 26 + 20 + 2-3 = 65.125

8 - 16 C2000 Delfino Workshop - Numerical Concepts

 IQmath

The IQmath approach enables the seamless portability of code between fixed and floating-point
devices. This approach is applicable to many problems that do not require a large dynamic range,
such as motor or digital control applications.

IQ Fractions: uniform distribution (same precision everywhere)

0+∞ -∞

Number Line Insight
Distributions

Floating-Point: non-uniform distribution (variable precision)

0+∞ -∞

Both floating-point and IQ formats have 232

possible values on the number line
It’s how each distributes these values that differs

Traditional “Q” Math Approach

Traditional 32-bit “Q” Math Approach
y = mx + b

Y = ((int64) M * (int64) X + (int64) B << Q) >> Q;in C:

Note: Requires support for 64-bit integer data type in compiler

<< 24
Align Decimal
Point for Add

I8 Q24 M

X

B

Y

I8 Q24

I8 Q24

I16 Q48

ssssssssssssssssssI8 Q24

ssssI8 Q48

I16 Q48

sssssssssssssssssI16 Q24 I8 Q24

>> 24
Align Decimal
Point for Store

C2000 Delfino Workshop - Numerical Concepts 8 - 17

IQmath

The traditional approach to performing math operations, using fixed-point numerical techniques
can be demonstrated using a simple linear equation example. The floating-point code for a linear
equation would be:

float Y, M, X, B;
Y = M * X + B;

For the fixed-point implementation, assume all data is 32-bits, and that the "Q" value, or location
of the binary point, is set to 24 fractional bits (Q24). The numerical range and resolution for a
32-bit Q24 number is as follows:

Q value Min Value Max Value Resolution

Q24 -2(32-24) = -128.000 000 00 2(32-24) – (½)24 = 127.999 999 94 (½)24 = 0.000 000 06

The C code implementation of the linear equation is:

int32 Y, M, X, B; // numbers are all Q24
Y = ((int64) M * (int64) X + (int64) B << 24) >> 24;

Compared to the floating-point representation, it looks quite cumbersome and has little resem-
blance to the floating-point equation. It is obvious why programmers prefer using floating-point
math.

The slide shows the implementation of the equation on a processor containing hardware that can
perform a 32x32 bit multiplication, 64-bit addition and 64-bit shifts (logical and arithmetic) effi-
ciently.

The basic approach in traditional fixed-point "Q" math is to align the binary point of the operands
that get added to or subtracted from the multiplication result. As shown in the slide, the multipli-
cation of M and X (two Q24 numbers) results in a Q48 value that is stored in a 64-bit register.
The value B (Q24) needs to be scaled to a Q48 number before addition to the M*X value (low
order bits zero filled, high order bits sign extended). The final result is then scaled back to a Q24
number (arithmetic shift right) before storing into Y (Q24). Many programmers may be familiar
with 16-bit fixed-point "Q" math that is in common use. The same example using 16-bit numbers
with 15 fractional bits (Q15) would be coded as follows:

int16 Y, M, X, B; // numbers are all Q15
Y = ((int32) M * (int32) X + (int32) B << 15) >> 15;

In both cases, the principal methodology is the same. The binary point of the operands that get
added to or subtracted from the multiplication result must be aligned.

8 - 18 C2000 Delfino Workshop - Numerical Concepts

 IQmath

IQmath Approach

32-bit IQmath Approach
y = mx + b

I8 Q24
I16 Q48

M

X

B

Y

>> 24Align Decimal
Point Of Multiply

I8 Q24

I8 Q24

sssssssssssssssssI16 Q24

I8 Q24I8 Q24

Y = ((int64) M * (int64) X) >> Q + B;in C:

In the "IQmath" approach, rather then scaling the operands, which get added to or subtracted
from the multiplication result, we do the reverse. The multiplication result binary point is scaled
back such that it aligns to the operands, which are added to or subtracted from it. The C code
implementation of this is given by linear equation below:

int32 Y, M, X, B;
Y = ((int64) M * (int64) X) >> 24 + B;

The slide shows the implementation of the equation on a processor containing hardware that can
perform a 32x32 bit multiply, 32-bit addition/subtraction and 64-bit logical and arithmetic shifts
efficiently.

The key advantage of this approach is shown by what can then be done with the C and C++ com-
piler to simplify the coding of the linear equation example.

Let’s take an additional step and create a multiply function in C that performs the following op-
eration:

int32 _IQ24mpy(int32 M, int32 X) { return ((int64) M * (int64) X) >> 24; }

The linear equation can then be written as follows:

Y = _IQ24mpy(M , X) + B;

Already we can see a marked improvement in the readability of the linear equation.

C2000 Delfino Workshop - Numerical Concepts 8 - 19

IQmath

Using the operator overloading features of C++, we can overload the multiplication operand "*"
such that when a particular data type is encountered, it will automatically implement the scaled
multiply operation. Let’s define a data type called "iq" and assign the linear variables to this data
type:

iq Y, M, X, B // numbers are all Q24

The overloading of the multiply operand in C++ can be defined as follows:

iq operator*(const iq &M, const iq &X){return((int64)M*(int64) X) >> 24;}

Then the linear equation, in C++, becomes:

Y = M * X + B;

This final equation looks identical to the floating-point representation. It looks "natural". The
four approaches are summarized in the table below:

Math Implementations Linear Equation Code
32-bit floating-point math in C Y = M * X + B;

32-bit fixed-point "Q" math in C Y = ((int64) M * (int64) X) + (int64) B << 24) >> 24;
32-bit IQmath in C Y = _IQ24mpy(M, X) + B;

32-bit IQmath in C++ Y = M * X + B;

Essentially, the mathematical approach of scaling the multiplier operand enables a cleaner and a
more "natural" approach to coding fixed-point problems. For want of a better term, we call this
approach "IQmath" or can also be described as "virtual floating-point".

8 - 20 C2000 Delfino Workshop - Numerical Concepts

 IQmath

IQmath Approach
Multiply Operation

Y = ((i64) M * (i64) X) >> Q + B;

_IQmpy(M,X) == ((i64) M * (i64) X) >> Q

Redefine the multiply operation as follows:

Y = _IQmpy(M,X) + B;

This simplifies the equation as follows:

MOVL XT,@M
IMPYL P,XT,@X ; P = low 32-bits of M*X
QMPYL ACC,XT,@X ; ACC = high 32-bits of M*X
LSL64 ACC:P,#(32-Q) ; ACC = ACC:P << 32-Q

; (same as P = ACC:P >> Q)
ADDL ACC,@B ; Add B
MOVL @Y,ACC ; Result = Y = _IQmpy(M*X) + B
; 7 Cycles

C28x compiler supports “_IQmpy” intrinsic; assembly code generated:

IQmath Approach
It looks like floating-point!

float Y, M, X, B;

Y = M * X + B;

Floating-Point

long Y, M, X, B;

Y = ((i64) M * (i64) X + (i64) B << Q)) >> Q;

Traditional
Fix-Point Q

_iq Y, M, X, B;

Y = _IQmpy(M, X) + B;

“IQmath”
In C

iq Y, M, X, B;

Y = M * X + B;

“IQmath”
In C++

“IQmath” code is easy to read!

C2000 Delfino Workshop - Numerical Concepts 8 - 21

IQmath

IQmath Approach
GLOBAL_Q simplification

#define GLOBAL_Q 18 // set in “IQmathLib.h” file

_iq Y, M, X, B;

Y = _IQmpy(M,X) + B; // all values are in Q = 18

GLOBAL_Q

User selects “Global Q” value for the whole application

based on the required dynamic range or resolution, for example:

The user can also explicitly specify the Q value to use:
_iq20 Y, M, X, B;

Y = _IQ20mpy(M,X) + B; // all values are in Q = 20

0.000 000 06-128.000 000 00127.999 999 9424
0.000 001-2048.000 0002047.999 99920

0.000 000 004-8.000 000 0007.999 999 99628
ResolutionMin ValMax ValGLOBAL_Q

The basic "IQmath" approach was adopted in the creation of a standard math library for the Texas
Instruments TMS320C28x DSP fixed-point processor. This processor contains efficient hardware
for performing 32x32 bit multiply, 64-bit shifts (logical and arithmetic) and 32-bit add/subtract
operations, which are ideally suited for 32 bit "IQmath".

Some enhancements were made to the basic "IQmath" approach to improve flexibility. They are:

Setting of GLOBAL_Q Parameter Value: Depending on the application, the amount of numerical
resolution or dynamic range required may vary. In the linear equation example, we used a Q
value of 24 (Q24). There is no reason why any value of Q can't be used. In the "IQmath" library,
the user can set a GLOBAL_Q parameter, with a range of 1 to 30 (Q1 to Q30). All functions
used in the program will use this GLOBAL_Q value. For example:

#define GLOBAL_Q 18
Y = _IQmpy(M, X) + B; // all values use GLOBAL_Q = 18

If, for some reason a particular function or equation requires a different resolution, then the user
has the option to implicitly specify the Q value for the operation. For example:

Y = _IQ23mpy(M,X) + B; // all values use Q23, including B and Y

The Q value must be consistent for all expressions in the same line of code.

8 - 22 C2000 Delfino Workshop - Numerical Concepts

 IQmath

IQmath Provides Compatibility Between
Floating-Point and Fixed-Point

All “IQmath” operations have an equivalent floating-point operation

Compile & Run
on Fixed-Point

F282xx

Y = _IQmpy(M, X) + B;

#if MATH_TYPE == IQ_MATH #if MATH_TYPE == FLOAT_MATH

Y = (float)M * (float)X + (float)B;

1) Develop any mathematical function

2) Select math type in IQmathLib.h

3) Compiler automatically converts to:

Floating-Point
Math Code

Fixed-Point
Math Code

Compile & Run
on Floating-Point

F283xx *

* Can also compile floating-point code on any floating-point compiler (e.g., PC, Matlab, fixed-point w/ RTS lib, etc.)

Selecting FLOAT_MATH or IQ_MATH Mode: As was highlighted in the introduction, we would
ideally like to be able to have a single source code that can execute on a floating-point or fixed-
point target device simply by recompiling the code. The "IQmath" library supports this by setting
a mode, which selects either IQ_MATH or FLOAT_MATH. This operation is performed by
simply redefining the function in a header file. For example:

#if MATH_TYPE == IQ_MATH
#define _IQmpy(M , X) _IQmpy(M , X)
#elseif MATH_TYPE == FLOAT_MATH
#define _IQmpy(M , X) (float) M * (float) X
#endif

Essentially, the programmer writes the code using the "IQmath" library functions and the code
can be compiled for floating-point or "IQmath" operations.

C2000 Delfino Workshop - Numerical Concepts 8 - 23

IQmath Library

IQmath Library
IQmath Library: Math & Trig Functions

Accuracy of functions/operations approx ~28 to ~31 bits

IQsin(A),IQcos(A)
IQsinPU(A),IQcosPU(A)

IQasin(A),IQacos(A)
IQatan(A),IQatan2(A,B)

IQatan2PU(A,B)
IQsqrt(A),IQisqrt(A)

IQmag(A,B)
IQexp(A)

_IQsin(A), _IQcos(A)
_IQsinPU(A), _IQcosPU(A)

_IQasin(A),_IQacos(A)
_IQatan(A), _IQatan2(A,B)

_IQatan2PU(A,B)
_IQsqrt(A), _IQisqrt(A)

_IQmag(A,B)
_IQexp(A)

sin(A),cos(A)
sin(A*2pi),cos(A*2pi)

asin(A),acos(A)
atan(A),atan2(A,B)

atan2(A,B)/2pi
sqrt(A),1/sqrt(A)
sqrt(A*A + B*B)

exp(A)

trig
and

power
functions

IQsat(A,Pos,Neg)_IQsat(A,Pos,Neg)if(A > Pos) A = Pos
if(A < Neg) A = Neg

saturation

A – BA - BA - Bsubstract
>, >=, <, <=, ==, |=, &&, || >, >=, <, <=, ==, |=, &&, ||>, >=, <, <=, ==, |=, &&, ||boolean

A + BA + BA + Badd
A / B_IQdiv (A , B)A / B divide
A * B_IQmpy(A , B)A * Bmultiply

A = IQ(1.2345)A = _IQ(1.2345)A = 1.2345constant
iq A, B;_iq A, B;float A, B;type

“IQmath” in C++“IQmath” in CFloating-PointOperation

Additionally, the "IQmath" library contains DSP library modules for filters (FIR & IIR) and Fast
Fourier Transforms (FFT & IFFT).

IQmath Library: Conversion Functions

IQmath.lib > contains library of math functions
IQmathLib.h > C header file
IQmathCPP.h > C++ header file

atoIQ(char)_atoIQ(char)atof(char)string to iq
IQtoQN(A)_IQtoQN(A)Aiq to qN
QNtoIQ(A)_QNtoIQ(A)AqN to iq

IQmpyI32int(A,B)_IQmpyI32int(A,B)(long) (A * (float) B)integer(iq*long)
IQmpyI32frac(A,B)_IQmpyI32frac(A,B)A - (long) (A * (float) B)fraction(iq*long)

IQtoF(A)_IQtoF(A)AIQ to float

IQmpyI32(A,B)_IQmpyI32(A,B)A * (float) Biq = iq*long
IQfrac(A)_IQfrac(A)A – (long) Afraction(iq)
IQint(A)_IQint(A)(long) Ainteger(iq)

IQNtoIQ(A)_IQNtoIQ(A)AiqN to iq
IQtoIQN(A)_IQtoIQN(A)Aiq to iqN

“IQmath” in C++“IQmath” in CFloating-PointOperation

IQtoA(A,B,C)_IQtoA(A,B,C)sprintf(A,B,C)IQ to ASCII

8 - 24 C2000 Delfino Workshop - Numerical Concepts

 IQmath Library

16 vs. 32 Bits
The "IQmath" approach could also be used on 16-bit numbers and for many problems, this is suf-
ficient resolution. However, in many control cases, the user needs to use many different "Q" val-
ues to accommodate the limited resolution of a 16-bit number.

With DSP devices like the TMS320C28x processor, which can perform 16-bit and 32-bit math
with equal efficiency, the choice becomes more of productivity (time to market). Why bother
spending a whole lot of time trying to code using 16-bit numbers when you can simply use 32-bit
numbers, pick one value of "Q" that will accommodate all cases and not worry about spending
too much time optimizing.

Of course there is a concern on data RAM usage if numbers that could be represented in 16 bits
all use 32 bits. This is becoming less of an issue in today's processors because of the finer tech-
nology used and the amount of RAM that can be cheaply integrated. However, in many cases,
this problem can be mitigated by performing intermediate calculations using 32-bit numbers and
converting the input from 16 to 32 bits and converting the output back to 16 bits before storing
the final results. In many problems, it is the intermediate calculations that require additional ac-
curacy to avoid quantization problems.

C2000 Delfino Workshop - Numerical Concepts 8 - 25

Converting ADC Results into IQ Format

Converting ADC Results into IQ Format

#define AdcFsVoltage _IQ(3.0) // ADC full scale voltage

_iq Result, temp; // ADC result

void main(void)

{

// convert the unsigned 16-bit result to unsigned 32-bit

temp = AdcMirror.ADCRESULT0;

// convert resulting IQ12 to Global IQ format

temp = _IQ12toIQ(temp);

// scale by ADC full-scale range (optional)

Result = _IQmpy(AdcFsVoltage, temp);

}

Getting the ADC Result into IQ Format
AdcMirror.

ADCRESULTx

32-bit long
15 031

Do not sign extend

Notice that the 32-bit long is already in IQ12 format

//

//

//

Result = _IQmpy(AdcFsVoltage, _IQ12toIQ((_iq)AdcMirror.ADCRESULT0));

x x x xx x x xx x x x0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0

x x x xx x x xx x x x0 0 0 0

As you may recall, the converted values of the ADC can be placed in the upper 12 bit of the
RESULT0 register (when not using AdcMirror register). Before these values are filtered using
the IQmath library, they need to to be put into the IQ format as a 32-bit long. For uni-polar ADC
inputs (i.e., 0 to 3 V inputs), a conversion to global IQ format can be achieved with:

IQresult_unipolar = _IQmpy(_IQ(3.0),_IQ12toIQ((_iq) AdcRegs.ADCRESULT0));

How can we modify the above to recover bi-polar inputs, for example +-1.5 volts? One could do
the following to offset the +1.5V analog biasing applied to the ADC input:

IQresult_bipolar =
 _IQmpy(_IQ(3.0),_IQ12toIQ((_iq) AdcRegs.ADCRESULT0)) - _IQ(1.5);

However, one can see that the largest intermediate value the equation above could reach is 3.0.
This means that it cannot be used with an IQ data type of IQ30 (IQ30 range is -2 < x < ~2). Since
the IQmath library supports IQ types from IQ1 to IQ30, this could be an issue in some applica-
tions.

The following clever approach supports IQ types from IQ1 to IQ30:

IQresult_bipolar =
 _IQmpy(_IQ(1.5),_IQ15toIQ((_iq) ((int16) (AdcRegs.ADCRESULT0 ^ 0x8000))));

The largest intermediate value that this equation could reach is 1.5. Therefore, IQ30 is easily
supported.

8 - 26 C2000 Delfino Workshop - Numerical Concepts

 Converting ADC Results into IQ Format

#if MATH_TYPE == IQ_MATH

#define AdcFsVoltage _IQ(3.0) // ADC full scale voltage

#else // MATH_TYPE is FLOAT_MATH

#define AdcFsVoltage _IQ(3.0/4096.0) // ADC full scale voltage

#endif

_iq Result; // ADC result

void main(void)

{

Result = _IQmpy(AdcFsVoltage, _IQ12toIQ((_iq)AdcMirror.ADCRESULT0));

}

Can a Single ADC Interface Code Line be
Written for IQmath and Floating-Point?

* does
nothing

FLOAT_MATH
behavior: float

C2000 Delfino Workshop - Numerical Concepts 8 - 27

AC Induction Motor Example

AC Induction Motor Example
AC Induction Motor Example

One of the more complex motor control algorithms

Sensorless, ACI induction machine direct rotor flux control
Goal: motor speed estimation & alpha-axis stator current estimation

The "IQmath" approach is ideally suited for applications where a large numerical dynamic range
is not required. Motor control is an example of such an application (audio and communication
algorithms are other applications). As an example, the IQmath approach has been applied to the
sensor-less direct field control of an AC induction motor. This is probably one of the most chal-
lenging motor control problems and as will be shown later, requires numerical accuracy greater
then 16-bits in the control calculations.

The above slide is a block diagram representation of the key control blocks and their interconnec-
tions. Essentially this system implements a "Forward Control" block for controlling the d-q axis
motor current using PID controllers and a "Feedback Control" block using back emf's integration
with compensated voltage from current model for estimating rotor flux based on current and volt-
age measurements. The motor speed is simply estimated from rotor flux differentiation and open-
loop slip computation. The system was initially implemented on a "Simulator Test Bench" which
uses a simulation of an "AC Induction Motor Model" in place of a real motor. Once working, the
system was then tested using a real motor on an appropriate hardware platform.

Each individual block shown in the slide exists as a stand-alone C/C++ module, which can be
interconnected to form the complete control system. This modular approach allows reusability
and portability of the code. The next few slides show the coding of one particular block, PARK
Transform, using floating-point and "IQmath" approaches in C:

8 - 28 C2000 Delfino Workshop - Numerical Concepts

 AC Induction Motor Example

AC Induction Motor Example
Park Transform – floating-point C code

#include “math.h”

#define TWO_PI 6.28318530717959

void park_calc(PARK *v)

{

float cos_ang , sin_ang;

sin_ang = sin(TWO_PI * v->ang);

cos_ang = cos(TWO_PI * v->ang);

v->de = (v->ds * cos_ang) + (v->qs * sin_ang);

v->qe = (v->qs * cos_ang) - (v->ds * sin_ang);

}

AC Induction Motor Example
Park Transform - converting to “IQmath” C code

#include “math.h”

#define TWO_PI 6.28318530717959

void park_calc(PARK *v)

{

float cos_ang , sin_ang;

sin_ang = sin(TWO_PI * v->ang);

cos_ang = cos(TWO_PI * v->ang);

v->de = (v->ds * cos_ang) + (v->qs * sin_ang);

v->qe = (v->qs * cos_ang) - (v->ds * sin_ang);

}

#include “IQmathLib.h”

_IQ(6.28318530717959)

_iq

_IQsin(_IQmpy(TWO_PI , v->ang));

_IQcos(_IQmpy(TWO_PI , v->ang));

_IQmpy(v->ds , cos_ang) + _IQmpy(v->qs , sin_ang);

_IQmpy(v->qs , cos_ang) - _IQmpy(v->ds , sin_ang);

The complete system was coded using "IQmath". Based on analysis of coefficients in the system,
the largest coefficient had a value of 33.3333. This indicated that a minimum dynamic range of 7
bits (+/-64 range) was required. Therefore, this translated to a GLOBAL_Q value of 32-7 = 25
(Q25). Just to be safe, the initial simulation runs were conducted with GLOBAL_Q = 24 (Q24)

C2000 Delfino Workshop - Numerical Concepts 8 - 29

AC Induction Motor Example

value. The plots start from a step change in reference speed from 0.0 to 0.5 and 1024 samples are
taken.

AC Induction Motor Example
GLOBAL_Q = 24, system stable

IQmath: speed IQmath: current

Floating-Point: speed Floating-Point: current

The speed eventually settles to the desired reference value and the stator current exhibits a clean
and stable oscillation. The block diagram slide shows at which points in the control system the
plots are taken from.

I8Q24 Fractions:

0+∞ -∞

What’s Happening Here?
Equal Precision in the Computation Region

In the region where these particular computations occur, the
precision of single-precision floating-point just happens to equal
the precision of the I8Q24 format.

So, both produce similar results!

Floating-Point:

0+∞ -∞

Same precision as I8Q24

8 - 30 C2000 Delfino Workshop - Numerical Concepts

 AC Induction Motor Example

AC Induction Motor Example
GLOBAL_Q = 27, system unstable

IQmath: speed

IQmath: current

AC Induction Motor Example
GLOBAL_Q = 16, system unstable

IQmath: speed

IQmath: current

C2000 Delfino Workshop - Numerical Concepts 8 - 31

AC Induction Motor Example

With the ability to select the GLOBAL_Q value for all calculations in the "IQmath", an experi-
ment was conducted to see what maximum and minimum Q value the system could tolerate be-
fore it became unstable. The results are tabulated in the slide below:

AC Induction Motor Example
Q stability range

The developer must pick the right GLOBAL_Q value!

Unstable
(not enough resolution, quantization problems)Q18 to Q0

StableQ26 to Q19

Unstable
(not enough dynamic range)Q31 to Q27

Stability RangeQ range

The above indicates that, the AC induction motor system that we simulated requires a minimum
of 7 bits of dynamic range (+/-64) and requires a minimum of 19 bits of numerical resolution (+/-
0.000002). This confirms our initial analysis that the largest coefficient value being 33.33333
required a minimum dynamic range of 7 bits. As a general guideline, users using IQmath should
examine the largest coefficient used in the equations and this would be a good starting point for
setting the initial GLOBAL_Q value. Then, through simulation or experimentation, the user can
reduce the GLOBAL_Q until the system resolution starts to cause instability or performance deg-
radation. The user then has a maximum and minimum limit and a safe approach is to pick a mid-
point.

What the above analysis also confirms is that this particular problem does require some calcula-
tions to be performed using greater then 16 bit precision. The above example requires a mini-
mum of 7 + 19 = 26 bits of numerical accuracy for some parts of the calculations. Hence, if one
was implementing the AC induction motor control algorithm using a 16 bit fixed-point DSP, it
would require the implementation of higher precision math for certain portions. This would take
more cycles and programming effort.

The great benefit of using GLOBAL_Q is that the user does not necessarily need to go into de-
tails to assign an individual Q for each variable in a whole system, as is typically done in conven-
tional fixed-point programming. This is time consuming work. By using 32-bit resolution and the
"IQmath" approach, the user can easily evaluate the overall resolution and quickly implement a
typical digital motor control application without quantization problems.

8 - 32 C2000 Delfino Workshop - Numerical Concepts

 AC Induction Motor Example

AC Induction Motor Example
Performance comparisons

Benchmark C28x C C28x C C28x C
floating-point floating-point IQmath
std. RTS lib fast RTS lib v1.4d
(150 MHz) (150 MHz) (150 MHz)

B1: ACI module cycles 401 401 625
B2: Feedforward control cycles 421 371 403
B3: Feedback control cycles 2336 792 1011
Total control cycles (B2+B3) 2757 1163 1414
% of available MHz used 36.8% 15.5% 18.9%
(20 kHz control loop)

Notes: C28x compiled on codegen tools v5.0.0, -g (debug enabled), -o3 (max. optimization)
fast RTS lib v1.0beta1
IQmath lib v1.4d

Using the profiling capabilities of the respective DSP tools, the table above summarizes the num-
ber of cycles and code size of the forward and feedback control blocks.

The MIPS used is based on a system sampling frequency of 20 kHz, which is typical of such sys-
tems.

C2000 Delfino Workshop - Numerical Concepts 8 - 33

IQmath Summary

IQmath Summary
IQmath Approach Summary

Seamless portability of code between fixed and floating-
point devices

User selects target math type in “IQmathLib.h” file
#if MATH_TYPE == IQ_MATH
#if MATH_TYPE == FLOAT_MATH

One source code set for simulation vs. target device
Numerical resolution adjustability based on application
requirement

Set in “IQmathLib.h” file
#define GLOBAL_Q 18

Explicitly specify Q value
_iq20 X, Y, Z;

Numerical accuracy without sacrificing time and cycles
Rapid conversion/porting and implementation of algorithms

IQmath library is freeware - available from TI DSP website
http://www.ti.com/c2000

“IQmath” + fixed-point processor with 32-bit capabilities =

The IQmath approach, matched to a fixed-point processor with 32x32 bit capabilities enables the
following:

• Seamless portability of code between fixed and floating-point devices
• Maintenance and support of one source code set from simulation to target device
• Adjustability of numerical resolution (Q value) based on application requirement
• Implementation of systems that may otherwise require floating-point device
• Rapid conversion/porting and implementation of algorithms

8 - 34 C2000 Delfino Workshop - Numerical Concepts

 Lab 8: IQmath & Floating-Point FIR Filter

Lab 8: IQmath & Floating-Point FIR Filter
 Objective

The objective of this lab is to become familiar with IQmath and floating-point programming. In
the previous lab, ePWM1A was setup to generate a 2 kHz, 25% duty cycle symmetric PWM
waveform. The waveform was then sampled with the on-chip analog-to-digital converter. In this
lab the sampled waveform will be passed through an FIR filter and displayed using the graphing
feature of Code Composer Studio. The filter math type (IQmath and floating-point) will be
selected in the “IQmathLib.h” file.

Lab 8: IQmath & Floating-Point FIR Filter

CPU copies
result to
buffer during
ADC ISR

ADC
RESULT0

ePWM2

connector
wire

ADCINA0

...

data
memory

po
in

te
r

re
w

in
d

Display
using CCS

TB Counter
Compare

Action Qualifier

ePWM1

ePWM2 triggering ADC on period
match using SOCA trigger every
20.833 µs (48 kHz)

FIR Filter

 Procedure

Open the Project
1. A project named Lab8 has been created for this lab. Open the project by clicking on

Project Import Existing CCS/CCE Eclipse Project. The “Import”
window will open then click Browse… next to the “Select root directory” box. Navigate
to: C:\C28x\Labs\Lab8\Project and click OK. Then click Finish to import the
project. All build options have been configured the same as the previous lab. The files
used in this lab are:

C2000 Delfino Workshop - Numerical Concepts 8 - 35

Lab 8: IQmath & Floating-Point FIR Filter

Adc_6_7_8.c Filter.c
CodeStartBranch.asm Gpio.c
DefaultIsr_8.c Lab.h
DelayUs.asm Lab_8.cmd
DSP2833x_DefaultIsr.h Main_8.c
DSP2833x_GlobalVariableDefs.c PieCtrl_5_6_7_8_9_10.c
DSP2833x_Headers_nonBIOS.cmd PieVect_5_6_7_8_9_10.c
ECap_7_8_9_10_12.c SysCtrl.c
EPwm_7_8_9_10_12.c Watchdog.c

Project Build Options
2. Setup the build options by right-clicking on Lab8 in the C/C++ Projects window

and select Properties. Then select the “C/C++ Build” Category. Be sure that the
Tool Settings tab is selected.

3. We need to setup the include search path to include the IQmath header file. Under
“C2000 Compiler” select “Include Options”. In the box that opens click the Add
icon (first icon with green plus sign). Then in the “Add directory path” window type:

${PROJECT_ROOT}/../../IQmath/include

Click OK to include the search path.

4. Next, we need to setup the library search path to include the IQmath library. Under
“C2000 Linker” select “File Search Path”. In the top box click the Add icon.
Then in the “Add file path” window type:

${PROJECT_ROOT}/../../IQmath/lib/IQmath.lib

Click OK to include the library file.

In the bottom box click the Add icon. In the “Add directory path” window type:

${PROJECT_ROOT}/../../IQmath/lib

Click OK to include the library search path.

Finally, select OK to save and close the build options window.

Include IQmathLib.h
5. In the C/C++ Projects window edit Lab.h and uncomment the line that includes

the IQmathLib.h header file. Next, in the Function Prototypes section, uncomment
the function prototype for IQssfir(), the IQ math single-sample FIR filter function. In the
Global Variable References section uncomment the four _iq references, and comment out
the reference to AdcBuf[ADC_BUF_LEN]. Save the changes and close the file.

8 - 36 C2000 Delfino Workshop - Numerical Concepts

 Lab 8: IQmath & Floating-Point FIR Filter

Inspect Lab_8.cmd
6. Open and inspect Lab_8.cmd. First, notice that a section called “IQmath” is being

linked to L0123SARAM. The IQmath section contains the IQmath library functions
(code). Second, notice that a section called “IQmathTables” is being linked to the
IQTABLES with a TYPE = NOLOAD modifier after its allocation. The IQmath tables
are used by the IQmath library functions. The NOLOAD modifier allows the linker to
resolve all addresses in the section, but the section is not actually placed into the .out
file. This is done because the section is already present in the device ROM (you cannot
load data into ROM after the device is manufactured!). The tables were put in the ROM
by TI when the device was manufactured. All we need to do is link the section to the
addresses where it is known to already reside (the tables are the very first thing in the
BOOT ROM, starting at address 0x3FE000). Close the inspected file.

Select a Global IQ value
7. In the C/C++ Projects window under the Includes folder open:

C:\C28x\Labs\IQmath\include\IQmathLib.h. Confirm that the GLOBAL_Q
type (near beginning of file) is set to a value of 24. If it is not, modify as necessary:

#define GLOBAL_Q 24

Recall that this Q type will provide 8 integer bits and 24 fractional bits. Dynamic range
is therefore -128 < x < +128, which is sufficient for our purposes in the workshop.

Notice that the math type is defined as IQmath by:

#define MATH_TYPE IQ_MATH

Close the file.

IQmath Single-Sample FIR Filter
8. Open and inspect DefaultIsr_8.c. Notice that the ADCINT_ISR calls the IQmath

single-sample FIR filter function, IQssfir(). The filter coefficients have been defined in
the beginning of Main_8.c. Also, as discussed in the lecture for this module, the ADC
results are read with the following instruction:

*AdcBufPtr = _IQmpy(ADC_FS_VOLTAGE,
 _IQ12toIQ((_iq)AdcMirror.ADCRESULT0));

The value of ADC_FS_VOLTAGE will be discussed in the next lab step.

9. Open and inspect Lab.h. Notice that, as discussed in the lecture for this module,
ADC_FS_VOLTAGE is defined as:

#if MATH_TYPE == IQ_MATH
 #define ADC_FS_VOLTAGE _IQ(3.0)
 #else // MATH_TYPE is FLOAT_MATH
 #define ADC_FS_VOLTAGE _IQ(3.0/4096.0)
#endif

C2000 Delfino Workshop - Numerical Concepts 8 - 37

Lab 8: IQmath & Floating-Point FIR Filter

10. Open and inspect the IQssfir() function in Filter.c. This is a simple, non-optimized
coding of a basic IQmath single-sample FIR filter. Close the inspected files.

Build and Load
11. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window.

12. Click the “Debug” button (green bug). The “Debug Perspective” view should open, the
program will load automatically, and you should now be at the start of main().

Run the Code – Filtered Waveform
13. Open a memory window to view some of the contents of the filtered ADC results buffer.

The address label for the filtered ADC results buffer is AdcBufFiltered in the “Data”
memory page. Set the format to 32-Bit Signed Integer. Right-click in the memory
window, select Configure… and set the Q-Value to 24 (which matches the IQ format
being used for this variable). Then click OK to save the setting. We will be running our
code in real-time mode, and will need to have the window continuously refresh.

Note: For the next step, check to be sure that the jumper wire connecting PWM1A (pin #
GPIO-00) to ADCINA0 (pin # ADC-A0) is in place on the Docking Station.

14. Run the code in real-time mode using the Script function: Scripts Realtime
Emulation Control Run_Realtime_with_Reset, and watch the memory
window update. Verify that the ADC result buffer contains updated values.

15. Open and setup a dual-time graph to plot a 48-point window of the filtered and unfiltered
ADC results buffer. Click: Tools Graph Dual Time and set the following
values:

Acquisition Buffer Size 48

DSP Data Type 32-bit signed integer

Q Value 24

Sampling Rate (Hz) 48000

Start Address A AdcBufFiltered

Start Address B AdcBuf

Display Data Size 48

Time Display Unit μs

Select OK to save the graph options.

8 - 38 C2000 Delfino Workshop - Numerical Concepts

 Lab 8: IQmath & Floating-Point FIR Filter

16. The graphical display should show the generated FIR filtered 2 kHz, 25% duty cycle
symmetric PWM waveform in the Dual Time A display and the unfiltered waveform
generated in the previous lab exercise in the Dual Time B display. Notice the shape and
phase differences between the waveform plots (the filtered curve has rounded edges, and
lags the unfiltered plot by several samples). The amplitudes of both plots should run
from 0 to 3.0.

17. Open and setup two (2) frequency domain plots – one for the filtered and another for the
unfiltered ADC results buffer. Click: Tools Graph FFT Magnitude and
set the following values:

 GRAPH #1 GRAPH #2

Acquisition Buffer Size 48 48

DSP Data Type 32-bit signed integer 32-bit signed integer

Q Value 24 24

Sampling Rate (Hz) 48000 48000

Start Address AdcBufFiltered AdcBuf

Data Plot Style Bar Bar

FFT Order 10 10

Select OK to save the graph options.

18. The graphical displays should show the frequency components of the filtered and
unfiltered 2 kHz, 25% duty cycle symmetric PWM waveforms. Notice that the higher
frequency components are reduced using the Low-Pass FIR filter in the filtered graph as
compared to the unfiltered graph.

19. Fully halt the CPU (real-time mode) by using the Script function: Scripts
Realtime Emulation Control Full_Halt.

Changing Math Type to Floating-Point
20. Switch to the “C/C++ Perspective” view by clicking the C/C++ icon in the upper right-

hand corner. In the C/C++ Projects window under the Includes folder open:
C:\C28x\Labs\IQmath\include\IQmathLib.h. Edit IQmathLib.h to
define the math type as floating-point. Change #define

from: #define MATH_TYPE IQ_MATH

to: #define MATH_TYPE FLOAT_MATH

Save the change to the IQmathLib.h and close the file.

C2000 Delfino Workshop - Numerical Concepts 8 - 39

Lab 8: IQmath & Floating-Point FIR Filter

Build and Load
21. Click the “Build” button. Select Yes to “Reload the program automatically”. Switch

back to the “Debug Perspective” view by clicking the Debug icon in the upper right-
hand corner.

Run the Code – Floating-Point Filtered Waveform
22. Change the dual-time and FFT Magnitude graphs to display 32-bit floating-point rather

than 32-bit signed integer. Click the “Show the Graph Properties” icon for
each graph and change the DSP Data Type to 32-bit floating-point.

23. Run the code (real-time mode) by using the Script function: Scripts Realtime
Emulation Control Run_Realtime_with_Reset.

24. The graphical display should show the generated FIR filtered 2 kHz, 25% duty cycle
symmetric PWM waveform in the Dual Time A display and the unfiltered waveform in
the Dual Time B display. The FFT Magnitude graphical displays should show the
frequency components of the filtered and unfiltered 2 kHz, 25% duty cycle symmetric
PWM waveforms.

25. Fully halt the CPU (real-time mode) by using the Script function: Scripts
Realtime Emulation Control Full_Halt.

Terminate Debug Session and Close Project
26. Terminate the active debug session using the Terminate All button. This will close

the debugger and return CCS to the “C/C++ Perspective” view.

27. Next, close the project by right-clicking on Lab8 in the C/C++ Projects window
and select Close Project.

End of Exercise

8 - 40 C2000 Delfino Workshop - Numerical Concepts

 Lab 8: IQmath & Floating-Point FIR Filter

Lab 8 Reference: Low-Pass FIR Filter

Bode Plot of Digital Low-Pass FIR Filter

Coefficients: [1/16, 4/16, 6/16, 4/16, 1/16]

Sample Rate: 48 kHz

C2000 Delfino Workshop - Numerical Concepts 8 - 41

Lab 8: IQmath & Floating-Point FIR Filter

8 - 42 C2000 Delfino Workshop - Numerical Concepts

Direct Memory Access Controller

Introduction
This module explains the operation of the direct memory access (DMA) controller. The DMA
provides a hardware method of transferring data between peripherals and/or memory without
intervention from the CPU, thus freeing up bandwidth for other system functions. The DMA has
six channels with independent PIE interrupts.

Learning Objectives
Learning Objectives

Understand the operation of the
Direct Memory Access (DMA)
controller
Show how to use the DMA to
transfer data between peripherals
and/or memory without intervention
from the CPU

C2000 Delfino Workshop - Direct Memory Access Controller 9 - 1

Module Topics

Module Topics
Direct Memory Access Controller ... 9-1

Module Topics... 9-2
Direct Memory Access (DMA).. 9-3

Basic Operation .. 9-4
DMA Examples .. 9-6
DMA Priority Modes.. 9-9
DMA Throughput..9-10
DMA Registers ..9-11

Lab 9: Servicing the ADC with DMA...9-15

9 - 2 C2000 Delfino Workshop - Direct Memory Access Controller

 Direct Memory Access (DMA)

Direct Memory Access (DMA)
DMA Triggers, Sources, and Destinations

McBSP-A

McBSP-B

XINTF
Zone 0, 6, 7

DMA
6-channelsL4 SARAM

L5 SARAM

L6 SARAM

L7 SARAM

ADC
Result 0-15

Triggers

SEQ1INT / SEQ2INT
MXEVTA / MREVTA
MXEVTB / MREVTB

XINT1-7 / 13
TINT0 / 1 / 2

PIE
DINTCH1-6

PWM1
PWM2
PWM3
PWM4
PWM5
PWM6

SysCtrlRegs.MAPCNF.bit.MAPCNF
(re-maps PWM regs from PF1 to PF3)

DMA Definitions
Word

16 or 32 bits
Word size is configurable per DMA channel

Burst
Consists of multiple words
Smallest amount of data transferred at one time

Burst Size
Number of words per burst
Specified by BURST_SIZE register

5-bit ‘N-1’ value (maximum of 32 words/burst)

Transfer
Consists of multiple bursts

Transfer Size
Number of bursts per transfer
Specified by TRANSFER_SIZE register

16-bit ‘N-1’ value - exceeds any practical requirements

C2000 Delfino Workshop - Direct Memory Access Controller 9 - 3

Direct Memory Access (DMA)

Basic Operation

Simplified State Machine Operation

Burst Size times

Transfer Size times

The DMA state machine at its most basic
level is two nested loops

End Transfer

Move Word

Start Transfer

Basic Address Control Registers

SRC_ADDR

SRC_ADDR_SHADOW

DST_ADDR

DST_ADDR_SHADOW

SRC_BURST_STEP

SRC_TRANSFER_STEP

DST_BURST_STEP

DST_TRANSFER_STEP

Active pointers

Pointer shadow registers
copied to active pointers at
start of transfer

Signed value added to active
pointer after each word

Signed value added to active
pointer after each burst

32

9 - 4 C2000 Delfino Workshop - Direct Memory Access Controller

 Direct Memory Access (DMA)

Simplified State Machine Example

3 words/burst
2 bursts/transfer

Read/Write Data

Add Burst Step
to Address

Pointer

Add Transfer
Step to Address

Pointer

Moved
“Burst Size”

Words?

Moved
“Transfer Size”

Bursts?

Y

Y

N

N

Wait for event
to start/continue

transfer

Start Transfer

End Transfer

DMA Interrupts

Read/Write Data

Add Burst Step
to Address

Pointer

End Transfer

Add Transfer
Step to Address

Pointer

Moved
“Burst Size”

Words?

Moved
“Transfer Size”

Bursts?

Y

Y

N

N

Wait for event
to start/continue

transfer

Start TransferMode #1:
Interrupt
at start of
transfer

Mode #2:
Interrupt
at end of
transfer

Each DMA channel has
its own PIE interrupt
The mode for each
interrupt can be
configured individually
The CHINTMODE bit in
the MODE register selects
the interrupt mode

C2000 Delfino Workshop - Direct Memory Access Controller 9 - 5

Direct Memory Access (DMA)

DMA Examples

0x44440x0000

0x000040030x000040020x000040010x000040000x00000000

0x0000F0030x0000F0020x0000F0010x0000F0000x00000000

0x33330x0000
0x22220x0000

0x0000F000

0x11110x0000

Simple Example

Read/Write D ata

Add Burst Step
to Address

Pointer

End Trans fer

Add Transfer
Step to Address

Pointer

Moved
“Burst Size”

Words?

Moved
“Transfer Size”

Bursts?
Y

Y

N

N

Wait for event
to start/continue

transfer

SRC_ADDR_SHADOW

SRC_ADDR

BURST_STEP
TRANSFER_STEP

BURST_SIZE*
TRANSFER_SIZE*

Addr Value
0x11110xF000
0x22220xF001
0x33330xF002
0x44440xF003

Source Registers

0x0001
0x0001

0x0001
0x0001

DST_ADDR_SHADOW

DST_ADDR

DST_BURST_STEP
DST_TRANSFER_STEP

Addr Value
0x4000
0x4001
0x4002
0x4003

Destination Registers

0x00004000
0x0001
0x0001

2 words/burst
2 bursts/transfer

* Size registers are N-1

Objective: Move 4 words from L7 SARAM to XINTF Zone 0
and interrupt CPU at end of transfer

Start Transfer

Note: This example could also have been done using 1 word/burst and 4 bursts/transfer, or 4 words/burst
and 1 burst/transfer. This would affect Round-Robin progression, but not interrupts.

Interrupt to PIE

Data Binning Example

ADC Mirror Results

L7 SARAM

CH0
CH1
CH2
CH3
CH4

0x0B00 CH0
CH1
CH2
CH3
CH4

CH0
CH1
CH2
CH3
CH4

1st Conversion Sequence

0xF000

0xF003

0xF006

0xF009

0xF00C

0x0B01
0x0B02
0x0B03
0x0B04

0xF001

0xF004

0xF007

0xF00A

0xF00D

0xF002

0xF005

0xF008

0xF00B

0xF00E

2nd Conversion Sequence3rd Conversion Sequence

CH0

CH1

CH2

CH3

CH4

Objective: Bin 3 samples of 5 ADC channels, then interrupt the CPU

9 - 6 C2000 Delfino Workshop - Direct Memory Access Controller

 Direct Memory Access (DMA)

* Size registers are N-1

Data Binning Example Register Setup

BURST_SIZE*
TRANSFER_SIZE*

0x0004 5 words/burst
0x0002 3 bursts/transfer

SRC_ADDR_SHADOW
SRC_BURST_STEP

SRC_TRANSFER_STEP

0x00000B00
0x0001

DST_ADDR_SHADOW
DST_BURST_STEP

DST_TRANSFER_STEP
0x0003
0xFFF5 (-11)

0xFFFC (-4)

CH4
CH3
CH2
CH1
CH00x0B00

0x0B01
0x0B02

ADC Mirror Results

L7 SARAM

0xF000

0xF003

0xF006

0xF009

0xF00C

CH0
CH0
CH0

CH1
CH1
CH1

CH2
CH2
CH2

CH3
CH3
CH3

CH4
CH4
CH4

0xF001

0xF004

0xF007

0xF00A

0xF00D

0xF002

0xF005

0xF008

0xF00B

0xF00E

0x0B03
0x0B04

Objective: Bin 3 samples of 5 ADC channels, then interrupt the CPU

ADCMAXCONV* 0x0004 5 conversions per sequence

ADC configured for continuous conversion,
SEQ_OVERRIDE bit set so that state pointer wraps after 5 conversions

ADC Registers:

DMA Registers:

Other:

0x0000F000 starting address**

** Typically use a relocatable symbol in your code, not a hard value

The State Machine ‘Wrap’ Function

Read/Write Data

Add Burst Step
to Address

Pointer

End Transfer

Add Transfer Step
to Address Pointer

Moved
“Burst Size”

Words?

Moved
“Transfer Size”

Bursts?
Y

Y

N

N

Wait for event to
start/continue transfer

Moved
“Wrap Size”

Bursts?

Add WRAP_STEP to
BEG_ADDR and Load

into Address Pointer

N

Y

Wrap Function:
Reloads address
pointer after specified
number of bursts
Allows a cumulative
signed offset to be
added each wrap

New Registers
• WRAP_SIZE = bursts/wrap - 1
• BEG_ADDR = Wrap beginning

address
• WRAP_STEP = added to

BEG_ADDR before wrapping

Provides another resource to manipulate the address pointers

Start Transfer

C2000 Delfino Workshop - Direct Memory Access Controller 9 - 7

Direct Memory Access (DMA)

Ping-Pong Buffer Example

ADC Mirror Results

48 word
‘Ping’ buffer

48 word
‘Pong’ buffer

L4 SARAM

0x0B00
0x0B01
0x0B02
0x0B03
0x0B04
0x0B05
0x0B06
0x0B07
0x0B08
0x0B09
0x0B0A
0x0B0B
0x0B0C
0x0B0D
0x0B0E
0x0B0F

ADCRESULT0
ADCRESULT1
ADCRESULT2
ADCRESULT3
ADCRESULT4
ADCRESULT5
ADCRESULT6
ADCRESULT7
ADCRESULT8
ADCRESULT9
ADCRESULT10
ADCRESULT11
ADCRESULT12
ADCRESULT13
ADCRESULT14
ADCRESULT15

ADCRESULT9
ADCRESULT10
ADCRESULT11
ADCRESULT12
ADCRESULT13
ADCRESULT14
ADCRESULT15

ADCRESULT1
ADCRESULT2
ADCRESULT3
ADCRESULT4
ADCRESULT5
ADCRESULT6
ADCRESULT7
ADCRESULT8

ADCRESULT0

ADCRESULT9
ADCRESULT10
ADCRESULT11
ADCRESULT12
ADCRESULT13
ADCRESULT14
ADCRESULT15

ADCRESULT1
ADCRESULT2
ADCRESULT3
ADCRESULT4
ADCRESULT5
ADCRESULT6
ADCRESULT7
ADCRESULT8

ADCRESULT0

DMA
Interrupt

DMA
Interrupt

0xC140

Objective: Buffer ADC ch. 0 ping-pong style, 48 samples per buffer

DMA configured to re-init after transfer (CONTINUOUS = 1)

0x0000

Ping-Pong Example Register Setup

SRC_BURST_STEP
SRC_TRANSFER_STEP 0x0001

DST_BURST_STEP
DST_TRANSFER_STEP 0x0001

SRC_WRAP_STEP

DST_WRAP_STEP

SRC_ADDR_SHADOW

DST_ADDR_SHADOW

BURST_SIZE*
TRANSFER_SIZE*

0x0000 1 word/burst
0x002F 48 bursts/transfer

* Size registers are N-1

Objective: Buffer ADC ch. 0 ping-pong style, 48 samples per buffer

don’t care since BURST_SIZE = 0

SRC_WRAP_SIZE* 0x000F wrap after 16 words

DST_WRAP_SIZE* 0xFFFF no wrap

0x0000 since BURST_SIZE = 0

0x00000B00 starting address

0x0000C140 starting address**

don’t care not using dst wrap

Read/Write Data

Add Burst Step
to Address

Pointer

End Transfer

Add Trans fer Step
to Address Pointer

Moved
“Burst Size”

Words?

Moved
“Transfer Size”

Bursts?

Y

Y

N

N

Wait for event to
star t/continue transfer

Moved
“Wrap Size”

Bursts?

Add WRAP_STEP to
BEG_ADDR and Load

Into Address Pointer

N

Y

Start T ransfer

ADCMAXCONV* 0x0000 1 conversion per trigger - SEQ pointer auto wraps after 16 states

All 16 Ch. selection fields configured for Ch. 0, ADC in non-continuous run mode

DMA Registers:

ADC Registers:

Other:

Other:

SRC_BEG_ADDR_SHADOW 0x00000B00 starting wrap address

DST_BEG_ADDR_SHADOW don’t care not using dst wrap

** DST_ADDR_SHADOW must be changed between ping and pong buffer address in
the DMA ISR. Typically use a relocatable symbol in your code, not a hard value.

9 - 8 C2000 Delfino Workshop - Direct Memory Access Controller

 Direct Memory Access (DMA)

DMA Priority Modes

Channel Priority Modes

Round Robin Mode:
All channels have equal priority
After each enabled channel has
transferred a burst of words, the
next enabled channel is serviced
in round robin fashion

Channel 1 High Priority Mode:
Same as Round Robin except CH1
can interrupt DMA state machine
If CH1 trigger occurs, the current
word (not the complete burst) on
any other channel is completed
and execution is halted
CH1 is serviced for complete burst
When completed, execution
returns to previous active channel
This mode is intended primarily
for the ADC, but can be used by
any DMA event configured to
trigger CH1

DMA
event?

CH6 CH1

CH2CH5

CH4 CH3

Y

N

Priority Modes and the State Machine

Read/Write Data

Add Burst Step
to Address

Pointer

Add Transfer
Step to Address

Pointer

Moved
“Burst Size”

Words?

Moved
“Transfer Size”

Bursts?

Y

Y

N

N

Point where other
pending channels

are serviced
Wait for event

to start/continue
transfer

Point where
CH1 can

interrupt other
channels in

CH1 Priority Mode

Start Transfer

End Transfer

C2000 Delfino Workshop - Direct Memory Access Controller 9 - 9

Direct Memory Access (DMA)

DMA Throughput

DMA Throughput

4 cycles/word (5 for McBSP reads)

1 cycle delay to start each burst
1 cycle delay returning from CH1 high
priority interrupt
32-bit transfer doubles throughput
(except McBSP, which supports 16-bit transfers only)

Example: 128 16-bit words from ADC to RAM
8 bursts * [(4 cycles/word * 16 words/burst) + 1] = 520 cycles

Example: 64 32-bit words from ADC to RAM
8 bursts * [(4 cycles/word * 8 words/burst) + 1] = 264 cycles

DMA vs. CPU Access Arbitration
DMA has priority over CPU

If a multi-cycle CPU access is already in
progress (e.g. XINTF), DMA stalls until
current CPU access finishes
The DMA will interrupt back-to-back CPU
accesses

Can the CPU be locked out?
Generally No!
DMA is multi-cycle transfer; CPU will sneak
in an access when the DMA is accessing
the other end of the transfer (e.g. while DMA
accesses destination location, the CPU can
access the source location)

9 - 10 C2000 Delfino Workshop - Direct Memory Access Controller

 Direct Memory Access (DMA)

DMA Registers

DMA Registers
DmaRegs.name (lab file: Dma.c)

DMACTRL DMA Control Register
PRIORITYCTRL1 Priority Control Register 1
MODE Mode Register
CONTROL Control Register
BURST_SIZE Burst Size Register
BURST_COUNT Burst Count Register
SRC_BURST_STEP Source Burst Step Size Register
DST_BURST_STEP Destination Burst Step Size Register
TRANSFER_SIZE Transfer Size Register
TRANSFER_COUNT Transfer Count Register
SRC_TRANSFER_STEP Source Transfer Step Size Register
DST_TRANSFER_STEP Destination Transfer Step Size Register
SRC_ADDR_SHADOW Shadow Source Address Pointer Register
SRC_ADDR Active Source Address Pointer Register
DST_ADDR_SHADOW Shadow Destination Address Pointer Register
DST_ADDR Active Destination Address Pointer Register

Register Description

DM
A

CH
x

Re
gi

st
er

s

For a complete list of registers refer to the DMA Module Reference Guide

DMA Control Register
DmaRegs.DMACTRL

HARDRESETPRIORITYRESET
015 - 2

reserved

1

Priority Reset
0 = writes ignored (always reads back 0)
1 = reset state-machine after any pending

burst transfer complete

Hard Reset
0 = writes ignored (always reads back 0)
1 = reset DMA module

C2000 Delfino Workshop - Direct Memory Access Controller 9 - 11

Direct Memory Access (DMA)

Priority Control Register 1
DmaRegs.PRIORITYCTRL1

CH1PRIORITY
015 - 1

reserved

DMA CH1 Priority
0 = same priority as other channels
1 = highest priority channel

Mode Register
DmaRegs.CHx.MODE

Upper Register:

CHINTE DATASIZE
15 11 10

SYNCSEL SYNCE CONTINUOUS ONESHOT
121314

Channel Interrupt
0 = disable
1 = enable

Data Size Mode
0 = 16-bit transfer
1 = 32-bit transfer

Sync Mode Select
0 = SRC wrap counter
1 = DST wrap counter

Sync Enable (PERINTSEL)
0 = ADCSYNC ignored
1 = ADCSYNC event

Continuous Mode
0 = DMA stops
1 = DMA re-initializes

One Shot Mode
0 = one burst transfer per trigger
1 = subsequent burst transfers

occur without additional trigger

9 - 12 C2000 Delfino Workshop - Direct Memory Access Controller

 Direct Memory Access (DMA)

Mode Register
DmaRegs.CHx.MODE

Lower Register:

9 46 - 578

Channel Interrupt Generation
0 = at beginning of transfer
1 = at end of transfer

Peripheral
Interrupt Trigger
0 = disable
1 = enable

 - 0
CHINTMODE PERINTE OVRINTE PERINTSELreserved

Overflow
Interrupt Enable
0 = disable
1 = enable

Peripheral Interrupt Source Select

Ext. Int.noneXINT68
Ext. Int.noneXINT57
Ext. Int.noneXINT46
Ext. Int.noneXINT35
Ext. Int.noneXINT24
Ext. Int.noneXINT13

ADCnoneSEQ2INT2
ADCADCSYNCSEQ1INT1
nonenonenone0

PeripheralSyncInterruptValue

McBSP-BnoneMREVTB17
McBSP-BnoneMXEVTB16
McBSP-AnoneMREVTA15
McBSP-AnoneMXEVTA14

CPU TimernoneTINT213
CPU TimernoneTINT112
CPU TimernoneTINT011

Ext. Int.noneXINT1310
Ext. Int.noneXINT79

PeripheralSyncInterruptValue

Control Register
DmaRegs.CHx.CONTROL

Upper Register:

reserved OVRFLG
15 11 810

RUNSTS BURSTSTS TRANSFERRST SYNCERR SYNCFLG PERINTFLG
9121314

Overflow Flag *
0 = no overflow
1 = overflow

Run Status *
0 = channel disabled
1 = channel enabled

Burst Status *
0 = no activity
1 = servicing burst

Transfer Status *
0 = no activity
1 = transferring

Sync Error *
0 = no error
1 = ADCSYNC error

Sync Flag *
0 = no sync event
1 = ADCSYNC event

Peripheral Interrupt Trigger Flag *
0 = no interrupt event trigger
1 = interrupt event trigger

* = read-only

C2000 Delfino Workshop - Direct Memory Access Controller 9 - 13

Direct Memory Access (DMA)

Control Register
DmaRegs.CHx.CONTROL

Lower Register:

ERRCLR SYNCCLR
7 3 2

SYNCFRC PERINTCLR PERINTFRC SOFTRESET HALT RUN
01456

Error Clear
0 = no effect
1 = clear SYNCERR

Sync Clear
0 = no effect
1 = clear SYNCFLG

Sync Force
0 = no effect
1 = sets SYNCFLG

Peripheral Interrupt Clear
0 = no effect
1 = clears event and PERINTFLG

Peripheral Interrupt Force
0 = no effect
1 = sets event and PERINTFLG

Soft Reset
0 = no effect
1 = default state

Halt
0 = no effect
1 = halt

Run
0 = no effect
1 = run

9 - 14 C2000 Delfino Workshop - Direct Memory Access Controller

 Lab 9: Servicing the ADC with DMA

Lab 9: Servicing the ADC with DMA
 Objective

The objective of this lab is to become familiar with operation of the DMA. In the previous lab,
the CPU was used to store the ADC conversion result in the memory buffer during the ADC ISR.
In this lab the DMA will be configured to transfer the results directly from the ADC result
registers to the memory buffer. ADC channel A0 will be buffered ping-pong style with 48
samples per buffer. As an operational test, the filtered 2 kHz, 25% duty cycle symmetric PWM
waveform (ePWM1A) will be displayed using the graphing feature of Code Composer Studio.

Lab 9: Servicing the ADC with DMA

ADC
RESULT0

ePWM2

connector
wire

ADCINA0

data
memory

Po
in

te
r

re
w

in
d

Display
using CCS

TB Counter
Compare

Action Qualifier

ePWM1

ePWM2 triggering ADC on period
match using SOCA trigger every
20.833 µs (48 kHz)

Objective:
Configure the DMA to buffer
ADC Channel A0 ping-pong
style with 48 samples per buffer

ping

CPU runs
data through
filter during
DMA ISR

FIR
Filter

pong

data
memory

DMA

 Procedure

Open the Project
1. A project named Lab9 has been created for this lab. Open the project by clicking on

Project Import Existing CCS/CCE Eclipse Project. The “Import”
window will open then click Browse… next to the “Select root directory” box. Navigate
to: C:\C28x\Labs\Lab9\Project and click OK. Then click Finish to import the
project. All build options have been configured the same as the previous lab. The files
used in this lab are:

C2000 Delfino Workshop - Direct Memory Access Controller 9 - 15

Lab 9: Servicing the ADC with DMA

Adc_9_10_12.c Filter.c
CodeStartBranch.asm Gpio.c
DefaultIsr_9_10_12a.c Lab.h
DelayUs.asm Lab_9.cmd
Dma.c Main_9.c
DSP2833x_DefaultIsr.h PieCtrl_5_6_7_8_9_10.c
DSP2833x_GlobalVariableDefs.c PieVect_5_6_7_8_9_10.c
DSP2833x_Headers_nonBIOS.cmd SysCtrl.c
ECap_7_8_9_10_12.c Watchdog.c
EPwm_7_8_9_10_12.c

Inspect Lab_9.cmd
2. Open and inspect Lab_9.cmd. Notice that a section called “dmaMemBufs” is being

linked to L4SARAM. This section links the destination buffer for the DMA transfer to a
DMA accessible memory space.

Setup DMA Initialization
The DMA controller needs to be configured to buffer ADC channel A0 ping-pong style with 48
samples per buffer. All 16 input channel selection sequences in the autosequencer need to be set
to channel A0. One conversion will be performed per trigger with the ADC operating in non-
continuous run mode. The autosequencer pointer will automatically wrap after 16 conversions.

3. Open Adc_9_10_12.c and notice that the ADCMAXCONV register has been set to
perform one conversion per trigger. Also, the ADC input channel select sequencing
control registers (ADCCHSELSEQx) have all been set to convert channel A0.

4. Edit Dma.c to implement the DMA operation as described in the objective for this lab
exercise. Configure the DMA Channel 1 Mode Register (MODE) so that the ADC
SEQ1INT is the peripheral interrupt source. Enable the channel interrupt and interrupt
trigger with the interrupt generation at the start of transfer. Configure for 16-bit data
transfers with one burst per trigger and auto re-initialization at the end of the transfer.
Disable the ADC sync. In the DMA Channel 1 Control Register (CONTROL) clear the
error, sync and peripheral interrupt bits and enable the channel to run.

5. Open Main_9.c and add a line of code in main() to call the InitDma() function.
There are no passed parameters or return values. You just type

 InitDma();

 at the desired spot in main().

Setup PIE Interrupt for DMA
Recall that ePWM2 is triggering the ADC at a 48 kHz rate. In the previous lab exercise, the ADC
generated an interrupt to the CPU, and the CPU implemented the FIR filter in the ADC ISR. For
this lab exercise, the ADC is instead triggering the DMA, and the DMA will generate an interrupt
to the CPU. The CPU will implement the FIR filter in the DMA ISR.

9 - 16 C2000 Delfino Workshop - Direct Memory Access Controller

 Lab 9: Servicing the ADC with DMA

6. Edit Adc_9_10_12.c to comment out the code used to enable the ADC interrupt. This
is no longer being used. The DMA interrupt will be used instead.

7. Using the “PIE Interrupt Assignment Table” find the location for the DMA Channel 1
interrupt “DINTCH1” and fill in the following information:

PIE group #: # within group:

This information will be used in the next step.

8. Modify the end of Dma.c to do the following:
- Enable the “DINTCH1” interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

9. Open and inspect DefaultIsr_9_10_12a.c. Notice that this file contains the DMA
interrupt service routine. Save and close all modified files.

Build and Load
10. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window.

11. Click the “Debug” button (green bug). The “Debug Perspective” view should open, the
program will load automatically, and you should now be at the start of main().

Run the Code – Test the DMA Operation

Note: For the next step, check to be sure that the jumper wire connecting PWM1A (pin #
GPIO-00) to ADCINA0 (pin # ADC-A0) is in place on the Docking Station.

12. Run the code in real-time mode using the Script function: Scripts Realtime
Emulation Control Run_Realtime_with_Reset, and watch the memory
window update. Verify that the ADC result buffer contains updated values.

13. Setup a dual-time graph of the filtered and unfiltered ADC results buffer. Click:
Tools Graph Dual Time and set the following values:

C2000 Delfino Workshop - Direct Memory Access Controller 9 - 17

Lab 9: Servicing the ADC with DMA

Acquisition Buffer Size 48

DSP Data Type 32-bit floating-point

Sampling Rate (Hz) 48000

Start Address – A AdcBufFiltered

Start Address – B AdcBuf

Display Data Size 48

Time Display Unit μs

14. The graphical display should show the filtered PWM waveform in the Dual Time A
display and the unfiltered waveform in the Dual Time B display. You should see that the
results match the previous lab exercise.

15. Fully halt the CPU (real-time mode) by using the Script function: Scripts
Realtime Emulation Control Full_Halt.

Terminate Debug Session and Close Project
16. Terminate the active debug session using the Terminate All button. This will close

the debugger and return CCS to the “C/C++ Perspective” view.

17. Next, close the project by right-clicking on Lab9 in the C/C++ Projects window
and select Close Project.

End of Exercise

9 - 18 C2000 Delfino Workshop - Direct Memory Access Controller

System Design

Introduction
This module discusses various aspects of system design. Details of the emulation and analysis
block along with JTAG will be explored. Flash memory programming and the Code Security
Module will be described.

Learning Objectives
Learning Objectives

Emulation and Analysis Block

External Interface (XINTF)

Flash Configuration and
Memory Performance

Flash Programming

Code Security Module (CSM)

C2000 Delfino Workshop - System Design 10 - 1

Module Topics

Module Topics
System Design ...10-1

Module Topics..10-2
Emulation and Analysis Block ...10-3
External Interface (XINTF)..10-6
Flash Configuration and Memory Performance..10-10
Flash Programming ...10-13
Code Security Module (CSM) ..10-15
Lab 10: Programming the Flash..10-18

10 - 2 C2000 Delfino Workshop - System Design

 Emulation and Analysis Block

Emulation and Analysis Block
JTAG Emulation System

(based on IEEE 1149.1 Boundary Scan Standard)

Some Available Emulators

XDS510 CLASS -
BlackHawk: USB2000
Signum System: JTAGjet-C2000
Spectrum Digital: XDS510LC

XDS100 CLASS -
BlackHawk: USB100
Olimex: TMS320-JTAG-USB
Spectrum Digital: XDS100

These emulators are C2000 specific,
and are much lower cost than emulators
that support all TI MCU/DSP platforms
(although those can certainly be used)

These emulators are much slower than
the ones listed above, but are also
available at a lower cost than XDS510
class and are NOT C2000 specific

H
E
A
D
E
R

System Under Test

SCAN IN

SCAN OUT
Emulator

Pod

TMS320C2000

Emulator Connections to the Device

TRST

TMS

TDI

TDO

TCK

EMU0

EMU1

TRST

TMS

TDI

TDO

TCK

TCK_RET

13

14

2

1

3

7

11

9
GND

PD

Vcc (3.3 V)

GND

GND

GND

GND

GND

5

4

6

8

10

12

Vcc (3.3 V)

TMS320F2833x Emulator Header

= If distance between device and header is greater than 6 inches

GND

C2000 Delfino Workshop - System Design 10 - 3

Emulation and Analysis Block

On-Chip Emulation Analysis Block:
Capabilities

Two hardware analysis units can be configured to provide
any one of the following advanced debug features:

Halt program execution after a
specific value is written to a variable

1 Address Watchpoint with Data

Halt on a specified instruction only
after some other specific routine has
executed

1 Pair Chained Breakpoints

Halt on a specified instruction
(for debugging in Flash)

2 Hardware Breakpoints

A memory location is getting
corrupted; halt the processor when
any value is written to this location

2 Address Watchpoints

Debug ActivityAnalysis Configuration

⇒

⇒

⇒

⇒

On-Chip Emulation Analysis Block:
Hardware Breakpoints and Watchpoints

View Breakpoints

Hardware Breakpoint
Properties

Hardware Watchpoint
Properties

10 - 4 C2000 Delfino Workshop - System Design

 Emulation and Analysis Block

On-Chip Emulation Analysis Block:
Online Stack Overflow Detection

Emulation analysis registers are accessible to code as well!
Configure a watchpoint to monitor for writes near the end of
the stack
Watchpoint triggers maskable RTOSINT interrupt
Works with DSP/BIOS and non-DSP/BIOS

See TI application report SPRA820 for implementation details

Data Memory

Monitor for data
writes in region near
the end of the stack

Region of
memory

occupied
by the
stack

Stack grows
towards higher
memory
addresses

C2000 Delfino Workshop - System Design 10 - 5

External Interface (XINTF)

External Interface (XINTF)
TMS320F28335 XINTF Memory Map

XINTF Zone 6 (1Mw)

XINTF Zone 7 (1Mw)

0x000000
0x000400
0x000800

M1 SARAM (1Kw)
M0 SARAM (1Kw)
Data Program

PIE Vectors
(256 w)

PF 0 (6Kw)

XINTF Zone 0 (4Kw)

reserved

PF 1 (4Kw)
PF 2 (4Kw)

PF 3 (4Kw)

L0 SARAM (4Kw)
L1 SARAM (4Kw)
L2 SARAM (4Kw)
L3 SARAM (4Kw)
L4 SARAM (4Kw)
L5 SARAM (4Kw)
L6 SARAM (4Kw)
L7 SARAM (4Kw)

reserved

0x000D00

0x002000

0x006000
0x007000
0x008000
0x009000
0x00A000

0x00C000

0x000E00

0x005000

0x00B000

0x00D000
0x00E000
0x00F000

0x004000

0x010000

0x010000
0x100000

0x200000

reserved

Data Program

FLASH (256Kw)

0x300000

0x33FFF8
0x340000

PASSWORDS (8w)

reserved

User OTP (1Kw)
0x380800

ADC calibration data0x380080
0x380090

reserved
0x380400

reserved
0x3F8000

Boot ROM (8Kw)

L0 SARAM (4Kw)
L1 SARAM (4Kw)
L2 SARAM (4Kw)
L3 SARAM (4Kw)

reserved

0x3F9000
0x3FA000
0x3FB000
0x3FC000
0x3FE000

0x3FFFFF
0x3FFFC0 BROM Vectors (64w)

DMA Accessible:
L4, L5, L6, L7,

XINTF Zone 0, 6, 7

Dual Mapped:
L0, L1, L2, L3

CSM Protected:
L0, L1, L2, L3, OTP
FLASH, ADC CAL,
Flash regs in PF0

Write Enable Strobe

Data Bus

Address Bus

Hardware wait-state support

Shared memory support

Zone selects

Read Enable Strobe

Read Not Write Strobe

TMS320F28335 XINTF Signals

XD(15:0)

XA(19:1)

XZCS0

XZCS7

XZCS6

XRD

XWE0

XR/W

XREADY

XHOLD

XA0/XWE1

XHOLDA

XCLKOUT

XD(31:16)

TM
S3

20
F2

83
35

10 - 6 C2000 Delfino Workshop - System Design

 External Interface (XINTF)

Basic 16-bit Memory Interface

D(15:0)

CS

A(19:1)

A(0)

WE

OE

XD(15:0)

XA(19:1)

XZCS0

XZCS7

XZCS6

XRD

XWE0

XR/W

XREADY

XHOLD

XA0/XWE1

XHOLDA

XCLKOUT

XD(31:16)

16
-b

it
SR

A
M

Select XA0
TM

S3
20

F2
83

35

D(15:0)

CS

A(18:0)

WE

OE

Low word

D(15:0)

CS

A(18:0)

WE

OE

16
-b

it
SR

A
M

16
-b

it
SR

A
M

Hi word

Basic 32-bit Memory Interface

XD(15:0)

XA(19:1)

XZCS0

XZCS7

XZCS6

XRD

XWE0

XR/W

XREADY

XHOLD

XA0/XWE1

XHOLDA

XCLKOUT

XD(31:16)

Select XWE1

TM
S3

20
F2

83
35

C2000 Delfino Workshop - System Design 10 - 7

External Interface (XINTF)

XINTF Timings
Three external zones: 0, 6, 7
Each zone has separate read and write timings
XREADY signal can be used to extend ACTIVE phase

Read Timing

XZCS

XRD

XA[19:0]

XD[…]

valid address

XRDLEAD XRDACTIVE XRDTRAIL

DSP latches data

SRAM
ta(A)

valid data

XINTF Clocking

Specify read timing and write timing separately, for
each zone:

1
0

/2

XTIMING0
XTIMING6
XTIMING7

XBANK

Lead/Active/Trail

1
0

/2
XCLKOUT

XTIMCLK
SYSCLKOUTC28x

CPU • • •

Lead: 1-3 XTIMCLK Cycles
Active: 0-7 XTIMCLK Cycles
Trail: 0-3 XTIMCLK Cycles

Each zone has a X2TIMING bit that can double the
timing values (both read and write affected)

XINTCNF2.XTIMCLK
XINTCNF2.CLKMODE

XINTCNF2.CLKOFF

10 - 8 C2000 Delfino Workshop - System Design

 External Interface (XINTF)

XINTF Registers

XTIMINGx specifies read and write timings (lead, active, trail),
interface size (16 or 32 bit), X2TIMING, XREADY usage
XINTCNF2 selects SYSCLKOUT/1 or SYSCLKOUT/2 as
fundamental clock speed XTIMCLK (for lead, active, trail),
XHOLD control, write buffer control
XBANK specifies the number of XTIMCLK cycles to add between
two specified zone (bank switching)
XRESET used to do a hard reset in case where CPU detects a
stuck XREADY during a DMA transfer

Name Address Size (x16) Description
XTIMING0 0x00 0B20 2 XINTF Zone 0 Timing Register
XTIMING6 0x00 0B2C 2 XINTF Zone 6 Timing Register
XTIMING7 0x00 0B2E 2 XINTF Zone 7 Timing Register
XINTCNF2 0x00 0B34 2 XINTF Configuration Register
XBANK 0x00 0B38 1 XINTF Bank Control Register
XRESET 0x00 0B3D 1 XINTF Reset Register

XINTF Configuration Example

XintfRegs.XTIMING0.bit.X2TIMING = 0; // Timing scale factor = 1
XintfRegs.XTIMING0.bit.XSIZE = 3; // 16-bit interface
XintfREgs.XTIMING0.bit.USEREADY = 0; // Not using HW wait-states
XintfRegs.XTIMING0.bit.XRDLEAD = 1;
XintfRegs.XTIMING0.bit.XRDACTIVE = 2;
XintfRegs.XTIMING0.bit.XRDTRAIL = 0;
XintfRegs.XTIMING0.bit.XWRLEAD = 1;
XintfRegs.XTIMING0.bit.XWRACTIVE = 1;
XintfRegs.XTIMING0.bit.XWRTRAIL = 1;

Zone 0 write and read timings example:

XintfRegs.XBANK.bit.BANK = 7; // Select Zone 7
XintfRegs.XBANK.bit.BCYC = 3; // Add 3 XTIMCLK cycles

Bank switching example: Suppose the external device in zone 7 is slow
getting off the bus; Add 3 additional cycles when switching from zone 7 to
another zone to avoid bus contention

XintfRegs.XINTCNF2.bit.XTIMCLK = 0; // XTIMCLK = SYSCLKOUT/1
XintfRegs.XINTCNF2.bit.CLKOFF = 0; // XCLKOUT enabled
XintfRegs.XINTCNF2.bit.CLKMODE = 0; // XCLKOUT = XTIMCLK/1

XINTCNF2 Example (XCLKOUT often only used during debug to check clocking)

C2000 Delfino Workshop - System Design 10 - 9

Flash Configuration and Memory Performance

Flash Configuration and Memory Performance
Basic Flash Operation

Flash is arranged in pages of 128 words
Wait states are specified for consecutive accesses within a page,
and random accesses across pages
OTP has random access only
Must specify the number of SYSCLKOUT wait-states;
Reset defaults are maximum value (15)
Flash configuration code should not be run from the Flash memory

FlashRegs.FBANKWAIT RANDWAITreserved

15 04 38 7

PAGEWAIT reserved

12 11

FlashRegs.FOTPWAIT OTPWAITreserved

15 04 3

*** Refer to the F2833x datasheet for detailed numbers ***
For 150 MHz, PAGEWAIT = 5, RANDWAIT = 5, OTPWAIT = 8
For 100 MHz, PAGEWAIT = 3, RANDWAIT = 3, OTPWAIT = 5

16 or 32
dispatched

16

64

Aligned
64-bit
fetch

2-level deep
fetch buffer

64

C28x Core
decoder unit

Speeding Up Code Execution in Flash
Flash Pipelining (for code fetch only)

Flash Pipeline Enable
0 = disable (default)
1 = enable

ENPIPEreserved
15 01
FlashRegs.FOPT.bit.ENPIPE = 1;

10 - 10 C2000 Delfino Workshop - System Design

 Flash Configuration and Memory Performance

Code Execution Performance
Assume 150 MHz SYSCLKOUT, 16-bit instructions

(80% of instructions are 16 bits wide – Rest are 32 bits)

Internal RAM: 150 MIPS
Fetch up to 32-bits every cycle 1 instruction/cycle * 150 MHz = 150 MIPS

Flash (w/ pipelining): 100 MIPS
RANDWAIT = 5
Fetch 64 bits every 6 cycles 4 instructions/6 cycles * 150 MHz = 100 MIPS
RPT will increase this; PC discontinuity will degrade this

32-bit External SRAM (10 or 12 ns): 75 MIPS
XRDLEAD=1, XRDACTIVE=2, XRDTRAIL=0
Fetch 32 bits every 4 cycles 2 instructions/4 cycles * 150 MHz = 75 MIPS
RPT will increase this

16-bit External SRAM (10 or 12 ns): 37.5 MIPS
XRDLEAD=1, XRDACTIVE=2, XRDTRAIL=0
Fetch 16 bits every 4 cycles 1 instruction/4 cycles * 150 MHz = 37.5 MIPS
RPT will increase this

Data Access Performance
(150 MHz SYSCLKOUT)

Internal RAM has best data performance – put time critical data here
External RAM can generally outperform the flash for data access,
but increases cost and power consumption
Flash performance usually sufficient for most constants and tables
Note that the flash instruction fetch pipeline will also stall during a
flash data access

Memory 16-bit access 32-bit access Notes
(words/cycle) (words/cycle)

Internal RAM 1 1

Flash 0.167 0.167

32-bit 0.5 0.25

16-bit 0.25 0.125

RANDWAIT = 5
Flash is read only!

XRDLEAD = 1,
XRDACTIVE = 2,
XRDTRAIL = 0

ext. RAM
(10 or 12 ns)

C2000 Delfino Workshop - System Design 10 - 11

Flash Configuration and Memory Performance

Other Flash Configuration Registers
FlashRegs.name

Address Name Description
0x00 0A80 FOPT Flash option register
0x00 0A82 FPWR Flash power modes registers
0x00 0A83 FSTATUS Flash status register
0x00 0A84 FSTDBYWAIT Flash sleep to standby wait register
0x00 0A85 FACTIVEWAIT Flash standby to active wait register
0x00 0A86 FBANKWAIT Flash read access wait state register
0x00 0A87 FOTPWAIT OTP read access wait state register

FPWR: Save power by putting Flash/OTP to ‘Sleep’ or ‘Standby’
mode; Flash will automatically enter active mode if a Flash/OTP
access is made
FSTATUS: Various status bits (e.g. PWR mode)
FSTDBYWAIT, FACTIVEWAIT: Specify # of delay cycles during
wake-up from sleep to standby, and from standby to active,
respectively. The delay is needed to let the flash stabilize.
Leave these registers set to their default maximum value.

See the “TMS320x2833x System Control and Interrupts Reference Guide,”
SPRUFB0, for more information

10 - 12 C2000 Delfino Workshop - System Design

 Flash Programming

Flash Programming
Flash Programming Basics

The DSP CPU itself performs the flash programming
The CPU executes Flash utility code from RAM that reads the
Flash data and writes it into the Flash
We need to get the Flash utility code and the Flash data into RAM

FLASH CPU

RAM

TMS320F2833x

JTAGEmulator

SPI

SCIRS232

Flash
Utility
Code

Flash
Data eCAN

XINTF

I2C

RO
M

Bo
ot

lo
ad

er

GPIO

Flash Programming Basics
Sequence of steps for Flash programming:

Minimum Erase size is a sector (32Kw or 16Kw)
Minimum Program size is a bit!
Important not to lose power during erase step:
If CSM passwords happen to be all zeros, the
CSM will be permanently locked!
Chance of this happening is quite small! (Erase
step is performed sector by sector)

1. Erase - Set all bits to zero, then to one
2. Program - Program selected bits with zero
3. Verify - Verify flash contents

Algorithm Function

C2000 Delfino Workshop - System Design 10 - 13

Flash Programming

Flash Programming Utilities
JTAG Emulator Based

Code Composer Studio on-chip Flash programmer
BlackHawk Flash utilities (requires Blackhawk emulator)
Elprotronic FlashPro2000
Spectrum Digital SDFlash JTAG (requires SD emulator)
Signum System Flash utilities (requires Signum emulator)

SCI Serial Port Bootloader Based
Code-Skin (http://www.code-skin.com)
Elprotronic FlashPro2000

Production Test/Programming Equipment Based
BP Micro programmer
Data I/O programmer

Build your own custom utility
Can use any of the ROM bootloader methods
Can embed flash programming into your application
Flash API algorithms provided by TI

* TI web has links to all utilities (http://www.ti.com/c2000)

CCS On-Chip Flash Programmer
On-Chip Flash programmer is integrated into the CCS debugger

10 - 14 C2000 Delfino Workshop - System Design

 Code Security Module (CSM)

Code Security Module (CSM)
Code Security Module (CSM)

Data reads and writes from restricted memory are only
allowed for code running from restricted memory
All other data read/write accesses are blocked:
JTAG emulator/debugger, ROM bootloader, code running in
external memory or unrestricted internal memory

Access to the following on-chip memory is restricted:

0x008000
0x009000
0x00A000

0x300000

0x340000

0x3F8000

0x3FA000

0x380400

0x3F9000

FLASH (256Kw)
128-Bit Password

OTP (1Kw)

L0 SARAM (4Kw)
L1 SARAM (4Kw)
L2 SARAM (4Kw)
L3 SARAM (4Kw)

L0 SARAM (4Kw)
L1 SARAM (4Kw)
L2 SARAM (4Kw)
L3 SARAM (4Kw)

0x00B000

0x3FB000

Dual
Mapped

Flash Registers0x000A80

CSM Password

128-bit user defined password is stored in Flash

128-bit KEY registers are used to lock and unlock
the device

Mapped in memory space 0x00 0AE0 – 0x00 0AE7
Registers “EALLOW” protected

0x33FFF8 - 0x33FFFF

CSM Password
Locations (PWL)

FLASH (256Kw)

0x300000

128-Bit Password0x33FFF8

C2000 Delfino Workshop - System Design 10 - 15

Code Security Module (CSM)

CSM Registers
Address Name Description
0x00 0AE0 KEY0 Low word of 128-bit Key register
0x00 0AE1 KEY1 2nd word of 128-bit Key register
0x00 0AE2 KEY2 3rd word of 128-bit Key register
0x00 0AE3 KEY3 4th word of 128-bit Key register
0x00 0AE4 KEY4 5th word of 128-bit Key register
0x00 0AE5 KEY5 6th word of 128-bit Key register
0x00 0AE6 KEY6 7th word of 128-bit Key register
0x00 0AE7 KEY7 High word of 128-bit Key register
0x00 0AEF CSMSCR CSM status and control register

Key Registers – accessible by user; EALLOW protected

Address Name Description
0x33 FFF8 PWL0 Low word of 128-bit password
0x33 FFF9 PWL1 2nd word of 128-bit password
0x33 FFFA PWL2 3rd word of 128-bit password
0x33 FFFB PWL3 4th word of 128-bit password
0x33 FFFC PWL4 5th word of 128-bit password
0x33 FFFD PWL5 6th word of 128-bit password
0x33 FFFE PWL6 7th word of 128-bit password
0x33 FFFF PWL7 High word of 128-bit password

PWL in memory – reserved for passwords only

Locking and Unlocking the CSM

The CSM is always locked after reset
To unlock the CSM:

Perform a dummy read of each PWL
(passwords in the flash)
Write the correct password to each KEY
register

Passwords are all 0xFFFF on new devices
When passwords are all 0xFFFF, only a read
of each PWL is required to unlock the device
The bootloader does these dummy reads and
hence unlocks devices that do not have
passwords programmed

10 - 16 C2000 Delfino Workshop - System Design

 Code Security Module (CSM)

CSM Caveats

Never program all the PWL’s as 0x0000
Doing so will permanently lock the CSM

Flash addresses 0x33FF80 to 0x33FFF5,
inclusive, must be programmed to 0x0000 to
securely lock the CSM
Remember that code running in unsecured
RAM cannot access data in secured memory

Don’t link the stack to secured RAM if you have
any code that runs from unsecured RAM

Do not embed the passwords in your code!
Generally, the CSM is unlocked only for debug
Code Composer Studio can do the unlocking

CSM Password Match Flow

Flash device
secure after

reset or runtime

Do dummy reads of PWL
0x33 FFF8 – 0x33 FFFF

Start Device permanently locked

Device unlocked
User can access on-
chip secure memory

Write password to KEY registers
0x00 0AE0 – 0x00 0AE7

(EALLOW) protected

Correct
password?

Is PWL =
all Fs?

Is PWL =
all 0s?

Yes

Yes

Yes

No

No

No

C2000 Delfino Workshop - System Design 10 - 17

Lab 10: Programming the Flash

Lab 10: Programming the Flash
 Objective

The objective of this lab is to program and execute code from the on-chip flash memory. The
TMS320F28335 device has been designed for standalone operation in an embedded system.
Using the on-chip flash eliminates the need for external non-volatile memory or a host processor
from which to bootload. In this lab, the steps required to properly configure the software for
execution from internal flash memory will be covered.

Lab 10: Programming the Flash

Objective:
Program system into Flash
Memory
Learn use of CCS Flash Plug-in
DO NOT PROGRAM PASSWORDS

ADC
RESULT0

ePWM2

connector
wire

TB Counter
Compare

Action Qualifier

ePWM1
ADCINA0

ePWM2 triggering ADC on period
match using SOCA trigger every
20.833 µs (48 kHz)

data
memory

Po
in

te
r

re
w

in
d

Display
using CCS

ping

CPU runs
data through
filter during
DMA ISR

FIR
Filter

pong

data
memory

DMA

 Procedure

Open the Project
1. A project named Lab10 has been created for this lab. Open the project by clicking on

Project Import Existing CCS/CCE Eclipse Project. The “Import”
window will open then click Browse… next to the “Select root directory” box. Navigate
to: C:\C28x\Labs\Lab10\Project and click OK. Then click Finish to import
the project. All build options have been configured the same as the previous lab. The
files used in this lab are:

10 - 18 C2000 Delfino Workshop - System Design

 Lab 10: Programming the Flash

Adc_9_10_12.c Flash.c
CodeStartBranch.asm Gpio.c
DefaultIsr_9_10_12a.c Lab.h
DelayUs.asm Lab_10.cmd
Dma.c Main_10.c
DSP2833x_DefaultIsr.h Passwords.asm
DSP2833x_GlobalVariableDefs.c PieCtrl_5_6_7_8_9_10.c
DSP2833x_Headers_nonBIOS.cmd PieVect_5_6_7_8_9_10.c
ECap_7_8_9_10_12.c SysCtrl.c
EPwm_7_8_9_10_12.c Watchdog.c
Filter.c

Note: The Flash.c and Passwords.asm files will be added during the lab exercise.

Link Initialized Sections to Flash
Initialized sections, such as code and constants, must contain valid values at device power-up.
Stand-alone operation of an F28335 embedded system means that no emulator is available to
initialize the device RAM. Therefore, all initialized sections must be linked to the on-chip flash
memory.

Each initialized section actually has two addresses associated with it. First, it has a LOAD
address which is the address to which it gets loaded at load time (or at flash programming time).
Second, it has a RUN address which is the address from which the section is accessed at runtime.
The linker assigns both addresses to the section. Most initialized sections can have the same
LOAD and RUN address in the flash. However, some initialized sections need to be loaded to
flash, but then run from RAM. This is required, for example, if the contents of the section needs
to be modified at runtime by the code.

2. Open and inspect the linker command file Lab_10.cmd. Notice that a memory block
named FLASH_ABCDEFGH has been been created at origin = 0x300000, length =
0x03FF80 on Page 0. This flash memory block length has been selected to avoid
conflicts with other required flash memory spaces. See the reference slide at the end of
this lab exercise for further details showing the address origins and lengths of the various
memory blocks used.

3. Edit Lab_10.cmd to link the following compiler sections to on-chip flash memory
block FLASH_ABCDEFGH:

Compiler Sections:

.text .cinit .const .econst .pinit .switch

4. In Lab_10.cmd notice that the section named “IQmath” is an initialized section that
needs to load to and run from flash. Previously the “IQmath” section was linked to
L0123SARAM. Edit Lab_10.cmd so that this section is now linked to
FLASH_ABCDEFGH. Save your work and close the file.

C2000 Delfino Workshop - System Design 10 - 19

Lab 10: Programming the Flash

Copying Interrupt Vectors from Flash to RAM
The interrupt vectors must be located in on-chip flash memory and at power-up needs to be
copied to the PIE RAM as part of the device initialization procedure. The code that performs this
copy is located in InitPieCtrl(). The C-compiler runtime support library contains a memory copy
function called memcpy() which will be used to perform the copy.

5. Open and inspect InitPieCtrl() in PieCtrl_5_6_7_8_9_10.c. Notice the memcpy()
function used to initialize (copy) the PIE vectors. At the end of the file a structure is used
to enable the PIE.

Initializing the Flash Control Registers
The initialization code for the flash control registers cannot execute from the flash memory (since
it is changing the flash configuration!). Therefore, the initialization function for the flash control
registers must be copied from flash (load address) to RAM (run address) at runtime. The memory
copy function memcpy() will again be used to perform the copy. The initialization code for the
flash control registers InitFlash() is located in the Flash.c file.

6. Add Flash.c to the project.

7. Open and inspect Flash.c. The C compiler CODE_SECTION pragma is used to place
the InitFlash() function into a linkable section named “secureRamFuncs”.

8. The “secureRamFuncs” section will be linked using the user linker command file
Lab_10.cmd. Open and inspect Lab_10.cmd. The “secureRamFuncs” will load
to flash (load address) but will run from L0123SARAM (run address). Also notice that
the linker has been asked to generate symbols for the load start, load end, and run start
addresses.

While not a requirement from a MCU hardware or development tools perspective (since
the C28x MCU has a unified memory architecture), historical convention is to link code
to program memory space and data to data memory space. Therefore, notice that for the
L0123SARAM memory we are linking “secureRamFuncs” to, we are specifiying
“PAGE = 0” (which is program memory).

9. Open and inspect Main_10.c. Notice that the memory copy function memcpy() is
being used to copy the section “secureRamFuncs”, which contains the initialization
function for the flash control registers.

10. Add a line of code in main() to call the InitFlash() function. There are no passed
parameters or return values. You just type

 InitFlash();

 at the desired spot in main().

10 - 20 C2000 Delfino Workshop - System Design

 Lab 10: Programming the Flash

Code Security Module and Passwords
The CSM module provides protection against unwanted copying (i.e. pirating!) of your code from
flash, OTP memory, and the L0, L1, L2 and L3 RAM blocks. The CSM uses a 128-bit password
made up of 8 individual 16-bit words. They are located in flash at addresses 0x33FFF8 to
0x33FFFF. During this lab, dummy passwords of 0xFFFF will be used – therefore only dummy
reads of the password locations are needed to unsecure the CSM. DO NOT PROGRAM ANY
REAL PASSWORDS INTO THE DEVICE. After development, real passwords are typically
placed in the password locations to protect your code. We will not be using real passwords in the
workshop.

The CSM module also requires programming values of 0x0000 into flash addresses 0x33FF80
through 0x33FFF5 in order to properly secure the CSM. Both tasks will be accomplished using a
simple assembly language file Passwords.asm.

11. Add Passwords.asm to the project.

12. Open and inspect Passwords.asm. This file specifies the desired password values
(DO NOT CHANGE THE VALUES FROM 0xFFFF) and places them in an initialized
section named “passwords”. It also creates an initialized section named “csm_rsvd”
which contains all 0x0000 values for locations 0x33FF80 to 0x33FFF5 (length of 0x76).

13. Open Lab_10.cmd and notice that the initialized sections for “passwords” and
“csm_rsvd” are linked to memories named PASSWORDS and CSM_RSVD,
respectively.

Executing from Flash after Reset
The F28335 device contains a ROM bootloader that will transfer code execution to the flash after
reset. When the boot mode selection pins are set for “Jump to Flash” mode, the bootloader will
branch to the instruction located at address 0x33FFF6 in the flash. An instruction that branches
to the beginning of your program needs to be placed at this address. Note that the CSM
passwords begin at address 0x33FFF8. There are exactly two words available to hold this branch
instruction, and not coincidentally, a long branch instruction “LB” in assembly code occupies
exactly two words. Generally, the branch instruction will branch to the start of the C-
environment initialization routine located in the C-compiler runtime support library. The entry
symbol for this routine is _c_int00. Recall that C code cannot be executed until this setup routine
is run. Therefore, assembly code must be used for the branch. We are using the assembly code
file named CodeStartBranch.asm.

14. Open and inspect CodeStartBranch.asm. This file creates an initialized section
named “codestart” that contains a long branch to the C-environment setup routine.
This section needs to be linked to a block of memory named BEGIN_FLASH.

15. In the earlier lab exercises, the section “codestart” was directed to the memory
named BEGIN_M0. Edit Lab_10.cmd so that the section “codestart” will be
directed to BEGIN_FLASH. Save your work and close the opened files.

16. The controlCARD or Docking Station needs to be configured for “Jump to Flash” boot
mode. Move the “2833x Boot Mode” controlCARD switch SW2 positions 1, 2, 3 and 4

C2000 Delfino Workshop - System Design 10 - 21

Lab 10: Programming the Flash

to the “1 – on” position (all switches up) or the Docking Station jumpers 84, 85, 86 and
87 to the “1” position (all jumpers to the left side) to accomplish this. Details of the
jumper positions can be found in Appendix A. These jumpers control the pullup/down
resistor on the GPIO84, GPIO85, GPIO86 and GPIO87 pins, which are the pins sampled
by the bootloader to determine the boot mode. (For additional information on
configuring the “Jump to Flash” boot mode see the TMS320x2833x Boot ROM
Reference Guide).

Build – Lab.out
17. Click the “Build” button to generate the Lab.out file to be used with the CCS Flash

Programmer. Check for errors in the Problems window.

CCS On-Chip Flash Programmer
In CCS (version 4.x) the on-chip flash programmer is integrated into the debugger. When the
program is loaded CCS will automatically determine which sections reside in flash memory based
on the linker command file. CCS will then program these sections into the on-chip flash memory.
Additionally, in order to effectively debug with CCS, the symbolic debug information (e.g.,
symbol and label addresses, source file links, etc.) will automatically load so that CCS knows
where everything is in your code.

Clicking the “Debug” button in the C/C++ Perspective will automatically launch the
debugger, connect to the target, and program the flash memory in a single step.

18. Program the flash memory by clicking the “Debug” button (green bug). As soon as the
“Progress Information” box opens, if needed select “Details” in order to watch the
programming operation and status. After successfully programming the flash memory
the “Progress Information” box will close.

19. Flash programming options are configured with the “On-Chip Flash” control panel.
Open the control panel by clicking:

Tools On-Chip Flash

Scroll the control panel and notice the various options that can be selected. You will see
that specific actions such as “Erase Flash” can be performed.

The CCS on-chip flash programmer was automatically configured to use the Delfino™
ControlCARD on-board 30 MHz oscillator as the device clock during programming.
Notice the “Clock Configuration” settings has the OSCCLK set to 30 MHz, the DIVSEL
set to /2, and the PLLCR value set to 10. Recall that the PLL is divided by two, which
gives a SYSCLKOUT of 150 MHz.

The flash programmer should be set for “Erase, Program, Verify” and all boxes in the
“Erase Sector Selection” should be checked. We want to erase all the flash sectors.

We will not be using the on-chip flash programmer to program the “Code Security
Password”. Do not modify the Code Security Password fields. They should remain as
all 0xFFFF.

10 - 22 C2000 Delfino Workshop - System Design

 Lab 10: Programming the Flash

20. Close the “On-Chip Flash” control panel by clicking the X on the tab.

Running the Code – Using CCS
21. Reset the CPU. The program counter should now be at address 0x3FF9CE in the

“Disassembly” window, which is the start of the bootloader in the Boot ROM.

22. Single-Step by using the <F5> key (or you can use the Step Into button on the
horizontal toolbar) through the bootloader code until you arrive at the beginning of the
codestart section in the CodeStartBranch.asm file. (Be patient, it will take about
125 single-steps). Notice that we have placed some code in CodeStartBranch.asm
to give an option to first disable the watchdog, if selected.

23. Step a few more times until you reach the start of the C-compiler initialization routine at
the symbol _c_int00.

24. Now do Target Go Main. The code should stop at the beginning of your
main() routine. If you got to that point succesfully, it confirms that the flash has been
programmed properly, that the bootloader is properly configured for jump to flash mode,
and that the codestart section has been linked to the proper address.

25. You can now RUN the CPU, and you should observe the LED on the ControlCARD
blinking. Try resetting the CPU and hitting RUN (without doing all the stepping and the
Go Main procedure). The LED should be blinking again.

26. Halt the CPU.

Terminate Debug Session and Close Project
27. Terminate the active debug session using the Terminate All button. This will close

the debugger and return CCS to the “C/C++ Perspective” view.

28. Next, close the project by right-clicking on Lab10 in the C/C++ Projects window
and select Close Project.

Running the Code – Stand-alone Operation (No Emulator)
29. Close Code Composer Studio.

30. Disconnect the USB cable (emulator) from the Docking Station (i.e. remove power from
the ControlCARD).

31. Re-connect the USB cable to the Docking Station to power the ControlCARD. The LED
should be blinking, showing that the code is now running from flash memory.

Return Boot Mode Jumpers Back to Default Positions
32. Remove the power to the Docking Station by disconnecting the USB cable.

C2000 Delfino Workshop - System Design 10 - 23

Lab 10: Programming the Flash

33. Return the settings of the boot mode switches or jumpers back to the default positions
“Jump to M0SARAM” boot mode as shown in the table below (see Appendix A for
jumper position details):

Position 1 /
Jumper 84
(GPIO-84)

Position 2 /
Jumper 85
(GPIO-85)

Position 3 /
Jumper 86
(GPIO-86)

Position 4 /
Jumper 87
(GPIO-87)

M0 SARAM
Boot Mode

Down – 0 Down – 0 Up – 1 Down – 0 controlCARD

Right – 0 Right – 0 Left – 1 Right – 0 Docking Station

End of Exercise

10 - 24 C2000 Delfino Workshop - System Design

 Lab 10: Programming the Flash

Lab 10 Reference: Programming the Flash

Flash Memory Section Blocks

PASSWORDS
length = 0x8

page = 0

BEGIN_FLASH
length = 0x2

page = 0

CSM_RSVD
length = 0x76

page = 0

FLASH
length = 0x3FF80

page = 0

0x30 0000

0x33 FF80

0x33 FFF6

0x33 FFF8

origin =

SECTIONS
{

codestart :> BEGIN_FLASH, PAGE = 0
passwords :> PASSWORDS, PAGE = 0
csm_rsvd :> CSM_RSVD, PAGE = 0

}

Lab_10.cmd

Startup Sequence from Flash Memory

0x33 7FF6

0x30 0000

0x3F F000

0x3F FFC0

Boot ROM (8Kw)

BROM vector (32w)
0x3F F9CE

Boot Code

RESET

0x3F F9CE
{SCAN GPIO}

FLASH (256Kw)

Passwords (8w)
_c_int00

LB

“rts2800_ml.lib”

“user” code sections

_c_int00

main ()
{

}

2

3

4

5

1

……
……
……

C2000 Delfino Workshop - System Design 10 - 25

Lab 10: Programming the Flash

10 - 26 C2000 Delfino Workshop - System Design

Communications

Introduction
The TMS320C28x contains features that allow several methods of communication and data
exchange between the C28x and other devices. Many of the most commonly used
communications techniques are presented in this module.

The intent of this module is not to give exhaustive design details of the communication
peripherals, but rather to provide an overview of the features and capabilities. Once these
features and capabilities are understood, additional information can be obtained from various
resources such as documentation, as needed. This module will cover the basic operation of the
communication peripherals, as well as some basic terms and how they work.

Learning Objectives
Learning Objectives

Serial Peripheral Interface (SPI)

Serial Communication Interface (SCI)

Multichannel Buffered Serial Port (McBSP)

Inter-Integrated Circuit (I2C)

Enhanced Controller Area Network (eCAN)

Note: Up to 1 SPI module (A), 3 SCI modules (A/B/C), 2 McBSP modules (A/B), 1 I2C
module (A), and 2 eCAN modules (A/B) are available on the F2833x devices.

C2000 Delfino Workshop - Communications 11 - 1

Module Topics

Module Topics
Communications...11-1

Module Topics..11-2
Communications Techniques ...11-3
Serial Peripheral Interface (SPI) ...11-4

SPI Registers ...11-7
SPI Summary...11-8

Serial Communications Interface (SCI) ...11-9
Multiprocessor Wake-Up Modes...11-11
SCI Registers ...11-14
SCI Summary ..11-15

Multichannel Buffered Serial Port (McBSP) ...11-16
Inter-Integrated Circuit (I2C)..11-19

I2C Operating Modes and Data Formats ...11-20
I2C Summary...11-21

Enhanced Controller Area Network (eCAN) ...11-22
CAN Bus and Node ...11-23
Principles of Operation..11-24
Message Format and Block Diagram...11-25
eCAN Summary ..11-26

11 - 2 C2000 Delfino Workshop - Communications

 Communications Techniques

Communications Techniques
Several methods of implementing a TMS320C28x communications system are possible. The
method selected for a particular design should reflect the method that meets the required data rate
at the lowest cost. Various categories of interface are available and are summarized in the
learning objective slide. Each will be described in this module.

Synchronous vs. Asynchronous

Synchronous
Short distances (on-
board)
High data rate
Explicit clock

Asynchronous
longer distances
Lower data rate (≈ 1/8 of
SPI)
Implied clock (clk/data
mixed)
Economical with
reasonable performance

C28x

U2

PCB

Port

C28x

PCB

Port
Destination

Serial ports provide a simple, hardware-efficient means of high-level communication between
devices. Like the GPIO pins, they may be used in stand-alone or multiprocessing systems.

In a multiprocessing system, they are an excellent choice when both devices have an available
serial port and the data rate requirement is relatively low. Serial interface is even more desirable
when the devices are physically distant from each other because the inherently low number of
wires provides a simpler interconnection.

Serial ports require separate lines to implement, and they do not interfere in any way with the data
and address lines of the processor. The only overhead they require is to read/write new words
from/to the ports as each word is received/transmitted. This process can be performed as a short
interrupt service routine under hardware control, requiring only a few cycles to maintain.

The C28x family of devices have both synchronous and asynchronous serial ports. Detailed
features and operation will be described next.

C2000 Delfino Workshop - Communications 11 - 3

Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI)
The SPI module is a synchronous serial I/O port that shifts a serial bit stream of variable length
and data rate between the C28x and other peripheral devices. During data transfers, one SPI
device must be configured as the transfer MASTER, and all other devices configured as
SLAVES. The master drives the transfer clock signal for all SLAVES on the bus. SPI
communications can be implemented in any of three different modes:

• MASTER sends data, SLAVES send dummy data

• MASTER sends data, one SLAVE sends data

• MASTER sends dummy data, one SLAVE sends data

In its simplest form, the SPI can be thought of as a programmable shift register. Data is shifted in
and out of the SPI through the SPIDAT register. Data to be transmitted is written directly to the
SPIDAT register, and received data is latched into the SPIBUF register for reading by the CPU.
This allows for double-buffered receive operation, in that the CPU need not read the current
received data from SPIBUF before a new receive operation can be started. However, the CPU
must read SPIBUF before the new operation is complete of a receiver overrun error will occur. In
addition, double-buffered transmit is not supported: the current transmission must be complete
before the next data character is written to SPIDAT or the current transmission will be corrupted.

The Master can initiate a data transfer at any time because it controls the SPICLK signal. The
software, however, determines how the Master detects when the Slave is ready to broadcast.

SPI Data Flow

SPI Shift Register

SPI Device #1 - Master SPI Device #2 - Slave

Simultaneous transmits and receive
SPI Master provides the clock signal

shift shift

clock

SPI Shift Register

11 - 4 C2000 Delfino Workshop - Communications

 Serial Peripheral Interface (SPI)

SPI Block Diagram

SPIRXBUF.15-0

SPIDAT.15-0

SPICLK

SPISOMI

SPISIMO

LSPCLK baud
rate

clock
polarity

clock
phase

C28x - SPI Master Mode Shown

SPITXBUF.15-0

LSBMSB

TX FIFO_0

TX FIFO_15

RX FIFO_0

RX FIFO_15

SPI Transmit / Receive Sequence
1. Slave writes data to be sent to its shift register (SPIDAT)

2. Master writes data to be sent to its shift register (SPIDAT or SPITXBUF)

3. Completing Step 2 automatically starts SPICLK signal of the Master

4. MSB of the Master’s shift register (SPIDAT) is shifted out, and LSB of the Slave’s shift
register (SPIDAT) is loaded

5. Step 4 is repeated until specified number of bits are transmitted

6. SPIDAT register is copied to SPIRXBUF register

7. SPI INT Flag bit is set to 1

8. An interrupt is asserted if SPI INT ENA bit is set to 1

9. If data is in SPITXBUF (either Slave or Master), it is loaded into SPIDAT and transmission
starts again as soon as the Master’s SPIDAT is loaded

C2000 Delfino Workshop - Communications 11 - 5

Serial Peripheral Interface (SPI)

Since data is shifted out of the SPIDAT register MSB first, transmission characters of less than 16
bits must be left-justified by the CPU software prior to be written to SPIDAT.

Received data is shifted into SPIDAT from the left, MSB first. However, the entire sixteen bits
of SPIDAT is copied into SPIBUF after the character transmission is complete such that received
characters of less than 16 bits will be right-justified in SPIBUF. The non-utilized higher
significance bits must be masked-off by the CPU software when it interprets the character. For
example, a 9 bit character transmission would require masking-off the 7 MSB’s.

SPI Data Character Justification

Programmable data
length of 1 to 16 bits
Transmitted data of less
than 16 bits must be left
justified

MSB transmitted first

Received data of less
than 16 bits are right
justified

User software must
mask-off unused MSB’s

11001001XXXXXXXX

XXXXXXXX11001001

SPIDAT - Processor #1

SPIDAT - Processor #2

11 - 6 C2000 Delfino Workshop - Communications

 Serial Peripheral Interface (SPI)

SPI Registers

SPI Baud Rate Register
SpixRegs.SPIBRR

15-7 6-0
reserved SPI BIT RATE

SPICLK signal =

LSPCLK
(SPIBRR + 1)

LSPCLK
4

, SPIBRR = 3 to 127

, SPIBRR = 0, 1, or 2

Need to set this only when in master mode!

Baud Rate Determination: The Master specifies the communication baud rate using its baud rate
register (SPIBRR.6-0):

• For SPIBRR = 3 to 127: SPI Baud Rate =
)1(+SPIBRR

LSPCLK
 bits/sec

• For SPIBRR = 0, 1, or 2: SPI Baud Rate =
4

LSPCLK
 bits/sec

From the above equations, one can compute

Maximum data rate = 25 Mbps @ 100 MHz

Character Length Determination: The Master and Slave must be configured for the same
transmission character length. This is done with bits 0, 1, 2 and 3 of the configuration control
register (SPICCR.3-0). These four bits produce a binary number, from which the character length
is computed as binary + 1 (e.g. SPICCR.3-0 = 0010 gives a character length of 3).

C2000 Delfino Workshop - Communications 11 - 7

Serial Peripheral Interface (SPI)

Select SPI Registers
Configuration Control SpixRegs.SPICCR

Reset, Clock Polarity, Loopback, Character Length

Operation Control SpixRegs.SPICTL
Overrun Interrupt Enable, Clock Phase, Interrupt Enable
Master / Slave Transmit enable

Status SpixRegs.SPIST
RX Overrun Flag, Interrupt Flag, TX Buffer Full Flag

FIFO Transmit SpixRegs.SPIFFTX

FIFO Receive SpixRegs.SPIFFRX
FIFO Enable, FIFO Reset
FIFO Over-flow flag, Over-flow Clear
Number of Words in FIFO (FIFO Status)
FIFO Interrupt Enable, Interrupt Status, Interrupt Clear
FIFO Interrupt Level (Number of Words in FIFO)

Note: refer to the reference guide for a complete listing of registers

SPI Summary

SPI Summary

Synchronous serial communications
Two wire transmit or receive (half duplex)
Three wire transmit and receive (full duplex)

Software configurable as master or slave
C28x provides clock signal in master mode

Data length programmable from 1-16 bits
125 different programmable baud rates

11 - 8 C2000 Delfino Workshop - Communications

 Serial Communications Interface (SCI)

Serial Communications Interface (SCI)
The SCI module is a serial I/O port that permits Asynchronous communication between the C28x
and other peripheral devices. The SCI transmit and receive registers are both double-buffered to
prevent data collisions and allow for efficient CPU usage. In addition, the C28x SCI is a full
duplex interface which provides for simultaneous data transmit and receive. Parity checking and
data formatting is also designed to be done by the port hardware, further reducing software
overhead.

SCI Pin Connections

Transmitter-data
buffer register

SCI Device #1

SCIRXD

SCITXD SCITXD

SCIRXD

SCI Device #2

8

Receiver-data
buffer register

8

Transmitter-data
buffer register

Receiver
shift register

Transmitter
shift register

8

Receiver-data
buffer register

Receiver
shift register

Transmitter
shift register

8

(Full Duplex Shown)

RX FIFO_0

RX FIFO_15

RX FIFO_0

RX FIFO_15

TX FIFO_0

TX FIFO_15

TX FIFO_0

TX FIFO_15

C2000 Delfino Workshop - Communications 11 - 9

Serial Communications Interface (SCI)

SCI Data Format

This bit present only in Address-bit mode

NRZ (non-return to zero) format

Communications Control Register (ScixRegs.SCICCR)

0 = 1 Stop bit
1 = 2 Stop bits

0 = Odd
1 = Even

0 = Disabled
1 = Enabled

0 = Disabled
1 = Enabled

0 = Idle-line mode
1 = Addr-bit mode

of data bits = (binary + 1)
e.g. 110b gives 7 data bits

Stop
Bits

Even/Odd
Parity

Parity
Enable

Loopback
Enable

Addr/Idle
Mode

SCI
Char2

SCI
Char1

SCI
Char0

7 6 5 4 3 2 1 0

Start LSB 2 3 4 5 6 7 MSB Addr/
Data Parity Stop 1 Stop 2

The basic unit of data is called a character and is 1 to 8 bits in length. Each character of data is
formatted with a start bit, 1 or 2 stop bits, an optional parity bit, and an optional address/data bit.
A character of data along with its formatting bits is called a frame. Frames are organized into
groups called blocks. If more than two serial ports exist on the SCI bus, a block of data will
usually begin with an address frame which specifies the destination port of the data as determined
by the user’s protocol.

The start bit is a low bit at the beginning of each frame which marks the beginning of a frame.
The SCI uses a NRZ (Non-Return-to-Zero) format which means that in an inactive state the
SCIRX and SCITX lines will be held high. Peripherals are expected to pull the SCIRX and
SCITX lines to a high level when they are not receiving or transmitting on their respective lines.

When configuring the SCICCR, the SCI port should first be held in an inactive state. This
is done using the SW RESET bit of the SCI Control Register 1 (SCICTL1.5). Writing a 0 to this
bit initializes and holds the SCI state machines and operating flags at their reset condition. The
SCICCR can then be configured. Afterwards, re-enable the SCI port by writing a 1 to the SW
RESET bit. At system reset, the SW RESET bit equals 0.

11 - 10 C2000 Delfino Workshop - Communications

 Serial Communications Interface (SCI)

SCI Data Timing

Start Bit LSB of Data

Majority
Vote

Falling Edge Detected

• Start bit valid if 4 consecutive SCICLK periods of zero bits after falling edge
• Majority vote taken on 4th, 5th, and 6th SCICLK cycles

SCIRXD

SCICLK
(Internal)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2

Note: 8 SCICLK periods per data bit

Multiprocessor Wake-Up Modes

Multiprocessor Wake-Up Modes

Allows numerous processors to be hooked
up to the bus, but transmission occurs
between only two of them
Idle-line or Address-bit modes
Sequence of Operation
1. Potential receivers set SLEEP = 1, which disables RXINT

except when an address frame is received
2. All transmissions begin with an address frame
3. Incoming address frame temporarily wakes up all SCIs on bus
4. CPUs compare incoming SCI address to their SCI address
5. Process following data frames only if address matches

C2000 Delfino Workshop - Communications 11 - 11

Serial Communications Interface (SCI)

Idle-Line Wake-Up Mode

Idle time separates blocks of frames
Receiver wakes up when SCIRXD high for 10 or
more bit periods
Two transmit address methods

Deliberate software delay of 10 or more bits
Set TXWAKE bit to automatically leave exactly
11 idle bits

Last Data ST SPST DataSCIRXD/
SCITXD

Block of Frames

SP SP Last DataST AddrSP

Idle
Period
10 bits

or greater

Idle
Period
10 bits

or greater

Address frame
follows 10 bit
or greater idle

1st data frame

SPST Addr

Idle periods
of less than

10 bits

Address-Bit Wake-Up Mode

All frames contain an extra address bit
Receiver wakes up when address bit detected
Automatic setting of Addr/Data bit in frame by
setting TXWAKE = 1 prior to writing address to
SCITXBUF

Last Data STST DataSCIRXD/
SCITXD

Block of Frames

SP SP Last DataST AddrSP

Idle Period
length of no
significance

First frame within
block is Address.

ADDR/DATA
bit set to 1

1st data frame

0 1 0 0 SPST Addr 1SP

no additional
idle bits needed
beyond stop bits

11 - 12 C2000 Delfino Workshop - Communications

 Serial Communications Interface (SCI)

The SCI interrupt logic generates interrupt flags when it receives or transmits a complete
character as determined by the SCI character length. This provides a convenient and efficient
way of timing and controlling the operation of the SCI transmitter and receiver. The interrupt
flag for the transmitter is TXRDY (SCICTL2.7), and for the receiver RXRDY (SCIRXST.6).
TXRDY is set when a character is transferred to TXSHF and SCITXBUF is ready to receive the
next character. In addition, when both the SCIBUF and TXSHF registers are empty, the TX
EMPTY flag (SCICTL2.6) is set. When a new character has been received and shifted into
SCIRXBUF, the RXRDY flag is set. In addition, the BRKDT flag is set if a break condition
occurs. A break condition is where the SCIRXD line remains continuously low for at least ten
bits, beginning after a missing stop bit. Each of the above flags can be polled by the CPU to
control SCI operations, or interrupts associated with the flags can be enabled by setting the
RX/BK INT ENA (SCICTL2.1) and/or the TX INT ENA (SCICTL2.0) bits active high.

Additional flag and interrupt capability exists for other receiver errors. The RX ERROR flag is
the logical OR of the break detect (BRKDT), framing error (FE), receiver overrun (OE), and
parity error (PE) bits. RX ERROR high indicates that at least one of these four errors has
occurred during transmission. This will also send an interrupt request to the CPU if the RX ERR
INT ENA (SCICTL1.6) bit is set.

C2000 Delfino Workshop - Communications 11 - 13

Serial Communications Interface (SCI)

SCI Registers

SCI Baud Rate Registers

BAUD15
(MSB) BAUD14

Baud-Select MSbyte Register (ScixRegs.SCIHBAUD)
7 6 5 4 3 2 1 0

BAUD13 BAUD12 BAUD11 BAUD10 BAUD9 BAUD8

BAUD6

Baud-Select LSbyte Register (ScixRegs.SCILBAUD)
7 6 5 4 3 2 1 0

BAUD5 BAUD4 BAUD3 BAUD2 BAUD1BAUD7 BAUD0
(LSB)

SCI baud rate =

LSPCLK
(BRR + 1) x 8

LSPCLK
16

, BRR = 1 to 65535

, BRR = 0

Baud Rate Determination: The values in the baud-select registers (SCIHBAUD and SCILBAUD)
concatenate to form a 16 bit number that specifies the baud rate for the SCI.

• For BRR = 1 to 65535: SCI Baud Rate =
8)1(×+BRR

LSPCLK
 bits/sec

• For BRR = 0: SCI Baud Rate =
16

LSPCLK
 bits/sec

Max data rate = 6.25 Mbps @ 100 MHz

Note that the CLKOUT for the SCI module is one-half the CPU clock rate.

11 - 14 C2000 Delfino Workshop - Communications

 Serial Communications Interface (SCI)

Select SCI Registers
Control 1 ScixRegs.SCICTL1

Reset, Transmitter / Receiver Enable
TX Wake-up, Sleep, RX Error Interrupt Enable

Control 2 ScixRegs.SPICTL2
TX Buffer Full / Empty Flag, TX Ready Interrupt Enable
RX Break Interrupt Enable

Receiver Status ScixRegs.SCIRXST
Error Flag, Ready, Flag Break-Detect Flag, Framing Error
Detect Flag, Parity Error Flag, RX Wake-up Detect Flag

FIFO Transmit ScixRegs.SCIFFTX

FIFO Receive ScixRegs.SCIFFRX
FIFO Enable, FIFO Reset
FIFO Over-flow flag, Over-flow Clear
Number of Words in FIFO (FIFO Status)
FIFO Interrupt Enable, Interrupt Status, Interrupt Clear
FIFO Interrupt Level (Number of Words in FIFO)

Note: refer to the reference guide for a complete listing of registers

SCI Summary

SCI Summary

Asynchronous communications format
65,000+ different programmable baud rates
Two wake-up multiprocessor modes

Idle-line wake-up & Address-bit wake-up
Programmable data word format

1 to 8 bit data word length
1 or 2 stop bits
even/odd/no parity

Error Detection Flags
Parity error; Framing error; Overrun error; Break detection

Transmit FIFO and receive FIFO
Individual interrupts for transmit and receive

C2000 Delfino Workshop - Communications 11 - 15

Multichannel Buffered Serial Port (McBSP)

Multichannel Buffered Serial Port (McBSP)
McBSP Block Diagram

16
DXR2 TX Buffer

XSR2

16
DXR1 TX Buffer

XSR1

16

DRR2 RX Buffer

RBR2 Register
16

DRR1 RX Buffer

RBR1 Register

16
RSR2

16
RSR1

MDXx

MDRx

MFSXx

MFSRx

MCLKXx

MCLKRx

Peripheral / DMA Bus

Peripheral / DMA Bus

16

16

16

16

CPU

Definition: Bit and Word

CLK

b7 b6 b5 b4 b3 b2 b1 b0

Word

FS

a1 a0

Bit

D

“Word” or “channel” contains
number of bits (8, 12, 16, 20, 24, 32)

“Bit” - one data bit per serial clock period

11 - 16 C2000 Delfino Workshop - Communications

 Multichannel Buffered Serial Port (McBSP)

Definition: Word and Frame

“Frame” - contains one or multiple words

w0 w1 w2 w3 w4 w5 w6 w7

Frame
Word

w6 w7D

FS

Number of words per frame: 1-128

Multi-Channel Selection
Ch0-0
Ch0-1

Ch5-0
Ch5-1

Ch27-0
Ch27-1

Multi-channel mode controlled primarily via two registers:

MCR
Multi-channel Control Reg

(enables Mc-mode)
R/XCER (A-H)

Rec/Xmt Channel Enable Regs

(enable/disable channels)

Up to 128 channels can be enabled/disabled

C
O
D
E
C

M
c
B
S
P

Frame TDM Bit Stream

Ch0Ch1Ch31 ...0

Ch0Ch1Ch31 ...1

Transmit
&

Receive
only selected

Channels

Multi-channel

Allows multiple channels (words) to be independently selected for transmit
and receive (e.g. only enable Ch0, 5, 27 for receive, then process via CPU)

The McBSP keeps time sync with all channels, but only “listens” or “talks”
if the specific channel is enabled (reduces processing/bus overhead)

C2000 Delfino Workshop - Communications 11 - 17

Multichannel Buffered Serial Port (McBSP)

McBSP Summary
Independent clocking and framing for
transmit and receive
Internal or external clock and frame sync
Data size of 8, 12, 16, 20, 24, or 32 bits
TDM mode - up to 128 channels

Used for T1/E1 interfacing
μ-law and A-law companding
SPI mode
Direct Interface to many codecs
Can be serviced by the DMA

11 - 18 C2000 Delfino Workshop - Communications

 Inter-Integrated Circuit (I2C)

Inter-Integrated Circuit (I2C)
Inter-Integrated Circuit (I2C)

Philips I2C-bus specification compliant, version 2.1
Data transfer rate from 10 kbps up to 400 kbps
Each device can be considered as a Master or Slave
Master initiates data transfer and generates clock signal
Device addressed by Master is considered a Slave
Multi-Master mode supported
Standard Mode – send exactly n data values (specified in register)
Repeat Mode – keep sending data values (use software to initiate a
stop or new start condition)

28xx
I2C

I2C
Controller

I2C
EPROM

28xx
I2C

. .

.
Pull-up

Resistors

VDD

Serial Data (SDA)
Serial Clock (SCL)

I2C Block Diagram

TX FIFO

RX FIFO

I2CDXR

I2CDRR

I2CXSR

I2CRSR

Clock
Circuits

SDA

SCL

C2000 Delfino Workshop - Communications 11 - 19

Inter-Integrated Circuit (I2C)

I2C Operating Modes and Data Formats

I2C Operating Modes

Operating Mode Description

Slave-receiver mode Module is a slave and receives data from a master
(all slaves begin in this mode)

Slave-transmitter mode Module is a slave and transmits data to a master
(can only be entered from slave-receiver mode)

Master-receiver mode Module is a master and receives data from a slave
(can only be entered from master-transmit mode)

Master-transmitter mode Module is a master and transmits to a slave
(all masters begin in this mode)

I2C Serial Data Formats

S Slave Address R/W ACK Data DataACK ACK P
1 7 1 1 n 1 n 1 1
7-Bit Addressing Format

S 11110AA R/W ACK AAAAAAAA DataACK ACK P
1 7 1 1 8 1 n 1 1
10-Bit Addressing Format

S Data ACK Data DataACK ACK P
1 n 1 n 1 n 1 1
Free Data Format

R/W = 0 – master writes data to addressed slave
R/W = 1 – master reads data from the slave
n = 1 to 8 bits
S = Start (high-to-low transition on SDA while SCL is high)
P = Stop (low-to-high transition on SDA while SCL is high)

11 - 20 C2000 Delfino Workshop - Communications

 Inter-Integrated Circuit (I2C)

I2C Arbitration
Arbitration procedure invoked if two or more master-
transmitters simultaneously start transmission

Procedure uses data presented on serial data bus (SDA) by
competing transmitters
First master-transmitter which drives SDA high is overruled
by another master-transmitter that drives SDA low
Procedure gives priority to the data stream with the lowest
binary value

1 0

1 0 0 1 0 1

1 0 0 1 0 1

SCL

SDA

Data from
device #1

Data from
device #2

Device #1 lost arbitration
and switches to slave-

receiver mode

Device #2
drives SDA

I2C Summary

I2C Summary

Compliance with Philips I2C-bus
specification (version 2.1)
7-bit and 10-bit addressing modes
Configurable 1 to 8 bit data words
Data transfer rate from 10 kbps up to
400 kbps
Transmit FIFO and receive FIFO

C2000 Delfino Workshop - Communications 11 - 21

Enhanced Controller Area Network (eCAN)

Enhanced Controller Area Network (eCAN)

Controller Area Network (CAN)
A Multi-Master Serial Bus System

CAN 2.0B Standard
High speed (up to 1 Mbps)
Add a node without disturbing the bus (number of nodes not
limited by protocol)
Less wires (lower cost, less maintenance, and more reliable)
Redundant error checking (high reliability)
No node addressing (message identifiers)
Broadcast based signaling

C

ED

A
B

CAN does not use physical addresses to address stations. Each message is sent with an identifier
that is recognized by the different nodes. The identifier has two functions – it is used for message
filtering and for message priority. The identifier determines if a transmitted message will be
received by CAN modules and determines the priority of the message when two or more nodes
want to transmit at the same time.

11 - 22 C2000 Delfino Workshop - Communications

 Enhanced Controller Area Network (eCAN)

CAN Bus and Node

CAN Bus

CAN
NODE B

CAN
NODE A

CAN
NODE C

CAN_H

CAN_L

Two wire differential bus (usually twisted pair)
Max. bus length depend on transmission rate

40 meters @ 1 Mbps

120Ω120Ω

The MCU communicates to the CAN Bus using a transceiver. The CAN bus is a twisted pair
wire and the transmission rate depends on the bus length. If the bus is less than 40 meters the
transmission rate is capable up to 1 Mbit/second.

CAN Node
Wired-AND Bus Connection

RXTX

CAN Controller
(e.g. TMS320F28035)

CAN_L

CAN_H

120Ω120Ω

CAN Transceiver
(e.g. TI SN65HVD23x)

C2000 Delfino Workshop - Communications 11 - 23

Enhanced Controller Area Network (eCAN)

Principles of Operation

Principles of Operation
Data messages transmitted are identifier based,
not address based
Content of message is labeled by an identifier that
is unique throughout the network

(e.g. rpm, temperature, position, pressure, etc.)
All nodes on network receive the message and
each performs an acceptance test on the identifier
If message is relevant, it is processed (received);
otherwise it is ignored
Unique identifier also determines the priority of the
message

(lower the numerical value of the identifier, the higher the
priority)

When two or more nodes attempt to transmit at the
same time, a non-destructive arbitration technique
guarantees messages are sent in order of priority
and no messages are lost

Non-Destructive Bitwise Arbitration
Bus arbitration resolved via arbitration with
wired-AND bus connections

Dominate state (logic 0, bus is high)
Recessive state (logic 1, bus is low)

Node A wins
arbitration

CAN Bus

Node A

Node B

Node C

Start
Bit

Node B loses
arbitration

Node C loses
arbitration

11 - 24 C2000 Delfino Workshop - Communications

 Enhanced Controller Area Network (eCAN)

Message Format and Block Diagram

CAN Message Format
Data is transmitted and received using Message Frames
8 byte data payload per message
Standard and Extended identifier formats

Standard Frame: 11-bit Identifier (CAN v2.0A)

Extended Frame: 29-bit Identifier (CAN v2.0B)

11-bit
Identifier

R
T
R

S
O
F

I
D
E

r0 DLC 0…8 Bytes Data CRC ACK
E
O
F

Arbitration
Field

Control
Field Data Field

Control
Field

11-bit
Identifier

R
T
R

S
O
F

I
D
E

r0 DLC 0…8 Bytes Data CRC ACKr1
18-bit

Identifier
S
R
R

E
O
F

Arbitration Field Data Field

The MCU CAN module is a full CAN Controller. It contains a message handler for transmission
and reception management, and frame storage. The specification is CAN 2.0B Active – that is,
the module can send and accept standard (11-bit identifier) and extended frames (29-bit
identifier).

eCAN Block Diagram

Memory Management
Unit

CPU Interface,
Receive Control Unit

Timer Management Unit

eCAN Memory
(512 bytes)

Register and Message
Object Control

Mailbox RAM
(512 bytes)

32 Mailboxes
(4 x 32-bit words)

32 32

Receive Buffer
Transmit Buffer
Control Buffer
Status Buffer

SN65HVD23x
3.3-V CAN Transceiver

CAN Bus

32

32

DataAddresseCAN0INT eCAN1INT

A message mailbox
Identifier – MID
Control – MCF
Data low – MDL
Data high - MDH

C2000 Delfino Workshop - Communications 11 - 25

Enhanced Controller Area Network (eCAN)

The CAN controller module contains 32 mailboxes for objects of 0 to 8-byte data lengths:
• configurable transmit/receive mailboxes
• configurable with standard or extended indentifier

The CAN module mailboxes are divided into several parts:
• MID – contains the identifier of the mailbox
• MCF (Message Control Field) – contains the length of the message (to transmit or

receive) and the RTR bit (Remote Transmission Request – used to send remote
frames)

• MDL and MDH – contains the data

The CAN module contains registers which are divided into five groups. These registers are
located in data memory from 0x006000 to 0x0061FF. The five register groups are:

• Control & Status Registers

• Local Acceptance Masks

• Message Object Time Stamps

• Message Object Timeout

• Mailboxes

eCAN Summary

eCAN Summary

Fully compliant with CAN standard v2.0B
Supports data rates up to 1 Mbps
Thirty-two mailboxes

Configurable as receive or transmit
Configurable with standard or extended identifier
Programmable receive mask
Uses 32-bit time stamp on messages
Programmable interrupt scheme (two levels)
Programmable alarm time-out

Programmable wake-up on bus activity
Self-test mode

11 - 26 C2000 Delfino Workshop - Communications

DSP/BIOS

Introduction
This module discusses the basic features of using DSP/BIOS in a system. Scheduling threads,
periodic functions, and the use of real-time analysis tools will be demonstrated, in addition to
programming the flash with DSP/BIOS.

Learning Objectives
Learning Objectives

Introduction to DSP/BIOS

DSP/BIOS Configuration Tool

Scheduling DSP/BIOS Threads

Periodic Functions

Real-Time Analysis Tools

C2000 Delfino Workshop - DSP/BIOS 12 - 1

Module Topics

Module Topics
DSP/BIOS..12-1

Module Topics..12-2
Introduction to DSP/BIOS ...12-3
DSP/BIOS Configuration Tool...12-4
Scheduling DSP/BIOS Threads..12-9
Periodic Functions...12-14
Real-Time Analysis Tools...12-15
Lab 12: DSP/BIOS...12-17

12 - 2 C2000 Delfino Workshop - DSP/BIOS

 Introduction to DSP/BIOS

Introduction to DSP/BIOS
What is DSP/BIOS?

A full-featured, scalable real-time kernel
System configuration tools
Preemptive multi-threading scheduler
Real-time analysis tools

Why Use DSP/BIOS?

Helps Manage complex system resources
no need to develop or maintain a “home-brew” kernel
faster time to market

Efficient debugging of real-time applications
Real-Time Analysis

Create robust applications
industry proven kernel technology

Reduce cost of software maintenance
code reuse and standardized software

Integrated with Code Composer Studio IDE
requires no runtime license fees
fully supported by TI

Uses minimal Mips and Memory (2-8Kw)
scalable – use only what is needed
easily fits in limited memory space

C2000 Delfino Workshop - DSP/BIOS 12 - 3

DSP/BIOS Configuration Tool

DSP/BIOS Configuration Tool
The DSP/BIOS Configuration Tool (often called Config Tool or GUI Tool or GUI) creates and
modifies a system file called the Text Configuration File (.tcf). If we talk about using .tcf files,
we’re also talking about using the Config Tool.

DSP/BIOS Configuration Tool (file .tcf)

System Setup Tools
Handles memory configuration
(builds .cmd file), run-time
support libraries, interrupt
vectors, system setup and
reset, etc.

Real-Time Analysis Tools
Allows application to run
uninterrupted while displaying
debug data

Real-Time Scheduler
Preemptive tread manager
kernel configures DSP/BIOS
scheduling

Real-Time I/O
Allows two way
communication between
threads or between target and
PC host

The GUI (graphical user interface) simplifies system design by:
• Automatically including the appropriate runtime support libraries
• Automatically handles interrupt vectors and system reset
• Handles system memory configuration (builds .cmd file)
• When a .tcf file is saved, the Config Tool generates 5 additional files:

Filename.tcf Text Configuration File

Filenamecfg_c.c C code created by Config Tool

Filenamecfg.s28 ASM code created by Config Tool

Filenamecfg.cmd Linker command file

Filenamecfg.h header file for *cfg_c.c

Filenamecfg.h28 header file for *cfg.s28

When you add a .tcf file to your project, CCS automatically adds the C and assembly
(.s28) files and the linker command file (.cmd) to the project under the Generated Files
folder.

12 - 4 C2000 Delfino Workshop - DSP/BIOS

 DSP/BIOS Configuration Tool

1. Creating a New Memory Region (Using MEM)
First, to create a specific memory area, open up the .tcf file, right-click on the Memory Section
Manager and select “Insert MEM”. Give this area a unique name and then specify its base and
length. Once created, you can place sections into it (shown in the next step).

Memory Section Manager (MEM)
Generates the main
linker command file for
your code project

Create memories
Place sections

To create a new memory
area:

Right-click on MEM and
select insert memory
Enter your choice of a
name for the memory
Right-click on the
memory, and select
Properties

fill in base, length, space

C2000 Delfino Workshop - DSP/BIOS 12 - 5

DSP/BIOS Configuration Tool

2. Placing Sections – MEM Manager Properties
The configuration tool makes it easy to place sections. The predefined compiler sections that
were described earlier each have their own drop-down menu to select one of the memory regions
you defined (in step 1).

Memory Section Manager Properties

To place a section
into a memory area:

Right-click on MEM
and select Properties
Select the desired tab
(e.g. Compiler)
Select the memory
you would like to link
each section to

12 - 6 C2000 Delfino Workshop - DSP/BIOS

 DSP/BIOS Configuration Tool

3. PIE Interrupts – HWI Interrupts
The configuration tools is also used to assign the interrupt vectors. The vectors are placed into a
section named .hwi_vec. The memory manager (MEM) links this section to the proper location
in memory.

Hardware Interrupt Manager (HWI)
Config Tool used to assign
interrupt vectors
Vectors are placed in the
section .hwi_vec
Use MEM manager to link
.hwi_vec to the proper memory

C2000 Delfino Workshop - DSP/BIOS 12 - 7

DSP/BIOS Configuration Tool

4. Running the Linker
Creating the Linker Command File (via .tcf)

When you have finished creating memory regions and allocating sections into these memory
areas (i.e. when you save the .tcf file), the CCS configuration tool creates five files. One of the
files is BIOS’s cfg.cmd file — a linker command file.

Files Created by the Configuration Tool

*.tcf

*cfg.s28

*cfg.h28

*cfg_c.c

*cfg.h
*cfg.cmd

Config tool generates
five different files
.cmd file is generated
from your MEM settings
Vectors put into *cfg_c.c

save to compiler

This file contains two main parts, MEMORY and SECTIONS. (Though, if you open and examine
it, it’s not quite as nicely laid out as shown above.)

Running the Linker

The linker’s main purpose is to link together various object files. It combines like-named input
sections from the various object files and places each new output section at specific locations in
memory. In the process, it resolves (provides actual addresses for) all of the symbols described in
your code. The linker can create two outputs, the executable (.out) file and a report which
describes the results of linking (.map).

Note: The linker gets run automatically when you BUILD or REBUILD your project.

12 - 8 C2000 Delfino Workshop - DSP/BIOS

 Scheduling DSP/BIOS Threads

Scheduling DSP/BIOS Threads
DSP/BIOS Thread Types

Pr
io

rit
y

Use SWI to perform HWI ‘follow-up’ activity
SWI's are ‘posted’ by software
Multiple SWIs at each of 15 priority levels

Use TSK to run different programs concurrently
under separate contexts
TSK's enabled by posting ‘semaphore’ (a signal)

Runs when no service routines are pending
Runs as an infinite loop, like traditional while loop
All BIOS data transfers to host occur here

Used to implement ‘urgent’ part of real-time event
Triggered by hardware interrupt
HWI priorities fixed in hardware

SWI
Software Interrupts

HWI
Hardware Interrupts

TSK
Tasks

IDL
Background

Enabling DSP/BIOS in main()

BIOS will enable global
interrupts for you
Must delete the
endless loop at end of
main()

main() returns to BIOS
and goes to the IDLE
thread, allowing BIOS to
schedule events,
transfer data to the host,
etc.
An endless loop in
main() will keep BIOS
from running

void main(void)

{

//*** Initialization

. . .

//*** Enable global interrupts

// asm(“ CLRC INTM”);

//*** Main Loop

// while(1);

} //end of main()

C2000 Delfino Workshop - DSP/BIOS 12 - 9

Scheduling DSP/BIOS Threads

Using Hardware Interrupts - HWI

Interrupt priority
fixed by hardware

interrupt void MyHwi(void)
{
}

The HWI Dispatcher
For non-BIOS code, use the
interrupt keyword to declare an ISR

tells the compiler to perform
context save/restore

For DSP/BIOS code, use the
Dispatcher to perform the
save/restore

Remove the interrupt keyword
from the MyHwi()
Check the “Use Dispatcher” box
when you configure the interrupt
vector in the DSP/BIOS
configuration tool

This is necessary if you want to
use any DSP/BIOS functionality
inside the ISR

12 - 10 C2000 Delfino Workshop - DSP/BIOS

 Scheduling DSP/BIOS Threads

Using Software Interrupts - SWI

Make each algorithm an
independent software interrupt
SWI scheduling is handled by DSP/BIOS

HWI function triggered by hardware
SWI function triggered by software
e.g. a call to SWI_post()

Why use a SWI?
No limitation on number of SWIs, and
priorities for SWIs are user-defined
SWI can be scheduled by hardware or
software event(s)
Defer processing from HWI to SWI

SWI Properties

C2000 Delfino Workshop - DSP/BIOS 12 - 11

Scheduling DSP/BIOS Threads

Managing SWI Priority

Drag and Drop SWIs to change
priority
Equal priority SWIs run in the
order that they are posted

Drag and Drop SWIs to change
priority
Equal priority SWIs run in the
order that they are posted

Priority Based Thread Scheduling
HWI 2

HWI 1

SWI 3

SWI 2

SWI 1

MAIN

IDLE
int1

rtn

post2 rtn

int2

post3 rtn

post1 rtn

rtn

rtn

User sets the priority...BIOS does the scheduling

(highest)

(lowest)

SWI_post(&swi2);

12 - 12 C2000 Delfino Workshop - DSP/BIOS

 Scheduling DSP/BIOS Threads

Using Tasks (TSK)
SWI vs. TSK

Similar to hardware interrupt,
but triggered by SWI_post()
SWIs must run to completion
All SWI's use system stack
faster context switching
smaller code size

SWI SWI_post

start

end

“must run to
completion”

SEM_post() readies the TSK
which pends on an event
TSKs can be terminated by S/W
Each TSK has its own stack
slower context switching
larger code size

TSK

start

end

Pause

SEM_post

(blocked
state)

SEM_pend

C2000 Delfino Workshop - DSP/BIOS 12 - 13

Periodic Functions

Periodic Functions

period

LED LED LED

Using Periodic Functions - PRD

Periodic functions are a special type of SWI that are triggered by
DSP/BIOS

Periodic functions run at a user specified rate:
- e.g. LED blink requires 0.5 Hz

Use the CLK Manager to specify the DSP/BIOS CLK rate in
microseconds per “tick”

Use the PRD Manager to specify the period (for the function) in ticks

Allows multiple periodic functions with different rates

DSP/BIOS
CLK

tick

Creating a Periodic Function

period

func1 func1 func1

DSP/BIOS
CLK

tick

12 - 14 C2000 Delfino Workshop - DSP/BIOS

 Real-Time Analysis Tools

Real-Time Analysis Tools
Built-in Real-Time Analysis Tools

Gather data on target (3-10 CPU cycles)
Send data during BIOS IDL (100s of cycles)
Format data on host (1000s of cycles)
Data gathering does NOT stop target CPU

Built-in Real-Time Analysis Tools

Shows amount of CPU horsepower
being consumed

CPU Load graph and CPU Load Data

C2000 Delfino Workshop - DSP/BIOS 12 - 15

Real-Time Analysis Tools

Built-in Real-Time Analysis Tools

Profile routines w/o
halting the CPU

Statistics Data

Send debug msgs to host
Doesn’t halt the DSP
Deterministic, low DSP
cycle count
More efficient than
traditional printf()

Printf Logs

LOG_printf(&trace, “LedSwiCount = %u", LedSwiCount++);

12 - 16 C2000 Delfino Workshop - DSP/BIOS

 Lab 12: DSP/BIOS

Lab 12: DSP/BIOS
 Objective

The objective of this lab is to become familiar with DSP/BIOS. In this lab exercise, we will make
use of the DSP/BIOS configuration tool, implement a software interrupt (SWI) and periodic
function (PRD), program the DSP/BIOS project into the flash, and explore the built-in real-time
analysis tools. The DSP/BIOS configuration tool creates a text configuration file (*.tcf) and
generates a linker command file (*cfg.cmd). This generated linker command file is functionally
equivalent to the linker command file previously used. The memory area of the lab linker
command file will be deleted; however, part of the sections area will be used to link sections that
are not part of DSP/BIOS. In the lab files we will change the DMA HWI (DINTCH1_ISR) to a
SWI and replace the LED blink routine with a periodic function. The steps required to properly
configure the software for execution from internal flash memory will be covered. Features of the
real-time analysis tools, such as the CPU Load Graph, Message Log, Statistics View, and RTA
Control Panel will be demonstrated.

Lab 12: DSP/BIOS

ADC
RESULT0

ePWM2

connector
wire

TB Counter
Compare

Action Qualifier

ePWM1
ADCINA0

ePWM2 triggering ADC
on period match using
SOCA trigger every
20.833 µs (48 kHz)

data
memory

Po
in

te
r

re
w

in
d

Display
using CCS

ping

CPU runs
data through
filter during
DMA ISR

FIR
Filter

pong

data
memory

DMA

Objective:
Use DSP/BIOS Configuration Tool to:

Handle system memory & interrupt vectors
Create a .tcf file

Change DMA DINTCH1_ISR HWI to SWI
Replace LED blink routine with a Periodic
Function
Program system into Flash Memory

 Procedure

Create a New Project
1. Create a new project (File New CCS Project) and name it Lab12.

Uncheck the “Use default location” box. Click the Browse… button and navigate to:

C:\C28x\Labs\Lab12\Project

Click OK and then click Next.

C2000 Delfino Workshop - DSP/BIOS 12 - 17

Lab 12: DSP/BIOS

2. In the next window that appears set the “Project Type” to “C2000” and leave the
“Debug” and “Release” boxes checked. Click Next.

3. In the next window, “Additional Project Settings” select Next.

4. In the next window the CCS project settings are selected. Set the “Device Variant” using
the pull-down list to “TMS320F28335”. Then using the pull-down list change the
“Linker Command File” to “<none>”. Finally, set the “Runtime Support Library” to
“<none>”. The DSP/BIOS configuration tool supplies its own RTS library. Click
Next.

5. The last window selects the “Project Templates”. Click the plus sign (+) to the left of
“DSP/BIOS v5.xx Examples” and select “Empty Example”. Click Finish.

6. Right-click on Lab12 in the C/C++ Projects window and add the following files to
the project (Add Files to Project…) from C:\C28x\Labs\Lab12\Files:

Adc_9_10_12.c Flash.c
CodeStartBranch.asm Gpio.c
DefaultIsr_12.c Lab.h
DelayUs.asm Lab_12.cmd
Dma.c Main_12.c
DSP2833x_GlobalVariableDefs.c Passwords.asm
DSP2833x_Headers_BIOS.cmd PieCtrl_12.c
ECap_7_8_9_10_12.c SysCtrl.c
EPwm_7_8_9_10_12.c Watchdog.c
Filter.c

Note: DSP2833x_DefaultIsr.h is not used in this project. DSP/BIOS will supply
its own ISR function prototypes. Also, the labcfg.h header file will be automatically
created. This is the DSP/BIOS generated include file, and is needed to allow code to
access the DSP/BIOS functions and data structures.

Project Build Options
7. Setup the build options by right-clicking on Lab12 in the C/C++ Projects window

and select Properties. Then select the “C/C++ Build” Category. Be sure that the
Tool Settings tab is selected.

Note that in the previous lab exercises the stack size was set by the project build options
in the linker basic options category. When using DSP/BIOS the stack size is instead
specified with the DSP/BIOS configuration tool. This will be taken care of when we get
to that section.

8. Under the “C2000 Linker” select “Basic Options” and delete the entry for the stack
size.

9. Setup the include search path to include the peripheral register header files. Under
“C2000 Compiler” select “Include Options”. In the box that opens click the Add
icon (first icon with green plus sign). Then in the “Add directory path” window type:

${PROJECT_ROOT}/../../DSP2833x_headers/include

12 - 18 C2000 Delfino Workshop - DSP/BIOS

 Lab 12: DSP/BIOS

Click OK to include the search path. Repeat the process to add the IQmath header file.
Click the Add icon and in the “Add directory path” window type:

 ${PROJECT_ROOT}/../../IQmath/include

Click OK to include the search path.

10. Next, setup the library search path to include the IQmath library. Under “C2000 Linker”
select “File Search Path”. In the top box click the Add icon. Then in the “Add
file path” window type:

${PROJECT_ROOT}/../../IQmath/lib/IQmath.lib

Click OK to include the library file.

In the bottom box click the Add icon. In the “Add directory path” window type:

${PROJECT_ROOT}/../../IQmath/lib

Click OK to include the library search path.

11. As the project is now configured, we would get a warning at build time stating that the
typedef name has already been declared with the same type. This is because it has been
defined twice; once in the header files and again in the include file generated by
DSP/BIOS. To suppress the warning, under “C2000 Compiler” select “Diagnostics
Options”. Scroll to the bottom option box – “Suppress Diagnostic (-pds)” and click
the Add icon. Type in code number 303 in the enter value box then select OK.

12. Finally, select OK to save and close the build options window.

Edit Lab.h File
13. Edit Lab.h to uncomment the line that includes the labcfg.h header file. This is the

DSP/BIOS generated include file, and is needed to allow code to access the DSP/BIOS
functions and data structures. Next, comment out the line that includes the
“DSP2833x_DefaultIsr.h” ISR function prototypes. DSP/BIOS will supply its
own ISR function prototypes. Save and close the file.

Inspect Lab_12.cmd
14. We will be using the DSP/BIOS configuration tool to create a linker command file. Open

and inspect Lab_12.cmd. Notice that the linker command file does not have a memory
area and includes only a limited sections area. These sections are not part of DSP/BIOS
and need to be included in a “user” linker command file. Close the inspected file.

Using the DSP/BIOS Configuration Tool
15. The text configuration file (*.tcf) created by the DSP/BIOS configuration tool controls a

wide range of CCS capabilities. The .tcf file will be used to automatically create and
perform memory management. Create a new .tcf file for this lab. On the menu bar click:

C2000 Delfino Workshop - DSP/BIOS 12 - 19

Lab 12: DSP/BIOS

File New DSP/BIOS v5.xx Configuration File

A dialog box will open and name the file Lab.tcf. (Note – do not use the default
Lab12.tcf file name). Click Next.

16. The next window that appears shows a number of available .tcf seed files. The seed files
are used to configure many objects specific to the processor and will be invoked as the
first item in your own .tcf file. Scroll the options and select the
ti.platforms.control28335 template and click Next.

17. In the next window all DSP/BIOS features should be checked and then click Finish.
The Configuration Tool will open and the configuration file will be automatically added
to the project.

Create New Memory Sections Using the TCF File
18. In the configuration window, left click the plus sign next to System and the plus sign

next to MEM. By default, the Memory Section Manager has combined the memory space
for L0, L1, L2 and L3SARAM into a single memory block called L03SARAM; and L4,
L5, L6 and L7SARAM into a single memory block called L47SARAM. It has also
combined M0 and M1SARAM into a single memory block called MSARAM.

19. Next, we will add some of the additional memory sections that will be needed for the lab
exercises in this module. To add a memory section:

Right click on MEM – Memory Section Manager and select Insert MEM.
Rename the newly added memory section to BEGIN_FLASH. Repeat the process and
add the following memory sections: CSM_RSVD, FPUTABLES, IQTABLES,
IQTABLES2 and PASSWORDS. Double check and see that all six memory sections have
been added.

20. Modify the base addresses, length, and space of each of the memory sections to
correspond to the memory mapping shown in the table below. To modify the length,
base address, and space of a memory section, right click on the memory in the
configuration tool, and select Properties.

Memory Base Length Space

BEGIN_FLASH 0x33 FFF6 0x0002 code

CSM_RSVD 0x33 FF80 0x0076 code

FPUTABLES 0x3F EBDC 0x06A0 code

IQTABLES 0x3F E000 0x0B50 code

IQTABLES2 0x3F EB50 0x008C code

PASSWORDS 0x33 FFF8 0x0008 code

21. Modify the base addresses, length, and space of each of the memory sections to avoid
memory conflicts with the newly added memory sections as shown in the following table:

12 - 20 C2000 Delfino Workshop - DSP/BIOS

 Lab 12: DSP/BIOS

Memory Base Length Space

BOOTROM 0x3F F37C 0x0D44 code

FLASH 0x30 0000 0x3FF80 code

22. Next, modify the space setting for L03SARAM to be “code” and the space setting for
L47SARAM to be “data”.

Link Uninitialized Sections to RAM
23. Right click on MEM – Memory Section Manager and select Properties.

Select the Compiler Sections tab and link the following uninitialized sections
into the MSARAM memory block via the pull-down boxes:

MSARAM

.bss

.ebss

Link Initialized Sections to Flash
All initialized sections must be linked to the on-chip flash memory. Each initialized section
actually has two addresses associated with it. First, it has a LOAD address which is the address
to which it gets loaded at load time (or at flash programming time). Second, it has a RUN
address which is the address from which the section is accessed at runtime. The linker assigns
both addresses to the section. Most initialized sections can have the same LOAD and RUN
address in the flash. However, some initialized sections need to be loaded to flash, but then run
from RAM. This is required, for example, if the contents of the section needs to be modified at
runtime by the code.

24. This step assigns the RUN address of those sections that need to run from flash. Using
the MEM – Memory Section Manager in the DSP/BIOS configuration tool link
the following sections to on-chip FLASH memory:

BIOS Data tab BIOS Code tab Compiler Sections tab

.gblinit .bios .text

 .sysinit .switch

 .hwi .cinit

 .rtdx_text .pinit

 .econst / .const

 .data

C2000 Delfino Workshop - DSP/BIOS 12 - 21

Lab 12: DSP/BIOS

25. This step assigns the LOAD address of those sections that need to load to flash. Again
using the MEM – Memory Section Manager in the DSP/BIOS configuration tool
select the Load Address tab and check the “Specify Separate Load
Addresses” box. Then set all entries to the FLASH memory block.

26. Click the BIOS Data tab and notice that the .stack section has been linked into
memory. Click OK to close the window.

27. The section named “IQmath” is an initialized section that needs to load to and run from
flash. This section is not linked using the DSP/BIOS configuration tool (because it is
neither a standard compiler section nor a DSP/BIOS generated section). Instead, this
section is linked with the user linker command file (Lab_12.cmd). Previously the
“IQmath” section was linked to L03SARAM and it is now linked to FLASH.

Set the Stack Size in the TCF File
Recall in the previous lab exercise that the stack size was set using the CCS project build options.
When using the DSP/BIOS configuration tool, the stack size is instead specified in the .tcf file.

28. Using the MEM – Memory Section Manager select the General tab. Set the
Stack Size to 0x180. The stack size needs to be reduced from 0x200 to 0x180 because of
the limited amount of space available in the RAM block on the device when using
DSP/BIOS. Click OK to close the window.

Copying .hwi_vec Section from Flash to RAM
The DSP/BIOS .hwi_vec section contains the interrupt vectors. This section must be loaded to
flash (load address) but run from RAM (run address). The code that performs this copy is located
in InitPieCtrl(). The linker command file generated by the DSP/BIOS configuration tool
generates global symbols that can be accessed by code in order to determine the load address, run
address, and length of the .hwi_vec section. The RTS library contains a memory copy function
called memcpy() which will be used to perform the copy.

29. Open and inspect InitPieCtrl() in PieCtrl_12.c. Notice the memcpy() function and
the symbols used to initialize (copy) the .hwi_vec section.

Copying the .trcdata Section from Flash to RAM
The DSP/BIOS .trcdata section is used by CCS and DSP/BIOS for certain real-time debugging
features. This section must be loaded to flash (load address) but run from RAM (run address).
The linker command file generated by the DSP/BIOS configuration tool generates global symbols
that can be accessed by code in order to determine the load address, run address, and length of the
.trcdata section. The memory copy function memcpy() will again be used to perform the copy.

The copying of .trcdata must be performed prior to main(). This is because DSP/BIOS modifies
the contents of .trcdata during DSP/BIOS initialization, which also occurs prior to main(). The
DSP/BIOS configuration tool provides a user initialization function which will be used to
perform the .trcdata section copy prior to both main() and DSP/BIOS initialization.

12 - 22 C2000 Delfino Workshop - DSP/BIOS

 Lab 12: DSP/BIOS

30. In the DSP/BIOS configuration file (Lab.tcf) select the Properties for the
Global Settings. Check the box “Call User Init Function” and enter the
UserInit() function name with a leading underscore: _UserInit. This will cause
the function UserInit() to execute prior to main(). Click OK to close the window.

31. Open and inspect the file Main_12.c. Notice that the function UserInit() is used
to copy the .trcdata section from its load address to its run address before main().

Initializing the Flash Control Registers
The initialization code for the flash control registers cannot execute from the flash memory (since
it is changing the flash configuration!). Therefore, the initialization function for the flash control
registers must be copied from flash (load address) to RAM (run address) at runtime. The memory
copy function memcpy() will again be used to perform the copy. The initialization code for the
flash control registers InitFlash() is located in the Flash.c file.

32. Open and inspect Flash.c. The C compiler CODE_SECTION pragma is used to place
the InitFlash() function into a linkable section named “secureRamFuncs”.

33. Since the DSP/BIOS configuration tool does not know about user defined sections, the
“secureRamFuncs” section will be linked using the user linker command file
Lab_12.cmd. Open and inspect Lab_12.cmd. The “secureRamFuncs” will load
to flash (load address) but will run from L03SARAM (run address). Also notice that the
linker has been asked to generate symbols for the load start, load end, and run start
addresses.

34. Open and inspect Main_12.c. Notice that the memory copy function memcpy() is
being used to copy the section “secureRamFuncs”, which contains the initialization
function for the flash control registers. Close all the inspected files.

Setup PIE Vectors for Interrupts in the TCF File
Next, we will setup all of the PIE interrupt vectors that will be needed for the lab exercises in this
module. This will include all of the vectors used in the previous lab exercises. (Note: the
PieVect.c file is not used since DSP/BIOS generates the interrupt vector table).

35. Modify the configuration file Lab.tcf to setup the PIE vector for the watchdog
interrupt. Click on the plus sign (+) to the left of Scheduling and again on the plus
sign (+) to the left of HWI – Hardware Interrupt Service Routine
Manager. Click the plus sign (+) to the left of PIE INTERRUPTS. Locate the
interrupt entry for the watchdog at PIE_INT1_8. Right click, select Properties,
and type _WAKEINT_ISR (with a leading underscore) in the function field. Click OK to
save.

36. Setup the PIE vector for the ADC interrupt. Locate the interrupt entry for the ADC at
PIE_INT1_6. Right click, select Properties, and type _ADCINT_ISR (with a
leading underscore) in the function field. Click OK to save.

C2000 Delfino Workshop - DSP/BIOS 12 - 23

Lab 12: DSP/BIOS

37. Setup the PIE vector for the ECAP1 interrupt. Locate the interrupt entry for the ECAP1
at PIE_INT4_1. Right click, select Properties, and type _ECAP1_INT_ISR
(with a leading underscore) in the function field. Click OK to save.

38. Setup the PIE vector for the DMA channel 1 interrupt. Locate the interrupt entry for the
DMA channel 1 at PIE_INT7_1. Right click, select Properties, and type
_DINTCH1_ISR (with a leading underscore) in the function field. Click OK to save.

Configuring DSP/BIOS Global Settings
39. In the configuration file Lab.tcf click on the plus sign (+) to the left of System.

Right click on Global Settings and select Properties. Set the “DSP
Speed in MHz (CLKOUT)” field to 150 so that it matches the processor speed.
Click OK to save the value and close the properties window. This value is used by the
CLK manager to calculate the register settings for the on-chip timers and provide the
proper time-base for executing CLK functions. Close the configuration window and
select YES to save changes to Lab.tcf.

Prepare main() for DSP/BIOS
40. Open Main_12.c and delete the inline assembly code from main() that enables global

interrupts. DSP/BIOS will enable global interrupts after main().

41. In Main_12.c, remove the endless while() loop from the end of main(). When using
DSP/BIOS, you must return from main(). In all DSP/BIOS programs, the main()
function should contain all one-time user-defined initialization functions. DSP/BIOS will
then take-over control of the software execution. Save and close the file.

Boot Mode Jumpers – Executing from Flash after Reset
42. The controlCARD or Docking Station needs to be configured for “Jump to Flash” boot

mode. Move the “2833x Boot Mode” controlCARD switch SW2 positions 1, 2, 3 and 4
to the “1 – on” position (all switches up) or the Docking Station jumpers 84, 85, 86 and
87 to the “1” position (all jumpers to the left side) to accomplish this. Details of the
switch and jumper positions can be found in Appendix A. These jumpers control the
pullup/down resistor on the GPIO84, GPIO85, GPIO86 and GPIO87 pins, which are the
pins sampled by the bootloader to determine the boot mode.

Build and Program the Flash – Lab.out
43. Click the “Build” button to generate the Lab.out file to be used with the CCS Flash

Programmer. Check for errors in the Problems window.

44. Program the flash memory by clicking the “Debug” button (green bug). As soon as the
“Progress Information” box opens, if needed select “Details” in order to watch the
programming operation and status. After successfully programming the flash memory
the “Progress Information” box will close.

12 - 24 C2000 Delfino Workshop - DSP/BIOS

 Lab 12: DSP/BIOS

45. The code should stop at the beginning of your main() routine. If you got to that point
succesfully, it confirms that the flash has been programmed properly, that the bootloader
is properly configured for jump to flash mode, and that the codestart section has been
linked to the proper address. As a test, run the CPU and you should observe the LED on
the ControlCARD blinking, then halt the CPU.

Testing the CPU Computational Loading
It will be interesting to investigate the CPU computational burden of the the various parts of our
application, as well as the different pieces of DSP/BIOS that we will be using in this lab exercise.
The ‘CPU Load graph’ and ‘CPU Load Data’ features of DSP/BIOS will provide a quick and
easy method for doing this. We will be tabulating these results in the table that follows at various
steps throughout the remainder of this lab.

Table 12-1: CPU Computational Burden Results

Case # Description CPU Load %

1 DMA processing handled in HWI. Filter inactive.

2 Case #1 + filter active.

3 DMA processing handled in SWI. Filter active.
LED blink handled in HWI.
RTA Global Host Enable disabled.

4 Case #3 + LED blink handled in PRD.

5 Case #4 + LOG_printf in SWI.

6 Case #5 + RTA SWI Logging enabled.

7 Case #6 + RTA SWI Accumulators enabled.

Run the Code – HWI() Implementation
At this point, we have modified the code so that DSP/BIOS will take control after main()
completes. However, we have not made any other changes to the code since the previous lab.
Therefore, the computations we want performed in the DINTCH1_ISR() (e.g., reading the ADC
result, running the filter) are still taking place in the hardware ISR, or to use DSP/BIOS
terminology, the HWI.

Note: For the next step, check to be sure that the jumper wire connecting PWM1A (pin #
GPIO-00) to ADCINA0 (pin # ADC-A0) is still in place on the Docking Station.

C2000 Delfino Workshop - DSP/BIOS 12 - 25

Lab 12: DSP/BIOS

46. Run the code in real-time mode using the Script function: Scripts Realtime
Emulation Control Run_Realtime_with_Reset.

47. Setup a dual-time graph of the filtered and unfiltered ADC results buffer. Click:
Tools Graph Dual Time and set the following values:

Acquisition Buffer Size 48

DSP Data Type 32-bit floating-point

Sampling Rate (Hz) 48000

Start Address – A AdcBufFiltered

Start Address – B AdcBuf

Display Data Size 48

Time Display Unit μs

Select OK to save the graph options.

48. The graphical display should show the filtered PWM waveform in the Dual Time A
display and the unfiltered waveform in the Dual Time B display. The results should be
the same as the previous lab.

49. Open the RTA Control Panel by clicking Tools RTA RTA Control
Panel. In the Diagnostics row set the following six control switches to RUNTIME OFF
by clicking directly to the right of the check boxes and using the pull-down options:

SWI logs PRD logs CLK logs TSK logs SWI stats PRD stats

This disables most of the realtime analysis tools we will be using in this lab exercise. We
will selectively enable them in the lab.

50. Open the CPU Load graph by clicking Tools RTA CPU Load. Also open the
CPU Load Data window by clicking on Tools RTA CPU Load Data. The
CPU load graph and CPU load data window displays the percentage of available CPU
computing horsepower that the application is consuming. The CPU may be running
ISRs, software interrupts, periodic functions, performing I/O with the host, or running
any user routine. When the CPU is not executing user code, it will be idle (in the
DSP/BIOS idle thread).

The graph should start updating, showing the percentage load on the CPU. Keep the
CPU running to complete steps 51 through 55.

51. In Main_12.c notice that the global variable DEBUG_FILTER is used to control the
FIR filter in DINTCH1_ISR(). If DEBUG_FILTER = 1, the FIR filter is called and the
AdcBufFilter array is filled with the filtered data. Likewise, if DEBUG_FILTER = 0, the
filter is not called and the AdcBufFilter array is filled with the unfiltered data.

12 - 26 C2000 Delfino Workshop - DSP/BIOS

 Lab 12: DSP/BIOS

52. Add the variable DEBUG_FILTER to the watch window. (Make sure that
continuous refresh is enabled for the watch window). Change its value to “0” to
turn off the FIR filtering. Notice the decrease in the CPU Load Graph.

53. Record the value shown in the CPU Load Data window under “Case #1” in Table 12-1.

54. Change the value of DEBUG_FILTER back to “1” in the watch window in order to bring
the FIR filter back online. Notice the jump in the CPU Load Graph.

55. Record the value shown in the CPU Load Data window under “Case #2” in Table 12-1.

56. Fully halt the CPU in real-time mode by using the Script function: Scripts
Realtime Emulation Control Full_Halt.

Create a SWI
57. Switch to the “C/C++ Perspective” view by clicking the C/C++ icon in the upper right-

hand corner. In Main_12.c notice that space has been added at the end of main() for
two new functions which will be used in this lab – Dma1Swi() and LedBlink(). (Space
has also been provided for AdcSwi() for the optional exercise). In the next few steps, we
will move part of the DINTCH1_ISR() routine from DefaultIsr_12.c to this space
in Main_12.c.

58. Open DefaultIsr_12.c and locate the DINTCH1_ISR() routine. Move the entire
contents of the DINTCH1_ISR() routine to the Dma1Swi() function in Main_12.c with
the following exceptions:

DO NOT MOVE:

• The instruction used to acknowledge the PIE group interrupt

• The static local variable declaration of GPIO34_count

• The GPIO pin (LED) toggle code

Be sure to move all of the other static local variable declaration at the top of
DINTCH1_ISR() that is used to index into the ADC buffers. (Do not move the static
local variable declaration of GPIO34_count).

Comment: In almost all appplications, the PIE group acknowledge code is left in the HWI
(rather than move it to a SWI). This allows other interrupts to occur on that PIE group
even if the SWI has not yet executed. On the other hand, we are leaving the GPIO and
LED toggle code in the HWI just as an example. It illustrates that you can post a SWI
and also do additional operations in the HWI. DSP/BIOS is extremely flexible!

59. Delete the interrupt key word from the DINTCH1_ISR. The interrupt keyword is
not used when a HWI is under DSP/BIOS control. A HWI is under DSP/BIOS control
when it uses any DSP/BIOS functionality, such as posting a SWI, or calling any
DSP/BIOS function or macro.

C2000 Delfino Workshop - DSP/BIOS 12 - 27

Lab 12: DSP/BIOS

Post a SWI
60. Still in DefaultIsr_12.c add the following SWI_post to the DINTCH1_ISR(), just

after the structure used to acknowledge the PIE group:

SWI_post(&DMA1_swi); // post a SWI

This posts a SWI that will execute the DMA1_swi() code you populated a few steps back
in the lab. In other words, the DMA1 interrupt still executes the same code as before.
However, most of that code is now in a posted SWI that DSP/BIOS will execute
according to the specified scheduling priorities. Save the modified files.

Add the SWI to the TCF File
61. In the configuration file Lab.tcf we need to add and setup the Dma1Swi() SWI. Open

Lab.tcf and click on the plus sign (+) to the left of Scheduling and again on the
plus sign (+) to the left of SWI – Software Interrupt Manager.

62. Right click on SWI – Software Interrupt Manager and select Insert SWI.
Rename SWI0 to DMA1_swi and click OK. This is just an arbitrary name. We want to
differentiate the Dma1Swi() function itself (which is nothing but an ordinary C function)
from the DSP/BIOS SWI object which we are calling DMA1_swi.

63. Select the Properties for DMA1_swi and type _Dma1Swi (with a leading
underscore) in the function field. Click OK. This tells DSP/BIOS that it should run the
function Dma1Swi() when it executes the DMA1_swi SWI.

64. We need to have the PIE for the DMA channel 1 interrupt use the dispatcher. The
dispatcher will automatically perform the context save and restore, and allow the
DSP/BIOS scheduler to have insight into the ISR. You may recall from an earlier lab
that the DMA channel 1 interrupt is located at PIE_INT7_1.

Click on the plus sign (+) to the left of HWI – Hardware Interrupt Service
Routine Manager. Click the plus sign (+) to the left of PIE INTERRUPTS. Locate
the interrupt entry for the DMA channel 1: PIE_INT7_1. Right click, select
Properties, and select the Dispatcher tab. Check the “Use Dispatcher” box
and select OK. Close the configuration file and click YES to save changes.

Build and Load
65. Click the “Build” button to generate the Lab.out file and select No to “Reload the

program automatically”. The Lab.out file needs to be programmed into flash memory.

66. Program the flash memory by clicking the “Debug” button (green bug). (If needed
select “Details” in order to watch the programming operation and status). After
successfully programming the flash memory the “Progress Information” box will close
and the view will switch to the “Debug Perspective”.

12 - 28 C2000 Delfino Workshop - DSP/BIOS

 Lab 12: DSP/BIOS

Run the Code – Dma1Swi()
67. Run the code (real-time mode) using the Script function: Scripts Realtime

Emulation Control Run_Realtime_with_Reset. Confirm that the
graphical display is showing the correct results. The results should be the same as before
(i.e., filtered PWM in the Dual Time A display, unfiltered PWM in the Dual Time B
display).

68. Record the value shown in the CPU Load Data window under “Case #3” in Table 12-1.

69. Fully halt the CPU (real-time mode) by using the Script function: Scripts
Realtime Emulation Control Full_Halt.

Add a Periodic Function
Recall that an instruction was used in the DINTCH1_ISR to toggle the LED on the
ControlCARD. This instruction will be moved into a periodic function that will toggle the LED
at the same rate.

70. Switch to the “C/C++ Perspective” view by clicking the C/C++ icon in the upper right-
hand corner. In DefaultIsr_12.c locate the DINTCH1_ISR routine. Move the
instruction used to toggle the LED to the LedBlink() function in Main_12.c:

 GpioDataRegs.GPBTOGGLE.bit.GPIO34 = 1; // Toggle the pin

Now delete from the DINTCH1_ISR() the code used to implement the interval counter
for the LED toggle (i.e., the GPIO34_count++ loop), and also delete the declaration of
the GPIO34_count itself from the beginning of DINTCH1_ISR(). These are no longer
needed, as DSP/BIOS will implement the interval counter for us in the periodic function
configuration (next step in the lab). Save the modified files.

71. In the configuration file Lab.tcf we need to add and setup the LedBlink_PRD. Open
Lab.tcf and click on the plus sign (+) to the left of Scheduling. Right click on
PRD – Periodic Function Manger and select Insert PRD. Rename PRD0
to LedBlink_PRD and click OK.

72. Select the Properties for LedBlink_PRD and type _LedBlink (with a leading
underscore) in the function field. This tells DSP/BIOS to run the LedBlink() function
when it executes the LedBlink_PRD periodic function object.

Next, in the period (ticks) field type 500. The default DSP/BIOS system timer
increments every 1 millisecond, so what we are doing is telling the DSP/BIOS scheduler
to schedule the LedBlink() function to execute every 500 milliseconds. A PRD object is
just a special type of SWI which gets scheduled periodically and runs in the context of
the SWI level at a specified SWI priority. Click OK. Close the configuration file and
click YES to save changes.

C2000 Delfino Workshop - DSP/BIOS 12 - 29

Lab 12: DSP/BIOS

Build and Program the Flash
73. Click the “Build” button to generate the Lab.out file and select No to “Reload the

program automatically”. The Lab.out file needs to be programmed into flash memory.

74. Program the flash memory by clicking the “Debug” button (green bug). (If needed
select “Details” in order to watch the programming operation and status). After
successfully programming the flash memory the “Progress Information” box will close
and the view will switch to the “Debug Perspective”.

Run the Code – LedBlink_PRD
75. Run the code. Check to see if the LED on the ControlCARD is blinking.

76. Record the value shown in the CPU Load Data window under “Case #4” in Table 12-1.

77. Halt the CPU. If you would like, experiment with different period (tick) values and
notice that the blink rate changes.

DSP/BIOS – Real-time Analysis Tools
The DSP/BIOS analysis tools complement the CCS environment by enabling real-time program
analysis of a DSP/BIOS application. You can visually monitor an MCU application as it runs
with essentially no impact on the application’s real-time performance. In CCS, the DSP/BIOS
realt-time analysis (RTA) tools are found on the Tools menu. Unlike traditional debugging,
which is external to the executing program, DSP/BIOS program analysis requires that the target
program be instrumented with analysis code. By using DSP/BIOS APIs and objects, developers
automatically instrument the target for capturing and uploading real-time information to CCS
using these tools.

We have actually been already using one part of the RTA tools in this lab: the CPU Load Graph
and CPU Load Data window. We will now utilize two other basic items from the RTA toolbox.

78. In the next few steps the Log Event Manager will be setup to record the occurrence of an
event in real-time while the program executes. We will be using LOG_printf() to
write to a log buffer. The LOG_printf() function is a very efficient means of sending
a message from the code to the CCS display. Unlike an ordinary C-language printf(),
which can consume several hundred CPU cycles to format the data on the MCU before
transmission to the CCS host PC, a LOG_printf() transmits the raw data to the host. The
host then formats the data and displays it in CCS. This consumes only 10’s of cycles
rather than 100’s of cycles.

Switch to the “C/C++ Perspective” view and add the following to Main_12.c at the top
of the LedBlink() function just before the instruction used to toggle the LED:

static Uint16 LedSwiCount=0; // used for LOG_printf

/*** Using LOG_printf() to write to a log buffer ***/

 LOG_printf(&trace, "LedSwiCount = %u", LedSwiCount++);

12 - 30 C2000 Delfino Workshop - DSP/BIOS

 Lab 12: DSP/BIOS

Save the modified file.

79. In the configuration file Lab.tcf we need to add and setup the trace buffer. Open
Lab.tcf and click on the plus sign (+) to the left of Instrumentation and again on
the plus sign (+) to the left of LOG – Event Log Manager. Right click on LOG –
Event Log Manager and select Insert LOG. Rename LOG0 to trace and click
OK.

80. Select the Properties for trace and confirm that the logtype is set to circular and
the datatype is set to printf. Click OK. Close the configuration file and click YES to save
changes.

Build and Program the Flash
81. Since the configuration file was modified, we need to rebuild the project. Click the

“Build” button to generate the Lab.out file and select No to “Reload the program
automatically”. The Lab.out file needs to be programmed into flash memory.

82. Program the flash memory by clicking the “Debug” button (green bug). (If needed
select “Details” in order to watch the programming operation and status). After
successfully programming the flash memory the “Progress Information” box will close
and the view will switch to the “Debug Perspective”.

Run the Code – Realtime Analysis Tools
83. Run the code.

84. Open the Printf Logs. On the menu bar, click:

Tools RTA Printf Logs

The message log dialog box is displaying the commanded LOG_printf() output, i.e. the
number of times (count value) that the LedSwi() has executed.

85. Record the value shown in the CPU Load Data window under “Case #5” in Table 12-1.

86. Open the Raw Logs window. On the menu bar, click:

Tools RTA Raw Logs

In the RTA Control Panel, set the SWI logs, PRD logs, CLK logs and TSK logs to
RUNTIME ON. This enables the logging of these event types. Notice that the Raw Logs
window is complete unformatted log data and is now displaying information about the
execution threads being taken by your software. This window is not based on time, but
the activity of events (i.e. when an event happens, such as a SWI or periodic function
begins execution). Notice that the Raw Logs window simply records DSP/BIOS CLK
events along with other system events (the DSP/BIOS clock periodically triggers the
DSP/BIOS scheduler).

C2000 Delfino Workshop - DSP/BIOS 12 - 31

Lab 12: DSP/BIOS

The logging of events to the Raw Logs window consumes CPU cycles, which is why the
CPU Load Graph jumped as you enabled logging.

87. Record the value shown in the CPU Load Data window under “Case #6” in Table 12-1.

88. Open the Statistics Data window. On the menu bar, click:

Tools RTA Statistics Data

Presently, the Statistics Data window is not changing with the exception of the statistics
for the IDL_busyObj row (i.e., the idle loop). This is because we have it disabled in the
RTA Control Panel.

In the RTA Control Panel, set the SWI stats and PRD stats to RUNTIME ON. This
enables the logging of statistics to the statistics Data window. The logging of statistics
consumes CPU cycles, which is why the CPU Load graph jumped as you enabled
logging.

89. Record the value shown in the CPU Load Data window under “Case #7” in Table 12-1.

90. Table 12-1 should now be completely filled in. Think about the results.

91. Halt the CPU. If time permits you can proceed to the optional exercise at the end of the
lab. When finished continue with the next step.

Terminate Debug Session and Close Project
92. Terminate the active debug session using the Terminate All button. This will close

the debugger and return CCS to the “C/C++ Perspective” view.

93. Next, close the project by right-clicking on Lab12 in the C/C++ Projects window
and select Close Project.

Return Boot Mode Jumpers Back to Default Positions
94. Remove the power to the Docking Station by disconnecting the USB cable.

95. Return the settings of the boot mode switches or jumpers back to the default positions
“Jump to M0SARAM” boot mode as shown in the table below (see Appendix A for
jumper position details):

Position 1 /
Jumper 84
(GPIO-84)

Position 2 /
Jumper 85
(GPIO-85)

Position 3 /
Jumper 86
(GPIO-86)

Position 4 /
Jumper 87
(GPIO-87)

M0 SARAM
Boot Mode

Down – 0 Down – 0 Up – 1 Down – 0 controlCARD

Right – 0 Right – 0 Left – 1 Right – 0 Docking Station

12 - 32 C2000 Delfino Workshop - DSP/BIOS

 Lab 12: DSP/BIOS

End of Exercise

Note: In this lab exercise only the basic features of DSP/BIOS and the real-time analysis tools
have been used. For more information and details, please refer to the DSP/BIOS user’s
manuals and other DSP/BIOS related training.

Optional Exercise:
Modify the lab to service the ADC without using the DMA as it was done in the Lab 8 exercise.
Remove the call to the InitDma() function and enable the interrupts in the Adc.c file. Then use
DSP/BIOS to convert the ADCINT_ISR HWI to SWI. Recalculate the CPU computational
burden servicing the ADC without using the DMA.

A. In Main_12.c comment out the code used to call the InitDma() function.

B. In ADC_9_10_12.c uncomment the code used to enable the ADC interrupt. The ADC
will now trigger the interrupt rather than the DMA.

C. In DefaultIsr_12.c locate the ADCINT_ISR() routine. Move the entire contents of
the ADCINT_ISR() routine to the AdcSwi() function in Main_12.c with the following
exceptions: Do Not Move – the instruction used to acknowledge the PIE group interrupt,
the static local variable declaration of GPIO34_count, and the GPIO pin toggle code /
LED toggle code. Be sure to move the other static local variable declaration at the top of
ADCINT_ISR() that is used to index into the ADC buffers.

D. In DefaultIsr_12.c delete the interrupt key word from the ADCINT_ISR.
Next delete the LED toggle code and the declaration of the GPIO34_count from the
beginning of ADCINT_ISR(). This is already being done with a periodic function.

E. In DefaultIsr_12.c add the following SWI_post to the ADCINT_ISR(), just after
the structure used to acknowledge the PIE group: SWI_post(&ADC_swi); //post a
SWI. Save the modified files.

F. In the configuration file Lab.tcf add and setup the AdcSwi() SWI. Open Lab.tcf
and click on the plus sign (+) to the left of Scheduling and again on the plus sign (+)
to the left of SWI – Software Interrupt Manager.

G. Right click on SWI – Software Interrupt Manager and select Insert SWI.
Rename SWI0 to ADC_swi and click OK. This is just an arbitrary name to differentiate
the AdcSwi() function itself (which is nothing but an ordinary C function) from the
DSP/BIOS SWI object which we are calling ADC_swi.

H. Select the Properties for ADC_swi and type _AdcSwi (with a leading underscore)
in the function field. Click OK. This tells DSP/BIOS that it should run the function
AdcSwi() when it executes the ADC_swi SWI.

I. Next, we need to have the PIE for the ADC interrupt use the dispatcher. The dispatcher
will automatically perform the context save and restore, and allow the DSP/BIOS
scheduler to have insight into the ISR. You may recall from an earlier lab that the ADC
interrupt is located at PIE_INT1_6.

C2000 Delfino Workshop - DSP/BIOS 12 - 33

Lab 12: DSP/BIOS

Click on the plus sign (+) to the left of HWI – Hardware Interrupt Service
Routine Manager. Click the plus sign (+) to the left of PIE INTERRUPTS. Locate
the interrupt entry for the ADC: PIE_INT1_6. Right click, select Properties, and
select the Dispatcher tab. Check the “Use Dispatcher” box and select OK.
Close the configuration file and click YES to save changes.

J. Click the “Build” button to generate the Lab.out file and select No to “Reload the
program automatically”. Next click the “Debug” button to program the flash memory.

K. Run the code in real-time mode using the Script function: Scripts Realtime
Emulation Control Run_Realtime_with_Reset.

L. Confirm that the graphical display is showing the correct results. The results should be
the same as before (i.e., filtered PWM in the Dual Time A display, unfiltered PWM in the
Dual Time B display). Note that the ADC_swi is being serviced rather than the
DMA1_swi.

M. Notice and compare the CPU computational burden servicing the ADC without using the
DMA. The CPU load is now at 68% as compared to 17% for case #7. Also, in the
Statistics Data window notice that the ADC_swi is now running rather than
DMA1_swi.

N. Fully halt the CPU (real-time mode) by using the Script function: Scripts
Realtime Emulation Control Full_Halt.

End of Optional Exercise

12 - 34 C2000 Delfino Workshop - DSP/BIOS

 Lab 12: DSP/BIOS

Lab 12 Reference: Programming the Flash

Flash Memory Section Blocks

PASSWORDS
len = 0x8

space = code

BEGIN_FLASH
len = 0x2

space = code

CSM_RSVD
len = 0x76

space = code

FLASH
len = 0x3FF80
space = code

0x30 0000

0x33 FF80

0x33 FFF6

0x33 FFF8

base =

SECTIONS
{

codestart :> BEGIN_FLASH, PAGE = 0
passwords :> PASSWORDS, PAGE = 0
csm_rsvd :> CSM_RSVD, PAGE = 0

}

Lab_12.cmd

BIOS Startup Sequence from Flash Memory

0x33 7FF6

0x30 0000

0x3F F000

0x3F FFC0

Boot ROM (8Kw)

BROM vector (32w)
0x3F F9CE

Boot Code

RESET

0x3F F9CE
{SCAN GPIO}

FLASH (256Kw)

Passwords (8w)
_c_int00

LB

BIOS code Sections

“rts2800_ml.lib”

“user” code sections

_c_int00 BIOS_reset()
BIOS_init()
main ()
BIOS_start()

IDL_run()

main ()
{

……
return;

}2

3

4

5

6

7

1

C2000 Delfino Workshop - DSP/BIOS 12 - 35

Lab 12: DSP/BIOS

Table 12-2: CPU Computational Burden Results (Solution)

Case # Description CPU Load %

1 DMA processing handled in HWI. Filter inactive. 4

2 Case #1 + filter active. 15

3 DMA processing handled in SWI. Filter active.
LED blink handled in HWI.
RTA Global Host Enable disabled.

17

4 Case #3 + LED blink handled in PRD. 17

5 Case #4 + LOG_printf in SWI. 17

6 Case #5 + RTA SWI Logging enabled. 18

7 Case #6 + RTA SWI Accumulators enabled. 18

12 - 36 C2000 Delfino Workshop - DSP/BIOS

Development Support

Introduction
This module contains various references to support the development process.

Learning Objectives
Learning Objectives

TI Workshops Download Site

Signal Processing Libraries

TI Development Tools

Additional Resources
Internet

Product Information Center

C2000 Delfino Workshop - Development Support 13 - 1

Module Topics

Module Topics
Development Support ..13-1

Module Topics..13-2
TI Support Resources...13-3

C2000 Workshop Download Wiki ..13-3
controlSUITE ..13-4
C28x Signal Processing Libraries..13-4
Experimenter’s Kits...13-5
F28335 Peripheral Explorer Kit...13-6
C2000 controlCARD Application Kits..13-6
Product Information Resources ...13-7

13 - 2 C2000 Delfino Workshop - Development Support

 TI Support Resources

TI Support Resources

C2000 Workshop Download Wiki

C2000 Workshop Download Wiki

http://processors.wiki.ti.com/index.php/Training

C2000 Delfino Workshop - Development Support 13 - 3

TI Support Resources

controlSUITE

controlSUITE™

C28x Signal Processing Libraries

C2000 Signal Processing Libraries
Signal Processing Libraries & Applications Software Literature #
ACI3-1: Control with Constant V/Hz SPRC194
ACI3-3: Sensored Indirect Flux Vector Control SPRC207
ACI3-3: Sensored Indirect Flux Vector Control (simulation) SPRC208
ACI3-4: Sensorless Direct Flux Vector Control SPRC195
ACI3-4: Sensorless Direct Flux Vector Control (simulation) SPRC209
PMSM3-1: Sensored Field Oriented Control using QEP SPRC210
PMSM3-2: Sensorless Field Oriented Control SPRC197
PMSM3-3: Sensored Field Oriented Control using Resolver SPRC211
PMSM3-4: Sensored Position Control using QEP SPRC212
BLDC3-1: Sensored Trapezoidal Control using Hall Sensors SPRC213
BLDC3-2: Sensorless Trapezoidal Drive SPRC196
DCMOTOR: Speed & Position Control using QEP without Index SPRC214
Digital Motor Control Library (F/C280x) SPRC215
Communications Driver Library SPRC183
DSP Fast Fourier Transform (FFT) Library SPRC081
DSP Filter Library SPRC082
DSP Fixed-Point Math Library SPRC085
DSP IQ Math Library SPRC087
DSP Signal Generator Library SPRC083
DSP Software Test Bench (STB) Library SPRC084
C28x FPU Fast RTS Library SPRC664
C2833x/C2823x C/C++ Header Files and Peripheral Examples SPRC530

Available from TI Website ⇒ http://www.ti.com/c2000

13 - 4 C2000 Delfino Workshop - Development Support

 TI Support Resources

Experimenter’s Kits

C2000 Experimenter’s Kits
F28027, F28035, F2808, F28335

Experimenter Kits include
F28027, F28035, F2808 or F28335
controlCARD
USB docking station
C2000 Applications Software CD
with example code and full
hardware details
Code Composer Studio v3.3 with
code size limit of 32KB

Docking station features
Access to controlCARD signals
Breadboard areas
Onboard USB JTAG Emulation

JTAG emulator not required

Available through TI authorized
distributors and the TI eStore

TMDXDOCK28027

TMDXDOCK28035

TMDSDOCK2808

TMDSDOCK28335

C2834x Experimenter’s Kits
C28343, C28346

Experimenter Kits include
C2834x controlCARD
Docking station
C2000 Applications Software CD
with example code and full
hardware details
Code Composer Studio v3.3 with
code size limit of 32KB
5V power supply

Docking station features
Access to controlCARD signals
Breadboard areas
JTAG emulator required – sold
separately

Available through TI authorized
distributors and the TI eStore

TMDXDOCK28343

TMDXDOCK28346-168

C2000 Delfino Workshop - Development Support 13 - 5

TI Support Resources

F28335 Peripheral Explorer Kit

F28335 Peripheral Explorer Kit
Experimenter Kit includes

F28335 controlCARD
Peripheral Explorer baseboard
C2000 Applications Software CD
with example code and full
hardware details
Code Composer Studio v3.3 with
code size limit of 32KB
5V DC power supply

Peripheral Explorer features
ADC input variable resistors
GPIO hex encoder & push buttons
eCAP infrared sensor
GPIO LEDs, I2C & CAN connection
Analog I/O (AIC+McBSP)

JTAG emulator required – sold
separately
Available through TI authorized
distributors and the TI eStoreTMDSPREX28335

C2000 controlCARD Application Kits

C2000 controlCARD Application Kits
Digital Power

Experimenter’s
Kit

Digital Power
Developer’s

Kit

Resonant
DC/DC

Developer’s Kit

Renewable
Energy

Developer’s Kit

AC/DC
Developer’s

Kit

Kits includes
controlCARD and application
specific baseboard
Full version of Code Composer
Studio v3.3 with 32KB code size
limit

Software download includes
Complete schematics, BOM, gerber
files, and source code for board
and all software
Quickstart demonstration GUI for
quick and easy access to all board
features
Fully documented software
specific to each kit and application

See www.ti.com/c2000 for more
details
Available through TI authorized
distributors and the TI eStore

Dual Motor
Control and

PFC
Developer’s

Kit

13 - 6 C2000 Delfino Workshop - Development Support

 TI Support Resources

Product Information Resources

For More Information . . .

Phone: 800-477-8924 or 972-644-5580
Email: support@ti.com

Information and support for all TI Semiconductor products/tools
Submit suggestions and errata for tools, silicon and documents

USA - Product Information Center (PIC)

Website: http://www.ti.com

FAQ: http://www-k.ext.ti.com/sc/technical_support/knowledgebase.htm
Device information my.ti.com
Application notes News and events
Technical documentation Training

Enroll in Technical Training: http://www.ti.com/sc/training

Internet

Web: http://www-k.ext.ti.com/sc/technical_support/pic/euro.htm

Phone: Language Number
Belgium (English) +32 (0) 27 45 55 32
France +33 (0) 1 30 70 11 64
Germany +49 (0) 8161 80 33 11
Israel (English) 1800 949 0107 (free phone)
Italy 800 79 11 37 (free phone)
Netherlands (English) +31 (0) 546 87 95 45
Spain +34 902 35 40 28
Sweden (English) +46 (0) 8587 555 22
United Kingdom +44 (0) 1604 66 33 99
Finland (English) +358(0) 9 25 17 39 48

Fax: All Languages +49 (0) 8161 80 2045

Email: epic@ti.com

Literature, Sample Requests and Analog EVM Ordering
Information, Technical and Design support for all Catalog TI
Semiconductor products/tools
Submit suggestions and errata for tools, silicon and documents

European Product Information Center (EPIC)

C2000 Delfino Workshop - Development Support 13 - 7

TI Support Resources

13 - 8 C2000 Delfino Workshop - Development Support

Appendix A – Experimenter’s Kit

C2000 Delfino Workshop - Appendix A - Experimenter's Kit A - 1

Module Topics

Module Topics
Appendix A – Experimenter’s Kit ...A-1

Module Topics... A-2
F28035 controlCARD ... A-3

F28035 PCB Outline (Top View)...A-3
LD1 / LD2 / LD3..A-3
SW1..A-3
SW2..A-4
SW3..A-4

F28335 controlCARD ... A-5
F28335 PCB Outline (Top View)...A-5
LD1 / LD2 / LD3..A-6
SW1..A-6
SW2..A-7

Docking Station... A-8
SW1 / LD1..A-8
JP1 / JP2 ...A-8
J1 / J2 /J3 / J8 / J9...A-8
F2833x Boot Mode Selection ...A-9
F280xx Boot Mode Selection ...A-9
J3 – DB-9 to 4-Pin Header Cable ...A-10

A - 2 C2000 Delfino Workshop - Appendix A - Experimenter's Kit

 F28035 controlCARD

F28035 controlCARD

F28035 PCB Outline (Top View)

SW1

SW3 SW2

LD2 LD3LD1

LD1 / LD2 / LD3

SW1

C2000 Delfino Workshop - Appendix A - Experimenter's Kit A - 3

F28035 controlCARD

SW2

SW3

A - 4 C2000 Delfino Workshop - Appendix A - Experimenter's Kit

 F28335 controlCARD

F28335 controlCARD

F28335 PCB Outline (Top View)

LD2 LD3LD1SW1 SW2
PGF – Release 1.x

LD2 LD3LD1SW1 SW2
ZJZ – Release 2.x

C2000 Delfino Workshop - Appendix A - Experimenter's Kit A - 5

F28335 controlCARD

LD2 LD1LD3

BGA – Release 1.x

LD1 / LD2 / LD3

SW1

A - 6 C2000 Delfino Workshop - Appendix A - Experimenter's Kit

 F28335 controlCARD

SW2

The boot options used in this workshop are shown below:
Position 1
(GPIO-84)

Position 2
(GPIO-85)

Position 3
(GPIO-86)

Position 4
(GPIO-87) Boot Mode

0 0 1 0 SARAM

1 1 1 1 FLASH

For a complete list of boot mode options see the F2833x Boot Mode
Selection table in the Docking Station section of this appendix.

C2000 Delfino Workshop - Appendix A - Experimenter's Kit A - 7

Docking Station

Docking Station

SW1

JP1

JP2

LD1J1

J2

J3

2833x
Boot*

280xx
Boot*

J8J9

*Note: Jumper Left = 1; Jumper Right = 0

SW1 / LD1
SW1 – USB: Power from USB; ON – Power from JP1

LD1 – Power-On indicator

JP1 / JP2
JP1 – 5.0 V power supply input

JP2 – USB JTAG emulation port

J1 / J2 /J3 / J8 / J9
J1 – ControlCARD 100-pin DIMM socket

J2 – JTAG header connector

J3 – UART communications header connector

J8 – Internal emulation enable/disable jumper (NO jumper for internal emulation)

J9 – User virtual COM port to C2000 device (Note: ControlCARD would need to be
modified to disconnect the C2000 UART connection from header J3)

A - 8 C2000 Delfino Workshop - Appendix A - Experimenter's Kit

 Docking Station

Note: The internal emulation logic on the Docking Station routes through the FT2232 USB
device. By default this device enables the USB connection to perform JTAG
communication and in parallel create a virtual serial port (SCI/UART). As shipped, the
C2000 device is not connected to the virtual COM port and is instead connected to J3.

F2833x Boot Mode Selection

F280xx Boot Mode Selection

C2000 Delfino Workshop - Appendix A - Experimenter's Kit A - 9

Docking Station

J3 – DB-9 to 4-Pin Header Cable

Note: This cable is NOT included with the Experimenter’s Kit and is only shown for reference.

Pin-Out Table for Both Ends of the Cable:

DB-9 female SIL 0.1" female
Pin# Pin#
--
2 (black) 1 (TX)
3 (red) 4 (RX)
5 (bare wire) 3 (GND)

Note: pin 2 on SIL is a no-connect

DB-9 Male

A - 10 C2000 Delfino Workshop - Appendix A - Experimenter's Kit

	Important Notice
	Revision History
	Mailing Address

	C2000™ Delfino™ Workshop
	Introductions
	 C2000™ Delfino™ Workshop Outline
	C2000™ Experimenter Kit

	C28xm01.pdf
	Architecture Overview
	Introduction
	Learning Objectives
	Module Topics
	What is the TMS320C28x?
	 TMS320C28x Internal Bussing

	C28x CPU
	 Special Instructions
	 Pipeline Advantage
	 FPU Pipeline

	Memory
	Memory Map
	 Code Security Module (CSM)
	Peripherals

	Fast Interrupt Response
	C28x Mode
	Summary

	C28xm02.pdf
	Programming Development Environment
	Introduction
	Learning Objectives
	Module Topics
	Code Composer Studio
	Software Development and COFF Concepts
	 C/C++ and Debug Perspective (CCSv4)
	 CCSv4 Projects
	 Creating a New CCSv4 Project
	 CCSv4 Build Options – Compiler / Linker

	Creating a Linker Command File
	Sections
	Program Code (.text)
	Constants (.cinit – initialized data)
	Variables (.ebss – uninitialized data)

	 Linker Command Files (.cmd)
	Memory-Map Description
	Section Placement
	Summary: Linker Command File

	Lab 2: Linker Command File
	System Description
	Placement of Sections:
	Initial Boot Mode Jumper Settings
	Start Code Composer Studio and Open a Workspace
	Setup Target Configuration
	Create a New Project
	Project Build Options
	End of Exercise

	Lab 2: Solution – lab2.cmd

	C28xm03.pdf
	Peripherial Registers Header Files
	Introduction
	 Learning Objectives
	Module Topics
	Traditional and Structure Approach to C Coding
	Naming Conventions
	F2833x C-Code Header Files
	 Global Variable Definitions File
	 Mapping Structures to Memory
	Linker Command File
	 Peripheral Specific Routines

	Summary

	C28xm04.pdf
	Reset and Interrupts
	Introduction
	Learning Objectives
	Module Topics
	Reset
	Reset - Bootloader

	Interrupts
	Interrupt Processing
	Peripheral Interrupt Expansion (PIE)
	 PIE Interrupt Vector Table
	Interrupt Response and Latency

	C28xm05.pdf
	System Initialization
	Introduction
	Learning Objectives
	Module Topics
	Oscillator/PLL Clock Module
	Watchdog Timer
	General-Purpose Digital I/O
	External Interrupts
	Low Power Modes
	Register Protection
	Lab 5: System Initialization
	Create a New Project
	Project Build Options
	Modify Memory Configuration
	Setup System Initialization
	Build and Load
	Run the Code – Watchdog Reset
	Setup PIE Vector for Watchdog Interrupt
	Build and Load
	Run the Code – Watchdog Interrupt
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm06.pdf
	Analog-to-Digital Converter
	Introduction
	Learning Objectives
	Module Topics
	Analog-to-Digital Converter
	 Analog-to-Digital Converter Registers
	 Example – Sequencer “Start/Stop” Operation
	 ADC Conversion Result Buffer Register
	Signed Input Voltages
	 ADC Calibration

	Lab 6: Analog-to-Digital Converter
	Notes
	Open the Project
	Setup ADC Initialization and Enable Core/PIE Interrupts
	Build and Load
	Run the Code
	Using Real-time Emulation
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm07.pdf
	Control Peripherals
	Introduction
	Learning Objectives
	Module Topics
	PWM Review
	ePWM
	 ePWM Time-Base Sub-Module
	 ePWM Compare Sub-Module
	 ePWM Action Qualifier Sub-Module
	Asymmetric and Symmetric Waveform Generation using the ePWM
	 PWM Computation Example
	 ePWM Dead-Band Sub-Module
	ePWM PWM Chopper Sub-Module
	 ePWM Trip-Zone Sub-Module
	 ePWM Event-Trigger Sub-Module
	Hi-Resolution PWM (HRPWM)

	eCAP
	eQEP
	Lab 7: Control Peripherals
	Open the Project
	Setup Shared I/O and ePWM1
	Build and Load
	Run the Code – PWM Waveform
	Frequency Domain Graphing Feature of Code Composer Studio
	Setup eCAP1 to Measure Width of Pulse
	Build and Load
	Run the Code – Pulse Width Measurement
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm08.pdf
	Numerical Concepts
	Introduction
	Learning Objectives
	Module Topics
	Numbering System Basics
	Binary Numbers
	Examples:

	Two's Complement Numbers
	Examples:
	 To load small two's complement numbers into larger registers:
	Examples:

	Integer Basics
	 Sign Extension Mode

	Binary Multiplication
	Binary Fractions
	Representing Fractions in Binary
	Fraction Basics
	 Multiplying Binary Fractions

	Fraction Coding
	Fractional vs. Integer Representation
	Floating-Point
	IQmath
	IQ Fractional Representation
	Traditional “Q” Math Approach
	IQmath Approach

	IQmath Library
	 16 vs. 32 Bits

	Converting ADC Results into IQ Format
	AC Induction Motor Example
	IQmath Summary
	Lab 8: IQmath & Floating-Point FIR Filter
	Open the Project
	Project Build Options
	Include IQmathLib.h
	Inspect Lab_8.cmd
	Select a Global IQ value
	IQmath Single-Sample FIR Filter
	Build and Load
	Run the Code – Filtered Waveform
	Changing Math Type to Floating-Point
	Build and Load
	Run the Code – Floating-Point Filtered Waveform
	Terminate Debug Session and Close Project
	End of Exercise
	 Lab 8 Reference: Low-Pass FIR Filter

	C28xm09.pdf
	Direct Memory Access Controller
	Introduction
	Learning Objectives
	Module Topics
	Direct Memory Access (DMA)
	 Basic Operation
	 DMA Examples
	 DMA Priority Modes
	 DMA Throughput
	 DMA Registers

	Lab 9: Servicing the ADC with DMA
	Open the Project
	Inspect Lab_9.cmd
	Setup DMA Initialization
	Setup PIE Interrupt for DMA
	Build and Load
	Run the Code – Test the DMA Operation
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm10.pdf
	System Design
	Introduction
	Learning Objectives
	Module Topics
	Emulation and Analysis Block
	External Interface (XINTF)
	Flash Configuration and Memory Performance
	Flash Programming
	Code Security Module (CSM)
	Lab 10: Programming the Flash
	Open the Project
	Link Initialized Sections to Flash
	Copying Interrupt Vectors from Flash to RAM
	Initializing the Flash Control Registers
	Code Security Module and Passwords
	Executing from Flash after Reset
	Build – Lab.out
	CCS On-Chip Flash Programmer
	Running the Code – Using CCS
	Terminate Debug Session and Close Project
	Running the Code – Stand-alone Operation (No Emulator)
	Return Boot Mode Jumpers Back to Default Positions
	End of Exercise
	 Lab 10 Reference: Programming the Flash

	C28xm11.pdf
	Communications
	Introduction
	Learning Objectives
	Module Topics
	Communications Techniques
	Serial Peripheral Interface (SPI)
	SPI Transmit / Receive Sequence
	 SPI Registers
	SPI Summary

	Serial Communications Interface (SCI)
	Multiprocessor Wake-Up Modes
	 SCI Registers
	SCI Summary

	Multichannel Buffered Serial Port (McBSP)
	Inter-Integrated Circuit (I2C)
	 I2C Operating Modes and Data Formats
	I2C Summary

	Enhanced Controller Area Network (eCAN)
	 CAN Bus and Node
	Principles of Operation
	 Message Format and Block Diagram
	eCAN Summary

	C28xm12.pdf
	DSP/BIOS
	Introduction
	Learning Objectives
	Module Topics
	Introduction to DSP/BIOS
	DSP/BIOS Configuration Tool
	 1. Creating a New Memory Region (Using MEM)
	 2. Placing Sections – MEM Manager Properties
	 3. PIE Interrupts – HWI Interrupts
	 4. Running the Linker

	Scheduling DSP/BIOS Threads
	Periodic Functions
	Real-Time Analysis Tools
	Lab 12: DSP/BIOS
	Create a New Project
	Project Build Options
	Edit Lab.h File
	Inspect Lab_12.cmd
	Using the DSP/BIOS Configuration Tool
	Create New Memory Sections Using the TCF File
	Link Uninitialized Sections to RAM
	Link Initialized Sections to Flash
	BIOS Data tab
	BIOS Code tab
	Compiler Sections tab
	Set the Stack Size in the TCF File
	Copying .hwi_vec Section from Flash to RAM
	Copying the .trcdata Section from Flash to RAM
	Initializing the Flash Control Registers
	End of Exercise
	End of Optional Exercise

	C28xm13.pdf
	Development Support
	Introduction
	Learning Objectives
	Module Topics
	TI Support Resources
	C2000 Workshop Download Wiki
	 controlSUITE
	C28x Signal Processing Libraries
	 Experimenter’s Kits
	 F28335 Peripheral Explorer Kit
	C2000 controlCARD Application Kits
	 Product Information Resources

	C28xmA.pdf
	Appendix A – Experimenter’s Kit
	Module Topics
	F28035 controlCARD
	F28035 PCB Outline (Top View)
	LD1 / LD2 / LD3
	SW1
	 SW2
	SW3

	F28335 controlCARD
	F28335 PCB Outline (Top View)
	LD1 / LD2 / LD3
	SW1
	SW2

	Docking Station
	SW1 / LD1
	JP1 / JP2
	J1 / J2 /J3 / J8 / J9
	F2833x Boot Mode Selection
	F280xx Boot Mode Selection
	 J3 – DB-9 to 4-Pin Header Cable

