CALCULATING WITH CATAPULTS: DISCOVERING PARABOLIC PROPERTIES

Courtney Elmendorf

INTENT

- Grade Level: high school

○ Objectives:

- Follow visual/auditory instructions to construct a catapult
- Measure launch height and distance traveled by projectile
- Use graphing calculator to model a parabolic path
- Use catapult and graph to study factors that affect the projectile
- Study real life applications of projectile motion/parabolas

MATERIALS

- Approximately 13 popsicle sticks
- 3 rubber bands
- Ruler/Tape Measure
- Dime (or other projectile)
- Graphing calculator
- Paper and pencil
- Stack eleven popsicle sticks and rubber band each end tightly
- Carve two notches at one end of each of the remaining two popsicle sticks

CREATING THE CATAPULT CONT.

- Insert one notched popsicle stick above the bottom popsicle stick in the stack
- Place the other notched popsicle stick on top of the stack
- Loosely rubber band the notched popsicle sticks to make the arm

ACTIVITY PROCEDURE

Step 1: Create groups of 3-4 students. Distribute worksheet to each student and materials to each group.

Step 2: Instruct each group to construct the catapult and perform practice trials.

Step 3: Read worksheet directions aloud and assign group member roles;

Recorder- measure and record launch heights and projectile distances
The Foundation- holds the stack and launch arm base The Launcher- lightly holds the projectile on the arm and launches it

ACTIVITY PROCEDURE CONT.

- Step 4: Perform launch trials, filling out the chart provided on the worksheet
- Step 5: Guide students in creating a quadratic regression on the graphing calculator.
- Step 6: Ask students to complete analysis questions, (and extension questions), in their groups to prepare for class discussion.

Launch Height (inches)	Trial 1 (inches)	Trial 2 (inches)	Trial 3 (inches)	Trial 4 (inches)	Trial 5 (inches)	Average Distance (inches)
$1 / 4$	47	44	42	47	52	46.4
$1 / 2$	64	61	59	65	58	61.4
7/8	$593 / 4$	$593 / 4$	$571 / 4$	$527 / 8$	$541 / 2$	56.8
1	$51^{1 / 16}$	49 11/16	$51^{15} / 16$	50	$471 / 2$	49.9
$11 / 4$	$351 / 2$	31	$291 / 2$	$345 / 16$	$341 / 2$	33.0
$11 / 2$	$20 \frac{1}{2}$	$20 \frac{1}{2}$	$221 / 2$	21 1/2	17 9/16	20.5
$17 / 8$	0	0	0	0	0	0

AN EXAMPLE：CALCULATOR WORK

Tis Texas Instruments TI－83 Plus

```
E[IT [LHLD, TESTS
    1:1-wシr*stats
    2:2-w:3r 5t.jt.E
    3: Med-MEd
    4:LinR(a口(ax+b)
```



```
    7れ心NジたREG
```

STAT PLOT F1 TBLSET F2 FORMAT F3 CALC F4 TABLE F5
Y- WINDOW ZOOM TRACE GRAPH

AN EXAAPLE: CALCULATOR WORK CONT.

Purpose: Discover properties of a parabola and make connections.

Higher-Level Thinking:

- While the projectile does travel in a parabolic arc, the graph is NOT showin the path of the projectile.
- Relating the students' hands-on, experimental work to mathematical vocabulary

Once students answer worksheet questions, the instructor can introduce the vocabulary that accompanies their discoveries:
1.) Turning Point: the ordered pair that represents the highest/lowest point on the curve, has a slope of 0 , indicates change in curve's slope
2.) Maximum: the launch height at which the projectile travels furthest
3.) Axis of Symmetry: the vertical line, $x=c$, that passes through the turning point and divides the parabola into mirror image halves.
4.) Concavity: the direction in which the parabola opens

EXTENSION: MAKING PREDICTIONS

- List sports/occupations in which an understanding of projectile motion is useful.
- Predict the launch height needed to land the projectile in a basket at a known distance.

SOURCES

- Algebra Fun Sheets. (2012, February 1). Quadratic Equations and Projectile Motion. Retrieved from The Math Teacher's Resource Site: Resources for Middle School Math and Algebra: http://algebrafunsheets.com/blog/category/quadratic-equations/

