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Principle of Locality

 Programs access a small proportion of 

their address space at any time

 Temporal locality

 Items accessed recently are likely to be 

accessed again soon

 e.g., instructions in a loop, induction variables

 Spatial locality

 Items near those accessed recently are likely 

to be accessed soon

 E.g., sequential instruction access, array data
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Memory Hierarchy Levels

 Block (aka line): unit of copying

 May be multiple words

 If accessed data is present in 

upper level

 Hit: access satisfied by upper level

 Hit ratio: hits/accesses

 If accessed data is absent

 Miss: block copied from lower level

 Time taken: miss penalty

 Miss ratio: misses/accesses

= 1 – hit ratio

 Then accessed data supplied from 

upper level
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Memory Technology

 Static RAM (SRAM)

 0.5ns – 2.5ns, $2000 – $5000 per GB

 Dynamic RAM (DRAM)

 50ns – 70ns, $20 – $75 per GB

 Magnetic disk

 5ms – 20ms, $0.20 – $2 per GB

 Ideal memory

 Access time of SRAM

 Capacity and cost/GB of disk
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Disk Storage

 Nonvolatile, rotating magnetic storage
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Address Subdivision



The number of bits in cache?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

 2n x (block size + tag size + valid field size)

 Cache size is 2n blocks

 Block size is 2m words (2m+2 words)

 Size of tag field 32 – (n + m + 2)

 Therefore,

 2n x (2m x 32 + 32 – (n + m + 2) + 1)

 = 2n x (2m x 32 + 31 – n - m)



Question?
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 How many total bits are required for a 

direct mapped cache with 16KiB of data 

and 4-word blocks, assuming 32 bit 

address?

 2n x (2m x 32 + 31 – n - m)



Anwer
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 16KiB = 4096 (212 words)

 With Block size of 4 words (22) there are 

1024 (210) blocks.

 Each block has 4 x 32 or 128 bits of data 

plus a tag which is 32 – 10 – 2 – 2 bits, 

plus a valid bit

 Thus total cache size is

 210 x (4 x 32 + (32 – 10 – 2 - 2) + 1) = 210 x 

147 = 147 KibiBits
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Example: Larger Block Size

 64 blocks, 16 bytes/block

 To what block number does address 1200 

map?

 Block address = 1200/16 = 75

 Block number = 75 modulo 64 = 11

Tag Index Offset

03491031

4 bits6 bits22 bits
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Block Size Considerations

 Larger blocks should reduce miss rate

 Due to spatial locality

 But in a fixed-sized cache

 Larger blocks  fewer of them

 More competition  increased miss rate

 Larger blocks  pollution

 Larger miss penalty

 Can override benefit of reduced miss rate

 Early restart and critical-word-first can help



BlockSize Tradeoff

 Benefits of Larger Block Size

 Spatial Locality: if we access a given word, we’re likely to

access other nearby words soon

 Very applicable with Stored-Program Concept: if we

execute a given instruction, it’s likely that we’ll execute

the next few as well

 Works nicely in sequential array accesses too

 Drawbacks of Larger Block Size

 Larger block size means larger miss penalty

 on a miss, takes longer time to load a new block from next level

 If block size is too big relative to cache size, then there

are too few blocks

 Result: miss rate goes up

Dr. Dan Garcia



Extreme Example: One BigBlock

 Cache Size = 4 bytes Block Size = 4 bytes

 Only ONEentry (row) in the cache!

 If item accessed, likely accessed again soon

 But unlikely will be accessed again immediately!

 The next access will likely to be a miss again

 Continually loading data into the cache but

discard data (force out) before use it again

 Nightmare for cache designer: Ping Pong Effect

Tag Cache DataValid Bit

B 3 B 2 B 1 B 0

Dr. Dan Garcia



BlockSize Tradeoff Conclusions

Miss 
Penalty

Block Size

Increased Miss Penalty
& Miss Rate

Average 
Access 

Time

Block Size

Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Miss 
Rate

Block Size
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What to do on a write hit?

 Write-through

 update the word in cache block and corresponding

word in memory

 Write-back

 update word in cache block

 allow memory word to be “stale”

 add ‘dirty’ bit to each block indicating that

memory needs to be updated when block is

replaced

 OSflushes cache before I/O…

 Performance trade-offs?

Dr. Dan Garcia
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Write-Through

 On data-write hit, could just update the block in 
cache
 But then cache and memory would be inconsistent

 Write through: also update memory

 But makes writes take longer
 e.g., if base CPI = 1, 10% of instructions are stores, 

write to memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
 Holds data waiting to be written to memory

 CPU continues immediately
 Only stalls on write if write buffer is already full
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Write-Back

 Alternative: On data-write hit, just update 

the block in cache

 Keep track of whether each block is dirty

 When a dirty block is replaced

 Write it back to memory

 Can use a write buffer to allow replacing block 

to be read first
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Write Allocation

 What should happen on a write miss?

 Alternatives for write-through

 Allocate on miss: fetch the block

 Write around: don’t fetch the block

 Since programs often write a whole block before 

reading it (e.g., initialization)

 For write-back

 Usually fetch the block
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Example: Intrinsity FastMATH

 Embedded MIPS processor

 12-stage pipeline

 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache

 Each 16KB: 256 blocks × 16 words/block

 D-cache: write-through or write-back

 SPEC2000 miss rates

 I-cache: 0.4%

 D-cache: 11.4%

 Weighted average: 3.2%
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Example: Intrinsity FastMATH



Typesof Cache Misses(1/2)

 “Three Cs”Model of Misses

 1st C: Compulsory Misses

 occur when a program is first started

 cache does not contain any of that program’s data

yet, so misses are bound to occur

 can’t be avoided easily, so won’t focus on these in

this course

Pandora uses cache warm up

When should be cache performance measured?

Dr. Dan Garcia



Typesof Cache Misses(2/2)

 2nd C: Conflict Misses

 miss that occurs because two distinct memory

addresses map to the same cache location

 two blocks (which happen to map to the same

location) can keep overwriting each other

 big problem in direct-mapped caches

 how do we lessen the effect of these?

 Dealing with Conflict Misses

 Solution 1:Make the cache size bigger

Fails at some point

 Solution 2: Multiple distinct blocks can fit in the same

cache Index?

Dr. Dan Garcia



FullyAssociativeCache (1/3)

 Memory address fields:

 Tag: same as before

 Offset: same as before

 Index: non-existant

 What does this mean?

 no “rows”: any block can go anywhere in the cache

 must compare with all tags in entire cache to see if

data is there

Dr. Dan Garcia



FullyAssociativeCache (2/3)

 Fully Associative Cache (e.g., 32 Bblock)

 compare tags in parallel

Byte Offset

:

Cache Data

B 0

0431

:

Cache Tag (27 bits long)

Valid

:

B 31 B 1:

Cache Tag
=

=

=

=
:

=

Dr. Dan Garcia



FullyAssociativeCache (3/3)

 Benefit of Fully Assoc Cache

 No Conflict Misses (since data can go anywhere)

 Drawbacks of Fully Assoc Cache

 Need hardware comparator for every single entry: if

we have a 64KB of data in cache with 4B entries, we

need 16K comparators: infeasible

Dr. Dan Garcia



Final Type of Cache Miss

 3rd C: Capacity Misses

 miss that occurs because the cache has a limited

size

 miss that would not occur if we increase the size of

the cache

 sketchy definition, so just get the general idea

 This is the primary type of miss for Fully

Associative caches.

Dr. Dan Garcia



N-Way SetAssociativeCache (1/3)

 Memory address fields:

 Tag: same as before

 Offset: same as before

 Index: points us to the correct “row” (called a set in

this case)

 So what’s the difference?

 each set contains multiple blocks

 once we’ve found correct set, must compare with all

tags in that set to find our data

Is the temporal or spatial locality exploited here?

Dr. Dan Garcia



AssociativeCache Example

 Here’sa simple 2-way 

set associative cache.

Memory

Memory 

Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache

Index
0
0
1
1

Dr. Dan Garcia



N-Way SetAssociativeCache (2/3)

 Basic Idea

 cache is direct-mapped w/respect to sets

 each set is fully associative with N blocks in it

 Given memory address:

 Find correct set using Index value.

 Compare Tag with all Tag values in the determined

set.

 If a match occurs, hit!, otherwise a miss.

 Finally, use the offset field as usual to find the desired

data within the block.

Dr. Dan Garcia



N-Way SetAssociativeCache (3/3)

 What’sso great about this?

 even a 2-way set assoc cache avoids a lot of conflict

misses

 hardware cost isn’t that bad: only need N

comparators

 In fact, for a cache with M blocks,

 it’s Direct-Mapped if it’s 1-way set assoc

 it’s FullyAssoc if it’s M-way set assoc

 so these two are just special cases of the more

general set associative design

Dr. Dan Garcia



4-Way SetAssociativeCache Circuit

tag
index

Dr. Dan Garcia
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Spectrum of Associativity

 For a cache with 8 entries
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Associativity Example

 Compare 4-block caches

 Direct mapped, 2-way set associative,

fully associative

 Block access sequence: 0, 8, 0, 6, 8

 For direct map

 (Block address) modulo (Number of block in the 

cache)

 For set-associative

 (Block address) modulo (Number of sets in the 

cache)



Direct-Mapped Cache

 Direct mapped

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Block 

address

Cache 

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Block Address Cache Block

0 (0 modulo 4) = 0

6 (6 modulo 4) = 2

0 (8 modulo 4) = 0
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Associativity Example

 2-way set associative
Block 

address

Cache 

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

 Fully associative
Block 

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]
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How Much Associativity

 Increased associativity decreases miss 

rate

 But with diminishing returns

 Simulation of a system with 64KB

D-cache, 16-word blocks, SPEC2000

 1-way: 10.3%

 2-way: 8.6%

 4-way: 8.3%

 8-way: 8.1%
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Set Associative Cache Organization



BlockReplacement Policy
 Direct-Mapped Cache

 index completely specifies position which position a block can go in

on a miss

 N-Way Set Assoc
 index specifies a set, but block can occupy any position within the

set on a miss

 Fully Associative

 block can be written into any position

 Question: if we have the choice, where should we write

an incoming block?

 If there are any locations with valid bit off (empty), then usually write

the new block into the first one.

 If all possible locations already have a valid block, we must pick a

replacement policy: rule by which we determine which block gets

“cached out” on a miss.

Dr. Dan Garcia



BlockReplacement Policy: LRU

 LRU(Least Recently Used)

 Idea: cache out block which has been accessed

(read or write) least recently

 Pro: temporal locality recent past use implies

likely future use: in fact, this is a very effective policy

 Con: with 2-way set assoc, easy to keep track (one

LRUbit); with 4-way or greater, requires complicated

hardware and much time to keep track of this

Dr. Dan Garcia



BlockReplacement Example

 We have a 2-way set associative cache with

a four word total capacity and one word

blocks. We perform the following word

accesses (ignore bytes for this problem):

0, 2, 0, 1, 4, 0, 2, 3, 5, 4

 How many hits and how many misses will

there be for the LRUblock replacement

policy?

Dr. Dan Garcia



BlockReplacement Example: LRU

Addresses 0, 2, 0, 1, 4, 0, ...

0 lru

1 lru

loc 0 loc 1

set 0

set 1

0 lru2set 0

set 1

0: miss, bring into set 0 (loc 0)

2: miss, bring into set 0 (loc 1)

0: hit

1: miss, bring into set 1 (loc 0)

lru

lru

lru
24: miss, bring into set 0 (loc 1, replace 2)

set 0 lru0

0: hit

set 0

set 1

0 lru2set 0

set 1

set 1 1
lr

u

4

set 0

set 1

0
lru4

1
lr

u

lru

Dr. Dan Garcia
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BigIdea

 How to choose between associativity, block

size, replacement & write policy?

 Design against a performance model

 Minimize: Average MemoryAccess Time

= Hit Time

+ Miss Penalty x Miss Rate

 influenced by technology & program behavior

 Create the illusion of a memory that is large,

cheap, and fast - on average

 How can we improve miss penalty?

Dr. Dan Garcia



Improving Miss Penalty

 When caches first became popular, Miss

Penalty ~ 10 processor clock cycles

 Today 2400 MHz Processor (0.4 ns per clock

cycle) and 80 ns to go to DRAM

200 processor clock cycles!

Proc $2

D
R

A
M$

MEM

Solution: another cache between memory and the

processor cache: Second Level (L2) Cache

Dr. Dan Garcia



Peer Instruction

1. A2-way set-associative cache can be

outperformed by a direct-mapped cache.

2. Larger block size lower miss

rate

12
a) FF
b) FT
c) TF
d) TT

Dr. Dan Garcia



Peer InstructionAnswer

1. Sure, consider the caches from the previous
slides with the following workload: 0, 2, 0, 4, 2
2-way: 0m, 2m, 0h, 4m, 2m;
DM: 0m, 2m, 0h, 4m, 2h

2. Larger block size lower miss
rate, true until a certain point, and then the
ping-pong effect takes over

1. A2-way set-associative cache can be

outperformed by a direct-mapped cache.

2. Larger block size lower miss

rate

12
a) FF
b) FT
c) TF
d) TT

Dr. Dan Garcia



And inConclusion…
 We’ve discussed memory caching in detail. Caching in general

shows up over and over in computer systems

 Filesystem cache, Web page cache, Game databases /

tablebases, Software memoization, Others?

 Big idea: if something is expensive but we want to do it repeatedly, 

do it once and cache the result.

 Cache design choices:

 Size of cache: speed v. capacity

 Block size (i.e., cache aspect ratio)

 Write Policy (Write through v. write back

 Associativity choice of N (direct-mapped v. set v. fully associative)

 Block replacement policy

 2nd level cache?

 3rd level cache?

 Use performance model to pick between choices, depending on

programs, technology, budget, ...
Dr. Dan Garcia



Analyzing Multi-level cache hierarchy

Proc

D
R

A
M

$

L1 

hit 

time

L1 Hit Time + L1 Miss Rate * L1 Miss Penalty 

L1 Miss Penalty =

L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time =

L1 Hit Time + L1 Miss Rate *

(L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)

L2 Miss Penalty
L1 Miss Rate

L1 Miss Penalty
Avg Mem Access Time =

L2 

hit 

time
L2 Miss Rate

$2

Dr. Dan Garcia
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Measuring Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

§
5
.4

 M
e
a
s
u
rin

g
 a

n
d
 Im

p
ro

v
in

g
 C

a
c
h
e
 P

e
rfo

rm
a
n
c
e

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory 

cycles stallMemory 







Question

 Assume the miss rate of an instruction 

cache is 2% and the miss rate of the data 

cache is 4%. 

If a processor has CPI of 2 without any 

memory stalls and the miss penalty is 100 

cycles for all misses,

 Determine how much fast a processor 

would run with perfect cache that never 

missed?
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Cache Performance Example

 Given
 I-cache miss rate = 2%

 D-cache miss rate = 4%

 Miss penalty = 100 cycles

 Base CPI (ideal cache) = 2

 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2

 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster
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Average Access Time

 Hit time is also important for performance

 Average memory access time (AMAT)

 AMAT = Hit time + Miss rate × Miss penalty

 Example

 CPU with 1ns clock, hit time = 1 cycle, miss 

penalty = 20 cycles, I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns

 2 cycles per instruction



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

Multilevel Caches

 Primary cache attached to CPU

 Small, but fast

 Level-2 cache services misses from 

primary cache

 Larger, slower, but still faster than main 

memory

 Main memory services L-2 cache misses

 Some high-end systems include L-3 cache
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Multilevel Cache Considerations

 Primary cache

 Focus on minimal hit time

 L-2 cache

 Focus on low miss rate to avoid main memory 

access

 Hit time has less overall impact

 Results

 L-1 cache usually smaller than a single cache

 L-1 block size smaller than L-2 block size
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Virtual Memory

 Use main memory as a “cache” for 
secondary (disk) storage
 Managed jointly by CPU hardware and the 

operating system (OS)

 Programs share main memory
 Each gets a private virtual address space 

holding its frequently used code and data

 Protected from other programs

 CPU and OS translate virtual addresses to 
physical addresses
 VM “block” is called a page

 VM translation “miss” is called a page fault
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Address Translation

 Fixed-size pages (e.g., 4K)
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Memory Protection

 Different tasks can share parts of their 

virtual address spaces

 But need to protect against errant access

 Requires OS assistance

 Hardware support for OS protection

 Privileged supervisor mode (aka kernel mode)

 Privileged instructions

 Page tables and other state information only 

accessible in supervisor mode

 System call exception (e.g., syscall in MIPS)
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The Memory Hierarchy

 Common principles apply at all levels of 

the memory hierarchy

 Based on notions of caching

 At each level in the hierarchy

 Block placement

 Finding a block

 Replacement on a miss

 Write policy
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Finding a Block

 Hardware caches
 Reduce comparisons to reduce cost

 Virtual memory
 Full table lookup makes full associativity feasible

 Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set 

associative

Set index, then search 

entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0
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Concluding Remarks

 Fast memories are small, large memories are 
slow
 We really want fast, large memories 

 Caching gives this illusion 

 Principle of locality
 Programs use a small part of their memory space 

frequently

 Memory hierarchy
 L1 cache  L2 cache  …  DRAM memory
 disk

 Memory system design is critical for 
multiprocessors

§
5
.1

6
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s


