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Principle of Locality

 Programs access a small proportion of 

their address space at any time

 Temporal locality

 Items accessed recently are likely to be 

accessed again soon

 e.g., instructions in a loop, induction variables

 Spatial locality

 Items near those accessed recently are likely 

to be accessed soon

 E.g., sequential instruction access, array data
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Memory Hierarchy Levels

 Block (aka line): unit of copying

 May be multiple words

 If accessed data is present in 

upper level

 Hit: access satisfied by upper level

 Hit ratio: hits/accesses

 If accessed data is absent

 Miss: block copied from lower level

 Time taken: miss penalty

 Miss ratio: misses/accesses

= 1 – hit ratio

 Then accessed data supplied from 

upper level
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Memory Technology

 Static RAM (SRAM)

 0.5ns – 2.5ns, $2000 – $5000 per GB

 Dynamic RAM (DRAM)

 50ns – 70ns, $20 – $75 per GB

 Magnetic disk

 5ms – 20ms, $0.20 – $2 per GB

 Ideal memory

 Access time of SRAM

 Capacity and cost/GB of disk
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Disk Storage

 Nonvolatile, rotating magnetic storage
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Address Subdivision



The number of bits in cache?
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 2n x (block size + tag size + valid field size)

 Cache size is 2n blocks

 Block size is 2m words (2m+2 words)

 Size of tag field 32 – (n + m + 2)

 Therefore,

 2n x (2m x 32 + 32 – (n + m + 2) + 1)

 = 2n x (2m x 32 + 31 – n - m)



Question?
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 How many total bits are required for a 

direct mapped cache with 16KiB of data 

and 4-word blocks, assuming 32 bit 

address?

 2n x (2m x 32 + 31 – n - m)



Anwer
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 16KiB = 4096 (212 words)

 With Block size of 4 words (22) there are 

1024 (210) blocks.

 Each block has 4 x 32 or 128 bits of data 

plus a tag which is 32 – 10 – 2 – 2 bits, 

plus a valid bit

 Thus total cache size is

 210 x (4 x 32 + (32 – 10 – 2 - 2) + 1) = 210 x 

147 = 147 KibiBits
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Example: Larger Block Size

 64 blocks, 16 bytes/block

 To what block number does address 1200 

map?

 Block address = 1200/16 = 75

 Block number = 75 modulo 64 = 11

Tag Index Offset

03491031

4 bits6 bits22 bits
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Block Size Considerations

 Larger blocks should reduce miss rate

 Due to spatial locality

 But in a fixed-sized cache

 Larger blocks  fewer of them

 More competition  increased miss rate

 Larger blocks  pollution

 Larger miss penalty

 Can override benefit of reduced miss rate

 Early restart and critical-word-first can help



BlockSize Tradeoff

 Benefits of Larger Block Size

 Spatial Locality: if we access a given word, we’re likely to

access other nearby words soon

 Very applicable with Stored-Program Concept: if we

execute a given instruction, it’s likely that we’ll execute

the next few as well

 Works nicely in sequential array accesses too

 Drawbacks of Larger Block Size

 Larger block size means larger miss penalty

 on a miss, takes longer time to load a new block from next level

 If block size is too big relative to cache size, then there

are too few blocks

 Result: miss rate goes up
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Extreme Example: One BigBlock

 Cache Size = 4 bytes Block Size = 4 bytes

 Only ONEentry (row) in the cache!

 If item accessed, likely accessed again soon

 But unlikely will be accessed again immediately!

 The next access will likely to be a miss again

 Continually loading data into the cache but

discard data (force out) before use it again

 Nightmare for cache designer: Ping Pong Effect

Tag Cache DataValid Bit

B 3 B 2 B 1 B 0
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BlockSize Tradeoff Conclusions

Miss 
Penalty

Block Size

Increased Miss Penalty
& Miss Rate

Average 
Access 

Time

Block Size

Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Miss 
Rate

Block Size
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What to do on a write hit?

 Write-through

 update the word in cache block and corresponding

word in memory

 Write-back

 update word in cache block

 allow memory word to be “stale”

 add ‘dirty’ bit to each block indicating that

memory needs to be updated when block is

replaced

 OSflushes cache before I/O…

 Performance trade-offs?

Dr. Dan Garcia
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Write-Through

 On data-write hit, could just update the block in 
cache
 But then cache and memory would be inconsistent

 Write through: also update memory

 But makes writes take longer
 e.g., if base CPI = 1, 10% of instructions are stores, 

write to memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
 Holds data waiting to be written to memory

 CPU continues immediately
 Only stalls on write if write buffer is already full
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Write-Back

 Alternative: On data-write hit, just update 

the block in cache

 Keep track of whether each block is dirty

 When a dirty block is replaced

 Write it back to memory

 Can use a write buffer to allow replacing block 

to be read first
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Write Allocation

 What should happen on a write miss?

 Alternatives for write-through

 Allocate on miss: fetch the block

 Write around: don’t fetch the block

 Since programs often write a whole block before 

reading it (e.g., initialization)

 For write-back

 Usually fetch the block



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Example: Intrinsity FastMATH

 Embedded MIPS processor

 12-stage pipeline

 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache

 Each 16KB: 256 blocks × 16 words/block

 D-cache: write-through or write-back

 SPEC2000 miss rates

 I-cache: 0.4%

 D-cache: 11.4%

 Weighted average: 3.2%
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Example: Intrinsity FastMATH



Typesof Cache Misses(1/2)

 “Three Cs”Model of Misses

 1st C: Compulsory Misses

 occur when a program is first started

 cache does not contain any of that program’s data

yet, so misses are bound to occur

 can’t be avoided easily, so won’t focus on these in

this course

Pandora uses cache warm up

When should be cache performance measured?
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Typesof Cache Misses(2/2)

 2nd C: Conflict Misses

 miss that occurs because two distinct memory

addresses map to the same cache location

 two blocks (which happen to map to the same

location) can keep overwriting each other

 big problem in direct-mapped caches

 how do we lessen the effect of these?

 Dealing with Conflict Misses

 Solution 1:Make the cache size bigger

Fails at some point

 Solution 2: Multiple distinct blocks can fit in the same

cache Index?
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FullyAssociativeCache (1/3)

 Memory address fields:

 Tag: same as before

 Offset: same as before

 Index: non-existant

 What does this mean?

 no “rows”: any block can go anywhere in the cache

 must compare with all tags in entire cache to see if

data is there
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FullyAssociativeCache (2/3)

 Fully Associative Cache (e.g., 32 Bblock)

 compare tags in parallel

Byte Offset

:

Cache Data

B 0

0431

:

Cache Tag (27 bits long)

Valid

:

B 31 B 1:

Cache Tag
=

=

=

=
:

=
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FullyAssociativeCache (3/3)

 Benefit of Fully Assoc Cache

 No Conflict Misses (since data can go anywhere)

 Drawbacks of Fully Assoc Cache

 Need hardware comparator for every single entry: if

we have a 64KB of data in cache with 4B entries, we

need 16K comparators: infeasible

Dr. Dan Garcia



Final Type of Cache Miss

 3rd C: Capacity Misses

 miss that occurs because the cache has a limited

size

 miss that would not occur if we increase the size of

the cache

 sketchy definition, so just get the general idea

 This is the primary type of miss for Fully

Associative caches.
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N-Way SetAssociativeCache (1/3)

 Memory address fields:

 Tag: same as before

 Offset: same as before

 Index: points us to the correct “row” (called a set in

this case)

 So what’sthe difference?

 each set contains multiple blocks

 once we’ve found correct set, must compare with all

tags in that set to find our data

Is the temporal or spatial locality exploited here?
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AssociativeCache Example

 Here’sa simple 2-way 

set associative cache.

Memory

Memory 

Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache

Index
0
0
1
1
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N-Way SetAssociativeCache (2/3)

 Basic Idea

 cache is direct-mapped w/respect to sets

 each set is fully associative with N blocks in it

 Given memory address:

 Find correct set using Index value.

 Compare Tag with all Tag values in the determined

set.

 If a match occurs, hit!, otherwise a miss.

 Finally, use the offset field as usual to find the desired

data within the block.
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N-Way SetAssociativeCache (3/3)

 What’sso great about this?

 even a 2-way set assoc cache avoids a lot of conflict

misses

 hardware cost isn’t that bad: only need N

comparators

 In fact, for a cache with M blocks,

 it’s Direct-Mapped if it’s 1-way set assoc

 it’s FullyAssoc if it’s M-way set assoc

 so these two are just special cases of the more

general set associative design
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4-Way SetAssociativeCache Circuit

tag
index

Dr. Dan Garcia
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Spectrum of Associativity

 For a cache with 8 entries
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Associativity Example

 Compare 4-block caches

 Direct mapped, 2-way set associative,

fully associative

 Block access sequence: 0, 8, 0, 6, 8

 For direct map

 (Block address) modulo (Number of block in the 

cache)

 For set-associative

 (Block address) modulo (Number of sets in the 

cache)



Direct-Mapped Cache

 Direct mapped
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Block 

address

Cache 

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Block Address Cache Block

0 (0 modulo 4) = 0

6 (6 modulo 4) = 2

0 (8 modulo 4) = 0
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Associativity Example

 2-way set associative
Block 

address

Cache 

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

 Fully associative
Block 

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]
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How Much Associativity

 Increased associativity decreases miss 

rate

 But with diminishing returns

 Simulation of a system with 64KB

D-cache, 16-word blocks, SPEC2000

 1-way: 10.3%

 2-way: 8.6%

 4-way: 8.3%

 8-way: 8.1%
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Set Associative Cache Organization



BlockReplacement Policy
 Direct-Mapped Cache

 index completely specifies position which position a block can go in

on a miss

 N-Way Set Assoc
 index specifies a set, but block can occupy any position within the

set on a miss

 Fully Associative

 block can be written into any position

 Question: if we have the choice, where should we write

an incoming block?

 If there are any locations with valid bit off (empty), then usually write

the new block into the first one.

 If all possible locations already have a valid block, we must pick a

replacement policy: rule by which we determine which block gets

“cached out” on a miss.
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BlockReplacement Policy: LRU

 LRU(Least Recently Used)

 Idea: cache out block which has been accessed

(read or write) least recently

 Pro: temporal locality recent past use implies

likely future use: in fact, this is a very effective policy

 Con: with 2-way set assoc, easy to keep track (one

LRUbit); with 4-way or greater, requires complicated

hardware and much time to keep track of this
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BlockReplacement Example

 We have a 2-way set associative cache with

a four word total capacity and one word

blocks. We perform the following word

accesses (ignore bytes for this problem):

0, 2, 0, 1, 4, 0, 2, 3, 5, 4

 How many hits and how many misses will

there be for the LRUblock replacement

policy?
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BlockReplacement Example: LRU

Addresses 0, 2, 0, 1, 4, 0, ...

0 lru

1 lru

loc 0 loc 1

set 0

set 1

0 lru2set 0

set 1

0: miss, bring into set 0 (loc 0)

2: miss, bring into set 0 (loc 1)

0: hit

1: miss, bring into set 1 (loc 0)

lru

lru

lru
24: miss, bring into set 0 (loc 1, replace 2)

set 0 lru0

0: hit

set 0

set 1

0 lru2set 0

set 1

set 1 1
lr

u

4

set 0

set 1

0
lru4

1
lr

u

lru

Dr. Dan Garcia
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BigIdea

 How to choose between associativity, block

size, replacement & write policy?

 Design against a performance model

 Minimize: Average MemoryAccess Time

= Hit Time

+ Miss Penalty x Miss Rate

 influenced by technology & program behavior

 Create the illusion of a memory that is large,

cheap, and fast - on average

 How can we improve miss penalty?
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Improving Miss Penalty

 When caches first became popular, Miss

Penalty ~ 10 processor clock cycles

 Today 2400 MHz Processor (0.4 ns per clock

cycle) and 80 ns to go to DRAM

200 processor clock cycles!

Proc $2

D
R

A
M$

MEM

Solution: another cache between memory and the

processor cache: Second Level (L2) Cache
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Peer Instruction

1. A2-way set-associative cache can be

outperformed by a direct-mapped cache.

2. Larger block size lower miss

rate

12
a) FF
b) FT
c) TF
d) TT

Dr. Dan Garcia



Peer InstructionAnswer

1. Sure, consider the caches from the previous
slides with the following workload: 0, 2, 0, 4, 2
2-way: 0m, 2m, 0h, 4m, 2m;
DM: 0m, 2m, 0h, 4m, 2h

2. Larger block size lower miss
rate, true until a certain point, and then the
ping-pong effect takes over

1. A2-way set-associative cache can be

outperformed by a direct-mapped cache.

2. Larger block size lower miss

rate

12
a) FF
b) FT
c) TF
d) TT

Dr. Dan Garcia



And inConclusion…
 We’ve discussed memory caching in detail. Caching in general

shows up over and over in computer systems

 Filesystem cache, Web page cache, Game databases /

tablebases, Software memoization, Others?

 Big idea: if something is expensive but we want to do it repeatedly, 

do it once and cache the result.

 Cache design choices:

 Size of cache: speed v. capacity

 Block size (i.e., cache aspect ratio)

 Write Policy (Write through v. write back

 Associativity choice of N (direct-mapped v. set v. fully associative)

 Block replacement policy

 2nd level cache?

 3rd level cache?

 Use performance model to pick between choices, depending on

programs, technology, budget, ...
Dr. Dan Garcia



Analyzing Multi-level cache hierarchy

Proc

D
R

A
M

$

L1 

hit 

time

L1 Hit Time + L1 Miss Rate * L1 Miss Penalty 

L1 Miss Penalty =

L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time =

L1 Hit Time + L1 Miss Rate *

(L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)

L2 Miss Penalty
L1 Miss Rate

L1 Miss Penalty
Avg Mem Access Time =

L2 

hit 

time
L2 Miss Rate

$2

Dr. Dan Garcia
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Measuring Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:
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Question

 Assume the miss rate of an instruction 

cache is 2% and the miss rate of the data 

cache is 4%. 

If a processor has CPI of 2 without any 

memory stalls and the miss penalty is 100 

cycles for all misses,

 Determine how much fast a processor 

would run with perfect cache that never 

missed?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

Cache Performance Example

 Given
 I-cache miss rate = 2%

 D-cache miss rate = 4%

 Miss penalty = 100 cycles

 Base CPI (ideal cache) = 2

 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2

 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster
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Average Access Time

 Hit time is also important for performance

 Average memory access time (AMAT)

 AMAT = Hit time + Miss rate × Miss penalty

 Example

 CPU with 1ns clock, hit time = 1 cycle, miss 

penalty = 20 cycles, I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns

 2 cycles per instruction
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Multilevel Caches

 Primary cache attached to CPU

 Small, but fast

 Level-2 cache services misses from 

primary cache

 Larger, slower, but still faster than main 

memory

 Main memory services L-2 cache misses

 Some high-end systems include L-3 cache
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Multilevel Cache Considerations

 Primary cache

 Focus on minimal hit time

 L-2 cache

 Focus on low miss rate to avoid main memory 

access

 Hit time has less overall impact

 Results

 L-1 cache usually smaller than a single cache

 L-1 block size smaller than L-2 block size
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Virtual Memory

 Use main memory as a “cache” for 
secondary (disk) storage
 Managed jointly by CPU hardware and the 

operating system (OS)

 Programs share main memory
 Each gets a private virtual address space 

holding its frequently used code and data

 Protected from other programs

 CPU and OS translate virtual addresses to 
physical addresses
 VM “block” is called a page

 VM translation “miss” is called a page fault
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Address Translation

 Fixed-size pages (e.g., 4K)
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Memory Protection

 Different tasks can share parts of their 

virtual address spaces

 But need to protect against errant access

 Requires OS assistance

 Hardware support for OS protection

 Privileged supervisor mode (aka kernel mode)

 Privileged instructions

 Page tables and other state information only 

accessible in supervisor mode

 System call exception (e.g., syscall in MIPS)
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The Memory Hierarchy

 Common principles apply at all levels of 

the memory hierarchy

 Based on notions of caching

 At each level in the hierarchy

 Block placement

 Finding a block

 Replacement on a miss

 Write policy
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Finding a Block

 Hardware caches
 Reduce comparisons to reduce cost

 Virtual memory
 Full table lookup makes full associativity feasible

 Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set 

associative

Set index, then search 

entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0
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Concluding Remarks

 Fast memories are small, large memories are 
slow
 We really want fast, large memories 

 Caching gives this illusion 

 Principle of locality
 Programs use a small part of their memory space 

frequently

 Memory hierarchy
 L1 cache  L2 cache  …  DRAM memory
 disk

 Memory system design is critical for 
multiprocessors
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