I3 TEXAS
INSTRUMENTS

C2000™ Delfino™ Workshop

Workshop Guide and Lab Manual

F28xDmdw O
Revision 8.1

November 2010] o
Technical Training
Organization

Important Notice

Important Notice

Texas Instruments and its subsidiaries (T1) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using Tl components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

T1 assumes no liability for applications assistance or customer product design. T1 does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute T1’s approval, warranty or
endorsement thereof.

Copyright © 2001 — 2010 Texas Instruments Incorporated

Revision History
October 2001 — Revision 1.0 August 2003 - Revision 4.21 May 2006 — Revision 6.21
January 2002 — Revision 2.0 February 2004 — Revision 5.0 February 2007 — Revision 6.22

May 2002 — Revision 3.0 May 2004 — Revision 5.1 July 2008 — Revision 7.0

June 2002 — Revision 3.1 January 2005 - Revision 5.2 October 2008 — Revision 7.1
October 2002 — Revision 4.0 June 2005 — Revision 6.0 February 2009 — Revision 7.2
December 2002 — Revision 4.1 September 2005 — Revision 6.1 July 2010 — Revision 8.0

July 2003 — Revision 4.2 October 2005 - Revision 6.2 November 2010 — Revision 8.1

Mailing Address

Texas Instruments

Training Technical Organization
7839 Churchill Way

M/S 3984

Dallas, Texas 75251-1903

ii C2000 Delfino Workshop - Introduction

C2000™ Delfino™ Workshop

C2000™ Delfino™ Workshop
C2000™ Delfino™ Workshop

Texas Instruments
Technical Training

Techrical Train
Oganzaton

" C2000 and Delfino are trademarks of Texas Instruments. Copyright© 2010 Texas Instruments. All rights reserved.

Introductions

Introductions

Name

Company

Project Responsibilities

DSP / Microcontroller Experience
Tl Processor Experience

Hardware / Software - Assembly / C

® & 6 ¢ O o o

Interests

C2000 Delfino Workshop - Introduction iii

C2000™ Delfino™ Workshop

C2000™ Delfino™ Workshop Outline

C2000™

1.
2.

Delfino™ Workshop Outline

Architecture Overview

Programming Development Environment
Lab: Linker command file

. Peripheral Register Header Files
.Reset and Interrupts
. System Initialization

Lab: Watchdog and interrupts

. Analog-to-Digital Converter

Lab: Build a data acquisition system

. Control Peripherals

Lab: Generate and graph a PWM waveform

. Numerical Concepts and 1Q Math

Lab: Low-pass filter the PWM waveform

. Direct Memory Access (DMA)

Lab: Use DMA to buffer ADC results

10. System Design

Lab: Run the code from flash memory

11. Communications
12. DSP/BIOS

Lab: Change the code to use DSP/BIOS

13. Support Resources

C2000™ Experimenter Kit

o

0000000
00000000,
00000000,

o
<}
o
o
(]
(-]
o
Q

k

Delfino™ Experimenter Kit

USB Docking Station

C2000 Delfino Workshop - Introduction

Architecture Overview

Introduction

This architecture overview introduces the basic architecture of the TMS320C28x (C28x) series of
microcontrollers from Texas Instruments. The C28x series adds a new level of general purpose
processing ability unseen in any previous DSP chips. The C28x is ideal for applications
combining digital signal processing, microcontroller processing, efficient C code execution, and
operating system tasks.

Unless otherwise noted, the terms C28x and C2833x refer to TMS320F2833x (with FPU) and
TMS320F2823x (without FPU) devices throughout the remainder of these notes. For specific
details and differences please refer to the device data sheet and user’s guide.

Learning Objectives

When this module is complete, you should have a basic understanding of the C28x architecture
and how all of its components work together to create a high-end, uniprocessor control system.

Learning Objectives

¢ Review the F28x block diagram
and device features

¢ Describe the F28x bus structure
and memory map

¢ lIdentify the various memory
blocks on the F28x

¢ Identify the peripherals available
on the F28x

C2000 Delfino Workshop - Architecture Overview 1-1

Module Topics

Module Topics

ATCRITECTUNE OVEIVIBW ...ttt bbbt b et bbbt b e bt bt e e e n e e sbe st e beebeebeeneaneennen 1-1
Yoo U] T3 o1t OSSOSO 1-2
What IS the TMSB20C28X?......ecueerieieeeieiie sttt sttt e et ste st e sbeabeere e e es e st e sbesbesbesteaneeneeneeneas 1-3

TMS320C28X INEINAL BUSSING ...ttt 1-4
L0323 1 = 1 RSOSSN 1-5
SPECIAI INSEIUCTIONS. ...ttt ettt bbb bt bt e e b b e be bt b et et enee e tas 1-6
PIPEIINGE AGVANTAGE ... e ettt et bbbttt e b et e bt bt bbb e et e b e 1-7
FPU PIPEIING. ..ttt bbbttt bt bt bt b e bt et e st e e e et e s b e sbenb e bt ebe e e et e 1-8
Y LT 1 0] oY P PP P PP TPRR 1-9
1V 1= g0 VA Y/ - o OO PR PP TPROTIN 1-9
Code Security MOAUIE (CSM)oivieeieice st e a et re e e seentesrenrenns 1-10
e 0] =T =TSSP 1-10
FaSt INTEITUDPE RESPONSE ..ottt sttt et et et e e be e s be e et e e nbneennne et 1-11
L0222y g1V o o[- PSSR 1-12
SUMIMIBIY ..ttt bbbt h e bbb bt h e s e et bR e R e bt bt h e e e bRt e Rt bt bt e e e e nenneanenns 1-13

C2000 Delfino Workshop - Architecture Overview

What is the TMS320C28x?

What is the TMS320C28x?

The TMS320C28x is a 32-bit fixed point microcontroller that specializes in high performance
control applications such as, robotics, industrial automation, mass storage devices, lighting,

optical networking, power supplies, and other control applications needing a single processor to
solve a high performance application.

Program Bus

A(190)

Boot
ROM

Sectored
Flash

RAM

DMA
6 Ch.

I DMA Bus

it
XINTF

D(31-0)

TMS320F2833x Block Diagram

]
1 1
oo]!

}

32-bit 3232 bit R-M-W
Auxiliary|[*7% *"[| atomic| [FPU
. Multiplier
Registers| ALU

Real-Time
JTAG
Emulation

PIE
Interrupt
Manager

|

<

1
1
1
. 12C >
1
1
1

Register Bus
CPU

Timers

| Data Bus

The C28x architecture can be divided into 3 functional blocks:

e CPU and busing
e Memory

e Peripherals

C2000 Delfino Workshop - Architecture Overview

What is the TMS320C28x?

TMS320C28x Internal Bussing

As with many DSP-type devices, multiple busses are used to move data between the memories
and peripherals and the CPU. The C28x memory bus architecture contains:

e A program read bus (22-bit address line and 32-bit data line)
e A data read bus (32-bit address line and 32-bit data line)

e A data write bus (32-bit address line and 32-bit data line)

F28x CPU Internal Bus Structure
Program Program Address Bus (22) .
Program-read Data Bus (32) Program
Decoder | ¥
Memory
| ; I Data-read Address Bus (32) r
| Data-read Data Bus (32)
[| Data
Registers Execution Debug Memory
ARAU MPY 32x32 FPU
SP Real-Time
ALU R-M-W
[DP |@X Atomic| | ROH JTAG
XT omic to Emulation
X?cfio P ALU R7H Peripherals
XAR7 ACC
| Register Bus / Result Bus | External
| Data/Program-write Data Bus (32) Interface
¥ I]
[Data-write Address Bus (32)

The 32-bit-wide data busses enable single cycle 32-bit operations. This multiple bus architecture,
known as a Harvard Bus Architecture enables the C28x to fetch an instruction, read a data value
and write a data value in a single cycle. All peripherals and memories are attached to the memory
bus and will prioritize memory accesses.

1-4 C2000 Delfino Workshop - Architecture Overview

C28x CPU

C28x CPU

The C28x is a highly integrated, high performance solution for demanding control applications.
The C28x is a cross between a general purpose microcontroller and a digital signal processor,
balancing the code density of a RISC processor and the execution speed of a DSP with the
architecture, firmware, and development tools of a microcontroller.

The DSP features include a modified Harvard architecture and circular addressing. The RISC
features are single-cycle instruction execution, register-to-register operations, and a modified
Harvard architecture. The microcontroller features include ease of use through an intuitive
instruction set, byte packing and unpacking, and bit manipulation.

F28x CPU + FPU

¢ MCU/DSP balancing code
density & execution time

+ 16-bit instructions for
improved code density

+ 32-bit instructions for

1 improved execution time

PIE ¢ 32-bit fixed-point CPU + FPU

Interrupt

Program Bus

s2-bit N s bl RV Manager & 32x32 fixed-point MAC

Auxiliary | |0 o Atomic) IFPU doubles as dual 16x16 MAC
3 ¢ IEEE Single—precisiolcI floating

Registers ALU
i i i b il point hardware and MAC
Register Bus Frimers # Floating-point simplifies

software development and
CpPU boosts performance

¢ Fast interrupt service time

DataBus ¢ Single cycle read-modify-write
instructions

¢ Unique real-time debugging
capabilities

The C28x design supports an efficient C engine with hardware that allows the C compiler to
generate compact code. Multiple busses and an internal register bus allow an efficient and
flexible way to operate on the data. The architecture is also supported by powerful addressing
modes, which allow the compiler as well as the assembly programmer to generate compact code
that is almost one to one corresponded to the C code.

The C28x is as efficient in DSP math tasks as it is in system control tasks. This efficiency
removes the need for a second processor in many systems. The 32 x 32-bit MAC capabilities of
the C28x and its 64-bit processing capabilities, enable the C28x to efficiently handle higher
numerical resolution problems that would otherwise demand a more expensive solution. Along
with this is the capability to perform two 16 x 16-bit multiply accumulate instructions
simultaneously or Dual MACs (DMAC). Also, some devices feature a floating-point unit.

The, C28x is source code compatible with the 24x/240x devices and previously written code can
be reassembled to run on a C28x device, allowing for migration of existing code onto the C28x.

C2000 Delfino Workshop - Architecture Overview 1-5

C28x CPU

Special Instructions
F28x Atomic Read/Modify/Write

Atomic Instructions Benefits

LOAD ¢ Simpler programming
J READ

& Smaller, faster code

| Registers ALU /MPY | | Mem
L IWA & Uninterruptible (Atomic)

N7

STORE

¢ More efficient compiler

Standard Load/Store Atomic Read/Modify/Write

DINT

MOV AL,*XAR2
AND AL,#1234h
MOV *XAR2,AL
EINT

6 words / 6 cycles

AND *XAR2,#1234h

2words /1 cycles

Atomics are small common instructions that are non-interuptable. The atomic ALU capability
supports instructions and code that manages tasks and processes. These instructions usually
execute several cycles faster than traditional coding.

1-6 C2000 Delfino Workshop - Architecture Overview

C28x CPU

Pipeline Advantage

F28x CPU Pipeline
A [FiiF2|DiiD;| RiiR,| E|W 8-stage pipeline
B FiiF, |DiD, | RIIR | E
C FiiF DD, | R|R,| E
D FiriF, |DiiD| R|R | E| W __E &G Access
E o FiiFo | Di|DofRiiRy| E| W] same address
F FiiF DD RiiR, | E| W
G Fi|F, |D;:D,|R,] “[R,| E|W
H F. |F,|D;|D, R, R,| E |W
F1: Instruction Address
F2: Instruction Content Protected Pipeline
D1: Decode Instruction . .
D2: Resolve Operand Addr & Order of results are as written in
R1: Operand Address source code
R2: Get Operand
E: CPU doing “real” work ¢ Programmer need not worry about
W: store content to memory the pipeline

The C28x uses a special 8-stage protected pipeline to maximize the throughput. This protected
pipeline prevents a write to and a read from the same location from occurring out of order.

This pipelining also enables the C28x to execute at high speeds without resorting to expensive
high-speed memories. Special branch-look-ahead hardware minimizes the latency for conditional
discontinuities. Special store conditional operations further improve performance.

C2000 Delfino Workshop - Architecture Overview 1-7

C28x CPU

FPU Pipeline
F28x CPU + FPU Pipeline

Fetch Decode Read Exe Write
F28x Pipeline | F 1 F, | D i D, RiTR,| E| W

FPUInstructionL D|R|E|EMN

Load |«

Store

0 delay slot instruction
1 delay slot instruction |«

Floating-point math operations and conversions between integer
and floating-point formats require 1 delay slot — everything else
does not require a delay slot (load, store, max, min, absolute, negative, etc.)

¢ Floating Point Unit has an unprotected pipeline

+ i.e. FPU canissuean instruction before previous instruction
has written results

& Compiler prevents pipeline conflicts
¢ Assembler detects pipeline conflicts

¢ Performance improvement by placing non-conflicting
instructions in floating-point pipeline delay slots

Floating-point operations are not pipeline protected. Some instructions require delay slots for the
operation to complete. This can be accomplished by insert NOPs or other non-conflicting
instructions between operations.

In the user’s guide, instructions requiring delay slots have a ‘p’ after their cycle count. The 2p
stands for 2 pipelined cycles. A new instruction can be started on each cycle. The result is valid
only 2 instructions later.

Three general guideslines for the FPU pipeline are:

Math MPYF32, ADDF32, 2p cycles
SUBF32, MACF32 One delay slot

Conversion 116 TOF32, F32TOI16, 2p cycles
F32TOI16R, etc... One delay slot

Everything else* Load, Store, Compare, Single cycle
Min, Max, Absolute and No delay slot
Negative value

* Note: MOV 32 between FPU and CPU registers is a special case.

1-8 C2000 Delfino Workshop - Architecture Overview

Memory

Memory

The memory space on the C28x is divided into program memory and data memory. There are
several different types of memory available that can be used as both program memory and data
memory. They include the flash memory, single access RAM (SARAM), OTP, off-chip memory,
and Boot ROM which is factory programmed with boot software routines or standard tables used
in math related algorithms.

Memory Map

The C28x CPU contains no memory, but can access memory both on and off the chip. The C28x
uses 32-bit data addresses and 22-bit program addresses. This allows for a total address reach of
4G words (1 word = 16-bits) in data memory and 4M words in program memory. Memory blocks
on all C28x designs are uniformly mapped to both program and data space.

This memory map shows the different blocks of memory available to the program and data space.

L]
Data | Program M
0x000000 MO SARAM (1Kw) 0x010000
Ox0004001=— 0~ oM (1w 0x100000 eocrved
0X000800 (1Kw) 00000 |2 Zone 6 @)
N e——— X
0x000D00 PIE Vectors' XINTF Zone 7 (1Mw)
OXOOOEOO----E----YZ)----: reserved 0x300000
0x002000 PF 0 (6Kw FLASH (256Kw)
Ox33FFF8
OX004000 1 e e 0 (akw) 0X3400 00 Tman=ot RS (B1)
0x005000 PF 3 @Kw) 0x380080 reserved
0x006000 PF 1 (@Kw)| reserved 0X380090 ADC calibration data
0x007000 x reserved
PF 2 (4Kw) 0x380400
0x008000 User OTP (1Kw)
0x009000 L0 SARAM (4Kw) 0x380800 prE—— ——
L1 SARAM (4Kw) 0x3F8000 =2ua Mapped.
0x00A000 LO SARAM (4Kw) L0, L1, 12,13
L2 SARAM (4Kw) 0x3F9000
0x00B000 L1 SARAM (4Kw) :
L3 SARAM (4Kw) 0x3FA000 CSM Protected:
0x00C000 OX3FBO00 L2 SARAM (4Kw) LO, L1, L2,L3, OTP
0x00D000 L4 SARAM (4Kw) X L3 SARAM (4Kw) FLASH, ADC CAL,
OXO0EO0QD L5 SARAM (4Kw) 0x3FC000 reserved Flash Regs in PFO
L6 SARAM (4Kw) Ox3FE000
0x00F000 L7 SARAM (4Kw) Boot ROM (8Kw) DMA Accessible:
0x010000 " O0x3FFFCO L4, L5, L6, L7,
4 Ox3FFFFF BROM Vectors (64w) XINTF Zone 0, 6, 7
. Data | Program

C2000 Delfino Workshop - Architecture Overview 1-9

Memory

Code Security Module (CSM)

Code Security Module

¢ Prevents reverse engineering and
protects valuable intellectual property

0x008000 L0 SARAM (4Kw)
0x009000 L1 SARAM (4Kw)
0x00A000 L2 SARAM (4Kw)
0x00B000 L3 SARAM (4Kw)
0x00C000
0x010000 reserved

0x300000(_ FLASH (256Kw) Dual
Ox33FFF8 128-Bit Password Mapped
0x340000 reserved

0x380400 OTP (1Kw)

0x3F8000[__LO SARAM (4Kw)
0x3F9000[L1 SARAM (4Kw)
Ox3FA000[L2 SARAM (4Kw)
0x3FB000[L3 SARAM (4Kw)

128-bit user defined password is stored in Flash
128-bits = 2128 = 3.4 x 1038 possible passwords

¢ Totry 1 password every 8 cycles at 150 MHz, it
would take at least 5.8 x 1023 years to try all
possible combinations!

¢ o

Peripherals

The C28x comes with many built in peripherals optimized to support control applications. These
peripherals vary depending on which C28x device you choose.

ePWM o SPI
eCAP e SCI
eQEP e I2C
Analog-to-Digital Converter e CAN
Watchdog Timer e GPIO
McBSP e DMA

C2000 Delfino Workshop - Architecture Overview

Fast Interrupt Response

Fast Interrupt Response

The fast interrupt response, with automatic context save of critical registers, resulting in a device
that is capable of servicing many asynchronous events with minimal latency. C28x implements a
zero cycle penalty to do 14 registers context saved and restored during an interrupt. This feature
helps reduces the interrupt service routine overheads.

F28x Fast Interrupt Response Manager

¢ 96 dedicated PIE
vectors

¢ No software decision
making required

PIE module
For 96
interrupts

=96

28x CPU Interrupt logic

—
INT1 to

context save

o)
x
N
H -
& Direct access to RAM . -
s 28x
Xeito;ls dat E[%) B 12interrupts M| 1R || 1ER || iINTM || cPU
¢ Auto flags update g .
- Register
¢ Concurrent auto g Map
[=%
g

Auto Context Save

T STO —
AH AL

PH PL

AR1 (L) | ARO (L)

DP ST1

DBSTAT| IER

PC(msw)| PC(Isw)

C2000 Delfino Workshop - Architecture Overview 1-11

C28x Mode

C28x Mode

The C28x is one of several members of the TMS320 digital signal controller/processors family.
The C28x is source code compatable with the 24x/240x devices and previously written code can
be reassembled to run on a C28x device. This allows for migration of existing code onto the
C28x.

F28x Operating Modes

Mode Type Mode Bits Compiler Option
OBJMODE AMODE
C28x Native Mode 1 0 -v28
C24x Compatible Mode 1 1 -v28 -m20
Test Mode (default) 0 0
Reserved 0 1

¢ Almost all users will run in C28x Native Mode

¢ The bootloader will automatically select C28x Native Mode after reset

& C24x compatible mode is mostly for backwards compatibility with an
older processor family

1-12 C2000 Delfino Workshop - Architecture Overview

Summary

Summary

L 2R 2R 2R 2R 2R 2R 2R 2 2R 2K 2K N 4

Summary

High performance 32-bit DSP

32x32 bit or dual 16x16 bit MAC

|IEEE single-precision floating point unit
Atomic read-modify-write instructions
Fast interrupt response manager
256Kw on-chip flash memory

Code security module (CSM)

Control peripherals

12-bit ADC module

Up to 88 shared GPIO pins

Watchdog timer

DMA and external memory interface
Communications peripherals

C2000 Delfino Workshop - Architecture Overview

Summary

1-14 C2000 Delfino Workshop - Architecture Overview

Programming Development Environment

Introduction

This module will explain how to use Code Composer Studio (CCS) integrated development
environment (IDE) tools to develop a program. Creating projects and setting building options
will be covered. Use and the purpose of the linker command file will be described.

Learning Objectives

Learning Objectives

¢ Use Code Composer Studio to:
+ Create a Project
+ Set Build Options

¢ Create a user linker command file which:
+ Describes a system’s available memory

+ Indicates where sections will be placed
in memory

C2000 Delfino Workshop - Programming Development Environment 2-1

Module Topics

Module Topics

Programming Development ENVIFONMENToiiiiiiiie e e 2-1
T LU T=TN o ot PSS 2-2
COode COMPOSEEN STULIOevivietirieiete ettt b ettt et bbb bt 2-3

Software Development and COFF CONCEPLS........oveviririiiiirieiisiirieiesie et 2-3
C/C++ and Debug Perspective (CCSVA)oviiiiiiieieestee sttt 2-5
OOV PrOJBCES. .. ettt sttt bttt b et bbb et et e b e e bt e b e e bt ekt e st ene e e e b e nbeebeebe e e entennen 2-6
Creating @ NEW CCSVA PrOJECLccueiiiieiieiiie ettt sttt bbbt eeee e 2-7
CCSv4 Build Options — COMPIEr / LINKETcviiiiiiiiiie it 2-8
Creating a Linker Command Filecccvciiiiiiieic ettt 2-9
RT3 1T TSSOSO 2-9
Linker Command FileS (2 CMA)oouiiiiiiiiiee et sne s 2-12
MEMOFY-MapP DESCHIPLION ..ottt bttt sttt bbb e e et e b saesbenbe b 2-12
SECHON PIACEMENT. ...ttt bbbt se e bt bbb e b e b e e e e nbe b sbeneas 2-13
Summary: Linker Command Filec.ccvoiiiiieie et sre s 2-14
Lab 2: Linker COmMMANT Fil........oiviiiieiie ettt sttt 2-15
Lab 2: SOIUtION — 1aD2.CMciiiiceece ettt 2-22

C2000 Delfino Workshop - Programming Development Environment

Code Composer Studio

Code Composer Studio

Software Development and COFF Concepts

In an effort to standardize the software development process, T1 uses the Common Object File
Format (COFF). COFF has several features which make it a powerful software development
system. It is most useful when the development task is split between several programmers.

Each file of code, called a module, may be written independently, including the specification of
all resources necessary for the proper operation of the module. Modules can be written using
Code Composer Studio (CCS) or any text editor capable of providing a simple ASCII file output.
The expected extension of a source file is . ASM for assembly and . C for C programs.

Code Composer Studio

Code

Development

External
Profiling i
MCU
Board

¢ Code Composer Studio includes:
« Integrated Edit/Debug GUI
« Code Generation Tools
+ DSP/BIOS

Code Composer Studio includes a built-in editor, compiler, assembler, linker, and an automatic
build process. Additionally, tools to connect file input and output, as well as built-in graph
displays for output are available. Other features can be added using the plug-ins capability

Numerous modules are joined to form a complete program by using the linker. The linker
efficiently allocates the resources available on the device to each module in the system. The
linker uses a command (. CMD) file to identify the memory resources and placement of where the
various sections within each module are to go. Outputs of the linking process includes the linked
object file (. OUT), which runs on the device, and can include a . MAP file which identifies where
each linked section is located.

The high level of modularity and portability resulting from this system simplifies the processes of
verification, debug and maintenance. The process of COFF development is presented in greater
detail in the following paragraphs.

C2000 Delfino Workshop - Programming Development Environment 2-3

Code Composer Studio

The concept of COFF tools is to allow modular development of software independent of
hardware concerns. An individual assembly language file is written to perform a single task and
may be linked with several other tasks to achieve a more complex total system.

Writing code in modular form permits code to be developed by several people working in parallel
so the development cycle is shortened. Debugging and upgrading code is faster, since
components of the system, rather than the entire system, is being operated upon. Also, new
systems may be developed more rapidly if previously developed modules can be used in them.

Code developed independently of hardware concerns increases the benefits of modularity by
allowing the programmer to focus on the code and not waste time managing memory and moving
code as other code components grow or shrink. A linker is invoked to allocate systems hardware
to the modules desired to build a system. Changes in any or all modules, when re-linked, create a
new hardware allocation, avoiding the possibility of memory resource conflicts.

Code Composer Studio: IDE

& C/C++ - Code Composer Studio (Licensed)
File Edit VYiew Mavigate Project Target Tools = Window Help

SE B 0 & . B %5 Debug [cjoet |

him|
- °| e Integrates: edit, code generation,
ol e and debug

|4 Binaries

¢ Single-click access using buttons

¢ Powerful graphing/profiling tools

¢ Automated tasks using Scripts

& Built-in access to BIOS functions

E\Ep)\‘:;;gg:ifHaadersJonBIOS.cmd ’ Based On the ECII Se open
il Lebrend source software framework

C2000 Delfino Workshop - Programming Development Environment

Code Composer Studio

C/C++ and Debug Perspective (CCSv4)

A perspective defines the initial layout views of the workbench windows, toolbars, and menus
that are appropriate for a specific type of task, such as code development or debugging. This
minimizes clutter to the user interface.

C/C++ and Debug Perspective (CCSv4)

& Each perspective provides a set of functionality
aimed at accomplishing a specific task

¢ C/C++ Perspective & Debug Perspective
» Displays views used » Displays views used for
during code development debugging
+ C/C++ project, editor, etc. + Menus and toolbars

associated with debugging,
watch and memory
windows, graphs, etc.

C2000 Delfino Workshop - Programming Development Environment

Code Composer Studio

CCSv4 Projects

Code Composer works with a project paradigm. Essentially, within CCS you create a project for
each executable program you wish to create. Projects store all the information required to build
the executable. For example, it lists things like: the source files, the header files, the target
system’s memory-map, and program build options.

CCSv4 Project

Fil= Edit Wiew Mavigate Project Target Toc

Project files contain:

b S8 ®>~ i % i
"Ti!:!'i_:_++ Frajects X =i
@ BFY ¢ List of files:
BR=de.cample [active -Debug] |
- Binaries + Source (C, assembly)
& [:7. Includes
Debug + Libraries
DSP2803%_DefaulkISR.h
by Lab.h + DSP/BIOS configuration file

L] adec

8| CodestartBranch,asm
-] Defaultlsr.c

- [5] Delaylls. asm

+ Linker command files

e}
:
:
-

I-[€] DSP2803x_GlobalvariableDefs.c L 4 PrOjeCt settin gs:
] ECap.c . q .
¢ 6] EPom.c + Build options (compiler,

S assembler, linker, and
pectic DSP/BIOS)

+ FieVect,c . i]

S Syt + Build configurations

| lg, Watchdog.c
@] DSP2803x_Headers_nonBIOS.crd
] Lab.cmd

To create a new project, you need to select the following menu items:
File &> New - CCS Project

Along with the main Project menu, you can also manage open projects using the right-click
popup menu. Either of these menus allows you to modify a project, such as add files to a project,
or open the properties of a project to set the build options.

2-6 C2000 Delfino Workshop - Programming Development Environment

Code Composer Studio

Creating a New CCSv4 Project

A graphical user interface (GUI) is used to assist in creating a new project. The four windows for

the GUI are shown in the slide below.

¢ File 2 New 2 CCS Project

1 LS Project c
Crate & e CC5 Proect. r ¥,
e
Project name: | Examgpie
] e def muk kocation
Lncation: | C:\C28e|Labn|Exampin Erowse...
2 Ce)) 4

2 Select a type of project

€

Project Type: | C2000 v
Configuratioers:
&) d00mtesy 1
) 9Riease [T

Deusiect Al |
[st il raject Trpes
st all Confipustions.
i [<o || gt | cwe |

Creating a New CCSv4 Project

3 Atlditional Project Settings

e the inter-peotect degndencies, F any. I e'
-
= Projects | CJC4+ Dndear
Rtermmd Propects
2 C))
B Hew CCS Project
Project Settings G
kgt bype: | Exmcidabie w
Progeet seltieng
evice VaME: cotlet fRers W | MSTFINIRS "
Device Endannass:
Code Genarstion tocks: | 114626 v [pa
OARIRK Foriat
Unber Command Fle; | <nice> o | [Come.. |
Funtme Support Ubrary: | 1hTR00 iy ity v (e |
(e | weat> | poh][cod

C2000 Delfino Workshop - Programming Development Environment

Code Composer Studio

CCSv4 Build Options — Compiler / Linker

Project options direct the code generation tools (i.e. compiler, assembler, linker) to create code
according to your system’s needs. When you create a new project, CCS creates two sets of build
options — called Configurations: one called Debug, the other Release (you might think of as
Optimize).

To make it easier to choose build options, CCS provides a graphical user interface (GUI) for the
various compiler and linker options. Here’s a sample of the configuration options.

CCSv4 Build Options — Compiler / Linker

¢ Compiler & Linker
+ 16 categories for code « 9 categories for linking
generation tools + Specify various link
+ Controls many aspects of options
the build process, such as: + ${PROJECT_ROOT}
+ Optimization level specifies the current

+ Target device project directory

« Compiler /assembly /link
options

There is a one-to-one relationship between the items in the text box on the main page and the GUI
check and drop-down box selections. Once you have mastered the various options, you can
probably find yourself just typing in the options.

There are many linker options but these four handle all of the basic needs.

o -0 <Filename> specifies the output (executable) filename.

o -m <Filename> creates a map file. This file reports the linker’s results.
o —c tells the compiler to autoinitialize your global and static variables.

o —x tells the compiler to exhaustively read the libraries. Without this option libraries are
searched only once, and therefore backwards references may not be resolved.

To help make sense of the many compiler options, Tl provides two default sets of options
(configurations) in each new project you create. The Release (optimized) configuration invokes
the optimizer with —03 and disables source-level, symbolic debugging by omitting —g (which
disables some optimizations to enable debug).

C2000 Delfino Workshop - Programming Development Environment

Creating a Linker Command File

Creating a Linker Command File

Sections

Looking at a C program, you'll notice it contains both code and different kinds of data (global,

local, etc.).

Sections

Global vars (.ebss) Init values (.cinit)

&
5

void main(void)

{

«long z;

Sz =Xt Y.

""-;‘

K

All code consists of
different parts called
sections

All default section
names begin with “.”

The compiler has
default section
names for initialized
and uninitialized
sections

K

Local vars (.stack) Code (.text)

In the TI code-generation tools (as with any toolset based on the COFF — Common Obiject File
Format), these various parts of a program are called Sections. Breaking the program code and
data into various sections provides flexibility since it allows you to place code sections in ROM
and variables in RAM. The preceding diagram illustrated four sections:

e Global Variables

o Initial Values for global variables
o Local Variables (i.e. the stack)

e Code (the actual instructions)

C2000 Delfino Workshop - Programming Development Environment

Creating a Linker Command File

Following is a list of the sections that are created by the compiler. Along with their description,
we provide the Section Name defined by the compiler.

Compiler Section Names

Initialized Sections

Name Description Link Location
text code FLASH
.cinit initialization values for FLASH

global and static variables

.econst constants (e.g. constint k =3;) FLASH

.switch tables for switch statements FLASH

pinit tables for global constructors (C++) | FLASH
Uninitialized Sections

Name Description Link Location
.ebss global and static variables RAM

.Sstack stack space low 64Kw RAM
.esysmem | memory for far malloc functions RAM

Note: During development initialized sections could be linked to RAM since
the emulator can be used to load the RAM

Sections of a C program must be located in different memories in your target system. This is the
big advantage of creating the separate sections for code, constants, and variables. In this way,
they can all be linked (located) into their proper memory locations in your target embedded
system. Generally, they’re located as follows:

Program Code (.text)

Program code consists of the sequence of instructions used to manipulate data, initialize system
settings, etc. Program code must be defined upon system reset (power turn-on). Due to this basic
system constraint it is usually necessary to place program code into non-volatile memory, such as
FLASH or EPROM.

Constants (.cinit —initialized data)

Initialized data are those data memory locations defined at reset.It contains constants or initial
values for variables. Similar to program code, constant data is expected to be valid upon reset of
the system. It is often found in FLASH or EPROM (non-volatile memory).

Variables (.ebss — uninitialized data)

Uninitialized data memory locations can be changed and manipulated by the program code during
runtime execution. Unlike program code or constants, uninitialized data or variables must reside
in volatile memory, such as RAM. These memories can be modified and updated, supporting the
way variables are used in math formulas, high-level languages, etc. Each variable must be
declared with a directive to reserve memory to contain its value. By their nature, no value is
assigned, instead they are loaded at runtime by the program.

C2000 Delfino Workshop - Programming Development Environment

Creating a Linker Command File

Placing Sections in Memory

Memor)
y Sections
0x00 0000 MOSARAM
———-
(0x400) | TTTTmm=-S ebss
0x00 0400 M1SARAM
< o
(0x400) Rk
=9 .stack
0x30 0000 FLASH B .cinit
(0x40000) - _
By text

Linking code is a three step process:
1. Defining the various regions of memory (on-chip SARAM vs. FLASH vs. External Memory).
2. Describing what sections go into which memory regions

3. Running the linker with “build” or “rebuild”

C2000 Delfino Workshop - Programming Development Environment 2-11

Creating a Linker Command File

Linker Command Files (.cmd)

The linker concatenates each section from all input files, allocating memory to each section based
on its length and location as specified by the MEMORY and SECTIONS commands in the linker
command file.

Linking

e Memory description
e How to place s/w into h/w

Link.cmd

.0bj —| Linker |—— .out

.map

Memory-Map Description

The MEMORY section describes the memory configuration of the target system to the linker.
The format is: Name: origin = 0x????, length = 0x????
For example, if you placed a 64Kw FLASH starting at memory location 0x3E8000, it would read:

MEMORY

FLASH: origin = 0x300000 , length = 0x040000
}

Each memory segment is defined using the above format. If you added MOSARAM and
M1SARAM, it would look like:

MEMORY
MOSARAM: origin = 0x000000 , length = 0x0400
M1SARAM: origin = 0x000400 , length = 0x0400
}

C2000 Delfino Workshop - Programming Development Environment

Creating a Linker Command File

Remember that the DSP has two memory maps: Program, and Data. Therefore, the MEMORY
description must describe each of these separately. The loader uses the following syntax to
delineate each of these:

Linker Page TI Definition

Page 0 Program
Page 1 Data
Linker Command File
MEMORY
PAGE O: /* Program Memory */
FLASH: origin = 0x300000, length = 0x40000
PAGE 1: /* Data Memory */
MOSARAM: origin = 0x000000, length = 0x400
M1SARAM: origin = 0x000400, length = 0x400
+
SECTIONS
{
.text:> FLASH PAGE = O
.ebss:> MOSARAM PAGE = 1
.cinit:> FLASH PAGE = 0
.stack:> M1SARAM PAGE = 1
by

Section Placement

The SECTIONS section will specify how you want the sections to be distributed through
memory. The following code is used to link the sections into the memory specified in the
previous example:

SECTIONS

{
.text:> FLASH PAGE O
.ebss:> MOSARAM PAGE 1
-cinit:> FLASH PAGE O
.stack:> M1SARAM PAGE 1

}

The linker will gather all the code sections from all the files being linked together. Similarly, it
will combine all “like” sections.

Beginning with the first section listed, the linker will place it into the specified memory segment.

C2000 Delfino Workshop - Programming Development Environment 2-13

Creating a Linker Command File

Summary: Linker Command File

The linker command file (.cmd) contains the inputs — commands — for the linker. This
information is summarized below:

Linker Command File Summary

¢ Memory Map Description
+ Name
+ Location
+ Size

¢ Sections Description

+ Directs software sections into named
memory regions

+ Allows per-file discrimination
+ Allows separate load/run locations

2-14 C2000 Delfino Workshop - Programming Development Environment

Lab 2: Linker Command File

Lab 2: Linker Command File
» Objective

Create a linker command file and link the C program file (Lab2.c) into the system described
below.

Lab 2: Linker Command File

0x00 0000 [MoSARAM| 0x00 BOOO (| 3SARAM
S (0x400) (0x1000)
on-chip 0x00 0400 [M1SARAM| 0x00 CO00[L4SARAM
EMO, (0x400) (0x1000)
0x00 8000 [L0SARAM| 0x00 DOOO[| 5SARAM
F28335 (0x1000) (0x1000)
0x00 9000 [1sARAM| 0Ox00 EOOO | |_gSARAM
Pt 0x1000 0x1000
System Description: (0x) (0x)
« TMS320F28335 0x00 AOOO[L2SARAM| 0x00 FOOO[L7SARAM
« All internal RAM (0x1000) (0x1000)

blocks allocated

Placement of Sections:

« .text into RAM Block LO123SARAM on PAGE 0 (program memory)
e .cinitinto RAM Block L0O123SARAM on PAGE 0 (program memory)
¢ .ebss into RAM Block LASARAM on PAGE 1 (data memory)

« .stack into RAM Block M1SARAM on PAGE 1 (data memory)

System Description
e TMS320F28335

e All internal RAM blocks allocated

Placement of Sections:
e .textinto RAM Block L0123SARAM on PAGE 0 (program memory)

e _cinitinto RAM Block LO123SARAM on PAGE 0 (program memory)
e .ebss into RAM Block L4SARAM on PAGE 1 (data memory)
e stack into RAM Block M1SARAM on PAGE 1 (data memory)

Initial Boot Mode Jumper Settings

Note: Initially, either the control CARD or the Docking Station boot mode must be configured
to “Jump to MOSARAM?” for the workshop lab exercises. Set the “2833x Boot Mode”
controlCARD switch SW2 or the Docking Station jumpers as shown in the following
table (see Appendix A for the switch or jumper position details):

C2000 Delfino Workshop - Programming Development Environment 2-15

Lab 2: Linker Command File

Position 1/ Position 2 / Position 3/ Position 4 /

Jumper 84 Jumper 85 Jumper 86 Jumper 87 MO SARAM

(GP10-84) (GP10-85) (GP10-86) (GP10-87) Boot Mode
Down -0 Down -0 Up-1 Down -0 controlCARD
Right - 0 Right-0 Left—1 Right-0 Docking Station

» Procedure

Start Code Composer Studio and Open a Workspace

1. Start Code Composer Studio (CCS) by double clicking the icon on the desktop or

selecting it from the Windows Start menu. When CCS loads, a dialog box will prompt
you for the location of a workspace folder. Use the default location for the workspace
and click OK.

This folder contains all CCS custom settings, which includes project settings and views
when CCS is closed so that the same projects and settings will be available when CCS is
opened again. The workspace is saved automatically when CCS is closed.

The first time CCS opens a “Welcome to Code Composer Studio v4” page appears.

Close the page by clicking on the CCS icon in the upper right or by clicking the X on the
“Welcome” tab. You should now have an empty workbench. The term workbench refers
to the desktop development environment. Maximize CCS to fill your screen.

The workbench will open in the “C/C++ Perspective” view. Notice the C/C++ icon in
the upper right-hand corner. A perspective defines the initial layout views of the
workbench windows, toolbars, and menus which are appropriate for a specific type of
task (i.e. code development or debugging). This minimizes clutter to the user interface.
The “C/C++ Perspective” is used to create or build C/C++ projects. A “Debug
Perspective” view will automatically be enabled when the debug session is started. This
perspective is used for debugging C/C++ projects.

Setup Target Configuration

3. Open the emulator target configuration dialog box. On the menu bar click:

Target -> New Target Configuration..

In the file name field type F28335_ ExpKit.ccxml. This is just a descriptive name
since multiple target configuration files can be created. Leave the “Use shared location”
box checked and select Finish.

In the next window that appears, select the emulator using the “Connection” pull-down
list and choose “Texas Instruments XDS100vl USB Emulator”. Inthe box
below, check the box to select “Experimenter’s Kit — Delfino F28335”.

C2000 Delfino Workshop - Programming Development Environment

Lab 2: Linker Command File

Click Save to save the configuration, then close the “Cheat Sheets” and
“F28335_ExpKit.ccxml” setup window by clicking the X on the tabs.

5. To view the target configurations, click:
View - Target Configurations

and click the plus sign (+) to the left of User Defined. Notice that the
F28335_ExpKit.ccxml file is listed and set as the default. If it is not set as the
default, right-click on the .ccxml file and select “Set as Default”. Close the Target
Configurations window by clicking the X on the tab.

Create a New Project

6. A project contains all the files you will need to develop an executable output file (- out)
which can be run on the MCU hardware. To create a new project click:

File > New - CCS Project

In the Project name field type Lab2. Uncheck the “Use default location” box. Click the
Browse... button and navigate to:

C:\C28x\Labs\Lab2\Project
Click OK and then click Next.

7. The next window that appears selects the platform and configurations. Select the
“Project Type” using the pull-down list and choose “C2000”. In the “Configurations”
box below, leave the “Debug” and “Release” boxes checked. This will create folders that
will hold the output files. Click Next.

8. In the next window, inter-project dependencies (if any) are defined. Select Next.

9. Inthe last window, the CCS project settings are selected. Change the “Device Variant”
using the pull-down list to “TMS320F28335”. Next, using the pull-down list change
the “Linker Command File” to “<none>". We will be using our own linker command
file, rather than the one supplied by CCS. The “Runtime Support Library” will be
automatically set to “rts2800_fpu32. 1ib”. This will select the runtime support
library for floating-point devices. Click Finish.

10. A new project has now been created. Notice the C/C++ Projects window contains
Lab2. The project is set Active and the output files will be located in the Debug
folder. At this point, the project does not include any source files. The next step is to add
the source files to the project.

11. To add the source files to the project, right-click on Lab2 in the C/C++ Projects
window and select:

Add Files to Project..

or click: Project - Add Files to Active Project..

C2000 Delfino Workshop - Programming Development Environment 2-17

Lab 2: Linker Command File

and make sure you’re looking in C:\C28x\Labs\Lab2\Fi les. With the “files of
type” set to view all files (* . *) select Lab2 . c and Lab2 . cmd then click OPEN. This
will add the files to the project.

12. Inthe C/C++ Projects window, click the plus sign (+) to the left of Lab2 and notice
that the files are listed.

Project Build Options

13. There are numerous build options in the project. Most default option settings are
sufficient for getting started. We will inspect a couple of the default options at this time.
Right-click on Lab2 in the C/C++ Projects window and select Properties or
click:

Project - Properties

14. A “Properties” window will open and in the section on the left be sure that “C/C++
Build” category is selected. In the “Configuration Settings” section make sure that the
Tool Settings tab is selected. Next, under “C2000 Linker” select the “Basic
Options”. Notice that .out and .map files are being specified. The .out file is the
executable code that will be loaded into the MCU. The .map file will contain a linker
report showing memory usage and section addresses in memory.

15. Next in the “Basic Options” set the Stack Size to 0x200.

16. Under “C2000 Compiler” select the “Runtime Model Options”. Notice the “Use
large memory model” and “Unified memory” boxes are checked. Also, the “Specify
floating point support” is set to fpu32. Select OK to save and close the Properties
window.

Edit the Linker Command File - Lab2.cmd

17. To open and edit Lab2 . cmd, double click on the filename in the C/C++ Projects
window.

18. Edit the Memory{} declaration by describing the system memory shown on the “Lab2:
Linker Command File” slide in the objective section of this lab exercise. Combine the
memory blocks LOSARAM, L1ISARAM, L2SARM, and L3SARAM into a single
memory block called LO123SARAM. Place this combined memory block into program
memory on page 0. Place the other memory blocks into data memory on page 1.

19. In the Sections{} area, notice that a section called .reset has already been allocated.
The .reset section is part of the rts2800_fpu32.lib, and is not needed. By putting the
TYPE = DSECT modifier after its allocation, the linker will ignore this section and not
allocate it.

20. Place the sections defined on the slide into the appropriate memories via the
Sections{} area. Save your work and close the file.

2-18 C2000 Delfino Workshop - Programming Development Environment

Lab 2: Linker Command File

Build and Load the Project

21. Three buttons on the horizontal toolbar control code generation. Hover your mouse over
each button as you read the following descriptions:

R
Button _Name Description
1 Build Incremental build and link of only modified source files
2 Rebuild Full build and link of all source files
3 Debug Automatically build, link, load and launch debug-session

22. Click the “Bui 1d” button and watch the tools run in the Console window. Check for
errors in the Prob lems window (we have deliberately put an error in Lab2.c). When
you get an error, you will see the error message (in red) in the Problems window, and
simply double-click the error message. The editor will automatically open to the source
file containing the error, and position the mouse cursor at the correct code line.

23. Fix the error by adding a semicolon at the end of the “z = x + y” statement. For
future knowledge, realize that a single code error can sometimes generate multiple error
messages at build time. This was not the case here.

24. Build the project again. There should be no errors this time.

25. CCS can automatically save modified source files, build the program, open the debug
perspective view, connect and download it to the target, and then run the program to the
beginning of the main function.

Click on the “Debug” button (green bug) or click Target -> Debug Active
Project.

Notice the Debug icon in the upper right-hand corner indicating that we are now in the
“Debug Perspective” view. The program ran through the C-environment initialization
routine in the rts2800_fpu32.lib and stopped at main() in Lab2.c.

Debug Environment Windows

It is standard debug practice to watch local and global variables while debugging code. There
are various methods for doing this in Code Composer Studio. We will examine two of them
here: memory windows, and watch windows.

26. Open a “Memory” window to view the global variable “z”.
Click: View -> Memory on the menu bar.
Type &z into the address field and select “Data” memory page. Note that you must use
the ampersand (meaning “address of””) when using a symbol in a memory window
address box. Also note that Code Composer Studio is case sensitive.
Set the properties format to “Hex 16 Bit — Tl Style Hex” in the window. This will give

you more viewable data in the window. You can change the contents of any address in
the memory window by double-clicking on its value. This is useful during debug.

C2000 Delfino Workshop - Programming Development Environment 2-19

Lab 2: Linker Command File

27.

28.

29.

Notice the “Local(1)” window automatically opened and the local variables x and y are
present. The local window will always contain the local variables for the code function
currently being executed.

(Note that local variables actually live on the stack. You can also view local variables in
a memory window by setting the address to “SP” after the code function has been
entered).

We can also add global variables to the watch window if desired. Let's add the global
variable “z”.

Click the “Watch (1)” tab at the top of the watch window. In the empty box in the
“Name” column, type z and then enter. An ampersand is not used here. The watch
window knows you are specifying a symbol. (Note that the watch window can be
manually opened by clicking: View -> Watch Window on the menu bar).

Check that the watch window and memory window both report the same value for “z”.
Trying changing the value in one window, and notice that the value also changes in the
other window.

Single-stepping the Code

Click the “Local (1) tab at the top of the watch window. Single-step through main()
by using the <F5> key (or you can use the Step Into button on the horizontal
toolbar). Check to see if the program is working as expected. What is the value for “z”
when you get to the end of the program?

Terminate Debug Session and Close Project

30. The Terminate Al button will terminate the active debug session, close the

debugger and return CCS to the “C/C++ Perspective” view.

Click: Target > Terminate All orusethe Terminate All icon: & -

Close the Terminate Debug Session “Cheat Sheet” by clicking on the X on the tab.

31. Next, close the project by right-clicking on Lab2 in the C/C++ Projects window

and select Close Project.

End of Exercise

C2000 Delfino Workshop - Programming Development Environment

Lab 2: Linker Command File

C2000 Delfino Workshop - Programming Development Environment 2-21

Lab 2: Solution — lab2.cmd

Lab 2: Solution —lab2.cmd

Lab 2: Solution - lab2.cmd
MEMORY
PAGE O: /* Program Memory */
LO123SARAM: origin = 0x008000, Ilength = 0x4000
PAGE 1: /* Data Memory */
MOSARAM: origin = 0x000000, Hlength = 0x0400
M1SARAM: origin = 0x000400, Hlength = 0x0400
LASARAM: origin = 0x00C000, UlIength = 0x1000
L5SARAM: origin = 0x00D0O00, HNength = 0x1000
L6SARAM: origin = OxXO0EO00, UlIength = 0x1000
L7SARAM: origin = Ox00FO00, Hlength = 0x1000
}
SECTIONS
{
.text: > LO123SARAM PAGE = O
.ebss: > L4SARAM PAGE = 1
.cinit: > LO123SARAM PAGE = 0
.stack: > M1SARAM PAGE = 1
.reset: > LO123SARAM PAGE = 0, TYPE = DSECT
}

2-22 C2000 Delfino Workshop - Programming Development Environment

Peripherial Registers Header Files

Introduction

The purpose of the DSP2833x C-code header files is to simplify the programming of the many
peripherals on the C28x device. Typically, to program a peripheral the programmer needs to
write the appropriate values to the different fields within a control register. In its simplest form,
the process consists of writing a hex value (or masking a bit field) to the correct address in
memory. But, since this can be a burdensome and repetitive task, the C-code header files were
created to make this a less complicated task.

The DSP2833x C-code header files are part of a library consisting of C functions, macros,
peripheral structures, and variable definitions. Together, this set of files is known as the ‘header
files.’

Registers and the bit-fields are represented by structures. C functions and macros are used to
initialize or modify the structures (registers).

In this module, you will learn how to use the header files and C programs to facilitate
programming the peripherals.

Learning Objectives

Learning Objectives

¢ Understand the usage of the F2833x
C-Code Header Files

¢ Be able to program peripheral
registers

¢ Understand how the structures are
mapped with the linker command file

C2000 Delfino Workshop - Peripheral Registers Header Files 3-1

Module Topics

Module Topics

Peripherial RegiSters Header FIleS ..o e 3-1
T LU T=TN o ot PSS 3-2
Traditional and Structure Approach t0 C COUINGccviirieiiirieiie et 3-3
NAMING CONVENTIONS ...ttt sttt etk bbbt b et et b et n et 3-6
F2833X C-Coa8 HEAUET FIlESoeiieiee ettt bttt enae e 3-7

Peripheral StruCtUre N FIlEoouo i b 3-7
Global Variable Definitions Filcooiiiiiii e e 3-9
MappPiNg SErUCTUIES 10 IMEBMOIY ...ttt bbb ettt se b bbb nae e 3-10
LiNKer COMMANG FlB.......cviiiiiiiiieiie ettt sttt ntenes 3-10
Peripheral SPECITIC ROULINES.......cciciiiiic et be e e e e besreare s 3-11
RS04 YOS 3-12

3-2 C2000 Delfino Workshop - Peripheral Registers Header Files

Traditional and Structure Approach to C Coding

Traditional and Structure Approach to C Coding

Traditional Approach to C Coding

#define ADCTRL1 (volatile unsigned int *)0x00007100
#define ADCTRL2 (volatile unsigned int *)0x00007101

void main(void)

{
*ADCTRL1 = 0x1234; //write entire register
*ADCTRL2 |= 0x4000; //reset sequencer #1
}
Advantages - Simple, fast and easy to type

- Variable names exactly match register names (easy
to remember)

Disadvantages - Requires individual masks to be generated to
manipulate individual bits

- Cannot easily display bit fields in debugger window
- Will generate less efficient code in many cases

Structure Approach to C Coding

void main(void)

{
AdcRegs.ADCTRL1.all = 0x1234; //write entire register
AdcRegs.ADCTRL2.b1t.RST_SEQ1 = 1; //reset sequencer #1

}

Advantages - Easy to manipulate individual bits

Watch window is amazing! (next slide)
Generates most efficient code (on C28x)

Can be difficult to remember the structure names
(Editor Auto Complete feature to the rescue!)

- More to type (again, Editor Auto Complete feature
to the rescue)

Disadvantages

C2000 Delfino Workshop - Peripheral Registers Header Files 3-3

Traditional and Structure Approach to C Coding

| 8 Core Registers | i Core Redisters
it aoc 2 3t anc
&) ADCRESLLT @ apceTLy Dx40E4
&% svscTRL @ apceTiz 0x0000
& cam @ apcnTrLG 0x0001
® i P [apciwTFLGAR 0x000D
® i CPUTIMER [apcinTove 0x0001
&4 DEvEMU @ ADCINTOVFCLR Dx0000
i SVSPWRCTRL @ mTsELINZ 0x0060
i ecana @ TSELIN4 0x0000
® B ecana_tam @ mrseLsne 00000
&4 ecana_mors @ mrseLzhe 020000
&4 ecana_moto @ mirseLsnio 020000
& eCANA_MBX_CONTENT @ socericTL 020000
K} ecapt (3 ADCSAMPLEMODE 0x0000
&4 compy [ADCINTSOCSELL 0xD000
it compz (3 apcInTsocsELz 0x000D
i compa [0 ADCSOCFLGL 0x0000
il et [ADCSOCFRCI 0x0000
i} w2 [ADCSOCOVFL 0x0000
S} Pz [ADCSOCOVFCIRT 0x000D
= 5} ePwm4 (3 apcsococtL 0x3806
B i} ePwMs 3 apcsocterL 0x0000
B & ePwMe @ apcsoczeTL 0x0000
i epwn? @ apcsocacTL 0x00an
it eqeP1 [apcsocacTL 0x0000
it Lua (3 apcsocseTL 0x0000
& FLasH @ apcsocecTL 0x0000
& T @ apcsocrTL 00000
kT @ apcsocacTL 020000
T fi GPIO [@ ApcsocecTL 020000
£ G 1zca @ apcsoctocTl 020000
e @ apcsoctict 020000
it scan (@ apcsocizerl oxoooo
Hif sp1a (@ apcsocizcrl ox0000
& SPIB (@ ADCSOC14CTL 0x0000 e

Address Format -
a Matural []
0x00007100@0ata union ADCCTLL_REG Matural
0x00007100@Data unsignied in: Hexadecimal

0x00007100@0ata struck ADCCTLL_BITS Natural
0x00007100@0ata (unsigned int: Natural
o 0000071 00@Data (unsigned int:14:1) Natural
9+ INTPULSEFOS 1 (000071 00@Data (unsigned int: 13:1) Natural
©): ADCREFSEL O 0x00007100@Data (unsigned int:12:1) Natural
0 0x00007100@Data (unsigned int:11:1) Natural
1 0+00007100@Data (unsigned int; 10:1) Matural
1 0x00007100@Data (unsigned int:9:1) Matural
9= ADCPWDN 1 0x00007100@0ata (unsigried int:8:1) Matural
©9: ADCESYCHN 0 0x00007100@0ata (unsigried ini:3:5) Matural
9+ ADCBSY o 0x00007100@0ata (unsignied ink:2:1) Natural
1 0x00007100@Daka (unsigned int: 1:1) Matural
o 000071 00@Data (unsigned int:0:1) Natural
0X00007101 @Data 000007101 @Data unsigned int{ 3] Natural
- {o} 0:00007104@Data urion ADCINT_REG Natural
1 ADCINTFLGCLR fo} 0:00007105@Data urion ADCINT _REG Natural
(= ADCINTOWF fo} 0x00007106@Data urion ADCINT_REG Matural
[# (= ADCINTOWFCLR fod 0x00007107@0ata urion ADCINT_REG Matural
(= INTSELINZ {ok 000007 108@0ata union INTSELLNZ_REG Matural
INTSEL3N4 Lo} 0x00007109@0ata urion INTSEL3N4_REG Natural
Lk 0x0000710A@Data urion INTSELSNG_REG Nakural
Lok 0x0000710B@Data uriion INTSEL7NG_REG Natural
{} (000071 0C@Data urion INTSELGK10_REG Natural
0X00007100@Data 0x0000710D@Data unsigned int{3] Naturl
[(® SOCPRICTL Lo} 0:00007110@Data union SOCPRICTL_REG Natural
69 psvdd 0 0x00007111@Data unsigned ink Natural
(= ADCSAMPLEMODE {d 0x00007112@Data union ADCSAMPLEMODE_REG Matural
4= rsvdd a 0+00007113@Data unsigied nk Matural
[(= ADCINTSOCSELL Lok 0x00007114@Data urion ADCINTSOCSELL_REG Matural
Lok 0x00007115@0ata uriion ADCINTSOCSELZ_REG Natural
0x000071 L6@Data 0x00007116@0ata unsigned int{ 2] Nakural
Lk 0x00007118@0ata union ADCSOC_REG Natural
[000071 19@Data unsigned ink Natural

[(# ADCSOCFRCL {4 0x0000711A@Data union ADCSOC_REG Natural -

C2000 Delfino Workshop - Peripheral Registers Header Files

Traditional and Structure Approach to C Coding

Is the Structure Approach Efficient?

The structure approach enables efficient compiler use of
DP addressing mode and C28x atomic operations

C Source Code Generated Assembly Code*
// Stop CPU TimerO MOVW DP, #0030
CpuTimerORegs.TCR.bit.TSS = 1; OR @4, #0x0010
// Load new 32-bit period value MOVL XAR4, #0x010000
CpuTimerORegs.PRD.all = 0x00010000; MOVL @2, XAR4
// Start CPU TimerO AND @4, #OXFFEF
CpuTimerORegs.TCR.bit.TSS = 0;

- Easy to read the code w/o comments
y 5 words, 5 cycles

- Bit mask built-in to structure
You could not have coded this example any more efficiently with hand assembly!

* C28x Compiler v5.0.1 with -g and either -01, -02, or -03 optimization level

Compare with the #define Approach

The #define approach relies heavily on less-efficient pointers for
random memory access, and often does not take advantage of
C28x atomic operations

C Source Code Generated Assembly Code*
// Stop CPU TimerO MOV @AL,*(0:0x0C04)
*TIMEROTCR |= 0x0010; ORB AL, #0x10
MOV *(0:0x0C04), @AL
// Load new 32-bit period value MOVL XAR5, #0x010000
*TIMEROTPRD32 = 0x00010000; MOVL XAR4, #0x000COA

MOVL *+XAR4[0], XAR5
// Start CPU TimerO

* = = MOV @AL, *(0:0x0C04
TIMEROTCR &= OXFFEF; oy AL #SxFFEF)
MOV *(0:0x0C04), @AL
- Hard to read the code w/o comments 9 words, 9 cycles

- User had to determine the bit mask

* C28x Compiler v5.0.1 with -g and either -01, -02, or -03 optimization level

C2000 Delfino Workshop - Peripheral Registers Header Files 3-5

Naming Conventions

Naming Conventions

The header files use a familiar set of naming conventions. They are consistent with the Code
Composer Studio configuration tool, and generated file naming conventions

Structure Naming Conventions

¢ The DSP2833x header files define:
+ All of the peripheral structures
+ All of the register names
+ All of the bit field names
+ All of the register addresses

PeripheralName.RegisterName.all /I Access full 16 or 32-bit register
PeripheralName.RegisterName.half.L SW /I Access low 16-bits of 32-bit register
PeripheralName.RegisterName.half. MSW /I Access high 16-bits of 32-bit register

PeripheralName.RegisterName.bit.FieldName // Access specified bit fields of register

Notes: [1] “PeripheralName” are assigned by Tl and found in the DSP2833x header files.
They are a combination of capital and small letters (i.e. CpuTimerORegs).

[2] “ RegisterName” are the same names as used in the data sheet.
They are always in capital letters (i.e. TCR, TIM, TPR,..).

[3] “FieldName” are the same names as used in the data sheet.
They are always in capital letters (i.e. POL, TOG, TSS,..).

Editor Auto Complete to the Rescue!

B cici v - Ade.e - Code Composer Studio (Licensed)
e Lok Wew Naogets Froject Jooks Target Sinpts Window Help

bl & Ba i AR N R [Frpeban |G cices

-

knu
LdcRegs. A

ote that Al
asm (" NOPT)
amm{® MOPT)

AdcRegs. ADCCTLL, D1t HESET = 1

AdcRegs.ADCCTL1.all = OxO00E4:

DelayUs= (1000} ; Vait 1 ms after pover-up before using the ADC

C0 monfiguracisr
AdcRegs, ADCSANPLENODE.iv, SINULEND = O: FCCO in single ssaple mode [va. simultapecus mode)

AdeRegn. ADCSOCOCTL . bit, TRIGIEL = 72
AdcRegs. ADCIOCOCTL.bit CHEEL = O
AdcRegs. APCIOCOCTL.biL ACOPS = 6:

C2000 Delfino Workshop - Peripheral Registers Header Files

F2833x C-Code Header Files

F2833x C-Code Header Files

The C-code header files consists of .h, ¢ source files, linker command files, and other useful
example programs, documentations and add-ins for Code Composer Studio.

DSP2833x Header File Package

(http://lwww.ti.com, literature # SPRC530)

¢ Contains everything needed to use the
structure approach

¢ Defines all peripheral register bits and
register addresses

¢ Header file package includes:

+ \DSP2833x_headers\include -> .h files

+ \DSP2833x_headers\cmd - linker .cmd files
+ \DSP2833x_headers\gel - .gel files for CCS
+ \DSP2833x_examples - CCS3 examples
+ \DSP2833x_examples_ccsv4 -> CCS4 examples
+ \DSP2823x_examples - CCS3 examples
+ \DSP2823x_examples_ccsv4 > CCS4 examples
+ \doc - documentation

A peripheral is programmed by writing values to a set of registers. Sometimes, individual fields
are written to as bits, or as bytes, or as entire words. Unions are used to overlap memory
(register) so the contents can be accessed in different ways. The header files group all the
registers belonging to a specific peripheral.

A DSP2833x_Peripheral.gel GEL file can provide a pull down menu to load peripheral data
structures into a watch window. Code Composer Studio can load a GEL file automatically. To
include fuctions to the standard F28335.gel that is part of Code Composer Studio, add:

GEL_LoadGel(“base_path/gel/DSP2833x_Peripheral.gel’)
The GEL file can also be loaded during a Code Composer Studio session by clicking:

File > Load GEL..

Peripheral Structure .h File

The DSP2833x_Device.h header file is the main include file. By including this file in the .c
source code, all of the peripheral specific .h header files are automatically included. Of course,
each specific .h header file can included individually in an application that do not use all the
header files, or you can comment out the ones you do not need. (Also includes typedef
statements).

C2000 Delfino Workshop - Peripheral Registers Header Files 3-7

F2833x C-Code Header Files

*

Peripheral Structure .h files @or2

Contain bits field structure definitions for each peripheral register
DSP2833x_Adc h

 ADC Individual Register Bit Definitions */
struct ADCTRL1_BITS { //bits description
Uint16 rsvdi:4; /I 3:0reserved
Uintl6 SEQ_CASC:1; // 4 Cascaded sequencer mode
Your C-source file (e.g., Adc.c) Uint16 SEQ_OVRD:1 // 5 Sequencer override
#include "DSP2833x Deviceh" Uint16 CONT_RUN:1; // 6 Continuous run
B Uintl6 CPS:1; /17 ADC core clock prescaler
Void InitAdc(void) Uint16 ACQ_PS:4; /I'11:8 Acquisition window size
{ Uint16 SUSMOD:2; //13:12 Emulation suspend mode
 Reset the ADC module */ Uint1l6 RESET:1; /I'14 ADC reset
AdcRegs . ADCTRL1.bit.RESET = 1; - uint16 rsvd2:1; /1 15 reserved

b

I*configure the ADC register */
AdcRegs.ADCTRL1.all = 0x0710; I Allow access to the bit fields or entire register */

e union ADCTRL1_REG {
uintl6é all;
struct ADCTRL1_BITS bit;

h

/I ADC External References & Function Declarations:
extern volatile struct ADC_REGS AdcRegs;

Peripheral Structure .h files @or2

¢ The header file package contains a .h file
for each peripheral inthe device

DSP2833x_Device.h DSP2833x_DevEmu.h DSP2833x_SysCtrl.h

DSP2833x_PieCtrl.h DSP2833x_Adc.h DSP2833x_CpuTimers.h
DSP2833x_ECan.h DSP2833x_ECap.h DSP2833x_EPwm.h
DSP2833x_EQep.h DSP2833x_Gpio.h DSP2833x_l2c.h
DSP2833x_Sci.h DSP2833x_Spi.h DSP2833x_Xintrupt.h

DSP2833x_PieVect.h DSP2833x_Defaultlsr.h DSP2833x_DMA.h
DSP2833x_Mchsp.h DSP2833x_Xintf.h

¢ DSP2833x_Device.h
+ Main include file (for ‘2833x and ‘2823x devices)
+ Will include all other .h files

+ Include this file (directly or indirectly)
in each source file:

#include ‘““DSP2833x_Device.h”

C2000 Delfino Workshop - Peripheral Registers Header Files

F2833x C-Code Header Files

Global Variable Definitions File

With DSP2833x_GlobalVariableDefs.c included in the project all the needed variable definitions
are globally defined.

Global Variable Definitions File
DSP2833x_GlobalVariableDefs.c

¢ Declares a global instantiation of the structure
for each peripheral

¢ Each structure is placed in its own section
using a DATA_SECTION pragma to allow
linking to the correct memory (see next slide)

DSP2833x_GlobalVariableDefs.c
#include "DSP2833x_Device.h"

#pragma DATA_SECTION(AdcRegs,"AdcRegsFile");
volatile struct ADC_REGS AdcRegs;

¢ Add this file to your CCS project:
DSP2833x_GlobalVariableDefs.c

C2000 Delfino Workshop - Peripheral Registers Header Files 3-9

F2833x C-Code Header Files

Mapping Structures to Memory

The data structures describe the register set in detail. And, each instance of the data type (i.e.,
register set) is unique. Each structure is associated with an address in memory. This is done by
(1) creating a new section name viaa DATA_SECTION pragma, and (2) linking the new section
name to a specific memory in the linker command file.

Linker Command Files for the Structures
DSP2833x_nonBIOS.cmd and DSP2833x_BIOS.cmd

DSP2833x_GlobalVariableDefs.c

& Links each structure to

#include "DSP2833x_Device.h"

= #pragma DATA_SECTION(AdcRegs," AdcRegsFile");
volatile struct ADC_REGS AdcRegs;

DSP2833x_Headers_nonBIOS.cmd

the address of the
peripheral using the
structures named
section

4 non-BIOS and BIOS
versions of the .cmd file

MEMORY

e o Add one of these files to
ADC: origin=0x007100, length=0x000020 your CCS project:

y DSP2833x_nonBIOS.cmd

SECTIONS or

t .- DSP2833x_BIOS.cmd
AdcRegsFi le: > ADC PAGE = 1

,

Linker Command File

When using the header files, the user adds the MEMORY regions that correspond to the
CODE_SECTION and DATA_SECTION pragmas found in the .h and global-definitons.c file.

The user can modify their own linker command file, or use the pre-configured linker command
files such as EzDSP_RAM _Ink.cmd or F28335.cmd. These files have the peripheral memory
regions defined and tied to the individual peripheral.

C2000 Delfino Workshop - Peripheral Registers Header Files

F2833x C-Code Header Files

Peripheral Specific Routines

Peripheral Specific C functions are used to initialize the peripherals. They are used by adding the

appropriate .c file to the project.

| Ble Edt view Favortes Took Help

(W C:\ tidcs',c28\DSP2833x',v110\DSP2833x_examples

Peripheral Specific Examples

¢ Example projects for each peripheral
¢ Helpful to get you started

& Separate projects for ‘2833x and ‘2823x
+ '2823x projects configured for no FPU

Q= -O-7 9 X

BIRICI=aE A P

Folders

| Address [c:\tides|c281D5P2633x 1 10\D5P2833_examples

ERE

[Sadc_dma;
|_Jadc_seq_owd_test
| hadc_seqmode_test
| Jadc_soc

| _Z)cpu_timer

| Zydma_ram_to_ram
_dma_xintf_to_ram

| Zhecan_a_to_b_xmit

|C5)epwm_timer_interrupts
) epwnn_trip_zaone
|Z)epwm_up_aq

|2 epwm_updown_ag

| heqep_freqeal
|Z)eqep_pos_speed

| external_intermipt

|S)flash

|\ yecan_back2back IFpu

| hecap_apwm [)gpio_setup
|\ hecap_capture_pwm |2 gpin_toggle
|_Jepwm_deadband I hrpwm

Iyhrpesm_sfo

I hrpuwmn_sfo_vs
|yhrpesn_slider
ISizc_eeprom

I lpm_haltwake
I2lprm_idlewake:

I lprm_standbywake
|ymchsp_loopback
Iymebsp_loopback_dma
[ymehsp_laophack_inkerrupts
I2ymchsp_spi_loopback
|)sci_autobaud

|sci_echoback
\)scia_loopback
|Zscia_loophack_inkerrupks
(Zspi_toopback

| Zhspi_loopback_interrupts
[CSysw_prioritized_inkerrupts
(_timed_led_blink
|Zywatchdog

(ZinkF _run_from

45 objects

0 bytes

|4 My Computer 4

C2000 Delfino Workshop - Peripheral Registers Header Files

Summary

Summary

Peripheral Register Header Files
Summary

Easier code development

Easy to use

Generates most efficient code

Increases effectiveness of CCS watch window

Tl has already done all the work!

+ Use the correct header file package for your device:
+ F2803x # SPRC892
+ F2802x # SPRC832
+ F2833x and F2823x # SPRC530
+ F280x and F2801x # SPRC191
+ F2804x # SPRC324
+ F281x # SPRC097

Go to http:/Mww.ti.com and enter the literature number in the keyword search box

* 6 6 0 o

3-12 C2000 Delfino Workshop - Peripheral Registers Header Files

Reset and Interrupts

Introduction

This module describes the interrupt process and explains how the Peripheral Interrupt Expansion
(PIE) works.

Learning Objectives
Learning Objectives

¢ Describe the F28x reset process
and post-reset device state

¢ Listthe event sequence during an
interrupt

¢ Describe the F28x interrupt
structure

C2000 Delfino Workshop - Reset and Interrupts 4 -

Module Topics

Module Topics

RESET AN INTEITUPDLS ...t bttt b et bbbt b et e b et bt st e neenee e nas 4-1
T LU T=TN o ot PSS 4-2
=] TSP RRTRTOTRSPUPRURPRN 4-3

T T= A = o To 4 0T U [T PSSR 4-3
INEEITUDES .ot b bt e e e r bR R b e e et r e r e E e 4-5
INEEITUDPT PrOCESSING ...ccueeueeteete sttt ettt sttt e bbbt b e bt e b et et nee e b e nbeebe et e e neenee e eas 4-5
Peripheral Interrupt EXPansion (PIE)cooiiiiiiiiiee et 4-7
PIE INErrupt VECIOr TaDIE ... e bbb 4-9
Interrupt RESPONSE AN LALENCYcveveiiiiiiieite ettt sttt st et be s be e ne e e e e e besresre e e 4-10

4-2 C2000 Delfino Workshop - Reset and Interrupts

Reset

Reset

Reset Sources

Watchdog Timer

XRS pin active

F28x Core

XRS

To XRS pin

Reset - Bootloader

Reset
OBJMODE =0 AMODE =0
ENPIE=0 INTM=1

Reset vector fetched
from boot ROM

0x3F FFCO

Reset — Bootloader

Bootloader sets

OBJMODE =1
AMODE =0

Boot determined by
state of GPIO pins

Execution Bootloading
Entry Point Routines
FLASH SCI-A / SPI-A
MO SARAM 12C
OoTP eCAN-A
XINTF McBSP-A
GPIO / XINTF

C2000 Delfino Workshop - Reset and Interrupts

Reset

Bootloader Options

GPIO pins
87/ 86/ 85/ 84/
XA15 XA14 XA13 XA12

jump to FLASH address 0x33 FFF6

bootload code to on-chip memory via SCI-A

bootload external EEPROM to on-chip memory via SPI-A
bootload external EEPROM to on-chip memory via I12C
Call CAN_Boot to load from eCAN-A mailbox 1

bootload code to on-chip memory via McBSP-A

jump to XINTF Zone 6 address 0x10 0000 for 16-bit data
jump to XINTF Zone 6 address 0x10 0000 for 32-bit data
jump to OTP address 0x38 0400

bootload code to on-chip memory via GPIO port A (parallel)
bootload code to on-chip memory via XINTF (parallel)
jump to MO SARAM address 0x00 0000

O 00 ORRPRRRREERRR
R PP PO OOORRERPR
OOFR P OOREREROOLHRLR
OFRr OFRPR OFR OFR O FR O R

Reset Code Flow - Summary

0x00 0000 0x00 0000
MO SARAM (1Kw)

XINTF Zone 6
0x38 0400 OTP (1Kw) 8(160/ 5(0362
x1

0x30 0000 | s
! FLASH (256Kw)
: S — 0X33 FF FG

Execution Entry
Point Determined p==-,

Ox3F EO00| Boot ROM (8Kw)

Boot Code By GPIO Pins
Ox3F FOCE I
BROM vector (64w) i
RESET - 0x3F FFCO 0x3F FOCE Bootloading
Routines

(SCI-A, SPI-A, 12C,
L e e €CAN-A, McB'SP-A
GPIO, XINTF)

4-4 C2000 Delfino Workshop - Reset and Interrupts

Interrupts

Interrupts

Interrupt Sources

Internal Sources

TINT2
TINTL F28x CORE
TINTO ———— XRS
ePWM, eCAP, - NMI
eQEP, ADC, SCI, e INT1
SPI, 12C, eCAN, e INT2

EBEIR, LY D Expansion) a INT3

External Sources :
__________ INT12
} INT13
XINTL — XINT7 ————
| INT 14
TZx ‘
XRS :
XNMI_XINT13 —

Interrupt Processing

Maskable Interrupt Processing

Conceptual Core Overview

Core (IFR) (IER) (INTM)
Interrupt “Latch” “Switch” *“Global Switch”
W‘rl E ([g [
N2 ——fo]——~"" F28x
. . . " Core
INT14 [1] .

¢ Avalid signal on a specific interrupt line causes the latch
to display a“1” in the appropriate bit

¢ If theindividual and global switches are turned “on” the
interrupt reaches the core

C2000 Delfino Workshop - Reset and Interrupts 4-5

Interrupts

Interrupt Flag Register (IFR)

15 14 13 12 11 10 9 8
|RTOSINT|DLOGINT| INT14 | INT13 | INT12 | INT11 | INTL0 | INTO |
7 6 5 4 3 2 1 0
| INT8 | INT7 | INT6 | INTS | INT4 | INT3 | INT2 | INTL |

Pending: |IFRg;=1
Absent : IFRg;; =0

*** Manual setting/clearing IFR ***/

extern cregister volatile unsigned int IFR;
IFR |= 0x0008; /lset INT4 in IFR
IFR &= OxFFF7; /lclear INT4 in IFR

& Compiler generates atomic instructions (non-interruptible) for setting/clearing IFR
< If interrupt occurs when writing IFR, interrupt has priority

¢ IFR(bit) cleared when interrupt is acknowledged by CPU

& Register cleared on reset

Interrupt Enable Register (IER)

15 14 13 12 11 10 9 8
|RTOSINT|DLOGINT| INT14 | INT13 | INT12 | INT11 | INT10 | INT9 |
7 6 5 4 3 2 1 0
| INT8 | INT7 | INT6 | INT5 | INT4 | INT3 | INT2 | INTL |

Enable: Set IER g; =1
Disable: Clear IERg;=0

f** Interrupt Enable Register ***/

extern cregister volatile unsigned int IER;
IER |= 0x0008; /lenable INT4 in IER
IER &= OXFFF7; /ldisable INT4 in IER

* Compller 9enerates atomic instructions (non-interruptible)
for setting/clearing IER

& Register cleared on reset

C2000 Delfino Workshop - Reset and Interrupts

Interrupts

Interrupt Global Mask Bit

Bit 0
ST1 INTM

¢ INTM used to globally enable/disable interrupts:
+ Enable: INTM=0
+ Disable: INTM = 1 (reset value)

¢ INTM modified from assembly code only:

[*** Global Interrupts ***/
asm(* CLRC INTM”); /lenable global interrupts
asm(* SETC INTM”); //disable global interrupts

Peripheral Interrupt Expansion (PIE)

Peripheral Interrupt Expansion - PIE

Interrupt Group 1

PIE module for 96 Interrupts

PIEIFR1 PIEIER1

8 INT1.x interrupt group INTL1 . 1
Il INT2.x interrupt group -
. INTL.2—{ 0] —+" 4+
INT3.x interrupt group . . L INTL
INT4.x interrupt group o .
INT5.x interrupt group INTL8 . _/.__

INT6.x interrupt group

INT7.x interrupt group

8L

28x Core Interrupt logic

INT8.x interrupt group

INT9.x interrupt group INT1 - INT12

Peripheral Interrupts 12x8

INT10.x interrupt group | | 12 |nterrupts o ; 28x
=| | <| |Core

INT11.x interrupt group

INT12.x interrupt group

INTL3 (TINT1/XINT13)
INT14 (TINT2)

C2000 Delfino Workshop - Reset and Interrupts

Interrupts

F2833x PIE Interrupt Assignment Table

INTx.8 INTx.7 INTx.6 | INTx.5 | INTx.4 INTx.3 INTx.2 | INTx.1

INTL | WAKEINT| TINTO | ADCINT | XINT2 | XINTL SEQ2INT | SEQLINT
N2 EPWM6 | EPWM5 | EPWM4 | EPWM3 | EPWM2 | EPWML
TTZINT | _TZINT | TzINT | TzINT | TZINT | _TZINT
. EPWM6 | EPWM5 | EPWM4 | EPWM3 | EPWM2 | EPWML
CINT CINT CINT CINT CINT CINT
INT4 ECAP6 | ECAP5 | ECAP4 | ECAP3 | ECAP2 | ECAPL
CINT CINT CINT CINT CINT CINT
EQEP2 | EQEPL
INTS INT INT
INT6 MXINTA | MRINTA | MXINTB | MRINTB |SPITXINTA[SPIRXINTA
INT7 DINTCHS | DINTCHS | DINTCH4 | DINTCH3 | DINTCH2 | DINTCH1
INTS SCITXINTJSCIRXINTG I2CINT2A | 12CINTLA
ECANL | ECANO | ECAN1 | ECANO
INTO | SR | SRR | ERAR | ERNO |SCITXINTB SCIRXINTB|SCITXINTAISCIRXINTA
INT10
INT11
INT12 LUF LVF XINT7 | XINT6 | XINT5S | XINT4 | XINT3

PIE Registers

PIEIFRX register (x=1to12)
15-8 7 6 5 4 3 2 1 0

reserved | INTx.8| INTx.7| INTx.6| INTx.5| INTx.4| INTx.3| INTx.2| INTx.1|

PIEIERX register (x=1to12)
15-8 7 6 5 4 3 2 1 0

reserved INTX.8| INTX.7| INTX.6| INTX.5[INTX.4| INTX.3[INTx.2 [INTx.1

PIE Interrupt Acknowledge Register (PIEACK)
15-12 11 10 9 8 7 6 5

reserved PIEACKX

4 3 2 1 0

PIECTRL register 15-1 0
PIEVECT ENPIE

#include “DSP2833x_Device.h”
PieCtrIRegs.PIEIFR1.bit.INTx4 = 1; //manually set IFR for XINT1 in PIE group 1
PieCtrlRegs.PIEIER3.bit.INTX5 = 1; //lenable EPWM5_INT in PIE group 3
PieCtrIRegs.PIEACK.all = 0x0004; //acknowledge the PIE group 3
PieCtrIRegs.PIECTRL.bit.ENPIE = 1; //enable the PIE

4-8 C2000 Delfino Workshop - Reset and Interrupts

Interrupts

PIE Interrupt Vector Table

Vector Offset
RESET 00
INT1 02
INT2 04
INT3 06
INT4 08
INT5 0A
INT6 (0]08
INT7 OE
INT8 10
INT9 12
INT10 14
INT11 16
INT12 18
INT13 1A
INT14 1C
DATALOG 1E
RTOSINT 20
EMUINT 22
NMI 24
ILLEGAL 26
USER 1-12 | 28-3E

Default Interrupt Vector Table at Reset

Default Vector Table
Re-mapped when
ENPIE=1

Memory

PIE Vectors
256w -

“a,
Yoy
e,
e,

.,
v,
s,

v,
",

BROM Vectors |X3F FFCO ™,
64w

ENPEZO0 foxsFFrrr ¢

PieVectTablelnit{ }
Used to initialize PIE vectors

PIE Vector Mapping enrie=1
Vector Name | PIE Address | PIE Vector Description
Reset 0x00 0D00 Reset fetched from Boot ROM 0x3F FFCO
INT1 0x00 0D02 INT1 remapped to PIE group below
INTx remapped to PIE group below
INT12 0x000D18 INT12 remapped to PIE group below
INT13 0x000D1A |CPU Timer 1
S INT14 0x000D1C |[CPU Timer 2
é’__ DATALOG 0x00 OD1E |CPU Data Logging Interrupt
E USER12 0x00 OD3E | User Defined Trap
@ INT1.1 0x00 0D40 PIE INT1.1 Interrupt Vector
INT1.8 0x00 O0D4E | PIEINT1.8 Interrupt Vector
INT12.1 0x00 ODFO PIE INT12.1 Interrupt Vector
INT12.8 0x00 ODFE | PIE INT12.8 Interrupt Vector
¢ PIE vector location — 0x00 0D00 — 256 words in data memory
¢ RESET and INT1-INT12 vector locations are re-mapped
¢ CPU vectors are re-mapped to 0x00 0D0O0 in data memory

C2000 Delfino Workshop - Reset and Interrupts

Interrupts

Device Vector Mapping - Summary

RESET
<Ox3F FFC0>

Reset Vector <0x3F FOCE> = Boot Code
Flash Entry Point <0x33 FFF6 >=LB _c_int00
User Code Start < _c_int00 >

_c_int00:
CALI-_ rhain()
Initialization()
- Load PIE Vectors PIE Vector Table
mainQ Enable the PIE
{ initializationQ; Enable PIEIER 256 Word RAM
o ' Enable Core IER 0x00 0DOO — ODFF
} Enable INTM
}

Interrupt Response and Latency

Interrupt Response - Hardware Sequence

CPU Action Description

Registers — stack 14 Register words auto saved

0 - IFR (bit) Clear corresponding IFR bit

0 > IER (bit) Clear corresponding IER bit

1 - INTM/DBGM Disable global ints/debug events

Vector —» PC Loads PC with int vector address
Clear other status bits | Clear LOOP, EALLOW, IDLESTAT

Note: some actions occur simultaneously, none are interruptible

T STO

AH AL

PH PL

AR1 ARO

DP ST1
DBSTAT| IER
PC(msw)| PC(Isw)

4-10 C2000 Delfino Workshop - Reset and Interrupts

Interrupts

Interrupt Latency

e Latency

ext. Internal

interrupt : interrupt Assumes ISR in
occurs ! occurs internal RAM
here | here

LG

' 7
@ @& © 6 O ©

Syncext. Recognition Getvector F1/F2/D1of Save D2/R1/R2 of

signall delay (3), SP and place ISR return ISR
alignment (1), inPC instruction address instruction
. (ext. interrupt (Breg. (3reg. pairs
interrupt placed in pairs saved)
only pipeline saved)

[

I cycles

ISR
instruction
executed
on next
cycle

& Minimum latency (to when real work occurs in the ISR):
> Internal interrupts: 14 cycles

» External interrupts: 16 cycles

¢ Maximum latency: Depends on wait states, INTM, etc.

C2000 Delfino Workshop - Reset and Interrupts

Interrupts

C2000 Delfino Workshop - Reset and Interrupts

System Initialization

Introduction

This module discusses the operation of the OSC/PLL-based clock module and watchdog timer.
Also, the general-purpose digital 1/0 ports, external interrups, various low power modes and the
EALLOW protected registers will be covered.

Learning Objectives

Learning Objectives

¢ OSC/PLL Clock Module

¢ Watchdog Timer

¢ General Purpose Digital I/0
¢ External Interrupts

¢ Low Power Modes

¢ Register Protection

C2000 Delfino Workshop - System Initialization 5-1

Module Topics

Module Topics

SYSEEM TNITIAIZATION.......ceieiiie bbb bbbt e e e e aas 5-1
T LU T=TN o ot PSS 5-2
OSCIlAtOr/PLL CIOCK MOTUIE ...ttt bbb 5-3
WALCRAOG TIMET ...ttt bbb bbbttt bbb b b ns 5-5
General-Purpose DIgItal 1/Ocooiiiiiiieie e e e e 5-9
EXEEINAL INTEITUPLS ...ttt b e bbbttt b e bbbt be et e et et e e sbe e e 5-12
LOW POWET IMOGES. ...ttt bbbt b bbbt b e bttt n et n e 5-13
REGISTET PFOTECTION ...t et bbbttt bbb bt s b e bt et e e e b e e b e e e 5-15
Lab 5: System INITIAlIZALIONcvoiveiiiiice e et r e re e 5-17

5-2 C2000 Delfino Workshop - System Initialization

Oscillator/PLL Clock Module

Oscillator/PLL Clock Module

XCLKIN

X1

X2

(lab file: SysCtrl.c)

Watchdog
Module

OSCCLK
(PLL bypass)

VCOCLK

PLL

SysCtriRegs.PLLCR.bit DIV

SysCtrIRegs.PLLSTS.bit.DIVSEL

DIVSEL

n

Ox
10
11

14*
12
/1

* default

Note: /1 mode can
only be used when
PLL is bypassed

DIV CLKIN
0000 | OSCCLK /n * (PLL bypass)
0001 | OSCCLK x1/n
0010 | OSCCLK x2/n
0011 | OSCCLK x3/n
0100 | OSCCLK x4/n
0101 | OSCCLK x5/n
0110 | OSCCLK x6/n
0111 | OSCCLKx7/n
1000 | OSCCLK x8/n
1001 | OSCCLK x9/n
1010 | OSCCLK x 10/n

MUX
|

F2833x Oscillator / PLL Clock Module

CLKIN C28x

Core

SYSCLKOUT

1/n

| Hispcp | |Lospcp |

All other peripherals
clocked by SYSCLKOUT

HSPCLK LSPCLK
ADC SCI, SPI, 12C,
McBSP

Input Clock Fail Detect Circuitr
PLL will issue a “limp mode”

clock (1-4 MHz) if input clock is
removed after PLL has locked.

An internal device reset will also
be issued (XRSn pin not driven).

The OSC/PLL clock module provides all the necessary clocking signals for C28x devices. The

PLL has a 4-bit ratio control to select different CPU clock rates. Two modes of operation are

supported — crystal operation, and external clock source operation. Crystal operation allows the
use of an external crystal/resonator to provide the time base to the device. External clock source
operation allows the internal oscillator to be bypassed, and the device clocks are generated from
an external clock source input on the XCLKIN pin. The watchdog receives a clock signal from

OSCCLK. The C28x core provides a SYSCLKOUT clock signal. This signal is prescaled to

provide a clock source for some of the on-chip peripherals through the high-speed and low-speed
peripheral clock prescalers. Other peripherals are clocked by SYSCLKOUT and use their own
clock prescalers for operation.

C2000 Delfino Workshop - System Initialization

Oscillator/PLL Clock Module

High / Low — Speed Peripheral Clock
Prescaler Registers (an file: sysctri.c)

SysCtrIRegs.HISPCP

15-3 2.0
reserved HSPCLK
ADC
SysCtrIRegs.LOSPCP
15-3 2.0
reserved LSPCLK
- SCI/SPI |
H/LSPCLK Peripheral Clock Frequency 12C / McBSP
000 SYSCLKOUT /1
001 SYSCLKOUT /2 (default HISPCP) NOTE:
010 SYSCLKOUT / 4 (default LOSPCP) _—
011 SYSCLKOUT / 6 All _Other
100 SYSCLKOUT/ 8 Peripherals
101 SYSCLKOUT / 10 Clocked By
110 SYSCLKOUT / 12 SYSCLKOUT
111 SYSCLKOUT / 14

The peripheral clock control register allows individual peripheral clock signals to be enabled or
disabled. If a peripheral is not being used, its clock signal could be disabled, thus reducing power
consumption.

Peripheral Clock Control Registers
(lab file: SysCitrl.c)

SysCtrIRegs.PCLKCRO
15 14 13

12 11 10 9 8
ECANB | ECANA MA MB SCIB SCIA reserved SPIA
ENCLK | ENCLK | ENCLK ENCLK | ENCLK | ENCLK ENCLK
7 6 5 4 3 2 1 0

reserved | reserved E%l%lEK EﬁgﬁK EQEEK TSBY(""\}E:K reserved | reserved

SysCtrIRegs.PCLKCR1
15 14 13 12 11 10 9 8

EQEP2 | EQEPL | ECAP6 | ECAPS | ECAP4 | ECAP3 | ECAP2 | ECAP1

ENCLK | ENCLK | ENCLK | ENCLK | ENCLK | ENCLK | ENCLK | ENCLK
7 6 5 4 3 2 1 0

EPWM6 | EPWM5 | EPWM4 | EPWM3 | EPWM2 | EPWML1
iesenved | reserved | ENci'k | ENCLK | ENCLK | ENCLK | ENCLK | ENCLK

SysCtrIRegs.PCLKCR3
15-14 13 12 11 10 9 8 7-0

reserved GPIOIN | XINTF DMA | CPUTIMER?2 | CPUTIMER1 | CPUTIMERO
ENCLK [ENCLK | ENCLK [ENCLK ENCLK ENCLK

reserved

——
Module Enable Clock Bit
0 =disable (default) 1=enable

5-4 C2000 Delfino Workshop - System Initialization

Watchdog Timer

Watchdog Timer

Watchdog Timer

¢ Resets the C28x if the CPU crashes
+ Watchdog counter runs independent of CPU

« If counter overflows, a reset or interrupt is
triggered (user selectable)

+ CPU must write correct data key sequence to
reset the counter before overflow

¢ Watchdog must be serviced or disabled
within 131,072 WDCLK cycles after reset

& This translates to 4.37 ms with a 30 MHz
WDCLK

The watchdog timer provides a safeguard against CPU crashes by automatically initiating a reset
if it is not serviced by the CPU at regular intervals. In motor control applications, this helps
protect the motor and drive electronics when control is lost due to a CPU lockup. Any CPU reset
will revert the PWM outputs to a high-impedance state, which should turn off the power
converters in a properly designed system.

The watchdog timer is running immediately after system power-up/reset, and must be dealt with
by software soon after. Specifically, you have 4.37ms (for a 150 MHz device) after any reset
before a watchdog initiated reset will occur. This translates into 131,072 instruction cycles,
which is a seemingly tremendous amount! Indeed, this is plenty of time to get the watchdog
configured as desired and serviced. A failure of your software to properly handle the watchdog
after reset could cause an endless cycle of watchdog initiated resets to occur.

C2000 Delfino Workshop - System Initialization 5-5

Watchdog Timer

Watchdog Timer Module
(lab fiTe: Watchdog.c)
4/ —
WDPS WDOVERRIDE
WDCLK \IIDVatchdlog 7
rescaler WDDIS
8-bit Watchdog
Counter
CLR
System M
Reset > —| %‘ﬂﬁ%‘ét -
WDCHK WDINT
55+ AA
Detector| cood key
? Bad WDCHK Key
Watchdog
Reset Key
Reqgister

Watchdog Period Selection

WDPS FRC WD timeout period
Bits rollover @ 30 MHz OSCCLK
00x: 1 4.37ms *
010: 2 8.74 ms
011: 4 17.48 ms
100: 8 34.96 ms
101: 16 69.92 ms
110: 32 139.84 ms
111: 64 279.68 ms

*reset default

¢ Remember: Watchdog starts counting immediately
after reset is released!

¢ Reset default with WDCLK =30 MHz computed as
(1/30 MHz) *512 * 256 = 4.37 ms

C2000 Delfino Workshop - System Initialization

Watchdog Timer

Watchdo% Timer Control Reqister

SysCtrlIRegs.WDCR (lab file: Watchdog.c

WD Flag Bit
Gets set when the WD causes a reset
* Writing a 1 clears this bit
* Writing a 0 has no effect

15-8 7 6 5-3 2-0
reserved | WDFLAG| WDDIS WDCHK WDPS
Logic Check Bits WD Prescale
Write as 101 or reset Selection Bits
Watchdog Disable Bit immediately triggered WDPS | WDCLK =
Write 1 to disable 000 | OSCCLK /512/1
(Functions only if WD OVERRIDE 001 | OSCCLK/512/1

010 | OSCCLK/512/2
011 | OSCCLK/512/4
100 | OSCCLK/512/8
101 | OSCCLK /512/16
110 | OSCCLK /512/32
111 [OSCCLK /512 /64

bitin SCSR is equal to 1)

Resetting the Watchdog

SysCtrIRegs WDKEY (lab file: Watchdog.c)

15-8 7-0
reserved WDKEY

¢ WDKEY write values:
55h - counter enabled for reset on next AAh write
AAh - counter set to zero if reset enabled

¢ Writing any other value has no effect

¢ Watchdog should not be serviced solely in
an ISR

« If main code crashes, but interrupt continues to
execute, the watchdog will not catch the crash

+ Could put the 55h WDKEY in the main code, and
the AAh WDKEY in an ISR; this catches main
code crashes and also ISR crashes

C2000 Delfino Workshop - System Initialization 5-7

Watchdog Timer

WDKEY Write Results
Sequential | Value Written
Step to WDKEY | Result
1 AAh No action
2 AAh No action
3 55h WD counter enabled for reset on next AAh write
4 55h WD counter enabled for reset on next AAh write
5 55h WD counter enabled for reset on next AAh write
6 AAh WD counter is reset
7 AAh No action
8 55h WD counter enabled for reset on next AAh write
9 AAh WD counter is reset
10 55h WD counter enabled for reset on next AAh write
11 23h No effect; WD counter not reset on next AAh write
12 AAh No action due to previous invalid value
13 55h WD counter enabled for reset on next AAh write
14 AAh WD counter is reset

System Control and Status Register
SysCtrlRegs.SCSR (lab file: Watchdog.c)

WD Override (protect bit)

Protects WD from being disabled

0 =WDDIS bit in WDCR has no effect (WD cannot be disabled)
1 = WDDIS bit in WDCR can disable the watchdog

 This bit is a clear-only bit (write 1 to clear)

* The reset default of this bitisa 1 \

15-3 2 1 0
reserved WDINTS |WDENINT |WDOVERRIDE
WD Interrupt Status WD Enable Interrupt
(read only) _
0 =WD generates a DSP reset
0 = active 1 =WD generates a WDINT interrupt

1 =not active

C2000 Delfino Workshop - System Initialization

General-Purpose Digital I/O

General-Purpose Digital I/O

sng feusaiu|

(lab file: Gpio.c)

GPIO Port A Mux1
Register (GPAMUX1)

GPIO 0 to 15]

GPIO Port A
Direction Register

(GPADIR

GPIO Port A Mux2
Register (GPAMUX2)

GPIO 16 to 31]

[GPIO 0 to 31]

F2833x GPIO Grouping Overview

GPIO Port B Mux1

Register (GPBMUX1)
GPIO 32 to 47]

GPIO Port B

Direction Register
GPBDIR%

GPIO Port B Mux2
Register (GPBMUX2)

GPIO 48 to 63]

(
[GPIO 32 to 63]

GPIO Port C Mux1
Register (GPCMUX1)

GPIO 64 to 79]

~ GPIO Port C
Direction Register

GPIO Port C Mux2

Register (8GPCMUX2)

GPIO 80 to 87]

(GPCDIR
[GPIO 64 to 87]

Input [0}
< N | < 0
ual
e
S
>
Input o
< < o)
Qual o)
-U<—>
ol S
ve)
)
< i)
(@]
3 [=—>
g
@)

GPxSET
GPXCLEAR
GPXTOGGLE

I/O DIR Bit
0 =Input
1 =Output

|

/O DAT
Bit (RW) | |

(lab file: Gpio.c)

Periph Peripheral
1 2

ab o
£

Out [\=
I

Internal Pull-Up
0 =enable (default GPIO 12-31)
1 =disable (default GPIO 0-11)

Input
Qualification

Pin

* See device datasheet for pin function selection matrices

00 11

(GPIO 0-63 only)

F2833x GPIO Pin Block Diagram

Peripheral
3
.1 ePxMuUX1
GPxMUX2

MUX Control Bits *
00 = GPIO

01 = Peripheral 1
10 = Peripheral 2
11 = Peripheral 3

GPxQSEL1
GPxQSEL2
GPxCTRL

C2000 Delfino Workshop - System Initialization

General-Purpose Digital I/O

F2833x GPIO Input Qualification
ings

Input _ to GPIO and
pin O N peripheral
Qualification modules
1

SYSCLKOUT

¢ Qualification available on ports A & B (GPIO 0 - 63) only
¢ Individually selectable per pin s Eles il
+ no qualification (peripherals only) l i ‘
+ sync to SYSCLKOUT only
+ qualify 3 samples < JW
+ qualify 6 samples | >f | |
¢ Port C pins are fixed_as T T 7T
sync to SYSCLKOUT 7 e e e

F2833x GPIO Input Qual Registers

GpioCtrIRegs.register (lab file: Gpio.c)

GPAQSEL1/ GPAQSEL2 / GPBQSEL1 / GPBQSEL2
31

| [] [] | 16 pins configured per register | | [] | |

00 = sync to SYSCLKOUT only *

01 = qual to 3 samples

10 = qual to 6 samples

11 =no sync or qual (for peripheral only; GPIO same as 00)

GPACTRL / GPBCTRL

31 24 16 8 0
| QUALPRD3 | QUALPRD2 | QUALPRD1 | QUALPRDO |
B: GPl063-56 GPI1055-48 GPl047-40 GPI1039-32
A: GPIO31-24 GPI1023-16 GPI015-8 GPIO7-0

00h no qualification (SYNC to SYSCLKOUT) *
0lh QUALPRD = SYSCLKOUT/2
02h QUALPRD = SYSCLKOUT/4

FFh QUALPRD = SYSCLKOUT/510 * reset default

C2000 Delfino Workshop - System Initialization

General-Purpose Digital I/O

C2833x GPIO Control Registers
GpioCtrlRegs.register (lab file: Gpio.c)

GPACTRL GPIO A Control Register [GPIO 0 —31]

GPAQSEL1 GPIO A Qualifier Select 1 Register [GPIO 0— 15]

GPAQSEL2 GPIO A Qualifier Select 2 Register [GPIO 16 — 31]

GPAMUX1 GPIO A Mux1 Register [GPIO 0 — 15]

GPAMUX2 GPIO A Mux2 Register [GPIO 16 — 31]

GPADIR GPIO A Direction Register [GPIO 0 — 31]

GPAPUD GPIO A Pull-Up Disable Register [GPIO 0 — 31]

GPBCTRL GPIO B Control Register [GPIO 32 — 63]

GPBQSEL1 GPIO B Qualifier Select 1 Register [GPIO 32 —47]

GPBQSEL2 GPIO B Qualifier Select 2 Register [GPIO 48 —63]

GPBMUX1 GPIO B Mux1 Register [GPIO 32 — 47]

GPBMUX2 GPIO B Mux2 Register [GPIO 48 — 63]

GPBDIR GPIO B Direction Register [GPIO 32 — 63]

GPBPUD GPIO B Pull-Up Disable Register [GPIO 32 —63]

GPCMUX1 GPIO C Mux1 Register [GPIO 64 — 79]

GPCMUX2 GPIO C Mux2 Register [GPIO 80 — 87]

GPCDIR GPIO C Direction Register [GPIO 64 — 87]

GPCPUD GPIO C Pull-Up Disable Register [GPIO 64 —87]

C2833x GPIO Data Registers

GpioDataRegs.register (lab file: Gpio.c)

GPADAT GPIO A Data Register [GPIO 0 — 31]
GPASET GPIO A Data Set Register [GPIO 0— 31]
GPACLEAR GPIO A Data Clear Register [GPIO 0—31]
GPATOGGLE GPIO A Data Toggle [GPIO 0 — 31]
GPBDAT GPIO B Data Register [GPIO 32 — 63]
GPBSET GPIO B Data Set Register [GPIO 32 — 63]
GPBCLEAR GPIO B Data Clear Register [GPIO 32 —63]
GPBTOGGLE GPIO B Data Toggle [GPIO 32 —63]
GPCDAT GPIO C Data Register [GPIO 64 — 87]
GPCSET GPIO C Data Set Register [GPIO 64 — 87]
GPCCLEAR GPIO C Data Clear Register [GPIO 64 — 87]
GPCTOGGLE GPIO C Data Toggle [GPIO 64 — 87]

C2000 Delfino Workshop - System Initialization

External Interrupts

External Interrupts

External Interrupts
¢ 8 external interrupt signals: XNMI, XINT1-7

¢ The signals can be mapped to avariety of pins

+« XNMI, XINT1-2 can be mapped to any of GPIO0-31
+ XINT3-7 can be mapped to any of GPIO32-63

¢ The eCAP pins and their interrupts can be used
as additional external interrupts if needed

¢ XNMI, XINT1, and XINT2 also each have a free-
running 16-bit counter that measures the
elapsed time between interrupts

+ The counter resets to zero each time the interrupt
occurs

External Interrupt Registers

Interrupt Pin Selection Register | Configuration Register | Counter Register
(GpiolntRegs.register) | (XIntruptRegs.register) | (XIntruptRegs.register)

XNMI GPIOXNMISEL XNMICR XNMICTR

XINT1 GPIOXINT1SEL XINT1CR XINT1CTR

XINT2 GPIOXINT2SEL XINT2CR XINT2CTR

XINT3 GPIOXINT3SEL XINT3CR

XINT4 GPIOXINT4SEL XINT4ACR

XINT5 GPIOXINT5SEL XINT5CR

XINT6 GPIOXINT6SEL XINT6CR

XINT7 GPIOXINT7SEL XINT7CR

¢ Pin Selection Register chooses which pin(s) the signal comes out on
¢ Configuration Register controls the enable/disable and polarity
¢ Counter Register holds the interrupt counter

C2000 Delfino Workshop - System Initialization

Low Power Modes

Low Power Modes

Low Power Modes

Low Power |CPU Logic| Peripheral | Watchdog | PLL/
Mode Clock Logic Clock Clock 0SsC
Normal Run on on on on
IDLE off on on on
STANDBY off off on on
HALT off off off off

See device datasheet for power consumption in each mode

Low Power Mode Control Regjister 0
SysCtrIRegs.LPMCRO (lab file: SysCitrl.c

Watchdog Interrupt

wake device from 000000 = 2 OSCCLKs

STANDBY Wake from STANDBY 000001 = 3 OSCCLKs
0 = disable (default) GPIO signal qualification * : : :
1 =enable \111111 = 65 OSCCLKS (default)
15 14-8 7-2 1-0
WDINTE reserved QUALSTDBY | LPMO

Low Power Mode Selection
00 = Idle (default)
01 = Standby
1x = Halt

Low Power Mode Entering

1. Set LPM bits

2. Enable desired exit interrupt(s)

3. Execute IDLE instruction

4. The power down sequence of the hardware
depends on LP mode

* %UA_LSTDBY will qualify the GPIO wakeup signalin series with the GPIO port qualification.
This is useful when GPIO port qualification is not available or insufficient for wake-up purposes.

C2000 Delfino Workshop - System Initialization

Low Power Modes

Low Power Mode Exit

Exit
Interrupt RESET GPIO Watchdog Any
or P_ort A Interrupt Enabled
Low Power XNMI Signal Interrupt
Mode
IDLE yes yes yes yes
STANDBY yes yes yes no
HALT yes yes no no

GPIO Low Power Wakeup Select

31

SysCtrIRegs.GPIOLPMSEL

30 29 28 27 26 25 24

GPIO31

GPIO30|GP1029 |GPIO28|GPIO27|GPI026|GPI025 [GPIO24

23

22 21 20 19 18 17 16

GPI023

GP1022 | GP1021 |GPIO20(GPIO19|GPIO18|GPIO17 |GPIO16

15

14 13 12 11 10 9 8

GPIO15

GPI1014|GPIO13|GPIO12|GPIO11|GPIO10| GPIO9 | GPIO8

7

6 5 4 3 2 1 0

GPIO7

GPIO6 | GPIOS | GPIO4 | GPIO3 | GPIO2 | GPIO1 | GPIOO

—_——
Wake device from
HALT and STANDBY mode
(GPIO Port A)

0 = disable (default)
1=-enable

C2000 Delfino Workshop - System Initialization

Register Protection

Register Protection

Write-Read Protection
DevEmuRegs.PROTSTART & DevEmuRegs.PROTRANGE

Suppose you need to write to a peripheral register and
then read a different register for the same peripheral
(e.g., write to control, read from status register)?

¢ CPU pipeline protects W-R order for the same address

¢ Write-Read protection mechanism protects W-R order
for different addresses

0x00 0000
. MOSARAM_| 0,00 0400
+ Configured by PROTSTART MISARAM | (200
and PROTRANGE registers I PIE Vectorst | 0x00 0D0O
ke-==-=--—-—-f | 0x00 OEQO

+ Default values for these PF O
registers protect the address reserved | 0X00 2000
range 0x4000 to Ox7FFF XINTE Zone 0 | 0X00 4000
+ Default values typically PF3 0x00 5000
sufficient PE1 0x00 6000
PE2 0x00 7000
0x00 8000

Note: PFO is not protected by default because the flexibility of PROTSTART and PROTRANGE are such that
MO and M1 SARAM blocks would also need to be protectéd, thereby reducing the performance of this RAM.
See TMS320x2833x, 2823x System Control and Interrupts Reference Guide, #SPRUFBO

EALLOW Protection @of2)

¢ EALLOW stands for Emulation Allow

¢ Code access to protected registers allowed
only when EALLOW =1 in the ST1 register

¢ The emulator can always access protected
registers

¢ EALLOW bit controlled by assembly level
Instructions

+ 'EALLOW: sets the bit (register access enabled)
+ ‘EDIS’ clears the bit (register access disabled)

¢ EALLOW bit cleared upon ISR entry, restored
upon exit

C2000 Delfino Workshop - System Initialization 5-15

Register Protection

EALLOW Protection ¢of2)

The following registers are protected:

Device Emulation

Flash

Code Security Module

PIE Vector Table

DMA (most registers)

eCANA/B (control registers only; mailbox RAM not protected)
ePWM1 - 6 (some registers)

GPIO (control registers only)

System Control

See device datasheet and peripheral users guides for detailed listings

EALLOW register access C-code example:

asm("" EALLOW'™); // enable protected register access
SysCtr IRegs . WDKEY=0x55; // write to the register
asm(*" EDIS™); // disable protected register access

5-16 C2000 Delfino Workshop - System Initialization

Lab 5: System Initialization

Lab 5: System Initialization
» Objective

The objective of this lab is to perform the processor system initialization. Additionally, the
peripheral interrupt expansion (PIE) vectors will be initialized and tested using the information
discussed in the previous module. This initialization process will be used again in all of the lab
exercises throughout this workshop. The system initialization for this lab will consist of the
following:

e Setup the clock module — PLL, HISPCP =/1, LOSPCP = /4, low-power modes to default
values, enable all module clocks

o Disable the watchdog — clear WD flag, disable watchdog, WD prescale = 1

e Setup watchdog system and control register — DO NOT clear WD OVERRIDE bit, WD
generate a CPU reset

e Setup shared I/O pins — set all GPIO pins to GPIO function (e.g. a "00" setting for GP10
function, and a “01”, “10”, or *“11” setting for a peripheral function.)

The first part of the lab exercise will setup the system initialization and test the watchdog
operation by having the watchdog cause a reset. In the second part of the lab exercise the PIE
vectors will be added and tested by using the watchdog to generate an interrupt. This lab will
make use of the DSP2833x C-code header files to simplify the programming of the device, as
well as take care of the register definitions and addresses. Please review these files, and make use
of them in the future, as needed.

> Procedure

Create a New Project

1. Create a new project (File > New - CCS Project) and name it Lab5.
Uncheck the “Use default location” box. Using the Browse... button navigate to:
C:\C28x\Labs\Lab5\Project. Click OK and then click Next. The next three
windows should default to the options previously selected (project type C2000, no inter-
project dependencies selected, and device variant TMS320F28335 — be sure to set the
“Linker Command File” to <none>). Use the defaults and at the last window click
Finish.

2. Right-click on Lab5 in the C/C++ Projects window and add the following files to
the project (Add Files to Project..) from C:\C28x\Labs\Lab5\Files:

CodeStartBranch.asm Lab.h
DelayUs.asm Lab 5 6 7.cmd
DSP2833x_Defaultlsr.h Main_5.c
DSP2833x_GlobalVariableDefs.c SysCtrl.c
DSP2833x_Headers_nonBI0S.cmd Watchdog.c
Gpio.c

C2000 Delfino Workshop - System Initialization 5-17

Lab 5: System Initialization

in the second part of this lab exercise.

Project Build Options

3. Setup the build options by right-clicking on Lab5 in the C/C++ Projects window
and select Properties. Then select the “C/C++ Build” Category. Be sure that the
Tool Settings tab is selected.

4. Under “C2000 Linker” select “Basic Options” and set the Stack Size to 0x200.

5. Next we need to setup the include search path to include the peripheral register header
files. Under “C2000 Compiler” select “Include Options”. Inthe box that opens
click the Add icon (first icon with green plus sign). Then in the “Add directory path”
window type:

${PROJECT_ROOT}/../../DSP2833x_headers/include

Click OK to include the search path. Finally, click OK to save and close the build options
window.

Modify Memory Configuration

6. Open and inspect the linker command file Lab_5 6 _7.cmd. Notice that the user
defined section “codestart” is being linked to a memory block named BEGIN_MO.
The codestart section contains code that branches to the code entry point of the project.
The bootloader must branch to the codestart section at the end of the boot process. Recall
that the “Jump to MO SARAM” bootloader mode branches to address 0x000000 upon
bootloader completion.

Modify the linker command file Lab_5 6_7.cmd to create a new memory block
named BEG IN_MO: origin = 0x000000, length = 0x0002, in program memory. You will
also need to modify the existing memory block MOSARAM in data memory to avoid any
overlaps with this new memory block.

Setup System Initialization

7. Modify SysCtrl .c and Watchdog . c to implement the system initialization as
described in the objective for this lab.

8. Open and inspect Gpio.c. Notice that the shared I/O pins have been set to the GPIO
function. Save your work and close the modified files.

Build and Load

9. Click the “Bui 1d” button and watch the tools run in the Consol e window. Check for
errors in the Prob lems window.

C2000 Delfino Workshop - System Initialization

Lab 5: System Initialization

10.

Click the “Debug” button (green bug). The “Debug Perspective” view should open, the
program will load automatically, and you should now be at the start of main().

Run the Code — Watchdog Reset

11.

12.

13.

14.

15.

16.

17.

Place the cursor in the “main Boop” section (on the asm(* NOP’”) ; instruction line)
and right click the mouse key and select Run To Line. This is the same as setting a
breakpoint on the selected line, running to that breakpoint, and then removing the
breakpoint.

Place the cursor on the first line of code in main() and set a breakpoint by right clicking
the mouse key and select Toggle Breakpoint. Notice that line is highlighted with a
blue dot indicating that the breakpoint has been set. Alternately, you can double-click in
the line number field to the left of the code line to set the breakpoint. The breakpoint is
set to prove that the watchdog is disabled. If the watchdog causes a reset, code execution
will stop at this breakpoint.

Run your code for a few seconds by using the Run button on the toolbar, or using
Target -> Runonthe menu bar. After a few seconds halt your code by using the
Hal t button on the toolbar, or by using Target -> Halt. Where did your code stop?
Are the results as expected? If things went as expected, your code should be in the
“main loop”.

Switch to the “C/C++ Perspective” view by clicking the C/C++ icon in the upper right-
hand corner. Modify the InitWatchdog() function to enable the watchdog (WDCR).
This will enable the watchdog to function and cause a reset. Save the file.

Click the “Bui 1d” button. Select Yes to “Reload the program automatically”. Switch
back to the “Debug Perspective” view by clicking the Debug icon in the upper right-
hand corner.

Like before, place the cursor in the “main loop” section (on the asm(** NOP’*) ;
instruction line) and right click the mouse key and select Run To Line.

Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should have stopped at the breakpoint. What happened is as
follows. While the code was running, the watchdog timed out and reset the processor.
The reset vector was then fetched and the ROM bootloader began execution. The
bootloader transferred execution to the beginning of our code at address 0x000000 in the
MOSARAM, and execution continued until the breakpoint was hit in main().

Setup PIE Vector for Watchdog Interrupt

The first part of this lab exercise used the watchdog to generate a CPU reset. This was tested
using a breakpoint set at the beginning of main(). Next, we are going to use the watchdog
to generate an interrupt. This part will demonstrate the interrupt concepts learned in the
previous module.

C2000 Delfino Workshop - System Initialization 5-19

Lab 5: System Initialization

18.

19.

20.

21.

22.

23.

24.

In the “C/C++ Perspective” view add the following files to the project from
C:\C28x\Labs\Lab5\Files:

Defaultlsr_5.c
PieCtrl 5 6

Check your files list to make sure the files are there.

InMain_5.c, add code to call the InitPieCtrl () function. There are no passed
parameters or return values, so the call code is simply:

InitPieCtri(Q);

Using the “PIE Interrupt Assignment Table” shown in the previous module find the
location for the watchdog interrupt, “WAKEINT”. This will be used in the next step.

PIE group #: # within group:

Modify main() to do the following:
- Enable global interrupts (INTM bit)

Then modify InitWatchdog() to do the following:

- Enable the “WAKEINT” interrupt in the PIE (Hint: use the PieCtrIRegs structure)
- Enable the appropriate core interrupt in the IER register

In Watchdog . ¢ modify the system control and status register (SCSR) to cause the
watchdog to generate a WAKEINT rather than a reset. Save all changes to the files.

Open and inspect Defaultlsr_5.c. This file contains interrupt service routines. The
ISR for WAKEINT has been trapped by an emulation breakpoint contained in an inline
assembly statement using “ESTOPOQ”. This gives the same results as placing a breakpoint
in the ISR. We will run the lab exercise as before, except this time the watchdog will
generate an interrupt. If the registers have been configured properly, the code will be
trapped in the ISR.

interrupts. Close the modified and inspected files.

Build and Load

25.

Click the “Bui 1d” button and select Yes to “Reload the program automatically”.
Switch to the “Debug Perspective” view.

Run the Code — Watchdog Interrupt

26.

Place the cursor in the “main loop” section, right click the mouse key and select Run
To Line.

C2000 Delfino Workshop - System Initialization

Lab 5: System Initialization

27. Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should stop at the “ESTOPOQ” instruction in the WAKEINT ISR.

Terminate Debug Session and Close Project

28. Terminate the active debug session using the Terminate Al button. This will close
the debugger and return CCS to the “C/C++ Perspective” view.

29. Next, close the project by right-clicking on Lab5 in the C/C++ Projects window
and select Close Project.

End of Exercise

Note: By default, the watchdog timer is enabled out of reset. Code in the file
CodeStartBranch.asm has been configured to disable the watchdog. This can be
important for large C code projects (ask your instructor if this has not already been
explained). During this lab exercise, the watchdog was actually re-enabled (or disabled
again) in the file Watchdog.c.

C2000 Delfino Workshop - System Initialization 5-21

Lab 5: System Initialization

5-22 C2000 Delfino Workshop - System Initialization

Analog-to-Digital Converter

Introduction

This module explains the operation of the analog-to-digital converter. The system consists of a
12-bit analog-to-digital converter with 16 analog input channels. The analog input channels have
a range from 0 to 3 volts. Two input analog multiplexers are used, each supporting 8 analog input
channels. Each multiplexer has its own dedicated sample and hold circuit. Therefore, sequential,
as well as simultaneous sampling is supported. Also, the ADC system features programmable
auto sequence conversions with 16 results registers. Start of conversion (SOC) can be performed
by an external trigger, software, or an ePWM event.

Learning Objectives

Learning Objectives

¢ Understand the operation of the
Analog-to-Digital converter (ADC)

¢ Use the ADC to perform data acquisition

C2000 Delfino Workshop - Analog-to-Digital Converter 6-1

Module Topics

Module Topics

ANAIOG-T0-DiIGItal CONVEITEN ..ottt bbbttt bbb et besbe e aneennn 6-1
T LU T=TN o ot PSS 6-2
ANAIOG-tO-Digital CONVEITETeueitiitiietiieeeet ettt bbbt b e 6-3

Analog-to-Digital CONVEIEr REGISIEIS.......cciiiieiiieieerieee e 6-5
Example — Sequencer “Start/Stop” OPErationccireiiirieineieisieees s 6-10
ADC Conversion Result BUFfer REQISTEN...........uiiiiiiiie e 6-11
SIgNEd INPUL VOITAGESeeveieiitiiiee ettt e bbbttt se bbb e 6-11
ADC CaliBDIALION......coiitiieeiete etttk b et ane e 6-12
Lab 6: ANalog-to-Digital CONVEITETcoviiiiieiecese ettt st st sr et e s re e e 6-14

6-2 C2000 Delfino Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

Analog-to-Digital Converter

ADC MOdUIG BIOCk Dlagl‘am (Cascaded Mode)

ADCINA0 — ™>_
ADCINAL = pUx SIH RESULTO
: A A RESULT1

12-bit A/D
Converter

RESUL T2

MUX

ADCINA7 —
ADCINBO —

ADCINB1 =" MuX S/H
H B

soc EOC

ADCINB7 —|_¢~ SEQ1
ADC full-scale | Autosequencer
npyt renge i

»

Ch Sel (CONV00)

Ch Sel (CONVO01)

Software Ch Sel (CONV02)

ePWM_SOC_A Ch Sel (.CONVO3)
ePWM_SOC_B :

External Pin Ch Sel (CONV15)

(GPIO/XINT2_ADCSOC)

_[>Start Sequence
Trigger

ADC MOdUIe BIOCk D|agram (Dual-Sequencer mode)

ADCINAO —f RESULTO
MUXL 1S —{RESULTL]
: A A RESULTL
~
ADCINA7 —>_1 X L ATD 5
ADCINBO _,\\ s Converter
ADCINB1 — MuX F RESULTY
: B B Sequencer
soc1/ SOC2/ RESULT9
ADC full-scale EOC1 EOC2 Result
|np16ttragg\;/e is /MOR SEQ1 SEQ?2 MUX .
L 4
° ‘Ti Autosequencer| | Autosequencer
[mAx_convi |H| mAx_conv2 | RESULTIS

Ch Sel (CONV00) Ch Sel (CONV08)
Ch Sel (CONVO01) Ch Sel (CONV09)

L] L
. .
L] *

Ch Sel (CONVQ7) Ch Sel (CONV15)
Software Software
Start Sequence Start Sequence
ePWM—SOC—.AD D> ¥ifgoer Trigger < _G:ePWM SOC_B
External Pin _ |
(GPIO/XINT2_ADCSOC)

C2000 Delfino Workshop - Analog-to-Digital Converter 6-3

Analog-to-Digital Converter

ADC Operating Mode Choices

¢ The user can make one choice from
each category below

¢ Choices are completely independent *

Sequencer Mode Sampling Mode Run Mode
Cascaded Sequential Start/Stop
Dual Simultaneous Continuous

* Note that using Continuous Run mode with Dual Sequencer generally doesn't make sense
since sequencer #2 will not get to do any conversions!

ADC Clocking Flow

CLKIN PLLCR PLLSTS SYscLkouT _HISPCP HspcLK

30 MHz 150 MHz 150 MHz
() D_IV DIVSEL (R HSPCLK (),
bits bits |_, To CPU bits
1010b (x10) 10b (72) 000b (/1)
PCLKCRO.ADCENCLK =1

Y

ADCTRL3 FCLK ADCTRLL ADCCLK

12.5 MHz
ADCCLKPS| (125MHz) | ~pgpi () R 'gi(:) ADC

bits
0110b Ob ADCTRL1 sampling
FCLK = HSPCLK/(2*ADCCLKPS) ADCCLK = ACQ_ps| Window
FCLK/(CPS+1) bits
0111b

sampling window = (ACQ_PS + 1)*(1/ADCCLK)

Note: Maximum F2833x ADCCLK is 25 MHz, but INL (integral nonlinearity error) is greater
above 12.5 MHz. See the device datasheet for more information.

6-4 C2000 Delfino Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

Analog-to-Digital Converter Registers

Analog-to-Digital Converter Registers
AdcRegs.register (lab file: Adc.c)

Register Description

ADCTRL1 ADC Control Register 1

ADCTRL2 ADC Control Register 2

ADCTRL3 ADC Control Register 3

ADCMAXCONV ADC Maximum Conversion Channels Register

ADCCHSELSEQ1 ADC Channel Select Sequencing Control Register 1
ADCCHSELSEQ2 ADC Channel Select Sequencing Control Register 2
ADCCHSELSEQ3 ADC Channel Select Sequencing Control Register 3
ADCCHSELSEQ4 ADC Channel Select Sequencing Control Register 4

ADCASEQSR ADC Autosequence Status Register

ADCRESULTO ADC Conversion Result Buffer Register O

ADCRESULT1 ADC Conversion Result Buffer Register 1

ADCRESULT2 ADC Conversion Result Buffer Register 2
$ ¢

ADCRESULT14 ADC Conversion Result Buffer Register 14

ADCRESULT15 ADC Conversion Result Buffer Register 15

ADCREFSEL ADC Reference Select Register

ADCOFFTRIM ADC Offset Trim Register

ADCST ADC Status and Flag Register

C2000 Delfino Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

ADC Control Register 1

AdcRegs.ADCTRL1

Upper Register:

ADC Module Reset

(i: no eIfEectt back to 0 Acquisition Time Prescale (S/H)
= reset (set back to ; -
ACQ Wind =(ACQ_PS + 1)*(/ADCCLK
by ADC logic) Q Window =(ACQ_|))
15 14 13-12 11-8 7
reserved | RESET SUSMOD ACQ_PS CPS
Emulation Suspend Mode Conversion Prescale
00 = free run (do not stop) 0: ADCCLK = FCLK /1
01 = stop after current sequence 1: ADCCLK = FCLK /2

10 = stop after current conversion
11 = stop immediately

ADC Control Register 1

AdcRegs.ADCTRL1

Lower Register:

Continuous Run Sequencer Mode
0 = stops after reaching 0 =dual mode
end of sequence 1 =cascaded mode

1 = continuous (starts all over
again from “initial state”)

6 5 4 3-0
CONT_RUN SEQ_OVRD SEQ_CASC reserved

Sequencer Override

(functions only if CONT_RUN = 1)

0 = sequencer pointer resets to “initial state” at end of MAX_CONVn
1 =sequencer pointer resets to “initial state” after “end state”

6-6 C2000 Delfino Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

Upper Register:

ADC Control Re

AdcRegs.ADCTRL

%ister 2

1 =immediate reset
SEQ1to “initial state”

1 =interrupt enable

ePWM SOC A
. SEQ1 Mask Bit
ePWM SOC B Start Conversion (SEQ1) 0 =(gannot be started
ded mode only) — i i X
(Cisca ! Y. 0 = clear pending SOC trigger by ePWM trigger
0= no action 1 = software trigger-start SEQ1L _
1 = start by ePWM 1 = can be started
signal by ePWM trigger
15 14 13 12 11 10 9 8
ePWM_SOCB INT_ENA [INT_MOD ePWM_SOCA
_S_EQ RST_SEQ1| SOC_SEQ1 |reserved _S_EQl _S_EQl reserved _SEQl
Reset SEQ1 Interrupt Enable (SEQ1) Interrupt Mode (SEQ1)
0 =no action 0 =interrupt disable 0 = interrupt every EOS

1 =interrupt every other EOS

Lower Register:

External SOC (SEQ1)
0=no action
1 = start by signal from

ADC Control Re

AdcRegs.ADCTRL

Start Conversion (SEQ2)
(dual-sequencer mode only)

0 = clear pending SOC trigger
1 = software trigger-start SEQ2

%ister 2

ePWM SOC B

SEQ2 Mask Bit
0 = cannot be started

1 = can be started

by ePWM trigger

by ePWM trigger

1 =immediate reset
SEQ2 to “initial state”

1 =interrupt enable

ADCSOC pin
7 6 5 4 3 2 1 0
EXT_SOC INT_ENA [INT_MOD ePWM_SOCB
_SEQl RST_SEQ2| SOC_SEQ2 |reserved _STEQZ _S_EQZ reserved _SEQ2
Reset SEQ2 Interrupt Enable (SEQ2) Interrupt Mode (SEQ2)
0 =no action 0 =interrupt disable 0 =interrupt every EOS

1 =interrupt every other EOS

C2000 Delfino Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

ADC Control Re%ister 3

AdcRegs.ADCTRL

ADC Bandgap and ADC Power Down
Reference Power Down (except Bandgap & Ref.)
00 =powered down 0 = powered down
11 =powered up 1=powered up
15-8 7-6 5 4-1 0
reserved ADCBGRFDN | ADCPWDN| ADCCLKPS |SMODE_SEL

ADC Clock Prescale
0 : FCLK = HSPCLK
1to F: FCLK = HSPCLK / (2*ADCCLKPS)

Sampling Mode Select
0 =sequential sampling mode
1 =simultaneous sampling mode

Maximum Conversion Channels Register
AdcRegs. ADCMAXCONV

+ Bit fields define the number of conversions per trigger (binary+1)

Cascaded Mode

15-7 6 5 4 7 3 2 1 0
reserved| . MAX MBS MAX_ MAX_ MAX_ MAX_ MAX_
CONV2 2 | CONV2 1 | CONV2.0 | CONVL 3 | CONVI 2 | CONVI 1 | CONVI O

SEQ2 — bual Mode—— SEQ1

¢ Each sequencer starts at the “initial state” and advances sequentially
¢ Each will wrap at the “end state” unless software resets it sooner

SEQ1 SEQ2 Cascaded
Initial state | CONV00 CONVO08 CONVO00
End state CONVO07 CONV15 CONV15

C2000 Delfino Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

ADCCHSELSEQ4

ADC Input Channel Select
Sequencing Control Registers

AdcRegs.ADCCHSELSEQx

15-12

11-8

7-4

3-0

ADCCHSELSEQ1 | CONVO03 | CONVO02 | CONVO1 | CONVOO |

ADCCHSELSEQ2 | CONVO7 | CONVO6 | CONVO5 | CONVO4 |

ADCCHSELSEQS3 | CONV11

CONV10

CONVO09

CONVO0S |

CONV15

CONV14

CONV13

CONV12

7= ADCINA7

15 = ADCINB7

For purposes of these registers, channel numbers are:

0= ADCINAO 8 = ADCINBO

C2000 Delfino Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

Example — Sequencer “ Start/Stop” Operation

Example - Sequencer Configuration @of2)

/\ /\ ePWM
Time Base
\Counter

ePWM
L Output

Vl' V2' V3 Il’ |2' |3 Vl' V2' V3 Il’ |2' |3

Configuration Requirements:

¢ ePWM triggers the ADC
« Three autoconversions (V1, V2, V3) off trigger 1 (CTR =0)
« Three autoconversions (11, 12, 13) off trigger 2 (CTR = PRD)

¢ ADC in cascaded sequencer and sequential sampling modes

Example - Sequencer Configuration @of2)

¢+ MAX_CONV1is set to 2 and Channel Select Sequencing Control Registers are set to:
Bits » 15-12 118 74 30

I, Vy, |V, [V; | ADCCHSELSEQ1

X X Il; | I, | ADCCHSELSEQ2

Oncereset and initialized, SEQ1 waits for atrigger

First trigger, three conversions performed: CONV00 (V1), CONVO01 (V2), CONVO02 (V3)
MAX_CONV1 valueis reset to 2 (unless changed by software)

SEQ1 waits for second trigger

Second trigger, three conversions performed: CONVO03 (I11), CONV04 (12), CONVO5 (13)
End of second sequence, ADC Results registers have the following values:

* ¢ ¢ o+ o+ o

RESULTO V,
RESULTL V,
RESULT2 V,
RESULT3 |,
RESULT4 |,
RESULTS |,

+ SEQ1 waits at current state for another trigger
+ User can reset SEQ1 by software to state CONVO0O and repeat same trigger 1,2 session

6-10 C2000 Delfino Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

ADC Conversion Result Buffer Register

ADC Conversion Result Registers

AdcRegs.ADCRESULTx,x =0-15 (2 wait-state read)

wel | [[1 [[[[| [e[o]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

AdcMirror ADCRESULTx, x =0-15 (1 wait-state read)

CE sl | [| [[[[[[[

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Input Digital AdcRegs. AdcMirror.

Voltage Result ADCRESULTX ADCRESULTx
3.0 FFFh 1111j1111]1111]0000 0000|1111j1111)1111
15 7FFh 0111)1111|1111|0000 0000|0111j1111)1111
0.00073 1h 0000|0000|0001|0000 0000|0000]0000j0001
0 0h 0000]0000]0000|0000 0000|0000]0000|0000

Signed Input Voltages

How Can We Handle Signed Input Voltages?

Example: -15V <V, <+15V

C28x
1) Add 1.5 volts to the Vi : $ 5 $ p—

analog input 15v

ADCLO

GND

2) Subtract “1.5” from the digital result

#include “DSP2833x_Device.h”
#define offset OxO07FF
void main(void)

{

intlé value; // signed

value = AdcMirror .ADCRESULTO — offset;

C2000 Delfino Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

ADC Calibration
Built-ln ADC Calibration

¢ Tlreserved OTP contains device specific ADC
calibration data (2 words)

¢ The Boot ROM contains an ADC_cal() routine (6 words)
that copies the calibration data to the ADCREFSEL and
ADCOFFTRIM registers

¢ ADC_cal() must be run to meet the ADC specs in the
datasheet

+ The Bootloader automatically calls ADC_cal() such that no
action is normally required by the user

« If the bootloader is bypassed (e.g., during development)
ADC_cal() should be called by the application:

#define ADC_cal_func_ptr (void (*)(void))0x380080
void main(void)
{

(*ADC_cal_func_ptr)Q; // call ADC_cal)

}

Manual ADC Calibration

+ If the offset and gain errors in the datasheet * are unacceptable for
your application, or you want to also compensate for board level
errors (e.g., sensor or amplifier offset), you can manually calibrate

& Offset error
ADCOFFTRIM

+« Compensated in analog with
the ADCOFFTRIM register

IAANE AN

+ No reduction in full-scale range CHT X
. . 12-bit A/D
« Ground an input pin, set C -
ADCOFFTRIM to maximum onverter

offset error, and take a reading

+ Re-adjust ADCOFFTRIM to
make result zero

¢ Gain error
« Compensated in software
« Some loss in full-scale range

« Requires use of a second ADC input pin and an upper-range reference
voltage on that pin; see “TMS320280x and TMS320F2801x ADC
Calibration” appnote #SPRAADS for more information

¢ Tip: To minimize mux-to-mux variation effects, put your most critical
signals on a single mux and use that mux for calibration inputs

rretytey
I

* +/-15 LSB offset, +/-30 LSB gain. See device datasheet for exact specifications

6-12 C2000 Delfino Workshop - Analog-to-Digital Converter

Analog-to-Digital Converter

ADC Reference Selection
AdcRegs . ADCREFSEL
¢ The F28335 ADC has an internal reference with
temperature stability of ~50 PPM/°C *
¢ Ifthis is not sufficient for your application, thereis the
option to use an external reference *
+ External reference choices: 2.048V, 15V, 1.024V

« The reference value DOES NOT change the 0 - 3 V full-scale
range of the ADC

¢ The ADCREFSEL register controls the reference choice

15-14 13-0
REF_SEL reserved

ADC Reference Selection
00 = internal (default)

01 = external 2.048 V

10 = external 1.5V

11 = external 1.024 V

* See device datasheet for exact specifications and ADC reference hardware connections

C2000 Delfino Workshop - Analog-to-Digital Converter 6-13

Lab 6: Analog-to-Digital Converter

Lab 6: Analog-to-Digital Converter

>

Objective

The objective of this lab is to become familiar with the programming and operation of the on-chip
analog-to-digital converter. The MCU will be setup to sample a single ADC input channel at a
prescribed sampling rate and store the conversion result in a memory buffer. This buffer will
operate in a circular fashion, such that new conversion data continuously overwrites older results
in the buffer.

Lab 6: ADC Sampling

+3.3V Toggle
GND (GP1020) (GPIO18)

[® data
ADC _ memory
connector CPU copies result
- to buffer during
wire RESULTO ADC ISR E
3
ADCINAO -
- 2
[N - c
| ePWM2 triggering - 'g_
I ADC on period match
! using SOCA trigger every EI
| View ADC
| 20.833 s (48 kHz) @ e PWM
; Samples

Code Composer
Studio

ePWM2

Recall that there are three basic ways to initiate an ADC start of conversion (SOC):
1. Using software
a. SOC_SEQ1/SOC_SEQ?2 bit in ADCTRL2 causes an SOC upon completion of the current
conversion (if the ADC is currently idle, an SOC occurs immediately)
2. Automatically triggered on user selectable ePWM conditions
a. ePWM underflow (CTR =0)
b. ePWM period match (CTR = PRD)
c. ePWM compare match (CTRU/D = CMPA/B)
3. Externally triggered using a pin
a. ADCSOC pin

One or more of these methods may be applicable to a particular application. In this lab, we will
be using the ADC for data acquisition. Therefore, one of the ePWMs (ePWM2) will be
configured to automatically trigger the SOCA signal at the desired sampling rate (SOC method 2b
above). The ADC end-of-conversion interrupt will be used to prompt the CPU to copy the results
of the ADC conversion into a results buffer in memory. This buffer pointer will be managed in a
circular fashion, such that new conversion results will continuously overwrite older conversion
results in the buffer. In order to generate an interesting input signal, the code also alternately
toggles a GPIO pin (GP1018) high and low in the ADC interrupt service routine. The ADC ISR

C2000 Delfino Workshop - Analog-to-Digital Converter

Lab 6: Analog-to-Digital Converter

will also toggle LED LD3 on the control CARD as a visual indication that the ISR is running.
This pin will be connected to the ADC input pin, and sampled. After taking some data, Code
Composer Studio will be used to plot the results. A flow chart of the code is shown in the
following slide.

Lab 6: Code Flow Diagram

General Initialization ADC interrupt
*PLL and clocks P

» watchdog configure

* GPIO setup
* PIE initialization -
T Main Loop § AHDCA{DSCF; I
: read the result
ADC Initialization g rEY e write to result buffer
« convert channel A0 on { * adjust the buffer pointer
ePWM2 period match } »toggle the GPIO pin
* send interrupt on ereturn from interrupt
every conversion

e setup aresults buffer
in memory

l' _ return
ePWM2 Initialization

* clear counter

* set period register

»set to trigger ADC on —
period match

e set the clock prescaler

» enable the timer

Notes
e Program performs conversion on ADC channel A0 (ADCINAO pin)

e ADC conversion is set at a 48 kHz sampling rate

o ePWMB2 is triggering the ADC on period match using SOCA trigger

o Data is continuously stored in a circular buffer

e GPIO18 pin is also toggled in the ADC ISR

e ADC ISR will also toggle the control CARD LED LD3 as a visual indication that it is running

> Procedure

Open the Project

1. A project named Lab6 has been created for this lab. Open the project by clicking on
Project - Import Existing CCS/CCE Eclipse Project. The “Import”
window will open then click Browse... next to the “Select root directory” box. Navigate
to: C:\C28x\Labs\Lab6\Project and click OK. Then click Finish to import the

project. All build options have been configured the same as the previous lab. The files
used in this lab are:

C2000 Delfino Workshop - Analog-to-Digital Converter 6-15

Lab 6: Analog-to-Digital Converter

Adc_6 7 8.c Gpio.c
CodeStartBranch.asm Lab.h
Defaultlsr_6.c Lab 5 6 7.cmd
DelayUs.asm Main_6.c

DSP2833x_Defaultlsr.h
DSP2833x_GlobalVariableDefs.c
DSP2833x_Headers_nonBI0S.cmd
EPwm_6.cC

PieCtrl 5 6 7

SysCtrl.c
Watchdog.c

Setup ADC Initialization and Enable Core/PIE Interrupts

2.

In Main_6.c add code to call InitAdc() and InitEPwm() functions. The
InitEPwm() function is used to configure ePWM2 to trigger the ADC at a 48 kHz rate.
Details about the ePWM and control peripherals will be discussed in the next module.
Edit Adc.c to implement the ADC initialization as described in the objective for the
lab by configuring the following registers: ADCTRL1, ADCTRL2, ADCMAXCONV
and ADCCHSELSEQ1. (Set ADC for cascaded sequencer mode, CPS = CLK/1, and
acquisition time prescale = 8 * (1/ADCCLK), ePWM2 triggering the ADC on period
match using SOCA trigger).

Using the “PIE Interrupt Assignment Table” find the location for the ADC interrupt
“ADCINT” and fill in the following information:

PIE group #: # within group:

This information will be used in the next step.

Modify the end of Adc.c to do the following:

- Enable the “ADCINT” interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

Open and inspect Defaultlsr_6.c. This file contains the ADC interrupt service
routine. Save your work and close the modified files.

Build and Load

7.

Click the “Bui 1d” button and watch the tools run in the Consol e window. Check for
errors in the Problems window.

Click the “Debug” button (green bug). The “Debug Perspective” view should open, the
program will load automatically, and you should now be at the start of main().

Run the Code

9.

In Main_6.c place the cursor in the “main loop” section, right click on the mouse
key and select Run To Line.

10. Open a memory window to view some of the contents of the ADC results buffer. The

address label for the ADC results buffer is AdcBuf in the “Data” memory page.

C2000 Delfino Workshop - Analog-to-Digital Converter

Lab 6: Analog-to-Digital Converter

Note: Exercise care when connecting any wires, as the power to the USB Docking Station is
on, and we do not want to damage the control CARD!

11. Using a connector wire provided, connect the ADCINAO (pin # ADC-AOQ) to “GND” (pin
GND) on the Docking Station. Then run the code again, and halt it after a few seconds.
Verify that the ADC results buffer contains the expected value of ~0x0000. Note that
you may not get exactly 0x0000 if the device you are using has positive offset error.

12. Adjust the connector wire to connect the ADCINAOQ (pin # ADC-AO0) to “+3.3V” (pin #
GPI10-20) on the Docking Station. (Note: pin # GP1020 has been set to “1” in Gpio.c).
Then run the code again, and halt it after a few seconds. Verify that the ADC results
buffer contains the expected value of ~OXOFFF. Note that you may not get exactly
OXOFFF if the device you are using has negative offset error.

13. Adjust the connector wire to connect the ADCINAO (pin # ADC-AQ) to GP1018 (pin #
GPI10-18) on the Docking Station. Then run the code again, and halt it after a few
seconds. Examine the contents of the ADC results buffer (the contents should be
alternating ~0x0000 and ~OxOFFF values). Are the contents what you expected?

14. Open and setup a graph to plot a 48-point window of the ADC results buffer.
Click: Tools > Graph - Single Time and set the following values:

Acquisition Buffer Size 48

DSP Data Type

16-bit unsigned integer

Sampling Rate (Hz) 48000
Start Address AdcBuf
Display Data Size 48
Time Display Unit us

Select OK to save the graph options.

15. Recall that the code toggled the GP1018 pin alternately high and low. (Also, the ADC
ISR is toggling the LED LD3 on the control CARD as a visual indication that the ISR is
running). If you had an oscilloscope available to display GP1018, you would expect to
see a square-wave. Why does Code Composer Studio plot resemble a triangle wave?
What is the signal processing term for what is happening here?

C2000 Delfino Workshop - Analog-to-Digital Converter 6-17

Lab 6: Analog-to-Digital Converter

16.

Recall that the program toggled the GP1O18 pin at a 48 kHz rate. Therefore, a complete
cycle (toggle high, then toggle low) occurs at half this rate, or 24 kHz. We therefore
expect the period of the waveform to be 41.667 us. Confirm this by measuring the period
of the triangle wave using the “measurement marker mode” graph feature. Right-click on
the graph and select Measurement Marker Mode. Move the mouse to the first
measurement position and left-click. Again, right-click on the graph and select
Measurement Marker Mode. Move the mouse to the second measurement position
and left-click. The graph will automatically calculate the difference between the two
values taken over a complete waveform period. When done, clear the measurement
points by right-clicking on the graph and select Remove All Measurement

Marks.

Using Real-time Emulation

Real-time emulation is a special emulation feature that offers two valuable capabilities:

17.

A. Windows within Code Composer Studio can be updated at up to a 10 Hz rate while the
MCU is running. This not only allows graphs and watch windows to update, but also
allows the user to change values in watch or memory windows, and have those
changes affect the MCU behavior. This is very useful when tuning control law
parameters on-the-fly, for example.

B. It allows the user to halt the MCU and step through foreground tasks, while specified
interrupts continue to get serviced in the background. This is useful when debugging
portions of a realtime system (e.g., serial port receive code) while keeping critical
parts of your system operating (e.g., commutation and current loops in motor control).

We will only be utilizing capability “A” above during the workshop. Capability “B” is a
particularly advanced feature, and will not be covered in the workshop.

The memory and graph windows displaying AdcBuf should still be open. The connector
wire between ADCINADO (pin # ADC-A0) and GP1018 (pin # GP10-18) should still be
connected. In real-time mode, we will have our window continuously refresh at the
default rate. To view the refresh rate click:

Window - Preferences..

and in the section on the left select the “CCS” category. Click the plus sign (+) to the left
of “CCS” and select “Debug”. In the section on the right notice the default setting:

e “Continuous refresh interval (milliseconds)” = 1000
Click OK.

Note: Increasing the “Continuous refresh interval” causes all enabled continuous refresh
windows to refresh at a faster rate. This can be problematic when a large number of
windows are enabled, as bandwidth over the emulation link is limited. Updating too
many windows can cause the refresh frequency to bog down. In this case you can just
selectively enable continuous refresh for the individual windows of interest.

C2000 Delfino Workshop - Analog-to-Digital Converter

Lab 6: Analog-to-Digital Converter

18. Next we need to enable the graph window for continuous refresh. In the upper right-hand
corner of the graph window, left-click on the yellow icon with the arrows rotating in a
circle over a pause sign. Note when you hover your mouse over the icon, it will show
“Enable Continuous Refresh”. This will allow the graph to continuously
refresh in real-time while the program is running.

19. Enable the memory window for continuous refresh using the same procedure as the
previous step.

20. Code Composer Studio includes Scripts that are functions which automate entering and
exiting real-time mode. Four functions are available:
e Run_Realtime_with_Reset (reset CPU, enter real-time mode, run CPU)
e Run_Realtime_with_Restart (restart CPU, enter real-time mode, run CPU)
o Full_Halt (exit real-time mode, halt CPU)
o Full_Halt with_Reset (exit real-time mode, halt CPU, reset CPU)
These Script functions are executed by clicking:
Scripts - Realtime Emulation Control - Function

In the remaining lab exercises we will be using the first and third above Script functions
to run and halt the code in real-time mode.

21. Run the code and watch the windows update in real-time mode. Click:
Scripts - Realtime Emulation Control - Run_Realtime_with Reset

Carefully remove and replace the connector wire from GPIO18. Are the values updating
as expected?

22. Fully halt the CPU in real-time mode. Click:
Scripts -> Realtime Emulation Control -> Full_Halt

23. So far, we have seen data flowing from the MCU to the debugger in realtime. In this
step, we will flow data from the debugger to the MCU.

e Open and inspect Main_6.c. Notice that the global variable DEBUG_TOGGLE is
used to control the toggling of the GPIO18 pin. This is the pin being read with the
ADC.

e Highlight DEBUG_TOGGLE with the mouse, right click and select “Add Watch
Expression”. The global variable DEBUG_TOGGLE should now be in the watch
window with a value of “1”.

e Enable the watch window for continuous refresh

e Run the code in real-time mode and change the value to “0”. Are the results shown
in the memory and graph window as expected? Change the value back to “1”. As
you can see, we are modifying data memory contents while the processor is running
in real-time (i.e., we are not halting the MCU nor interfering with its operation in any
way)! When done, fully halt the CPU.

C2000 Delfino Workshop - Analog-to-Digital Converter 6-19

Lab 6: Analog-to-Digital Converter

Terminate Debug Session and Close Project

24. Terminate the active debug session using the Terminate Al button. This will close
the debugger and return CCS to the “C/C++ Perspective” view.

25. Next, close the project by right-clicking on Lab6 in the C/C++ Projects window
and select Close Project.

End of Exercise

6-20 C2000 Delfino Workshop - Analog-to-Digital Converter

Control Peripherals

Introduction

This module explains how to generate PWM waveforms using the ePWM unit. Also, the eCAP
unit, and eQEP unit will be discussed.

Learning Objectives

Learning Objectives

2

Pulse Width Modulation (PWM) review

¢ Generate a PWM waveform with the
Pulse Width Modulator Module (ePWM)

¢ Usethe Capture Module (eCAP) to
measure the width of a waveform

¢ Explain the function of Quadrature
Encoder Pulse Module (eQEP)

Note: Different numbers of ePWM, eCAP, and eQEP modules are available on F2833x and
F2823x devices. See the device datasheet for more information.

C2000 Delfino Workshop - Control Peripherals 7-1

Module Topics

Module Topics

L0001 (o] =T T o] TCT - LSS 7-1
Y ToTo LU [T oo (ot SO RT PR URTUSUSR 7-2
PWIM REVIBW ...ttt ettt et bbbttt bbbt e st b s et et e sttt ne e 7-3
BPWIML. ettt bR bR bR bt R e bt e R e b et et et et Reebe e et e ebe st ereerenrereas 7-5

EPWM Time-Base SUD-IMOUUIEcoviiiiiiiiiiisiees et 7-6
ePWM Compare SUD-MOTUIEcoeiiiiiecccc e bbbt 7-9
ePWM Action Qualifier SUD-MOGUIE..........ccoviieiecc e e e 7-11
Asymmetric and Symmetric Waveform Generation using the ePWMc..ccccevevvvevevccnicnie e, 7-16
PWM Computation EXAMPIE.........ccviiviieieriee st ss e et a ettt re e enaesaessennennens 7-17
ePWM Dead-Band SUD-MOTUIE. ..o 7-18
ePWM PWM Chopper SUD-MOTUIE ..ot 7-21
EPWM Trip-Z0oNne SUD-IMOGUIE..........ccoiiiiiiiiice ittt 7-24
ePWM Event-Trigger SUD-MOUIEccooiiiiiie e 7-27
Hi-Resolution PWIM (HRPWIM)ciiiiiiiiiiiieise sttt 7-29
LT Y OSSP 7-30
LT TSRS 7-36
=1 o I A 0o g1 1 o] I =T] LT LSS 7-38

C2000 Delfino Workshop - Control Peripherals

PWM Review

PWM Review
What is Pulse Width Modulation?

¢ PWM is ascheme to represent a
signal as a sequence of pulses

+ fixed carrier frequency
+ fixed pulse amplitude

+ pulse width proportional to
Instantaneous signal amplitude

+ PWM energy ~ original signal energy

-
Original Signal PWM representation

Pulse width modulation (PWM) is a method for representing an analog signal with a digital
approximation. The PWM signal consists of a sequence of variable width, constant amplitude
pulses which contain the same total energy as the original analog signal. This property is
valuable in digital motor control as sinusoidal current (energy) can be delivered to the motor
using PWM signals applied to the power converter. Although energy is input to the motor in
discrete packets, the mechanical inertia of the rotor acts as a smoothing filter. Dynamic motor
motion is therefore similar to having applied the sinusoidal currents directly.

C2000 Delfino Workshop - Control Peripherals 7-3

PWM Review

Wh\é use PWM with Power
witching Devices?
¢ Desired output currents or voltages are known

¢ Power switching devices are transistors
« Difficult to control in proportional region
+ Easy to control in saturated region

¢ PWMis adigital signal = easy for DSP to output

DC Supply DC Supply
? L
' _ PWM
D_es'rle? PWM approx.
signalto of desired
/\/\j system signal
Unknown Gate Signal Gate Signal Known with PWM

7-4 C2000 Delfino Workshop - Control Peripherals

ePWM

ePWM

ePWM Module Signals and Connections

—/—'—x
ePWMx-1
EPWMxSYNCI EPWMXTZINT
T71 EPWMXINT | PIE
TZ2
GPIO 173 EPWMxA
GPIO
MUX 124 ePWMx EPWMXB | MUX
175
TZ6 EPWMxSOCA
EPWMxSOCB ADC
EPWMxSYNCO
ePWMx+1
—]
ePWM Block Diagram
Shadowed Shadowed
Clock Compare Compare
Prescaler Register Register
Al Compare Action Dead
TBCLK Ul SEEE Logic Qualifier —| Band
Counter —|
EPWMxSYNCI EPWMxSYNCO .
Period [
----------------- Register L — Tri EPWMXxA
rip ——
; [Ecaa Chopper Z0NE pmms.
SYSCLKOUT EPWMxB
TZy

C2000 Delfino Workshop - Control Peripherals

ePWM

ePWM Time-Base Sub-Module
ePWM Time-Base Sub-Module

TBCLK 1 Counter —|
4 v

EPWMxSYNCI EPWMxSYNCO

Period

Shadowed Shadowed
> Clock Compare Compare
= |Prescaler Register Register
. 16-Bit -
= . : Compare Action Dead
: P]Time-Base Logic Qualifier ——| Band

L EPWMxA

SCLILLLY Register .
' PWM Trip —>
u Shadowed
. Chopper ZONE [
SYSCLKOUT EPWIXB
TZy

ePWM Time-Base Count Modes

TBCTR

TBPRD

Asymmetrical
Waveform

Count Up Mode

TBCTR
TBPRD
Asymmetrical
Waveform
Count Down Mode
TBCTR
TBPRD |. -
Symmetrical
Waveform

Count Up and Down Mode

7-6 C2000 Delfino Workshop - Control Peripherals

ePWM

ePWM Phase Synchronization

Ext. Syncln
i \/\
[] 1
1] L}
1 1 1

(optional) L

Phase En _ Syncin

0 OT EPWM1A

CTR=zero
CTR=CMPB:O?\°— EPWM1B

X=—0

SyncOut
To eCAP1
Syncin
Phase Egn Syncin !
$=120° [«—0—"T + [EPWM2A $=120° ;
Q 1
CTR=zero—o E 1
CTR=CMPB—0 U EPWM2B ! !
X=——0 } T

SyncOut

Syncin |
Phase En y | g=120° |
$=240° j¢=—0—"0 ' [EPWM3A —
h— :

CTR=zero—9]
CTR=CMPB—0 O EPWM3B
X—0 " :
SyncOut e $=240° —»

ePWM Time-Base Sub-Module Registers

(lab file: EPwm.c)

Name Description Structure

TBCTL Time-Base Control EPwmxRegs.TBCTL .all =
TBSTS Time-Base Status EPwmxRegs.TBSTS.all =
TBPHS Time-Base Phase EPwmxRegs.TBPHS =
TBCTR Time-Base Counter EPwmxRegs.TBCTR =
TBPRD Time-Base Period EPwmxRegs.TBPRD =

C2000 Delfino Workshop - Control Peripherals 7-7

ePWM

ePWM Time-Base Control Register

EPwmxRegs. TBCTL
Upper Register:

Phase Direction
0=count down after sync

1=co TBCLK =SYSCLKOUT / (HSPCLKDIV * CLKDIV)
unt up after sync N
~ ™~
15-14 13 12-10 9-7
FREE_SOFT PHSDIR CLKDIV HSPCLKDIV
Emulation Halt Behavior TB Clock Prescale High Speed TB
00 = stop after next CTR inc/dec 000 =/1 (default) Clock Prescale
01 =stop when: 001=/2 000=1/1
Up Mode; CTR = PRD 010 =/4 001 =/2 (default)
Down Mode; CTR=0 011 =/8 010 =/4
Up/Down Mode; CTR =0 100 =/16 011=1/6
1x = free run (do not stop) 101 =/32 100 =/8
110 =/64 101 =/10
111 =/128 110 =/12
111 =/14

(HSPCLKDIV is for legacy compatibility)

ePWM Time-Base Control Register

EPwmxRegs.TBCTL

Lower Register:
Counter Mode
00 =countup

Software Force Sync Pulse 01 = count down

0 =no action 10 =count up and down
1 =force one-time sync 11 = stop — freeze (default)
6 5-4 3 2 1-0
SWFSYNC SYNCOSEL PRDLD PHSEN CTRMODE

Sync Output Select Period Shadow Load Phase Reg. Enable
(source of EPWMxSYNCO signal) 0=load on CTR=0 0 =disable
00 = EPWMxSYNCI 1=load immediately 1=CTR=TBPHS on
01=CTR=0 EPWMxSYNCI signal

10 =CTR = CMPB
11 =disable SyncOut

C2000 Delfino Workshop - Control Peripherals

ePWM

ePWM Compare Sub-Module

ePWM Compare Sub-Module

Clock
Prescaler
Tinﬁz-glatlse | Compare =9 Action Dead
) Logi lifier —— Ban
TECLK | counter 0giC [y Qualifie a d—l
EPWMxSYNCI EPWMxSYNCI .
Period
------------------ Register L — EPWMxA
PWM Trip [——
Shadowed
Chopper Z0Ne p—s
SYSCLKOUT EPWMXB
Tzy

ePWM Compare Event Waveforms

TBCTR 4 | e = compare events are fed to the Action Qualifier Module|

TBPRD

CMPA
CMPB

-[---—Asymmetrical

----- Waveform

TBCTR

TBPRD | oom oo pg-mmmmmmmm o m o mmmmmmmmm s m G mmmmm e m e

CMPA ----- TTTTTTTAsymmetrical

CMPB F------ ------- Waveform
Count Down Mode

TBCTR 4

TBPRD |.

CMPA ====--- Symmetrical

CMPB Waveform

Count Up and Down Mode

C2000 Delfino Workshop - Control Peripherals

ePWM

ePWM Compare Sub-Module Registers

(lab file: EPwm.c)

Name Description Structure

CMPCTL Compare Control EPwmxRegs.CMPCTL.all =
CMPA Compare A EPwmxRegs.CMPA =
CMPB Compare B EPwmxRegs.CMPB =

ePWM Co mpare Control Register
EPwmxRegs.CMPCTL
CMPA and CMPB Shadow Full Flag
(bit automatically clears on load)
0 = shadow not full
1 =shadow full
A
I ™
15-10 9 8 7
reserved SHDWBFULL | SHDWAFULL [reserved
6 5 4 3-2 1-0
SHDWBMODE | reserved | SHDWAMODE LOADBMODE LOADAMODE
~— -
N
CMPA and CMPB Operating Mode CMPA and CMPB Shadow Load Mode
0 = shadow mode; 00 =load on CTR=0
double buffer w/ shadow register 01 =load on CTR = PRD
1=immediate mode; 10 =load on CTR =0 or PRD
shadow register not used 11 =freeze (no load possible)

7-10 C2000 Delfino Workshop - Control Peripherals

ePWM

ePWM Action Qualifier Sub-Module

ePWM Action Qualifier Sub-Module

Shadowed Shadowed
. Clock Com pareJ Compare J
Prescaler Register Register
. 16':“ Compare | Action [m==—p| Dead
TBCLK g)i_ntae?e Logic Qualifier j——p| Band _|
EPWMxSYNCI EPWMxSYNCO R
Period [
.................. Register | - EPWMxA
PWM Trip ——>
[Ciso Chopper Z0Ne f——
SYSCLKOUT EPWMXxB
Tzy
ePWM Action Qualifier Actions
for EPWMA and EPWMB
Time-Base Counter equals: EPWM
FS/W Output
orce Zero | CMPA | CMPB | TBPRD | Actions
SW Z CA CB P .
Do Nothin
X X X X X J
SwW Z CA CB P
Clear Low
y ! d d y
SwW Z CA CB P :
Set High
T)))) &
SwW Z CA CB P Toggle
T T T T T

C2000 Delfino Workshop - Control Peripherals

ePWM

ePWM Count Up Asymmetric Waveform

with Independent Modulation on EPWMA / B
TBCTR

TBPRD }---------

EPWMA

z|lP| [cB CA zl||P| |cB CA z\llP
T X| | X Y| x| | X Y| | T X

L

zI|[p] [cB CA z|[P] [cB CA
T x| [X [T x| [X

| =N
BB

EPWMB

ePWM Count Up Asymmetric Waveform

with Independent Médulation on EPWMA
TBCTR

TBPRD

cAl [cB caAl [cB
T v . T Y
EPWMA | i |
1 i I
z z z
T T T
EPWMB |

C2000 Delfino Workshop - Control Peripherals

ePWM

ePWM Count Up-Down Symmetric

Waveform
with Independent Modulation on EPWMA / B

TBCTR

TBPRD

EPWMA |

EPWMB |

ePWM Count Up-Down Symmetric

Waveform
with Independent Modulation on EPWMA

TBCTR

TBPRD

C2000 Delfino Workshop - Control Peripherals 7-13

ePWM

ePWM Action Qualifier Sub-Module

Registers
(lab file: EPwm.c)

Name Description Structure

AQCTLA AQ Control Output A EPwmxRegs.AQCTLA.all =
AQCTLB AQ Control Output B EPwmxRegs.AQCTLB.all =
AQSFRC AQ S/W Force EPwmxRegs.AQSFRC.all =
AQCSFRC AQ Cont. S/W Force EPwmxRegs.AQCSFRC.all =

ePWM Action Qualifier Control Register

EPwmxRegs.AQCTLy (y =Aor B)

Action when Action when

CTR = CMPB CTR = CMPA Action when

on UP Count on UP Count CTF‘Q =0
15-12 11- 10 9-8 7-6 5-4 3-2 1-0
reserved CBD CBU CAD CAU PRD ZRO

Action when
CTR = PRD

Action when Action when
CTR =CMPB CTR = CMPA
on DOWN Count on DOWN Count

00 = do nothing (action disabled)

01 =clear (low)

10 = set (high)

11 =toggle (low — high; high —» low)

7-14 C2000 Delfino Workshop - Control Peripherals

ePWM

15-8

ePWM Action Qualifier
S/W Force Re%l:ster

EPwmxRegs.AQS

7-6

One-Time S/W Force on Output B / A
0 =no action
1 =single s/w force event

T

5

4-3 2 1-0

reserved

RLDCSF

OTSFB

ACTSFB OTSFA ACTSFA

AQSFRC Shadow Reload Options
00 =load on event CTR =0

01 =load on event CTR = PRD
10 =load on event CTR =0 or CTR = PRD
11 = load immediately (from active reg.)

Action on One-Time S/W Force B/ A
00 =do nothing (action disabled)

0l =clear (Iowg

10 = set (high)

11 =toggle (low — high; high - low)

ePWM Action Qualifier Continuous
S/W Force Register

EPwmxRegs.AQCSFRC

15-4

3-2 1-0

reserved

CSFB CSFA

\/

Continuous S/W Force on OutputB /A
00 =forcing disabled
01 =force continuous low on output

10 =force continuous high on output
11 =forcing disabled

C2000 Delfino Workshop - Control Peripherals

ePWM

Asymmetric and Symmetric Waveform Generation using
the ePWM

PWM switching frequency:

The PWM carrier frequency is determined by the value contained in the time-base period register,
and the frequency of the clocking signal. The value needed in the period register is:

Asymmetric PWM: period register = (SW'tCh'ng pe”OdJ 1

timer period

switching period
2(timer period)

Symmetric PWM: period register =

Notice that in the symmetric case, the period value is half that of the asymmetric case. This is
because for up/down counting, the actual timer period is twice that specified in the period register
(i.e. the timer counts up to the period register value, and then counts back down).

PWM resolution:

The PWM compare function resolution can be computed once the period register value is
determined. The largest power of 2 is determined that is less than (or close to) the period value.
As an example, if asymmetric was 1000, and symmetric was 500, then:

Asymmetric PWM: approx. 10 bit resolution since 2'° = 1024 ~ 1000

Symmetric PWM: approx. 9 bit resolution since 2° = 512 ~ 500

PWM duty cycle:

Duty cycle calculations are simple provided one remembers that the PWM signal is initially
inactive during any particular timer period, and becomes active after the (first) compare match
occurs. The timer compare register should be loaded with the value as follows:

Asymmetric PWM: TXCMPR = (100% - duty cycle) * TXxPR

Symmetric PWM: TxCMPR = (100% - duty cycle) * TxPR

Note that for symmetric PWM, the desired duty cycle is only achieved if the compare registers
contain the computed value for both the up-count compare and down-count compare portions of
the time-base period.

C2000 Delfino Workshop - Control Peripherals

ePWM

PWM Computation Example

Symmetric PWM Computation Example

¢ Determine TBPRD and CMPA for 150 kHz, 25% duty
symmetric PWM from a 150 MHz time base clock

foun = 150 kHz
(Tpwm = 6.67 us)

Compare \

7
Counter T ‘L

“— frpeik = 150 MHz
PWM Pin 4,_|_ (TrgcLk = 6.67 ns)

Period -~~~

TBPRD = L. feci - 1150MHz _)

foow 2 150 kHz
CMPA = (100% - duty cycle)*TBPRD = 0.75+500 = 375

Asymmetric PWM Computation Example

¢ Determine TBPRD and CMPA for 150 kHz, 25% duty
asymmetric PWM from a 150 MHz time base clock

fownm = 150 kHz
(Tewm = 6.67 ps) ’

Period
Compare

Counter

L4 e = 150 MHz —|
PWM Pin (Trgcik = 6.67 ns)

fracLc 150 MHz
_ 1= ~1=999
TBPRD =~ 150 kHz

CMPA = (100% - duty cycle)*(TBPRD+1) - 1 = 0.75%(999+1) - 1 = 749

C2000 Delfino Workshop - Control Peripherals 7-17

ePWM

ePWM Dead-Band Sub-Module
ePWM Dead-Band Sub-Module

Shadowed J Shadowed J

. Clock Compare Compare
Prescaler Register Register
_ Ti;z-:gse Compare Action Dead
) Logi lifier f———sf Band jum
TBCLK Counter ogic Qualifie and
EPWMxSYNCI EPWMxSYNCO .
i Period L
Foeeenmeneenes . Register L r— i EPWMxA
rip ——
[Ciso Chopper Z0Ne p—s
SYSCLKOUT EPWMXB
Tzy

Motivation for Dead-Band

supply rail
gate signals are to power
complementary PWM switching
I—IU device

¢ Transistor gates turn on faster than they shut off
¢ Short circuit if both gates are on at same time!

7-18 C2000 Delfino Workshop - Control Peripherals

ePWM

Dead-band control provides a convenient means of combating current shoot-through problems in
a power converter. Shoot-through occurs when both the upper and lower gates in the same phase
of a power converter are open simultaneously. This condition shorts the power supply and results
in a large current draw. Shoot-through problems occur because transistors open faster than they
close, and because high-side and low-side power converter gates are typically switched in a
complimentary fashion. Although the duration of the shoot-through current path is finite during
PWM cycling, (i.e. the closing gate will eventually shut), even brief periods of a short circuit
condition can produce excessive heating and over stress in the power converter and power supply.

ePWM Dead-Band Block Diagram
PWMXA
A P o |
| ge Lo LSl 1 pwmxa
i 0o, Delay —q S2 RED | ot
1 i Out‘—m— ; 1
— AR !
1| @o-bit :
: counter) :
: Falling : !
Lo : Edge i 0q i 1 :
oS5 i | Dely | [. FED S0 ! pwwmxB
In Out; —o0 : A —>
5 : 1
Pl (10-bit : 10
TTRT counter) '""f"" \""f'"
IN-MODE POLSEL OUT-MODE
PWMxB

Two basic approaches exist for controlling shoot-through: modify the transistors, or modify the
PWM gate signals controlling the transistors. In the first case, the opening time of the transistor
gate must be increased so that it (slightly) exceeds the closing time. One way to accomplish this
is by adding a cluster of passive components such as resistors and diodes in series with the
transistor gate, as shown in the next figure.

by-pass diode

I‘l

PWM
signal ~VVVV—
R

Shoot-through control via power circuit modification

The resistor acts to limit the current rise rate towards the gate during transistor opening, thus
increasing the opening time. When closing the transistor however, current flows unimpeded from
the gate via the by-pass diode and closing time is therefore not affected. While this passive
approach offers an inexpensive solution that is independent of the control microprocessor, it is

C2000 Delfino Workshop - Control Peripherals 7-19

ePWM

imprecise, the component parameters must be individually tailored to the power converter, and it
cannot adapt to changing system conditions.

The second approach to shoot-through control separates transitions on complimentary PWM
signals with a fixed period of time. This is called dead-band. While it is possible to perform
software implementation of dead-band, the C28x offers on-chip hardware for this purpose that
requires no additional CPU overhead. Compared to the passive approach, dead-band offers more
precise control of gate timing requirements. In addition, the dead time is typically specified with
a single program variable that is easily changed for different power converters or adapted on-line.

ePWM Dead-Band Sub-Module Registers

(lab file: EPwm.c)

Name Description Structure

DBCTL Dead-Band Control EPwmxRegs.DBCTL.all =
DBRED 10-bit Rising Edge Delay EPwmxRegs.DBRED =
DBFED\\ 10-bit Falling Edge Delay EPwmxRegs.DBFED =

Rising Edge Delay = T1gc k X DBRED
Falling Edge Delay = Tygc .k X DBFED

C2000 Delfino Workshop - Control Peripherals

ePWM

15-6

ePWM Dead Band Control Register

EPwmxRegs.DBCTL

Polarity Select

00 = active high

01 = active low complementary (RED)
10 = active high complementary (FED)
11 = active low

5-4 3-2 1-0

reserved IN_MODE POLSEL OUT_MODE

In-Mode Control

00 = PWMXA is source for RED and FED
01 = PWMXA is source for FED
PWMxB is source for RED
10 = PWMXA is source for RED
PWMxB is source for FED
11 = PWMxB is source for RED and FED

Out-Mode Control
00 = disabled (DBM bypass)
01 = PWMxA =no delay
PWMxB = FED
10 = PWMxA = RED
PWMxB = no delay
11 = RED & FED (DBM fully enabled)

ePWM PWM Chopper Sub-Module

ePWM PWM Chopper Sub-Module

Clock J
Prescaler Register Register
Tinll?e-ggse Compare Action Dead
) Logic ualifier | Band | —
TBELK 1 Counter 4 2
EPWMxSYNCI EPWMxSYNCO .
Period [
---------------- : Register L ST Tri EPWMxA
i P Trip ——>
; Sz e Chopper fpmpi Zone ——
SYSCLKOUT EPWMXxB
Tzy

C2000 Delfino Workshop - Control Peripherals

ePWM

Purpose of the PWM Chopper

¢ Allows a high frequency carrier
signal to modulate the PWM
waveform generated by the Action
Qualifier and Dead-Band modules

¢ Used with pulse transformer-based
gate drivers to control power
switching elements

ePWM Chopper Waveform

EPWMXA |

EPWMxB

v IO A T
Il

EPWMXA

EPWMxB

—

: - Pg) ranwg#]le
1 uise Wi
OSHT (OSHTWTH) | |
EPWMXA | ||||||||||||| Sustaining ”””””””

With One-Shot Pulse on EPWMxA and/or EPWMxB

7-22 C2000 Delfino Workshop - Control Peripherals

ePWM

ePWM Chopper Sub-Module Registers

(lab file: EPwm.c)

Name

Description

Structure

PCCTL

PWM-Chopper Control EPwmxRegs.PCCTL .all =

001 =2/8
010=3/8

100=15/8
101 =6/8

Chopper Clk Duty Cycle
000 = 1/8 (12.5%)

011 = 4/8 (50.0%)

110 = 7/8 (87.5%)

111 =reserved \

15-11 10-8

ePWM Chog)per Control Register

mxRegs.PCCTL

37.5%

75.0%

Chopper Clk Freq.

000 = SYSCLKOUT/8 + 1
525.0%; 001 = SYSCLKOUT/8 + 2
011 = SYSCLKOUTIS & 4
562.5%; 100 = SYSCLKOUT/8 =5 Chopper Enable
101 = SYSCLKOUT/8 + 6 0 = disable (bypass)
110 = SYSCLKOUT/8 + 7 1=-enable

111 = SYSCLKOUT/8 + 8 \

4-1 0

reserved CHPDUTY CHPFREQ OSHTWTH CHPEN

One-Shot Pulse Width

0000 =1 x SYSCLKOUT/8
0001 =2 x SYSCLKOUT/8
0010 =3 x SYSCLKOUT/8
0011 =4 x SYSCLKOUT/8
0100 =5x SYSCLKOUT/8
0101 =6 x SYSCLKOUT/8
0110 =7 x SYSCLKOUT/8
0111 =8x SYSCLKOUT/8

1000= 9 x SYSCLKOUT/8
1001 = 10 x SYSCLKOUT/8
1010 = 11 x SYSCLKOUT/8
1011 =12 x SYSCLKOUT/8
1100 = 13 x SYSCLKOUT/8
1101 = 14 x SYSCLKOUT/8
1110 = 15 x SYSCLKOUT/8
1111 =16 x SYSCLKOUT/8

C2000 Delfino Workshop - Control Peripherals

ePWM

ePWM Trip-Zone Sub-Module

ePWM Trip-Zone Sub-Module

Shadowed Shadowed
Clock Compare Compare
Prescaler Register Register
Tin%lz-glz:se Compare Action Dead
) Logi lifier —— Ban
TBCLK Counter ogic Qualifie and _|
EPWMxSYNCI EPWMxSYNCO .
Period L
------------------ Register L — = EPWMXxA
rip [r—
[Ciso Chopper Z0NE [l
SYSCLKOUT EPWMXxB

L TZy

¢ Supports:

Trip-Zone Features

+ Trip-Zone has a fast, clock independent logic path to high-impedance
the EPWMXA/B output pins

¢ Interrupt latency may not protect hardware when responding to over
current conditions or short-circuits through ISR software

current conditions

#1) one-shot trip for major short circuits or over

#2) cycle-by-cycle trip for current limiting operation

Over
Current
Sensors

TZ1

CPU

— EPWM1A
EPWM1B

core

TZ2

Cycle-by-Cycle

TZ3

Mode

T74

TZ5

One-Shot

176

Mode

EPWMXTZINT

EPWM2A
——

EPWM2B
EPWM3A
EPWM3B

——»
EPWM4A

—_—
EPWM4B
EPWM5A

—

EPWM5B
EPWMGA

w-HCU—HCO Z=7T

—_—
EPWM6B
——

The power drive protection is a safety feature that is provided for the safe operation of systems
such as power converters and motor drives. It can be used to inform the monitoring program of

C2000 Delfino Workshop - Control Peripherals

ePWM

motor drive abnormalities such as over-voltage, over-current, and excessive temperature rise. If
the power drive protection interrupt is unmasked, the PWM output pins will be put in the high-
impedance state immediately after the pin is driven low. An interrupt will also be generated.

ePWM Trip-Zone Sub-Module Registers

TZEINT Enable Interrupt
TZFLG Trip-Zone Flag

TZCLR Trip-Zone Clear
TZFRC Trip-Zone Force

(lab file: EPwm.c)
Name Description Structure
TZCTL Trip-Zone Control EPwmxRegs.TZCTL .all =
TZSEL Trip-Zone Select EPwmxRegs.TZSEL.all =

EPwmxRegs.TZEINT.all =
EPwmxRegs.TZFLG.all =
EPwmxRegs.TZCLR.all =
EPwmxRegs.TZFRC.all =

15-4

ePWM Trip-Zone Control Register

EPwmxRegs.TZCTL

3-2 1-0

reserved

TZB TZA

e

TZ1to TZ6 Action on EPWMxB / EPWMxA
00 = high impedance

01 =force high

10 = force low

11 =do nothing (disable)

C2000 Delfino Workshop - Control Peripherals

ePWM

ePWM Trip-Zone Select Register

EPwmxRegs.TZSEL

One-Shot Trip Zone

(event only cleared under S/W
control; remains latched)

0 =disable as trip source
1 =enable as trip source

A
15-14 /13 12 11 10 9 8 N\

reserved OSHT6 OSHT5 OSHT4 OSHT3 OSHT2 OSHT1
7-6 5 4 3 2 1 0
reserved CBC6 CBC5 CBC4 CBC3 CBC2 CBC1

~

Cycle-by-Cycle Trip Zone
(event cleared when CTR = 0
i.e. cleared every PWM cycle)
0 = disable as trip source
1 = enable as trip source

ePWM Trip-Zone Enable Interrupt
Reglster

EPwmxRegs. TZEINT
15-3 2 1 0
reserved OST CBC reserved
One-Shot Cycle-by-Cycle
Interrupt Enable Interrupt Enable
0 =disable 0 = disable
1 =enable 1= enable

C2000 Delfino Workshop - Control Peripherals

ePWM

ePWM Event-Trigger Sub-Module
ePWM Event-Trigger Sub-Module

) Clock Compare Compare J
Prescaler Register Register
_ Tin%lz-glatlse Compare Action Dead
) Logi lifier —— Ban
TBCLK Counter Otg c Qualifie and _|
EPWMxSYNCI EPWMxSYNCO)

: | Period }

e . Reqister EPWMxA
Shgd - —1 PWM Trip [—>
[Shadowed | Chopper Z0Ne f—

SYSCLKOUT EPWMxB

Tzy

ePWM Event-Trigger Interrupts and SOC

TBCTR

TBPRD
CMPB
CMPA

RPRRPRRE. U, * Sy g Y E .

EPWMA |

EPWMB !

CTR=0 —t —t 1 i : — 1
crprof L P F L E L i
CTRU = CMPA! 1 I f
crro=cweal__{ 4 i i % NN
CTRU = CMPB f . f ‘

CTRD = CMPB P | P f

C2000 Delfino Workshop - Control Peripherals 7-27

ePWM

ePWM Event-Trigger Sub-Module

Registers
(lab file: EPwm.c)

Name Description Structure

ETSEL Event-Trigger Selection EPwmxRegs.ETSEL.all =
ETPS Event-Trigger Pre-Scale EPwmxRegs.ETPS.all =
ETFLG Event-Trigger Flag EPwmxRegs.ETFLG.all =
ETCLR Event-Trigger Clear EPwmxRegs.ETCLR.all =
ETFRC Event-Trigger Force EPwmxRegs.ETFRC.all =

ePWM Event-Trigger Selection Register

EPwmxRegs.ETSEL

Enable SOCB / A Enable EPWMXxINT

0 =disable 0 =disable
1 =enable 1 =enable
15 14-12 11 10-8 7-4 3 2-0
SOCBEN SOCBSEL SOCAEN SOCASEL reserved INTEN [INTSEL

EPWMxSOCB / A Select

000 =reserved
001=CTR =0

010 =CTR = PRD
011 =reserved

100 = CTRU = CMPA
101 = CTRD = CMPA
110 =CTRU = CMPB
111 = CTRD = CMPB

EPWMXINT Select

000 =reserved
001=CTR=0

010 =CTR =PRD
011 =reserved

100 = CTRU = CMPA
101 = CTRD = CMPA
110 =CTRU = CMPB
111 =CTRD = CMPB

C2000 Delfino Workshop - Control Peripherals

ePWM

ePWM Event-Trigge

EPwmMxRe

EPWMxSOCB / A Counter
(number of events have occurred)
00 = no events

01 =1 event

10 = 2 events

11 =3 events

/\

r Prescale Register
gs.ETPS

EPWMXINT Counter

(number of events have occurred)
00 = no events

01 =1 event

10 = 2 events

11 = 3 events

15-14

13-12

11-10

9-8

7-4

2-3

1-0

SOCBCNT

SOCBPRD

SOCACNT

SOCAPRD

reserved

INTCNT

INTPRD

EPWMxSOCB / A Period
(number of events before SOC)
00 =disabled

01 = SOC on first event

10 = SOC on second event
11 = SOC on third event

EPWMXINT Period
(number of events before INT)
00 = disabled

01 = INT on first event

10 = INT on second event
11 = INT on third event

Hi-Resolution PWM (HRPWM)

Hi-Resolution PWM (HRPWM)

= e,
« »,

o o,

P PWM Period -
Regular
Device Clock _PW(I;/|687tep
i £.6.67 ns
(1.e. 150 MHz) III|IIIII|IIIIII‘LJL,!.__IIIIIIIIIIIIIIIII(I)

HRPWNM divides a clock o

T,

Calibration Logic tracks the

cycle into smaller steps

number of Micro Steps per

called Micro Steps
(Step Size ~= 150 ps) |

"‘n
a3+

clock to account for
| variations caused by
Temp/\Volt/Process

Calibration Logic

| HRPWM
FEEEEEEEEEEEEEEETEEE L] § Micro Step (<150 ps)

* ¢ oo

Significantly increases the resolution of conventionally derived digital PWM

Uses 8-bit extensions to Compare registers (CMPxHR) and Phase register
(TBPHSHR) for edge positioning control

Typically used when PWM resolution falls below ~9-10 bits which occurs at
frequencies greater than ~300 kHz (with system clock of 150 MHz)

Not all ePWM outputs support HRPWM feature (see device datasheet)

C2000 Delfino Workshop - Control Peripherals

eCAP

eCAP

Capture Module (eCAP)

D _ L

Timer

| Trigger ._S
\(pin
Timestamp
Values

¢ The eCAP module timestamps transitions on a
capture Input pin

The capture units allow time-based logging of external TTL signal transitions on the capture input
pins. The C28x has up to six capture units.

Capture units can be configured to trigger an A/D conversion that is synchronized with an
external event. There are several potential advantages to using the capture for this function over
the ADCSOC pin associated with the ADC module. First, the ADCSOC pin is level triggered,
and therefore only low to high external signal transitions can start a conversion. The capture unit
does not suffer from this limitation since it is edge triggered and can be configured to start a
conversion on either rising edges or falling edges. Second, if the ADCSOC pin is held high
longer than one conversion period, a second conversion will be immediately initiated upon
completion of the first. This unwanted second conversion could still be in progress when a
desired conversion is needed. In addition, if the end-of-conversion ADC interrupt is enabled, this
second conversion will trigger an unwanted interrupt upon its completion. These two problems
are not a concern with the capture unit. Finally, the capture unit can send an interrupt request to
the CPU while it simultaneously initiates the A/D conversion. This can yield a time savings
when computations are driven by an external event since the interrupt allows preliminary
calculations to begin at the start-of-conversion, rather than at the end-of-conversion using the
ADC end-of-conversion interrupt. The ADCSOC pin does not offer a start-of-conversion
interrupt. Rather, polling of the ADCSOC bit in the control register would need to be performed
to trap the externally initiated start of conversion.

C2000 Delfino Workshop - Control Peripherals

eCAP

¢ Measure the time width of a pulse

Some Uses for the Capture Module

¢ Low speed velocity estimation from incr. encoder:

Problem: At low speeds, calculation of speed
based on a measured position change at
fixed time intervals produces large estimate

oKk Xt
At

errors

at fixed position intervals

Alternative: Estimate the speed using a measured time interval

Signal from one
Vy & A quadrature
te -t encoder channel

}._

¢ Auxiliary PWM generation

Ax—-{

eCAP Module Block Diagram - capture Mode
CAP1POL
—| Capture1 |__| |__| Polarity | _
Register Select 1
CAP2POL
|| Capture 2 o le—1, Polarity |_]
Register = Select 2 PRESCALE
32-Bit S Event
e» Time-Stamp c — ——*
Counter < CAP3POL ECAPx
Capture 3 n Polarity pin
............... . m . —
i Register Select 3
SYSCLKOUT
CAP4POL
Capture 4 A Polarity o
Register Select 4

C2000 Delfino Workshop - Control Peripherals

eCAP

eCAP Module Block Diagram - apwm Mode
| shadowed Period
) i Period Register sfr:%dd%w
'mmgg'eate Register (CAP3)
(CAP1)
32-Bit PWM
v Time-Stamp Compare F————
Counter Logic ECAP
: pin
SYSCLKOUT
immediate Compare
| | :
mode RIS AET Compare | .\ jow
(CAP2) Register | “iode
[Shadowed (CAP4)
eCAP Module Registers
(lab file: ECap.c)
Name Description Structure

ECCTL1 Capture Control 1
ECCTL2 Capture Control 2
TSCTR Time-Stamp Counter
CTRPHS | Counter Phase Offset

ECapxRegs.ECCTL1.all =
ECapxRegs.ECCTL2.all =
ECapxRegs.TSCTR =
ECapxRegs.CTRPHS =

CAP1 Capture 1 ECapxRegs.CAP1 =
CAP2 Capture 2 ECapxRegs.CAP2 =
CAP3 Capture 3 ECapxRegs.CAP3 =
CAP4 Capture 4 ECapxRegs.CAP4 =
ECEINT Enable Interrupt ECapxRegs.ECEINT.all =
ECFLG Interrupt Flag ECapxRegs.ECFLG.all =
ECCLR Interrupt Clear ECapxRegs.ECCLR.all =
ECFRC Interrupt Force ECapxRegs.ECFRC.all =

C2000 Delfino Workshop - Control Peripherals

eCAP

eCAP Control Reqister 1

ECapxRegs.ECCTL

Upper Register:

CAP1 -4 Load
on Capture Event
0 =disable
1= enaﬁ
15-14 13-9 8
FREE_SOFT PRESCALE CAPLDEN
Emulation Control Event Filter Prescale Counter
00 = TSCTR stops immediately 00000 = divide by 1 (bypass)
01 = TSCTR runs until equals 0 00001 = divide by 2
1X = free run (do not stop) 00010 = divide by 4

00011 = divide by 6
00100 = divide by 8

. .
. »

11110 = divide by 60
11111 = divide by 62

eCAP Control Reqister 1

ECapxRegs.ECCTL

Lower Register:

Counter Reset on Capture Event

0 = no reset (absolute time stamp mode)
1 =reset after capture (difference mode)

7 6 5 4 3 2 1 0
CTRRST4|CAP4POL|CTRRST3 |CAP3POL|CTRRST2|CAP2POL |CTRRST1 |CAP1POL

T\

Capture Event Polarity

0 =trigger on rising edge
1 =trigger on falling edge

C2000 Delfino Workshop - Control Peripherals 7-33

eCAP

eCAP Control Register 2

ECapxRegs.ECCTL

Upper Register:

Capture/ APWM mode

0 =capture mode
1= APWM mode

15-11 10 9 8
reserved APWMPOL | CAP_APWM | SWSYNC

APWM Output Polarity Software Force

(valid only in APWM mode) Counter Synchronization
0 = active high output 0 = no effect
1 = active low output 1 =TSCTR load of current

module and other modules
if SYNCO_SEL bits =00

eCAP Control Register 2

ECapxRegs.ECCTL

Lower Register:

Re-arm Continuous/One-Shot
Coun_ter Sync-In (capture mode only) (capture mode only)
0= disable 0 = no effect 0 = continuous mode
1=enable 1 =arm sequence 1 =one-shot mode
7-6 5 4 3 2-1 0

SYNCO_SEL | SYNCI_EN | TSCTRSTOP | REARM | STOP_WRAP [CONT_ONESHT

Sync-Out Select Time Stamp Stop Value for One-Shot Mode/
00 = sync-in to sync-out Counter Stop Wrap Value for Continuous Mode
01=CTR = PRD event 0 = stop (capture mode only)

generates sync-out 1=run 00 = stop/wrap after capture event 1
1X =disable 01 = stop/wrap after capture event 2

10 = stop/wrap after capture event 3
11 = stop/wrap after capture event 4

C2000 Delfino Workshop - Control Peripherals

eCAP

The capture unit interrupts offer immediate CPU notification of externally captured events. In
situations where this is not required, the interrupts can be masked and flag testing/polling can be
used instead. This offers increased flexibility for resource management. For example, consider a
servo application where a capture unit is being used for low-speed velocity estimation via a
pulsing sensor. The velocity estimate is not used until the next control law calculation is made,
which is driven in real-time using a timer interrupt. Upon entering the timer interrupt service
routine, software can test the capture interrupt flag bit. If sufficient servo motion has occurred
since the last control law calculation, the capture interrupt flag will be set and software can
proceed to compute a new velocity estimate. If the flag is not set, then sufficient motion has not
occurred and some alternate action would be taken for updating the velocity estimate. As a
second example, consider the case where two successive captures are needed before a
computation proceeds (e.g. measuring the width of a pulse). If the width of the pulse is needed as
soon as the pulse ends, then the capture interrupt is the best option. However, the capture
interrupt will occur after each of the two captures, the first of which will waste a small number of
cycles while the CPU is interrupted and then determines that it is indeed only the first capture. If
the width of the pulse is not needed as soon as the pulse ends, the CPU can check, as needed, the
capture registers to see if two captures have occurred, and proceed from there.

eCAP Interrupt Enable Register

ECapxRegs.ECEINT

CTR =CMP CTR = Overflow Capture Event 3 Capture Event 1
Interrupt Enable Interrupt Enable Interrupt Enable Interrupt Enable

15-8 7 6 5 4 3 2 1 0
reserved] CTR=CMP [CTR=PRD [CTROVF |CEVT4 |CEVT3 |CEVT2 |CEVT1 [reserved

CTR =PRD Capture Event 4 Capture Event 2
Interrupt Enable Interrupt Enable Interrupt Enable

0 =disable as interrupt source
1 =enable as interrupt source

C2000 Delfino Workshop - Control Peripherals 7-35

eQEP

eQEP

What is an Incremental Quadrature

Encoder?
A digital (angular) position sensor
photo sensors spaced 0/4 deg. apart
V slots spaced 0 deg. apart _9/4
<P light P
I ght source (LED) H

Incremental Optical Encoder Quadrature Output from Photo Sensors

The eQEP circuit, when enabled, decodes and counts the quadrature encoded input pulses. The
QEP circuit can be used to interface with an optical encoder to get position and speed information
from a rotating machine.

How is Position Determined from
Quadrature Signals?

Position resolution is 6/4 degrees

increment decrement

(00) (11)
(AB)= | 10) | (01) counter counter
[

I I +

lllegal
e Transitions;_____ >
%enerate
phase error
interrupt
L *

Quadrature Decoder
State Machine

I
|
|
i
ch.A i
|
|
I
|
|
[}

Ch.B

7-36 C2000 Delfino Workshop - Control Peripherals

eQEP

Generate periodic

calculations

interrupts for velocity

R 32-Bit Unit
Time-Base

SYSCLKOUT

Generate a sync output
and/or interrupt on a
position compare match

eQEP Module Block Diagram

Measure the elapsed time
between the unit position events;
used for low speed measurement

__,| Quadrature
Capture
[uadrature - [Direction -
clock mode count mode
Monitors the quadrature
clock to indicate proper
operation of the r%otﬂ)n EQEPXA/XCLK
control system
— EQEPXB/XDIR
Quadrature
QEP EQEPxI
Watchdog Decoder Q
EQEPXxS
| |Position/Counter
Compare
Generate the direction and

clock for the position counter
in quadrature count mode

eQEP Module Connections

Ch. A
Quadrature ch. B
> Capture [\
EQEPXAXCLK
| Togase [EQEPXB/XDIR
Time-Base e || Quadrature nd
ER— Watchdog Decoger EQEPXI ndex
* EQEPXS Strobe)
from homing sensor
SYSCLKOUT
Position/Counter
= Compare

C2000 Delfino Workshop - Control Peripherals

Lab 7: Control Peripherals

Lab 7: Control Peripherals
» Objective

The objective of this lab is to become familiar with the programming and operation of the control
peripherals and their interrupts. ePWMZ1A will be setup to generate a 2 kHz, 25% duty cycle
symmetric PWM waveform. The waveform will then be sampled with the on-chip analog-to-
digital converter and displayed using the graphing feature of Code Composer Studio. Next,
eCAP1 will be setup to detect the rising and falling edges of the waveform. This information will
be used to determine the width of the pulse and duty cycle of the waveform. The results of this
step will be viewed numerically in a memory window.

Lab 7: Control Peripherals

ePWM1 dat
TB Counter CPU copies ata
Compare connector ADC result to memory
Action Qualifier e RESULTO buffer during -
ADC ISR c
*— E
eCAP1 ADC- o
@ N0 T 5
Capture 2 Register i - §
1 - IS}
i o
Capture 3 Register i E
:
View ADC
buffer PWM
ePWM2 triggering Samples
ADC on period match
using SOCA trigger every
20.833 pis (48 kHz) ePWM2 Code Composer
Studio

» Procedure

Open the Project

1. A project named Lab7 has been created for this lab. Open the project by clicking on
Project - Import Existing CCS/CCE Eclipse Project. The “Import”
window will open then click Browse... next to the “Select root directory” box. Navigate
to: C:\C28x\Labs\Lab7\Project and click OK. Then click Finish to import the
project. All build options have been configured the same as the previous lab. The files
used in this lab are:

7-38 C2000 Delfino Workshop - Control Peripherals

Lab 7: Control Peripherals

Adc_6 7 8.c Gpio.c
CodeStartBranch.asm Lab.h

Defaultlsr_7.c Lab 5 6 7.cmd
DelayUs.asm Main_7.c
DSP2833x_Defaultlsr.h PieCtrl 5 6 7 8 9 10.c
DSP2833x_GlobalVariableDefs.c PieVect 5 6 7 8 9 10.c
DSP2833x_Headers_nonBI0S.cmd SysCtrl.c

ECap 7 8 9 10 12.c Watchdog.c

EPwm_7_8 9 10 12.c

Note: The ECap_7 8 9 10 12.c file will be added and used with eCAP1 to detect
the rising and falling edges of the waveform in the second part of this lab exercise.

Setup Shared I/O and ePWM1
2. Edit Gpio.c and adjust the shared 1/0 pin in GPIOO0 for the PWM1A function.

3. InEPwm_7_8 9 10_12.c, setup ePWML1 to implement the PWM waveform as
described in the objective for this lab. The following registers need to be modified:
TBCTL (set clock prescales to divide-by-1, no software force, sync and phase disabled),
TBPRD, CMPA, CMPCTL (load on 0 or PRD), and AQCTLA (set on up count and clear
on down count for output A). Software force, deadband, PWM chopper and trip action
has been disabled. (Hint — notice the last steps enable the timer count mode and enable
the clock to the ePWM module). Either calculate the values for TBPRD and CMPA (as a
challenge) or make use of the global variable names and values that have been set using
#define in the beginning of Lab . h file. Notice that ePWMZ2 has been initialized earlier
in the code for the ADC lab. Save your work and close the modified files.

Build and Load

4. Click the “Bui 1d” button and watch the tools run in the Console window. Check for
errors in the Problems window.

5. Click the “Debug” button (green bug). The “Debug Perspective” view should open, the
program will load automatically, and you should now be at the start of main().

Run the Code — PWM Waveform

6. Open a memory window to view some of the contents of the ADC results buffer. The
address label for the ADC results buffer is AdcBuf in the “Data” memory page. We will
be running our code in real-time mode, and we will need to have the memory window
continuously refresh.

7. Using a connector wire provided, connect the PWMZ1A (pin # GP10-00) to ADCINAO
(pin # ADC-AQ) on the Docking Station.

8. Run the code (real-time mode) using the Script function: Scripts > Realtime
Emulation Control - Run_Realtime_with_Reset. Watch the window
update. Verify that the ADC result buffer contains the updated values.

C2000 Delfino Workshop - Control Peripherals 7-39

Lab 7: Control Peripherals

9. Open and setup a graph to plot a 48-point window of the ADC results buffer.
Click: Tools > Graph - Single Time and set the following values:

Acquisition Buffer Size 48

DSP Data Type

16-bit unsigned integer

Sampling Rate (Hz) 48000
Start Address AdcBuf
Display Data Size 48
Time Display Unit us

Select OK to save the graph options.

10. The graphical display should show the generated 2 kHz, 25% duty cycle symmetric
PWM waveform. The period of a 2 kHz signal is 500 us. You can confirm this by
measuring the period of the waveform using the “measurement marker mode” graph
feature. Disable continuous refresh for the graph before taking the measurements. Right-
click on the graph and select Measurement Marker Mode. Move the mouse to the
first measurement position and left-click. Again, right-click on the graph and select
Measurement Marker Mode. Move the mouse to the second measurement position
and left-click. The graph will automatically calculate the difference between the two
values taken over a complete waveform period. When done, clear the measurement
points by right-clicking on the graph and select Remove All Measurement
Marks. Then enable continuous refresh for the graph.

Frequency Domain Graphing Feature of Code Composer Studio

11. Code Composer Studio also has the ability to make frequency domain plots. It does this
by using the PC to perform a Fast Fourier Transform (FFT) of the DSP data. Let's make
a frequency domain plot of the contents in the ADC results buffer (i.e. the PWM
waveform).

Click: Tools > Graph > FFT Magnitude and set the following values:

Acquisition Buffer Size 48

DSP Data Type

16-bit unsigned integer

Sampling Rate (Hz) 48000
Start Address AdcBuf
Data Plot Style Bar
FFT Order 10

C2000 Delfino Workshop - Control Peripherals

Lab 7: Control Peripherals

Select OK to save the graph options.

12. On the plot window, hold the mouse left-click key and move the marker line to observe
the frequencies of the different magnitude peaks. Do the peaks occur at the expected
frequencies?

13. Fully halt the CPU (real-time mode) by using the Script function: Scripts >
Realtime Emulation Control -> Full_Halt.

Setup eCAP1 to Measure Width of Pulse

The first part of this lab exercise generated a 2 kHz, 25% duty cycle symmetric PWM
waveform which was sampled with the on-chip analog-to-digital converter and displayed
using the graphing feature of Code Composer Studio. Next, eCAP1 will be setup to detect
the rising and falling edges of the waveform. This information will be used to determine the
period and duty cycle of the waveform. The results of this step will be viewed numerically in
a memory window and can be compared to the results obtained using the graphing features of
Code Composer Studio.

14. Switch to the “C/C++ Perspective” view by clicking the C/C++ icon in the upper right-
hand corner. Add the following file to the project from
C:\C28x\Labs\Lab7\Files:

ECap_7 8 9 10 _12.c
Check your files list to make sure the file is there.

15. InMain_7.c, add code to call the InitECap () function. There are no passed
parameters or return values, so the call code is simply:

InitECap();
16. Edit Gpio.c and adjust the shared 1/0 pin in GPIO5 for the ECAP1 function.

17. Open and inspect the eCAPL1 interrupt service routine (ECAP1_INT_ISR) in the file
Defaultlsr_7.c. Notice that PwmDuty is calculated by CAP2 — CAP1 (rising to
falling edge) and that PwmPeriod is calculated by CAP3 — CAPL1 (rising to rising edge).

18. InECap_7 8 9 10 12.c, setup eCAP1 to calculate PWM_duty and PWM_period.
The following registers need to be modified: ECCTL2 (continuous mode, re-arm disable,
and sync disable), ECCTL1 (set prescale to divide-by-1, configure capture event polarity
without reseting the counter), and ECEINT (enable desired eCAP interrupt).

19. Using the “PIE Interrupt Assignment Table” find the location for the eCAP1 interrupt
“ECAP1_INT” and fill in the following information:

PIE group #: # within group:
This information will be used in the next step.

20. Modify theend of ECap_7 8 9 10 12.c to do the following:

- Enable the “ECAP1_INT” interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

C2000 Delfino Workshop - Control Peripherals 7-41

Lab 7: Control Peripherals

Build and Load

21.

Save all changes to the files and click the “Bui 1d” button. Select Yes to “Reload the
program automatically”. Switch back to the “Debug Perspective” view by clicking the
Debug icon in the upper right-hand corner.

Run the Code — Pulse Width Measurement

22.

23.

24.

25.

26.

Open a memory window to view the address label PwmPeriod. (Type &PwmPeriod in
the address box). The address label PwmDuty (address &PwmDuty) should appear in the
same memory window.

Set the memory window properties format to “32-Bit Unsigned Integer”.

Using the connector wire provided, connect the PWM1A (pin # GP10-00) to ECAP1 (pin
GP10-05) on the Docking Station.

Run the code (real-time mode) by using the Script function: Scripts > Realtime
Emulation Control -2 Run_Realtime with Reset. Notice the values for
PwmDuty and PwmPeriod.

Fully halt the CPU (real-time mode) by using the Script function: Scripts >
Realtime Emulation Control -> Full_Halt.

Questions:

How do the captured values for PwmDuty and PwmPeriod relate to the compare register
CMPA and time-base period TBPRD settings for ePWM1A?

What is the value of PwmDuty in memory?
What is the value of PwmPeriod in memory?
How does it compare with the expected value?

Terminate Debug Session and Close Project

217.

28.

Terminate the active debug session using the Terminate Al button. This will close
the debugger and return CCS to the “C/C++ Perspective” view.

Next, close the project by right-clicking on Lab7 in the C/C++ Projects window
and select Close Project.

End of Exercise

C2000 Delfino Workshop - Control Peripherals

Numerical Concepts

Introduction

In this module, numerical concepts will be explored. One of the first considerations concerns
multiplication — how does the user store the results of a multiplication, when the process of mul-
tiplication creates results larger than the inputs. A similar concern arises when considering accu-
mulation — especially when long summations are performed. Next, floating-point concepts will
be explored and 1Qmath will be described as a technique for implementing a “virtual floating-
point” system to simplify the design process.

The IQmath Library is a collection of highly optimized and high precision mathematical
functions used to seamlessly port floating-point algorithms into fixed-point code. These C/C++
routines are typically used in computationally intensive real-time applications where optimal
execution speed and high accuracy is needed. By using these routines a user can achieve
execution speeds considerable faster than equivalent code written in standard ANSI C language.
In addition, by incorporating the ready-to-use high precision functions, the IQmath library can
shorten significantly a DSP application development time. (The IQmath user's guide is included
in the application zip file, and can be found in the /docs folder once the file is extracted and
installed).

Learning Objectives

Learning Objectives

Integers and Fractions

|IEEE-754 Floating-Point

IQmath

Format Conversion of ADC Results

C2000 Delfino Workshop - Numerical Concepts 8-1

Module Topics

Module Topics

N[0 T g Tor= L I O] g ot o] ISR 8-1
Yoo U] T3 o1t OSSOSO 8-2
NUMDEFING SYSTEM BASICS ...vveuvereeiteitesiestieieeieie ettt sttt et sttt se et e eneesaesaesbesbesteaneeneeneenees 8-3

BINANY NUMDEIS. ...ttt et bbbt b et eb e bt b e et e ebe e et e b nrerea 8-3
TWO'S COMPIEMENT NUMDETS ...ttt 8-3
INEEGET BASICS ...ttt ettt bbbttt et sb e bt bt bt b e e Rt e R e e e e b e ne e bt bbb et e e e eas 8-4
SigN EXIENSION IMOTE.......oeiieieieiee ettt b bbbt e bbbt st e e ene e e e 8-5
Binary MURTPIICALIONoiiie et bbbt en s 8-6
ST TV T Ut o] PSS 8-8
Representing Fractions iN BINATYc.ccoiiieieiiie ittt re e st s te e ne e s 8-8
FRACION BASICS ...eveuietiiteieti ittt ettt sttt stk bbbttt b ettt eb e et e b et et e eb et et e sbeneeren 8-8
MuUltiplying Binary FIACIONScciviieieiiiie sttt et sr e ene e s 8-9
[= Yo o 1O Lo S 8-11
Fractional vs. Integer REPreSENtAtiON.coiveiierieeie et 8-12
FLOBEING-POINT. ..ot bbbttt b ettt b ettt sb et et bt et nb e 8-13
@] 4= 1 o PSSRSO RSR 8-16
1Q Fractional REPIESENTATIONcoiiiiieiitiie ettt se e bbb 8-16
Traditional “Q” Math APPrOACHc.eiiie bbb 8-17
1QMALN APPIOACK ...t et bbbt e e bbb bt bRt e r e e e b e e 8-19
L@ qF= (T I] - OSSR 8-24
Converting ADC Results into 1Q FOIMAL.........cccceiiiiieiicicicie et st e e e besresne 8-26
AC INAUCLION MOLOE EXAMPIEcviiicircieice sttt sttt b e re et se e be e stennas 8-28
IQMALN SUMMAIY ...ttt e st e st be s ae et e e s e es e e e et e tesaeeteeneeneeseeeeseenrenen 8-34
Lab 8: IQmath & Floating-Point FIR Filter..........cooieiircie e 8-35

C2000 Delfino Workshop - Numerical Concepts

Numbering System Basics

Numbering System Basics

Given the ability to perform arithmetic processes (addition and multiplication) with the C28x, it is
important to understand the underlying mathematical issues which come into play. Therefore, we
shall examine the numerical concepts which apply to the C28x and, to a large degree, most
processors.

Binary Numbers

The binary numbering system is the simplest numbering scheme used in computers, and is the
basis for other schemes. Some details about this system are:

e Ituses only two values: 1 and 0

e Each binary digit, commonly referred to as a bit, is one “place” in a binary number
and represents an increasing power of 2.

e The least significant bit (LSB) is to the right and has the value of 1.
o Values are represented by setting the appropriate 1's in the binary number.
e The number of bits used determines how large a number may be represented.

Examples:

0110, = (0 * 8) + (1 *4) + (1 * 2) + (0 * 1) = 64
11110, = (L * 16) + (L * 8) + (1 * 4) + (1 * 2) + (0 * 1) = 304

Two's Complement Numbers

Notice that binary numbers can only represent positive numbers. Often it is desirable to be able to
represent both positive and negative numbers. The two's complement numbering system modifies
the binary system to include negative numbers by making the most significant bit (MSB)
negative. Thus, two's complement numbers:

o Follow the binary progression of simple binary except that the MSB is negative — in
addition to its magnitude

e Can have any number of bits — more bits allow larger numbers to be represented

Examples:

0110, = (0 * -8) + (1 * 4) + (L * 2) + (0 * 1) = 6y
11110, = (A * -16) + (1 *8) + (A *4) + (A *2) + (0 * 1) = -2

The same binary values are used in these examples for two's complement as were used above for
binary. Notice that the decimal value is the same when the MSB is 0, but the decimal value is
quite different when the MSB is 1.

Two operations are useful in working with two's complement numbers:
e The ability to obtain an additive inverse of a value
e The ability to load small numbers into larger registers (by sign extending)

C2000 Delfino Workshop - Numerical Concepts 8-3

Numbering System Basics

To load small two's complement numbers into larger

registers:

The MSB of the original number must carry to the MSB of the number when represented in the

larger register.

1. Load the small number “right justified” into the larger register.

2. Copy the sign bit (the MSB) of the original number to all unfilled bits to the left in the
register (sign extension).

Consider our two previous values, copied into an 8-bit register:

Examples:
Original No. 0110, =619 11110, =-210
1. Load low 0110 11110
2. Sign Extend 00000110 |=4+2=6 11111110 |=-128+64+..+2=-2
Integer Basics
Integer Basics
28 | 22 | 21 | 20

i2n'1 I eoo

¢ Unsigned Binary Integers

0100b = (0*23)+(1*22)+(0*21)+(0*2%) = 4
1101b = (1*23)+(1*22)+(0*21)+(1*20) = 13

0100b = (0*-23)+(1*22)+(0*21)+(0*20) = 4

1101b = (1%-23)+(1%22)+(0*21)+(1*20) = -3

¢ Signed Binary Integers (2's Complement)

C2000 Delfino Workshop - Numerical Concepts

Numbering System Basics

Sign Extension Mode

The C28x can operate on either unsigned binary or two's complement operands. The “Sign
Extension Mode” (SXM) bit, present within a status register of the C28x, identifies whether or
not the sign extension process is used when a value is brought into the accumulator. It is good
programming practice to always select the desired SXM at the beginning of a module to assure
the proper mode.

What is Sign Extension?

¢ When moving a value from a narrowed width location
to a wider width location, the sign bit is extended to fill
the width of the destination

¢ Sign extension applies to signed numbers only
It keeps negative numbers negative!

¢ Sign extension controlled by SXM bitin STO register;
When SXM =1, sign extension happens automatically

2

4 bit Example: Load a memory value into the ACC

memory (1101 | =-23+22+20=-3

l Load and sign extend
<

ACC |1111]1101| =-27+ 26+ 25+ 24+ 23+ 224+ 20
=-128+64+32+16+8+4+1
=-3

C2000 Delfino Workshop - Numerical Concepts 8-5

Binary Multiplication

Binary Multiplication

Now that you understand two's complement numbers, consider the process of multiplying two
two's complement values. As with “long hand” decimal multiplication, we can perform binary
multiplication one “place” at a time, and sum the results together at the end to obtain the total

product.
Note: This is not the method the C28x uses in multiplying numbers — it is merely a way of observing
how binary numbers work in arithmetic processes.
The C28x uses 16-bit operands and a 32-bit accumulator. For the sake of clarity, consider the
example below where we shall investigate the use of 4-bit values and an 8-bit accumulation:
Integer Multiplication (signed)
0100 4
X 1101 x -3
0100
0000
0100
1100
1110100 -12
Accumulator | 11110100 I
Data Memory ? I
In this example, consider the following:
e What are the two input values, and the expected result?
e Why are the “partial products” shifted left as the calculation continues?
e Why is the final partial product “different” than the others?
e What is the result obtained when adding the partial products?
e How shall this result be loaded into the accumulator?
o How shall we fill the remaining bit? Is this value still the expected one?
e How can the result be stored back to memory? What problems arise?
8-6 C2000 Delfino Workshop - Numerical Concepts

Binary Multiplication

Note: With two’s complement multiplication, the leading “1” in the second multiplicand is a
sign bit. If the sign bit is “1”, then take the 2’s complement of the first multiplicand.
Additionally, each partial product must be sign-extended for correct computation.

Note: All of the above questions except the final one are addressed in this module. The last
guestion may have several answers:

e Store the lower accumulator to memory. What problem is apparent using this
method in this example?

e Store the upper accumulator back to memory. Wouldn't this create a loss of
precision, and a problem in how to interpret the results later?

e Store both the upper and lower accumulator to memory. This solves the above
problems, but creates some new ones:

— Extra code space, memory space, and cycle time are used

— How can the result be used as the input to a subsequent calculation? Is such a
condition likely (consider any “feedback” system)?

From this analysis, it is clear that integers do not behave well when multiplied. Might some other
type of number system behave better? Is there a number system where the results of a
multiplication are bounded?

C2000 Delfino Workshop - Numerical Concepts 8-7

Binary Fractions

Binary Fractions

Given the problems associated with integers and multiplication, consider the possibilities of using
fractional values. Fractions do not grow when multiplied, therefore, they remain representable
within a given word size and solve the problem. Given the benefit of fractional multiplication,
consider the issues involved with using fractions:

e How are fractions represented in two's complement?
e What issues are involved when multiplying two fractions?

Representing Fractions in Binary

In order to represent both positive and negative values, the two's complement process will again
be used. However, in the case of fractions, we will not set the LSB to 1 (as was the case for
integers). When one considers that the range of fractions is from -1 to ~+1, and that the only bit
which conveys negative information is the MSB, it seems that the MSB must be the “negative
ones position.” Since binary representation is based on powers of two, it follows that the next bit
would be the “one-halves” position, and that each following bit would have half the magnitude
again. Considering, as before, a 4-bit model, we have the representation shown in the following
example.

1]1.]0 1 1 |=-1+1/4+1/8=-5/8

-1 12 1/4 1/8

Fraction Basics

Fraction Basics

-20 21| 22| 23 [ean |2-(0-1)
°

1101b = (1*-20)+(1*2:1)+(0*2:2)+(1*273)
=-1+1/2+1/8
=-3/8

Fractions have the nice property that
fraction x fraction = fraction

8-8 C2000 Delfino Workshop - Numerical Concepts

Binary Fractions

Multiplying Binary Fractions

When the C28x performs multiplication, the process is identical for all operands, integers or
fractions. Therefore, the user must determine how to interpret the results. As before, consider the
4-bit multiply example:

Fraction Multiplication

0100 1/2
x 1101 x -3/8
0100
0000
0100
1100
1110100 -3/16

Accumulator | 11110100 I

Dmawmmowv'1110| ~1/4

As before, consider the following:
e What are the two input values and the expected result?
o As before, “partial products” are shifted left and the final is negative.
e How is the result (obtained when adding the partial products) read?
e How shall this result be loaded into the accumulator?
e How shall we fill the remaining bit? Is this value still the expected one?
e How can the result be stored back to memory? What problems arise?

To “read” the results of the fractional multiply, it is necessary to locate the binary point (the base
2 equivalent of the base 10 decimal point). Start by identifying the location of the binary point in
the input values. The MSB is an integer and the next bit is 1/2, therefore, the binary point would

be located between them. In our example, therefore, we would have three bits to the right of the

binary point in each input value. For ease of description, we can refer to these as “Q3” numbers,
where Q refers to the number of places to the right of the point.

When multiplying numbers, the Q values add. Thus, we would (mentally) place a binary point
above the sixth LSB. We can now calculate the “Q6” result more readily.

C2000 Delfino Workshop - Numerical Concepts 8-9

Binary Fractions

As with integers, the results are loaded low and the MSB is a sign extension of the seventh bit. If
this value were loaded into the accumulator, we could store the results back to memory in a
variety of ways:

e Store both low and high accumulator values back to memory. This offers maximum
detail, but has the same problems as with integer multiply.

e Store only the high (or low) accumulator back to memory. This creates a potential for
a memory littered with varying Q-types.

e Store the upper accumulator shifted to the left by 1. This would store values back to
memory in the same Q format as the input values, and with equal precision to the
inputs. How shall the left shift be performed? Here’s three methods:

— Explicit shift (C or assembly code)
— Shift on store (assembly code)
— Use Product Mode shifter (assembly code)

8-10 C2000 Delfino Workshop - Numerical Concepts

Fraction Coding

Fraction Coding

Although COFF tools recognize values in integer, hex, binary, and other forms, they understand
only integer, or non-fractional values. To use fractions within the C28x, it is necessary to describe
them as though they were integers. This turns out to be a very simple trick. Consider the
following number lines:

Coding Traditional 16-bit Q15 Fractions

~1 32767 == Ox7FFF
Yo = 16384 == 0x4000
=
0 0 ——0x0000
* 32768

Yo - (219) -16384 - 0xC000
-1 -32768 —d— 0x8000
Fraction Integer

¢ C-code example: y =0.707 * x

void main(void)
{
intlé coef = 32768*707/1000; // 0.707 in Q15
intlée x, y;
y = (intl6)((int32)coef * (int32)x) >> 15);
}

By multiplying a fraction by 32K (32768), a normalized fraction is created, which can be passed
through the COFF tools as an integer. Once in the C28x, the normalized fraction looks and
behaves exactly as a fraction. Thus, when using fractional constants in a C28x program, the coder
first multiplies the fraction by 32768, and uses the resulting integer (rounded to the nearest whole
value) to represent the fraction.

The following is a simple, but effective method for getting fractions past the assembler:
1. Express the fraction as a decimal number (drop the decimal point).
2. Multiply by 32768.
3. Divide by the proper multiple of 10 to restore the decimal position.
» Examples:

o Torepresent 0.62: 32768 x 62 / 100
e To represent 0.1405: 32768 x 1405 / 10000

This method produces a valid number accurate to 16 bits. You will not need to do the math
yourself, and changing values in your code becomes rather simple.

C2000 Delfino Workshop - Numerical Concepts 8-11

Fractional vs. Integer Representation

Fractional vs. Integer Representation

Integer vs. Fractions
Range Precision
Integer determined 1
by # of bits
Fraction ~+1to -1 determined
by # of bits

¢ Integers grow when you multiply them

¢ Fractions have limited range
+ Fractions can still grow when you add them
« Scaling an application is time consuming

Are there any other alternatives?

The C28x accumulator, a 32-bit register, adds extra range to integer calculations, but this
becomes a problem in storing the results back to 16-bit memory.

Conversely, when using fractions, the extra accumulator bits increase precision, which helps

minimize accumulative errors. Since any number

is accurate (at best) to + one-half of a LSB,

summing two of these values together would yield a worst case result of 1 LSB error. Four
summations produce two LSBs of error. By 256 summations, eight LSBs are “noisy.” Since the
accumulator holds 32 bits of information, and fractional results are stored from the high

accumulator, the extra range of the accumulator is
sum-of-products type calculations.

a major benefit in noise reduction for long

C2000 Delfino Workshop - Numerical Concepts

Floating-Point

Floating-Point
IEEE-754 Single Precision Floating-Point

31 30 23 22 0
| s| eeeeeeee | FFFFFFFFFFFFFFFFFFFFFFF
1 bit sign 8 bit exponent 23 bit mantissa (fraction)

Casel: ife=255andf=0, thenv=NaN
Case2: ife=255andf =0, thenv=[(-1p]*infinity
Normalized — Case 3: if 0<e <255, then v = [(-1)S]*[2(6-2270]*(1.f)
values Case4: ife=0andf=0, then v = [(-1)3]*[2(128)]%(0.f)
Case5: ife=0andf=0, then v = [(-1)5]*0

100 0001 O
e =130

010 0000 0000 ... 0000|b
f=22=0.25

Example: 0x41200000 =0

S

= Case3 v =(-10%2030120%] 25 =100

Advantage = Exponent gives large dynamic range
Disadvantage = Precision of a number depends on its exponent

Number Line Insight

Floating-Point:

A
+00 0 -00

¢ Non-uniform distribution
+ Precision greatest near zero
+ Less precision the further you get from zero

C2000 Delfino Workshop - Numerical Concepts 8-13

Floating-Point

Using Floating-Point

¢ Note: You must be using a C28x Delfino device with hardware
floating-point support!

¢ Selecting afloating-point device variant when creating a new CCS
project automatically adds the FPU RTS library and selects ‘fpu32’
support in build configuration settings

-'w"f-_-;m e o i e ¢ Adds the floating-point

RTS library(s) to the
CCS project
« standard RTS lib
(required)
+ rts2800_fpu32.lib
+ comes with compiler
« fast RTS lib (optional)
+ C28x_FPU_FastRTS.lib
+ on Tlweb, #SPRC664
« improved performance

B ke curput: Sty e ruambe of pepretions i a BT irstngtion [-red et (0256

r;ﬂﬁm [t For e o (0o _fow s,]} . Stronal
Sl Recor?m)'/]ended
* Selects ‘fpu32’ support
in CCS build

configuration settings

Getting the ADC Result into
Floating-Point Format

(OOl [R R RIXIXIXIXIXXX] AdcMirror.

ADCRESULTx

ASM: C:
116TOF32 (float)

31 15 0 _
[sTelelelelelelelelf [FTFTF [FIFTFIFIFIFTFTFIFIFIFIFTEIFIF [FIFIFIF] 32-bit float

#define AdcFsVoltage float(3.0) // ADC full scale voltage

float Result; // ADC result

void main(void)

{

// Convert unsigned 16-bit result to 32-bit float. Gives value of 0 to 4095.
// Scale result by 1/4096. Gives value of 0 to ~1.

// Scale result by AdcFsVoltage. Gives value of 0 to ~3.0.

Result = (AdcFsVoltage/4096 .0)*(float) AdcMirror .ADCRESULTO;
} AN ,/

Y

; Compiler will pre-compute at build-time.
No runtime division!

C2000 Delfino Workshop - Numerical Concepts

Floating-Point

Floating-Point Pros and Cons

¢ Advantages
+ Easy to write code
+ No scaling required

¢ Disadvantages
+ Somewhat higher device cost

+ May offer insufficient precision for some
calculations due to 23 bit mantissa and
the influence of the exponent

What if you don’t have the luxury of
using a floating-point C28x device?

C2000 Delfino Workshop - Numerical Concepts 8-15

IQmath

IQmath

Implementing complex digital control algorithms on a Digital Signal Processor (DSP), or any
other DSP capable processor, typically come across the following issues:

e Algorithms are typically developed using floating-point math

e Floating-point devices are more expensive than fixed-point devices

o Converting floating-point algorithms to a fixed-point device is very time consuming

e Conversion process is one way and therefore backward simulation is not always possible

The design may initially start with a simulation (i.e. MatLab) of a control algorithm, which
typically would be written in floating-point math (C or C++). This algorithm can be easily ported
to a floating-point device, however because of cost reasons most likely a 16-bit or 32-bit fixed-
point device would be used in many target systems.

The effort and skill involved in converting a floating-point algorithm to function using a 16-bit or
32-bit fixed-point device is quite significant. A great deal of time (many days or weeks) would
be needed for reformatting, scaling and coding the problem. Additionally, the final
implementation typically has little resemblance to the original algorithm. Debugging is not an
easy task and the code is not easy to maintain or document.

IQ Fractional Representation

A new approach to fixed-point algorithm development, termed “1Qmath”, can greatly simplify the
design development task. This approach can also be termed “virtual floating-point” since it looks
like floating-point, but it is implemented using fixed-point techniques.

IQ Fractional Representation

31 0
[S 111N, FRFFFFFFFFFFFFFFFFFFFFf]

32 bit mantissa

2042+ 428420, 204224 420

18Q24 Example: 0x41200000
= 0100 0001 . 0010 0000 0000 0000 0000 0000 b
=26+20+23=65.125

Advantage = Precision same for all numbers in an IQ format
Disadvantage = Limited dynamic range compared to floating-point

C2000 Delfino Workshop - Numerical Concepts

IQmath

The 1Qmath approach enables the seamless portability of code between fixed and floating-point
devices. This approach is applicable to many problems that do not require a large dynamic range,
such as motor or digital control applications.

Number Line Insight
Distributions

Floating-Point: non-uniform distribution (variable precision)

e]

+o00 0 -00

IQ Fractions: uniform distribution (same precision everywhere)

& Both floating-point and IQ formats have 232
possible values on the number line

& It's how each distributes these values that differs

Traditional “Q” Math Approach
Traditional 32-bit “Q” Math Approach

y=mx+Db

18, Q24 M

— 116 o Q48 —

18, Q24 X

[ssssssssssssssssss 18, Q24 j—————18, Q24 B

@ Align Decimal
Point for Add

—— ssssl8, Q48 |

116 Q48 |
Align Decimal
@ Point for Store

sssssssssssssssssl16, Q24 |—> 18 o Q24 Y

in C:| Y = ((int64) M * (int64) X + (int64) B << Q) >> Q; |

Note: Requires support for 64-bit integer data type in compiler

C2000 Delfino Workshop - Numerical Concepts 8-17

IQmath

The traditional approach to performing math operations, using fixed-point numerical techniques
can be demonstrated using a simple linear equation example. The floating-point code for a linear
equation would be:

float Y, M, X, B;
Y =M*X + B;

For the fixed-point implementation, assume all data is 32-bits, and that the "Q" value, or location
of the binary point, is set to 24 fractional bits (Q24). The numerical range and resolution for a
32-bit Q24 number is as follows:

Q value Min Value Max Value Resolution

Q24 | -2%2%=.128.000 000 00 | 22 _ (15)** = 127.999 999 94 | (%2)** = 0.000 000 06

The C code implementation of the linear equation is:

int32 Y, M, X, B; // numbers are all Q24
Y = ((int64) M * (int64) X + (int64) B << 24) >> 24;

Compared to the floating-point representation, it looks quite cumbersome and has little resem-
blance to the floating-point equation. It is obvious why programmers prefer using floating-point
math.

The slide shows the implementation of the equation on a processor containing hardware that can
perform a 32x32 bit multiplication, 64-bit addition and 64-bit shifts (logical and arithmetic) effi-
ciently.

The basic approach in traditional fixed-point "Q" math is to align the binary point of the operands
that get added to or subtracted from the multiplication result. As shown in the slide, the multipli-
cation of M and X (two Q24 numbers) results in a Q48 value that is stored in a 64-bit register.
The value B (Q24) needs to be scaled to a Q48 number before addition to the M*X value (low
order bits zero filled, high order bits sign extended). The final result is then scaled back to a Q24
number (arithmetic shift right) before storing into Y (Q24). Many programmers may be familiar
with 16-bit fixed-point "Q" math that is in common use. The same example using 16-bit numbers
with 15 fractional bits (Q15) would be coded as follows:

intlé Y, M, X, B; // numbers are all Q15
Y = ((int32) M * (int32) X + (int32) B << 15) >> 15;

In both cases, the principal methodology is the same. The binary point of the operands that get
added to or subtracted from the multiplication result must be aligned.

C2000 Delfino Workshop - Numerical Concepts

IQmath

IQmath Approach

32-bit IQmath Approach

y=mx+Db

18, 024
(116, Q48
. . 18 Q24
Align Decimal -
Point Of Multiply
[sssssssssssssssssl16, Q24 |
I 18, Q24
B Q24 18, Q24

in C: |Y = ((int64) M * (int64) X) >> Q + B;

In the "IQmath" approach, rather then scaling the operands, which get added to or subtracted
from the multiplication result, we do the reverse. The multiplication result binary point is scaled
back such that it aligns to the operands, which are added to or subtracted from it. The C code
implementation of this is given by linear equation below:

int32 Y, M, X, B;
Y = ((int64) M * (int64) X) >> 24 + B;

The slide shows the implementation of the equation on a processor containing hardware that can
perform a 32x32 bit multiply, 32-bit addition/subtraction and 64-bit logical and arithmetic shifts

efficiently.

The key advantage of this approach is shown by what can then be done with the C and C++ com-
piler to simplify the coding of the linear equation example.

Let’s take an additional step and create a multiply function in C that performs the following op-

eration:

int32 _1Q24mpy(int32 M,

The linear equation can then be written as follows:

Y = _1Q24mpy(M , X) + B;

Already we can see a marked improvement in the readability of the linear equation.

int32 X) { return ((int64) M * (int64) X) >> 24; }

C2000 Delfino Workshop - Numerical Concepts

IQmath

Using the operator overloading features of C++, we can overload the multiplication operand "*"
such that when a particular data type is encountered, it will automatically implement the scaled
multiply operation. Let’s define a data type called "ig" and assign the linear variables to this data

type:

iq Y, M, X, B // numbers are all Q24
The overloading of the multiply operand in C++ can be defined as follows:

iq operator*(const iq &M, const iq &X){return((int64)M*(int64) X) >> 24;}
Then the linear equation, in C++, becomes:

Y=M?*X + B;

This final equation looks identical to the floating-point representation. It looks "natural”. The
four approaches are summarized in the table below:

Math Implementations Linear Equation Code
32-bit floating-point math in C Y=M*X+B;
32-bit fixed-point "Q" math in C Y = ((int64) M * (int64) X) + (int64) B << 24) >> 24;
32-bit IQmath in C Y = _1Q24mpy(M, X) + B;
32-bit IQmath in C++ Y=M*X+B;

Essentially, the mathematical approach of scaling the multiplier operand enables a cleaner and a
more "natural™ approach to coding fixed-point problems. For want of a better term, we call this
approach "l1Qmath" or can also be described as "virtual floating-point".

C2000 Delfino Workshop - Numerical Concepts

IQmath

IQmath Approach
Multiply Operation

| Y = ((i64) M * (i64) X) >> Q + B; |

Redefine the multiply operation as follows:
| _1Qmpy(M,X) == ((i64) M * (i64) X) >> Q |
This simplifies the equation as follows:
| Y = _1Qmpy(M,X) + B; |

C28x compiler supports “_1Qmpy” intrinsic; assembly code generated:

MOVL XT,@M
IMPYL P,XT,@X ; P
QMPYL ACC,XT,@X ; ACC high 32-bits of M*X
LSL64 ACC:P,#(32-Q) ; ACC ACC:P << 32-Q

; (same as P = ACC:P >> Q)

low 32-bits of M*X

ADDL ACC,@B ; Add B
MOVL @Y ,ACC ; Result =Y = _1Qmpy(M*X) + B
; 7 Cycles

IQmath Approach

It looks like floating-point!

_ ~ float Y, M, X, B;
Floating-Point

Y =M * X+ B;

.. long Y, M, X, B;
Traditional

Fix-Point Q v = ((i64) M * (i64) X + (i64) B << Q)) >> Q;

uIQmathn _iq Y, M, X, B;
InC Y = _1Qmpy(M, X) + B;

“IQmath” '@ Y. M, X, B;

In C++

Y=M=*X + B;

“IQmath” code is easy to read!

C2000 Delfino Workshop - Numerical Concepts

IQmath

IQmath Approach
GLOBAL_Q simplification

User selects “Global Q" value for the whole application
GLOBAL_Q

[]
based on the required dynamic range or resolution, for example:
GLOBAL_Q Max Val Min Val Resolution
28 7.999 999 996 -8.000 000 000 | 0.000 OO0 004
24 127.999 999 94 -128.000 000 OO |[0.000 00O 06
20 2047.999 999 -2048.000 000 0.000 001

#define GLOBAL_Q 18 // set in “lIQmathLib.h” file
_iq Y, M, X, B;
Y = _10mpy(M,X) + B; // all values are in Q = 18

The user can also explicitly specify the Q value to use:
_ig20 Y, M, X, B;

Y = _1Q20mpy(M,X) + B; // all values are in Q = 20

The basic "IQmath" approach was adopted in the creation of a standard math library for the Texas
Instruments TMS320C28x DSP fixed-point processor. This processor contains efficient hardware
for performing 32x32 bit multiply, 64-bit shifts (logical and arithmetic) and 32-bit add/subtract
operations, which are ideally suited for 32 bit "IQmath".

Some enhancements were made to the basic "IQmath" approach to improve flexibility. They are:

Setting of GLOBAL_Q Parameter Value: Depending on the application, the amount of numerical
resolution or dynamic range required may vary. In the linear equation example, we used a Q
value of 24 (Q24). There is no reason why any value of Q can't be used. In the "IQmath™ library,
the user can set a GLOBAL_Q parameter, with a range of 1 to 30 (Q1 to Q30). All functions
used in the program will use this GLOBAL_Q value. For example:

#define GLOBAL_Q 18
Y = _1Qmpy(M, X) + B; // all values use GLOBAL_Q = 18

If, for some reason a particular function or equation requires a different resolution, then the user
has the option to implicitly specify the Q value for the operation. For example:

Y = _1Q23mpy(M,X) + B; // all values use Q23, including B and Y

The Q value must be consistent for all expressions in the same line of code.

C2000 Delfino Workshop - Numerical Concepts

IQmath

IQmath Provides Compatibility Between
Floating-Point and Fixed-Point

1) Develop any mathematical function
| Y = _I0mpy(M, X) + B; |

< 2) Select math type in IQmathLib.h N/
|#if MATH_TYPE == IQ_MATH| |#if MATH_TYPE == FLOAT_MATH|

3) Compiler automatically converts to: </
| Y = (float)M * (float)X + (Float)B; |

Fixed-Point

Floating-Point
Math Code

Math Code

Compile & Run
on Fixed-Point
F282xx

Compile & Run
on Floating-Point
F283xx *

All “IQmath” operations have an equivalent floating-point operation

* Can also compile floating-point code on any floating-point compiler (e.g., PC, Matlab, fixed-point w/ RTS lib, etc.)

Selecting FLOAT_MATH or 1Q_MATH Mode: As was highlighted in the introduction, we would
ideally like to be able to have a single source code that can execute on a floating-point or fixed-
point target device simply by recompiling the code. The "IQmath" library supports this by setting
a mode, which selects either IQ_MATH or FLOAT_MATH. This operation is performed by
simply redefining the function in a header file. For example:

#1f MATH_TYPE == I1Q_MATH

#define _1Qmpy(M , X) _IQmpy(M , X)
#elseif MATH_TYPE == FLOAT_MATH

#define _1Qmpy(M , X) (Float) M * (float) X
#endif

Essentially, the programmer writes the code using the "IQmath™ library functions and the code
can be compiled for floating-point or "IQmath" operations.

C2000 Delfino Workshop - Numerical Concepts 8-23

IQmath Library

IQmath Library

IQmath Library: Math & Trig Functions

if(A <Neg) A =Neg

Operation Floating-Point “IQmath” in C “lIQmath” in C++
type float A, B; _ig A, B; iq A, B;
constant A=1.2345 A =_1Q(1.2345) A = 1Q(1.2345)
multiply A*B _IQmpy(A , B) A*B
divide A/B _lQdiv (A, B) A/B
add A+B A+B A+B
substract A-B A-B A-B
boolean > >= < <=, ==, |5, &&, || > >=, < <=, =5, |5, &&, || > >=, <, <=, =5, |5, &&, ||
trig sin(A),cos(A) _lQsin(A), _IQcos(A) 1Qsin(A),IQcos(A)
and sin(A*2pi),cos(A*2pi) | _IQsinPU(A), _IQcosPU(A) | 1QsinPU(A),IQcosPU(A)
power asin(A),acos(A) _IQasin(A),_IQacos(A) IQasin(A),IQacos(A)
functions atan(A),atan2(A,B) | _IQatan(A), _IQatan2(A,B) | IQatan(A),IQatan2(A,B)
atan2(A,B)/2pi _IQatan2PU(A,B) IQatan2PU(A,B)
sqrt(A),1/sqrt(A) _1Qsqrt(A), _1Qisqrt(A) 1Qsqrt(A),IQisqrt(A)
sqrt(A*A + B*B) _1Qmag(A,B) IQmag(A,B)
exp(A) _IQexp(A) 1Qexp(A)
saturation if(A > Pos) A = Pos _lQsat(A,Pos,Neg) IQsat(A,Pos,Neg)

Accuracy of functions/operations approx ~28 to ~31 bits

Additionally, the "IQmath” library contains DSP library modules for filters (FIR & IIR) and Fast

Fourier Transforms (FFT & IFFT).

IQmath Library: Conversion Functions

Operation Floating-Point “lQmath” in C “lIQmath” in C++
iq to iqN A _IQtolQN(A) IQtolQN(A)
igN to iq A _IQONtolQ(A) IQNtoIQ(A)

integer(iq) (long) A _IQint(A) IQint(A)

fraction(iq) A—(long) A _IQfrac(A) IQfrac(A)

iq =ig*ong A * (float) B _IQmpyI32(A,B) IQmpyI32(A,B)

integer(ig*long)

(long) (A * (float) B)

_IQmpyI32int(A,B)

IQmpyI132int(A,B)

fraction(ig*long)

A - (long) (A * (float) B)

_IQmpyI32frac(A,B)

IQmpyI32frac(A,B)

gNtoiq A _ONtolQ(A) QNtolQ(A)
igtogN A _IQtoQN(A) 1QtoQN(A)
string to iq atof(char) _atolQ(char) atolQ(char)
1Q to float A _IQtoF(A) IQtoF(A)
IQ to ASCII sprintf(A,B,C) _IQtoA(A,B,C) IQtoA(A,B,C)
IQmath.lib > contains library of math functions
IQmathLib.h > C header file
IQmathCPP.h > C++ header file

C2000 Delfino Workshop - Numerical Concepts

IQmath Library

16 vs. 32 Bits

The "IQmath" approach could also be used on 16-bit numbers and for many problems, this is suf-
ficient resolution. However, in many control cases, the user needs to use many different "Q" val-
ues to accommodate the limited resolution of a 16-bit number.

With DSP devices like the TMS320C28x processor, which can perform 16-bit and 32-bit math
with equal efficiency, the choice becomes more of productivity (time to market). Why bother
spending a whole lot of time trying to code using 16-bit numbers when you can simply use 32-bit
numbers, pick one value of "Q" that will accommodate all cases and not worry about spending
too much time optimizing.

Of course there is a concern on data RAM usage if numbers that could be represented in 16 bits
all use 32 bits. This is becoming less of an issue in today's processors because of the finer tech-
nology used and the amount of RAM that can be cheaply integrated. However, in many cases,
this problem can be mitigated by performing intermediate calculations using 32-bit numbers and
converting the input from 16 to 32 bits and converting the output back to 16 bits before storing
the final results. In many problems, it is the intermediate calculations that require additional ac-
curacy to avoid quantization problems.

C2000 Delfino Workshop - Numerical Concepts 8-25

Converting ADC Results into IQ Format

Converting ADC Results into 1Q Format

Getting the ADC Result into IQ Format

AdcMirror.
[OTO[O[OIXIXIXIXIXIXIXIXIXIXIXIX] ADCRESULTX

Do not sign extendl

31 15 0
[OTOJO[OJO0TOT O[O OTOTOTO[OTOTOTOTOTOTOTO IXIXIX IXIXIXIXIXIXIXIX[X] 32-bitlong

Notice that the 32-bit long is already in 1Q12 format

#define AdcFsVoltage _1Q(3.0) // ADC full scale voltage
_iq Result, temp; // ADC result
void main(void)
{
// convert the unsigned 16-bit result to unsigned 32-bit
// temp = AdcMirror_ADCRESULTO;
// convert resulting 1Q12 to Global 1Q format
// temp = _1Q12tolQ(temp);
// scale by ADC full-scale range (optional)
// Result = _1Qmpy(AdcFsVol tage, temp);
Result = _1Qmpy(AdcFsVoltage, _1Q12tolQ((_ig)AdcMirror.ADCRESULTO));

As you may recall, the converted values of the ADC can be placed in the upper 12 bit of the
RESULTO register (when not using AdcMirror register). Before these values are filtered using
the IQmath library, they need to to be put into the IQ format as a 32-bit long. For uni-polar ADC
inputs (i.e., 0 to 3 V inputs), a conversion to global 1Q format can be achieved with:

IQresult_unipolar = _1Qmpy(_1Q(3.0),_1Q12tolQ((_iq) AdcRegs.ADCRESULTO0));

How can we modify the above to recover bi-polar inputs, for example +-1.5 volts? One could do
the following to offset the +1.5V analog biasing applied to the ADC input:

IQresult_bipolar =
_1Qmpy(_1Q(3.0),_1Q12to1Q((_iq) AdcRegs.ADCRESULTO)) - _1Q(1.5);

However, one can see that the largest intermediate value the equation above could reach is 3.0.
This means that it cannot be used with an 1Q data type of 1Q30 (IQ30 range is -2 < x < ~2). Since
the IQmath library supports 1Q types from 1Q1 to 1Q30, this could be an issue in some applica-
tions.

The following clever approach supports 1Q types from 1Q1 to 1Q30:

IQresult_bipolar =
_1Qmpy(_1Q(1.5),_1015tolQ(C_ig) ((intl6) (AdcRegs.ADCRESULTO ~ 0x8000)))):

The largest intermediate value that this equation could reach is 1.5. Therefore, 1Q30 is easily
supported.

C2000 Delfino Workshop - Numerical Concepts

Converting ADC Results into 1Q Format

Can a Sing _ _
Written for IQmath and Floating-Point?

le ADC Interface Code Line be

#if MATH_TYPE == 1Q MATH

#define AdcFsVoltage _1Q(3.0) // ADC full scale voltage
#else // MATH_TYPE is FLOAT_MATH

#define AdcFsVoltage _1Q(3.0/4096.0) // ADC full scale voltage
#endif
_iq Result; // ADC result
void main(void)
{

Result = _1Qmpy(AdcFsVoltage, _1Q12tolQ((_ig)AdcMirror.ADCRESULTO));
¥ \

FLOAT_MATH
behavior: * does float
nothing

C2000 Delfino Workshop - Numerical Concepts

AC Induction Motor Example

AC Induction Motor Example

AC Induction Motor Example

One of the more complex motor control algorithms

AC INDUCTION MOTOR
T FORWARD CONTROL MODEL
id_rof=H pin_REGI
——w—

il ICTRTTTR | e — ipark_o PARE L »
spd_filh P LET PIDEEET g out —ipark o AL fpsi_r_heta
)
a |-|nnu ind ipark_a —psi_r_alfa—b
L inlind
ek D] PARK |........_,J
M=park_d
%0 M-park g
1o B
—thutn_s_fo :

1 Mewr_hat se—

§ dever_hat_rpm_se

FEEDBACK CONTROL . 'i E! [!

Alpha.fxis Stator Current Plot

Figure &

& Sensorless, AClinduction machine direct rotor flux control
& Goal: motor speed estimation & alpha-axis stator current estimation

The "IQmath" approach is ideally suited for applications where a large numerical dynamic range
is not required. Motor control is an example of such an application (audio and communication
algorithms are other applications). As an example, the IQmath approach has been applied to the
sensor-less direct field control of an AC induction motor. This is probably one of the most chal-
lenging motor control problems and as will be shown later, requires numerical accuracy greater
then 16-bits in the control calculations.

The above slide is a block diagram representation of the key control blocks and their interconnec-
tions. Essentially this system implements a "Forward Control™ block for controlling the d-g axis
motor current using PID controllers and a "Feedback Control” block using back emf's integration
with compensated voltage from current model for estimating rotor flux based on current and volt-
age measurements. The motor speed is simply estimated from rotor flux differentiation and open-
loop slip computation. The system was initially implemented on a "Simulator Test Bench” which
uses a simulation of an "AC Induction Motor Model" in place of a real motor. Once working, the
system was then tested using a real motor on an appropriate hardware platform.

Each individual block shown in the slide exists as a stand-alone C/C++ module, which can be
interconnected to form the complete control system. This modular approach allows reusability
and portability of the code. The next few slides show the coding of one particular block, PARK
Transform, using floating-point and "IQmath" approaches in C:

8-28 C2000 Delfino Workshop - Numerical Concepts

AC Induction Motor Example

AC Induction Motor Example

Park Transform — floating-point C code

#include “math.h”

#define TWO_PI 6.28318530717959
void park_calc(PARK *v)

{
float cos_ang , sin_ang;
sin_ang = sin(TWO_PI * v->ang);
cos_ang = cos(TWO_PI * v->ang);
v->de = (v->ds * cos_ang) + (v->gs * sin_ang);
v->ge = (v->gs * cos_ang) - (v->ds * sin_ang);
}

AC Induction Motor Example

Park Transform - converting to “IQmath” C code

#include “math.h”
#include “I1QmathLib._h”

#define TWO_PI _1Q(6.28318530717959)
void park_calc(PARK *v)
{
_iq cos_ang , sin_ang;
sin_ang = _1Qsin(_IQmpy (TWO_PI1 , v->ang));
cos_ang = _IQcos(_IQmpy (TWO_PI , v->ang));
v->de = _l1Qmpy(v->ds , cos_ang) + _IQmpy(v->gs , sin_ang);
v->qge = _IQmpy(v->gs , cos_ang) - _IQmpy(v->ds , sin_ang);

The complete system was coded using "1Qmath”. Based on analysis of coefficients in the system,
the largest coefficient had a value of 33.3333. This indicated that a minimum dynamic range of 7
bits (+/-64 range) was required. Therefore, this translated to a GLOBAL_Q value of 32-7 =25
(Q25). Just to be safe, the initial simulation runs were conducted with GLOBAL_Q = 24 (Q24)

C2000 Delfino Workshop - Numerical Concepts 8-29

AC Induction Motor Example

value. The plots start from a step change in reference speed from 0.0 to 0.5 and 1024 samples are
taken.

AC Induction Motor Example
GLOBAL_Q = 24, system stable

D Bh0 Yoww Cremsl Dsbug Pesllles GE. Optus Teds Windew Hslp

0 ¥ fl |
= e - |' o
_.-' 4 5 1 | | ,- ,\ Y
i a e I"|||I||'r|| i |I| |I| A || [l 1\
o \"'fl"‘-||]'|"'|’l:"
_1; "”i__ :..: ||. J| | || '-j' .i ||I ||“| I | |I I |
s - | ; v
2 e {l J
IQmath: speed ol | IQmath: current
o I
o fl
r||| /\ e }l || || J\
I v I“ | | | “I I'il 1 A A A AN
ass || |\ (] .||!|,'|,|-'| I
o ,]’ ||||| |,|| II||I|||!||I||!|'I .II‘.
};_} \n-. lJ ” |II Il I '-_'II III.'II II..'I Ill.lil Ill.lll I'I. |III
Floating-Point: speed e ‘] FIoating—Point: current

The speed eventually settles to the desired reference value and the stator current exhibits a clean
and stable oscillation. The block diagram slide shows at which points in the control system the
plots are taken from.

What’'s Happening Here?
Equal Precision in the Computation Region

Floating-Point:

I—I—I-4—I—H*—I+|—|+~IH+HHHHH+HH+H1~+H—I-I—H—I-|—|—|
ny

ame precision as 18Q24

S

18Q24 Fractions: \

¥

L ey
REREERERAREREERRRE NN RER A RREEN

+00 0 -0

In the region where these particular computations occur, the
precision of single-precision floating-point just happens to equal
the precision of the 18Q24 format.

So, both produce similar results!

8-30 C2000 Delfino Workshop - Numerical Concepts

AC Induction Motor Example

AC Induction Motor Example
GLOBAL_Q =27, system unstable

(=]

] 5 T
Dils Blit View Browd Csieag frofier O Cwlien Tosls Wewbes tsly

: IQmath: speed
mj‘““] =,] e 1 e A B = B o i) .;; = n.:-‘hh?, .
=W “\
=)
o [| (
e (1 | | |r| hoA "' f
[1 \ ||'||'| |r |I |||I]|'|'|,I]l'IM I '1”|'I ||ﬁ||
ST \ f w.‘.l'l"f' VY
:: I! I] I| | J
= Al \ l |} | |
""" ARV \4 IQmath current

AC Induction Motor Example
GLOBAL_Q =16, system unstable

M (".l ﬂ II\ /w\ lﬂ \ .ﬂﬁ Iﬁ\ /q". Jir“\ P\'. /\\)r\

LT | T

i \ﬁ\ f\kww “II‘. Jf\/ \I J,\‘f [“ llvnt j \f I \’\ \ v j ll 'hllJl \’IU i) lllll‘ ‘I'lu

| \ !

” L‘lu i} o lematrL current

C2000 Delfino Workshop - Numerical Concepts 8-31

AC Induction Motor Example

With the ability to select the GLOBAL_Q value for all calculations in the "IQmath", an experi-
ment was conducted to see what maximum and minimum Q value the system could tolerate be-
fore it became unstable. The results are tabulated in the slide below:

AC Induction Motor Example
Q stability range

Qrange Stability Range
Unstable
Q31 to Q27 (not enough dynamic range)
Q26 to Q19 Stable
Q18 to QO Unstable

(not enough resolution, quantization problems)

The developer must pick the right GLOBAL_Q value!

The above indicates that, the AC induction motor system that we simulated requires a minimum
of 7 bits of dynamic range (+/-64) and requires a minimum of 19 bits of numerical resolution (+/-
0.000002). This confirms our initial analysis that the largest coefficient value being 33.33333
required a minimum dynamic range of 7 bits. As a general guideline, users using 1Qmath should
examine the largest coefficient used in the equations and this would be a good starting point for
setting the initial GLOBAL_Q value. Then, through simulation or experimentation, the user can
reduce the GLOBAL_Q until the system resolution starts to cause instability or performance deg-
radation. The user then has a maximum and minimum limit and a safe approach is to pick a mid-
point.

What the above analysis also confirms is that this particular problem does require some calcula-
tions to be performed using greater then 16 bit precision. The above example requires a mini-
mum of 7 + 19 = 26 bits of numerical accuracy for some parts of the calculations. Hence, if one
was implementing the AC induction motor control algorithm using a 16 bit fixed-point DSP, it
would require the implementation of higher precision math for certain portions. This would take
more cycles and programming effort.

The great benefit of using GLOBAL_Q is that the user does not necessarily need to go into de-
tails to assign an individual Q for each variable in a whole system, as is typically done in conven-
tional fixed-point programming. This is time consuming work. By using 32-bit resolution and the
"IQmath" approach, the user can easily evaluate the overall resolution and quickly implement a
typical digital motor control application without quantization problems.

C2000 Delfino Workshop - Numerical Concepts

AC Induction

Motor Example

AC Induction Motor Exam

Performance comparisons

ple

Benchmark

(20 kHz control loop)

C28x C C28x C C28x C
floating-point | floating-point IQmath
std. RTS lib fast RTS lib v1.4d
(150 MHz) (150 MHz) (150 MHz)
B1: ACI module cycles 401 401 625
B2: Feedforward control cycles 421 371 403
B3: Feedback control cycles 2336 792 1011
Total control cycles (B2+B3) 2757 1163 1414
% of available MHz used 36.8% 15.5% 18.9%

fast RTS lib v1.0betal
IQmath lib v1.4d

Notes: C28x compiled on codegen tools v5.0.0, -g (debug enabled), -03 (max. optimization)

Using the profiling capabilities of the respective DSP tools, the table above summarizes the num-
ber of cycles and code size of the forward and feedback control blocks.

The MIPS used is based on a system sampling frequency of 20 kHz, which is typical of such sys-

tems.

C2000 Delfino Workshop - Numerical Concepts

IQmath Summary

IQmath Summary

IQmath Approach Summary

“IQmath” + fixed-point processor with 32-bit capabilities =

¢ Seamless portability of code between fixed and floating-
point devices

« User selects target math type in “IQmathLib.h” file
+ #f MATH_TYPE == 1Q_MATH
+ #f MATH_TYPE == FLOAT_MATH
& One source code set for simulation vs. target device

¢ Numerical resolution adjustability based on application
requirement

+ Set in “IQmathLib.h” file
. #define GLOBAL_Q 18

« Explicitly specify Q value
. _ig20 X, Y, Z
& Numerical accuracy without sacrificing time and cycles
¢ Rapid conversion/porting and implementation of algorithms

IQmath library is freeware - available from Tl DSP website
http://www.ti.com/c2000

The 1Qmath approach, matched to a fixed-point processor with 32x32 bit capabilities enables the
following:

Seamless portability of code between fixed and floating-point devices
Maintenance and support of one source code set from simulation to target device
Adjustability of numerical resolution (Q value) based on application requirement
Implementation of systems that may otherwise require floating-point device
Rapid conversion/porting and implementation of algorithms

C2000 Delfino Workshop - Numerical Concepts

Lab 8: IQmath & Floating-Point FIR Filter

Lab 8: IQmath & Floating-Point FIR Filter
» Objective

The objective of this lab is to become familiar with 1Qmath and floating-point programming. In
the previous lab, ePWM1A was setup to generate a 2 kHz, 25% duty cycle symmetric PWM
waveform. The waveform was then sampled with the on-chip analog-to-digital converter. In this
lab the sampled waveform will be passed through an FIR filter and displayed using the graphing
feature of Code Composer Studio. The filter math type (IQmath and floating-point) will be
selected in the “IQmathLib.h” file.

Lab 8: IQmath & Floating-Point FIR Filter

ePWM1 ADC
TB Counter ADCINAO | RESULTO
Compare » FIR Filter
Action Qualifier I:I
connector 7
wire ‘
i
ePWM2 triggering ADC on period
match using SOCA trigger every data
20.833 s (48 kHz) memory
ePWM2
°
£
= CPU copies
(7] result to
= buffer during
5] . ADC ISR
< -
g —
Display
using CCS

> Procedure

Open the Project

1. A project named Lab8 has been created for this lab. Open the project by clicking on
Project - Import Existing CCS/CCE Eclipse Project. The “Import”
window will open then click Browse... next to the “Select root directory” box. Navigate
to: C:\C28x\Labs\Lab8\Project and click OK. Then click Finish to import the
project. All build options have been configured the same as the previous lab. The files
used in this lab are:

C2000 Delfino Workshop - Numerical Concepts 8-35

Lab 8: IQmath & Floating-Point FIR Filter

Adc 6 7 8.c Filter.c
CodeStartBranch.asm Gpio.c
Defaultlsr_8.c Lab.h
DelayUs.asm Lab_8.cmd
DSP2833x_Defaultlsr.h Main_8.c

DSP2833x_GlobalVariableDefs.c
DSP2833x_Headers nonBI10S.cmd

ECap_7_8 9 10 12.c
EPwm_7_8_9 10 12.c

Project Build Options

PieCtrl 5 6 _7 8 9 10.
8 9 10

SysCtrl.c
Watchdog.c

2. Setup the build options by right-clicking on Lab8 in the C/C++ Projects window
and select Properties. Then select the “C/C++ Build” Category. Be sure that the

Tool Settings tab is selected.

We need to setup the include search path to include the IQmath header file. Under
“C2000 Compiler” select “Include Options”. In the box that opens click the Add
icon (first icon with green plus sign). Then in the “Add directory path” window type:

${PROJECT _ROOT}/../../1Qmath/include

Click OK to include the search path.

4. Next, we need to setup the library search path to include the IQmath library. Under
“C2000 Linker” select “File Search Path”. In the top box click the Add icon.
Then in the “Add file path” window type:

${PROJECT ROOT}/../../1Qmath/1ib/1Qmath.lib

Click OK to include the library file.

In the bottom box click the Add icon. In the “Add directory path” window type:

${PROJECT_ROOT}/../../1Qmath/lib

Click OK to include the library search path.

Finally, select OK to save and close the build options window.

Include IQmathLib.h

5.

In the C/C++ Projects window edit Lab . h and uncomment the line that includes
the IQmathLib_h header file. Next, in the Function Prototypes section, uncomment
the function prototype for 1Qssfir(), the 1Q math single-sample FIR filter function. In the
Global Variable References section uncomment the four _iq references, and comment out
the reference to AdcBUffADC_BUF_LEN]. Save the changes and close the file.

C2000 Delfino Workshop - Numerical Concepts

Lab 8: IQmath & Floating-Point FIR Filter

Inspect Lab_8.cmd

6.

Open and inspect Lab_8.cmd. First, notice that a section called “1Qmath” is being
linked to LO123SARAM. The IQmath section contains the IQmath library functions
(code). Second, notice that a section called “IQmathTables” is being linked to the
IQTABLES with a TYPE = NOLOAD modifier after its allocation. The IQmath tables
are used by the 1Qmath library functions. The NOLOAD modifier allows the linker to
resolve all addresses in the section, but the section is not actually placed into the .out
file. This is done because the section is already present in the device ROM (you cannot
load data into ROM after the device is manufactured!). The tables were put in the ROM
by TI when the device was manufactured. All we need to do is link the section to the
addresses where it is known to already reside (the tables are the very first thing in the
BOOT ROM, starting at address 0Ox3FEQ00). Close the inspected file.

Select a Global 1Q value

7.

Inthe C/C++ Projects window under the Includes folder open:
C:\C28x\Labs\IQmath\include\IQmathLib.h. Confirm that the GLOBAL_Q
type (near beginning of file) is set to a value of 24. If it is not, modify as necessary:

#define GLOBAL_Q 24

Recall that this Q type will provide 8 integer bits and 24 fractional bits. Dynamic range
is therefore -128 < x < +128, which is sufficient for our purposes in the workshop.

Notice that the math type is defined as IQmath by:
#define MATH_TYPE 1Q_MATH

Close the file.

IQmath Single-Sample FIR Filter
8. Open and inspect Defaultlsr_8.c. Notice that the ADCINT_ISR calls the IQmath

single-sample FIR filter function, 1Qssfir(). The filter coefficients have been defined in
the beginning of Main_8_c. Also, as discussed in the lecture for this module, the ADC
results are read with the following instruction:

*AdcBufPtr = _1Qmpy(ADC_FS_VOLTAGE,
_1Q12tol1Q((_ig)AdcMirror . ADCRESULTO));

The value of ADC_FS_VOLTAGE will be discussed in the next lab step.

Open and inspect Lab_h. Notice that, as discussed in the lecture for this module,
ADC_FS VOLTAGE is defined as:

#if MATH_TYPE == 1Q_MATH

#define ADC_FS VOLTAGE _10(3.0)
#else // MATH_TYPE is FLOAT MATH
#define ADC_FS VOLTAGE _10(3.0/74096.0)
#endi T

C2000 Delfino Workshop - Numerical Concepts 8-37

Lab 8: IQmath & Floating-Point FIR Filter

10.

Open and inspect the 1Qssfir() function in Filter.c. This is a simple, non-optimized
coding of a basic IQmath single-sample FIR filter. Close the inspected files.

Build and Load

11.

12.

Click the “Bui 1d” button and watch the tools run in the Consol e window. Check for
errors in the Problems window.

Click the “Debug” button (green bug). The “Debug Perspective” view should open, the
program will load automatically, and you should now be at the start of main().

Run the Code — Filtered Waveform

13.

Open a memory window to view some of the contents of the filtered ADC results buffer.
The address label for the filtered ADC results buffer is AdcBufFiltered in the “Data”
memory page. Set the format to 32-Bit Signed Integer. Right-click in the memory
window, select Configure... and set the Q-Value to 24 (which matches the 1Q format
being used for this variable). Then click OK to save the setting. We will be running our
code in real-time mode, and will need to have the window continuously refresh.

Note:

For the next step, check to be sure that the jumper wire connecting PWMZ1A (pin #
GPI0O-00) to ADCINAO (pin # ADC-AO) is in place on the Docking Station.

14.

15.

Run the code in real-time mode using the Script function: Scripts -> Realtime
Emulation Control - Run_Realtime_with_Reset, and watch the memory
window update. Verify that the ADC result buffer contains updated values.

Open and setup a dual-time graph to plot a 48-point window of the filtered and unfiltered
ADC results buffer. Click: Tools > Graph -> Dual Time and set the following
values:

Acquisition Buffer Size 48

DSP Data Type 32-bit signed integer
Q Value 24

Sampling Rate (Hz) 48000

Start Address A AdcBufFiltered
Start Address B AdcBuf

Display Data Size 48

Time Display Unit us

Select OK to save the graph options.

C2000 Delfino Workshop - Numerical Concepts

Lab 8: IQmath & Floating-Point FIR Filter

16. The graphical display should show the generated FIR filtered 2 kHz, 25% duty cycle
symmetric PWM waveform in the Dual Time A display and the unfiltered waveform
generated in the previous lab exercise in the Dual Time B display. Notice the shape and
phase differences between the waveform plots (the filtered curve has rounded edges, and
lags the unfiltered plot by several samples). The amplitudes of both plots should run
from 0 to 3.0.

17. Open and setup two (2) frequency domain plots — one for the filtered and another for the
unfiltered ADC results buffer. Click: Tools > Graph - FFT Magnitude and
set the following values:

GRAPH #1 GRAPH #2
Acquisition Buffer Size 48 48
DSP Data Type 32-bit signed integer | 32-bit signed integer
Q Value 24 24
Sampling Rate (Hz) 48000 48000
Start Address AdcBufFiltered AdcBuf
Data Plot Style Bar Bar
FFT Order 10 10

Select OK to save the graph options.

18. The graphical displays should show the frequency components of the filtered and
unfiltered 2 kHz, 25% duty cycle symmetric PWM waveforms. Notice that the higher
frequency components are reduced using the Low-Pass FIR filter in the filtered graph as
compared to the unfiltered graph.

19. Fully halt the CPU (real-time mode) by using the Script function: Scripts >
Realtime Emulation Control -> Full_Halt.
Changing Math Type to Floating-Point

20. Switch to the “C/C++ Perspective” view by clicking the C/C++ icon in the upper right-
hand corner. Inthe C/C++ Projects window under the Includes folder open:
C:\C28x\Labs\I1Qmath\include\lQmathLib.h. Edit IQmathLib.hto
define the math type as floating-point. Change #define

from: #deFfine MATH_TYPE 1Q_MATH
to: #define MATH_TYPE FLOAT_MATH

Save the change to the 1QmathLib.h and close the file.

C2000 Delfino Workshop - Numerical Concepts 8-39

Lab 8: IQmath & Floating-Point FIR Filter

Build and Load

21.

Click the “Bui 1d” button. Select Yes to “Reload the program automatically”. Switch
back to the “Debug Perspective” view by clicking the Debug icon in the upper right-
hand corner.

Run the Code — Floating-Point Filtered Waveform

22.

23.

24.

25.

Change the dual-time and FFT Magnitude graphs to display 32-bit floating-point rather
than 32-bit signed integer. Click the “Show the Graph Properties” icon for
each graph and change the DSP Data Type to 32-bit floating-point.

Run the code (real-time mode) by using the Script function: Scripts > Realtime
Emulation Control - Run_Realtime_with_Reset.

The graphical display should show the generated FIR filtered 2 kHz, 25% duty cycle
symmetric PWM waveform in the Dual Time A display and the unfiltered waveform in
the Dual Time B display. The FFT Magnitude graphical displays should show the
frequency components of the filtered and unfiltered 2 kHz, 25% duty cycle symmetric
PWM waveforms.

Fully halt the CPU (real-time mode) by using the Script function: Scripts >
Realtime Emulation Control -> Full_Halt.

Terminate Debug Session and Close Project

26.

27.

Terminate the active debug session using the Terminate Al button. This will close
the debugger and return CCS to the “C/C++ Perspective” view.

Next, close the project by right-clicking on Lab8 in the C/C++ Projects window
and select Close Project.

End of Exercise

C2000 Delfino Workshop - Numerical Concepts

Lab 8: IQmath & Floating-Point FIR Filter

Lab 8 Reference: Low-Pass FIR Filter

Bode Plot of Digital Low-Pass FIR Filter
Coefficients: [1/16, 4/16, 6/16, 4/16, 1/16]

Sample Rate: 48 kHz

Low-Pass Filter Magnitude

= = =
= om]

hagnitude (dimensionless)

=
[

a2
=N
e Uy SUpUpUp L ALY SU
=
=
o
=
=
=

12,000 16,000 20,000 24,000
Frequency (Hz)

Low-Pass Filter Phase

Phase (deg)

0 4,000 8,000 12,000 16,000 20,000 24,000
Fregquency (Hz)

C2000 Delfino Workshop - Numerical Concepts 8-41

Lab 8: IQmath & Floating-Point FIR Filter

8-42 C2000 Delfino Workshop - Numerical Concepts

Direct Memory Access Controller

Introduction

This module explains the operation of the direct memory access (DMA) controller. The DMA
provides a hardware method of transferring data between peripherals and/or memory without
intervention from the CPU, thus freeing up bandwidth for other system functions. The DMA has
six channels with independent PIE interrupts.

Learning Objectives

Learning Objectives

¢ Understand the operation of the
Direct Memory Access (DMA)
controller

¢ Show how to use the DMA to
transfer data between peripherals
and/or memory without intervention
from the CPU

C2000 Delfino Workshop - Direct Memory Access Controller 9-1

Module Topics

Module Topics

Direct Memory ACCESS CONTIOIIEKcoi i bbbt 9-1
T LU T=TN o ot PSS 9-2
Direct Memory ACCESS (DIMIA) ...ttt bbbttt et bttt et 9-3

BaSIC OPEIALION ...ttt ettt bbbt b e bt b e et eb e bbb e bt b et erenrere 9-4
DIMA EXBMPIES ...ttt ettt b et b e bbb bbbtk eb ettt b e et b e et ebennere 9-6
DIMA PIIOFEY IMOAES ...ttt et b bttt et b e bbbt e e e e b e e e b e 9-9
DIMA TRIOUGRPUL ...ttt bttt ettt b e bt b e be bt e bt et e b seenbenbesbe s 9-10
DIMA REGISTEIS ...ttt sttt bt bbbt b et e s e b e b e b e bt eb e e Rt e se e e et e e ke sbeebeabeebeennenbenbenneas 9-11
Lab 9: Servicing the ADC WIth DIMAL..........ooiiiiiiice ettt st st re e sr et e 9-15

9-2 C2000 Delfino Workshop - Direct Memory Access Controller

Direct Memory Access (DMA)

Direct Memory Access (DMA)

DMA Triggers, Sources, and Destinations

(re-maps PWM regs from PF1to PF3)

=R
| DINTCH1-6 |
ADC e XINTF
_— H > [
Result 0-15 . Zone 0,6, 7
| bma |
| —
L4 SARAM «— 6-channels
' \CB SP-A j¢&—>
Triggers
L5 SARAM « f » McBSP-B [+—
L6 SARAM MXEVTB / MREVTB >
XINT1-7 /13 PWM2 t——
TINTO/1/2 /_ PWM3 freee
L7 SARAM g 42 ¥ PWM4 ——
PWM5 |—s
) I PWM6
SysCtrIRegs. MAPCNF .bit. MAPCNF~~

¢ Word
+ 16 or 32 bits

¢ Burst
+ Consists of multiple words

¢ Burst Size
« Number of words per burst

¢ Transfer
« Consists of multiple bursts

¢ Transfer Size
« Number of bursts per transfer

DMA Definitions

+ Specified by BURST_SIZE register
+ 5-bit ‘N-1’ value (maximum of 32 words/burst)

+ Specified by TRANSFER_SIZE register
« 16-bit ‘N-1’ value - exceeds any practical requirements

+ Word size is configurable per DMA channel

+ Smallest amount of data transferred at one time

C2000 Delfino Workshop - Direct Memory Access Controller

Direct Memory Access (DMA)

Basic Operation

Simplified State Machine Operation

The DMA state machine at its most basic
level is two nested loops

| Start Transfer |

Move Word

Burst Size times

Transfer Size times

End Transfer

Basic Address Control Registers

32
. . ! SRC_ADDR |
Active pointers
| DST_ADDR |
Pointer shadow registers SRC_ADDR_SHADOW |
copied to active pointers at — —
start of transfer DST_ADDR_SHADOW |

Signed value added to active |__SRC_BURST STEP |
pointer after each word | DST BURST STEP |

Signed value added to active |SRC—TRANSFER—STEP|
pointer after each burst |DST TRANSFER STEP|

9-4 C2000 Delfino Workshop - Direct Memory Access Controller

Direct Memory Access (DMA)

Simplified State Machine Example

3 words/burst
2 bursts/transfer

v
Wait for event

A

to start/continue
transfer

Read/Write Data (¢

Moved Add Burst Step
“Burst Size” to Address

Words? Pointer

Y

Moved Add Transfer
“Transfer Size” Step to Address

Bursts? Pointer

Y

\ 4

End Transfer

DMA Interrupts

Mode #1:

Interrupt <= =======-=
. 2

at start of
transfer

Wait for event

to start/continue
transfer

& Each DMA channel has
its own PIE interrupt

& The mode for each
interrupt can be
configured individually

& The CHINTMODE bitin
the MODE register selects
the interrupt mode

po—

Read/Write Data [«

Mode #2:
Interrupt <=
at end of
transfer

Moved Add Burst Step
“Burst Size” to Address

Words? Pointer

Y

Moved Add Transfer
“Transfer Size” Step to Address

Bursts? Pointer

Y

A 4

End Transfer

C2000 Delfino Workshop - Direct Memory Access Controller

Direct Memory Access (DMA)

DMA

Examples

Simple Example

Objective: Move 4 words from L7 SARAMto XINTF Zone O
and interrupt CPU at end of transfer

BURST_SIZE* 2 words/burst .
~ [Start Transfer]
TRANSFER_SIZE* 0x0001 2 bursts/transfer m
¥
* Size registers are N-1 Waitfor event
to start/continue
. transfer
Source Registers Addr Value
SRC_ADDR 0x00000000 0xFo00 [ox1111 Read/MWrite Data
SRC_ADDR_SHADOW 8;583; giggg Movee S A2 Burs Stzp
BURST_STEP 0x0001 0xF003 [Oxaaaa “Burst Size’ to Address
TRANSFER_STEP [__0x0001 X X Koo bora
. . . Moved N Add Transfer
Des“natlon Reg|sters Addr Value “Transfer Size” Step to Address
DST_ADDR [0x00000000 0x4000 [0%0000 >
0x4001 [0x0000
_}' 1 tto PIE
DST_ADDR_SHADOW [0x00004000 0x4002 [0x0000 nterrupt to

DST_BURST_STEP 0x0001

End T fé
DST TRANSFER STEP [_ 0x0001 0x4003 (DRI S

Note: This example could also have been done using 1 word/burst and 4 bursts/transfer, or 4 words/burst
and 1 burst/transfer. This would affect Round-Robin progression, but not interrupts.

Data Binning Example
Objective: Bin 3 samples of 5 ADC channels, then interrupt the CPU

L7 SARAM

O0xF000

ADC Mirror Results CHO 0xFOO01
0xF002

3d Conversion Sequence 0xF003
CH1 OXF004

0x0B00 | CHO O0XFO005
0x0B01 | CH1 O0XFO06
0x0B02 | CH2 CH2 OXE007
0x0B03 | CH3 OXF008
0x0B04 | CH4 O0XF009
CH3 OXFOO0A

0xFO0B

0xFOO0C

CH4 OxFOOD

OxFOOE

C2000 Delfino Workshop - Direct Memory Access Controller

Direct Memory Access (DMA)

Data Binning Example Register Setup
Objective: Bin 3 samples of 5 ADC channels, then interrupt the CPU

ADC Reqisters:
ADCMAXCONV* 0x0004 5 conversions per sequence

Other: | ADC configured for continuous conversion,
SEQ_OVERRIDE bit set so that state pointer wraps after 5 conversions

. L7 SARAM

DMA Registers: -
BURST_SIZE* 5 words/burst 0xF000 gﬂg
TRANSFER_SIZE* 3 bursts/transfer 8?588% B
SRC_ADDR_SHADOW [0x00000B00 ' CH1
SRC_BURST STEP [Ox0001 ADC Mirror Results 8§E882 SHI
SRC_TRANSFER_STEP [_OxFFFC__| (-4) 0x0800 [CHO OxF005 [CHI
DST_ADDR_SHADOW [0x0000F000] starting address** 0x0BO1 [CH1 0xF006 [CH2
DST_BURST_STEP 0x0003 0x0B02 [CH2 0xF007 [CH2
DST_TRANSFER_STEP OXFFF5 | (-11) 0x0B03 [CH3 0xFoos [CH2
0x0B04 [CH4 0xF009 [CH3
0xFOOA |CH3
0xFoOB |CH3
OxFoocC |CH4
0xFooOD |CH4|
* Size registers are N-1 OxFOOE |CH4

** Typically use a relocatable symbol in your code, not a hard value

The State Machine ‘Wrap’ Function

Provides another resource to manipulate the address pointers

Start Transfer

. i Wait for eventto |

Wrap Function: start/continue transfer |~
¢ Reloads address v |

pointer after specified | Read/Write Data |

number of bursts

& Allows a cumulative
signed offset to be
added each wrap v

Move
“Burst Size”

N Add Burst Step
to Address
Pointer

Add Transfer Step
to Address Pointer

New Registers

« WRAP_SIZE = bursts/wrap - 1

- BEG_ADDR = Wrap beginning
address

- WRAP_STEP = added to
BEG_ADDR before wrapping

Moved Moved
“Transfer Size” “Wrap Size”
Bursts2

v Add WRAP_STEP to

BEG_ADDR and Load

End Transfer into Address Pointer
_A

C2000 Delfino Workshop - Direct Memory Access Controller 9-7

Direct Memory Access (DMA)

Ping-Pong Buffer Example

Objective: Buffer ADC ch. 0 ping-pong style, 48 samples per buffer

ADC Mirror Results L4 SARAM
0xC140 —~

0x0B00 | ADCRESULTO
0x0BO1 | ADCRESULT1
0x0B02 | ADCRESUL T2
0x0B03 | ADCRESULT3 > 48 Wgrd
0x0B04 | ADCRESUL T4 Ping’ buffer
0x0B05 | ADCRESULT5
0x0B06 | ADCRESULT6
0x0B07 | ADCRESULT7 DMA
0x0B08 | ADCRESUL T8 Interrupt
0x0B09 | ADCRESULT9
0x0BOA | ADCRESUL T10
0x0BOB | ADCRESUL T11 > 48 word
0x0BOC | ADCRESUL T12 ‘Pong’ buffer
0x0BOD | ADCRESUL T13
0XOBOE | ADCRESUL T14
0xOBOF | ADCRESUL T15 DMA

Interrupt

Ping-Pong Example Register Setup

Objective: Buffer ADC ch. 0 ping-pong style, 48 samples per buffer

ADC Reqisters:
ADCMAXCONV* 0x0000 1 conversion per trigger - SEQ pointer auto wraps after 16 states

Other:lAlI 16 Ch. selection fields configured for Ch. 0, ADC in non-continuous run mode |

DMA Registers:
BURST_SIZE* 0x0000 1 word/burst
TRANSFER_SIZE* 0x002F 48 bursts/transfer

SRC_ADDR_SHADOW [0x00000B00 | starting address
start/continue transfer

SRC_BURST_STEP don't care | since BURST_SIZE =0
Read/Write Data
oved Add Burst Step
0“5\”9 Size’ to Address
jords 2 i

SRC_TRANSFER_STEP [_0x0001]
Pointer

SRC_BEG_ADDR_SHADOW starting wrap address
SRC_WRAP_SIZE* wrap after 16 words
SRC_WRAP_STEP

DST_ADDR_SHADOW | 0x0000C140]| starting address**
DST_BURST_STEP 0x0000] since BURST_SIZE = 0
DST_TRANSFER_STEP 0x0001

DST_BEG_ADDR_SHADOW [_don't care | notusing dst wrap
DST_WRAP_SIZE* [__OXFFFF__] no wrap ¥
DST_WRAP_STEP |__dontcare | not using dst wrap

Other: [DMA configured to re-init after transfer (CONTINUOUS = 1) |

Add Transfr Step
1o Address Pointer

N

oved
“Transfer Size"
Bursts2

oved
“Wrap Size”
Bursts2

Y
AddWRAP_STEP to
BEG_ADDR and Load
Into"Address Pointer

* Size registers are N-1
** DST_ADDR_SHADOW must be changed between ping and pong buffer address in
the DMA ISR. Typically use a relocatable symbol in your code, not a hard value.

9-8 C2000 Delfino Workshop - Direct Memory Access Controller

Direct Memory Access (DMA)

DMA Priority Modes

Channel Priority Modes

¢ Round Robin Mode:
+ All channels have equal priority

+ After each enabled channel has
transferred a burst of words, the
next enabled channel is serviced
in round robin fashion

¢ Channel 1 High Priority Mode:

+ Same as Round Robin except CH1
can interrupt DMA state machine

+ If CH1 trigger occurs, the current
word (not the complete burst) on
any other channel is completed
and execution is halted

+ CH1lis serviced for complete burst
+ When completed, execution
returns to previous active channel

+ This mode is intended primarily
for the ADC, but can be used by
any DMA event configured to
trigger CH1

Priority Modes and the State Machine

Start Transfer Point where other
pending channels

\ 4 are serviced]
Wait for event
to start/continue |« /
transfer
y
Read/Write Data [«
Point where §
CH1 can /
Inéig::ﬁ;g?: " Moved N Add Burst Step
CHL Priority Mode } “Burst Size” to Address
T e ee T et Words? Pointer

Moved
“Transfer Size”
Bursts?

Y

N Add Transfer
Step to Address
Pointer

v

End Transfer

C2000 Delfino Workshop - Direct Memory Access Controller 9-9

Direct Memory Access (DMA)

DMA Throughput

DMA Throughput

¢ 4 cycles/word (5 for McBSP reads)
¢ 1lcycledelay to start each burst

1 cycle delay returning from CH1 high
priority interrupt

¢ 32-bit transfer doubles throughput
(except McBSP, which supports 16-bit transfers only)

2

Example: 128 16-bit words from ADC to RAM
8 bursts * [(4 cycles/word * 16 words/burst) + 1] =520 cycles

Example: 64 32-bit words from ADC to RAM
8 bursts * [(4 cycles/word * 8 words/burst) + 1] = 264 cycles

DMA vs. CPU Access Arbitration

¢ DMA has priority over CPU

+ If a multi-cycle CPU access is already in
progress (e.g. XINTF), DMA stalls until
current CPU access finishes

+ The DMA will interrupt back-to-back CPU
accesses

¢ Can the CPU be locked out?
+ Generally No!

+ DMA is multi-cycle transfer; CPU will sneak
in an access when the DMA is accessing
the other end of the transfer (e.g. while DMA
accesses destination location, the CPU can
access the source location)

9-10 C2000 Delfino Workshop - Direct Memory Access Controller

Direct Memory Access (DMA)

DMA Registers

DMA CHx Registers
A

Register Description
DMACTRL DMA Control Register
PRIORITYCTRL1 Priority Control Register 1

/| MODE Mode Register
CONTROL Control Register
BURST_SIZE Burst Size Register
BURST_COUNT Burst Count Register
SRC_BURST_STEP Source Burst Step Size Register
DST_BURST_STEP Destination Burst Step Size Register
TRANSFER_SIZE Transfer Size Register
TRANSFER_COUNT Transfer Count Register
SRC_TRANSFER_STEP Source Transfer Step Size Register
DST_TRANSFER_STEP Destination Transfer Step Size Register
SRC_ADDR_SHADOW Shadow Source Address Pointer Register
SRC_ADDR Active Source Address Pointer Register
DST_ADDR_SHADOW Shadow Destination Address Pointer Register
DST_ADDR Active Destination Address Pointer Register

DMA Registers

DmaRegs.name (lab file: Dma.c)

For a complete list of registers refer to the DMA Module Reference Guide

DMA Control Register

DmaRegs.DMACTRL

Hard Reset

0 =writes ignored (always reads back 0)
1=reset DMA module

\

15-2 1 0

reserved PRIORITYRESET | HARDRESET

Priority Reset

0 = writes ignored (always reads back 0)

1 =reset state-machine after any pending
burst transfer complete

C2000 Delfino Workshop - Direct Memory Access Controller

Direct Memory Access (DMA)

Prioritg Control Reqister 1
maRegs.PRIORITYCTRL

15-1 0

reserved CH1PRIORITY

DMA CH1 Priority

0 = same priority as other channels
1 = highest priority channel

Upper Register:

Channel Interrupt

Mode Reqgister

DmaRegs.CHX.-MODE

Sync Mode Select One Shot Mode

_ 1 _ 0 = one burst transfer per trigger
(1) — gf;tﬁlee 2 - BE'CI': \,"VV,-rg‘p gggﬂtteerr 1 = subsequent burst transfers
p occur without additional trigger
15 14 13 12 11 10
CHINTE DATASIZE SYNCSEL SYNCE CONTINUOUS ONESHOT

Data Size Mode

0 = 16-bit transfer
1 = 32-bit transfer

Sync Enable (PERINTSEL)

0= ADCSYNC ignored
1= ADCSYNC event

Continuous Mode
0 = DMA stops
1 = DMA re-initializes

C2000 Delfino Workshop - Direct Memory Access Controller

Direct Memory Access (DMA)

Mode Register

DmaRegs.CHx.MODE

Lower Register: Peripheral Overflow
. Interrupt Trigger Interrupt Enable
Channel Interrupt Generation 0 = disable 0 = disable

0 = at beginning of transfer

1 =enable 1 =enable
1 =at end of transfe//

9 8 7 6-5 4-0
CHINTMODE |PERINTE | OVRINTE reserved PERINTSEL
Peripheral Interrupt Source Select

Value | Interrupt Sync Peripheral Value | Interrupt | Sync | Peripheral
0 none none none 9 XINT7 none Ext. Int.
1 SEQLINT | ADCSYNC ADC 10 XINT13 | none Ext. Int.
2 SEQ2INT none ADC 11 TINTO none | CPU Timer
3 XINT1 none Ext. Int. 12 TINT1 none CPU Timer
4 XINT2 none Ext. Int. 13 TINT2 none CPU Timer
5 XINT3 none Ext. Int. 14 MXEVTA | none McBSP-A
6 XINT4 none Ext. Int. 15 MREVTA | none McBSP-A
7 XINTS none Ext. Int. 16 MXEVTB | none McBSP-B
8 XINT6 none Ext. Int. 17 MREVTB | none McBSP-B

Control Register

DmaRegs.CHx.CONTROL

Upper Register:

Overflow Flag * Burst Status * Sync Error * Sync Flag *

0 =no overflow 0= no activity 0 =no error 0 =no sync event
1 =overflow 1= servicing burst 1=ADCSYNCerror 1= AE?S;YNC event

15 14 13 12 11 10 9 8

reserved |OVRFLG|RUNSTS|BURSTSTS | TRANSFERRST|SYNCERR|SYNCFLG|PERINTFLG

Run Status * Transfer Status * Peripheral Interrupt Trigger Flag *

0 =channel disabled 0 =no activity 0 =no interrupt event trigger
1 =channel enabled 1 =transferring 1 =interrupteventtrigger

* = read-only

C2000 Delfino Workshop - Direct Memory Access Controller

Direct Memory Access (DMA)

Error Clear

Lower Register:

0 = no effect
1 =clear SYNCERR

Control Register

DmaRegs.CHXx.CONTROL

Peripheral Interrupt Force

0 = no effect
1= sets event and PERINTFLG

Sync Force

0 =no effect
1 =sets SYNCFLG

7 6 5 4 3 2 1 0
ERRCLR| SYNCCLR|SYNCFRC |PERINTCLR|PERINTFRC|SOFTRESET |HALT|RUN

Sync Clear Soft Reset Run

0 =no effect 0 = no effect 0 = no effect

1 =clear SYNCFLG 1 = default state 1=run
Peripheral Interrupt Clear Halt
0 = no effect 0 = no effect
1=clears event and PERINTFLG 1 = halt

C2000 Delfino Workshop - Direct Memory Access Controller

Lab 9: Servicing the ADC with DMA

Lab 9: Servicing the ADC with DMA
» Objective

The objective of this lab is to become familiar with operation of the DMA. In the previous lab,
the CPU was used to store the ADC conversion result in the memory buffer during the ADC ISR.
In this lab the DMA will be configured to transfer the results directly from the ADC result
registers to the memory buffer. ADC channel A0 will be buffered ping-pong style with 48
samples per buffer. As an operational test, the filtered 2 kHz, 25% duty cycle symmetric PWM
waveform (ePWM1A) will be displayed using the graphing feature of Code Composer Studio.

Lab 9: Servicing the ADC with DMA

ePWM1 ADC DMA
TB Counter ADCINAO | RESULTO
Compare
Action Qualifier

connector 7
wire !

ping
| data
‘ memory
ePWM2 triggering ADC on period pong
match using SOCA trigger every
20.833 ps (48 kHz)
ePWM2 CPU runs
FIR data through
i filter duriny
Filter DMA |SFzg
Objective: 5o
. = C
Configure the DMA to buffer Ss [mg,ﬁgry
ADC Channel A0 ping-pong o
style with 48 samples per buffer Display

using CCS

> Procedure

Open the Project

1. A project named Lab9 has been created for this lab. Open the project by clicking on
Project - Import Existing CCS/CCE Eclipse Project. The “Import”
window will open then click Browse... next to the “Select root directory” box. Navigate
to: C:\C28x\Labs\Lab9\Project and click OK. Then click Finish to import the
project. All build options have been configured the same as the previous lab. The files
used in this lab are:

C2000 Delfino Workshop - Direct Memory Access Controller 9-15

Lab 9: Servicing the ADC with DMA

Adc_9 10 _12.c
CodeStartBranch.asm
Defaultlsr_9 10 12a.c
DelayUs._asm

Dma.c
DSP2833x_Defaultlsr.h

DSP2833x_GlobalVariableDefs.c
DSP2833x_Headers nonBI10S.cmd

ECap_7_8 9 10 12.c
EPwm_7_8_9 10 12.c

Inspect Lab_9.cmd

Filter.c

Gpio.c

Lab.h

Lab 9.cmd

Main_9.c

PieCtrl _ 5 6 7 8 9 10.
8 9 10

SysCtrl.c
Watchdog.c

2. Openand inspect Lab_9.cmd. Notice that a section called “dmaMemBufs” is being

linked to LASARAM. This section links the destination buffer for the DMA transfer to a
DMA accessible memory space.

Setup DMA Initialization

The DMA controller needs to be configured to buffer ADC channel A0 ping-pong style with 48
samples per buffer. All 16 input channel selection sequences in the autosequencer need to be set
to channel AO. One conversion will be performed per trigger with the ADC operating in non-
continuous run mode. The autosequencer pointer will automatically wrap after 16 conversions.

3. OpenAdc_9 10_12.c and notice that the ADCMAXCONV register has been set to

perform one conversion per trigger. Also, the ADC input channel select sequencing
control registers (ADCCHSELSEQX) have all been set to convert channel A0.

Edit Dma. c to implement the DMA operation as described in the objective for this lab
exercise. Configure the DMA Channel 1 Mode Register (MODE) so that the ADC
SEQ1INT is the peripheral interrupt source. Enable the channel interrupt and interrupt
trigger with the interrupt generation at the start of transfer. Configure for 16-bit data
transfers with one burst per trigger and auto re-initialization at the end of the transfer.
Disable the ADC sync. Inthe DMA Channel 1 Control Register (CONTROL) clear the
error, sync and peripheral interrupt bits and enable the channel to run.

Open Main_9.c and add a line of code in main() to call the InitDma() function.
There are no passed parameters or return values. You just type

Initbma();

at the desired spot inmain().

Setup PIE Interrupt for DMA

Recall that ePWM2 is triggering the ADC at a 48 kHz rate. In the previous lab exercise, the ADC
generated an interrupt to the CPU, and the CPU implemented the FIR filter in the ADC ISR. For

this lab exercise, the ADC is instead triggering the DMA, and the DMA will generate an interrupt
to the CPU. The CPU will implement the FIR filter in the DMA ISR.

C2000 Delfino Workshop - Direct Memory Access Controller

Lab 9: Servicing the ADC with DMA

6. EditAdc_9_10_12_c to comment out the code used to enable the ADC interrupt. This
is no longer being used. The DMA interrupt will be used instead.

7. Using the “PIE Interrupt Assignment Table” find the location for the DMA Channel 1
interrupt “DINTCH1” and fill in the following information:

PIE group #: # within group:
This information will be used in the next step.

8. Modify the end of Dma.c to do the following:

- Enable the “DINTCHL1” interrupt in the PIE (Hint: use the PieCtrlIRegs structure)
- Enable the appropriate core interrupt in the IER register

9. Openand inspect Defaultlsr_9 10 12a.c. Notice that this file contains the DMA
interrupt service routine. Save and close all modified files.

Build and Load

10. Click the “Bui 1d” button and watch the tools run in the Console window. Check for
errors in the Problems window.

11. Click the “Debug” button (green bug). The “Debug Perspective” view should open, the
program will load automatically, and you should now be at the start of main().

Run the Code — Test the DMA Operation

Note: For the next step, check to be sure that the jumper wire connecting PWM1A (pin #
GP10-00) to ADCINAO (pin # ADC-AQ) is in place on the Docking Station.

12. Run the code in real-time mode using the Script function: Scripts -> Realtime
Emulation Control -> Run_Realtime_with_Reset, and watch the memory
window update. Verify that the ADC result buffer contains updated values.

13. Setup a dual-time graph of the filtered and unfiltered ADC results buffer. Click:
Tools - Graph - Dual Time and set the following values:

C2000 Delfino Workshop - Direct Memory Access Controller 9-17

Lab 9: Servicing the ADC with DMA

Acquisition Buffer Size 48

DSP Data Type 32-bit floating-point
Sampling Rate (Hz) 48000

Start Address — A AdcBufFiltered
Start Address — B AdcBuf

Display Data Size 48

Time Display Unit us

14. The graphical display should show the filtered PWM waveform in the Dual Time A
display and the unfiltered waveform in the Dual Time B display. You should see that the
results match the previous lab exercise.

15. Fully halt the CPU (real-time mode) by using the Script function: Scripts >
Realtime Emulation Control -> Full_Halt.

Terminate Debug Session and Close Project

16. Terminate the active debug session using the Terminate Al button. This will close
the debugger and return CCS to the “C/C++ Perspective” view.

17. Next, close the project by right-clicking on Lab9 in the C/C++ Projects window
and select Close Project.

End of Exercise

9-18 C2000 Delfino Workshop - Direct Memory Access Controller

System Design

Introduction

This module discusses various aspects of system design. Details of the emulation and analysis
block along with JTAG will be explored. Flash memory programming and the Code Security
Module will be described.

Learning Objectives

Learning Objectives

¢ Emulation and Analysis Block
¢ External Interface (XINTF)

¢ Flash Configuration and

Memory Performance
¢ Flash Programming

¢ Code Security Module (CSM)

C2000 Delfino Workshop - System Design 10-1

Module Topics

Module Topics

YY1 (5] 1 A B LT [o] o OO RRO USRS 10-1
T LU T=N o ot 10-2
Emulation and ANalYSis BIOCKccoiiiiiiiiiieie e 10-3
External INterface (XINTE) ... oo bbbt 10-6
Flash Configuration and Memory Performance...........cooeiieriiiieniineeseee e 10-10
F1aSh Programmingcoooo oottt s b et b e sb e bbbt b e et e e e e e beseesaennas 10-13
Code Security MOAUIE (CSM) ..ottt e bbbttt sre b e e 10-15
Lab 10: Programming the FIash...........coo i 10-18

10-2 C2000 Delfino Workshop - System Design

Emulation and Analysis Block

Emulation and Analysis Block
JTAG Emulation System

(based on IEEE 1149.1 Boundary Scan Standard)

System Under Test

SCAN IN

< > Emulator | g
Pod -

Tuxas Instrumants

*

SCAN OUT

MO >mMI

Some Available Emulators

XDS510 CLASS - -
BlackHawk: USB2000 These emulators are C2000 specific,

Signum System: JTAGjet-C2000 and are much lower cost than emulators

Spectrum Digital: XDS510LC } that support all TI MCU/DSP platforms

(although those can certainly be used)

EP Sklgo ci(lfASS -U SB100 These emulators are much slower than
gc awk: the ones listed above, but are also
Olimex: TMS320-JTAG-USB

available at a lower cost than XDS510

Spectrum Digital: XDS100 class and are NOT C2000 specific

Emulator Connections to the Device
Vce (3.3 V)
GND 4 Vece (3.3 V)
TMS320F2833x é ; g Emulator Header
13 EMUO PD 5
14
EMU1
TRST . TRST GND
™S < " tms GND |2
8
TDI« : 3| 1oi GND
10
TDO > I oo GND
11 12
TCK . TCK GND
9 %
TCK_RET GND
-: If distance between device and header is greater than 6 inches

C2000 Delfino Workshop - System Design 10-3

Emulation and Analysis Block

On-Chip Emulation Analysis Block:
Capabilities

Two hardware analysis units can be configured to provide
any one of the following advanced debug features:

Analysis Configuration

Debug Activity

2 Hardware Breakpoints —» Halton a specified instruction
(for debugging in Flash)

2 Address Watchpoints —> A memory location is getting
corrupted; halt the processor when
any value is written to this location

1 Address Watchpoint with Data —=p» Halt program execution after a
specific value is written to a variable

1 Pair Chained Breakpoints ——> Halton a specified instruction only

after some other specific routine has
executed

On-Chip Emulation Analysis Block:
Hardware Breakpoints and Watchpoints

Currert Court. 0
faton Reman rated

o Ul ot gy
N Ermaport

Al sttings under this are handied by the target wihout
Inkruding o the target's exsaiion

corcel |

Hardware Breakpoint
Properties

faton Reman rated

o Ul ot gy
Hamm Watdhpot

A sattings reder this aee handied by the taret withaut
Ikl on the bargel's exstudion

corcel |

Hardware Watchpoint
Properties

10-4

C2000 Delfino Workshop - System Design

Emulation and Analysis Block

On-Chip Emulation Analysis Block:
Online Stack Overflow Detection

¢ Emulation analysis registers are accessible to code as well!

¢ Configure a watchpoint to monitor for writes near the end of
the stack

¢ Watchpoint triggers maskable RTOSINT interrupt
& Works with DSP/BIOS and non-DSP/BIOS
+ See Tlapplication report SPRA820 for implementation details

Region of Stack grows
memory towards higher
occupied memory
by the addresses
stack Monitor for data

writes in region near
the end of the stack

Data Memory

C2000 Delfino Workshop - System Design

10-5

External Interface (XINTF)

External Interface (XINTF)
TMS320F28335 XINTF Memory Map

Data | Program

0x000000 10, " R am (1kw)
0x000400

M1 SARAM (1Kw)
0x000800
0x000D00 g %Zgg%,rs
OXOOOEQQ t-nmrmrmmnzend ! reserved
0x002000 +2-2. KW
X004 000 e 0 (i)
0x005000
0X006000 e OKW)

X PF 1 (4Kw)| reserved
0x007000
PF 2 (4Kw)

0x008000 L0 SARAM (4K
0x009000 L1 SARAM (4KW)
0X00A000 LZSARAME4Kx;
0x00B000

L3 SARAM (4Kw)
0x00C000 L4 SARAM (4K
0x00D000 LSSARAM(4KW)
0x00EO00 L6 SARAM (4KW)
0x00F000 L7SARAME4Kx;
0x010000

-
L
L

Dual Mapped:
LO, L1, L2,L3

0x010000 .
0x100000 .
XINTF Zone 6 (IMw)
0x200000
0x300000 XINTF Zone 7 (IMw)
X
FLASH (256Kw)
gigjgggg ””” PASSWORDS (Bw)
reserved
8X§:88§g ADC calibration data
02380400 [eserved
0x380800 User OTP (1Kw)
O0X3F8000 [eserved
0x3F9000 L0 SARAM (4Kw)
OX3EAGO0 L1 SARAM (4Kw)
0X3FBOOC L2 SARAM (4Kw)
O§3FCOOC L3 SARAM (4Kw)
reserved
OX3FE000
Boot ROM (8Kw)
OXBEERC 0T SR vestors (aiw)

Data | Program

CSM Protected:
Lo, L1,L2,L3, OTP
FLASH, ADC CAL,

Flash regs in PFO

DMA Accessible:
L4,L5,L6, L7,
XINTF Zone 0, 6, 7

TMS320F28335 XINTF Signals

TMS320F28335

XD(31:16)
XD(15:0)
XA(19:1)

XAO/XWE 1
XWEO
XRD
XRIW
XZCSo
XZCS6
XZCS7
XREADY
XCLKOUT
XHOLD
XHOLDA

[HRRRRERARAIA!

Data Bus

Address Bus

Write Enable Strobe
Read Enable Strobe
Read Not Write Strobe

Zone selects

Shared memory support

Hardware wait-state support

10-6

C2000 Delfino Workshop - System Design

External Interface (XINTF)

Basic 16-bit Memory Interface

XD(31:16) [€——b
XD(15:0) [« »| D(15:0)
XA(19:1) > A(19:1) S
Select XA0— y po/XWEL A(0) %
o XWEO WE g
i XRD OE S
ﬁ XRIW ———> CS
N XZCso
3 XZCS6 |——
= XZCS7 f—os
XREADY j¢——
XCLKOUT f———
XHOLD
XHOLDA p————r
Basic 32-bit Memory Interface
XD(31:16) [« Low word
XD(15:0) [« » D(15:0)
XA(19:1) > A(18:0) <§(
Select XWE1 < XAOXWEL %
o XWED WE g
a3 XRD OF Q
§ XRIW CS
§ 'XZCso Hi word
N XZCS6 — »| D(15:0)
E XZCS7 — > A(18:0) <§t
XREADY [———— =
XCLKOUT s WE 5
XHOLD oOF 4
XHOLDA CS

C2000 Delfino Workshop - System Design

External Interface (XINTF)

XINTF Timings

¢ Three external zones: 0, 6, 7
Each zone has separate read and write timings
¢ XREADY signal can be used to extend ACTIVE phase

2

— | XRDLEAD {+—— XRDACTIVE — | XRDTRAIL |

e —\I . DSP latches data : F
' ' LH '
XRD \]
XA[19:0]) | valid address |
XD[...] X X valid data |
fe— srAM —— |
' i ta(A) ' '
Read Timing

XINTF Clocking

XTIMINGO

XTIMING6 Lead/Active/Trail

XTIMING7
XBANK

XINTCNF2.CLKOFF

751
'|/£l ﬂ)_/—,
0 XCLKOUT

XINTCNF2.CLKMODE

C28X | syscLkouT. =
1™ XTIMCLK
CPU 2] a

XINTCNF2 . XTIMCLK

¢ Specify read timing and write timing separately, for
each zone:

Lead: 1-3 XTIMCLK Cycles
Active: 0-7 XTIMCLK Cycles
Trail: 0-3 XTIMCLK Cycles

¢ Each zone has a X2TIMING bit that can double the
timing values (both read and write affected)

10-8 C2000 Delfino Workshop - System Design

External Interface (XINTF)

XINTF Registers

Name Address Size (x16) | Description

XTIMINGO 0x00 0B20 2 XINTF Zone 0 Timing Register
XTIMING6 0x00 0B2C 2 XINTF Zone 6 Timing Register
XTIMING7 0x00 OB2E 2 XINTF Zone 7 Timing Register
XINTCNF2 0x00 0B34 2 XINTF Configuration Register
XBANK 0x00 0B38 1 XINTF Bank Control Register
XRESET 0x00 0B3D 1 XINTF Reset Register

¢ XTIMINGx specifies read and write timings (lead, active, trail),
interface size (16 or 32 bit), X2TIMING, XREADY usage

¢ XINTCNF2 selects SYSCLKOUT/1 or SYSCLKOUT/2 as
fundamental clock speed XTIMCLK (for lead, active, trail),
XHOLD control, write buffer control

¢ XBANK specifies the number of XTIMCLK cycles to add between
two specified zone (bank switching)

¢ XRESET used to do a hard reset in case where CPU detects a
stuck XREADY during a DMA transfer

XINTF Configuration Example

XINTCNF2 Example (XCLKOUT often only used during debug to check clocking)

XintfRegs.XINTCNF2 .bit XTIMCLK = 0; // XTIMCLK = SYSCLKOUT/1
XintfRegs.XINTCNF2 .bit.CLKOFF = O; // XCLKOUT enabled
XintfRegs.XINTCNF2 .bit.CLKMODE = 0; // XCLKOUT = XTIMCLK/1

Zone 0 write and read timings example:

XintfRegs.XT IMINGO. bit.X2TIMING = O;
XintfRegs.XT IMINGO.bit.XSIZE = 3;
XintfREgs.XT IMINGO. bit.USEREADY = O;
XintfRegs.XT IMINGO. bit.XRDLEAD = 1;
XintfRegs.XT IMINGO. bit.XRDACTIVE = 2;
XintfRegs.XTIMINGO. bit_XRDTRAIL = 0;
XintfRegs.XT IMINGO. bit.XWRLEAD = 1;
XintfRegs . XTIMINGO. bit_ XWRACTIVE = 1;
XintfRegs.XT IMINGO. bit.XWRTRAIL = 1;

// Timing scale factor = 1
// 16-bit interface
// Not using HW wait-states

Bank switching example: Suppose the external device in zone 7 is slow
getting off the bus; Add 3 additional cycles when switching from zone 7 to
another zone to avoid bus contention

XintfRegs.XBANK .bit.BANK
XintfRegs.XBANK .bit.BCYC

7; // Select Zone 7
3; // Add 3 XTIMCLK cycles

C2000 Delfino Workshop - System Design 10-9

Flash Configuration and Memory Performance

Flash Configuration and Memory Performance

Basic Flash Operation

¢ Flashis arranged in pages of 128 words

¢ Wait states are specified for consecutive accesses within a page,
and random accesses across pages

¢ OTP has random access only

¢ Must specify the number of SYSCLKOUT wait-states;
Reset defaults are maximum value (15)

¢ Flash configuration code should not be run from the Flash memory

15 12 11 8 7 4 3 0

FlashRegs.FBANKWAIT reserved PAGEWAIT reserved RANDWAIT

15 4 3 0

FlashRegs.FOTPWAIT reserved OTPWAIT

*** Refer to the F2833x datasheet for detailed numbers ***
For 150 MHz, PAGEWAIT = 5, RANDWAIT =5, OTPWAIT =8
For 100 MHz, PAGEWAIT = 3, RANDWAIT =3, OTPWAIT =5

Speeding Up Code Execution in Flash

Flash Pipelining (for code fetch only)

le— 16—

16 or 32
e 64 | dispatched
64 C28x Core
& decoder unit
Aligned 2-level deep
64-bit fetch buffer
fetch

Flash Pipeline Enable
0 = disable (default)

1=-enable
FlashRegs.FOPT.bit.ENPIPE = 1,
15 1 0
reserved ENPIPE

10-10

C2000 Delfino Workshop - System Design

Flash Configuration and Memory Performance

Code Execution Performance
& Assume 150 MHz SYSCLKOUT, 16-bit instructions

(80% of instructions are 16 bits wide — Rest are 32 bits)

Internal RAM: 150 MIPS
Fetch up to 32-bits every cycle = 1 instruction/cycle * 150 MHz = 150 MIPS

Flash (w/ pipelining): 100 MIPS

RANDWAIT =5

Fetch 64 bits every 6 cycles =2 4 instructions/6 cycles * 150 MHz = 100 MIPS
RPT will increase this; PC discontinuity will degrade this

32-bit External SRAM (10 or 12 ns): 75 MIPS

XRDLEAD=1, XRDACTIVE=2, XRDTRAIL=0

Fetch 32 bits every 4 cycles 2 2 instructions/4 cycles * 150 MHz = 75 MIPS
RPT will increase this

16-bit External SRAM (10 or 12 ns): 37.5 MIPS

XRDLEAD=1, XRDACTIVE=2, XRDTRAIL=0

Fetch 16 bits every 4 cycles 2 1 instruction/4 cycles * 150 MHz = 37.5 MIPS
RPT will increase this

Data Access Performance
(150 MHz SYSCLKOUT)

Memory 16-bit access 32-bit access Notes
(words/cycle) (words/cycle)

Internal RAM 1 1
Flash 0.167 0.167 RANDWAIT =5
Flash is read only!
32-bit 0.5 0.25 XRDLEAD =1,
ext. RAM XRDACTIVE = 2,
(100r12ns) 16.-pit 0.25 0.125 XRDTRAIL = 0

¢ Internal RAM has best data performance — put time critical data here

¢ External RAM can generally outperform the flash for data access,
but increases cost and power consumption

¢ Flash performance usually sufficient for most constants and tables

¢ Note that the flash instruction fetch pipeline will also stall during a
flash data access

C2000 Delfino Workshop - System Design 10-11

Flash Configuration and Memory Performance

Other Flash Configuration Registers

FlashRegs.name

Address [Name Description

0x00 0A80 | FOPT Flash option register

0x00 0A82 | FPWR Flash power modes registers
0x00 0A83 | FSTATUS Flash status register

0x00 0A84 |FSTDBYWAIT | Flash sleep to standby wait register
0x00 0A85 | FACTIVEWAIT | Flash standby to active wait register
0x00 0A86 | FBANKWAIT Flash read access wait state register
0x00 0A87 | FOTPWAIT OTP read access wait state register

¢ FPWR: Save power by putting Flash/OTP to ‘Sleep’ or ‘Standby’
mode; Flash will automatically enter active mode if a Flash/OTP
access is made

FSTATUS: Various status bits (e.g. PWR mode)

¢ FSTDBYWAIT, FACTIVEWAIT: Specify # of delay cycles during
wake-up from sleep to standby, and from standby to active,
respectively. The delay is needed to let the flash stabilize.
Leave these registers set to their default maximum value.

*

See the “TMS320x2833x System Control and Interrupts Reference Guide,”
SPRUFBO, for more information

10-12 C2000 Delfino Workshop - System Design

Flash Programming

Flash Programming

Flash Programming Basics

The DSP CPU itself performs the flash programming

The CPU executes Flash utility code from RAM that reads the
Flash data and writes it into the Flash

We need to get the Flash utility code and the Flash data into RAM

FLASH CPU

=== =->Emulator |- > JTAG [-=--=-=-=~~ N

—————— >| RS232 |- >

1
1
1
1
1
1
1
1
1
1
1
1
\4
3lls %)
Q o
z
1
1
v
ROM
Bootloader
T
1
1

TMS320F2833x

*

Flash Programming Basics

Sequence of steps for Flash programming:

Function
- Set all bits to zero, then to one
- Program selected bits with zero

Algorithm
1. Erase

2. Program
3. Verify

- Verify flash contents

Minimum Erase size is a sector (32Kw or 16Kw)
Minimum Program size is a bit!

Important not to lose power during erase step:
If CSM passwords happen to be all zeros, the
CSM will be permanently locked!

Chance of this happening is quite small! (Erase
step is performed sector by sector)

C2000 Delfino Workshop - System Design

10-13

Flash Programming

Flash Programming Utilities

¢ JTAG Emulator Based
+ Code Composer Studio on-chip Flash programmer
« BlackHawk Flash utilities (requires Blackhawk emulator)
« Elprotronic FlashPro2000
« Spectrum Digital SDFlash JTAG (requires SD emulator)
« Signum System Flash utilities (requires Signum emulator)
& SCI Serial Port Bootloader Based
+ Code-Skin (http://www.code-skin.com)
« Elprotronic FlashPro2000
¢ Production Test/Programming Equipment Based
+« BP Micro programmer
+ Data I/O programmer
¢ Build your own custom utility
+ Can use any of the ROM bootloader methods
« Can embed flash programming into your application
+ Flash APl algorithms provided by TI

* Tl web has links to all utilities (http:/Avww.ti.com/c2000)

CCS On-ClI 119) Flash Progral nmer
8 On-Chip Flash X
- O T -
bype filter text b = type Filter text =
L On-Chip Aash (TM5320C28xx) (3) L e T
On-chip Flash On-chip Flash =
Generic Debugger Options | —12¢k Cenfiguratiany Generic Debugger Options Key 5 (0xAES): | FFFF
CFL s OSCOLK (Mhz): | 30 GEL Files Key 4 (InAE4): | FFFF
C28xx Debugger Options = = C28xx Debugger Options
Memory Map CLKINDY: (2 v Memory Map (il el fadud
PLUCR YA |10 v Key 2(OxAE2): | FRFF
Key 1 (OxAELY: | FFFF
Flash Program Setting: i e
(5) Erase, Program, YeriFy
O Load RAM Only
Frequency Test
Erase Sector Selection
Seckor A: (0338000 - Dx33FFFF) Bedatergd) GPaMux1 M|
Sector B: (0x330000 - 0x337FFF) Pin: GPIOKD v
Sectar C; (0%328000 - 0x32FFFF)
Dy e [Start Frequency Test | [End Frequency Test
Sector E: (0x316000 - 0:31FFFF) e e
Sector F: (0x310000 - Dx317FFF)
Sector G: (0303000 - 0x30FFFF)
Sector Hi (05300000 - 0x307FFF) chacketn
Flash Checksum: |
OTP Checksum:
Cade Security Password L
Key 7 (OX0EP): | FFFF Calculate Checksum
Key 6 (OXAES): | FFFF
ot L !

10-14 C2000 Delfino Workshop - System Design

Code Security Module (CSM)

Code Security Module (CSM)
Code Security Module (CSM)

¢ Access to the following on-chip memory is restricted:
0x000A80 Flash Registers

0x008000[L0 SARAM (4Kw)
0x009000 [L1 SARAM (4Kw)
0x00A000 [L7 SARAM (4Kw)

0x00B000[L3 SARAM (4Kw)

> Dual
0x300000[™"F[ASH (256Kw) Mapped

128-Bit Password

0x340000
0x380400 OTP (IKW)

0x3F8000[___LO SARAM (4Kw)
0x3F9000[L1 SARAM (4Kw)
0X3FA000|[L2 SARAM (4Kw)

Ox3FBO00[L3 SARAM (4Kw)

¢ Datareads and writes from restricted memory are only
allowed for code running from restricted memory

& All other data read/write accesses are blocked:

JTAG emulator/debugger, ROM bootloader, code running in
external memory or unrestricted internal memory

CSM Password

0x300000
FLASH (256Kw) CSM Password
Locations (PWL)

Ox33FFF8[{55 Bit Password Ox33FFF8 - Ox33FFFF

¢ 128-bit user defined password is stored in Flash

¢ 128-bit KEY registers are used to lock and unlock
the device

+ Mapped in memory space 0x00 OAEO — 0x00 OAE7
+ Registers “EALLOW” protected

C2000 Delfino Workshop - System Design 10-15

Code Security Module (CSM)

CSM Registers

Key Registers —accessible by user; EALLOW protected

Address Name Description

0x00 OAEO |KEYO Low word of 128-bit Key register
0x00 OAE1|KEY1 2"d word of 128-bit Key register
0x00 OAE2 |[KEY2 3rd word of 128-bit Key register
0x00 OAE3 |KEY3 4t word of 128-bit Key register
0x00 OAE4 |KEY4 5th word of 128-bit Key register
0x00 OAE5 |KEY5 6th word of 128-bit Key register
0x00 OAE6 |KEY6 7th word of 128-bit Key register
0x00 OAE7 |KEY7 High word of 128-bit Key register

0x00 OAEF|[CSMSCR | CSM status and control register
PWL in memory — reserved for passwords only

Address Name Description

0x33 FFF8 | PWLO Low word of 128-bit password
0x33 FFF9 | PWL1 2nd word of 128-bit password
0x33 FFFA| PWL2 39 word of 128-bit password
0x33 FFFB| PWL3 4th word of 128-bit password
0x33 FFFC| PWL4 5t word of 128-bit password
0x33 FFFD| PWL5 6th word of 128-bit password
0x33 FFFE| PWL6 7th word of 128-bit password
0x33 FFFF | PWL7 High word of 128-bit password

Locking and Unlocking the CSM

¢ The CSM is always locked after reset

¢ To unlock the CSM:

+ Perform adummy read of each PWL
(passwords in the flash)

+ Write the correct password to each KEY
register

& Passwords are all OxFFFF on new devices

+ When passwords are all OxFFFF, only a read
of each PWL is required to unlock the device

+ The bootloader does these dummy reads and
hence unlocks devices that do not have
passwords programmed

10-16 C2000 Delfino Workshop - System Design

Code Security Module (CSM)

CSM Caveats

¢ Never program all the PWL’s as 0x0000
+ Doing so will permanently lock the CSM
¢ Flash addresses 0x33FF80 to Ox33FFF5,

inclusive, must be programmed to 0x0000 to
securely lock the CSM

¢ Remember that code running in unsecured
RAM cannot access data in secured memory

+ Don’t link the stack to secured RAM if you have
any code that runs from unsecured RAM

¢ Do not embed the passwords in your code!
+ Generally, the CSM is unlocked only for debug
+ Code Composer Studio can do the unlocking

Start

Flash device
secure after
reset or runtime

Do dummy reads of PWL
0x33 FFF8 — 0x33 FFFF

I

CSM Password Match Flow

>._ Yes .
ISaIFI’\(I)VSI:)_ Device permanently locked
No
ls PWL>>, Yes
all Fs?

No

b

Write password to KEY registers
0x00 OAEO — 0x00 OAE7

(EALLOW) protected

Device unlocked

User can access on-
chip secure memory

C2000 Delfino Workshop - System Design

10-17

Lab 10: Programming the Flash

Lab 10: Programming the Flash
» Objective

The objective of this lab is to program and execute code from the on-chip flash memory. The
TMS320F28335 device has been designed for standalone operation in an embedded system.
Using the on-chip flash eliminates the need for external non-volatile memory or a host processor
from which to bootload. In this lab, the steps required to properly configure the software for
execution from internal flash memory will be covered.

Lab 10: Programming the Flash

ePWM1 ADC DMA
TB Counter ADCINAO | RESULTO
Compare —.‘\j—
Action Qualifier
connector B . %
wire | ping

data

‘ memory
ePWM2 triggering ADC on period pong
match using SOCA trigger every

20.833 pis (48 kHz)

ePWM2 CPU runs
FIR data through
Filter filter during

DMA ISR
Objective:
¢ Program system into Flash 22 data
Memory S 3 memory
[a
¢ Learn use of CCS Flash Plug-in Display
¢ DO NOT PROGRAM PASSWORDS using CCS

» Procedure

Open the Project

1. A project named Lab10 has been created for this lab. Open the project by clicking on
Project - Import Existing CCS/CCE Eclipse Project. The “Import”
window will open then click Browse... next to the “Select root directory” box. Navigate
to: C:\C28x\Labs\Lab10\Project and click OK. Then click Finish to import
the project. All build options have been configured the same as the previous lab. The
files used in this lab are:

10-18 C2000 Delfino Workshop - System Design

Lab 10: Programming the Flash

Adc_9 10 12.c Flash.c
CodeStartBranch.asm Gpio.c

Defaultlsr_9 10 12a.c Lab.h

DelayUs.asm Lab_10.cmd

Dma.c Main_10.c
DSP2833x_Defaultlsr.h Passwords.asm
DSP2833x_GlobalVariableDefs.c PieCtrl 5 6 7 8 9 10.c
DSP2833x_Headers_nonBI0OS.cmd Pievect 5 6 7 8 9 10.c
ECap_7 8 9 10 12.c SysCtrl.c

EPwm_7 8 9 10 12.c Watchdog.c

Filter.c

Note: The Flash.c and Passwords.asm files will be added during the lab exercise.

Link Initialized Sections to Flash

Initialized sections, such as code and constants, must contain valid values at device power-up.
Stand-alone operation of an F28335 embedded system means that no emulator is available to
initialize the device RAM. Therefore, all initialized sections must be linked to the on-chip flash
memory.

Each initialized section actually has two addresses associated with it. First, it has a LOAD
address which is the address to which it gets loaded at load time (or at flash programming time).
Second, it has a RUN address which is the address from which the section is accessed at runtime.
The linker assigns both addresses to the section. Most initialized sections can have the same
LOAD and RUN address in the flash. However, some initialized sections need to be loaded to
flash, but then run from RAM. This is required, for example, if the contents of the section needs
to be modified at runtime by the code.

2. Open and inspect the linker command file Lab_10.cmd. Notice that a memory block
named FLASH_ABCDEFGH has been been created at origin = 0x300000, length =
O0x03FF80 on Page 0. This flash memory block length has been selected to avoid
conflicts with other required flash memory spaces. See the reference slide at the end of
this lab exercise for further details showing the address origins and lengths of the various
memory blocks used.

3. Edit Lab_10.cmd to link the following compiler sections to on-chip flash memory
block FLASH_ABCDEFGH:

Compiler Sections:

text .cinit .const .econst .pinit .switch

4. InLab_10.cmd notice that the section named “IQmath” is an initialized section that
needs to load to and run from flash. Previously the “IQmath” section was linked to
LO123SARAM. Edit Lab_10.cmd so that this section is now linked to
FLASH_ABCDEFGH. Save your work and close the file.

C2000 Delfino Workshop - System Design 10-19

Lab 10:

Programming the Flash

Copying Interrupt Vectors from Flash to RAM

The interrupt vectors must be located in on-chip flash memory and at power-up needs to be
copied to the PIE RAM as part of the device initialization procedure. The code that performs this
copy is located in InitPieCtrl(). The C-compiler runtime support library contains a memory copy
function called memcpy() which will be used to perform the copy.

function used to initialize (copy) the PIE vectors. At the end of the file a structure is used
to enable the PIE.

Initializing the Flash Control Registers

The initialization code for the flash control registers cannot execute from the flash memory (since
it is changing the flash configuration!). Therefore, the initialization function for the flash control
registers must be copied from flash (load address) to RAM (run address) at runtime. The memory
copy function memcpy() will again be used to perform the copy. The initialization code for the
flash control registers InitFlash() is located in the Flash. c file.

6. Add Flash.c to the project.

7. Open and inspect Flash.c. The C compiler CODE_SECTION pragma is used to place
the InitFlash() function into a linkable section named “secureRamFuncs”.

8. The “secureRamFuncs” section will be linked using the user linker command file
Lab_10.cmd. Open and inspect Lab_10.cmd. The “secureRamFuncs” will load
to flash (load address) but will run from LO123SARAM (run address). Also notice that
the linker has been asked to generate symbols for the load start, load end, and run start
addresses.

While not a requirement from a MCU hardware or development tools perspective (since
the C28x MCU has a unified memory architecture), historical convention is to link code
to program memory space and data to data memory space. Therefore, notice that for the
LO123SARAM memory we are linking “secureRamFuncs” to, we are specifiying
“PAGE = 0” (which is program memory).

9. Open and inspect Main_10.c. Notice that the memory copy function memcpy() is
being used to copy the section “secureRamFuncs”, which contains the initialization
function for the flash control registers.

10. Add a line of code in main() to call the InitFlash() function. There are no passed
parameters or return values. You just type

InitFlash();

at the desired spot inmain().

10-20

C2000 Delfino Workshop - System Design

Lab 10: Programming the Flash

Code Security Module and Passwords

The CSM module provides protection against unwanted copying (i.e. pirating!) of your code from
flash, OTP memory, and the LO, L1, L2 and L3 RAM blocks. The CSM uses a 128-bit password
made up of 8 individual 16-bit words. They are located in flash at addresses Ox33FFF8 to
O0x33FFFF. During this lab, dummy passwords of OxFFFF will be used — therefore only dummy
reads of the password locations are needed to unsecure the CSM. DO NOT PROGRAM ANY
REAL PASSWORDS INTO THE DEVICE. After development, real passwords are typically
placed in the password locations to protect your code. We will not be using real passwords in the
workshop.

The CSM module also requires programming values of 0x0000 into flash addresses 0x33FF80
through 0x33FFF5 in order to properly secure the CSM. Both tasks will be accomplished using a
simple assembly language file Passwords.asm.

11. Add Passwords.asm to the project.

12. Open and inspect Passwords.asm. This file specifies the desired password values
(DO NOT CHANGE THE VALUES FROM 0xFFFF) and places them in an initialized
section named “passwords”. It also creates an initialized section named “csm_rsvd”
which contains all 0x0000 values for locations 0x33FF80 to 0x33FFF5 (length of 0x76).

13. Open Lab_10.cmd and notice that the initialized sections for “passwords” and
“csm_rsvd” are linked to memories named PASSWORDS and CSM_RSVD,
respectively.

Executing from Flash after Reset

The F28335 device contains a ROM bootloader that will transfer code execution to the flash after
reset. When the boot mode selection pins are set for “Jump to Flash” mode, the bootloader will
branch to the instruction located at address 0x33FFF6 in the flash. An instruction that branches
to the beginning of your program needs to be placed at this address. Note that the CSM
passwords begin at address 0Ox33FFF8. There are exactly two words available to hold this branch
instruction, and not coincidentally, a long branch instruction “LB” in assembly code occupies
exactly two words. Generally, the branch instruction will branch to the start of the C-
environment initialization routine located in the C-compiler runtime support library. The entry
symbol for this routine is _c_int00. Recall that C code cannot be executed until this setup routine
is run. Therefore, assembly code must be used for the branch. We are using the assembly code
file named CodeStartBranch.asm.

14. Open and inspect CodeStartBranch.asm. This file creates an initialized section
named “codestart” that contains a long branch to the C-environment setup routine.
This section needs to be linked to a block of memory named BEGIN_FLASH.

15. In the earlier lab exercises, the section “codestart” was directed to the memory
named BEGIN_MO. Edit Lab_10.cmd so that the section “codestart” will be
directed to BEGIN_FLASH. Save your work and close the opened files.

16. The controlCARD or Docking Station needs to be configured for “Jump to Flash” boot
mode. Move the “2833x Boot Mode” control CARD switch SW2 positions 1, 2, 3 and 4

C2000 Delfino Workshop - System Design 10-21

Lab 10: Programming the Flash

to the “1 — on” position (all switches up) or the Docking Station jumpers 84, 85, 86 and
87 to the “1” position (all jumpers to the left side) to accomplish this. Details of the
jumper positions can be found in Appendix A. These jumpers control the pullup/down
resistor on the GP1084, GP1085, GP1086 and GP1087 pins, which are the pins sampled
by the bootloader to determine the boot mode. (For additional information on
configuring the “Jump to Flash” boot mode see the TMS320x2833x Boot ROM
Reference Guide).

Build — Lab.out

17.

Click the “Bui 1d” button to generate the Lab . out file to be used with the CCS Flash
Programmer. Check for errors in the Problems window.

CCS On-Chip Flash Programmer

In CCS (version 4.x) the on-chip flash programmer is integrated into the debugger. When the
program is loaded CCS will automatically determine which sections reside in flash memory based
on the linker command file. CCS will then program these sections into the on-chip flash memory.
Additionally, in order to effectively debug with CCS, the symbolic debug information (e.g.,
symbol and label addresses, source file links, etc.) will automatically load so that CCS knows
where everything is in your code.

Clicking the “Debug” button in the C/C++ Perspective will automatically launch the
debugger, connect to the target, and program the flash memory in a single step.

18.

19.

Program the flash memory by clicking the “Debug” button (green bug). As soon as the
“Progress Information™ box opens, if needed select “Detai 1s” in order to watch the
programming operation and status. After successfully programming the flash memory
the “Progress Information” box will close.

Flash programming options are configured with the “On-Chip Flash” control panel.
Open the control panel by clicking:

Tools - On-Chip Flash

Scroll the control panel and notice the various options that can be selected. You will see
that specific actions such as “Erase Flash” can be performed.

The CCS on-chip flash programmer was automatically configured to use the Delfino™
ControlCARD on-board 30 MHz oscillator as the device clock during programming.
Notice the “Clock Configuration” settings has the OSCCLK set to 30 MHz, the DIVSEL
set to /2, and the PLLCR value set to 10. Recall that the PLL is divided by two, which
gives a SYSCLKOUT of 150 MHz.

The flash programmer should be set for “Erase, Program, Verify” and all boxes in the
“Erase Sector Selection” should be checked. We want to erase all the flash sectors.

We will not be using the on-chip flash programmer to program the “Code Security
Password”. Do not modify the Code Security Password fields. They should remain as
all OXFFFF.

10 -22

C2000 Delfino Workshop - System Design

Lab 10: Programming the Flash

20. Close the “On-Chip Flash” control panel by clicking the X on the tab.

Running the Code — Using CCS

21. Reset the CPU. The program counter should now be at address Ox3FF9CE in the
“Disassembly” window, which is the start of the bootloader in the Boot ROM.

22. Single-Step by using the <F5> key (or you can use the Step Into button on the
horizontal toolbar) through the bootloader code until you arrive at the beginning of the
codestart section in the CodeStartBranch.asm file. (Be patient, it will take about
125 single-steps). Notice that we have placed some code in CodeStartBranch.asm
to give an option to first disable the watchdog, if selected.

23. Step a few more times until you reach the start of the C-compiler initialization routine at
the symbol _c_int0QO0.

24. Now do Target -> Go Main. The code should stop at the beginning of your
main() routine. If you got to that point succesfully, it confirms that the flash has been
programmed properly, that the bootloader is properly configured for jump to flash mode,
and that the codestart section has been linked to the proper address.

25. You can now RUN the CPU, and you should observe the LED on the Control CARD
blinking. Try resetting the CPU and hitting RUN (without doing all the stepping and the
Go Main procedure). The LED should be blinking again.

26. Halt the CPU.

Terminate Debug Session and Close Project

27. Terminate the active debug session using the Terminate Al button. This will close
the debugger and return CCS to the “C/C++ Perspective” view.

28. Next, close the project by right-clicking on Lab10 in the C/C++ Projects window
and select Close Project.

Running the Code — Stand-alone Operation (No Emulator)
29. Close Code Composer Studio.

30. Disconnect the USB cable (emulator) from the Docking Station (i.e. remove power from
the ControlCARD).

31. Re-connect the USB cable to the Docking Station to power the Control CARD. The LED
should be blinking, showing that the code is now running from flash memory.

Return Boot Mode Jumpers Back to Default Positions

32. Remove the power to the Docking Station by disconnecting the USB cable.

C2000 Delfino Workshop - System Design 10-23

Lab 10: Programming the Flash

33. Return the settings of the boot mode switches or jumpers back to the default positions
“Jump to MOSARAM” boot mode as shown in the table below (see Appendix A for

jumper position details):

Position 1/ Position 2 / Position 3/ Position 4 /

Jumper 84 Jumper 85 Jumper 86 Jumper 87 MO SARAM

(GP10-84) (GP10-85) (GP10-86) (GP10-87) Boot Mode
Down -0 Down -0 Up-1 Down -0 controlCARD
Right - 0 Right-0 Left—1 Right-0 Docking Station

End of Exercise

10-24 C2000 Delfino Workshop - System Design

Lab 10: Programming the Flash

Lab 10 Reference: Programming the Flash

Flash Memory Section Blocks
origin =
0x30 0000
FLASH
length = Ox3FF80
page =0 Lab_lO.cmd
SECTIONS
{
0x33 FF80 CSM_RSVD codestart :> BEGIN_FLASH, PAGE=0
length = 0x76 passwords :> PASSWORDS, PAGE=0
page =0 csm_rsvd > CSM_RSVD, PAGE=0
Ox33 FFF6| BEGIN_FLASH }
length = 0x2 __//F
page =0
Ox33 FFF8| PASSWORDS
length = 0x8
page =0

Startup Sequence from Flash Memory
0x30 0000 |) o) onekw) —C_Int00 | 152800 ml.lib”
— 0x337FF6 [AR
________ C_Int00 —— @) “User” code sections
Passwords (8w) main ()
\ {
\\
3 AN
® kY o
Ox3F FOO0 | Boot ROM (8Kw) N }
Boot Code AN
0X3F FOCE .
\
{SCAN GPIO} @ N
BROM vector (32w) \\
5 0x3F FFCO Ox3F FOCE ——
RESET

C2000 Delfino Workshop - System Design 10-25

Lab 10: Programming the Flash

10 - 26 C2000 Delfino Workshop - System Design

Communications

Introduction

The TMS320C28x contains features that allow several methods of communication and data
exchange between the C28x and other devices. Many of the most commonly used
communications techniques are presented in this module.

The intent of this module is not to give exhaustive design details of the communication
peripherals, but rather to provide an overview of the features and capabilities. Once these
features and capabilities are understood, additional information can be obtained from various
resources such as documentation, as needed. This module will cover the basic operation of the
communication peripherals, as well as some basic terms and how they work.

Learning Objectives

Learning Objectives

Serial Peripheral Interface (SPI)
Serial Communication Interface (SCI)
Multichannel Buffered Serial Port (McBSP)

Inter-Integrated Circuit (12C)

* 6 6 o o

Enhanced Controller Area Network (eCAN)

Note: Up to 1 SPI module (A), 3 SCI modules (A/B/C), 2 McBSP modules (A/B), 1 12C
module (A), and 2 eCAN modules (A/B) are available on the F2833x devices.

C2000 Delfino Workshop - Communications 11-1

Module Topics

Module Topics

COMIMIUNICATIONS ...ttt bbb bbb bbbt bbbt b bbb 11-1
T LU T=N o ot 11-2
ComMUNICALIONS TECANMIGUESeveiviieiiiteieeie sttt sttt sttt sb et sn et sne e 11-3
Serial Peripheral INtErface (SPI) ..o 11-4

SPIREGISIEIS ...ttt bbbt bbbt bbbt b bbbt bbb 11-7
SPI SUMMAIY ..ttt ettt b e bt e bt e st e h e e b e s b e e sb e e nbe e ebeeseeene e saeenbeenneenns 11-8
Serial Communications INtErface (SCI) ... e 11-9
MuUltiprocessor Wake-UpP MOGES..........ooiiiiiiiii ettt bbb 11-11
SO IR (=T 113 (=1 £SO 11-14
108 BTN 1 0T LY PP PP PPRTSR 11-15
Multichannel Buffered Serial POrt (MCBSP)coooiiiiiiiie st 11-16
Inter-Integrated CIrCUIL (I2C)ciiiiieierere sttt st ste s e eneesaennesrennens 11-19
12C Operating Modes and Data FOrMALScccviverieiireie et 11-20
12C SUMIMENY ...t et bbbt bbbt e e nennens 11-21
Enhanced Controller Area Network (BCAN)c.ciiiiiiiiieer e 11-22
CAN BUS QN0 NOGEoeeeeieicieeiieee ettt se et st sbeeteeneenee e e beneesneneeans 11-23
PrINCIPIES OF OPEIAtIONoiviitiiiiiieiee bbbttt se bt sbe e e 11-24
Message Format and BIOCK DIAQIaM..........ccuiiiiiiiiiiieie sttt 11-25
ECAN SUMMAIY ...ttt b e bt bt s bt b b e sb e e s bt e sbe e nbeess e e aeeebeeebeebeanbeenbenseenbeen 11-26

11-2

C2000 Delfino Workshop - Communications

Communications Techniques

Communications Techniques

Several methods of implementing a TMS320C28x communications system are possible. The
method selected for a particular design should reflect the method that meets the required data rate
at the lowest cost. Various categories of interface are available and are summarized in the
learning objective slide. Each will be described in this module.

Synchronous vs. Asynchronous

¢ Synchronous ¢ Asynchronous
+ Short distances (on- + longer distances
board) + Lower datarate (= 1/8 of
« High data rate SPI)

. Explicit clock " Impags! clock (clk/data

« Economijcal with
reasonable performance

C28x C28x

Port U2 Port_D_

Destination

PCB PCB

Serial ports provide a simple, hardware-efficient means of high-level communication between
devices. Like the GPIO pins, they may be used in stand-alone or multiprocessing systems.

In a multiprocessing system, they are an excellent choice when both devices have an available
serial port and the data rate requirement is relatively low. Serial interface is even more desirable
when the devices are physically distant from each other because the inherently low number of
wires provides a simpler interconnection.

Serial ports require separate lines to implement, and they do not interfere in any way with the data
and address lines of the processor. The only overhead they require is to read/write new words
from/to the ports as each word is received/transmitted. This process can be performed as a short
interrupt service routine under hardware control, requiring only a few cycles to maintain.

The C28x family of devices have both synchronous and asynchronous serial ports. Detailed
features and operation will be described next.

C2000 Delfino Workshop - Communications 11-3

Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI)

The SPI module is a synchronous serial 1/0O port that shifts a serial bit stream of variable length
and data rate between the C28x and other peripheral devices. During data transfers, one SPI
device must be configured as the transfer MASTER, and all other devices configured as
SLAVES. The master drives the transfer clock signal for all SLAVES on the bus. SPI
communications can be implemented in any of three different modes:

e MASTER sends data, SLAVES send dummy data
¢ MASTER sends data, one SLAVE sends data
e MASTER sends dummy data, one SLAVE sends data

In its simplest form, the SPI can be thought of as a programmable shift register. Data is shifted in
and out of the SPI through the SPIDAT register. Data to be transmitted is written directly to the
SPIDAT register, and received data is latched into the SPIBUF register for reading by the CPU.
This allows for double-buffered receive operation, in that the CPU need not read the current
received data from SPIBUF before a new receive operation can be started. However, the CPU
must read SPIBUF before the new operation is complete of a receiver overrun error will occur. In
addition, double-buffered transmit is not supported: the current transmission must be complete
before the next data character is written to SPIDAT or the current transmission will be corrupted.

The Master can initiate a data transfer at any time because it controls the SPICLK signal. The
software, however, determines how the Master detects when the Slave is ready to broadcast.

SPI Data Flow

¢ Simultaneous transmits and receive
¢ SPI Master provides the clock signal

SPI Device #1 - Master SPI Device #2 - Slave
shift _ ihlf_t _
| SPI Shift Register | | SPI Shift Register |
clock

11-4

C2000 Delfino Workshop - Communications

Serial Peripheral Interface (SPI)

SPI Block Diagram

C28x - SPI Master Mode Shown

SPISIMO

RX FIFO_0

RX FIFO_15
SPIRXBUF.15-0

e SP|DAfT15-o =5 SPISOMI
-

SPITXBUF.15-0
TXFIFO_O
TXFIFO_15
LSPCLK baud clock clock SPICLK
rate polarity phase

SPI Transmit / Receive Sequence

1.

2.

Slave writes data to be sent to its shift register (SPIDAT)
Master writes data to be sent to its shift register (SPIDAT or SPITXBUF)
Completing Step 2 automatically starts SPICLK signal of the Master

MSB of the Master’s shift register (SPIDAT) is shifted out, and LSB of the Slave’s shift
register (SPIDAT) is loaded

Step 4 is repeated until specified number of bits are transmitted
SPIDAT register is copied to SPIRXBUF register

SPI'INT Flag bitissetto 1

An interrupt is asserted if SPI INT ENA bitissetto 1

If data is in SPITXBUF (either Slave or Master), it is loaded into SPIDAT and transmission
starts again as soon as the Master’s SPIDAT is loaded

C2000 Delfino Workshop - Communications 11-5

Serial Peripheral Interface (SPI)

Since data is shifted out of the SPIDAT register MSB first, transmission characters of less than 16
bits must be left-justified by the CPU software prior to be written to SPIDAT.

Received data is shifted into SPIDAT from the left, MSB first. However, the entire sixteen bits
of SPIDAT is copied into SPIBUF after the character transmission is complete such that received
characters of less than 16 bits will be right-justified in SPIBUF. The non-utilized higher
significance bits must be masked-off by the CPU software when it interprets the character. For
example, a 9 bit character transmission would require masking-off the 7 MSB’s.

SPI Data Character Justification

¢ Programmable data
length of 1 to 16 bits

¢ Transmitted data of less SPIDAT - Processor #1
_thatr]f_16db|ts must be left 1100100 LXXXXXXX X
justifie

+ MSB transmitted first

¢ Received data of less
than 16 bits are right
justified SPIDAT - Processor #2

XXXXXXXX11001001

¢ User software must
mask-off unused MSB’s

11-6

C2000 Delfino Workshop - Communications

Serial Peripheral Interface (SPI)

SPI Registers

SPI Baud Rate Register

SpixRegs.SPIBRR

Need to set this only when in master mode!

15-7 6-0
reserved SPIBIT RATE
__LSPCLK _ gpIBRR =310 127
(SPIBRR + 1)
SPICLK signal =
LSP—fLK, SPIBRR =0, 1, or 2

Baud Rate Determination: The Master specifies the communication baud rate using its baud rate
register (SPIBRR.6-0):

e For SPIBRR =3t0 127: SPI Baud Rate = ﬂ bits/sec
(SPIBRR +1)
e ForSPIBRR=0,1,0or2: SPIBaud Rate = % bits/sec

From the above equations, one can compute
Maximum data rate = 25 Mbps @ 100 MHz

Character Length Determination: The Master and Slave must be configured for the same
transmission character length. This is done with bits 0, 1, 2 and 3 of the configuration control
register (SPICCR.3-0). These four bits produce a binary number, from which the character length
is computed as binary + 1 (e.g. SPICCR.3-0 = 0010 gives a character length of 3).

C2000 Delfino Workshop - Communications 11-7

Serial Peripheral Interface (SPI)

Select SPI Registers
¢ Configuration Control spixregs.spiccr

+ Reset, Clock Polarity, Loopback, Character Length

¢ Operation Control spixregs.spicTL

« Overrun Interrupt Enable, Clock Phase, Interrupt Enable
+ Master / Slave Transmit enable

& Status spixregs.spisT
+« RX Overrun Flag, Interrupt Flag, TX Buffer Full Flag

¢ FIFO Transmit spixregs.sPiFFTx

FIFO Receive SpixRegs.SPIFFRX

FIFO Enable, FIFO Reset

FIFO Over-flow flag, Over-flow Clear

Number of Words in FIFO (FIFO Status)

FIFO Interrupt Enable, Interrupt Status, Interrupt Clear
FIFO Interrupt Level (Number of Words in FIFO)

* * * * *

Note: refer to the reference guide for a complete listing of registers

SPI Summary

SPI Summary

¢ Synchronous serial communications

+ Two wire transmit or receive (half duplex)

+ Three wire transmit and receive (full duplex)
¢ Software configurable as master or slave

+ C28x provides clock signal in master mode
¢ Data length programmable from 1-16 bits

¢ 125 different programmable baud rates

11-8 C2000 Delfino Workshop - Communications

Serial Communications Interface (SCI)

Serial Communications Interface (SCI)

The SCI module is a serial 1/0O port that permits Asynchronous communication between the C28x
and other peripheral devices. The SCI transmit and receive registers are both double-buffered to
prevent data collisions and allow for efficient CPU usage. In addition, the C28x SCl is a full
duplex interface which provides for simultaneous data transmit and receive. Parity checking and

data formatting is also designed to be done by the port hardware, further reducing software
overhead.

SCI Pin Connections

(Full Duplex Shown)

TX FIFO_0

TX FIFO_15

Transmitter-data
buffer register

TX FIFO_0

TX FIFO_15

Transmitter-data
buffer register

Transmitter SCITXD SCITXD Transmitter
shift register ﬁ) shift register
Receiver SCIRXD SCIRXD Receiver
shift register shift register

Receiver-data Receiver-data
buffer register buffer register
RX FIFO_0O RX FIFO_0
RX FIFO_15 RX FIFO_15
SCI Device #1 SCI Device #2

C2000 Delfino Workshop - Communications

11-9

Serial Communications Interface (SCI)

SCIl Data Format

NRZ (non-return to zero) format

Addr/|__ ' '
Start | LSB 2 3 4 5 6 7 MSB Data Parity [Stop 1 Stop 2

This bit present only in Address-bit mode A

Communications Control Register (ScixRegs.SCICCR)

7 6 5 4 3 2 1 0
Stop Even/Odd| Parit Loopback| Addr/idle SCI SCl SCl
Bits Parity Enable Enable Mode Char2 Charl Char0
| | ~
0 =1 Stop bit 0 =Disabled O0=Idle-linemode # of databits = (binary +1)
1 =2 Stop bits 1 =Enabled 1= Addr-bit mode e.g.110b gives 7 data bits
0 =0dd 0 = Disabled
1 =Even 1=Enabled

The basic unit of data is called a character and is 1 to 8 bits in length. Each character of data is
formatted with a start bit, 1 or 2 stop bits, an optional parity bit, and an optional address/data bit.
A character of data along with its formatting bits is called a frame. Frames are organized into
groups called blocks. If more than two serial ports exist on the SCI bus, a block of data will
usually begin with an address frame which specifies the destination port of the data as determined
by the user’s protocol.

The start bit is a low bit at the beginning of each frame which marks the beginning of a frame.
The SCI uses a NRZ (Non-Return-to-Zero) format which means that in an inactive state the
SCIRX and SCITX lines will be held high. Peripherals are expected to pull the SCIRX and
SCITX lines to a high level when they are not receiving or transmitting on their respective lines.

When configuring the SCICCR, the SCI port should first be held in an inactive state. This
is done using the SW RESET bit of the SCI Control Register 1 (SCICTLL1.5). Writing a 0 to this
bit initializes and holds the SCI state machines and operating flags at their reset condition. The
SCICCR can then be configured. Afterwards, re-enable the SCI port by writing a 1 to the SW
RESET bit. At system reset, the SW RESET bit equals 0.

11-10 C2000 Delfino Workshop - Communications

Serial Communications Interface (SCI)

SCI Data Timing

o Start bit valid if 4 consecutive SCICLK periods of zero bits after falling edge
e Majority vote taken on 4th, 5t and 6t SCICLK cycles

Majority

\ Vote /
SCICLK

Internal
();'123456781234567812
1

sowo [4444 bod |

Start Bit LSB of Data

' Falling Edge Detected

Note: 8 SCICLK periods per data bit

Multiprocessor Wake-Up Modes

Multiprocessor Wake-Up Modes

¢ Allows numerous processors to be hooked
up to the bus, but transmission occurs
between only two of them

¢ Idle-line or Address-bit modes

¢ Sequence of Operation

1. Potential receivers set SLEEP = 1, which disables RXINT
except when an address frame is received

2. All transmissions begin with an address frame

3. Incoming address frame temporarily wakes up all SCIs on bus
4. CPUs compare incoming SCI address to their SCI address

5. Process following data frames only if address matches

C2000 Delfino Workshop - Communications

11-11

Serial Communications Interface (SCI)

Idle-Line Wake-Up Mode

¢ Idle time separates blocks of frames

¢ Receiver wakes up when SCIRXD high for 10 or
more bit periods

¢ Two transmit address methods
+ Deliberate software delay of 10 or more bits

+ Set TXWAKE bit to automatically leave exactly
11 idle bits

Idle periods

of less than Block of Frames
0bits N\~

SCIRXD/ """ 725" o P

} LastDatal S |ST[Adar FS;‘STl Data_|sp|sT| LastDam]| sp !STL _Addr__iSP:

SCITXD "~
v/ \ v / \ v / _v_/

Idle Address frame 1stdata frame Idle

Period i Period
10bits Johows 100 10 bits
or greater °"9 or greater

Address-Bit Wake-Up Mode

¢ All frames contain an extra address bit
¢ Receiver wakes up when address bit detected

¢ Automatic setting of Addr/Data bit in frame by
setting TXWAKE = 1 prior to writing address to
SCITXBUF

Block of Frames

SCIRXD/ \
scitxp et T E——— = L —— e e T e

\ / \ /
V
First frame within 1st data frame

no additional

Idle Period block is Address. idle bits needed
length of no ADDR/DATA beyond stop bits
S|gn|f|cance bit set to 1

11-12 C2000 Delfino Workshop - Communications

Serial Communications Interface (SCI)

The SCI interrupt logic generates interrupt flags when it receives or transmits a complete
character as determined by the SCI character length. This provides a convenient and efficient
way of timing and controlling the operation of the SCI transmitter and receiver. The interrupt
flag for the transmitter is TXRDY (SCICTL2.7), and for the receiver RXRDY (SCIRXST.6).
TXRDY is set when a character is transferred to TXSHF and SCITXBUF is ready to receive the
next character. In addition, when both the SCIBUF and TXSHF registers are empty, the TX
EMPTY flag (SCICTL2.6) is set. When a new character has been received and shifted into
SCIRXBUF, the RXRDY flag is set. In addition, the BRKDT flag is set if a break condition
occurs. A break condition is where the SCIRXD line remains continuously low for at least ten
bits, beginning after a missing stop bit. Each of the above flags can be polled by the CPU to
control SCI operations, or interrupts associated with the flags can be enabled by setting the
RX/BK INT ENA (SCICTL2.1) and/or the TX INT ENA (SCICTL2.0) bits active high.

Additional flag and interrupt capability exists for other receiver errors. The RX ERROR flag is
the logical OR of the break detect (BRKDT), framing error (FE), receiver overrun (OE), and
parity error (PE) bits. RX ERROR high indicates that at least one of these four errors has
occurred during transmission. This will also send an interrupt request to the CPU if the RX ERR
INT ENA (SCICTLL1.6) bit is set.

C2000 Delfino Workshop - Communications 11-13

Serial Communications Interface (SCI)

SCI Registers

SCI Baud Rate Registers

_LSPCLK _ BRR=1 1065535
(BRR + 1) x 8
SCIl baud rate =
_LSPCLK BRrRr=0
16

Baud-Select MShyte Register (ScixRegs.SCIHBAUD)

7 6 5 4 3 2 1 0
B&US%S BAUD14 | BAUD13 | BAUD12 | BAUD11 | BAUD10 | BAUDY | BAUDS

Baud-Select LSbyte Register (ScixRegs.SCILBAUD)

7 6 5 4 3 2 1 0
BAUDO
BAUD7 [BAUD6 | BAUD5 | BAUD4 | BAUD3 | BAUD2 | BAUD1 (LSB)

Baud Rate Determination: The values in the baud-select registers (SCIHBAUD and SCILBAUD)
concatenate to form a 16 bit number that specifies the baud rate for the SCI.

e For BRR =1 to 65535: SCI Baud Rate = ﬂ bits/sec
(BRR+1)x8
e ForBRR=0: SCI Baud Rate = % bits/sec

Max data rate = 6.25 Mbps @ 100 MHz

Note that the CLKOUT for the SCI module is one-half the CPU clock rate.

11-14 C2000 Delfino Workshop - Communications

Serial Communications Interface (SCI)

Select SCI Registers
& Control 1 scixregs.scicti1

« Reset, Transmitter / Receiver Enable
+« TX Wake-up, Sleep, RX Error Interrupt Enable

¢ Control 2 ScixRegs.SPICTL2
« TX Buffer Full / Empty Flag, TX Ready Interrupt Enable
+« RXBreak Interrupt Enable

¢ Receiver Status scixregs.SCIRXST

« Error Flag, Ready, Flag Break-Detect Flag, Framin?__Error
Detect Flag, Parity Error Flag, RX Wake-up Detect Flag

& FIFO Transmit scixregs.sciFrTx

FIFO Recelve scixregs.sCIFFRX

FIFO Enable, FIFO Reset

FIFO Over-flow flag, Over-flow Clear

Number of Words in FIFO (FIFO Status)

FIFO Interrupt Enable, Interrupt Status, Interrupt Clear
FIFO Interrupt Level (Number of Words in FIFO)

* * * * *

Note: refer to the reference guide for a complete listing of registers

SCI Summary

SCI Summary

*

Asynchronous communications format
¢ 65,000+ different programmable baud rates

¢ Two wake-up multiprocessor modes
« Idle-linewake-up & Address-bit wake-up

¢ Programmable data word format
« 1to 8 bit data word length

+ 1or 2stop bits
« even/odd/no parity

Error Detection Flags
« Parity error; Framing error; Overrun error; Break detection

Transmit FIFO and receive FIFO
Individual interrupts for transmit and receive

L 2R 4

C2000 Delfino Workshop - Communications 11-15

Multichannel Buffered Serial Port (McBSP)

Multichannel Buffered Serial Port (McBSP)

McBSP Block Diagram

-4

Peripheral / DMA Bus |

Peripheral / DMA Bus > > MFSXx
J}q @ —> MCLKXx
| Dxr2TxBuffer | | DxriTxBuffer |
Gl 3l
| XSR2 XSR1 et VDX X
| RSR2 [RSR1 o MDRXx
16 6
| RBR2 Register | | RBR1 Register |
| DRR2RXBuffer | | DRRiRXBuffer | f—>MCLKRXx
> MFSRXx

Definition: Bit and Word

ek U UUYULDUULUUL L
FS B
o (al(@0) | (b08/b8)b4)b3 b 6160
b < Word >
Bit

¢ “Bit” - one data bit per serial clock period

¢ “Word” or “channel” contains
number of bits (8, 12, 16, 20, 24, 32)

11-16

C2000 Delfino Workshop - Communications

Multichannel Buffered Serial Port (McBSP)

FS

Definition: Word and Frame

(WBYWT) (wo\/\w1\/\w2\/w3\/\w4\/@(w6\/\w7\/
> e Qe —
Word

¢ “Frame” - contains one or multiple words

¢ Number of words per frame: 1-128

Frame

Multi-Channel Selection

TDM Bit Stream

elulvieoNe!

- 0 —{ch31| | chi | cho |

— 1—{Ch31| - [ch1 [cho | —

TOnVWO =

Multi-channel Control Reg

. ChO0-0
Multi-channel
- Cho-1
Transmit
@ Ch5-0
Receive Ch5-1
only selected
Channels Ch27-0
Ch27-1

& Multi-channel mode controlled primarily viatwo registers:

Rec/Xmt Channel Enable Regs

MCR |

RIXCER (A-H)

(enables Mc-mode)

(enable/disable channels)

& Up to 128 channels can be enabled/disabled

& Allows multiple channels (words) to be independently selected for transmit
and receive (e.g. only enable Ch0, 5, 27 for receive, then process via CPU)

& The McBSP keeps time sync with all channels, but only “listens” or “talks”
if the specific channel is enabled (reduces processing/bus overhead)

C2000 Delfino Workshop - Communications

11-17

Multichannel Buffered Serial Port (McBSP)

McBSP Summary

¢ Independent clocking and framing for
transmit and receive

Internal or external clock and frame sync
Data size of 8, 12, 16, 20, 24, or 32 bits

TDM mode - up to 128 channels
+ Used for T1/E1 interfacing

u-law and A-law companding
SPI mode

Direct Interface to many codecs
Can be serviced by the DMA

* & o

* 6 ¢ o

11-18 C2000 Delfino Workshop - Communications

Inter-Integrated Circuit (12C)

Inter-Integrated Circuit (12C)

L 2R JER 2R JER JER 2R 2R 2

VDD

Pull-up
Resistors

Serial Data (SDA)

28xx
2C

Inter-Integrated Circuit (12C)

Philips 12C-bus specification compliant, version 2.1
Data transfer rate from 10 kbps up to 400 kbps

Each device can be considered as a Master or Slave
Master initiates data transfer and generates clock signal
Device addressed by Master is considered a Slave
Multi-Master mode supported
Standard Mode — send exactly n data values (specified in register)

Repeat Mode — keep sending data values (use software to initiate a
stop or new start condition)

12C
Controller

Serial Clock (SCL)

2C 28xx
EPROM 12C

12C Block Diagram

SDA

SCL

I2CXSR < I2CDXR
1
TXFIFO
RX FIFO
1
I2CRSR I2CDRR
Clock
Circuits

C2000 Delfino Workshop - Communications

11-19

Inter-Integrated Circuit (12C)

I2C Operating Modes and Data Formats

|12C Operating Modes

Operating Mode Description

Slave-receiver mode Module is a slave and receives data from a master
(all slaves begin in this mode)

Slave-transmitter mode Module is a slave and transmits datato a master
(can only be entered from slave-receiver mode)

Master-receiver mode Module is amaster and receives data from a slave
(can only be entered from master-transmit mode)

Master-transmitter mode | Module is a master and transmits to a slave

(all masters begin in this mode)

|2C Serial Data Formats

7-Bit Addressing Format

1 7 1 1 n 1 n 1 1
[s] slave Address [Rw[ACK] Daa [ack| Dam [AcK|P]

10-Bit Addressing Format

1 7 1 1 8 1 n 1 1
|s | 11110AA |RNV|ACK| AAAAAAAA |ACK| Data |ACK| P |

Free Data Format

1 1 n 1 n 1
[s] Data |ACK] Data | Ack| Data [Ack]| P |

R/W = 0 — master writes data to addressed slave

R/W = 1 — master reads data from the slave

n =1 to 8 hits

S = Start (high-to-low transition on SDA while SCL is high)
P = Stop (low-to-high transition on SDA while SCL is high)

11-20 C2000 Delfino Workshop - Communications

Inter-Integrated Circuit (12C)

12C Arbitration

¢ Arbitration procedure invoked if two or more master-
transmitters simultaneously start transmission

« Procedure uses data presented on serial data bus (SDA) by
competing transmitters

+ First master-transmitter which drives SDA high is overruled
by another master-transmitter that drives SDA low

« Procedure gives priority to the data stream with the lowest
binary value

SCL
I_, | | | | Device #1 lost arbitration
e and switches to slave-

Data from _|_,_ receiver mode
device #1 140 __,/

Data from Device #2

device #2 T IT 0 Ow drives SDA
soa” | J1io of1lof

12C Summary

I2C Summary

¢ Compliance with Philips 12C-bus
specification (version 2.1)

7-bit and 10-bit addressing modes
Configurable 1 to 8 bit data words

¢ Data transfer rate from 10 kbps up to
400 kbps

¢ Transmit FIFO and receive FIFO

* o

C2000 Delfino Workshop - Communications 11-21

Enhanced Controller Area Network (eCAN)

Enhanced Controller Area Network (eCAN)
Controller Area Network (CAN)

A Multi-Master Serial Bus System

¢ CAN 2.0B Standard

¢ High speed (up to 1 Mbps)

¢ Add anode without disturbing the bus (number of nodes not
limited by protocol)

¢ Less wires (lower cost, less maintenance, and more reliable)

¢ Redundant error checking (high reliability)

¢ No node addressing (message identifiers)

& Broadcast based signaling

® ©

CAN does not use physical addresses to address stations. Each message is sent with an identifier
that is recognized by the different nodes. The identifier has two functions — it is used for message
filtering and for message priority. The identifier determines if a transmitted message will be
received by CAN modules and determines the priority of the message when two or more nodes
want to transmit at the same time.

11-22 C2000 Delfino Workshop - Communications

Enhanced Controller Area Network (eCAN)

CAN Bus and Node

CAN Bus

¢ Two wire differential bus (usually twisted pair)

¢ Max. bus length depend on transmission rate
+ 40 meters @ 1 Mbps

CAN CAN
NODE A NODE B

CAN_H

1200 1200
CAN_L

The MCU communicates to the CAN Bus using a transceiver. The CAN bus is a twisted pair

wire and the transmission rate depends on the bus length. If the bus is less than 40 meters the
transmission rate is capable up to 1 Mbit/second.

CAN Node

Wired-AND Bus Connection

CAN_H

120Q [:]

1200
CAN_L

M\

CAN Transceiver
(e.g. TI SN65HV D23x)

X RX

CAN Controller
(e.g. TMS320F28035)

C2000 Delfino Workshop - Communications 11-23

Enhanced Controller Area Network (eCAN)

Principles of Operation

Principles of Operation

& Data messages transmitted are identifier based,
not address based

¢ Content of message is labeled by an identifier that
is unique throughout the networ

« (e.g. rpm, temperature, position, pressure, etc.)

¢ All nodes on network receive the message and
each performs an acceptance test on the identifier

¢ If message is relevant, it is processed (received);
otherwise it is ignored

¢ Unique identifier also determines the priority of the
message

+ (lower the numerical value of the identifier, the higher the
priority)

¢ When two or more nodes attempt to transmit at the
same time, a non-destructive arbitration tech_nlqtue
guarantees messages are sent in order of priority
and no messages are lost

Non-Destructive Bitwise Arbitration

& Bus arbitration resolved via arbitration with
wired-AND bus connections

+ Dominate state (logic 0O, bus is high)
+ Recessive state (logic 1, bus is low)

Start
Bit

Node A 1 [T m — Node A wins
Node B L1
NodeC ™" 1§ f]
CANBus “_[] | B
Node B Iosesjr k Node C loses
arbitration arbitration

11-24 C2000 Delfino Workshop - Communications

Enhanced Controller Area Network (eCAN)

Message Format and Block Diagram

CAN Message Format

¢ Datais transmitted and received using Message Frames
¢ 8 byte data payload per message
¢ Standard and Extended identifier formats

& Standard Frame: 11-bit Identifier (CAN v2.0A)

Arbitration Control)
Field Field Data Field

S| a11bit |R
O | Identifier ; D|ro| pLC | 0...8Bytes Data |CRC | ACK
F

mom

& Extended Frame: 29-bit Identifier (CANv2.0B)

Control

Arbitration Field Field Data Field
S . S| . R E
11-bit 18-bit
g Identifier S 'é Identifier ; ri|r0| DLC | 0..8 Bytes Data |CRC | ACK 'C:J

The MCU CAN module is a full CAN Controller. It contains a message handler for transmission
and reception management, and frame storage. The specification is CAN 2.0B Active — that is,

the module can send and accept standard (11-bit identifier) and extended frames (29-bit
identifier).

eCAN Block Diagram

eCANOINT eCANIINT
Address I_I Data

¥

Memory Management
Mailbox RAM Unit) eCéAll\é ll\)/lemory
(512 bytes) (ytes)

CPU Interface, ﬁ ;
32 Mailboxes @ Receive Control Unit 32 Register and Message

(4 x 32-bit words) Timer Management Unit Object Control

A message mailbox
Identifier — MID

Control —-MCF -
Data low — MDL Receive Buffer
Data high - MDH Transmit Buffer

Control Buffer
Status Buffer

SN65HVD23x
3.3-V CAN Transceiver

B

CAN Bus

C2000 Delfino Workshop - Communications 11-25

Enhanced Controller Area Network (eCAN)

The CAN controller module contains 32 mailboxes for objects of 0 to 8-byte data lengths:
e configurable transmit/receive mailboxes
e configurable with standard or extended indentifier

The CAN module mailboxes are divided into several parts:
o MID - contains the identifier of the mailbox

e MCF (Message Control Field) — contains the length of the message (to transmit or
receive) and the RTR bit (Remote Transmission Request — used to send remote
frames)

¢ MDL and MDH - contains the data

The CAN module contains registers which are divided into five groups. These registers are
located in data memory from 0x006000 to 0x0061FF. The five register groups are:

e Control & Status Registers

o Local Acceptance Masks

e Message Object Time Stamps
o Message Object Timeout

e Mailboxes

eCAN Summary

eCAN Summary

*

Fully compliant with CAN standard v2.0B
Supports data rates up to 1 Mbps

¢ Thirty-two mailboxes

+ Configurable as receive or transmit

+ Configurable with standard or extended identifier
+ Programmable receive mask

+ Uses 32-bit time stamp on messages

+ Programmable interrupt scheme (two levels)

+ Programmable alarm time-out

Programmable wake-up on bus activity

Self-test mode

*

* o

11-26 C2000 Delfino Workshop - Communications

DSP/BIOS

Introduction

This module discusses the basic features of using DSP/BIOS in a system. Scheduling threads,
periodic functions, and the use of real-time analysis tools will be demonstrated, in addition to
programming the flash with DSP/BIOS.

Learning Objectives

Learning Objectives

¢ Introduction to DSP/BIOS

¢ DSP/BIOS Configuration Tool
¢ Scheduling DSP/BIOS Threads
¢ Periodic Functions

¢ Real-Time Analysis Tools

C2000 Delfino Workshop - DSP/BIOS 12-1

Module Topics

Module Topics

DSP/BIOS..... ettt et bt bbbt Rt e £ b e Rt R b e R £ R £ EeR e R b e R bt b e Rt en e et et e e et 12-1
T LU T=N o ot 12-2
INtroduCtion t0 DSP/BIOSoviiiiiiiiirtees bbbt 12-3
DSP/BIOS CONfIGUIALION TOOI......civiiiiiiieiiiieiieiesie ettt 12-4
Scheduling DSP/BIOS TRIEAUS.cviiiiirieeetire ettt b bbb 12-9
PErTOAIC FUNCHIONS......cuiiiiiitie bbbttt 12-14
Real-Time ANAIYSIS TOOIS......cuiiiiiitiieiiei ettt bbbt bt et e e se b e e b e 12-15
LD 122 DSP/BIOS ...ttt bbbt bbbt bt bbbt et n b e ere e 12-17

12-2 C2000 Delfino Workshop - DSP/BIOS

Introduction to DSP/BIOS

Introduction to DSP/BIOS
What is DSP/BIOS?

¢ A full-featured, scalable real-time kernel
+ System configuration tools
+ Preemptive multi-threading scheduler
+ Real-time analysis tools

Why Use DSP/BIOS?

¢ Helps Manage complex system resources
+ no need to develop or maintain a “home-brew” kernel
- faster time to market

¢ Efficient debugging of real-time applications
+ Real-Time Analysis

¢ Create robust applications
« industry proven kernel technology

¢ Reduce cost of software maintenance
« code reuse and standardized software

¢ Integrated with Code Composer Studio IDE
« requires no runtime license fees
« fully supported by TI

¢ Uses minimal Mips and Memory (2-8Kw)
« scalable — use only what is needed
« easily fits in limited memory space

C2000 Delfino Workshop - DSP/BIOS 12-3

DSP/BIOS Configuration Tool

DSP/BIOS Configuration Tool

The DSP/BIOS Configuration Tool (often called Config Tool or GUI Tool or GUI) creates and
modifies a system file called the Text Configuration File (.tcf). If we talk about using .tcf files,

we’re also talking about using the Config Tool.

#F§ Lab. tcf
Estimated Data Size: 888 Est. Min. Stack Size [Mals]: 173

g Global Settings

+|-4fln MEM - Memory Section Manager
Iﬂﬂ BUF - Buffer Manager
m]g] POOL - Allocatar Manager
5%5 - Syskem Settings
& HOOK - Module Hook Manager
= [‘E Instrumentation
+ ﬂ LG - Event Log Manager ’

+ 5T5 - Statistics Object Manager
= f:g Scheduling
+ {12 CLK - Clack Manager
@ PRD - Periodic Function Manager
+ |||\, HWI - Hardware Interrupt Service Routine Manager

+ g w1 - Software Interrupk Manager
+ Q TSk - Task Manager
+ [:] IDL - Idle Function Manager
= aa Synchronization
‘,x' SEM - Semaphore Manager
q@; MEB¥ - Mailbox Manager
"__.| QUE - Atomic Queus Manager
LCK - Resource Lock Manager
= [g Input/Cukbput
+ 43 Device Drivers
& RTDX - Real-Time Data Exchange Settings
+- B3 HST - Host Channel Manager
2, PIF - Buffered Fipe Manager
:g: SIC - Stream Input and Qutput Manager
Gl - General Input/Output Manager
% M3G0 - Message Queue Manager

<

<—

DSP/BIOS Configuration Tool ite tcf)

¢ System Setup Tools

Real-Time Analysis Tools
¢ Real-Time Scheduler

¢ Real-Time /O

« Handles memory configuration
(builds .cmd file), run-time
support libraries, interrupt
vectors, system setup and
reset, etc.

+ Allows application to run
uninterrupted while displaying
debug data

« Preemptive tread manager
kernel configures DSP/BIOS
scheduling

« Allows two way
communication between
threads or between target and
PC host

The GUI (graphical user interface) simplifies system design by:

e Automatically including the appropriate runtime support libraries
e Automatically handles interrupt vectors and system reset

e Handles system memory configuration (builds .cmd file)

[]

When a .tcf file is saved, the Config Tool generates 5 additional files:

Filename.tcf

Text Configuration File

Filenamecfg_c.c

C code created by Config Tool

Filenamecfg.s28

ASM code created by Config Tool

Filenamecfg.cmd

Linker command file

Filenamecfg.h

header file for *cfg_c.c

Filenamecfg.h28

header file for *cfg.s28

When you add a .tcf file to your project, CCS automatically adds the C and assembly
(.s28) files and the linker command file (.cmd) to the project under the Generated Files

folder.

12-4

C2000 Delfino Workshop - DSP/BIOS

DSP/BIOS Configuration Tool

1. Creating a New Memory Region (Using MEM)

First, to create a specific memory area, open up the .tcf file, right-click on the Memory Section
Manager and select “Insert MEM”. Give this area a unique name and then specify its base and
length. Once created, you can place sections into it (shown in the next step).

Memory Section Manager (MEM)

& Generates the main

Est{gl:j::::: Size: 808 Est. Min Stack Size (MAUs) 173 I I n ke r C O m m an d fll e for
8 -covc L your code project
o BEGIN_FLASH .
4 BEGIN_MSARAM + Create memories
Q BOOTROM .
#h CSMRSVD + Place sections
o FLASH
w FPUTABLES
? s ¢ To create anew memory
IQTABLESZ .
o L4750RAM ar ea .
: pepan LO3SARAM Properties [-+ Rightclick on MEM and
T select insert memory
w PIEVECT .
e Manage] comment + Enter your choice of a
[tivotial [— name for the memory
55 - System Settin
- ;@tHOOKt-yl;ﬂodule Huog ler: ,W * R |g ht—C I |C k On the
© O sthodng - memory, and select
i+ oy — Properfies
I i + fillin base, length, space
e
space code hd
(3 Cancel | | Help

C2000 Delfino Workshop - DSP/BIOS 12 -5

DSP/BIOS Configuration Tool

2. Placing Sections — MEM Manager Properties

The configuration tool makes it easy to place sections. The predefined compiler sections that
were described earlier each have their own drop-down menu to select one of the memory regions
you defined (in step 1).

Text Section [tex]

Data Section [da

Data Section [.cio):

Suitch Jump Tables [switchl:
C Variables Section [bssk
C Variables Section [.ebssk

Data Initslization Section [cinitk

Constant Sections (.econst, print)
Constant Sections (.const, printf)

1]

I User.cmd File For Compiler Sections

MEM - Memory Section Manager Properties

General | EIOS Data | BIOS Code Compiler Sections | Load Address |

LOZ5ARAM -

[Lozmapen <]
[Lersapars =]
[Lzsapan =]
[toweran]
CFurction Inifialzation Table (piritk [LO3SAREM +|
[azsepan]
[Lazsepan -]

L4758RAM -
L4754RAM b2

Memory Section Manager Properties

F

Caricel

Help

¢ To place a section
into a memory area:

+ Right-click on MEM
and select Properties

+ Select the desired tab
(e.g. Compiler)

+ Select the memory
you would like to link
each section to

12-6

C2000 Delfino Workshop - DSP/BIOS

DSP/BIOS Configuration Tool

3. PIE Interrupts — HWI Interrupts

The configuration tools is also used to assign the interrupt vectors. The vectors are placed into a
section named .hwi_vec. The memory manager (MEM) links this section to the proper location

in memory.

Hardware Interrupt Manager (HWI)

Catimated Dats Soe: 900 Dot Min Stack Soe MAUSE 170

¥ g trtrurres e
U sthedung
{5 Q- Clock Manager
) PRD - Prricabie Furtion Marager
= M Wl - Hardeare Inberrupk Service Routine Manager
L, HWI_RESET
1, HWI_INTL
=, 1Tz

EEEELEE

E-

AIIBIIIIIIIIIIZIIIIIIIIIIIIIIID
EXIIIRREIRIRRIIREIZERiiiiiii:

i

1_seRTT
PIE INTERRLSTS
. PIE_INTI_1
AL PIE_INTI 2

¢ Config Tool used to assign
interrupt vectors

Vectors are placed in the
section .hwi_vec

¢ Use MEM manager to link
.hwi_vec to the proper memory

PIE_INT1_6 Properties

X

C2000 Delfino Workshop - DSP/BIOS

12 -7

DSP/BIOS Configuration Tool

4. Running the Linker

Creating the Linker Command File (via .tcf)

When you have finished creating memory regions and allocating sections into these memory
areas (i.e. when you save the .tcf file), the CCS configuration tool creates five files. One of the
files is BIOS’s cfg.cmd file — a linker command file.

#5 lab. fef

= (g System
- Instrume

5 trumentation
J - Clon

&3 Synchronization
+ Input/Output

Files Created by the Configuration Tool

Estimated Data Size: 888 Est, Min. Stack Sias (MAUs) 173 ' 2

) 1L - Idle Funiction Manager ‘

Config tool generates
five different files

.cmd file is generated
from your MEM settings

Vectors putinto *cfg_c.c

*cfg.cmd

|

*cfg.h

to compiler

*cfg_c.c

save
*.tef _—

*cfg.h28

*cfg.s28

This file contains two main parts, MEMORY and SECTIONS. (Though, if you open and examine
it, it’s not quite as nicely laid out as shown above.)

Running the Linker

The linker’s main purpose is to link together various object files. It combines like-named input
sections from the various object files and places each new output section at specific locations in
memory. In the process, it resolves (provides actual addresses for) all of the symbols described in
your code. The linker can create two outputs, the executable (.out) file and a report which

describes the results of linking (.map).

Note: The linker gets run automatically when you BUILD or REBUILD your project.

12-8

C2000 Delfino Workshop - DSP/BIOS

Scheduling DSP/BIOS Threads

Scheduling DSP/BIOS Threads
DSP/BIOS Thread Types

HWI & Used to implement ‘urgent’ part of real-time event
« Triggered by hardware interrupt
Hardware Interrupts | o Hwi priorities fixed in hardware

SWI & Use SWIto perform HWI ‘follow-up’ activity
& SWI's are ‘posted’ by software
Software Interrupts | o Multiple SWis at each of 15 priority levels

TSK ¢ Use TSK to run different programs concurrently
under separate contexts

Priority

Tasks & TSK's enabled by posting ‘semaphore’ (a signal)
IDL & Runswhen no service routines are pending
¢ Runs as an infinite loop, like traditional while loop
Background & Al BIOS data transfers to host occur here

Enabling DSP/BIOS in main()

void main(void)
{

//*** Initialization

e _ _+¢ BIOSwill enable global
// Enable global |ntfw/ interrupts for you

// asm(* CLRC INTM™);
_—+¢ Must delete the

J/%%* Vain LOO/ endless loop at end of
/7 while(l); main()

. ma:jin() return?]to BIOS
B, and goes to the IDLE
iy J2ETE S mEIRG) thread, allowing BIOS to

schedule events,
transfer data to the host,
etc.

« Anendless loop in
main() will keep BIOS
from running

C2000 Delfino Workshop - DSP/BIOS 12-9

Scheduling DSP/BIOS Threads

Using Hardware Interrupts - HWI

| Ectnsied Dot Soe: 10BE Ext M Stach Sie MAUSE 254 FIE_INT1_E properbes:
A, PIE BNTERRLPTS A | Frogerty (™

A, PE_NTL 1 comment defines hunction for the PIE_INTL.6

A piE T 2 Furction ADCINT 1SR

A PE_INTLY morkor Mathigg

:, PIE_INT1 4 r’:: ‘o.:'mww .]

e e v & Interrupt priority
il Cx0000000
b Mask IERD el H
ik ik e fixed by hardware

PIE_INT1_6 Properties

Genersl | Dispatcher |

function:

monitar Mothing Sl

1.9 Cancel | | Help

The HWI Dispatcher

& For non-BIOS code, use the . . S
interrupt keyword to declare an ISR | interrupt void MyHwi(void)

tells the compiler to perform
context save/restore }

& For DSP/BIOS code, use the

Dispatcher to perform the PIE_INT1_6 Properties)
save/restore FR=—
& Remove theinterrupt keyword HEetuoe
from the MyHwi() Hg: [oomnog000
Interupt Mask IERD self hd
& Check the “Use Dispatcher” box e . Lo
when you configure the interrupt -
vector in the DSP/BIOS
configuration tool
¢ Thisis necessary if you want to ok | cancel b Help
use any DSP/BIOS functionality
inside the ISR

12-10 C2000 Delfino Workshop - DSP/BIOS

Scheduling DSP/BIOS Threads

Using Software Interrupts - SWI

¢ Make each algorithm an

Estimated Data Size: 1085 Est Min. Stack Si independent software interrupt
. ??:fmentatm & SWiI scheduling is handled by DSP/BIOS
T ??@?ﬂ?ibckmenager « HWI function triggered by hardware

+ @ PRD - Periodic Function Manager
+1- M HWT - Hardware Inkerrupt Service
] E ST - Software Interrupt Manager

& SWI function triggered by software

& A0C s e.g. acall to SWI_post()
- J0MAL_swi
T KNL_swi L 4 Why use a SWI?
B PRD_swi o)
* @’TSK-TaskManager & No limitation on number of SWis, and
+ I0L - Idle Function M. . e .
) e Nt priorities for SWis are user-defined
¥ % Input/output

¢ SWI can be scheduled by hardware or
software event(s)

& Defer processing from HWI to SWI

SWI Properties

DMA1_swi Properties

*=§Lab.tcf *
General l
Estimated Data Size: 1066 Est. Min. Stack Size [MAlls): 254 DA

= — 1
1L System Prog Fetaly 1=l < acdd comments heres

% Instrumentation cam

Gf Scheduing func functior: |_DmalSwi
e prior]

#-£¥ CLK - Clock Manager

S S - mailt] S
£ @ PRD - Periodic Function Manager argl] pricrity 1 B

+1- W HWwI - Hardware Interrupt Service Routine Managsr

1
=i S;fl - Software Interrupk Manager £t rmailbos: 10
g argl: 00000000
i KhL what's This?
i PRD_swi o argl: 10x00000000
indo

&2 T3K - Task Mar
49 1L - Idle Func i

+ Synchronization Copy oK | Cancel | A | Help
+ Input/utput

[+

e

Delete
Rename

® Properkyfvalue view

C2000 Delfino Workshop - DSP/BIOS 12-11

Scheduling DSP/BIOS Threads

Managing SWI Priority

¢ Drag and Drop SWIs to change
priority

¢ Equal priority SWIs run in the
order that they are posted

S| - Software Interrupt Manager objects by priority

(2] Priority 14 {Highest)

J- Instrumentation
& sl
L3® scheduling

+ £ CLK - Clock Manager
@ PRD - Periodic Function Manager
+ '"L HWI - Hardware Inferrupt Service Routing Manager
SR - 3541 - Software Interrupt Managet
B ADC _swi
B DMAL _swi
B KNL_swi
B PRD_swi
+ @ TSK. - Task Manager
+- % I0L - Idle Function Manager

+- Svnchranization
-] Inputfioutpuk

¥

(22 Priority 13
(22 Priority 12
(21 Priority 11
(21 Priority 10
(21 Priority 9
(21 Priority &
(23 Priority 7
(23 Priority &
(27 Priority 5
(22 Priority 4
(21 Priority 3
(21 Priority 2
=1 (L0 Prioriey 1
B PRD _swi
B ADC_swi
B DMAL_swi
=1{Z2 Priority O {Reserved when TSK is enabled)
B KNL_swi

Priority Based Thr

post3

ead Scheduling

rtn

HWI 2 A

' SWI_post(&swi2);

(highest)
post2 rtn
HWI 1 [IS[T1

postl rtn

SWI 3

[TTTIMTTTI

int2

rtn

SWI 2 [T TN TTT]

SWI' 1

rtn
[TTTTTTTTITTTTIE

rtn
MAIN [T

i nt\l

IDLE CIMMOST T TTT T T T T T T T T T TTTT

(lowest)

User sets the priority...BIOS does the scheduling

12-12

C2000 Delfino Workshop - DSP/BIOS

Scheduling DSP/BIOS Threads

SWI SWI_post

start /

“must run to
completion”

end

+ Similar to hardware interrupt,
but triggered by SWI_post()

+ SWIs must run to completion
+ All SWI's use system stack

+ faster context switching

+ smaller code size

Using Tasks (TSK)

SWIlvs. TSK

TSK SEM_post

_lendj

Pause
(blocked

+ SEM_post() readies the TSK
which pends on an event

+ TSKs can be terminated by S/W
¢ Each TSK has its own stack

+ slower context switching

+ larger code size

C2000 Delfino Workshop - DSP/BIOS

12 -13

Periodic Functions

Periodic Functions

Using Periodic Functions - PRD

DSP/BIOS

LED

DSP/BIOS

LED

Periodic functions are a special type of SWI that are triggered by

Periodic functions run at a user specified rate:

- e.g. LED blink requires 0.5 Hz

Use the CLK Manager to specify the DSP/BIOS CLK rate in

microseconds per “tick”

¢ Use the PRD Manager to specify the period (for the function) in ticks

Allows multiple periodic functions with different rates

LED

Creating a Periodic Function

DSP/BIOS

 tick

F I—

fuﬁcl

CLK - Clock Manager Properties
General |
Obiject Memary

I~ Continue to un on sw brsakpoint [fies un]
=

¥ sz high resalution time for intemal imings

| Microseconds/ink: ~[1000.0000 I
I Directly configure onvchip timer registers

-

—
g
R

e e |

Estimated D ata Size: 1066 Est. Min. Stack Si:

+ L@ System
+ (g Instrumentation
= fg Scheduling
+1-{8 CLK - Clock Manager
Beriodi iop Manager

[T - raraare meerrupk Service
+ g W1 - Software Interrupt Manager
+ @ T5K - Task Manager

+ [:] I0L - Idle Function Manager

¥ Synchranization
-] Inputfoutput

1
furilcl

LedBlink_PRD Properties

General]

comment:

Iparim:l[ticks] B |

mode |c0nt|nuous >

I function: ‘_LedB\ink I

gl | 040000000

argl (000000000

S

Cancel ‘ |

=]

12-14

C2000 Delfino Workshop - DSP/BIOS

Real-Time Analysis Tools

Real-Time Analysis Tools

Built-in Real-Time Analysis Tools

Gather data on target (3-10 CPU cycles)
Send data during BIOS IDL (100s of cycles)
Format data on host (1000s of cycles)

Data gathering does NOT stop target CPU

L R IR R 2

% o B @
Logger Duffer SWikgs FRDbgs Cikg TShgs SWistes PRDstets PP stols MWistels TRistets USERDUrace USRI brace
L uonocs |8]] [5 IE]]
W L0G_grstern
trace
CPU Load
15

am W 515 575 PRO_sws count: ZIBIE toRek 67T A 2519 515

w0 W0 ST STSCLAT sel count; ZI91ISE atal: 1581 IRSET0 max: 3087 318

i AL ST STSTEC e cound: Dbkl O mar: 0 18

M2 42 STE STS DL buryObi count: 31267 totak 2646004 mar: 387 15
15T 1TSS Swl SWI: begin CLAT_ st ([hX0000G48) Uninown RTASysten
15TMG 157 Wi Wi end CLAT sl ((00000GG] stiste = done Urnicenn o
ISTPMEL ISTTREI SWT W ot AL s (0x000RKEE] s RTaSystnen
ISTIEZ ISTFEZ SWT SWI: beon CLAD sl ((NOODGSSS) Urdnewr, RTaSystem
ISTIREY 15T Wl SWIend CLAL s (Ce0000G6%) state = done Unbnown RTASysem
157THA IS Wil SWEL poat CLAL_ s (DnD0000GL) Undnsnn RiALyitem
ISTPMAE ISTTMS FWD SWT: begn CLAT o (100D086EE) o ETASysteen
ISTTEE IETTMA WD LAY ool (DxDDO0BEEE] 4ot m e bsern RTASyten

152 158 Load 4

w3 43 5 _PRD court: 176 total: Dma: 0 515

e e 515 U Lot 1YHIBAIE max: 4007 513

HE 5 aTE TI0TY bekal: TS ma: I51D aTs

e D46 ST STSCLAT swi count: 2300368 total: 1 SS40EE00 mace: 3047 15

w7 AT STS TS Ta e count: Dot O e U 515

W B OSTS 573 A BusyOb) count: JA00 totsk 26LU0LET M 207 515 a

Built-in Real-Time Analysis Tools

CPU Load graph and CPU Load Data

& Shows amount of CPU horsepower
being consumed

F-BIFEE RS Q- 0[] (@ T
g
80
60
sl 1 I
[M
20
0
10 260 s10 760 pLib L) 1260 1510 1760 2010 2260 2510 2760 3010
ticks

ENEEEERE]
time | task cpuTime | total load
436 CPU o o 45
437 CPU 0 a 43
438 CPU o o 43
439 CPU o o 45
440 CPU 0 a 43
441 CPU o o 48
44z CPU o o 45
443 CPU 0 a 43
444 CPU o o 48
445 CPU o o 45
446 CPU 0 a 43
447 CPU o o 48 ;

C2000 Delfino Workshop - DSP/BIOS 12 -15

Real-Time Analysis Tools

sts
LedBiink_PRD
KML_swi
PRD_swi
CLAL swi
T3k _idle

IDL busyChi

Built-in Real-Time Analysis Tools

count. tokal

543

0

271594 612269843
67898 113956303
6789854 4200841622
0 o

31262 23556126

max
a
4479
3319
3623
o

387

average
0.00
2254.36
1678.35
630,48

753.02

22| printf Logs X

timne.
639
&40
641
642
643
&4
645
646
647
648
649
50
651

ErEaazEe

seqlD

formattedhsg

LedSwiCount = 639
LedSwiCount = 640
LedSwiCount = 641
LedSwiCount = 642
LedSwiCount = 643
LedSwiCount = 644
LedSwiCount = 645
LedSwiCount = 46
LedSwiCount = 647
LedSwiCount = 648
LedSwiCount = 649
LedSwiCount = 650
LedSwiCount = 651

logger
trace
trace
trace
trace
trace
trace
trace
trace
trace
trace
trace
trace
trace

Statistics Data

*

Printf Logs

*
*
L 4

*

LOG_printf(&trace, “LedSwiCount = %u", LedSwiCount++);

Profile routines w/o
halting the CPU

Send debug msgs to host
Doesn’t halt the DSP
Deterministic, low DSP
cycle count

More efficient than
traditional printf()

12 -16

C2000 Delfino Workshop - DSP/BIOS

Lab 12: DSP/BIOS

Lab 12: DSP/BIOS
» Objective

The objective of this lab is to become familiar with DSP/BIOS. In this lab exercise, we will make
use of the DSP/BIOS configuration tool, implement a software interrupt (SWI) and periodic
function (PRD), program the DSP/BIOS project into the flash, and explore the built-in real-time
analysis tools. The DSP/BIOS configuration tool creates a text configuration file (*.tcf) and
generates a linker command file (*cfg.cmd). This generated linker command file is functionally
equivalent to the linker command file previously used. The memory area of the lab linker
command file will be deleted; however, part of the sections area will be used to link sections that
are not part of DSP/BIOS. In the lab files we will change the DMA HWI (DINTCHL1_ISR) to a
SWI and replace the LED blink routine with a periodic function. The steps required to properly
configure the software for execution from internal flash memory will be covered. Features of the
real-time analysis tools, such as the CPU Load Graph, Message Log, Statistics View, and RTA
Control Panel will be demonstrated.

Lab 12: DSP/BIOS

ePWM1 ADC DMA
TB Counter ADCINAO | RESULTO
Compare —.‘\j— I:I
Action Qualifier %
Zy
rem— conrEe" | ping
e ! data
x memory
ePWM2 triggering ADC pong
on period match using
SOCA trigger every
20.833 ps (48 kH
s (2) ePWM2 CPU runs
FIR dfallta tgrough
Filter ilter during
Objective: DMA ISR
¢ Use DSP/BIOS Configuration Tool to: =
¢ Handle system memory & interrupt vectors % E data
¢ Create a .tcf file E 03) memory
* Change DMA DINTCH1_ISR HWIto SWI - Disol
¢ Replace LED blink routine with a Periodic usilnsé)g%/;s

Function
¢ Program system into Flash Memory

> Procedure

Create a New Project

1. Create a new project (File - New -> CCS Project) and name it Lab12.
Uncheck the “Use default location” box. Click the Browse... button and navigate to:

C:\C28x\Labs\Labl2\Project
Click OK and then click Next.

C2000 Delfino Workshop - DSP/BIOS 12 - 17

Lab 12: DSP/BIOS

2.

In the next window that appears set the “Project Type” to “C2000” and leave the
“Debug” and “Release” boxes checked. Click Next.

In the next window, “Additional Project Settings” select Next.

In the next window the CCS project settings are selected. Set the “Device Variant” using
the pull-down list to “TMS320F28335”. Then using the pull-down list change the
“Linker Command File” to “<none>". Finally, set the “Runtime Support Library” to
“<none>". The DSP/BIOS configuration tool supplies its own RTS library. Click
Next.

The last window selects the “Project Templates”. Click the plus sign (+) to the left of
“DSP/BI0S v5.xx Examples” and select “Empty Example”. Click Finish.

Right-click on Lab12 in the C/C++ Projects window and add the following files to
the project (Add Files to Project..) from C:\C28x\Labs\Labl2\Files:

Adc_9 10 12.c Flash.c
CodeStartBranch.asm Gpio.c
Defaultlsr_12.c Lab.h
DelayUs.asm Lab_12_cmd
Dma.c Main_12.c
DSP2833x_GlobalVariableDefs.c Passwords.asm
DSP2833x_Headers_BI10S.cmd PieCtrl_12.c
ECap 7 8 9 10 12.c SysCtrl.c
EPwm_7 8 9 10 12.c Watchdog.c
Filter.c

Note: DSP2833x_Defaultlsr._his not used in this project. DSP/BIOS will supply
its own ISR function prototypes. Also, the labcfg . h header file will be automatically
created. This is the DSP/BIOS generated include file, and is needed to allow code to
access the DSP/BIOS functions and data structures.

Project Build Options

7.

Setup the build options by right-clicking on Lab12 in the C/C++ Projects window
and select Properties. Then select the “C/C++ Build” Category. Be sure that the
Tool Settings tab is selected.

Note that in the previous lab exercises the stack size was set by the project build options
in the linker basic options category. When using DSP/BIOS the stack size is instead
specified with the DSP/BIOS configuration tool. This will be taken care of when we get
to that section.

Under the “C2000 Linker” select “Basic Options” and delete the entry for the stack
size.

Setup the include search path to include the peripheral register header files. Under
“C2000 Compiler” select “Include Options”. In the box that opens click the Add
icon (first icon with green plus sign). Then in the “Add directory path” window type:

${PROJECT_ROOT}/../../DSP2833x_headers/include

12-18

C2000 Delfino Workshop - DSP/BIOS

Lab 12: DSP/BIOS

Click OK to include the search path. Repeat the process to add the IQmath header file.
Click the Add icon and in the “Add directory path” window type:

${PROJECT_ROOT}/../../1Qmath/include
Click OK to include the search path.

10. Next, setup the library search path to include the IQmath library. Under “C2000 Linker”
select “File Search Path”. Inthe top box click the Add icon. Then in the “Add
file path” window type:

${PROJECT ROOT}/../../1Qmath/1ib/1Qmath.lib

Click OK to include the library file.

In the bottom box click the Add icon. In the “Add directory path” window type:

${PROJECT_ROOT}/../../1Qmath/lib
Click OK to include the library search path.

11. As the project is now configured, we would get a warning at build time stating that the
typedef name has already been declared with the same type. This is because it has been
defined twice; once in the header files and again in the include file generated by
DSP/BIOS. To suppress the warning, under “C2000 Compiler” select “Diagnostics
Options”. Scroll to the bottom option box — “Suppress Diagnostic (-pds)” and click
the Add icon. Type in code number 303 in the enter value box then select OK.

12. Finally, select OK to save and close the build options window.

Edit Lab.h File

13. Edit Lab . h to uncomment the line that includes the labcTg . h header file. This is the
DSP/BIOS generated include file, and is needed to allow code to access the DSP/BIOS
functions and data structures. Next, comment out the line that includes the
“DSP2833x_Defaultlsr.h” ISR function prototypes. DSP/BIOS will supply its
own ISR function prototypes. Save and close the file.

Inspect Lab_12.cmd

14. We will be using the DSP/BIOS configuration tool to create a linker command file. Open
and inspect Lab_12.cmd. Notice that the linker command file does not have a memory
area and includes only a limited sections area. These sections are not part of DSP/BIOS
and need to be included in a “user” linker command file. Close the inspected file.

Using the DSP/BIOS Configuration Tool

15. The text configuration file (*.tcf) created by the DSP/BIOS configuration tool controls a
wide range of CCS capabilities. The .tcf file will be used to automatically create and
perform memory management. Create a new .tcf file for this lab. On the menu bar click:

C2000 Delfino Workshop - DSP/BIOS 12 -19

Lab 12: DSP/BIOS

16.

17.

File > New > DSP/BIOS v5.xx Configuration File

A dialog box will open and name the file Lab.tcf. (Note — do not use the default
Lab12.tcf file name). Click Next.

The next window that appears shows a number of available .tcf seed files. The seed files
are used to configure many objects specific to the processor and will be invoked as the
first item in your own .tcf file. Scroll the options and select the
ti.platforms.control28335 template and click Next.

In the next window all DSP/BIOS features should be checked and then click Finish.
The Configuration Tool will open and the configuration file will be automatically added
to the project.

Create New Memory Sections Using the TCF File

18.

19.

20.

In the configuration window, left click the plus sign next to System and the plus sign
next to MEM. By default, the Memory Section Manager has combined the memory space
for LO, L1, L2 and L3SARAM into a single memory block called LO3SARAM; and L4,
L5, L6 and L7SARAM into a single memory block called LA7SARAM. It has also
combined MO and M1SARAM into a single memory block called MSARAM.

Next, we will add some of the additional memory sections that will be needed for the lab
exercises in this module. To add a memory section:

Right click on MEM — Memory Section Manager and select Insert MEM.
Rename the newly added memory section to BEGIN_FLASH. Repeat the process and
add the following memory sections: CSM_RSVD, FPUTABLES, 1QTABLES,
IQTABLES2 and PASSWORDS. Double check and see that all six memory sections have
been added.

Modify the base addresses, length, and space of each of the memory sections to
correspond to the memory mapping shown in the table below. To modify the length,
base address, and space of a memory section, right click on the memory in the
configuration tool, and select Properties.

Memory Base Length | Space

BEGIN_FLASH | 0x33 FFF6 | 0x0002 | code

CSM_RSVD 0x33 FF80 | 0x0076 | code

FPUTABLES Ox3F EBDC | 0x06A0 | code

IQTABLES Ox3F EO00 | 0xOB50 | code

IQTABLES?2 O0x3F EB50 | 0x008C | code

PASSWORDS | 0x33 FFF8 | 0x0008 | code

21. Modify the base addresses, length, and space of each of the memory sections to avoid

memory conflicts with the newly added memory sections as shown in the following table:

12-20

C2000 Delfino Workshop - DSP/BIOS

Lab 12: DSP/BIOS

Memory Base Length | Space
BOOTROM Ox3F F37C | 0x0D44 | code
FLASH 0x30 0000 | Ox3FF80 | code

22. Next, modify the space setting for LO3SARAM to be “code” and the space setting for

L47SARAM to be “data”.

Link Uninitialized Sections to RAM

23. Right clickon MEM — Memory Section Manager andselect Properties.
Selectthe Compiler Sections tab and link the following uninitialized sections
into the MSARAM memory block via the pull-down boxes:

MSARAM

.bss

.ebss

Link Initialized Sections to Flash

All initialized sections must be linked to the on-chip flash memory. Each initialized section
actually has two addresses associated with it. First, it has a LOAD address which is the address
to which it gets loaded at load time (or at flash programming time). Second, it has a RUN
address which is the address from which the section is accessed at runtime. The linker assigns
both addresses to the section. Most initialized sections can have the same LOAD and RUN
address in the flash. However, some initialized sections need to be loaded to flash, but then run
from RAM. This is required, for example, if the contents of the section needs to be modified at

runtime by the code.

24. This step assigns the RUN address of those sections that need to run from flash. Using
the MEM — Memory Section Manager inthe DSP/BIOS configuration tool link
the following sections to on-chip FLASH memory:

BIOS Data tab

BIOS Code tab

Compiler Sections tab

.gblinit .bios text
.sysinit .switch
.hwi .cinit
rtdx_text pinit

.econst / .const

.data

C2000 Delfino Workshop - DSP/BIOS

12-21

Lab 12:

DSP/BIOS

25. This step assigns the LOAD address of those sections that need to load to flash. Again
using the MEM — Memory Section Manager in the DSP/BIOS configuration tool
select the Load Address tab and check the “Specify Separate Load
Addresses” box. Then set all entries to the FLASH memory block.

26. Click the BIOS Data tab and notice that the .stack section has been linked into
memory. Click OK to close the window.

27. The section named “1Qmath” is an initialized section that needs to load to and run from
flash. This section is not linked using the DSP/BIOS configuration tool (because it is
neither a standard compiler section nor a DSP/BIOS generated section). Instead, this
section is linked with the user linker command file (Lab_12.cmd). Previously the
“1Qmath” section was linked to LO3SARAM and it is now linked to FLASH.

Set the Stack Size in the TCF File

Recall in the previous lab exercise that the stack size was set using the CCS project build options.
When using the DSP/BIOS configuration tool, the stack size is instead specified in the .tcf file.

28. Using the MEM — Memory Section Manager select the General tab. Setthe
Stack Size to 0x180. The stack size needs to be reduced from 0x200 to 0x180 because of
the limited amount of space available in the RAM block on the device when using
DSP/BIOS. Click OK to close the window.

Copying .hwi_vec Section from Flash to RAM

The DSP/BIOS .hwi_vec section contains the interrupt vectors. This section must be loaded to
flash (load address) but run from RAM (run address). The code that performs this copy is located
in InitPieCtrl(). The linker command file generated by the DSP/BIOS configuration tool
generates global symbols that can be accessed by code in order to determine the load address, run
address, and length of the .hwi_vec section. The RTS library contains a memory copy function
called memcpy() which will be used to perform the copy.

29. Open and inspect InitPieCtrl() in PieCtrl_12_c. Notice the memcpy() function and
the symbols used to initialize (copy) the .hwi_vec section.

Copying the .trcdata Section from Flash to RAM

The DSP/BIOS .trcdata section is used by CCS and DSP/BIOS for certain real-time debugging
features. This section must be loaded to flash (load address) but run from RAM (run address).
The linker command file generated by the DSP/BIOS configuration tool generates global symbols
that can be accessed by code in order to determine the load address, run address, and length of the
.trcdata section. The memory copy function memcpy() will again be used to perform the copy.

The copying of .trcdata must be performed prior to main(). This is because DSP/BIOS modifies
the contents of .trcdata during DSP/BIOS initialization, which also occurs prior to main(). The
DSP/BIOS configuration tool provides a user initialization function which will be used to
perform the .trcdata section copy prior to both main() and DSP/BIOS initialization.

12 - 22

C2000 Delfino Workshop - DSP/BIOS

Lab 12: DSP/BIOS

30. In the DSP/BIOS configuration file (Lab . tcf) select the Properties for the
Global Settings. Check the box “Call User Init Function” and enter the
User Init() function name with a leading underscore: _UserInit. This will cause
the function Userlnit() to execute prior to main(). Click OK to close the window.

31. Open and inspect the file Main_12_c. Notice that the function UserInit() is used
to copy the .trcdata section from its load address to its run address before main().

Initializing the Flash Control Registers

The initialization code for the flash control registers cannot execute from the flash memory (since
it is changing the flash configuration!). Therefore, the initialization function for the flash control
registers must be copied from flash (load address) to RAM (run address) at runtime. The memory
copy function memcpy() will again be used to perform the copy. The initialization code for the
flash control registers InitFlash() is located in the Flash. c file.

32. Open and inspect Flash.c. The C compiler CODE_SECTION pragma is used to place
the InitFlash() function into a linkable section named “secureRamFuncs”.

33. Since the DSP/BIOS configuration tool does not know about user defined sections, the
“secureRamFuncs” section will be linked using the user linker command file
Lab 12.cmd. Openand inspect Lab_12.cmd. The “secureRamFuncs” will load
to flash (load address) but will run from LO3SARAM (run address). Also notice that the
linker has been asked to generate symbols for the load start, load end, and run start
addresses.

34. Open and inspect Main_12.c. Notice that the memory copy function memcpy() is
being used to copy the section “secureRamFuncs”, which contains the initialization
function for the flash control registers. Close all the inspected files.

Setup PIE Vectors for Interrupts in the TCF File

Next, we will setup all of the PIE interrupt vectors that will be needed for the lab exercises in this
module. This will include all of the vectors used in the previous lab exercises. (Note: the
PieVect.c file is not used since DSP/BIOS generates the interrupt vector table).

35. Modify the configuration file Lab . tcT to setup the PIE vector for the watchdog
interrupt. Click on the plus sign (+) to the left of Schedul ing and again on the plus
sign (+) to the left of HWl — Hardware Interrupt Service Routine
Manager. Click the plus sign (+) to the left of PIE INTERRUPTS. Locate the
interrupt entry for the watchdog at PIE_INT1_8. Right click, select Properties,
and type _ WAKEINT _ISR (with a leading underscore) in the function field. Click OK to
save.

36. Setup the PIE vector for the ADC interrupt. Locate the interrupt entry for the ADC at
PIE_INT1_6. Right click, select Properties, and type ADCINT_ISR (with a
leading underscore) in the function field. Click OK to save.

C2000 Delfino Workshop - DSP/BIOS 12 - 23

Lab 12: DSP/BIOS

37. Setup the PIE vector for the ECAP1 interrupt. Locate the interrupt entry for the ECAP1
at PIE_INT4_1. Rightclick, select Properties, and type ECAP1 INT_ISR
(with a leading underscore) in the function field. Click OK to save.

38. Setup the PIE vector for the DMA channel 1 interrupt. Locate the interrupt entry for the
DMA channel 1 at PIE_INT7_1. Right click, select Properties, and type
DINTCHL1 ISR (with a leading underscore) in the function field. Click OK to save.

Configuring DSP/BIOS Global Settings

39. In the configuration file Lab . tcT click on the plus sign (+) to the left of System.
Right click on Global Settings andselect Properties. Setthe “DSP
Speed in MHz (CLKOUT)” field to 150 so that it matches the processor speed.
Click OK to save the value and close the properties window. This value is used by the
CLK manager to calculate the register settings for the on-chip timers and provide the
proper time-base for executing CLK functions. Close the configuration window and
select YES to save changes to Lab . tcf.

Prepare main() for DSP/BIOS

40. Open Main_12 _c and delete the inline assembly code from main() that enables global
interrupts. DSP/BIOS will enable global interrupts after main().

41. In Main_12.c, remove the endless while() loop from the end of main(). When using
DSP/BIOS, you must return from main(). In all DSP/BIOS programs, the main()
function should contain all one-time user-defined initialization functions. DSP/BIOS will
then take-over control of the software execution. Save and close the file.

Boot Mode Jumpers — Executing from Flash after Reset

42. The controlCARD or Docking Station needs to be configured for “Jump to Flash” boot
mode. Move the “2833x Boot Mode” control CARD switch SW2 positions 1, 2, 3 and 4
to the “1 — on” position (all switches up) or the Docking Station jumpers 84, 85, 86 and
87 to the “1” position (all jumpers to the left side) to accomplish this. Details of the
switch and jumper positions can be found in Appendix A. These jumpers control the
pullup/down resistor on the GP1084, GP1085, GP1086 and GP1087 pins, which are the
pins sampled by the bootloader to determine the boot mode.

Build and Program the Flash — Lab.out

43. Click the “Bui Id” button to generate the Lab . out file to be used with the CCS Flash
Programmer. Check for errors in the Problems window.

44. Program the flash memory by clicking the “Debug” button (green bug). As soon as the
“Progress Information” box opens, if needed select “Detai 1s” in order to watch the
programming operation and status. After successfully programming the flash memory
the “Progress Information” box will close.

12-24 C2000 Delfino Workshop - DSP/BIOS

Lab 12: DSP/BIOS

45. The code should stop at the beginning of your main() routine. If you got to that point
succesfully, it confirms that the flash has been programmed properly, that the bootloader
is properly configured for jump to flash mode, and that the codestart section has been
linked to the proper address. As a test, run the CPU and you should observe the LED on
the ControlCARD blinking, then halt the CPU.

Testing the CPU Computational Loading

It will be interesting to investigate the CPU computational burden of the the various parts of our
application, as well as the different pieces of DSP/BIOS that we will be using in this lab exercise.
The ‘CPU Load graph’ and ‘CPU Load Data’ features of DSP/BIOS will provide a quick and
easy method for doing this. We will be tabulating these results in the table that follows at various
steps throughout the remainder of this lab.

Table 12-1: CPU Computational Burden Results

Case # Description CPU Load %

1 DMA processing handled in HWI. Filter inactive.

2 Case #1 + filter active.

3 DMA processing handled in SWI. Filter active.
LED blink handled in HWI.
RTA Global Host Enable disabled.

4 Case #3 + LED blink handled in PRD.

5 Case #4 + LOG_printf in SWI.

6 Case #5 + RTA SWI Logging enabled.

7 Case #6 + RTA SWI Accumulators enabled.

Run the Code — HWI() Implementation

At this point, we have modified the code so that DSP/BIOS will take control after main()
completes. However, we have not made any other changes to the code since the previous lab.
Therefore, the computations we want performed in the DINTCHZ1_ISR() (e.g., reading the ADC
result, running the filter) are still taking place in the hardware ISR, or to use DSP/BIOS
terminology, the HWI.

Note: For the next step, check to be sure that the jumper wire connecting PWMZ1A (pin #
GP10-00) to ADCINAO (pin # ADC-AQ) is still in place on the Docking Station.

C2000 Delfino Workshop - DSP/BIOS 12 - 25

Lab 12: DSP/BIOS

46. Run the code in real-time mode using the Script function: Scripts - Realtime

Emulation Control - Run_Realtime_with_Reset.

47. Setup a dual-time graph of the filtered and unfiltered ADC results buffer. Click:

48.

49.

50.

51.

Tools - Graph - Dual Time and set the following values:

Acquisition Buffer Size 48

DSP Data Type 32-bit floating-point
Sampling Rate (Hz) 48000

Start Address — A AdcBufFiltered
Start Address — B AdcBuf

Display Data Size 48

Time Display Unit us

Select OK to save the graph options.

The graphical display should show the filtered PWM waveform in the Dual Time A
display and the unfiltered waveform in the Dual Time B display. The results should be
the same as the previous lab.

Open the RTA Control Panel by clicking Tools > RTA - RTA Control
Panel. In the Diagnostics row set the following six control switches to RUNTIME OFF
by clicking directly to the right of the check boxes and using the pull-down options:

SWI logs PRD logs CLK logs TSK logs SWI stats PRD stats

This disables most of the realtime analysis tools we will be using in this lab exercise. We
will selectively enable them in the lab.

Open the CPU Load graph by clicking Tools - RTA -> CPU Load. Also open the
CPU Load Data window by clickingon Tools > RTA > CPU Load Data. The
CPU load graph and CPU load data window displays the percentage of available CPU
computing horsepower that the application is consuming. The CPU may be running
ISRs, software interrupts, periodic functions, performing 1/0 with the host, or running
any user routine. When the CPU is not executing user code, it will be idle (in the
DSP/BIOS idle thread).

The graph should start updating, showing the percentage load on the CPU. Keep the
CPU running to complete steps 51 through 55.

InMain_12.c notice that the global variable DEBUG_FILTER is used to control the
FIR filter in DINTCHL1_ISR(). If DEBUG_FILTER = 1, the FIR filter is called and the
AdcBufFilter array is filled with the filtered data. Likewise, if DEBUG_FILTER =0, the
filter is not called and the AdcBufFilter array is filled with the unfiltered data.

12 - 26

C2000 Delfino Workshop - DSP/BIOS

Lab 12: DSP/BIOS

52. Add the variable DEBUG_FILTER to the watch window. (Make sure that
continuous refresh isenabled for the watch window). Change its value to “0” to
turn off the FIR filtering. Notice the decrease in the CPU Load Graph.

53. Record the value shown in the CPU Load Data window under “Case #1” in Table 12-1.

54. Change the value of DEBUG_FILTER back to “1” in the watch window in order to bring
the FIR filter back online. Notice the jump in the CPU Load Graph.

55. Record the value shown in the CPU Load Data window under “Case #2” in Table 12-1.

56. Fully halt the CPU in real-time mode by using the Script function: Scripts >
Realtime Emulation Control -> Full_Halt.

Create a SWI

57. Switch to the “C/C++ Perspective” view by clicking the C/C++ icon in the upper right-
hand corner. In Main_12 _c notice that space has been added at the end of main() for
two new functions which will be used in this lab — DmalSwi() and LedBlink(). (Space
has also been provided for AdcSwi() for the optional exercise). In the next few steps, we
will move part of the DINTCH1_ISR() routine from Defaultlsr_12.c to this space
inMain_12.c.

58. Open Defaultlsr_12.c and locate the DINTCHZ1_ISR() routine. Move the entire
contents of the DINTCH1_ISR() routine to the DmalSwi() function in Main_12.c with
the following exceptions:

DO NOT MOVE:

e The instruction used to acknowledge the PIE group interrupt
e The static local variable declaration of GP1034_count

e The GPIO pin (LED) toggle code

Be sure to move all of the other static local variable declaration at the top of
DINTCHZ1_ISR() that is used to index into the ADC buffers. (Do not move the static
local variable declaration of GP1034_count).

Comment: In almost all appplications, the PIE group acknowledge code is left in the HWI
(rather than move it to a SWI). This allows other interrupts to occur on that PIE group
even if the SWI has not yet executed. On the other hand, we are leaving the GP10 and
LED toggle code in the HWI just as an example. It illustrates that you can post a SWI
and also do additional operations in the HWI. DSP/BIOS is extremely flexible!

59. Delete the interrupt key word from the DINTCH1_ISR. The interrupt keyword is
not used when a HW!I is under DSP/BIOS control. A HWI is under DSP/BIOS control
when it uses any DSP/BIOS functionality, such as posting a SWI, or calling any
DSP/BIOS function or macro.

C2000 Delfino Workshop - DSP/BIOS 12 - 27

Lab 12: DSP/BIOS

Post a SWiI

60.

Still in Defaultlsr_12.c add the following SWI_post to the DINTCH1_ISR(), just
after the structure used to acknowledge the PIE group:

SWI1_post(&DMAL swi); // post a SWI

This posts a SWI that will execute the DMAL_swi() code you populated a few steps back
in the lab. In other words, the DMAL interrupt still executes the same code as before.
However, most of that code is now in a posted SWI that DSP/BIOS will execute
according to the specified scheduling priorities. Save the modified files.

Add the SWI to the TCF File

61.

62.

63.

64.

In the configuration file Lab . tcT we need to add and setup the DmalSwi() SWI. Open
Lab. tcf and click on the plus sign (+) to the left of Schedul ing and again on the
plus sign (+) to the left of SW1 — Software Interrupt Manager.

Right click on SWI — Software Interrupt Manager and select Insert SWI.
Rename SW10 to DMAL_swi and click OK. This is just an arbitrary name. We want to
differentiate the DmalSwi() function itself (which is nothing but an ordinary C function)
from the DSP/BIOS SWI object which we are calling DMA1_swi.

Select the Properties for DMA1_ swi and type DmalSwi (with a leading
underscore) in the function field. Click OK. This tells DSP/BIQOS that it should run the
function DmalSwi() when it executes the DMAL_swi SWI.

We need to have the PIE for the DMA channel 1 interrupt use the dispatcher. The
dispatcher will automatically perform the context save and restore, and allow the
DSP/BIOS scheduler to have insight into the ISR. You may recall from an earlier lab
that the DMA channel 1 interrupt is located at PIE_INT7_1.

Click on the plus sign (+) to the left of HWI — Hardware Interrupt Service
Routine Manager. Click the plus sign (+) to the left of PIE INTERRUPTS. Locate
the interrupt entry for the DMA channel 1: PIE_INT7_1. Right click, select
Properties, and select the Dispatcher tab. Check the “Use Dispatcher” box
and select OK. Close the configuration file and click YES to save changes.

Build and Load

65.

66.

Click the “Bui 1d” button to generate the Lab . out file and select No to “Reload the
program automatically”. The Lab .out file needs to be programmed into flash memory.

Program the flash memory by clicking the “Debug” button (green bug). (If needed
select “Detai Is” in order to watch the programming operation and status). After
successfully programming the flash memory the “Progress Information” box will close
and the view will switch to the “Debug Perspective”.

12 - 28

C2000 Delfino Workshop - DSP/BIOS

Lab 12: DSP/BIOS

Run the Code — DmalSwi()

67. Run the code (real-time mode) using the Script function: Scripts > Realtime
Emulation Control - Run_Realtime with_Reset. Confirm that the
graphical display is showing the correct results. The results should be the same as before
(i.e., filtered PWM in the Dual Time A display, unfiltered PWM in the Dual Time B

display).
68. Record the value shown in the CPU Load Data window under “Case #3” in Table 12-1.

69. Fully halt the CPU (real-time mode) by using the Script function: Scripts >
Realtime Emulation Control -> Full_Halt.

Add a Periodic Function

Recall that an instruction was used in the DINTCHZ1_ISR to toggle the LED on the
ControlCARD. This instruction will be moved into a periodic function that will toggle the LED
at the same rate.

70. Switch to the “C/C++ Perspective” view by clicking the C/C++ icon in the upper right-
hand corner. In Defaultlsr_12.c locate the DINTCHL ISR routine. Move the
instruction used to toggle the LED to the LedBlink() function in Main_12.c:

GpioDataRegs.GPBTOGGLE.bit.GP1034 = 1; // Toggle the pin

Now delete from the DINTCHL1 _ISR() the code used to implement the interval counter
for the LED toggle (i.e., the GP1034_count++ loop), and also delete the declaration of
the GP1034_count itself from the beginning of DINTCH1_ISR(). These are no longer
needed, as DSP/BIOS will implement the interval counter for us in the periodic function
configuration (next step in the lab). Save the modified files.

71. In the configuration file Lab . tcT we need to add and setup the LedBlink_PRD. Open
Lab . tcF and click on the plus sign (+) to the left of Schedul ing. Right click on
PRD — Periodic Function Manger and select Insert PRD. Rename PRDO
to LedBlink_PRD and click OK.

72. Select the Properties for LedBlink PRD and type _LedBlink (with a leading
underscore) in the function field. This tells DSP/BIOS to run the LedBlink() function
when it executes the LedBlink_PRD periodic function object.

Next, in the period (ticks) field type 500. The default DSP/BIOS system timer
increments every 1 millisecond, so what we are doing is telling the DSP/BIOS scheduler
to schedule the LedBlink() function to execute every 500 milliseconds. A PRD object is
just a special type of SWI which gets scheduled periodically and runs in the context of
the SWI level at a specified SWI priority. Click OK. Close the configuration file and
click YES to save changes.

C2000 Delfino Workshop - DSP/BIOS 12 - 29

Lab 12: DSP/BIOS

Build and Program the Flash

73. Click the “Bui 1d” button to generate the Lab - out file and select No to “Reload the
program automatically”. The Lab.out file needs to be programmed into flash memory.

74. Program the flash memory by clicking the “Debug” button (green bug). (If needed
select “Detai Is” in order to watch the programming operation and status). After
successfully programming the flash memory the “Progress Information” box will close
and the view will switch to the “Debug Perspective”.

Run the Code — LedBlink_PRD
75. Run the code. Check to see if the LED on the Control CARD is blinking.

76. Record the value shown in the CPU Load Data window under “Case #4” in Table 12-1.

77. Halt the CPU. If you would like, experiment with different period (tick) values and
notice that the blink rate changes.

DSP/BIOS — Real-time Analysis Tools

The DSP/BIOS analysis tools complement the CCS environment by enabling real-time program
analysis of a DSP/BIOS application. You can visually monitor an MCU application as it runs
with essentially no impact on the application’s real-time performance. In CCS, the DSP/BIOS
realt-time analysis (RTA) tools are found on the Tools menu. Unlike traditional debugging,
which is external to the executing program, DSP/BIOS program analysis requires that the target
program be instrumented with analysis code. By using DSP/BIOS APIs and objects, developers
automatically instrument the target for capturing and uploading real-time information to CCS
using these tools.

We have actually been already using one part of the RTA tools in this lab: the CPU Load Graph
and CPU Load Data window. We will now utilize two other basic items from the RTA toolbox.

78. In the next few steps the Log Event Manager will be setup to record the occurrence of an
event in real-time while the program executes. We will be using LOG_printf() to
write to a log buffer. The LOG_printf() function is a very efficient means of sending
a message from the code to the CCS display. Unlike an ordinary C-language printf(),
which can consume several hundred CPU cycles to format the data on the MCU before
transmission to the CCS host PC, a LOG_printf() transmits the raw data to the host. The
host then formats the data and displays it in CCS. This consumes only 10’s of cycles
rather than 100’s of cycles.

Switch to the “C/C++ Perspective” view and add the following to Main_12. c at the top
of the LedBlink() function just before the instruction used to toggle the LED:

static Uintl6é LedSwiCount=0; // used for LOG_printf
/*** Using LOG printf() to write to a log buffer ***/

LOG_printf(&trace, "LedSwiCount = %u', LedSwiCount++);

12-30 C2000 Delfino Workshop - DSP/BIOS

Lab 12: DSP/BIOS

Save the modified file.

79. In the configuration file Lab . tcT we need to add and setup the trace buffer. Open
Lab.tcf and click on the plus sign (+) to the left of Instrumentation and again on
the plus sign (+) to the left of LOG — Event Log Manager. Rightclick on LOG —
Event Log Manager and select Insert LOG. Rename LOGO to trace and click
OK.

80. Select the Properties for trace and confirm that the logtype is set to circular and
the datatype is set to printf. Click OK. Close the configuration file and click YES to save
changes.

Build and Program the Flash

81. Since the configuration file was modified, we need to rebuild the project. Click the
“Bui 1d” button to generate the Lab . out file and select No to “Reload the program
automatically”. The Lab . out file needs to be programmed into flash memory.

82. Program the flash memory by clicking the “Debug” button (green bug). (If needed
select “Detai Is” in order to watch the programming operation and status). After
successfully programming the flash memory the “Progress Information” box will close
and the view will switch to the “Debug Perspective”.

Run the Code — Realtime Analysis Tools
83. Run the code.

84. Open the Printf Logs. On the menu bar, click:

Tools > RTA > Printf Logs

The message log dialog box is displaying the commanded LOG_printf() output, i.e. the
number of times (count value) that the LedSwi() has executed.

85. Record the value shown in the CPU Load Data window under “Case #5” in Table 12-1.
86. Open the Raw Logs window. On the menu bar, click:

Tools - RTA - Raw Logs

In the RTA Control Panel, set the SWI logs, PRD logs, CLK logs and TSK logs to
RUNTIME ON. This enables the logging of these event types. Notice that the Raw Logs
window is complete unformatted log data and is now displaying information about the
execution threads being taken by your software. This window is not based on time, but
the activity of events (i.e. when an event happens, such as a SWI or periodic function
begins execution). Notice that the Raw Logs window simply records DSP/BIOS CLK
events along with other system events (the DSP/BIOS clock periodically triggers the
DSP/BIOS scheduler).

C2000 Delfino Workshop - DSP/BIOS 12-31

Lab 12: DSP/BIOS

87.

88.

89.

90.

91.

The logging of events to the Raw Logs window consumes CPU cycles, which is why the
CPU Load Graph jumped as you enabled logging.

Record the value shown in the CPU Load Data window under “Case #6” in Table 12-1.
Open the Statistics Data window. On the menu bar, click:

Tools > RTA - Statistics Data

Presently, the Statistics Data window is not changing with the exception of the statistics
for the IDL_busyObj row (i.e., the idle loop). This is because we have it disabled in the
RTA Control Panel.

In the RTA Control Panel, set the SWI stats and PRD stats to RUNTIME ON. This
enables the logging of statistics to the statistics Data window. The logging of statistics
consumes CPU cycles, which is why the CPU Load graph jumped as you enabled

logging.
Record the value shown in the CPU Load Data window under “Case #7” in Table 12-1.
Table 12-1 should now be completely filled in. Think about the results.

Halt the CPU. If time permits you can proceed to the optional exercise at the end of the
lab. When finished continue with the next step.

Terminate Debug Session and Close Project

92.

93.

Terminate the active debug session using the Terminate Al button. This will close
the debugger and return CCS to the “C/C++ Perspective” view.

Next, close the project by right-clicking on Lab12 in the C/C++ Projects window
and select Close Project.

Return Boot Mode Jumpers Back to Default Positions

94.

95.

Remove the power to the Docking Station by disconnecting the USB cable.

Return the settings of the boot mode switches or jumpers back to the default positions
“Jump to MOSARAM?” boot mode as shown in the table below (see Appendix A for
jumper position details):

Position 1/ Position 2 / Position 3/ Position 4/

Jumper 84 Jumper 85 Jumper 86 Jumper 87 MO0 SARAM

(GP10-84) (GP10-85) (GP10-86) (GP10-87) Boot Mode
Down -0 Down -0 Up-1 Down -0 controlCARD
Right -0 Right -0 Left—1 Right -0 Docking Station

12-32

C2000 Delfino Workshop - DSP/BIOS

Lab 12: DSP/BIOS

End of Exercise

Note:

In this lab exercise only the basic features of DSP/BIOS and the real-time analysis tools
have been used. For more information and details, please refer to the DSP/BIOS user’s
manuals and other DSP/BIOS related training.

Optional Exercise:

Modify the lab to service the ADC without using the DMA as it was done in the Lab 8 exercise.
Remove the call to the InitDma() function and enable the interrupts in the Adc.c file. Then use
DSP/BIOS to convert the ADCINT _ISR HWI to SWI. Recalculate the CPU computational
burden servicing the ADC without using the DMA.

A.

B.

InMain_12.c comment out the code used to call the InitDma() function.

INADC_9 10 _12.c uncomment the code used to enable the ADC interrupt. The ADC
will now trigger the interrupt rather than the DMA.

In Defaultlsr_12_c locate the ADCINT_ISR() routine. Move the entire contents of
the ADCINT _ISR() routine to the AdcSwi() function in Main_12 . c with the following
exceptions: Do Not Move — the instruction used to acknowledge the PIE group interrupt,
the static local variable declaration of GP1034_count, and the GPIO pin toggle code /
LED toggle code. Be sure to move the other static local variable declaration at the top of
ADCINT_ISR() that is used to index into the ADC buffers.

In Defaultlsr_12._c delete the interrupt key word from the ADCINT_ISR.
Next delete the LED toggle code and the declaration of the GP1034_count from the
beginning of ADCINT _ISR(). This is already being done with a periodic function.

In Defaultlsr_12._c add the following SWI_post to the ADCINT_ISR(), just after
the structure used to acknowledge the PIE group: SW1_post(&ADC_swi); //post a
SWI. Save the modified files.

In the configuration file Lab . tcT add and setup the AdcSwi() SWI. Open Lab.tcT
and click on the plus sign (+) to the left of Schedull ing and again on the plus sign (+)
to the left of SWI — Software Interrupt Manager.

Right click on SWI — Software Interrupt Manager and select Insert SWI.
Rename SW10 to ADC_swi and click OK. This is just an arbitrary name to differentiate
the AdcSwi() function itself (which is nothing but an ordinary C function) from the
DSP/BIOS SWI object which we are calling ADC_swi.

Select the Properties for ADC_swi and type _AdcSwi (with a leading underscore)
in the function field. Click OK. This tells DSP/BIOS that it should run the function
AdcSwi() when it executes the ADC_swi SWI.

Next, we need to have the PIE for the ADC interrupt use the dispatcher. The dispatcher
will automatically perform the context save and restore, and allow the DSP/BIOS
scheduler to have insight into the ISR. You may recall from an earlier lab that the ADC
interrupt is located at PIE_INT1 6.

C2000 Delfino Workshop - DSP/BIOS 12 - 33

Lab 12: DSP/BIOS

Click on the plus sign (+) to the left of HWl — Hardware Interrupt Service
Routine Manager. Click the plus sign (+) to the left of PIE INTERRUPTS. Locate
the interrupt entry for the ADC: PIE_INT1_6. Right click, select Properties, and
select the Dispatcher tab. Check the “Use Dispatcher” box and select OK.
Close the configuration file and click YES to save changes.

Click the “Bui 1d” button to generate the Lab . out file and select No to “Reload the
program automatically”. Next click the “Debug” button to program the flash memory.

. Run the code in real-time mode using the Script function: Scripts -> Realtime

Emulation Control - Run_Realtime_with_Reset.

Confirm that the graphical display is showing the correct results. The results should be

the same as before (i.e., filtered PWM in the Dual Time A display, unfiltered PWM in the

Dual Time B display). Note that the ADC_swi is being serviced rather than the
DMAL_swi.

. Notice and compare the CPU computational burden servicing the ADC without using the

DMA. The CPU load is now at 68% as compared to 17% for case #7. Also, in the
Statistics Data window notice that the ADC_swi is now running rather than
DMA1 swi.

. Fully halt the CPU (real-time mode) by using the Script function: Scripts >

Realtime Emulation Control -> Full_Halt.

End of Optional Exercise

12-34

C2000 Delfino Workshop - DSP/BIOS

Lab 12: DSP/BIOS

Lab 12 Reference: Programming the Flash

Flash Memory Section Blocks

base =

0x30 0000

FLASH
len = Ox3FF80
space =code

Lab_12.cmd

0x33 FF80

CSM_RSVD
len = Ox76
space = code

0x33 FFF6

BEGIN_FLASH
len = 0x2
space = code

0x33 FFF8

PASSWORDS
len = 0x8
space = code

SECTIONS

{
codestart

csm_rsvd

:> BEGIN_FLASH, PAGE=0
passwords :> PASSWORDS, PAGE=0
:> CSM_RSVD,

DR

PAGE =0

BIOS Startup Sequence from Flash Memory

,,,,,,,,, ~" | BIOS code Sections
0x30 0000 _c_int00 BIOS reset()
FLASH (256Kw) BIOS init()
main ()
----------------------- BIOS_start
— Ox337FF6 | | LB _start()
c_int00 —
Passwords (8w) C5> IDL_run()
\ “rts2800_ml.lib”
\\ A
Ca) N “user” code sections
\ main ()
0X3F FO00 | Boot ROM (8Kw) AN {
Boot Code \\
Ox3F FOCE N return
{SCAN GPIO} @ \ } ’
\
BROM vector (32w) \\
5 0x3F FFCO 0x3F FOCE ——

RESET

C2000 Delfino Workshop - DSP/BIOS

12 -35

Lab 12: DSP/BIOS

Table 12-2: CPU Computational Burden Results (Solution)

Case # Description CPU Load %
1 DMA processing handled in HWI. Filter inactive. 4
2 Case #1 + filter active. 15
3 DMA processing handled in SWI. Filter active. 17

LED blink handled in HWI.
RTA Global Host Enable disabled.

4 Case #3 + LED blink handled in PRD. 17
5 Case #4 + LOG_printf in SWI. 17
6 Case #5 + RTA SWI Logging enabled. 18
7 Case #6 + RTA SWI Accumulators enabled. 18

12 - 36 C2000 Delfino Workshop - DSP/BIOS

Development Support

Introduction

This module contains various references to support the development process.

Learning Objectives

Learning Objectives

¢ TIWorkshops Download Site
¢ Signal Processing Libraries
¢ Tl Development Tools

¢ Additional Resources
+ Internet

+ Product Information Center

C2000 Delfino Workshop - Development Support 13-1

Module Topics

Module Topics

DEVEIOPMENT SUPPOKT ...ttt ettt bbbt et e et e st e e et e besbeebe s beeb e e e e b e e seeeas 13-1
T LU T=N o ot 13-2

T1 SUPPOIT RESOUICES ...ttt sttt r ettt e e sn bbb nnens 13-3
C2000 WOorkshop DOWNIOAD WIKIc.ccuiriiiiiiiiiisieesie e e 13-3

(ot 1 (0] 1] 01 N I OSSPSR 13-4
C28x Signal Processing LIDIaries.ot 13-4
EXPEIIMENTEITS KIS .. ettt et b et bttt e et e b bt b e s bt e beennenbenbesee s 13-5
F28335 Peripheral EXPIOrer Kit.........cc.ooiiiiiiiiiiiiiee ettt 13-6
C2000 controlCARD APPHIICALION KitS........ccceiiiiiiiicieiicie sttt sre s 13-6
Product INfOrmMation RESOUITESoueiiiieieirieieisieie sttt b et 13-7

13-2 C2000 Delfino Workshop - Development Support

Tl Support Resources

Tl Support Resources

C2000 Workshop Download Wiki

‘9 Texas
INSTRUMENTS

navigation

= Main Page

= Al pages

= Al categories
= Popularpages
= Popularauthars
= Popular categories
= Category stats
= Recentchanges
= Random page
= Help

= Google Search

printiexport
= Creats abook

= Download as PDF
= Printable version

search

Search

toolbox

whatlinks here
Related changes
Special pages
Permanent link
Printas PDF

C2000 Workshop Download Wiki

2 Login i create account

page || discussion view source | | history

Hands-On Training for TI| Embedded Processors

(Redirected Training

Hands-On Training for TI Embedded Processors

TI's Technical Training Organization conducts hands-on training for Tl embedded processors at various worldwide locations.
You can find complete course descriptions, locations, dates, and enrollment information here &,

On the Tl training site, you can find specific workshop locations/dates using the lefi-hand navigation links. Select "By Type"
and then select either "1-Day Warkshops" or "Multi-Day Workshops® to get a complete list of training available. Click on the
“Register Now" button, or one of the individual "Register” buttons to enraoll in a workshop.

If you would like to review specific workshop materials on your awn, you can download the files using the links below.
C2000™ 32-bit Real-time MCU Training

C2000™ Piccolo™ One-Day Workshop
C2000™ Piccolo™ Multi-Day Workshop agenda, locations, and schedule &9
Online materials and labs

C2000™ Piccolo™ Multi-Day Workshop
C2000™ Piccolo™ MultiDay Warkshop agenda, locations, and schadule &9
Online materials labs

C2000™ Delfino™ Multi-Day Workshop
TWE320C28x™ MCU Waorkshop agenda, locations, and schedule &9
Online materials and labs

C2000™ Archived Workshops

The archived workshops are for F2407, F2812, and F2808 one-day and multi-day workshops. The F28335 eZdsp one-day
workshop is also found here C2000 archived workshops

http://processors.wiki.ti.com/index.php/Training

C2000 Delfino Workshop - Development Support

13-3

Tl Support Resources

controlSUITE

w3 LINS|0U0D

controlSUITE™

Texas Instruments conlralSUTTE

: oshaisemedaed com
a {* conbmiSUITE o
& controlSUITE™
Devices
\F i Aprehen r timized. k Id 5ot v e cantral
e Qe controlSUITE™ Software
&) voiwe Comprehensive. Intuitive. Optimized
* Solutions for every design stage
Applcaton Mobes = Unigua real-time control 1P
» Unparalieled access
a Training and Support » Download

—{ Datashonts and Guides

- .
& ¥ Code Composer Swdio IDE

&

FEERERRCOEY

Erampies

C28x Sig

nal Processing Libraries

C2000 Signal Processing Libraries

Signal Processing Libraries & Applications Software Literature #
ACI3-1: Control with Constant V/Hz SPRC19%4
ACI3-3: Sensored Indirect Flux Vector Control SPRC207
ACI3-3: Sensored Indirect Flux Vector Control (simulation) SPRC208
ACI3-4: Sensorless Direct Flux Vector Control SPRC195
ACI3-4: Sensorless Direct Flux Vector Control (simulation) SPRC209
PMSM3-1: Sensored Field Oriented Control using QEP SPRC210
PMSM3-2: Sensorless Field Oriented Control SPRC197
PMSM3-3: Sensored Field Oriented Control using Resolver SPRC211
PMSM3-4: Sensored Position Control using QEP SPRC212
BLDC3-1: Sensored Trapezoidal Control using Hall Sensors SPRC213
BLDC3-2: Sensorless Trapezoidal Drive SPRC19
DCMOTOR: Speed & Position Control using QEP without Index SPRC214
Digital Motor Control Library (F/C280x) SPRC215
Communications Driver Library SPRC183
DSP Fast Fourier Transform (FFT) Library SPRC081
DSP Filter Library SPRC082
DSP Fixed-Point Math Library SPRC085
DSP IQ Math Library SPRC087
DSP Signal Generator Library SPRC083
DSP Software Test Bench (STB) Library SPRC084
C28x FPU Fast RTS Library SPRC664
C2833x/C2823x C/C++ Header Files and Peripheral Examples SPRC530

Available from Tl Website = http://www.ti.com/c2000

13-4

C2000 Delfino Workshop - Development Support

Tl Support Resources

Experimenter’s Kits

C2000 Ex

F28027,

TMDXDOCK28027

TMDSDOCK 28335

Pzerimenter’s Kits

8035, F2808, F28335

¢ Experimenter Kits include

+ F28027, F28035, F2808 or F28335
controlCARD

+ USB docking station

+ C2000 Applications Software CD
with example code and full
hardware details

+ Code Composer Studio v3.3 with
code size limit of 32KB

¢ Docking station features

+ Access to controlCARD signals
+ Breadboard areas

+ Onboard USB JTAG Emulation
« JTAG emulator not required

¢ Available through Tl authorized

distributors and the Tl eStore

TMDXDOCK28343

TMDXDOCK?28346-168

C2834x Experimenter’s Kits
C28

343, C28346

¢ Experimenter Kits include
« (C2834x controlCARD
« Docking station

« C2000 Applications Software CD
with example code and full
hardware details

+ Code Composer Studio v3.3 with
code size limit of 32KB

« 5V power supply

¢ Docking station features
+ Access to controlCARD signals

+ Breadboard areas

« JTAG emulator required — sold
separately

¢ Availablethrough Tl authorized
distributors and the Tl eStore

C2000 Delfino Workshop - Development Support

13-5

Tl Support Resources

F28335 Peripheral Explorer Kit

TMDSPREX28335

F28335 Peripheral Explorer Kit

*

Experimenter Kit includes
« F28335 controlCARD
« Peripheral Explorer baseboard

« C2000 Applications Software CD
with example code and full
hardware details

+« Code Composer Studio v3.3 with
code size limit of 32KB

+« 5V DC power supply

Peripheral Explorer features
« ADC input variable resistors
+ GPIO hex encoder & push buttons
+ eCAP infrared sensor
+ GPIO LEDs, I12C & CAN connection
+ Analog I/O (AIC+McBSP)

JTAG emulator required — sold
separately

Available through Tl authorized
distributors and the Tl eStore

C2000 controlCARD Application Kits

Digital Power
Experimenter’s
Kit

Digital Power
Developer’s
Kit

Resonant
DC/DC
Developer’s Kit

Renewable
Energy
Developer’s Kit

AC/DC
Developer’s
Kit

Dual Motor
Control and
PFC
Developer's
Kit

C2000 controlCARD Application Kits

*

*

Kits includes

+ controlCARD and application
specific baseboard

« Full version of Code Composer
Studio v3.3 with 32KB code size
limit

Software download includes
+« Complete schematics, BOM, gerber

files, and source code for board
and all software

+ Quickstart demonstration GUI for
guick and easy access to all board
features

« Fully documented software
specific to each kit and application

See www.ti.com/c2000 for more
details

Available through Tl authorized
distributors and the Tl eStore

13-6

C2000 Delfino Workshop - Development Support

Tl Support Resources

Product Information Resources

For More Information . . .

Internet
Website: http://www.ti.com

FAQ: http://www-k.ext.ti.com/sc/technical_support/knowledgebase.htm

+ Device information ¢+ my.ti.com
+ Application notes _ + News and events
+ Technical documentation ¢ Training

Enroll in Technical Training: http:/www ti.com/sc/training

USA - Product Information Center (PIC)
Phone: 800-477-8924 or 972-644-5580
Email: support@ti.com

¢ Information and support for all TI Semiconductor products/tools
+ Submit suggestions and errata for tools, silicon and documents

European Product Information Center (EPIC)

Web: http:/Mmwww-Kk.ext.ti.com/sc/technical support/pic/euro.htm

Phone: Language Number

Belgium (English) +32 (0) 27 45 55 32
France +33 (0) 1 30 70 11 64
Germany +49 (0) 8161 80 33 11
Israel (English) 1800 949 0107 (free phone)
Italy 800 79 11 37 (free phone)
Netherlands (English) +31 (0) 546 87 95 45
Spain +34 902 35 40 28
Sweden (English) +46 (0) 8587 555 22
United Kingdom +44 (0) 1604 66 33 99
Finland (English) +358(0) 9 25 17 39 48

Fax: All Languages +49 (0) 8161 80 2045

Email: epic@ti.com

+ Literature, Sample Requests and Analog EVM Ordering

¢ Information, Technical and Design support for all Catalog T
Semiconductor products/tools

+ Submit suggestions and errata for tools, silicon and documents

C2000 Delfino Workshop - Development Support 13-7

Tl Support Resources

13-8 C2000 Delfino Workshop - Development Support

Appendix A — Experimenter’s Kit

C2000 Delfino Workshop - Appendix A - Experimenter's Kit A-1

Module Topics

Module Topics

AppendixX A — EXPEriMENTEI™S Kt ..ottt et b nn A-1
T LU T=TN I o ot PSSP A-2
F28035 CONIIOICARDeveiii ittt ettt ettt e ettt e ettt e e st e s e ettt e e s st e e e s sabaeesstbesesaabaaessabeeessbaesesanes A-3

F28035 PCB OULHNE (TOP VIBW) ...ttt sttt st A-3
LDL /T LD2 /T LD3 ..ottt ettt ettt ettt et e e et e et e et e et e st e e st e st e e r e e nteen e e e et e e et e aaee s A-3
AT OO UR TR A-3
AT TRTUROTR A-4
X AT L TR TR TR A-4
F28335 CONIOICARD ...ttt ettt sttt st e st e s st e e s e s st e s s ab e s s bt e e s abe s sbe e e sbbessbbessabessraeesaras A-5
F28335 PCB OULIINE (TOP VIBW) ...teiiiciieiiie ettt ettt bttt st st e st nesne e s e A-5
[I 12 I 5 1 A-6
RS0 A-6
)10 2 A-7
DOCKING STALION. ...ttt bbb b bbbt b et b bbbt A-8
SWVL T LD L. oottt ettt e e e e et e et e st e et e et e et e e et e ae e e st e e e e n e e neanerreerrnenanes A-8
P L T IP 2 e e e et e et e e rt e et e a—er e e ar et et e rat e e e e raae s A-8
AR A N AN 3 AL TR A-8
F2833X BOOt MOUE SEIECTION ...ttt e e s st e e s s be e e e s sa e e e s sabae s s sbaneessrbaeeaas A-9
F280XX BOOt MOUE SEIECIION ...ttt ettt e e e st e e s e e e e s sb e e e s sabae s s sabaneessbbneeaas A-9
J3 —DB-910 4-Pin HEAEr CaBIEcveeieiiecee ettt st A-10

A-2 C2000 Delfino Workshop - Appendix A - Experimenter's Kit

F28035 controlCARD

F28035 controlCARD

F28035 PCB Outline (Top View)

SwWi

F2803x controlCARD
RELEASE 1.0

it O O
gl[’;] i

i =

EEME

28 ICND NN 26

-

SW3

LD1/LD2/LD3
LD1
LDZ — Controlled by GPIO-31
LD3 — Controlled by GPI0O-34

SwW1

— Turns on when controlCARD is powered on

LD1 LD2 LD3

\\/

SW1 — controls whether on-card RS-232 connection is enabled or disabled.

e ON — RS-232 transceiver will be enabled and allow communication
through a serial cable via pins 2 and 42 of the DIMM-100 socket. Putting
SW1 in the “ON” position will allow the F28035 controlCARD to be card
compatible with the F2808, F28044, F28335, and F28027 controlCARDs.
GP10-28 will be stuck as logic high in this position.

e OFF - The default option. SW1 in the “OFF” position allows GPI0O-28 to
be used as a GPIO. Serial communication is still possible, however an

external transceiver such as the FTDI —

FT2232D chip.

C2000 Delfino Workshop - Appendix A - Experimenter's Kit

F28035 controlCARD

SW2
SW2 — controls the boot options of the F28035 device

Position 1 | Position 2
(GPIO-34) | (TDO)
0 0 Parallel I/O
0 1 Wait mode
1 0 SCI
1 1 (default) Get mode; the default get mode is boot from FLASH

SW3

SW3 - ADC VREF control

The ADC will by default convert from 0 to 3.3V, however if in the ADC registers
the ADC is configured to use external limits the ADC will convert its full range of
resolution from VREF-LO to VREF-HI.

Position 1 controls VREF-HI, the value that the ratiometric ADC will convert as
the maximum 12-bit value, OXOFFF. In the downward position, VREF-HI will be
connected to 3.3V. In the upward position, VREF-HI will be connected to pin 66
of the DIMM100-socket. This would allow a connecting board to control the
ADC-VREFHI value.

Position 2 controls VREF-LO, the value that the ratiometric ADC will convert as
the minimum 12-bit value, 0x0000. In the downward position, VREF-LO will be
connected to OV. In the upward position, VREF-LO will be connected to pin 16 of
the DIMM100-socket. This would allow a connecting board to control the ADC-
VREFLO value.

A-4 C2000 Delfino Workshop - Appendix A - Experimenter's Kit

F28335 control CARD

F28335 controlCARD

F28335 PCB Outline (Top View)

PGF — Release 1.x
Swi SwW2 LD1 LD2 LD3

\ / AN

F28335 PGF cantrolCARD YRELEASE 1.0 L TVTTTETTE Ty
TMDSCNCD28335PGF R1.0 | €20 E]

1
T LT

i : <
us o E|Texus

:,[Eo Bg Instruments
=m == _ o a4 = —
BE L g m
g
@ HEEEECS T —_—

(LRRERRTERTRNECCRRREECRRTERRDVRNEERCRRRDD =
(TR

ZJZ — Release 2.x
SW1 SWwW2 LD1 LD2 LD3

\ _/ \\/

F28335 controlCARD RELEASE 2.2

TMDSCNCD2B335 R2.2 (111
® iy 000
-y I:][

I%""lH TE@ -

Instruments

|:|IIIIIIII 3
@ cHEE I M s

C2000 Delfino Workshop - Appendix A - Experimenter's Kit A-5

F28335 controlCARD

BGA — Release 1.x
LD3 LD2 LD1

N/

[L | | IO}
Hl.: = - ..'I\-"a

] ™ c3z
: []] - ..L? Lns N[: .:.[:]
4) ms

. L8 =
e - ?Josn ?uz
e b0 - - [T}
- = Tugl [ﬂ} RE R9
=
(-3

a4
=
i

o

~

=3

3
R16
| |
-
3
[+ 4
-
3
.
]
I
-

NEN, NEN, EN
jl-| #-llf,::lll| 3?9 4
DN3 DNl DN2

R2OMMEE DEEE

|| .
[| JREeEr] T | .

C35

R22

RNZ

s
Rel-1.2

o G0 \J o

Microcontroller

fis
Ik

-~ F2833x-BCA
&

]

Note: Older versions of the F28335 controlCARD do not include SW1 or
SW2.

LD1/LD2/LD3

LD1 — Turns on when controlCARD is powered on

LDZ2 — Controlled by GPIO-31
LD3 — Controlled by GPI0O-34

SW1

SW1 — controls whether on-card RS-232 connection is enabled or disabled.

¢ ON — RS-232 transceiver will be enabled and allow communication
through a serial cable via pins 2 and 42 of the DIMM-100 socket. Putting
SW1 in the “ON” position will allow the F28335 control CARD to be card
compatible with the F2808, F28044, F28035, and F28027 controlCARDs.
GPI10-28 will be stuck as logic high in this position.

e OFF -SW1 in the “OFF” position allows GPIO-28 to be used as a GPIO.
Serial communication is still possible, however an external transceiver is
needed such as the FTDI — FT2232D chip.

o This is primarily used for communicating over the USB to serial
bridge included in the onboard XDS100 JTAG emulation on many
C2000 development boards.

A-6 C2000 Delfino Workshop - Appendix A - Experimenter's Kit

F28335 control CARD

SW2

SW2 — controls the boot options of the F28335 device.

The boot options used in this workshop are shown below:

Position 1 Position 2 Position 3 Position 4 Boot Mod
(GPIO-84) | (GPIO-85) | (GPIO-86) | (GPIO-87) | P00t MOCE
0 0 1 0 SARAM
1 1 1 1 FLASH

For a complete list of boot mode options see the F2833x Boot Mode
Selection table in the Docking Station section of this appendix.

Some earlier versions of the F28335 control CARD use the ZJZ (a BGA)
package. These are functionally equivalent to versions that use the PFG

package.

C2000 Delfino Workshop - Appendix A - Experimenter's Kit

Docking Station

Docking Station

2833x
Boot*

Texas Instruments Docking-Stn USB-EMUN\ R3]

. JP2

""...I '..IIII LU)
seasse & DU [
DUOOUO00)

ssjsssiss e

oooooooooo.goo(.
sssssissssssiess

+~SW1

Etg.:..; “~JP1
[

J1 LD1

*Note: Jumper Left = 1; Jumper Right =0

SW1/LD1

SW1 - USB: Power from USB; ON — Power from JP1

LD1 — Power-On indicator

JP1/JP2

JP1-5.0V power supply input

JP2 — USB JTAG emulation port

J1/32/33738/J9

J1 - ControlCARD 100-pin DIMM socket

J2 — JTAG header connector

J3 — UART communications header connector

J8 — Internal emulation enable/disable jumper (NO jumper for internal emulation)

J9 — User virtual COM port to C2000 device (Note: ControlCARD would need to be
modified to disconnect the C2000 UART connection from header J3)

C2000 Delfino Workshop - Appendix A - Experimenter's Kit

Docking Station

Note:

device. By default this device enables the USB connection to perform JTAG
communication and in parallel create a virtual serial port (SCI/UART). As shipped, the
C2000 device is not connected to the virtual COM port and is instead connected to J3.

The internal emulation logic on the Docking Station routes through the FT2232 USB

F2833x Boot Mode Selection

MODE

GPIOBTIXA15

GPIO86/XA14

GPIO85/XA13

GPIO84/XA12

MoODE!™

F

1

1

Jump to Flash

SCI-A boot

SPI-A boot

12C-A boot

eCAN-A boot

McBSP-A boot

Jump to XINTF x16

Jump to XINTF x32

Jump to OTP

Parallel GPIO IfO boot

Parallel XINTF boot

Jump to SARAM

Branch to check boot mode

Mlwls|ln]|o | ~|e|le|r|o|o|Olm

1
1
1
1
1
1
1
0
0
0
0
0
0

1
1
1
0
0
0
0
1
1
1
1
0
0

=l=|lolol=l=lolol==|olal|—=

Branch to Flash, skip ADC
calibration

Branch to SARAM, skip ADC
calibration

Branch to SCI, skip ADC
calibration

i

All four GPIO pins have an internal pullup.

F280xx Boot Mode Selection

Mode Description GPlO18 GPIO29 GPIO34
SPICLKA) SCITXDA
SCITXDB
Boot to Flash 2 Jump to flash address 0x3F 7FF6. You must have programmed 1 1 1
a branch instruction here prior to reset to redirect code
execution as desired.
SCI-A Boot Load a data stream from SCI-A. 1 1 0
SFPI-A Boot Load from an external serial SPI EEPROM on SPI-A. 1 0 1
12C Boot Load data from an external EEFPROM at address 0x50 on the 1 0 0
12C bus.
eCAN-A Boot 3 Call CAN_Boot to load from eCAN-A mailbox 1. 0 1 1
Boot ta MO SARAM “) Jump to M0 SARAM address 0x00 0000. 0 1 0
Boot ta OTP @) Jump to OTP address 0x3D 7800 0 0 1
Parallel IO Boot Load data from GPIOO - GPIO15. 0 0 0

(1)
(2)

(3)

()

You must take extra care because of any effect toggling SPICLKA to select a boot mode may have on external logic.
When booting directly to flash, it is assumed that you have previously programmed a branch statement at 0x3F 7FFG to redirect
pragram flow as desired
On devices that do not have an eCAN-A module this configuration is reserved. If it is selected, then the eCAN-A bootloader will
run and will loop forever waiting for an incoming message.
When booting directly to OTF or MO SARAM, it is assumed that you have previously programmed or loaded code starting at the

entry point

location.

C2000 Delfino Workshop - Appendix A - Experimenter's Kit

Docking Station

J3 - DB-9to 4-Pin Header Cable

Note: This cable is NOT included with the Experimenter’s Kit and is only shown for reference.

DB-9 Male Pin-Out Table for Both Ends of the Cable:
| Dists cartier detect DB-9 female SIL 0.1" female
— Data st ready Pin# Pin#
— Receive dats

T?— ?eques}ttgaisend - -
— Tranzm a

BO——— Clear to send 2 (black) 1 (TX)

40— Data terminal ready 3 (red) 4 (RX)
2 o Sl o 5 (barewire) 3 (GND)

Protective ground Note: pin 2 on SIL is a no-connect

A-10 C2000 Delfino Workshop - Appendix A - Experimenter's Kit

	Important Notice
	Revision History
	Mailing Address

	C2000™ Delfino™ Workshop
	Introductions
	 C2000™ Delfino™ Workshop Outline
	C2000™ Experimenter Kit

	C28xm01.pdf
	Architecture Overview
	Introduction
	Learning Objectives
	Module Topics
	What is the TMS320C28x?
	 TMS320C28x Internal Bussing

	C28x CPU
	 Special Instructions
	 Pipeline Advantage
	 FPU Pipeline

	Memory
	Memory Map
	 Code Security Module (CSM)
	Peripherals

	Fast Interrupt Response
	C28x Mode
	Summary

	C28xm02.pdf
	Programming Development Environment
	Introduction
	Learning Objectives
	Module Topics
	Code Composer Studio
	Software Development and COFF Concepts
	 C/C++ and Debug Perspective (CCSv4)
	 CCSv4 Projects
	 Creating a New CCSv4 Project
	 CCSv4 Build Options – Compiler / Linker

	Creating a Linker Command File
	Sections
	Program Code (.text)
	Constants (.cinit – initialized data)
	Variables (.ebss – uninitialized data)

	 Linker Command Files (.cmd)
	Memory-Map Description
	Section Placement
	Summary: Linker Command File

	Lab 2: Linker Command File
	System Description
	Placement of Sections:
	Initial Boot Mode Jumper Settings
	Start Code Composer Studio and Open a Workspace
	Setup Target Configuration
	Create a New Project
	Project Build Options
	End of Exercise

	Lab 2: Solution – lab2.cmd

	C28xm03.pdf
	Peripherial Registers Header Files
	Introduction
	 Learning Objectives
	Module Topics
	Traditional and Structure Approach to C Coding
	Naming Conventions
	F2833x C-Code Header Files
	 Global Variable Definitions File
	 Mapping Structures to Memory
	Linker Command File
	 Peripheral Specific Routines

	Summary

	C28xm04.pdf
	Reset and Interrupts
	Introduction
	Learning Objectives
	Module Topics
	Reset
	Reset - Bootloader

	Interrupts
	Interrupt Processing
	Peripheral Interrupt Expansion (PIE)
	 PIE Interrupt Vector Table
	Interrupt Response and Latency

	C28xm05.pdf
	System Initialization
	Introduction
	Learning Objectives
	Module Topics
	Oscillator/PLL Clock Module
	Watchdog Timer
	General-Purpose Digital I/O
	External Interrupts
	Low Power Modes
	Register Protection
	Lab 5: System Initialization
	Create a New Project
	Project Build Options
	Modify Memory Configuration
	Setup System Initialization
	Build and Load
	Run the Code – Watchdog Reset
	Setup PIE Vector for Watchdog Interrupt
	Build and Load
	Run the Code – Watchdog Interrupt
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm06.pdf
	Analog-to-Digital Converter
	Introduction
	Learning Objectives
	Module Topics
	Analog-to-Digital Converter
	 Analog-to-Digital Converter Registers
	 Example – Sequencer “Start/Stop” Operation
	 ADC Conversion Result Buffer Register
	Signed Input Voltages
	 ADC Calibration

	Lab 6: Analog-to-Digital Converter
	Notes
	Open the Project
	Setup ADC Initialization and Enable Core/PIE Interrupts
	Build and Load
	Run the Code
	Using Real-time Emulation
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm07.pdf
	Control Peripherals
	Introduction
	Learning Objectives
	Module Topics
	PWM Review
	ePWM
	 ePWM Time-Base Sub-Module
	 ePWM Compare Sub-Module
	 ePWM Action Qualifier Sub-Module
	Asymmetric and Symmetric Waveform Generation using the ePWM
	 PWM Computation Example
	 ePWM Dead-Band Sub-Module
	ePWM PWM Chopper Sub-Module
	 ePWM Trip-Zone Sub-Module
	 ePWM Event-Trigger Sub-Module
	Hi-Resolution PWM (HRPWM)

	eCAP
	eQEP
	Lab 7: Control Peripherals
	Open the Project
	Setup Shared I/O and ePWM1
	Build and Load
	Run the Code – PWM Waveform
	Frequency Domain Graphing Feature of Code Composer Studio
	Setup eCAP1 to Measure Width of Pulse
	Build and Load
	Run the Code – Pulse Width Measurement
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm08.pdf
	Numerical Concepts
	Introduction
	Learning Objectives
	Module Topics
	Numbering System Basics
	Binary Numbers
	Examples:

	Two's Complement Numbers
	Examples:
	 To load small two's complement numbers into larger registers:
	Examples:

	Integer Basics
	 Sign Extension Mode

	Binary Multiplication
	Binary Fractions
	Representing Fractions in Binary
	Fraction Basics
	 Multiplying Binary Fractions

	Fraction Coding
	Fractional vs. Integer Representation
	Floating-Point
	IQmath
	IQ Fractional Representation
	Traditional “Q” Math Approach
	IQmath Approach

	IQmath Library
	 16 vs. 32 Bits

	Converting ADC Results into IQ Format
	AC Induction Motor Example
	IQmath Summary
	Lab 8: IQmath & Floating-Point FIR Filter
	Open the Project
	Project Build Options
	Include IQmathLib.h
	Inspect Lab_8.cmd
	Select a Global IQ value
	IQmath Single-Sample FIR Filter
	Build and Load
	Run the Code – Filtered Waveform
	Changing Math Type to Floating-Point
	Build and Load
	Run the Code – Floating-Point Filtered Waveform
	Terminate Debug Session and Close Project
	End of Exercise
	 Lab 8 Reference: Low-Pass FIR Filter

	C28xm09.pdf
	Direct Memory Access Controller
	Introduction
	Learning Objectives
	Module Topics
	Direct Memory Access (DMA)
	 Basic Operation
	 DMA Examples
	 DMA Priority Modes
	 DMA Throughput
	 DMA Registers

	Lab 9: Servicing the ADC with DMA
	Open the Project
	Inspect Lab_9.cmd
	Setup DMA Initialization
	Setup PIE Interrupt for DMA
	Build and Load
	Run the Code – Test the DMA Operation
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm10.pdf
	System Design
	Introduction
	Learning Objectives
	Module Topics
	Emulation and Analysis Block
	External Interface (XINTF)
	Flash Configuration and Memory Performance
	Flash Programming
	Code Security Module (CSM)
	Lab 10: Programming the Flash
	Open the Project
	Link Initialized Sections to Flash
	Copying Interrupt Vectors from Flash to RAM
	Initializing the Flash Control Registers
	Code Security Module and Passwords
	Executing from Flash after Reset
	Build – Lab.out
	CCS On-Chip Flash Programmer
	Running the Code – Using CCS
	Terminate Debug Session and Close Project
	Running the Code – Stand-alone Operation (No Emulator)
	Return Boot Mode Jumpers Back to Default Positions
	End of Exercise
	 Lab 10 Reference: Programming the Flash

	C28xm11.pdf
	Communications
	Introduction
	Learning Objectives
	Module Topics
	Communications Techniques
	Serial Peripheral Interface (SPI)
	SPI Transmit / Receive Sequence
	 SPI Registers
	SPI Summary

	Serial Communications Interface (SCI)
	Multiprocessor Wake-Up Modes
	 SCI Registers
	SCI Summary

	Multichannel Buffered Serial Port (McBSP)
	Inter-Integrated Circuit (I2C)
	 I2C Operating Modes and Data Formats
	I2C Summary

	Enhanced Controller Area Network (eCAN)
	 CAN Bus and Node
	Principles of Operation
	 Message Format and Block Diagram
	eCAN Summary

	C28xm12.pdf
	DSP/BIOS
	Introduction
	Learning Objectives
	Module Topics
	Introduction to DSP/BIOS
	DSP/BIOS Configuration Tool
	 1. Creating a New Memory Region (Using MEM)
	 2. Placing Sections – MEM Manager Properties
	 3. PIE Interrupts – HWI Interrupts
	 4. Running the Linker

	Scheduling DSP/BIOS Threads
	Periodic Functions
	Real-Time Analysis Tools
	Lab 12: DSP/BIOS
	Create a New Project
	Project Build Options
	Edit Lab.h File
	Inspect Lab_12.cmd
	Using the DSP/BIOS Configuration Tool
	Create New Memory Sections Using the TCF File
	Link Uninitialized Sections to RAM
	Link Initialized Sections to Flash
	BIOS Data tab
	BIOS Code tab
	Compiler Sections tab
	Set the Stack Size in the TCF File
	Copying .hwi_vec Section from Flash to RAM
	Copying the .trcdata Section from Flash to RAM
	Initializing the Flash Control Registers
	End of Exercise
	End of Optional Exercise

	C28xm13.pdf
	Development Support
	Introduction
	Learning Objectives
	Module Topics
	TI Support Resources
	C2000 Workshop Download Wiki
	 controlSUITE
	C28x Signal Processing Libraries
	 Experimenter’s Kits
	 F28335 Peripheral Explorer Kit
	C2000 controlCARD Application Kits
	 Product Information Resources

	C28xmA.pdf
	Appendix A – Experimenter’s Kit
	Module Topics
	F28035 controlCARD
	F28035 PCB Outline (Top View)
	LD1 / LD2 / LD3
	SW1
	 SW2
	SW3

	F28335 controlCARD
	F28335 PCB Outline (Top View)
	LD1 / LD2 / LD3
	SW1
	SW2

	Docking Station
	SW1 / LD1
	JP1 / JP2
	J1 / J2 /J3 / J8 / J9
	F2833x Boot Mode Selection
	F280xx Boot Mode Selection
	 J3 – DB-9 to 4-Pin Header Cable

