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MODULE I
CHAPTER 1: NATURAL LOGARITHMS

The natural logarithm of a positive number x is the value of the integral
1

1x
dt

t . It is

written as ln x .  i.e.,,

1

1
ln , 0

x
x dt x

t
  …(1)

Remarks

1. If 1x  , then ln x is the area under the curve 1/y t from 1t  to t x .

2. For 0 1x  , ln x gives the negative of the area under the curve from x to 1.

3. For 1x ,  
1

1

1ln1 0,dt
t

as upper and lower limits equal.

4. The natural logarithm function is not defined for 0x  .

The Derivative of y = ln x
Using the first part of the Fundamental Theorem of Calculus, for every positive value of x,

1

1 1ln  
xd dx dt

dx dx t x .

If u is a differentiable function of x whose values are positive, so that ln u is defined, then
applying the Chain Rule


dy dy du
dx du dx

to the function lny u ( with )u  0 gives

ln ln 
d d duu u
dx du dx

or simply 1ln d duu
dx u dx

Problem Evaluate 21n( 1)x  .

Solution

Using Eq.(1), with 2 1u x  , 2 2
2

1
ln( 1) ( 1)

1

d d
x x

dx x dx
   



2 2

1 2
2

1 1

x
x

x x
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Properties of Logarithms
For any numbers 0a and 0x ,

1. ln ln ln ax a x (Product Rule)

2. ln ln ln 
a a x
x

(Quotient Rule)

3. 1ln ln  x
x

(Reciprocal Rule)

4. ln lnnx n x (Power Rule)

Theorem ln ln ln ax a x .

Proof We first note that ln ax and ln x have the same derivative. Using Corollary to the
Mean Value Theorem, then, the functions must differ by a constant, which means that

ln ln ax x C

for some C . It remains only to show that C equals ln a .

Equation holds for all positive values of x , so it must in particular hold for 1x .
Hence,

ln( 1) ln1  a C

ln 0 , a C since ln1 0
ln C a

Hence, substituting lnC a ,
ln ln ln  ax a x

Theorem ln ln ln . 
a

a x
x

Proof We use
ln ln ln  ax a x

With a replaced by 1/ x gives
1 1ln ln ln     

 
x x

x x

= ln1 0,
hence

1ln ln  x
x

x replaced by 1
x

gives

1 1ln ln ln ln     
 

a a a
x x x

ln ln  a x
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Theorem ln lnnx n x (assuming n rational).

Proof: For all positive value of x,

1ln ( )n n
n

d dx x
dx x dx

, using Eq. (1) with  nu x

11  n
n nxx

, here is where we need n to be rational.

1 ( ln )   
dn n x

x dx

Since ln nx and lnn x have the same derivative, by corollary to the Mean Value Theorem,

ln ln nx n x C

for some constant C. Taking ,1x we obtain ln ln1 1 n C or 0C . Hence the proof.

The Graph and Range of ln x

The derivative 1(ln ) d x
dt x

is positive for 0x , so ln x is an increasing function of x. The

second derivative, 21/ x ,  is negative , so the graph of ln x is concave down. We can
estimate ln 2 by numerical integration to be about 0.69 and, obtain

1ln 2 ln 2
2 2

n nn n    
 

and 1ln 2 ln 2
2 2

        
 

n nn n .

Hence, it follows that

limln
x

x


  and limln
x

x


  .

The domain of ln x is the set of positive real numbers; the range is the entire real line.

Logarithmic Differentiation
The derivatives of positive functions given by formulas that involve products,

quotients, and powers can often be found more quickly if we take the natural logarithm
of both sides before differentiating. This enables us to use the properties of natural
logarithm to simplify the formulas before differentiating. The process, called logarithmic
differentiation, is illustrated in the coming examples.

Problem Find
dx

dy where cos(sin ) 0 xy x

Solution Given cos(sin ) xy x .

Taking logarithms on both sides, we obtain
ln cos ln siny x x
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Now differentiating both sides with respect to x , we obtain

ln (cos ln sin ) (cos ) ln sin cos (ln sin )  
d d d d

y x x x x x x
dx dx dx dx

1
sin ln sin cos (sin )

sin
    

d
x x x x

x dx
.

i.e., 1
cot cos sin ln sin 

dy
x x x x

y dx

  cot cos sin ln sin 
dy

y x x x x
dx

i.e.,  cos(sin ) cot cos sin ln sin . xdy
x x x x x

dx

Problem Find
dx

dy , where
1

1
2

2





xx

xx
y .

Solution Given
2/1

2

2

1

1



















xx

xx
y

Taking logarithms on both sides, we get

ln y = ½ [ln (x2 + x +  1)  ln (x2  x + 1)].

Now differentiating both sides with respect to x , we obtain

     .1
1

1

2

1
1

1

1

2

11 2
2

2
2







 xx
dx

d

xx
xx

dx

d

xxdx

dy

y

    .12
1

1

2

1
12

1

1

2

1
22







 x
xx

x
xx

   














12

12

12

12
22 xx

x

xx

x
y

dx

dy

or
   

.
11

1
2/322/12

2






xxxx

x

dx

dy

The Integral  (1/u)du

If u is a nonzero differentiable function,

1
ln .  du u C

u

Proof When u is a positive differentiable function, Eq. (1) leads to the integral formula

1
ln  du u C

u
,

If u is negative, then u is positive and
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1 1
( )

( )
 
 du d u

u u

ln( )u C  

We can combine the above equations into a single formula by noticing that in each
case the expression on the right is

ln u C .

Proof. ln lnu u because 0u ;

ln( ) lnu u  because 0u  .

Hence whether u is positive or negative, the integral of (1/ )u du is ln u C . This
completes the proof.

We recall that
1

1



 

n

n u
u du C

n
, 1 n .

The case of 1 n is given in Eq. (9). Hence,
1

, 1
1

1n | |, 1


    

  



n

n

u
C n

nu du

u n

Integration Using Logarithms
Integrals of  a certain form lead to logarithms. That is,

( )
ln ( )

( )


 

f x
dx f x C

f x

whenever ( )f x is a differentiable function that maintains a constant sign on the domain
given for it.

Problem Evaluate
2

20

2

5

x
dx

x  .

Answer
2 1

20 5

2
,

5






 
x du

dx
x u

letting 2 5,u x  2 ,du xdx (0) 5, u (2) 1u  
1

5
ln




 u

ln 1 ln 5 ln1 ln5 ln5        .

Problem Evaluate
/ 2

/ 2

4cos
.

3 2sin
d
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Solution
/ 2 5

/ 2 1

4cos 2
,

3 2sin











 d du
u

taking 3 2sinu   , 2cos , du d

( / 2) 1, u ( / 2) 5. u

5

1
2ln  u

2ln 5 2ln 1 2ln5.  

The Integrals of tan x and cot x
Problem Evaluate andtan cot x dx x dx

Answer

(i) sin
tan

cos


   

x du
xdx dx

x u
, taking cos , sin .u x du x dx  

ln    
du

u C
u

, using Eq. (9)

1
ln cos ln ,

cos
x C C

x
     by Reciprocal Rule

ln sec .x C 

(ii) cos
cot

sin
   

xdx du
xdx

x u
, taking sin , cos u x du x dx

ln ln sin ln csc .      u C x C x C

In general, we have

tan ln cos ln sec     u du u C u C

cot ln sin ln csc      u du u C u C

Problem Evaluate
/ 6

0
tan 2 .


x dx

Answer
/ 6 / 3

0 0
tan 2 tan

2
  

  du
xdx u , taking 2 ,u x / 2,dx du (0) 0,u 

( / 6) / 3u  

/ 3

0

1
tan

2
 


u du

/ 3

0

1
ln sec

2
u


 

1 1
(ln 2 ln1) ln 2.

2 2
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Exercises
In Exercises 1-6 express the logarithms in terms of ln 5 and ln7.

1. ln(1/125) 2. ln 9.8 3. ln 7 7 4. ln1225 5. ln 0.056 6. (ln35 ln(1/ 7) /(ln 25)

In Exercises 7-12, Express the logarithms in terms of ln 2 and ln 3.
7) ln 0.75 8) ln(4 /9) 9) ln(1/ 2) 10) 3ln 9 11) ln 3 2 12) ln 13.5

In Exercises 13-15, simplify the expressions using the properties of logarithms

13. sin
lnsin ln

5


    

 
14. 2 1

ln(3 9 ) ln
3
    
 

x x
x

15. 41
ln(4 ) ln 2

2
x

In Exercises 16-25, find the derivatives of y with respect to ,x t or  , as appropriate.

16. ln3y x 17. 2ln( )y t 18. 3
lny

x
19. ln( 1) y

20.  sin(ln ) cos(ln )   y 21. 1
ln

1



y

x x
22. 1 ln

1 ln





t
y

t

23.  ln sec(ln )y 24.
2 5( 1)

ln
1

 
  

 

x
y

x
25.

2

2 / 2
ln 

x

x
y tdt

In Exercises 26-32, use logarithmic differentiation to find the derivative of y with respect
to the given independent variable.

26. 2 2( 1)( 1)  y x x 27. 1

( 1)



y

t t

28. (tan ) 2 1  y 29. 1

( 1)( 2)

 

y
t t t

30. sin

sec

 


y 31.
10

5

( 1)

(2 1)





x

y
x

32. 3
2

( 1)( 2

( 1)(2 3)

 


 
x x x

y
x x

Evaluate the integrals in Exercises 33-41

33.
0

1

3

3 2 
dx

x
34.

2

8

4 5
rdr

r
35.

/ 3

0

4sin

1 4cos

 


 d

36.
4

2 ln
dx

x x
37.

16

2 2 ln
dx

x x
38. sec tan

2 sec
y y

dy
y

39.
/ 2

/ 4
cot



 t dt 40.
/12

0
6 tan 3



 xdx 41. sec

ln(sec tan )
xdx

x x

Differentiate the following expressions in Exercise 42-47 with respect to x
42. ln 6x 43. (ln x)2 44.  ln (tan x + sec x)

45. x2 ln (x2)                 46. (ln x)3 47. .1,1lnsec 21 




  xxxxx
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CHAPTER 2 :   THE EXPONENTIAL FUNCTION
In this chapter we discuss the exponential function (it is the inverse of ln x ) and

explores its properties. Before giving formula definition we consider an example.

The Inverse of ln x and the Number e

The function ln x , being an increasing function of x with domain (0, ) and range
( , )  , has an inverse 1ln x with domain ( , )  and range (0, ) . The graph of 1ln x is
the graph of ln x reflected across the line y x . Also,

1lim ln


 
x

x and 1lim ln 0




x
x .

The number 1ln 1 is denoted by the letter e .

Definition 1ln 1e .

Remark e is not a rational number, its value can be computed using the formula

1 1 1
lim 1 1 ...

2 6 !

       
 n

e
n

and is approximately given by

e = 2.7 1828 1828 45 90 45.

Problem Consider  a quantity y whose rate of change over time is proportional to the

amount of y present. Then 
dy ydt and y satisfies the differential equation


dy

ky
dt

, …(1)

where k is the proportionality constant. By separating variables, we obtain

dy
k dt

y
 .

Integrating both sides, we get

ln y k t c  or , kt cy e where xe is the exponential function (it is the
inverse of ln x ) simply we can write

, kty Ce . …(2)

taking  cC e .

If, in addition to (1), 0y y when 0t , then (2) gives 0
0  y C e or 0C y . Hence the

function satisfying the differential equation (1) and 0y y when 0t  is the exponential
function 0 kty y e .
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The Function y = ex

We note that 2 ,e e e  2
2

1
e

e
  , 1/ 2 ,e e and so on. Since e positive, xe is positive

for any rational number x. Hence xe has a logarithm and is given by
ln ln 1 .xe x e x x   

Since ln x is one - to - one and 1ln(ln ) ,x x  the above equation tells us that, for x rational
1lnxe x .

The above equation provides a way to extend the definition of xe to irrational values of x.
The function 1ln x is defined for all real x, so we can use it to assign a value to xe at every
point. The definition follows:

Definition For every real number x , 1ln .xe x

Equations Involving ln x and ex

Since ln x and xe are inverses of one another, we have
ln xe x (all 0x  )

ln( )xe x (all x)
The above are inverse equations for ex and ln x¸ respectively.

Problem a) 5ln 5e 

b) 5ln 5e  

c) 1/ 33 1
ln ln

3
e e 

d) sinln sinxe x

e) 1n 4 4e 

f) 4 2ln( 3) 4 2 3x xe x x     (this is possible, since 4 2 3 0x x   )
Problem Evaluate 3 ln 2e

Answer 33ln 2 ln 2 ln8 8e e e   .

Aliter:  33ln 2 ln 2 32 8e e   .

Problem Find y if ln 7 9 y t .
Answer Exponentiating both sides, we obtain

ln 7 9y te e

 y = 7 9te ,  using Eq.(5)
Problem Find k if 2ke =10.
Answer Taking the natural logarithm on both sides, we get

2ln ke = ln10
 2k = ln10 , using Eq. (6)

 k = 1 ln10.
2
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Laws of Exponents
For all real numbers 1,x x and 2x , then the following laws of exponents hold:

1. 1 2x xe e = 1 2x xe

2. xe = 1
xe

3.
1

2

x

x

e

e
= 1 2x xe

4.   2
1

xxe = 1 2x xe =   1
2

xxe

Problem

a) ln 2xe = ln 2xe e = 2 xe , by law 1

b) ln xe =
ln

1
xe

,by law 2

= 1

x

c)
2xe

e
= 2 1xe , by law 3

d)  3 x
e = 3xe =  3xe , by law 4

Problem Solve the following for the value of y.

(i)
2 2 1 x x ye e e (ii) ye = x2 (iii) e3y =  2 + cos x.

Answer

(i) 2 22 1 2 1    y x x x xe e e e

Now taking logarithms on both sides, we get

y = x2 +  2 x + 1  = (x + 1)2 as the solution.

(ii)  Given 2xe y  .

Taking logarithms on both sides, we get
21ny x or 2lny x .

Squaring both sides we get

y =  [2 ln x]2 =  4 [ln x] 2.

(iii)   Given e3y =  2 + cos x.

Taking logarithms on both sides, we get

3 y = ln (2 + cos x), so that

y =
3

1 ln (2 + cos x).
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The Derivative of ex

The exponential function is differentiable because it is the inverse of a differentiable
function whose derivative is never zero. Consider

y = xe .
Applying logarithms on both sides, we obtain

ln y x .
Differentiating both sides with respect to x , we obtain

1

y
1

dy

dx


or dy
y

dx


Replacing y by xe , we obtain
x xd

e e
dx



Problem Evaluate  5 .xd
e

dx

Answer

 5 xd
e

dx
= 5 xd

e
dx

= 5 xe .
The Derivative of ue

If u is any differentiable function of x, then using the Chain Rule

ud
e

dx
= u du

e
dx

.

Problem

a) xd
e

dx
 = ( )x d

e x
dx

  , using the above equation. with u x 

= ( 1)xe  = xe ,

b) sin xd
e

dx
= sin (sin )x d

e x
dx

, using the above equation with sinu x

= sin cosxe x

Integral of ue

ue du = ue C .

Problem Solve the initial value problem

2y dy
e x

dx
 , 3x  ; (2) 0y  .
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Solution

By separating variables, the given differential equation becomes 2ye dy x dx .

Integrating both sides of the differential equation, we obtain
2 .ye x C  …(11)

To determine C we use the initial condition. Given 0,y  when 2x  .

Hence 0 2(2) e C

or 0 2(2)C e 

= 1 4 3   .
Substituting this values of C in (11), we obtain

2 3ye x  …(12)
To find y, we take logarithms on both sides of (12) and get

ln ye = 2ln( 3)x 

or y = 2ln( 3)x  …(13)

Clearly 2ln ( 3)x  is well defined for 2 3 0x   and hence the solution is valid for 3x  .

Checking of the solution in the original equation .

Now y dy
e

dx
= 2ln( 3),y d

e x
dx

 using Eq.(13)

=
2

2

3
y x

e
x 

, as 1
1n  

d du
u

dx u dx

= 2
2

2
( 3)

3

x
x

x



, using Eq.(12)

2 .x

Hence the solution is checked.
Exercises
Find simpler expressions for the quantities in Exercises1- 6

1. 2 2ln( )x ye  2. ln 0.3e 3. ln ln 2xe  

4. secln( )e  5. ( )ln( )
xee 6. 2lnln( )xe

In Exercises 7-9, solve for y in terms of t or x, as appropriate.
7. ln y = 5t  8. ln(1 2 )y = t

9. 2ln( 1) ln( 1)y y   = ln(sin )x

In Exercise10-12, solve for .k

10.  a) 5ke = 1

4
11. 80 ke = 1 12. (ln 0.8)ke =0.8
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In Exercises 13-16, solve for t .

13. a) 0.01te =1000 14. kte = 1

10
15. (ln 2) 1

2
te 

16. 2( ) (2 1)x xe e  = te

In Exercises 17-26, find the derivatives of y with respect to x, t, or , as appropriate.

17. y = 2 / 3xe 18. y = 2(4 )x xe  19. y = 2(1 2 ) xx e

20. y = 2 3(9 6 2) xx x e  21. y = ln(3 )e  

22. y = 3 2 cos5e   23. y = ln(2 sin )te t

24. y = ln
1




 
   

25. y = sin 2(ln 1)te t 

26. y =
2

4
ln

x

x

e

e
tdt

In Exercises 27-28, find /dy dx .

27. ln xy = x ye  28. tan y = lnxe x

Evaluate the integrals in Exercises 29-39.

29. 2(2 3 )x xe e dx 30.
0

ln 2

xe dx



31. (2 1)2 xe dx 32.
ln16 / 4

0

xe dx

33.
re
dr

r



 34. 43 ( )tt e dt

35.
21/

3

xe
dx

x 36.  / 2 cot 2

/ 4
1 csce d

 


 

37. csc( ) csc( )cot( )te t t dt    

38. 2 2ln

0
2 cos( )x xxe e dx



 39.
1 x

dx

e
Solve the initial value problems in Exercises 40-41.

40. dy

dt
2sec ( )t te e  , (ln 4)y = 2 /

41.
2

2

d y

dt
21 te , (1) 1y   and (1)y =0
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CHAPTER 3 :   ax and loga x
The Function ax

Since ln aa e for any positive number a , we can write xa as ln( )a xe = lnx ae and we state this
in the following definition.

Definition For any number 0a  and x ,
xa = lnx ae

Problem

a) 5 5 ln33 e

b) ln 66 e  =

Table:  Laws of exponents

For 0a  , and any x and y :

1. x ya a = x ya 

2. 1x
x

a
a

 

3.
x

y

a

a
= x ya 

4. ( )x ya = xya = ( )y xa

The Power Rule (Final Form)
For any 0x  and any real number n , we can define nx = lnn xe . Therefore, the n in the

equation ln nx = lnn x no longer needs to be rational- it can be any number as long as 0x 

:

ln nx = lnln( )n xe = ln .lnn x e , as ln ue u , for  any u

= lnn x .

Differentiating nx with respect to x ,

nd
x

dx
= lnn xd

e
dx

, as for 0x  , lnn n xx e

= ln . ( ln )n x d
e n x

dx
, as u ud du

e e
dx dx

 

= .n n
x

x
, as lnn n xx e ,  and 1

1n 
d

x
dx x

.

= 1nnx  , as 1
1

n
nx x

x
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Hence, as long as 0x  , nd
x

dx
= 1nnx  .

Using the Chain Rule, we can extend the above equation to the Power Rule’s final form:

If u is a positive differentiable function of x and n is any real number, then nu is a
differentiable function of x and

nd
u

dx
= 1n du

nu
dx

 .

Problem

a) 2d
x

dx
= 2 12 xe  ( 0x  )

b) (sin )
d

x
dx

 = 1(sin ) cosx x  (sin 0x  )

The Derivative of ax

Differentiating xa = lnx ae with respect to x , we obtain

xd
a

dx
= lnx ad

e
dx

= ln . ( ln )x a d
e x a

dx
, taking 1nu a and   using the Chain Rule

.u ud d du
e e

dx du dx

= ln ,xa a as ( 1n ) 1n 1n 
d dxx a a adx dx

That is, if 0a  , then

xd
a

dx
= lnxa a .

Using the Chain Rule, we can extend the above equation to the following general form.

If 0a  and u is a differentiable function of x , then ua is a differentiable function of x and

ud
a

dx
= lnu du

a a
dx

.

If a e , then ln ln 1a e  and the above equation simplifies to

xd
e

dx
= xe .

Problem

(a) 3xd

dx
= 3 ln 3x

(b) 3 xd

dx
 = 3 ln3 ( )x d

x
dx

  = 3 ln3x

(c) sin3 xd

dx
= sin3 ln3 (sin )x d

x
dx

= sin3 (ln3)cosx x
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The derivative of xa is positive if ln 0a  , or 1a  , and negative if ln 0a  , or
0 1a  . Thus, xa is an increasing function of x if 1a  and a decreasing function of x if
0 1a  . In each case, xa is one-to-one. The second derivative

2

2
( )xd
a

dx
( )xd d a

dx dx
   
 

( ln )xd
a a

dx
 = 2(ln ) xa a

is positive for all x , so the graph of xa is concave up on every interval of the real line.

OTHER POWER FUNCTIONS

The ability to raise positive numbers to arbitrary real powers makes it possible to
define functions like xx and ln xx for 0x  . We find the derivatives of such functions by
rewriting the functions as powers of e .

Problem

Find dy

dx
if xy x , 0x  .

Answer

With a x , we can write xx as lnx xe , a power of e , so that
lnx x xy x e 

Differentiating both sides with respect to x, we obtain

dy

dx
= lnx xd

e
dx

.

= ln ( ln )x x d
e x x

dx
, using Eq.(2) with a e , lnu x x and noting that ln 1e  , or

simply using Eq. (9) of the previous chapter

= 1
. lnxx x x
x

  
 

, applying product rule of differentiation

= (1 ln ).xx x

The Integral of au

If 1a  , then ln 0a  , so

u du
a

dx
= 1

( )
ln

ud
a

a dx
.

Integrating with respect to x , we obtain

u du
a dx

dx = 1

ln a ( )ud
a dx

dx
= 1

ln a

d

dx ( ua ) dx = 1

ln a
ua + C .

Writing the first integral in differential form gives

ua du =
ln

ua
C

a
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Problem Evaluate 2 .xdx

Answer 2xdx = 2

ln 2

x

C , using Eq. (3) with 2a  , u x

Problem Evaluate sin2 cosx x dx
Answer

sin2 cosx xdx = 2u du ,

= 2

ln 2

u

C

=
sin2

ln 2

x

C .

Logarithms with Base a
We have noted that if a is any positive number other than 1, the function xa is

one- to –one and has a nonzero derivative at every point. It therefore has a differentiable
inverse. We call the inverse the logarithm of x with base a and denote it by log .a x

Definition For any positive number 1a  ,

loga x  inverse of xa .

The graph of logay x can be obtained by reflecting the graph of xy a across the line
y x (Fig.2). Since loga x and xa are inverse of one another, composing them in either
order gives the identity function. That is,

loga xa = x ( 0)x 

and log ( )x
a a = x (all x )

The above are the inverse equations for xa and alog x

The Evaluation of alog x

log ( )a xa = x ,

Taking the natural logarithm of both sides,
log ( )ln a xa = ln x .

Using Power Rule,

log ( ).lna x a = ln x .

Solving for loga x , we obtain

loga x = ln

ln


x

a
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Problem

10

ln3
log 3

ln10


Properties of base a logarithms
For any number 0x > and 0y > ,

1. Product Rule: loga xy = log loga ax y

2. Quotient Rule: loga

x

y
= log loga ax y

3. Reciprocal Rule: 1
loga y

= loga y

4. Power Rule: log y
a x = logay x

Proof

For natural logarithms, we have ln xy = ln lnx y

Dividing both sides by ln ,a we get

ln

ln

xy

a
= ln ln

ln ln

x y

a a


i.e., loga xy = loga x + loga y .

The Derivative of alog u

Prove that, if u is a positive differentiable function of x , then

(log )a

d
u

dx
= 1 1

ln

du

a u dx


Proof

(log )a

d
u

dx
= ln

ln

d u

dx a
 
 
 

= 1
(ln )

ln

d
u

a dx
= 1 1

ln

du

a u dx
 .

Problem Evaluate 10log (3 1)d xdx
Solution

Taking a 10 and 3 1 u x , Eq.(7) gives

10log (3 1)
d

x
dx

 = 1 1
(3 1)

ln10 3 1

d
x

x dx
 


= 3

(ln10)(3 1)x 
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Integrals Involving alog x

To evaluate integrals involving base a logarithms, we convert them to natural
logarithms.

Problem Evaluate 2log .
xdxx

Solution

2log x
dx

x = 1 ln

ln 2

x
dx

x , since 2

ln
log

ln 2

x
x 

= 1

ln 2  udu , taking ln ,  dxu x du
x

=
21

ln 2 2

u
C =

21 (ln )

ln 2 2

x
C

=
2(ln )

.
2ln 2

x
C

Exercises

Find the derivative of y with respect to the given independent variable.

1. y = 3log (1 ln 3) 2. y = 25 5log logxe x

3. y = 3 9log logr r 4. y =
ln 5

5

7
log

3 2

x

x
 
  

5. y = 7

sin cos
log

2e 

  
 
 

6. y =
2 2

2log
2 1

x e

x 

7. y = 8 23log (log )t 8. y = (sin )(ln3)
3log ( )tt e

Use logarithmic differentiation to find the derivative of y with respect to the given
independent variable.

9. y = ( 1)xx  10. y = t

t

11. y = sin xx 12. y = ln(ln ) xx
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CHAPTER 4:   GROWTH AND DECAY

In this chapter, we derive the law of exponential change and describe some of the
applications that account for the importance of logarithmic and exponential functions.
The Law of Exponential Change

Consider a quantity y (velocity, temperature, electric current, whatever) that
increases or decreases at a rate that at any given time t is proportional to the amount
present. If we also know the amount present at time 0t  , call it 0y , we can find y as a
function of t by solving the following initial value problem:

Differential equation: dy

dt
= ky

Initial condition: y = 0y when 0t 

If y is positive and increasing, then k is positive and we use the first equation  to say
that the rate of growth is proportional to what has already been accumulated. If y is
positive and decreasing, then k is negative and we use the second equation  to say that
the rate of decay is proportional to the amount still left.

Clearly the constant function 0y  is a solution of the differential equation in Eq. (1).
Now to find the nonzero solutions, we proceed as follows:

By separating variables, the differential equation in Eq.(1a) gives
dy

k dt
y
 .

Integrating both sides, we obtain

ln y = kt C .

By exponentiating, we obtain

y = kt Ce 

i.e., y = C kte e ,  since a be  = a be e

i.e., y =  C kte e ,  noting that if y = r ,  then y = r .

i.e., y = ktAe , as A is a more convenient than  Ce .

To find the right value of A that satisfies the initial value problem, we solve for A
when 0y y and 0t  :

0y = 0kAe  = A .

Hence the solution of the initial value problem is
y = 0

kty e .

The law of Exponential Change says that the above equation gives a growth when
0k  and decay when 0k 

The number k is the rate constant of the equation.
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Population Growth
Consider the number of individuals in a population of people. It is a discontinuous

function of time because it takes on discrete values. However, as soon as the number of
individuals becomes large enough, it can safely be described with a continuous or even
differentiable function.

If we assume that the proportion of reproducing individuals remains constant and
assume a constant fertility, then at any instant t the birth rate is proportional to the
number ( )y t of individuals present. If, further, we neglect departures, arrivals and
deaths, the growth rate /dy dt will be the same as the birth rate ky . In other words, /dy dt =
ky , so that 0

kty y e . In real life all kinds of growth, may have limitations imposed by the
surrounding environment, but we ignore them.

Problem One model for the way diseases spread assumes the rate /dy dt at which the
number of infected people changes is proportional to the number y . The more infected
people there are, the faster the disease will spread. The fewer there are, the slower it will
spread.

Suppose that in the course of any given year the number of cases of a disease is
reduced by 20%. If there are 10,000 cases today, how many years will it take to reduce the
number to 1000?

Answer
We use the equation y = 0

kty e . There are three things to find:

1. the value of 0y ,

2. the value of k ,
3. the value of t that makes y =1000.

Determination of the value of 0y . We are free to count time beginning anywhere we want. If
we count from today, then y =10,000  when 0t  , so 0y =10,000. Our equation is now

y =10000 kte . …(3)

Determination of the value of k . When 1t  year, the number of cases will be 80% of its
present value, or 8000. Hence,

8000 = 10,000 (1)ke , using Eq. (3) with 1t  and y =8000
 ke = 0.8
Taking logarithms on both sides, we obtain

 ln ke = ln 0.8 .

Hence
 k = ln 0.8 .
Using Eq.(3), at any given time t ,

y =10,000 (ln 0.8)te .



School of Distance Education

Calculus and Analytic Geometry Page 26

Determination of the value of t that makes y =1000. We set y equal to 1000 in Eq.(4) and
solve for t :

1000=10,000 (ln 0.8)te

(ln 0.8)te = 0.1

Taking logarithms on both sides, we obtain

(ln 0.8)t = ln 0.1

 t = ln 0.1

ln 0.8
 10.32 .

It will take a little more than 10 years to reduce the number of cases to 1000.

Continuously Compounded Interest
If you invest an amount 0A of money at a fixed annual interest rate r (expressed as a
decimal) and if interest is added to your account k times a year, it turns out that the
amount of money you will have at the end of t years is

tA = 0 1
kt

r
A

k
  
 

.

The interest might be added (“compounded”) monthly ( 12),k  weekly ( 52)k  , daily
( 365)k  , or even more frequently, say by the hour or by the minute. But there is still a
limit to how much you will earn that way, and the limit is

lim t
k

A


= 0lim 1
kt

k

r
A

k

  
 

= 0 ,rtA e as lim 1 .


   
 

n
x

n

x
e

n

The resulting formula for the amount of money in your account after t years is

( )A t = 0
rtA e .

Interest paid according to this formula is said to be compounded continuously. The
number r is called the continuous interest rate.

Problem Suppose you deposit Rs.62100 in a bank account that pays 6% compounded
continuously. How much money will you have 8 years later? If bank pays 6% interest
quarterly how much money will you have 8 years later? Compare the two compounding.

Answer

With 0 62100,A  r =0.06 and t =8:

A (8) = 62100 (0.06)(8)e = 62100 0.48e = 100358, approximately.

If the bank pays 6% interest quarterly, we have to put 4k  in Eq. (5) and
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4 8
0.06(8) 62100 1 100001,

4
A


    
 

approximately. Thus the effect of

continuous compounding, as compared with quarterly compounding, has been an
addition of Rs.357.

Radioactivity
When an atom emits some of its mass as radiation, the remainder of the atom re-

forms to make an atom of some new element. This process of radiation and change is
called radioactive decay, and an element whose atoms go spontaneously through this
process is called radioactive. Thus, radioactive carbon-14 decays into nitrogen. Also,
radium, through a number of intervening radioactive steps, decays into lead.

Experiments have shown that at any given time the rate at which a radioactive
element decays (as measured by the number of nuclei that change per unit time) is
approximately proportional to the number of nuclei present. Thus the decay of a
radioactive element is described by the equation /dy dt = ky , 0k  . If 0y is the number of
radioactive nuclei present at time zero, the number still present at any later time t will be

y = 0
kty e , 0k 

Problem The half-life of a radioactive element is the time required for half of the
radioactive nuclei present in a sample to decay. Show that the half life is a constant that
does not depend on the number of radioactive nuclei initially present in the sample, but
only on the radioactive substance.

Answer

Let 0y be the number of radioactive nuclei initially present in the sample. Then the
number y present at any later time t will be 0

kty y e . We search the value of t at which
the number of radioactive nuclei present equals half the original number:

0
kty e = 0

1

2
y

kte = 1

2

kt = 1
ln

2
= ln 2 , using Reciprocal Rule for logarithms


ln 2

t
k

 .

This value of t is the half-life of the element. It depends only on the value of k for a
radioactive element, not on 0y the number of radioactive nuclei present. Thus,

Half-life = ln 2

k
,

where k depends only on the radio active substance.
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Problem The number of radioactive Polonium-200 atoms remaining after t days in a
sample that starts with 0y atoms is given by the Polonium decay equation

y = 35 10
0

ty e
  .

Find the Polonium-200 half –life.

Answer

Comparing Polonium decay equation with Eq. (7), we have 35 10k   .

Half-life = ln 2

k
, using  Eq. (8)

=
3

ln 2

5 10

139 days

Problem Using Carbon-14 dating, find the age of a sample in which 10% of the
radioactive nuclei originally present have decayed. (The half life of Carbon-14 is 5700
years)

Answer

We note that 10% of the radio active nuclei originally present have decayed is
equivalent to say that 90% of the radioactive nuclei is still present.

We use the decay equation 0
kty y e . There are two things to find:

1. the value of k ,

2. the value of t when 0
kty e = 00.9y , or kte =0.9

Determination of the value of k . We use the half-life equation (8), to get

k = ln 2

half - life
= ln 2

5700
.

Hence the decay equation becomes 0 (1n 2 / 5700)y y e t

Determination of the value of t that makes (ln 2 / 5700) 0.9te 

Taking logarithm of both sides,

ln 2

5700
t = ln 0.9

 t = 5700ln 0.9

ln 2
  866

Hence the sample is about 866 years old.
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CHAPTER.5  L’HOSPITAL’S RULE

L` Hospital rule for forms of type 0/0

Theorem Suppose that     0limlim 


xgxf
uxux

.  If
)(

)(
lim

xg

xf
ux 



exists in either the finite or infinite

sense (that is, if this limit is a finite number  or  or  +), then

)(

)(
lim

)(

)(
lim

xg

xf

xg

xf
uxux 





.

Here u may stand for any of the symbols  oraaa ,,,, .

Problem Find .
1

lim
0 x

e x

x




Answer Here both the numerator and denominator have limit 0.   Therefore limit has 0/0 form.


1

lim
1

lim
00

x

x

x

x

e

x

e



 , applying l’Hôpital’s Rule

1

0e
 .1

Problem Use l’Hôpital’s rule to show that 1
sin

lim
0


 x

x
x

.

Answer Here limits of both the numerator and denominator is 0.   Therefore x
x

x

sin

0
lim


is in the

0/0 form.  Now

1

cos
lim

sin
lim

00

x

x

x
xx 
 , using l’Hôpital’s Rule and noting that derivative of sin x is cos x  and that

of x is 1.

1lim

coslim

0

0




x

x
x

, using quotient rule for limits

.1
1

1


Problem Find  
.

11
lim

0 x

x n

x




Answer Here both the numerator and denominator have limit 0.   Therefore limit has 0/0
form.


   

1

1
lim

11
lim

1

00








 n

x

n

x

xn

x

x , applying l’Hôpital’s Rule

 
1

01 1


nn
.n
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Successive Application of l’Hôpital’s Rule

Problem Evaluate
30

sin
lim



x

x x

x

Answer Here the limit is in  0/0 form.

3 20 0

sin 1 cos
lim lim

3 

 


x x

x x x

x x

L

, again in 0/0 form

0

sin
lim

6


x

x

x

L

, again in 0/0 form

0

cos
lim

6


x

xL

, now limit can be evaluated

1 .
6


Problem

Find
xx

x
x 3

cos1
lim

20 




.

Answer
2

1

2

cos
lim

32

sin
lim

3

cos1
lim

0020










x

x

x

xx

x
xxx

LL
This is wrong, as the first application of

l’Hôpital’s Rule was correct; the second was not, since at that stage the limit did not have the 0/0
form.  Here is what we should have done:

0
32

sin
lim

3

cos1
lim

020








 x

x

xx

x
xx

L
This is right.

Problem Evaluate
20

1 coslim
x

x
x x




Answer The given is in the 0
0

form.

20

1 coslim
x

x
x x


 0

sinlim
1 2


x

x
x

Not 0
0

0 0
1
 

If we continue to differentiate in an attempt to apply L’Hopital’s rule once more, we get

20 0 0

1 cos sin cos 1lim lim lim ,
1 2 2 2x x x

x x x
x x x  

   
 

which is wrong.
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Problem Find .
1

log

1
log

lim







 







 



x

x
x

x

x

Answer Here the given limit can be written as







 







 








 







 



x

x

x

x
x

x

xx 1
1log

1
1log

lim
1

log

1
log

lim

and the limit is in  0/0 form.

Also,  
  xx

xx

x

x
x

x

xx log1log

log1log
lim

1
log

1
log

lim
0 









 







 


.

Now we are ready to apply l’Hôpital’s Rule:



xx

xx

x

x
x

x

xx 1

1

1

1

1

1

lim
1

log

1
log

lim













 







 



L

 

 1
1

1

1

lim









xx

xx
x

(by algebraic manipulations)

1

1
lim





 x

x
x 1

1
lim





 x

x
x

x

x
x 1

1

1
1

lim





 01

10




 .1

Exercises
Evaluate the following limits.

1.
x

x
x 1

1

0 tan

sin
lim






2.

x

x
x

tan
lim

0

3.
 21 1

cos1
lim

x

x
x 




 4.
x

be xx

x


0

lim

5.
 2

21

1 1

)1(
lim

x

nxxnx nn

x 

 


6.

20

)1log(cos
lim

x

xxx
x
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7.
x

x
x cos1
lim

2

0 

8. 




 


 x

x

x

xx
x

3sinsin
lim

30

9.
20

)1log(
lim

x

xxe x

x




10.
)1log(

1sin
lim

0 x

xe x

x 




11.
2

sin

0

1
lim

x

xe x

x




12.
xx

xx
x sin

tan
lim

0 




13.
)1log(

)1log(sin
lim

0 x

x
x 




14.
30

sintan
lim

x

xx
x




15.
3

3

0 10

4sin2
lim

x

xxxee xx

x

 



16.
x

x
x coslog

)1log(
lim

2

0




17.
x

xx
x 30 sin

sintan
lim




18.  
xx

xxxx
x 


 tan

1logcoshcos1
lim

0

19.
4

2

0

coscos21
lim

x

xx
x




20.
x

kx
x cos1

)1log(
lim

2

0 




21. 







 

 xx

x
ee xx

x sin

2
lim

20
22.

2

23

9
lim

6x

x

x x


 

L` Hospital rule for forms of type /

Theorem Suppose that 


)(lim)(lim xgxf
uxux

.  If
)(

)(
lim

xg

xf
ux 



exists in either the finite or infinite

sense (that is, if this limit is a finite number or  or +), then

)(

)(
lim

)(

)(
lim

xg

xf

xg

xf
uxux 





.

Here u may stand for any of the symbols  oraaa ,,,, .

Problem Find
xx e

x


lim

Answer

Both x and xe tend to  as .x Hence limit is in  / form.

xxxx ee

x 1
limlim


 , applying l’Hôpital’s Rule

= 0.
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ProblemEvaluate
x

n

x e

x


lim , where n is natural number.

Answer

Here both the numerator and denominator tend to  as .x Hence limit is in  / form.

x

n

xx

n

x e

xn

e

x 1

limlim




L

 
x

n

x e

xnn 21
lim







L


L


 
xx e

nn 1231
lim






L

 
xx e

nn 1231
lim






L

0
!

lim 
 xx e

n

Problem Show that if  a  is any positive real number,

.0lim 
 x

a

x e

x

Answer

Here both the numerator and denominator tend to  as .x Hence limit is in  / form.

Suppose as a special case that a = 2.1.  Then three applications of  l’Hôpital’s Rule give

  
xxxxxx e

x

e

x

e

x 1.01.11.2 1.11.2
lim

1.2
limlim



LL

   
.0

1.01.11.2
lim

9.0


 xx ex

L

A similar argument works for any .0a

Problem Show that if  a  is any positive real number,

.0
ln

lim 
 ax x

x

Answer

Here both the numerator and denominator tend to  as .x Hence limit is in  / form.

 .0
lim

1lim1
lim

1

lim
ln

lim
1







 a

x

x
axaxax xaxaxa

x
x

x L
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Problem Show that .0
cot

ln
lim

0


 x

x

x

Answer

Here both the numerator and denominator tend to  as .x Hence limit is in  / form.

x

x

x

x

xx
2

00

/1
lim

cot

ln
lim

cosec

L




 

This is still indeterminate ( / form) as it stands, but rather than apply l’Hôpital’s Rule again
(which only makes things worse), we rewrite:

x

x
x

x

x

x

x sin
sin

sin/1 2

2


 cosec

Thus








 x

x
x

x

x

xx

sin
sinlim

cot

ln
lim

00

.010
sin

limsinlim
00


 x

x
x

xx

The Indeterminate Products and Differences:

Indeterminate forms   0.,   

Problem Evaluate
0

lim
x

tan x log x

Answer

Write
0

lim
x

tan x log x (which is in 0·  form) as:

0
lim
x

tan x log x
x

x
x cot

ln
lim

0
 (now in / form)

0 , by Example 5 in the previous section.

Problem Evaluate 





 
 xx

x

x ln

1

1
lim

1

Answer

1x

x and
xln

1 tend to  as  x 1. So the limit is an    form.

Before applying L`Hospital’s Rule we rewrite:

  xx

xxx

xx

x

xx ln1

1ln
lim

ln

1

1
lim

11 








 
  

(0/0 form)
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Now apply L`Hospital’s Rule:

     xxx

xxx

xx

xxx

xx

x

xxx ln/11

1ln/1
lim

ln1

1ln
lim

ln

1

1
lim

111 












 
  

L

2

1

ln2

ln1
lim

ln1

ln
lim

1

L

1









 x

x

xxx

xx

xx
.

Exercises

1.  xx
x

tanseclim
2/




2. 





 


x

xx
cot

1
lim

0

3.   







 a

x
xa

ax 2
tanlim

 4.   xx
x




1logloglim
1

5. .
1

sin

1
lim

0






 

 xxx

The Indeterminate Powers: Indeterminate forms   00, 0,  1

Three indeterminate forms of exponential type are 00, 0 and  1.  Here the trick is to consider
not the original expression, but rather its logarithm.  Usually  l`Hospital’s Rule will apply to the
logarithm.

Problem Evaluate   .sinlim tan

2

x

x
x



Answer

The limit takes the indeterminate form 1.

Let   xxy tansin ,

so taking logarithims, we obtain

x

x
xxy

cot

sinlog
sinlogtanlog  .

Applying l`Hospital’s Rule for 0/0 forms,

xec

x
x

x

x
y

xxx 2cos

cos
sin

1

lim
cot

sinlog
limloglim

222 




 

L

xx
x

cossinlim
2




.0cossin 22  

Now yey ln , and since the exponential function   xexf  is continuous,

  .10exploglimexplogexplimlim
222












yyy

xxx 

i.e.,   .1sinlim tan

2




x

x
x
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Problem Prove that   .1tanlim cos

2/




x

x
x



Answer

The limit takes the indeterminate form 0.

Let   xxy costan , so that

x

x
xxy

sec

tanln
tanlncosln  .

By l`Hospital’s Rule,

xx

x
x

x

x
y

xxx tansec

sec
tan

1

lim
sec

tanln
limlnlim

2

2/2/2/




  

L

0
sin

cos
lim

tan

sec
lim

22/22/


  x

x

x

x

xx 

Now yey ln , and since the exponential function   xexf  is continuous,

  .10explnlimexplnexplimlim 0

2/2/2/









 
eyyy

xxx 

Problem Show that  
1

0
lim 1 .x
x

x e

 

Answer

The limit leads to the indeterminate form 1 .

Let  
1

1 xy x  , so that  1log log 1 .y x
x
 

  
0 0

1lim ln lim log 1
x x

y x
x  

  (0/0 form)

0

1
1lim

1x

x



L 1 1.

1
 

  
1

ln 1

0 0 0
lim 1 lim lim .yx
x x x

x y e e e
    
    

Exercises
Evaluate the following limits:

1.  














xx

x
ex

11

0
1lim 2.

x

x

x
tan

2
2

lim 





 






3. 







 x
x

x

a

2
tan2lim

4.   x

x
x 


2

2

coslim



5. x

x x

x
1

0

sin
lim 









6.   x

x
x cot

0
sin1lim 
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7.  


































 


 2
2/1

0

3
1

13lim
x

x

x
x

8.  x
xe x

x 


 1log

1sin
lim

0
9.  xxe x

x

1
2

0
lim 


10.   ax

ax
ax 


lim 11.   xnx

nx
cotlim 


12.   xe

x
x




 21lim

14.   x

x

x 2tan

4

tanlim



15. xx

x

x

b
a

1

0 2
lim

















16. x

xx e

x
1

0
1lim 











17.    x
x

x 

 1log

1
2

1
1lim 18.   x

x
x 2cot

0
coslim


19.

x

x x






 


3
1lim

20. 





 


x

x

x
xx

x

22

0
cos

cos

sin
2sin22sinlim 21. xx

x
2tanloglim tan

0

22. x

x x

x
1

0

tan
lim 









23.   x

x
x log

1

0
cotlim


24.

a

x

a

x
ax

2
tan

2lim









 





School of Distance Education

Calculus and Analytic Geometry Page 38

CHAPTER. 6    HYPERBOLIC FUNCTIONS
Hyperbolic Functions

Hyperbolic cosine of x: cosh
2

x xe ex


Hyperbolic sine of x: sinh
2

x xe ex


Remark: cosh sinh .xx x e 

Definition Using the above Definition we can define four other hyperbolic functions and
are listed below:

Hyperbolic tangent: sinhtanh
cosh

x x

x x

x e ex
x e e




 


Hyperbolic cotangent: coshcoth
sinh

x x

x x

x e ex
x e e




 


Hyperbolic secant: 1 2sech
cosh x x

x
x e e

 


Hyperbolic cosecant: 1 2csch
sinh x x

x
x e e

 


Identities in hyperbolic functions
 cosh( ) cosh .x x 

 sinh( ) sinh .x x  

 cosh 0 1.

 sinh 0 0.

 .1sinhcosh 22  xx

 2 2tanh sech 1.x x 

 2 2coth csch 1.x x 

 cosh ( ) cosh cosh sinh sinh .x y x y x y  

 cosh ( ) cosh cosh sinh sinh .x y x y x y  

 sin h ( ) sinh cosh cosh sinh .x y x y x y  

 sin h ( ) sinh cosh cosh sinh .x y x y x y  

 2 2 2 2cosh 2 cosh sinh 1 2sinh 2cosh 1.x x x x x     

 sin h 2 2sinh coshx x x .

 sinh 2sinh cosh .
2 2

x x
x 

 2 cosh 2 1
cosh .

2

x
x




 2 cosh 2 1
sinh .

2
x

x


 3cosh3 4cosh 3cosh .x x x 
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 3sin h3 3sinh 4sinh .x x x 


yx

yx
yx

tanhtanh1

tanhtanh
)tanh(






yx

yx
yx

tanhtanh1

tanhtanh
)tanh(






2tanh

sinh 2 .
21 tanh

x
x

x




21 tanh

cosh 2 .
21 tanh

x
x

x






2 tanh

tanh 2 .
21 tanh

x
x

x




33tanh tanh

tanh 3 .
21 3tanh

x x
x

x






Problem Given 3sinh
4

x   .  Find the other five hyperbolic functions.

Using 2 2cosh sinh 1,x x 

  .
4

5
4/31sinh1cosh 22  xx

Also,


   
sinh 3 / 4 3tanh ;
cosh 5 / 4 5
xx
x

  
1 5coth .
tanh 3

x
x

1 1 4 1 4sech ; and cosech .cosh 5 / 4 5 sinh 3     x xx x

Derivatives of Hyperbolic Functions

 (sinh ) cosh .d x x
dx



 (cosh ) sinh .d x x
dx



 2(tanh ) sech .d x x
dx



 2(coth ) csch .d x x
dx

 

 (sech ) sech tanh .d x x x
dx

 

 (csch ) csch coth .d x x x
dx
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Problem Find
dx

dy , where xxxy coshsinh  .

Solution  xxx
dx

d

dx

dy
coshsinh 

  x
dx

d
xx

dx

d
coshsinh 

    xxx
dx

d
x

dx

d
x sinhsinhsinh  , applying product rule of differentiation

xxxx sinhsinhcosh 

.cosh xx

Problem Evaluate  2tanh 1d x
dx

 .

Solution Take 21 .u x  Then, using formula 3 above,

   2 2 2 2

2 2

2

tanh 1 sech 1 1

sech 1 .
1

d dx x x
dx dx

x x
x

    

 


Formulae for Integral of Hyperbolic Functions

 sinh cosh .u du u C 
 cosh sinh .u du u C 
 2sech tanh .u du u C 
 2csch coth .u du u C  
 sech tanh sec .   u u du hu C

 csch coth csch .u u du u C  

Problem Evaluate
ln2

0
4 sinh .xe x dx

Solution
ln2 ln2 ln2

2

0 0 0

2 ln2 2 ln 2
0

ln 4

4 sinh 4 (2 2)
2

[ 2 ] ( 2ln 2) (1 0)

2ln 2 1

4 2ln 2 1

1.6137

x x
x x x

x

e ee x dx e dx e dx

e x e

e
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The Inverse Hyperbolic Functions

sinh1 x is the inverse hyperbolic sine of x.

Identities for inverse hyperbolic functions

 1 1 1sech cosh .x
x

 

 1 1 1csch sinh .x
x

 

 1 1 1coth tanh .x
x

 

Relation between inverse hyperbolic functions and natural logarithm

 
 

1 2

1 2

1

cosh ln 1 , 1

sinh ln 1 ,

1 1tanh ln , | | 1
2 1







   

      

 


x x x x

x x x x

xx x
x

2
1

2
1

1

1 1sech ln ,0 1

1 1csch ln , 0
| |

1 1coth ln , | | 1
2 1

xx x
x

xx x
x x

xx x
x







     
 
    
 
 


Derivatives of inverse hyperbolic functions

1  Derivative of sinh-1x

Let y = sinh1x.            Then x = sinh y .

Differentiating both sides with respect to x, we get

1 =  cosh y.
dx

dy

Therefore .realfor,
1

1

sinh1

1

cosh

1
22

x
xyydx

dy







i.e.   .realfor,
1

1
sinh

2

1 x
x

x
dx

d




In a similar manner, we have the following derivatives.

2. 1

2

1(cosh )
1

d x
dx x

 


3.   .1for,
1

1
tanh

2
1 


 x

x
x

dx

d
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4.   .1for,
1

1
coth

2
1 


 x

x
x

dx

d

5.   .10,
1

1
sech

2

1 


 x
xx

x
dx

d

6.   .0,
1

1
cosech

2

1 


 x
xx

x
dx

d

Problem Find the derivatives of the following functions with respect to x:

(i) cosh1 (x2)  (ii) sinh1 (tan x)

Solution

(i) Let y =  cosh1 (x2) .

   1 2 1 2dy d d ducosh x cosh u with u x
dx dx du dx

   

 2 42

1 2x2x .
x 1x 1

 


(ii)   Let y =  sinh1 (tan x).

    1 1sinh tan sinh
dy d d dux u
dx dx du dx

  

 
2

2

1 sec
1 tan

x
x




2sec sec .
sec

x x
x

 

Integrals leading to inverse hyperbolic functions

1

2 2

1

2 2

1. sinh , 0

2. cosh , 0

du u C a
aa u

du u C u a
au a





    
 
     
 




1 2 2

2 2
1 2 2

1

2 2

1

2 2

1 tanh if
3.

1 coth if

14. sech , 0

15. csch , 0

u C u a
a adu

ua u C u a
a a

du u C u a
a aa u

du u C u
a au a u
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Problem Evaluate the definite integral
1

20

2

3 4

dx

x
Answer

1
1

1

20
0

1

2 2sinh
33 4

2sinh 0 0.98665.
3





 
  

  

 
   

 

 dx x

x

Exercises

Each of Exercises 1- 2 gives a value of sinh or coshx x . Use the definitions and the identity
2 2cosh sinh 1x x  to find the values of the remaining five hyperbolic functions.

1. 4sinh
3

x  2. 13cosh , 0
5

x x 

Rewrite the expressions in Exercises 3-5 in terms of exponentials and simplify as much as
you can.

3. sinh(21n )x 4. cosh 3 sinh 3x x

5. 1n (cosh sinh ) 1n(cosh sinh )x x x x  

In Exercises 6-17, find the derivative of y with respect to the appropriate variable.

6. 1 sinh(2 1)
2

y x  7. 2 1tanhy t
t

 8. 1n(cosh )y z

9. csch (1 1n csch )y    10. 211nsinh coth
2

y   

11. 2(4 1)csc h(1n2 )y x x  12. 1cosh 2 1y x 

13. 2 1( 2 ) tanh ( 1)y      14. 2 1(1 )cothy t t 

15. 2 11n 1 sech  y x x x 16. 1csch 2y 

17. 1cosh (sec ), 0 / 2y x x   

In Exercises 18-19, verify the following integration formulae:

18. 2
1 1 21sech sech 1

2 2
xx xdx x x C    

19. 1 1 21tan h tan h 1n(1 )
2

xdx x x x C    
In Exercises 20- 24, evaluate the indefinite integrals:

20. sinh
5
xdx 21. 4cosh(3 1n2)x dx 22. coth

3
d 

23. 2csch (5 )x dx 24. csch(1n )coth(1n )t t dt

t
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In Exercises 25- 29, evaluate the definite integrals:

25.
1n 2

0
tanh 2xdx 26.

1n 2

0
4 sinhe d  

27.
/ 2

0
2sinh(sin )cos d


   28.

4

1

8cosh xdx
x

29.
1n 10

2

0
4sinh

2
x dx  
 

Express the numbers in Exercises 30-32 in terms of natural logarithms:

30. 1cosh (5 / 3) 31. 1coth (5 / 4) 32. 1csch ( 1/ 3) 

In Exercises 33-36, evaluate the integrals in terms of (a) inverse hyperbolic functions, (b)
natural logarithms.

33.
1/ 3

0 2

6
1 9

dx
x 34.

1/ 2

0 21
dx

x

35.
2

1 24
dx

x x 36.
1 21 (1n )

e dx
x x

MODULE II
CHAPTER 7:  SEQUENCES
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Sequences

Definition (Sequence) If to each positive integer n there is assigned a (real or complex)
number nu , then these numbers 1 2, , , , nu u u are said to form an infinite sequence or,
briefly, a sequence, and the numbers nu are called the terms of the sequence. A sequence
whose terms are real numbers is called real sequence. We discuss real sequences only.

Definition An infinite sequence (or sequence) of numbers is a function whose domain
is the set of integers greater than or equal to some integer 0n . Usually 0n is 1 and the
domain of the sequence is the set of positive integers and in that case sequences are the
functions from the set of positive integers.

 Based on the above definition an example of a sequence is 1( ) 

nu n n .

The number ( )u n is the n th term of the sequence, or the term with index n . If
1( ) , nu n

n
we have

First term Second term Third term n th term

(1) 2u 3(2)
2
u 4(3) ,

3
u  

1( )  nu n
n

When we use the subscript notation nu for ( )u n , the sequence is written

1 2,u  2
3
2

u  3
4 ,
3

u  
1

n
nu

n


Some other examples of sequences are

( ) ,u n n 1 1( ) ( 1) ,  nu n
n

1( )  nu n
n

.

We refer to the sequence whose n th term is nu with the notation { }nu

 If b, the set of real numbers, the sequence ( , , , )B b b b  , all of whose terms
equal b , is called the constant sequence b . Thus the constant sequence 1 is the
sequence (1, 1, 1, ) , all of whose terms equal 1, and the constant sequence 0 is the
sequence (0,0, 0, ) .

 If a, then the sequence { }nA a is the sequence 2 3, , , , ,na a a a  . In particular, if
1
2

a  , then we obtain the sequence

1 1 1 1 1, , , , ,
2 4 82 2n n

      
   

  .

Definition A sequence { }nu is  said to converge or to be convergent if there is a number
l with the following property :  For every 0  (i.e.,  is a positive real number that
may be very small, but not zero) we can find a positive  integer N such that

n N  | | . nu l

l is called the limit of the sequence. Then we write
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lim


n
n

u l

or simply

nu l as n

and we say that the sequence converges to l or has the limit l. If no such number l exists,
we say that { }nu diverges.

Problem Show that 1lim 0
n n

 .

Answer

Here 1 and 0. nu l
n

Let 0  be given. We must show that there exists an integer N

such that
n N  | |  nu l

i.e., to show that there exists a positive integer N such that

1 0n N
n

    .

The implication in (1) will hold if 1 
n

 or 1n

 . If N is any integer greater than 1


, the

implication will hold for all .n N This proves that 1lim 0. n n

Problem Show that lim
n

k k


 (where k is a constant).

Answer

Let 0  be given. We must show that there exists a positive integer N such that
| | .n N k k    

Since 0k k  , we can use any positive integer for N and the implication will hold. This
proves that lim

n
k k


 for any constant k.

Problem The sequence (0, 2, 0, 2, , 0, 2, )  does not converge to 0.

Answer Here

0, when is odd

2, when is even


 


n

n
u

n

If we choose 1  , then, for any positive integer N , one can always select an even
number n N , for which the corresponding value 2nu and for which
| 0 | | 2 0 | 2 1    nu . Thus, the number 0 is not the limit of the given sequence ( )nu .

Recursive Definitions
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So far, we have calculated each nu directly from the value of n . But, some sequences
are defined recursively by giving

1. The value(s) of the initial term (or terms), and

2. A rule, called a recursion formula, for calculating any later term from terms that
precede it.

Problem The statements 1 1u  and 1 1 n nu u define the sequence 1, 2, 3, , ,n  of
positive integers. With 1 1,u  we have 2 1 1 2,u u   3 2 1 3,u u   and so on.

SUBSEQUENCES
If the terms of one sequence appear in another sequence in their given order, we call

the first sequence a subsequence of the second.

Problem Some subsequences of  1 1 1, , ,
1 2 3

 X are

 1 1 1 1, , , , ,
3 4 5 2

 
n

,  1 1 1 1, , , , ,
1 3 5 2 1

 
n

, and 1 1 1, , , , .
2! 4! (2 )!
 
 
 

 
n

But  1 1 1, , ,
2 1 3

Y   is not a subsequence of X, because the terms of Y do not

appear in X in the given order.

Definition A tail of a sequence is a subsequence that consists of all terms of the
sequence from some index N on. In other words, a tail is one of the sets { | }nu n N .

Definition If 1 2{ , , , , }  nX u u u is a sequence of real numbers and if m is a given
natural number, then the m -tail of X is the sequence

1 2{ , , }  m m mX u u and its nth term is m nu .

For example, the 3-tail of the sequence

{2,4, 6, 8, 10, , 2 , }  X n ,

is the sequence

3 {8, 10, 12, , 2 6, }.  X n

Remark Another way to say that nu L is to say that for every 0,  the  - open
interval ( , )L L   about L contains a tail of the sequence.

Bounded Nondecreasing Sequences
Definition A sequence { }nu with the property that 1n nu u  for all n is called a
nondecreasing sequence. Some examples of nondecreasing sequences are

i) The sequence 1, 2, 3, , ,n  of natural numbers
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ii) The constant sequence {3}

Definition A sequence { }nu is bounded from above if there exists a number M such
that nu M for all n . The number M is an upper bound for { }nu . If M is an upper bound
for { }nu and no number less than M is an upper bound for { }nu , then M is the least
upper bound for { }nu .

Theorem 1 A non-decreasing sequence that is bounded from above always has a least
upper bound.

 The sequence 11, 1, 1, 1, ,( 1) ,   n is bounded from above with an upper bound
1. 1 is the least upper bound as no number less than 1 is an upper bound. Also
note that any real number greater than or equal to 1 is also an upper bound.

 The sequence 1, 2, 3, , ,n  has no upper bound.

Theorem 2 (The Nondecreasing sequence theorem)

A nondecreasing sequence of real numbers converges if and only if it is bounded
from above. If a nondecreasing sequence converges, it converges to its least upper
bound.

Exercises

Each of Exercises 1-7 gives a formula for the nth term nu of a sequence { }nu . Find the
values of 1 2 3, , ,u u u and 4.u

1. 1
!nu

n
 2. 2 ( 1)n

nu    3. 2 1
2

n

n n
u 

4. 1 ( 1)n
nu    , 5. ( 1)n

nu
n
 , 6. 1

( 1)nu
n n




7.
2
1

2
nu

n



.

In Exercises 8-11 the first few terms of a sequence { }nu are given below. Assuming that
the “natural pattern” indicated by these terms persists, give a formula for the n th term

nu .

8. 5, 7, 9, 11, , 9. 1 1 1 1, , , ,
2 4 8 16
   ,

10. 1 2 3 4, , , ,
2 3 4 5

 , 11. 1, 4, 9, 16,

Each of Exercises 12-18 gives the first term or two of a sequence along with a recursion
formula for the remaining terms. Write out the first ten terms of the sequence.

12. 1 1,u  1 1
n

n

u
u

n  

13. 1 2,u   1 1
n

n

nu
u

n  
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14. 1 2,u  2 1,u   1
2

n
n

n

u
u

u


 

15. 1 1,u  1 3 1n nu u   ,

16. 1 2v  , 1 2
1 2 ( )

n
n n yv y  

17. 1 1,u  2 2u  , 1
2

1

( )
( )

n n
n

n n

u u
u

u u










18. 1 3u  , 2 5,u  2 1n n nu u u  

In Exercises 19-23, find a formula for the nth term of the sequence.

19. The sequence 1, 1, 1, 1, 1,   

20. The sequence 1 1 1 11, , , , ,
4 9 16 25
  

21. The sequence 3, 2, 1, 0, 1,   

22. The sequence 2, 6, 10, 14, 18, …

23. The sequence 0,1,1,2,2,3,3,4,…

CHAPTER.8  THEOREMS FOR CALCULATING LIMITS OF SEQUENCES
Definition If { }nX u and { }nY v are sequences of real numbers, then we define their
sum to be the sequence { }n nX Y u v   , their difference to be the sequence { }n nX Y u v   ,
and their product to be the sequence { }n nX Y u v  . If cwe define the multiple of X by
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c to be the sequence { }ncX cu . Finally, if { }nZ w is a sequence of real numbers with

0nw  for all n, then we define the quotient of X and Z to be the sequence n

n

uX
Z w
   
 

.

Theorem 3 Let { }nu and { }nv be sequences of real numbers. The following rules hold if
lim


n
n

u A and lim


n
n

v B where A and B be real numbers.

1. Sum Rule : lim( )


  n n
n

u v A B

2. Difference Rule : lim( )


  n n
n

u v A B

3. Product Rule : lim( )


  n n
n

u v A B

4. Constant Multiple Rule : lim ( )


  n
n

k v k B (Any number k)

5. Quotient Rule : lim


n

n n

u A
v B

if 0B 

Problem Show that 2 1lim 2


 
n

n
n

Answer

Since 2 1 12 ,  n
n n

we have

 2 1 1 1lim lim 2 lim 2 lim 2 0 2
n n n n

n
n n n   

        .

Theorem 4 The Sandwich Theorem for Sequences

Let { }, { },n nu v and { }nw be sequences of real numbers. If n n nu v w  holds for all n beyond
some index N, and if

0 0
lim lim
 

 
 n n

x x
u w L , then lim


n

n
v L also.

Remark An immediate consequence of Theorem 4 is that, if | |n nv w and 0,nw  then
0nv  because .n n nw v w   We use this fact in the coming examples.

Problem Show that 1

2n

 
 
 

converges to 0.

Answer

1 0
2n
 because 1 1

2n n
 and since 1lim 0.




n n

Theorem 5: The Continuous Function Theorem for Sequences

Let { }nu be a sequence of real numbers. If nu L and if f is a function that is continuous
at L and defined at all nu , then ( ) ( ).nf u f L

Using I’Hôpital’s Rule
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Theorem 6 Suppose that ( )f x is a function defined for all 0x n and that { }nu is a
sequence of real numbers such that ( )nu f n for 0n n . Then

lim ( )
x

f x L


  lim .n
n

u L




Example 39 Find 2lim .
5

n

n n

Solution 2lim
5

n

n n
is in the 


form.  Hence

2 2 ln 2lim lim
5 5 


n n

n nn
, applying L’Hôpital’s rule, and noting that the derivative of

2n with respect to n is 2 1n2.n

  .
Problem Does the sequence whose nth term is

 11
n

n
nu
n



converge? If so, find lim .
 n

n
u

Solution The limit leads to the indeterminate form 1 . We can apply   l’Hôpital’s rule if
we first change it to the form 0  by taking the natural logarithm of .nu

 1ln ln
1

n

n
nu
n



 1ln .
1

nn
n



 1lim ln lim ln
1n

n n

nu n
n 




( 0  form)

 1ln
1lim

1n

n
n

n



  0 form

0

2

2

2
( 1)

lim
1n

n

n






,  applying  l’Hôpital’s rule

2

2

2 1
2 2lim lim 2

11 
  

n n
n

n
n

.

Since ln 2nu as n , and ( ) xf x e is continuous everywhere, Theorem 5 tells us that
ln 2 .nu

nu e e 

That is, the sequence { }nu converges to 2e .

Exercises
Which of the sequences { }nu in Exercises 1-31 converge, and which diverge? Find the
limit of each convergent sequence.
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1. ( 1)n

n
n

u
n
  2. 2 1

1 3
n

nu
n



3.

2
3

5 6
n

nu
n n

 

4.
1


n
nu

n

5. ( 1)
1




n

n
n

u
n

6.
2

1

n

nu
n

7.
2

2
2 3.

1


n

nu
n

8.
3

2
1

70 4
n

nu
n




9.  1( 1) 1n
nu

n
   10. 1 12 3

2 2
n n n

u       
  

11.  1
2

n

nu  

12. 1
(0.9)

n n
u  13. cos( )nu n n  14.

2sin
2

n n
nu 

15.
3

3n

nu
n
 16. ln

ln 2n
nu
n

 17. 1

(0.03) n
nu 

18.  11
n

nu
n

  19. 2n
nu n 20.

1
( 4)( 4) n

nu n  

21. ln ln( 1)nu n n   22. 2 13n n
nu  23. ( 4)

!

n

nu
n


24. !
2 3

n n n
nu 


25.  1ln 1
n

nu
n

  26.  1
n

n
nu

n



27.
2

11
n

nu
n

   
 

28.
 

   
10
11

9 11
10 12

n

n n n
u 


29. sinh(ln )nu n

30.  11 cosnu n
n

  31. 11 tannu n
n

 32. 2n
nu n n 

33.
5(ln )

n
n

u
n

 34.
2 2

1

1
nu

n n n


  
35.

1

1 , 1
n

n p
u dx p

x
 

36. Give an example of two divergent sequences ,X Y such that their product XY

converges.
37. Show that if X and Y are sequences such that X and X Y are convergent, then Y is

convergent.
38. Show that if X and Y are sequences such that X converges to 0x  and XY

converges, then Y converges.
39. Show that the sequence {2 }n is not convergent.
40. Show that the sequence 2{( 1) } n n is not convergent.
In Exercises 41-44, find the limits of the following sequences:

41.
2

12
     
   n

42. ( 1)
2

  
   

n

n
43. 1

1

 
 

 

n

n
44. 1 
 
 

n

n n

CHAPTER.9  SERIES
Definition If 1 2 3, , ,..., ,...nu u u u be a sequence of real numbers, then

1 2 3 ... ...nu u u u    
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is called an infinite series or, briefly, series. nu is the nth term of the series. An infinite
series

1 2 3 ... ...nu u u u    

is denoted by

1
n

n

u





The sum
1 2 ...n ns u u u   

(i.e., the sum of the first n terms of the series) is called the thn partial sum of the series
The sequence

1 2 3, , ,..., ,...ns s s s

where ns is the thn partial sum of the series
1

n
n

u



 , is called the sequence of thn partial

sum.

Problem Find the nth partial sum of the series
1

n
n

u



 , where ( 1)n

nu   .

Answer

The given series is
1

1 1 1 1 1 ... ( 1) ...n
n

n

u




         

The nth partial sum is given by
1 if isodd

0 if isevenn

n
s

n


 


Convergence, Divergence and Oscillation of a series
Consider the infinite series

1 2 3
1

... ...n n
n

u u u u u




      . . . (1)

and let the sum of the first n terms be
1 2 3 ...n ns u u u u    

Then, is the nth partial sum of the series (1). The sequence

1 2 3, , ,..., ,...ns s s s . . . (2)

is the sequence of nth partial sums of the series (1)

As n three possibilities arise:

(i) The sequence given by (2) converges to a finite number l; in this case the series
1

n
n

u





is said to be convergent and has the sum l.

i.e.,
1

n
n

u l




 . (i.e., the series is summable with sum l).
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(ii) The sequence (2) doesn’t converge but tends to  or  as n ; in this case the

series
1

n
n

u



 is said to be divergent and has no sum. (i.e., the series is not summable)

(iii) If the both the cases (i) and (ii) above do not occur, then the series
1

n
n

u



 is said to

be oscillatory or non-convergent. (In this case also the series is not summable).

Problem Show that the series
2

1 1
1 ...

2 2
   converges and also find its sum.

Solution

Let
1

1

2n n
u 

Then the nth partial sum is given by

2 1 1

1
1

1 1 1 12
1 ... 2

12 2 2 21
2

n

n n n
s  

   
        


Since
1

1
0

2n  as n , 2ns  as n .

Since ( )ns , the sequence of nth partial sums, converges to 2, the given series also
converges and the sum of the series is 2

Problem Show that the geometric series
2 1... ...na ar ar ar     

converges if 1r  and diverges if 1r  .

Proof

Case 1 1r 

The nth partial sum of the series is given by
2 1... n

ns a ar ar ar     

(1 )

1 1 1

n na r a ar

r r r


  

  
. . . (3)

We note that when 1, 0nr r  as 1, 0nr r  ,  Hence,

lim lim 0 0
1 1

n
n

n n

ar a
r a

r r 
   

 
for 1r 

Hence from (3), we obtain
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lim
1n

n

a
s

r



.

i.e., the sequence ( )ns of nth partial sums converges to
1

a

r
.

Hence the given series also converges to
1

a

r
for 1r  . In otherwords,

1

1

, 1
1

n

n

a
ar r

r






 
 .

Case 2 When 1r  , we have

1 1 ... 1ns n     .

Hence as , nn s  .

So the sequence of nth partial sums diverges and hence the given series also diverges.

Case 3 When 1 nr r  as n ,

... n
ns a ar ar   

(1 ) ( 1)

1 1

n na r a r

r r

 
  

 
as n .

So in this case the sequence of nth partial sums diverges. Hence the geometric series
2 ...a ar ar  

converges if 1r  and diverges if 1r  .

If 1r  , the geometric series 2 1... ...na ar ar ar      converges to
1

a

r
and if 1r  , the

series diverges.

Problem Show that the series 1 1 1
...

9 27 81
   converges. Find its sum.

Solution The given is a geometric series with 1

9
a  and 1

3
r  . Here 1r  . Hence the

series is convergent and its sum is given by

1
1 1 1 19...

19 27 81 6
1

3

    
   
 

.

Problem Discuss the convergence of the series
1 1 1 1

... ...
1 2 2 3 3 4 ( 1)n n
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Also find it sum.
Answer

Here 1

( 1)nu
n n



. By partial fraction, 1

( 1) 1

A B

n n n n
 

 
, which

gives, 1 ( 1)A n Bn   . Putting 1n   , we have 1B   and putting 0, 1n A  .
1 1

1nu
n n
 




The nth partial sum of the series is given by
1 2 ...n ns u u u   

1 1 1 1 1 1 1 1
...

1 2 2 3 3 4 1n n
                            

1 1 1 1 1 1 1 1
...

1 2 2 3 3 4 1n n
        


1

1
1n

 


.

Hence 1
lim lim 1 1 0 1

1n
n n

s
n 

       

Since the sequence of nth partial sums converges to 1, the series also converges to 1.
Hence we can write

1 1 1 1
... ... 1

1 2 2 3 3 4 ( 1)n n
     

   
.

Theorem 1 If the series 1 2
1

... ...n n
n

u u u u




    

converges then lim 0n
n

u


 . i.e., the nth term of a convergent series must tend to zero as

n .

Proof Let ns denote the nth partial sum of the series. Then we note that

1lim limn n
n n

s s 
 .

Since 1 2 ...n ns u u u    and 1 1 2 1...n ns u u u    

we have 1n n ns s u 

or 1n n nu s s  

Hence

1lim lim( ) lim lim 0n n n n n
n n n n

u s s s s   
     .

Hence the proof.

DIVERGENT SERIES
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Geometric series with 1r  are not the only series to diverge. We discuss some other
divergent series.
Problem Show that the series

1

1 2 3 4 1

1 2 3m

n n

n n





 
      

diverges.
Solution
The given senes diverges because the partial sums eventually outgrow  every
preassigned number. Each term is greater than 1, so the sum of n terms is greater than n.
Simple Test for Divergence (nth Term Test)

Theorem 2 (nth Term Test) A necessary condition for the convergence of a series

1 2
1

n n
m

u u u u




      

is that
lim 0n
n

u




i.e, if the series
1

n
n

u



 converges, then lim 0n

n
u


 .

Attention! The condition in Theorem 2 is only necessary for convergence, but not
sufficient.  As an example, the series

1

1 1 1
1

2 3n n





    

satisfies the condition lim 0n
n

x


 but it diverges.

Divergence Test
In view of Theorem 2 we have the following:
If lim 0n

n
u


 , the series

1 2
1

... ...n n
n

u u u u




    

diverges.

In view of nth Term Test, 2

1n

n



 is not convergent as 2lim lim 0n

n n
u n

 
  .

Problem Discuss the convergence of the series

1 2 3

2 3 4
  

Answer
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Let
1n

n
u

n



Then

lim lim
1n

n n

n
u

n 




1

1 1
lim 1 0

1 1 0n
n


   

 

Since lim 0n
n

u


 , the given series cannot converge.

Theorem 3

If na A and nb B are convergent series, then

1. Sum Rule:  n n n na b a b A B      
2. Difference Rule:  n n n na b a b A B      
3. Constant Multiple Rule: n nka k a kA  

Problem Show that the series
1

1

4

2n
n





 converges.

Answer

1 1
1 1

4 1
4

2 2n n
n n

 

 
 

  , by constant multiple Rule as the above is a geometric series with

1
1,

2
a r  . Hence the given series converges.

Adding or Deleting Terms
We can always add a finite number of terms to a series or delete a finite number of terms
without altering the series’ convergence or divergence, although in the case of
convergence this will usually change the sum. If

1 nn
a



 converges, then nn k
a




converges for any 1k  and 1 2 1

1 1

...n k n
n n

a a a a a
 


 

     

Conversely, if nn k
a



 converges for any 1k  , then
1 nn
a



 converges. Thus,

1 4

1 1 1 1 1

5 5 25 125 5n n
n n

 

 

    

and

4 4

1 1 1 1 1

5 5 5 25 125n n
n n
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Reindexing
As long as we preserve the order of its terms, we can reindex any series without altering
its convergence. To raise the starting value of the index h units, replace the n in the
formula for na by n h :

1 2 3
1 1

...n n h
n n h

a a a a a
 


  

      .

To lower the starting value of the index h units, replace the n in the formula for na by
n h :

1 2 3
1 1

...n n h
n n h

a a a a a
 


  

      .

Remark The partial sums remain the same no matter what indexing we choose. We
usually give preference to indexings that lead to simple expressions.

Exercises

In Exercises 1-3, find a formula for the thn partial sum of each series and use it to find the
series sum if the series converges.

1.
2 3

9 9 9 9

100 100 100 100n
     

2. 1 11 2 4 8 ( 1) 2n n        

3. 5 5 5 5

1 2 2 3 3 4 ( 1)n n
    

   
 

In Exercises 4 - 7, write out the first few terms of each series to show how the series
starts. Then find the sum of the series.

4.
2

1

4n
n




 5.

0

5
( 1)

4
n

n
n







6.
0

5 1

2 3n n
n





  
 
 7.

1

0

2

5

n

n
n





 
 
 


Use partial fractions to find the sum of each series in Exercises 8-11.

8.
1

6

(2 1)(2 1)n n n



   9.
2 2

1

2 1

( 1)n

n

n n








10. 1 1
( 1)

1

1 1

2 2n n
n







 
 

 
 11. 1 1

1

(tan ( ) tan ( 1))
n

n n


 



 

Which series in Exercises 12-20 converge, and which diverge? Give reasons for your
answers. If a series converges, find its sum.

12.  
0

2
n

n




 13.   1

0

1
n

n

n






 14.
0

cos

5n
n

n
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15.
1

1
ln

n n




 16.

0

1
, 1

n
n

x
x





 17.
1

1
1

n

n n





  
 


18.
1 !

n

n

n

n




 19.

1

ln
2 1n

n

n





 
  

 20.
0

nx

ne
n

e








In each of the geometric series in Exercises 21-22, write out the first few terms of the
series to find a and r, and find the sum of the series. Then express the inequality 1r  in
terms of x and find the values of x for which the inequality holds and the series
converges.

21. 2

0

( 1)n n

n

x




 22.
0

( 1) 1

2 3 sin

nn

n x





  
  



In Exercises 23-25, find the values of x for which the given geometric series converges.
Also, find the sum of the series (as a function of x) for those values of x.

23. 2

0

( 1)n n

n

x






 24.
0

1
( 3)

2

n
n

n

x




   
 
 25.

0

(ln )n

n

x



 .

NONDECREASING PARTIAL SUMS

Theorem 4 A series
1 nn
u



 of nonnegative terms converges if and only if its partial sums
are bounded from above.

Problem (The Harmonic Series)

The series

1

1 1 1 1
1

2 3n n n





       

is called the harmonic series. It diverges because there is no upper bound for its partial
sums. To see why, group the terms of the series in the following way:

2 1 4 1 8 1
4 2 8 2 16 2

1 1 1 1 1 1 1 1 1 1
1

2 3 4 5 6 7 8 9 10 16

     

                     
     

 

  

The sum of the first two terms is 1.5. The sum of the next two terms is 1 1
3 4 ,which is

greater than 1 1 1
4 4 2  . The sum of the next four terms is 1 1 1 1

5 6 7 8   , which is greater than
1 1 1 1 1
8 8 8 8 2    . The sum of the next eight terms is 1 1 1 1 1 1 1 1

9 10 11 12 13 14 15 16 ,       which is
greater than 8 1

16 2 . The sum of the next 16 terms is greater than 16 1
32 2 , and so on. In

general, the sum of 2n terms ending with
1

1

2n is greater than 1
2 1

22

n

n  . Hence the sequence

of partial sums is not bounded from above: For, if 2kn  the partial sum ns is greater
than 2

k . Hence, by Theorem 4, the harmonic series diverges.
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The Integral Test and p-series

Theorem 5 The Integral Test

Let  nu be a sequence of positive terms. Suppose that ( )nu f n , where f is a
continuous, positive, decreasing function of x for all x N (N a positive integer). Then
the series nn N

u


 and the integral ( )
N

f x dx


 both converge or both diverge.

Problem Using the Integral Test, show that the p-series

1

1 1 1 1 1

1 2 3p p p p p
n n n





        (1)

(p a real constant) converges if 1p  and diverges if 1p  .
Solution

Case 1 If 1p  then 1
( )

p
f x

x
 is a positive decreasing function of x for 1x  . Now,

1

1 1
1

1
lim

1

bp
p

p b

x
dx x dx

x p

   



 
     

 

1

1 1 1
lim 1 (0 1)

1 1pbp b p

       
, since 1pb   as b

because 1 0p   .
1

1p



.

Hence
1

1
p
dx

x



 converges and hence, by the Integral Test, the given series converges.

Case 2 If 1p  , then 1 0p  and

1

1

1 1
lim( 1)

1
p

p b
dx b

x p

 


   
 as 1lim p

b
b 


  for 1 0p 

Hence, by the Integral Test,
The series diverges for 1p  .
If 1p  , we have the harmonic series

1 1 1
1

2 3 n
      ,

which is known by Example 22, to be divergent,
Hence we conclude that the series converges for 1p  but diverges when 1p  .
Remark We not that Theorem says, in particular, that

1

1 1 1 1
1

2 3n n n





        diverges.
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Exercises

Which of the series in Exercises 1-15 converge, and which diverge? Give reasons for your
answers.

1.
1

n

n

e





 2.

1

5

1n n



  3.
1

2

n n n







4.
1

8

n n





 5.
2

ln

n

n

n




 6.

1

5

4 3

n

n
n



 

7.
1

1

2 1n n



  8.
2

1

1

(1 ln )n n n



  9.
1

1
tan

n

n
n






10.
1

1

(ln3)n
n




 11.

2
1

1

(1 ln )n n n



  12.
1

1
tan

n

n
n






13.
1

2

1 n
n e



  14.
2

1 1n

n

n



  15. 2

1

sech
n

n





COMPARISON TESTS FOR SERIES OF NON-NEGATIVE TERMS
Theorem  6 (Direct Comparison Test) Let nu and nv be two series with non-
negative terms such that n nu v for all n N , for some integer N . Then

(a) if nv is convergent, then nu is also convergent.

(b) if nu is divergent, then nv is also divergent.

Theorem 7 Limit Comparison Test

Suppose that 0nu  and 0nv  for all n N (where N is an integer).

1. If lim 0n

n
n

u
c

v
  ,  then nu and nv both converge or both diverge.

2. If lim 0n

n
n

u

v
 and nv converges, then nu converges.

3. If lim n

n
n

u

v
  and nv diverges, then nu diverges.

Problem Test the convergence of

3
1

1 1

n

n n

n





  

Solution

Let
3

1 1
n

n n
u

n
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Then

  
 3

1 1 1 1

1 1
n

n n n n
u

n n n

     


  

   3 31 1 1 1

( 1) ( 1) 2

1 1 1 1n n n n

n n

n n n n

  
 
      

Take 7
2

1
nv

n
 .

Then
1 1

1 1
lim 2 lim 2 1 0

21 1
n

n n
n n n

u

v 
     

  

 The given series nu converges as nv , being a harmonic series with 7
2 1p   ,

converges.

Problem Test for convergence or divergence the series

2 3 4 5

1 2 3 4h h h h
   

Solution

Let nth term be nu . Then

 1
1

1
1

n h h

n
n n

u
n n n 

     

Let
1

1
n h

v
n  so that

1

1
n h

v
n   , a harmonic series with 1p h  , which is convergent for

1 1h   and divergent for 1 1h   .

Now
 

1

1

1
1

1
lim lim lim 1 1

1

h
n

hn n n
n

u nn
v nn



  

             
  

,

a finite non zero number.  Hence, by comparison test, nu and nv converge or
diverge together.

Since the series
1

nv


 is convergent for 1 1h   is also convergent for 1 1h   i.e., for

2h  .

The series
1

nv


 is divergent for 1 1h   , hence nu is also divergent for 1 1h   i.e.,

for 2h  .
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D’Alembert’s Ratio-Test for Convergence
Theorem 7 D’Alembert’s Ratio-Test

If
1

n
n

u



 is a series with positive terms, and if 1lim 1n

x
n

u

u



 ,   then

(i)
1

n
n

u



 is convergent when 1l  ,

(ii)
1

n
n

u



 is divergent when 1l 

(iii) the test is inconclusive when 1l  . i.e., the series may converge or diverge when
1l  .

Problem Test the convergence of the series
3

0

1

5 1n
n

n






Answer

Let
3 1

5 1n n

n
u





,       then
3

1 1

( 1) 1

5 1n n

n
u  

 




and
  3

3

31 1 13
1 5

1 3 1 1
5

1 1( 1) 1 5 1
lim lim lim

5 1 1 1 5

n

n

n
nn n

nn n n
n n

u n

u n


  

    
   

   

1 0 1 0 1
1

1 0 5 0 5

 
  
 

So by D’Alembert’s  ratio test the given series converges.

Problem Test the convergence of
1 !

n

n

n

n




 .

Answer

Take
!

n

n

n
u

n
 Then

1

1

( 1)

( 1)!

n

n

n
u

n










and
1

1 ( 1) ! ( 1) 1
1

( 1)!

n n
n

n n
n

u n n n

u n n n n


           

.

 1 1
lim lim 1 1

n

n

n
n

u
e

u n




            
     

and hence by D’Alemberts’ ratio test,  is divergent.
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The nth Root test
Theorem 9 (Cauchy’s nth Root Test) If nu is a series with non-negative terms such
that lim n

n
n

u l


 then the series nu
(i) converges if 1l  ,

(ii) diverges if 1l  or l is infinite,

(iii) the test is in conclusive if 1l  .

Problem Investigate the behaviour (convergence or divergence) of nu , if  1 n
n

nu n 

Answer

Let  1

1n
n

nu n  . Then 1 1

1n n
nu n 

and    1 1

lim lim 1 1 1 0 1n n
n

n n
a n

 
     

Hence, by Root Test, nu is convergent.

Problem Show that the series
1

[( 1) ]n

n

n r

n 

 is convergent if 1r  and divergent if 1r  .

Answer

Taking
1

[( 1) ]n

n n

n r
u

n 


 , we have

1

11 1

1
1( 1) 1

( )
1

n

n
n n

n

n r n nu r r
n nn

n

 

 
   

Since
1

lim 1n

n
n


 , the above implies

1

lim( ) n
n

n
u r


 .

Therefore nu converges if 1r  and diverges if 1r  .

If
1

( 1) 1 1 1 1
1, 1

n nn

n n

n n
r u

n n n n n

             
   

Let 1
nv

n
  Then nv is a harmonic series with 1p  and hence is divergent.

Also,

1
lim lim 1 1

n

n

n n
n

u
e

v n 

     
 

, a finite non zero value.

Hence, by Comparison Test, nu diverges. Thus the series converges when 1r  and
diverges when 1r  .
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Exercises

Which of the series in Exercises 1-13 converge, and which diverge? Give reasons for your
answers.

1. 2

1

n

n

n e





 2.

1

!

10n
n

n


 3.

1

2

2

n

n

n



 
 
 


4.  
1

2

3

n

n
n






 5.

1

1
1

3

n

n n





  
 
 6.

1

(ln )
n

n
n

n

n






7.
2

1

1 1
n

n n n





  
 
 8.

1

ln

2n
n

n n


 9.

1

2 ( 1)!

3 !

n

n
n

n n

n







10.
1

2 ( 1)!

3 !

n

n
n

n n

n





 11.
1

!
n

n

n

n






12.  2 2(ln )n
n

n

n




 13.

3
2

3

2

n

n
n n






Which of the series
1 nn
a



 defined by the formulas in Exercises 14-19 converge, and
which diverge? Give reasons for your answers.

14.
1

1 1

1 tan
1, n n

n
a a a

n






  15. 1 13,

1n n

n
a a a

n 


16. 1 15,
2

n

n n

n
a a a  17. 1 1

1 ln
,

2 10n n

n n
a a a

n


 



18.   1

1 1

1
,

2
n

n na a a


  19. (3 )!

!( 1)!( 2)!n

n
a

n n n


 

Which of the series in Exercises 20-22 converge and which diverge? Give reasons for
your answers.

20. 2( )
1

( !)n

n
n

n

n




 21.

2
1 (2 )

n

n
n

n




22.
1

1 3 (2 1)

[2 4 (2 )](3 1)n
n

n

n
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CHAPTER.10  ALTERNATING SERIES
Alternating series and Leibniz test
Definition (Alternating series) A series in which the terms are alternatively positive and
negative is an alternating series.

Problem Each of the three series
1

1

( 1)1 1 1
2 4 8 2

1
n

n





       ;

1 2 3 4 ( 1)n n         ;
1( 1)1 1 1

2 3 41 ...
n

n

     

is an alternating series. The third series, called the alternating harmonic series, is
convergent. This is described in Problem 2.

Notation An alternating series may be written as 1

1

( 1)n
n

n

u






 where each nu is positive

and the first term is positive. If the first term in the series is negative, then we write the

series as
1

( 1)n
n

n

u




 .

Theorem (Leibniz Test for testing the nature of alternating series)

Suppose  nu is a sequence of positive numbers such that

(a) 1 2 1n nu u u u       and

(b) lim 0n
n

u


 ,

Then the alternating series 1

1

( 1)n
n

n

u






 is convergent

Proof

If n is an even integer, say 2n m then the sum of the first n terms is

2 1 2 3 4 2 1 2( ) ( ) ( )m m ms u u u u u u      

1 2 3 4 5 2 2 2 1 2( ) ( ) ( )m m mu u u u u u u u        

The first equality shows that 2ms is the sum of m nonnegative terms, since, by assumption
(a), each term in parentheses is positive or zero. Hence 2 2 2m ms s  , and the sequence 2{ }ms

is nondecreasing. The second equality shows that 2 1ms u . Since 2{ }ms is nondecreasing
and bounded from above, by non decreasing Sequence Theorem (Theorem 2 of Chapter
“Sequence”), it has a limit, say

2lim m
m

s L


 . . . (1)
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If n is an odd integer, say 2 1n m  then the sum of the first n terms is 2 1 2 2 1m m ms s u   .
Since, by assumption (b), lim 0n

n
u


 .

2 1lim 0m
m

u 


and, as m ,

2 1 2 2 1 0m m ms s u L L      . . . (2)

Combining the results of (1) and (2) gives lim n
n

s L


 . As the sequence of nth partial sums

of the given series converges, the given series converges.

Problem Show that the alternating Harmonic series
11 1 1 1 ( 1)

1
2 3 4 5

n

n


        is convergent.

Answer

The given series is an alternating series and 1 2

1
1,

2
u u  , 3

1

3
u  , 4

1
,...

4
u  with

1 2 3 4 ...u u u u   .

In general, 1
nu

n
 and 1n nu u  for all n, since 1 1

1
1

n n
n n

   


Also 1
lim lim 0n
n n

u
n 

  . Hence all the conditions of Leibniz Test are satisfied by the given

alternating series and so it is convergent.

Problem Test the convergence of

2

( 1)

log

n

n n







Answer

The given series is an alternating series; also

2

1

log 2
u  , 3

1

log3
u  , 4

1

log 4
u  .

with 2 3 4 5u u u u   

In general 1

lognu
n

 with 1n nu u 

Also 1 1
lim lim 0

log limlogn
n n

n

u
n n 



 
   

 
.

Hence all the conditions of Leibniz’s Test are satisfied by the given alternating series and
so it is convergent.
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Problem Discuss the convergence of the series

2 2 2 2

2 3 4 5

1 3 5 7
   

Answer

The given series is an alternating series. The terms of the series are

1 2 3 42 2 2 2

2 3 4 5
, , , ,

1 3 5 7
u u u u    

with 1 2 3 ...u u u  

In general
2

1

(2 1)n

n
u

n





with 1n nu u  ,   since

2 2

1 2

(2 1) (2 1)

n n

n n

 


 
.

Hence the terms are in the decreasing order.

Also
2

1
lim lim

(2 1)n
n n

n
u

n 

 
   

2

lim lim
1 1

2 2
n n

n n

n n
n n

 

   
   
    
                   

1 1
lim lim 0 0

1 2
2

n n

n

n
n

 
    

  
 

Hence all the conditions of Leibniz’s Test are satisfied by the given alternating series and
so it is convergent.

Problem Test the convergence of

2 2 2

1 1 1
1

2 2 3 3 4 4
   

Answer

The given series an alternating series and the terms are given by

1 2 3 42 2 2

1 1 1
1, , , ,

2 2 3 3 4 4
u u u u    

Now
2

1
nu

n n


1 1n n n n    

2 2( 1) 1n n n n   
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2 2

1 1

( 1) 1n n n n
 

 

i.e., 1n nu u  or 1n nu u  .

Hence the terms are in the decreasing order.

Hence by the Leibniz’s Test, the given series is convergent.

Problem Examine the convergence of the series:

(i) 1 1 1 1
( 0)

1 2 3 4p p p p
p    

(ii)
2 3

2 3
(0 1)

1 1 1

x x x
x

x x x
    

  


Answer

(i) Here the terms are alternatively positive and negative. Writing the series in the form
1( 1)n

nu ,  where 1/ p
nu n we get

1 1
1

( 1) (1 1/ )

p
n

p p
n

u n

u n n
   

 
, since 0p  .

Thus 1n nu u 

Also 1
lim( ) lim 0n pn n

u
n 

   
 

, since 0p  .

Hence all the conditions of Leibniz test are satisfied and the series converges.

(ii) The terms of the series are alternatively positive and negative.

1

n

n n

x
u

x



and
1

1 11

n

n n

x
u

x



 



1

1 11 1

n n

n n n n

x x
u u

x x



   
 

1 1

1 (1 )

1 1 (1 )1

n
n

n n n n

x x x
x

x x x x 

        

Since x is positive and less than 1, 1 0n nu u  

 1n nu u  for all n.

Also

lim( ) lim 0,
1

n

n n

x
u

x

 
   

(since with 1 0nx x  as n )

Hence all the conditions of Leibniz test are satisfied and the series is convergent.
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Theorem:   The Alternating Series Estimation Theorem

If the alternating series 1

1
( 1)n

nn
u

 

 satisfies the conditions of Leibniz Test, then for n N ,

1
1 2 ( 1)n

n ns u u u    

approximates the sum L of the series with an error whose absolute value is less than 1nu  ,

i.e., 1n ns L u  

Problem Estimate the interval in which the limit of the converging series
11 1 1 ( 1)

1
2 3 4

n

n


       lies.

Answer
The given is the alternating harmonic series, which, by Problem 1, is convergent. Let

the series converges to the real number L.

Then 1 1
( 1)n L

n
  and, by the Theorem, for any n N .

11 ( 1) 1
1

2 1

n

L
n n

 
       

 , since 1

1nu
n



.

Putting n = 9,(i.e., if we truncate the series after the ninth term), we get
1

10.7456 L  i.e., .6456 .8456L  .

Exercises
Test the convergence of the following series.

1. 1 1 1 1

3 6 9 12
    2. 2 4 6 8

6 11 16 21
   

3. 1 1 1
1

2! 3! 4!
    4.

3 3 3 3

1 1 1 1

2 3 5 7
   

5. ( 1)

2 1

n n

n




Answers
1. convergent 2. oscillatory 3. convergent.
4. convergent. 5. oscillatory

Absolute and conditional convergence of series
Definition If the series

1 2 3 nu u u u     

be such that the series

1 2 3 nu u u u     

is convergent, then the series  is said to be absolutely convergent.

Problem 11 The series
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2 2 2 2

1 1 1 1
1

2 3 4 5
     ,

is absolutely convergent, since the series

2 2 2 2

1 1 1 1
1

2 3 4 5
     ,

being a harmonic series with 2p  is convergent,

Problem The geometric series

1 1 1
1

2 4 8
   

converges absolutely because the corresponding series of absolute values

1 1 1
1

2 4 8
   

converges. The alternating harmonic series 1 1 1
1

2 3 4
   does not converge absolutely

as the corresponding series 1 1 1
1

2 3 4
   of absolute values is the (divergent) harmonic

series.

Definition (Conditionally convergent series)

If 1 2
1

n n
n

u u u u




       is divergent but
1

n
n

u



 is convergent, then

1
n

n

u



 is said to be

conditionally convergent.

Problem Show that the series 1 1 1
1

2 3 4
    is conditionally convergent.

Answer

The series is convergent (by Leibniz’s Test as seen in an earlier Problem). Now the series
formed by the absolute values of the terms is

1 1 1 1
1

2 3 4nu
n

      

and, being a harmonic series with 1p  , is divergent. Hence the given series is
conditionally convergent.

Theorem (The Absolute Convergence Test) An absolutely convergent series is

necessarily convergent. i.e, if
1

n
n

u



 converges

1
n

n

u



 then converges.

Proof   For each n

n n nu u u   so 0 2n n nu u u  
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If
1 nn
u



 converges, then
1
2 nn

u


 converges, and by the Direct Comparison Test, the

nonnegative series
1
( )n nn
u u




 converges. The equality ( )n n n nu u u u   now let us

express
1 nn
u



 as the difference of two convergent series:

1 1 1 1

( ) ( )n n n n n n n
n n n n

u u u u u u u
   

   

        

Therefore
1 nn
u



 converges.

Remark The converse of the above theorem is not true.

For Problem, the series 1 1 1 1
1

2 3 4 5
     converges, but the series 1 1 1 1

1
2 3 4 5
     is

divergent.
Problem Test whether the series

2 2 2 2 2 2 2

1 1 1 1 1 1 1
1

2 3 4 5 6 7 8
       

is absolutely convergent or not? Does the series Converge?
Answer
The series of absolute terms is

2 2 2 2 2 2 2

1 1 1 1 1 1 1
1

2 3 4 5 6 7 8
       

and, being a harmonic series with 2 1p   , the series is convergent.
 The given series is absolutely convergent and hence, in view of the theorem, the

given series is convergent.
Problem ( Alternating p-series )If p is a positive constant, the sequence  is a decreasing
sequence of positive numbers with limit zero. Therefore by Leibniz’s Test the alternating
p-series

1

1

( 1) 1 1 1
1 , 0

2 3 4

n

p p p p
n

p
n






      

converges.
If 1p  , the series converges absolutely. If 0 1p  the series converges conditionally.

In particular,

3 3 3
2 2 2

1 1 1
1

2 3 4
    is a conditionally convergent series while 3 3 3

2 2 2

1 1 1
1

2 3 4
    is an

absolutely convergent series.

Rearrangements of Series
A rearrangement of a series nu is a series nv whose terms are the same as those of

nu but occur in different order.
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The series
1 1 1 1 1

1
3 2 5 7 4
     

is rearrangement of the series
1 1 1 1

1
2 3 4 5
    

We shall see in this section that rearrangement of an absolutely convergent series has
no effect on its sum, but that rearrangement of a conditionally convergent series can have
drastic effect.
Theorem (Dirichlets’ theorem) (The Rearrangement Theorem for Absolutely
Convergent Series) Any series obtained from an absolutely convergent series by a
rearrangement of terms converges absolutely and has the same sum as the original series
.i.e., if

1 nn
u



 converges absolutely, and 1 2, ,..., ,...nv v v is any arrangement of the sequence

 nu , then nv converges absolutely and
1 1

n n
n n

v u
 

 

  .

Problem As we saw in an earlier Problem, the series
1

2

1 1 1 1
1 ( 1)

4 9 16
n

n
       

converges absolutely. A possible rearrangement of the terms of the series might start
with a positive term, then two negative terms, then three positive terms, then four
negative terms, and so on: After k terms of one sign, take 1k  terms of the opposite sign.
The first ten terms of such a series look like this:

1 1 1 1 1 1 1 1 1
1

4 16 9 25 49 36 64 100 144
         

The Rearrangement Theorem says that both series converge to the same value. In this
Problem, if we had the second series to begin with, we would probably be glad to
exchange it for the first, if we knew that we could. We can do even better: The sum of
either series is also equal to

2 2
1 1

1 1

(2 1) (2 )n nn n

 

 


  .

Caution: For a conditionally convergent series Dirichlets’ theorem doesn’t hold as the
following theorem and Problem illustrates:
Theorem (Riemann’s Theorem) The terms of any conditionally convergent series can be
rearranged to give either a conditionally convergent series having as sum an arbitrary
preassigned number, or a divergent series or an oscillatory series.

Problem We have seen in an earlier Problem that the series
1

1

( 1)n

n n





 converges

conditionally. Let the series converges to L.  We   note that 0L  As limit of the series is
its sum, we have
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1 1 1 1 1
1

2 3 4 5 6
L        . . . (1)

and so, certainly
1 1 1 1 1

0 0 0 0
2 2 4 6 8

L          . . . (2)

Adding (1) and (2), we obtain
3 1 1 1 1 1 1

(1 0) 0 0
2 2 2 3 4 4 5

L
                         
       

1 1 1
0

6 6 7
           
   



i.e., 3 1 1 1 1 1 1
1

2 3 2 5 7 4 9
L         . . . (3)

The series on the right of (3) is a rearrangement of the series on the right of (1), but
they converge to different sums.
Exercises
Which of the alternating series in Exercises 1-5 converge, and which diverge? Give

reasons for your answers.

1. 3
2

1

1

1
( 1)n

n n






 2. 1
10

1

10
( 1)

n
n

n n






 3. 1

1

ln
( 1)n

n

n

n








4. 1

1

1
( 1) ln 1n

n n






   
 

 5. 1

1

3 1
( 1)

1
n

n

n

n












Which of the series in Exercises 6-22 converge absolutely, which converge, and which
diverge? Give reasons for your answers.

6. 1

1

(0.1)
( 1)

n
n

n n






 7.
1

( 1)

1

n

n n








 8.
1

!
( 1)

2
n

n
n

n



 9.
2

1

sin
( 1)n

n

n

n







10.
3

1

1
( 1)

ln ( )
n

n n





 11.
1

1

c( 2)

5

n

n
n n






 12. 1

1

( 1) ( 10)n n

n






 13. 1

2

1
( 1)

ln
n

n n n








14.
1

ln
( 1)

ln
n

n

n

n n






 15.

1

( 5) n

n






 16.
2

2

ln
( 1)

ln

n

n

n

n

n





 
  
 

 17.
1

cos

n

n

n






18.
1 2

1

( 1) ( !)

(2 )!

n

n

n

n





 19.
2

1

( !) 3
( 1)

(2 1)!

n
n

n

n

n






 20. 2

1

( 1) ( )n

n

n n n




  

21.
1

( 1)

1

n

n n n






 

 22.
1

( 1) cschn

n

n





In Exercises 23-24, estimate the magnitude of the error involved in using the sum of the
first four terms to approximate the sum of the entire series.

23. 1

1

1
( 1)

10
n

n
n






 24.
0

1
( 1) , 0 1

1
n n

n

t t
t
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MODULE III
CHAPTER.11  POWER SERIES

In mathematics and science we often write functions as infinite polynomials, such as
2 31

1 , , 1
1

n nx x x x x x
x
        


  

We call these polynomials power series because they are defined as infinite series of
powers of some variable, in our case x. Like polynomials, power series can be added,
subtracted, multiplied, differentiated, and integrated to give new power series.

Definition A power series about 0x  is a series of the form

2
0 1 2

0

n n
n n

n

c x c c x c x c x




        . . . . (1)

A power series about 0x  is a series of the form

  2
0 1 2

0

( ) ( ) ( )
n n

n n
n

c x a c c x a c x a c x a




            . . . (2)

in which the center a and the coefficients 0 1 2, , ,..., ...nc c c c are constants.

Remarks

• The power series (1) always converges at x = 0 and the limit at that point is its
constant term  Similarly, the power series (2) converges at the center a and the sum of
the series is 0c .

• A power series may converge for some or all values of x or may not converge for some
or all values of x, except at the center.

Problem Taking all the coefficients to be 1 in Eq. (1) gives the geometric power series

2

0

1n n

n

x x x x




       

This is the geometric series with first term 1 and common ratio x. It converges to 1

1 x
for 1x  . We express this fact by writing

21
1 ,

1
nx x x

x
     


  1 1x   . . . (3)

Up to now, we have used Eq. (3) as a formula for the sum of the series on the right. We
now change the focus: We think of the partial sums of the series on the right as
polynomials ( )nP x that approximate the function on the left. For values of x near zero, we
need take only a few terms of the series to get a good approximation. As we move

toward 1x  or 1 , we must take more terms. Fig.1 shows the graphs of 1
( )

1
f x

x



, and

the approximating polynomials ( )n ny P x for 0,1,2,n  and 8.
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Problem The power series

21 1 1
1 ( 2) ( 2) ( 2)

2 4 2

n
nx x x

          
 

  . . . (4)

matches Eq. (2) with 0 1 2

1 1 1
2, 1, , , ,

2 4 2

n

na c c c c
        
 

 . This is a geometric series with

first term 1 and ratio 2

2

x
r


  . The series converges for 2

1
2

x 
 or 2

1 1
2

x 
   or

2 2 2x    or 0 4x  . The sum is 1 1 2
21 1

2
xr x

 
 

,

so
22 ( 2) ( 2) 1

1 ( 2) , 0 4
2 4 2

n
nx x

x x
x

             
 

 

Series (4) generates useful polynomial approximations of 2
( )f x

x
 for values of x near 2:

0 ( ) 1P x 

1

1
( ) 1 ( 2) 2

2 2

x
P x x    

2
2

2

1 1 3
( ) 1 ( 2) ( 2) 3

2 4 2 4

x x
P x x x       

and so on (Fig. 2).

How to Test a Power Series for Convergence

Step 1: Use the Ratio Test (or nth Root Test) to find the interval where the series
converges absolutely. Ordinarily, this is an open interval

x a R  or a R x a R   

Step 2: If the interval of absolute convergence is finite, test for convergence or
divergence at each endpoint, as in Problems (a) and (b) above. (Use Comparison
Test, the Integral Test, or the Alternating Series Test.)

Step 3:If the interval of absolute convergence is a R x a R    , the series diverges for
x a R  (it does not even converge conditionally), because the nth term does not

approach zero for those values of x.

THE RADIUS AND INTERVAL OF CONVERGENCE

Theorem 1 (The Convergence Theorem for Power Series)

If 2
0 1 2

0

n
n

n

a x a a x a x




     converges for 0x c  then it converges absolutely for all

x c . If the series diverges for x d then it diverges for all x d .
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Possible Behavior of n
nc x a ( - )

A power series ( )n
nc x a behaves in one of the following three ways.

1. There is a positive number R such that the series diverges for x a R  but converges
absolutely for x a R  . The series may or may not converge at either of the
endpoints x a R  and x a R  .

2. The series converges absolutely for every x. In this case ( )R   .

3. The series converges at x a and diverges elsewhere. In this case ( 0)R  .

In case 1, the set of points at which the series converges is a finite interval, called the
interval of convergence. We know from the Problems that the interval can be open, half-
open, or closed, depending on the series. But no matter which kind of interval it is, R is
called the radius of convergence of the series, and  is the least upper bound of the set of
points at which the series converges. The convergence is absolute at every point in the
interior of the interval. If a power series converges absolutely for all values of x, we say
that its radius of convergence is infinite (case 2 above). If it converges only at  the
radius of convergence is zero.

Theorem 2 (The Term-by-Term Differentiation Theorem)

If ( )n
nc x a converges in the interval a R x a R    some 0R  , it defines a function f :

0

( ) ( ) ,n
n

n

f x c x a a R x a R




      ,

Such a function f has derivatives of all orders inside the interval of convergence. We
can obtain the derivatives by differentiating the original series term by term:

1

1

( ) ( )n
n

n

f x nc x a






  

2

2

( ) ( 1) ( )n
n

n

f x n n c x a






    ,

and so on. Each of these derived series converges at every interior point of the interval of
convergence of the original series.

Problem Find series for ( )f x and ( )f x if

2 3 41
( ) 1

1
nf x x x x x x

x
        


 

0

, 1 1n

n

x x




   
Answer

2 4 1
2

1
( ) 1 2 3 4

(1 )
nf x x x x nx

x
        


 

1

1

, 1 1n

n

nx x
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2 2
2

2
( ) 2 6 12 ( 1)

(1 )
nf x x x n n x

x
        


 

2

2

( 1) , 1 1n

n

n n x x






    

Theorem 3 The Term-by-Term Integration Theorem
Suppose that

0

( ) ( )n
n

n

f x c x a




 

converges for ( 0)a R x a R R     . Then
1

0

( )

1

n

n
n

x a
c

n








converges for a R x a R    and
1

0

( )
( )

1

n

n
n

x a
f x dx c C

n






 


for a R x a R    .
Problem Identify the function

3 5

( ) , 1 1
3 5

x x
f x x x       ... (7)

Answer
We differentiate the original series term by term and get

2 4 6( ) 1 , 1 1f x x x x x         .
This is a geometric series with first term 1 and ratio 2x , so

2 2

1 1
( )

1 ( ) 1
f x

x x
  

  

We can now integrate
2

1
( )

1
f x

x
 


to get

1
2

( ) ( ) tan
1

dx
f x f x dx x C

x
   

  ... (8)

The series (7) for ( )f x is zero when 0x  , so from (8), 0C  . Hence
3 5 7

1( ) tan , 1 1
3 5 7

x x x
f x x x x         … (9)

Problem Discuss the interval of convergence and radius of convergence of
0

! n

n

n x



 .

Answer

The power series 2 3

0

! 1 2 6n

n

n x x x x




      converges only at 0x  (and limit at that point

is 1), but diverges for every 0x  ; this follows from the ratio test since
1

( 1)
( 1)

!
n

n
n

n xu
n x

u n x
 
    as n (for fixed , 0x x  ). Here the radius of convergence is

0R  .



School of Distance Education

Calculus and Analytic Geometry Page 80

Problem Determine the interval of convergence and radius of convergence for the series

1

( 1)
( 1) ( 1)

2

n
n

n
n

x
n






  .

Answer

Let ( 1)
( 1) ( 1)

2

n
n

n n

x
u n


  

Then
1

1
1

( 2)( 1) 2
lim lim

2 ( 1) ( 1)

n n
n

n nn n
n

u n x

u n x




 

 
 

 

2

1

12 ( 1) 1 1
lim lim

1 2 1 2 2
n

n n
n

n x x x

n 

   
  

 

So for convergence, 1

2

x  must be less than 1. i.e., 1
1

2

x 


That is 1
1 1

2

x 
   or 2 1 2x    or 3 1x  

Hence the given series converges for 3 1x  

At x = –3, we have the series

1 1

( 2) ( 1) (2)
( 1) ( 1)

2 2

n n n
n n

n n
n n

n n 

 

 
   

1n

n




 which is divergent

At x = 1, we have the divergent alternating series
1

( 1)n

n





 .Hence the interval of

convergence is 3 1x   . Also the series converges absolutely for ( 1) 2x    and therefore
radius of convergence is 2.

Theorem (The Series Multiplication Theorem for Power Series)

If
0

( ) n
nn

A x a x



 and

0
( ) n

nn
B x b x




 converge absolutely for x R , and

0 1 1 2 2 1 1 0
0

n

n n n n n n k n k
k

c a b a b a b a b a b a b   


      then

0

n
nn

c x


 converges absolutely to ( ) ( )A x B x for x R . That is,

0 0 0

n n n
n n n

n n n

a x b x c x
  

  

   
    

   
  

Problem Multiply the geometric series

2

0

1
1 ,

1
n

n
n

x x x x
x





      
   for 1x  .
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by itself to get a power series for
2

1

(1 )x
, when 1x 

Answer

Let 2

0

1
( ) 1

(1 )
n n

n
n

A x a x x x x
x





       
  

2

0

1
( ) 1

(1 )
n n

n
n

B x b x x x x
x





       
  

and 0 1 1 0
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Then, by the Series Multiplication Theorem,
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2 31 2 3 4 ( 1) nx x x n x        

is the series for
2

1

(1 )x
. The series converge absolutely for 1x  Notice that Problem 5

gives the same answer because

2

1 1

1 (1 )

d

dx x x
     

Exercises

In Exercises 1-16, (a) find the series, radius and interval of convergence. For what values
of x does the series converge (b) absolutely, (c) conditionally?
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In Exercises 17-19, find the series’ interval of convergence and, within this interval, the
sum of the series as a function of x.
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CHAPTER.12  TAYLOR AND MACLAURIN’S SERIES
There are various methods or formulae by which we can expand a given function in

ascending integral powers of x. The methods (formulae) are based on the following
assumptions:

(i) The expansion of the function in  ascending powers of  the variable is possible.

(ii) All the higher derivatives of the function exist and finite.

(iii) The infinite series is convergent  .

The Taylor series generated by f at x a is

( )

0

( )
( )

!






k

k

k

f a
x a

k

2( )( ) ( ) ( ) ( ) . . .
2!
     
x af a x a f a f a

1
( 1) ( )( ) ( )( ) ( )( 1)! !

n n
n nx a x af a f an n


 

  




In most of the cases, the Taylor’s series converges to ( )f x at every x and we often write
the Taylor’s series at x a as

2( )( ) ( ) ( ) ( ) ( ) . . .
2!
     
x af x f a x a f a f a

1
( 1) ( )( ) ( )( ) ( )( 1)! !

n n
n nx a x af a f an n


 

  


 … (1)

The polynomial
2( )

( ) ( ) ( ) ( ) ( ) . . .
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     n

x a
P x f a x a f a f a

1
( 1) ( )( ) ( )

( ) ( )
( 1)! !

n n
n nx a x a

f a f a
n n


 

 


is called Taylor’s polynomial of degree n.

The alternate form of Taylor series is

   
2

( )( ) ( ) ( ) ,
2! !

        
n

nh hf x h f x hf x f x f x
n

… (2)

where h is small.

Problem Find the Taylor series and Taylor polynomials generated by the exponential
function ( ) xf x e at 0.a

Answer

Let (x)  = ex then (0) = 1

Differentiating successively and putting x = 0, we get
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( ) ;xf x e  (0) = 1

( ) ;xf x e   (0) = 1

( ) ;xf x e  (0) = 1

. . .
( ) ( ) ;n xf x e (n)(0) = 1

The Taylor series generated by f at 0x  is
( )

2(0)
(0) (0)( 0) ( 0) . . . ( 0) . . .

2! !

n
nf f

f f x x x
n


       

2 3

1 . . . . . .
2! 3! !

nx x x
x

n
       .

i.e., ...
!

...
!3!2

1
32


n

xxx
xe

n
x

The above series is known as exponential series.  Later in this chapter, we will see by  the
definition of Maclaurin series, that the above is also the Maclaurin series for .xe

The Taylor polynomial of order n at 0x  is
2 3

( ) 1 . . . .
2! 3! !

n

n

x x x
P x x

n
     

Problem Give an example of a function whose Taylor series converges at every x but
converges to ( )f x only at 0x (i.e., at  0).a

Answer Consider the function

21/

0, 0
( )

, 0x

x
f x

e x

 


whose derivatives of all orders exist at 0x  and that ( ) (0) 0nf  for all n.  Hence the
Taylor series generated by f at 0x  (i.e., at  0).a

   
( )

2(0) (0)
(0) (0) 0 0 . . . ( 0) . . .

2! !

n
nf f

f f x x x
n


       

20 0 0 . . . 0 nx x x        

0.

The above series converges for every x (its sum is 0) but converges to ( )f x only at 0.x 

Problem Using Taylor’s series, show that
2 3

sin( ) sin cos sin cos . . .
2! 3!
h hx h x h x x x      

Answer

Let f (x) = sin x,           then (x + h) = sin (x + h)
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Also (x) = cos x,

(x) =  sin x,

(x) =  cos x etc.

Using the Taylor’s series given by (2), we obtain

...cos
!3

sin
!2

cos.sin)sin(
32

 x
h

x
h

xhxhx

Problem Using Taylor’s series, show that
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Deduce that
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Answer

Take ,log)( xxf  so that );log()( hxhxf 

Also ,
1

)(
x

xf  ,
1

)(
2x

xf  ,
2

)(
3x

xf  etc.

Substituting these values in Taylor’s series (2), we obtain
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Now putting h =1 in the above series we get
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Exercises

In Exercises 1-4, find the Taylor polynomials of orders 0, 1, 2 and 3 generated by f at a .

1. ( ) ln (1 ), 0f x x a   2. ( ) 1/ ( 2), 0f x x a  

3. ( ) cos , / 4f x x a   4. ( ) 4, 0f x x a  
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In Exercises 5-9, find the Taylor series generated by atf x a

5. 3 2( ) 2 3 8, 1f x x x x a    

6. 5 4 3 2( ) 3 2 2, 1f x x x x x a      

7. ( ) /(1 ), 0f x x x a  

8. ( ) 2 , 1xf x a  9. at 1xe x  .

MACLAURIN’S SERIES

If we take 0a  in (1), we get the Maclaurin’s series expansion

...)0(''
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2

 f
x

fxfxf




 


)0(
!

)0(
)!1(

)()1(
1

n
n

n
n

f
n

x
f

n

x … (3)

Problem Find the expansion of  mx1 , using Maclaurin’s series.

Answer Let    mxxf  1 then (0) = 1

Differentiating successively and putting x = 0, we get

(x) =   11  mxm (0) = m

(x) =    211  mxmm  (0) =  1mm

(x) =     3121  mxmmm (0) =   21  mmm

In general, (n)(x) =       nmxnmmmm  1121 

and (n)(0) =     121  nmmmm 

Substituting these values  in the Maclaurin’s series, we get

      
...

!3

21

!2

1
11 32 





 x

mmm
x

mm
xmx m .

   
...

!

11



 nx

n

nmmm 


Remark:  The above series is known as binomial series.

Problem Using Maclaurin’s series expand xtan up to the term containing .5x

Answer

Let xyxf tan)(  then   ;00tan0)0(  yf

xyxf 2
1 sec)( 

Note that,  since ,tan1sec 22 xx  .1)( 2
1 yyxf 
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 ;101)0(1)0()0( 2
1  yyf

Differentiating 2
1( ) 1f x y y    successively, we obtain

12 2)( yyyxf        ;00020)0( 12  yyyf

2
2
13 22)( yyyyxf 

;2)0()0(2)]0([2)0()0( 2
2

13  yyyyf

4 1 2 1 2 3 1 2 3( ) 4 2 2 6 2f x y y y y y yy y y yy       ;

;0)0()0( 4  yf

 5 2 2
5 2 1 3 1 3 4 2 1 3 4( ) 6 6 2 2 6 8 2f x y y y y y y yy y y y yy        ;

  ;16)0(5 f 12 4 0  

Putting these values in the Maclaurin’s series
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we obtain
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Problem Expand xesin up to the term containing 4x using Maclaurin’s series.

Answer

Let xeyxf sin)(  then   ;10)0( 00sin  eeyf

xyxeyxf x coscos)( sin
1 

  ;1110cos0)0()0( 1  yyf

2( )f x y  xyxy sincos1 

    101110sin00cos0)0( 1  yyf

xyxyxyxyxyxf cossinsincos)()( 1123 

xyxyxy cossin2cos 12 

;00cos)0(0sin)0(20cos)0()0()0( 123  yyyyf

xyxyxyxyxyxf cos2sin2sincos)()( 12234
)4( 

.sincos1 xyxy 

i.e., ;sincos3sin3cos)()( 1234
)4( xyxyxyxyxyxf 

0sin)0(0cos)0(30sin)0(30cos)0()0()0( 1234
)4( yyyyyf  ;301300 

Putting these values in the Maclaurin’s series
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...)0(
!

...)0(''
!2

)0(')0()( )(
2

 n
n

f
n

x
f

x
xffxf

we obtain
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82

1
42
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xx

xe x

Exercises
Find the Maclaurin’s series, for the functions in Exercises 1-16.

1. x2 2. xe 3. 1
1 x

4. sin 3x 5. 7cos( )x 6. sec x

7. cosh
2

x xe ex
 8. 4 32 5 4x x x   9.  xe1log

10.  log (1  x  + x2) 11.  log cosh x 12.  log cos x
13. ex sin x14. ex cos  cos (x sin ) 15. eax cos bx 16. ex cos x

In Exercises 17-24, using Maclaurin’s  theorem,  prove the expansions.
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21. ex sec x = 1 + x + 2x2/ 2! + 4x3 /3!  + .  .  .
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24. ...2cos
!2

cos1)sincos(
2

cos   x
xe x

Find the Maclaurin series for the functions in the following Exercises.

25. / 2xe 26. 1
1 x

27. sin
2
x

28. 5cos x 29. sinh
2

x xe ex
 30.  cos2 x                       31. 2( 1)x 

32. ex sin2 x 33. 1sinm xe
 34.  log 1xe x
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CHAPTER.13  CONVERGENCE OF TAYLOR SERIES:
ERROR ESTIMATES

Theorem 1 :   Taylor’s Theorem If f and its n derivatives ( )', '', . . . , nf f f are continuous on
[ , ]a b or on [ , ],b a and ( )nf is differentiable on ( , )a b or on ( , ),b a then there exists a number c

between a and b such that
2( )

( ) ( ) ( ) '( ) ''( ) . . .
2!

b a
f b f a b a f a f a


    

1
( ) ( 1)( ) ( )

( ) ( )
! ( 1)!

n n
n nb a b a

f a f c
n n


 

 


Corollary to Taylor’s Theorem :  Taylor’s Formula If f has derivatives of all orders in an open
interval I containing ,a then for each positive integer n and for each x in ,I

2( )
( ) ( ) ( ) '( ) ''( ) . . .

2!
x a

f x f a x a f a f a


    

( )( )
( ) ( ),

!

n
n

n

x a
f a R x

n


  …(1)

where
1

( 1)( )
( ) ( )

( 1)!

n
n

n

x a
R x f c

n







…(2)

for some c between a and .x When we state Taylor’s theorem this way, it says that for each x in I,

( ) ( ) ( ).n nf x P x R x 

Equation (1) is called Taylor’s formula. The function ( )nR x is called the remainder of order n
or the error term for the approximation of f by ( )nP x over I. If ( ) 0nR x as n for all x in
I, we say that the Taylor series generated by f at x = a converges to f on I, and we write

( )

0

( )
( ) ( ).

!

k
k

k

x a
f x f a

k








Theorem 2  The Remainder Estimation Theorem If there are positive constants M and r such
that ( 1) 1( ) n nf t Mr for all t between a and x, inclusive, then the remainder term ( )nR x in

Taylor’s theorem satisfies the inequality
11

( ) .
( 1)!

 




nn

n

r x a
R x M

n

If these conditions hold for every n and all the other conditions of Taylor’s theorem are satisfied
by f, then the series converges to ( )f x .

Problem Show that the Maclaurin series for sin x converges to sin x for all .x
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Answer

The function and its derivatives are

  sin ,f x x   cos ,f x x 

  sin ,f x x     cos ,f x x  

 

           2 2 11 sin , 1 cos ,
k kk kf x x f x x   

so
         2 2 10 0, and 0 1 .

kk kf f   

The series has only odd-powered terms and, for 2 1,n k  Taylor’s Theorem gives
3 5 2 1

2 1sin ( 1) ( ).
3! 5! (2 1)!

k
k

k
x x xx x R x

k



      




All the derivatives of sin x have absolute values less than or equal to 1, so we can apply the
Remainder Estimation Theorem with 1M and 1r to obtain

2 2

2 1( ) 1 .
(2 2)!



  


k

k

x
R x

k

Since
2 2

0
(2 2)!)

k
x

k






as ,k whatever be the value of x, 2 1( ) 0, kR x and hence the Maclaurin

series for sin x converges to sin x for all .x

2 1 3 5 7

0

sin ( 1)
(2 1)! 3! 5! 7!

k
k

k

x x x xx x
k

 



      
  …(3)

Truncation Error

The Maclaurin  series for xe converges to xe for all x. But we still need to decide how many
terms to use to approximate xe to a given degree of accuracy. We get this information from the
Remainder Estimation Theorem.

Problem Calculate e with an error of less than 610 .
Answer

Using  Example 1 with 1x , we obtain

1 1
1 1 (1),

2! !
         ne R

n

where

1
(1)

( 1)!



c

nR e
n

for some c between 0 and 1.

e is an irrational number lying between 2 and 3. Hence 3,e  and also noting that 0 1e , we are
certain that
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1 3
(1)

( 1)! ( 1)!
 

 nR
n n

because 1 3 ce for 0 1. c

We note that 61
10 ,

9!
 while 63

10 .
10!

 Thus we should take ( 1)n to be at least 10, or n to

be at least 9. With an error of less than 610 ,

1 1 1
1 1 2.7182.82.

2 3! 9!
         e

Euler’s Formula

A complex number is a number of the form ,a bi where a and b are real numbers and 1. i

If we substitute (x i  real) in the Maclaurin series for xe and use the relations
2 1,i   3 2 ,  i i i i 4 2 2 1, i i i 5 4 , i i i i

and so on, to simplify the result, we obtain
2 2 3 3 4 4 5 5 6 6

1
1! 2! 3! 4! 5! 6!

               i i i i i i i
e

2 4 6 3 5

1 cos sin .
2! 4! 6! 3! 5!

   
                      
   

i i
    

  

Definition For any real number  ,

cos sin    ie i …(5)

Eq.(5), called Euler’s formula, enables us to define a bie to be a bie e for any complex number
a bi

Exercises
Find the Maclaurin series of the functions in Exercises 1-3.

1. / 2xe 2. sin
2
 
 
 

x 3. 3 / 2cos( 2)x

Find Maclaurin series for the functions in Exercises 4-9.

4. 2 sinx x 5.
3

sin
3!

 
x

x x 6. 2 2cos( )x x

7. 2sin x 8. ln (1 2 )x x 9.
3

2

(1 ) x

10. If cos x is replaced by 21 ( / 2) x and 0.5,x what estimate can be made of the error? Does
21 ( / 2) x tend to be too large, or too small? Give reasons for your answer.

11. The estimate 1 1 ( / 2)  x x is used when x is small. Estimate the error when 0.01.x

Each of the series in Exercises 12-13 is the value of the Maclaurin series of a function f(x) at some
point. What function and what point? What is the sum of the series?



School of Distance Education

Calculus and Analytic Geometry Page 91

12.
2 4 2

2 4 2

( 1) ( )
1

4 2! 4 4! 4 (2 !)


          
  

k k

k k

   13.
2 3

1( 1)
2 3

          
k

k

k
  



14. Multiply the Maclaurin series for xe and cos x together to find the first five nonzero terms of
the Maclaurin series for xe cos x .

MODULE IV
CHAPTER.14  CONIC SECTIONS AND QUADRATIC EQUATIONS

A circle is the set of points in a plane whose distance from a given fixed point in the
plane is constant. The fixed point is the center of the circle; the constant distance is the
radius.

The standard form of the circle of radius a centered at the origin is
2 2 2.x y a 

The standard form of the circle of radius a centered at the point ( , )h k is
2 2 2( ) ( )x h y k a   

Definitions A set that consists of all the points in a plane equidistant from a given fixed
point and a given fixed line in the plane is a parabola. The fixed point is the focus of the
parabola. The fixed line is the directrix.

Attention! If the focus F lies on the directrix L, the parabola is the line through F
perpendicular to L. We consider this to be a degenerate case and assume henceforth that
F does not lie on L.

Standard forms of Parabolas

A parabola has its simplest equation when its focus and directrix straddle one of the
coordinate axes. For example, suppose that the focus lies at the point (0, )F p on the
positive y  axis and that the directrix is the line y p  . A point ( , )P x y lies on the
parabola if and only if PF PQ . From the distance formula, we have

2 2 2 2( 0) ( ) ( )PF x y p x y p      

2 2 2( ) ( ( )) ( )PQ x x y p y p      

When we equate the above expressions, square and simplify, we obtain
2

4
xy
p

 or 2 4x py …(1)

From Eq. (1), we note that parabola is symmetric about the y -axis. In other words, the
axis of symmetry of the parabola given by Eq.(1) is  the y -axis.  We call the y -axis the
axis of the parabola 2 4x py .
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The point where a parabola crosses its axis is the vertex. The  vertex of the parabola
2 4x py lies at the origin. The positive number p is the parabola’s focal length.

If the parabola opens downward, with its focus at (0, )p and its directrix the line y p ,
then Eqs. (1) become

2

4
xy
p

  and 2 4 x py …(2)

Similarly, we obtain similar equations for parabolas opening to the right  or to the left
and are given in the following Table.

Table:  Standard-form equations for parabolas with
vertices at the origin ( 0)p

Equation Focus Directrix Axis Opens

2 4x py (0, )p  y p y -axis Up

2 4x py (0, ) p y p y -axis Down

2 4y px ( , 0)p  x p x -axis To the
right

2 4y px ( , 0) p x p x -axis To the left

Problem Find the vertex, focus, directrix, and axis of the parabola 2 6 . x y

Answer

Comparing yx 62  with 2 4x py , we obtain 3

2
.p Hence yx 62  represents a

parabola opens to downward and whose vertex is ( 0 , 0 ) and focus is 3

2
( 0 , ) ( 0 , ).  p

Equation of the directrix y p is 3

2
y or 3

2
0 y The axis is the y axis.

Definition An ellipse is the set of points in a plane whose distance from two fixed
points in the plane have a constant sum. The two fixed points are the foci of the ellipse.

The quickest way to construct an ellipse uses the definition. Put a loop of string
around two tacks 1F and 2 ,F pull the string taut with a pencil point ,P and move the
pencil around to trace a closed curve. The curve is an ellipse because the sum 1 2 ,PF PF

being the length of the loop minus the distance between the tacks, remains constant. The
ellipse’s foci lie at 1F and 2 .F

Definition The line through the foci of an ellipse is the ellipse’s focal axis. The point on
the axis halfway between the foci is the center. The points where the focal axis and
ellipse cross are the ellipse’s vertices.
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If the foci are 1 ( , 0 )F c and 2 ( , 0 )F c , and 1 2PF PF is denoted by 2a, then the
coordinates of a point P(x, y) on the ellipse satisfy the equation

2 2 2 2( ) ( ) 2 .     x c y x c y a

To simplify this equation, we move the second radical to the right-hand side, square,
isolate the remaining radical, and square again, obtaining

22

2 2 2
1.

yx
a a c
 


…(4)

The Major and Minor Axes of an Ellipse
The major axis of the ellipse is the line segment of length 2a joining the points ( , 0)a .
The minor axis is the line segment of length 2b joining the points (0, )b . The number a

itself is the semi major axis, the number c , found from Eq. (5) as
2 2c a b 

is the center-to-focus distance of the ellipse.

Problem The ellipse  
22
1

25 16
yx intercepts the co-ordinate axes at the points (5, 0), ( 5, 0),

(0, 4),and (0, 4). The distance between (5, 0) and ( 5, 0) is larger than the distance
between (0, 4) and (0, 4) and therefore the major axis is horizontal and:

Semi major axis:  25 5a ,

Semi minor axis:  16 4b

Center-to-focus distance:    25 16 9 3c

Foci:    ( , 0) 3, 0c

Vertices:   ( , 0) ( 5, 0)a

Center: (0, 0)

The ellipse is shown in Fig.10.

Definition A hyperbola is the set of points in a plane whose distances from two fixed
points in the plane have a constant difference. The two fixed points are the foci of the
hyperbola.

If the foci are 1( , 0)F c and 2( , 0)F c and the constant difference is 2 ,a then a point
( , )P x y lies on the hyperbola if and only if

2 2 2 2( ) ( ) 2 .      x c y x c y a

To simplify this equation, we move the second radical to the right-hand side, square,
isolate the remaining radical, and square again, yields
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2 2

2 2 2 1 


x y
a a c

Definitions The line through the foci of a hyperbola is the focal axis. The point on the
axis halfway between the foci is the hyperbola’s center. The points where the focal axis
and hyperbola cross are the vertices .

Asymptotes of Hyperbolas
The hyperbola

2 2

2 2 1 
x y
a b

has two asymptotes, the lines


by x
a

and . 
by x
a

The fastest way to find the equations of the asymptotes is to replace the 1 in the above

equation by 0 and solve the new equation for y and get . 
by x
a

Problem Given the equation
2 2

1
3 4
 

x y

Center-to-focus distance: 2 2 3 4 7    c a b

Foci: ( , 0) ( 7, 0),  c Vertices: ( , 0) ( 3, 0)  a

Center: (0, 0)

Asymptotes:
2 2

0
3 4
 

x y or 2
3

 y x

Exercises

The following exercises give equations of parabolas. Find each parabola’s focus and
directrix. Then sketch the parabola. Include the focus and directrix in your sketch.

1. 2 12y x 2. 2 8x y  3. 2 24y x 4. 23x y 

The following exercises give equations of ellipses. Put each equation in standard form.
Then sketch the ellipse. Include the foci in your sketch.

5. 2 216 25 400x y  6. 2 22 2x y  7. 2 23 2 6x y  8. 2 26 9 54x y 
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CHAPTER.15 CLASSIFYING CONIC SECTIONS BY ECCENTRICITY

Definition The eccentricity of the ellipse   
22

2 2 1 ( )yx a b
a b

is

2 2c a be
a a

 

Problem Locate the vertices of an ellipse of eccentricity 0.8 whose foci lie at the points
(0, )4 .

Solution

Here 0.8 and 4 e c .

Since /e c a , the vertices are the points (0, ) a where

ca
e
  4 5

0.8

or (0, 5) .

Problem The orbit of Halley’s comet is an ellipse 36.18 astronomical units long by 9.12
astronomical unit wide. Its eccentricity is

2 2 2 22 2 (36.18/ 2) (9.12 / 2) (18.09) (4.56) 0.97
(1/ 2)(36.18) 18.09

a be
a

    

Definition The eccentricity of the hyperbola
22

2 2
1 yx

a b
is

2 2
. c a be

a a

Problem Find the eccentricity of the hyperbola 2 29 16 144x y  .

Solution

We divide both sides of the hyperbola’s equation by 144 to put it in standard form,
obtaining

22 169 1
144 144

yx  

or
22
1

16 9
yx   .

With 2 16a  and 2 9b  , we find that 2 2 16 9 5c a b     , so
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the eccentricity is given by
ce
a
  5 .

4

Definition The eccentricity of a parabola is 1e  .

Problem Find a Cartesian equation for the hyperbola centered at the origin that has a
focus at (3, 0) and the line 1x  as the corresponding directrix.

Solution

The focus is ( ,0) (3,0),c  so 3.c

Suppose ( , 0)a is the vertex to the right of the focus (3, 0). Then the directrix is the line

1,ax
e
  so .a e

As /e c a defines eccentricity, we have
3,ce

a e
  so 2 3e  and 3e  .

Knowing e, we can now derive the equation we want from the equation PF e PD 

as2 2( 3) ( 0) 3 1 ,    x y x 3e 

Squaring both sides, we obtain

( ).2 2 26 9 3 2 1     x x y x x

i.e., 2 22 6, x y or
22
1

3 6
yx   .

Exercises

In Exercise 1-4, find the eccentricity, foci and directrices of the ellipse.

1. 2 27 16 112 x y 2. 2 22 4 x y

3. 2 29 10 90 x y 4. 2 2169 25 4225 x y

Exercises 5-6 give the foci or vertices and the eccentricities of ellipses centered at the
origin of the xy-plane. In each case, find the ellipse’s standard-form equation.

5. Foci: ( 8, 0) ; Eccentricity: 0.2

6. Vertices: ( 10, 0) ; Eccentricity: 0.24

Exercise 7-8 give foci and corresponding directrices of ellipses centered at the origin of
the xy-plane. In each case, use the dimensions in Fig.5 to find the eccentricity of the
ellipse. Then find the ellipse’s standard-form equation.

7. Focus: (4,0) ; 16Directrix:
3

x

8. Focus: ( 2,0) ; Directrix: 2 2 x
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9. Draw the orbit of Pluto (eccentricity 0.25) to scale. Explain your procedure.

10. Find an equation for the ellipse of eccentricity 2/3 that has the line 9x as a directrix
and the point (4,0) as the corresponding focus.

11. An ellipse is revolved about its major axis to generate an ellipsoid. The inner surface
of the ellipsoid is silvered to make a mirror. Show that a ray of light emanating from
one focus will be reflected to the other focus. (Hint: Place the ellipse in standard
position in the xy-plane and show that the lines from a point P on the ellipse to the
two foci make congruent angles with the tangent to the ellipse at P.) Sound waves
also follow such paths, and this property is used in constructing “whispering
galleries.”

In Exercises 12-15, find the eccentricity foci and directrices of the hyperbola.

12. 2 29 16 144 x y 13. 2 2 4 y x

14. 2 23 3 y x 15. 2 264 36 2304 x y

Exercises 16-17 give the eccentricities and the vertices or foci of hyperbolas centered at
the origin of the xy-plane. In each case, find the hyperbola’s standard-form equation.

16. Eccentricity: 2 ; Vertices: ( 2,0)

17. Eccentricity:1.25 ; Foci: (0, 5)

Exercises 18-19 give foci and corresponding directrices of hyperbolas centered at the
origin of the xy-plane. In each case, find the hyperbola’s eccentricity. Then find the
hyperbola’s standard-form equation.

18. Focus: ( 10,0) ; Directrix: 2x

19. Focus: ( 6,0) ; Directrix: 2 x
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CHAPTER.16 QUADRATIC EQUATIONS AND ROTATIONS
In this chapter, we examine that the Cartesian graph of any equation

2 2 0     Ax Bxy Cy Dx Ey F … (1)

in which A, B, and C are not all zero, is nearly always a conic section. The exceptions are
the cases in which there is no graph at all or the graph consists of two parallel lines. It is
conventional to call all graphs of  the above equation, curved or not, quadratic curves.

The Cross Product Term

We note that the term Bxy in Eq.(1) did not appear in the equations for the conic sections
discussed in Chapter B7. This happened because the axes of the conic sections ran
parallel to (in fact, coincided with) the coordinate axes. In the next example we see what
happens when the parallelism is absent.

Problem Determine equation for the hyperbola with 3a and foci at 1( 3, 3) F and
2 (3,3)F .

Solution

Let ( , )P x y be a point on the given hyperbola.  Then, the equation 1 2 2 PF PF a becomes
1 2 2(3) 6 PF PF and

2 2 2 2( 3) ( 3) ( 3) ( 3) 6        x y x y

We move one radical to the right hand side, square, solve for the radical that still appears
and square again, and then the above equation reduces to

2 9,xy

in which the cross-product term is present. The asymptotes of the hyperbola in Eq.  are
the x- and y- axes, and the focal axis makes an angle of / 4 radians with the positive x-
axis.

Rotating the Coordinate Axes to Eliminate the Cross Product Term xy.

Consider the usual Cartesian coordinates system with mutually perpendicular x- and
y- axes. Let P be a point with the Cartesian coordinates  (x, y)  based on this x- and y-axes.
We now form new axes obtained by rotating the x and y –axes at an angle  in the
counter clockwise rotation.

Then
cos( ) cos cos sin sin         x OM OP OP OP

sin( ) cos sin sin cos         y MP OP OP OP
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Since
cos   OP OM x

and
sin   OP M P y ,

the equations in reduce to the following:

cos sin  x x y 

sin cos  y x y 

Eq (4) is the equations for rotating Coordinate axes

Problem The x - and y - axes are rotated through an angle of / 4 radians about the
origin. Find an equation for the hyperbola 2 9xy in the new coordinates.

Answer

Since cos / 4 sin / 4 1/ 2   , using Eqs. (4a) and (4b), we obtain

,
2 2

x y x y
x y
     

substituting these into the equation 2 9xy , we obtain

2 9
2 2

            
   

x y x y

2 2 9  x y

22

1
9 9

  yx .

Problem Find a quadratic equation that is absent of xy-term and represent the curve
2 22 3 10 0   x xy y .

Answer

The coordinate axes are to be rotated through an angle  to produce an equation for the
curve

2 22 3 10 0x xy y   

that has no cross product term. We find  and the new equation.

Comparing with Eq. (1), the equation 2 22 3 10 0x xy y    has 2, 3,A B  and
1C  . We substitute these values into Eq. (7) to find  :

2 1 1cot 2 .
3 3

   A C
B



From the right triangle in Fig.4, we see that one appropriate choice of angle is 2 / 3  ,
so we take / 6  . Substituting / 6, 2,   A
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3B , 1, 0,  C D E and 10F   into Eqs. (6a) to (6f) gives

5 1, 0, , 0, 10.
2 2

          A B C D E F

Equation (5) then gives

2 25 1 10 0
2 2

x y    ,

or
22

1.
2 20

  yx

The curve is an ellipse with foci (0, 2 5) on the new y  axis .

The Discriminant Test
Method of determining the nature of the quadratic curve - The Discriminant Test

The quadratic curve 2 2 0Ax Bxy Cy Dx Ey F      is

a) a parabola if 2 4 0B AC  ,

b) an ellipse if 2 4 0B AC 

c) a hyperbola if 2 4 0B AC  .

provided degenerate cases may not arise.

Problem

a) 2 24 8 4 5 3 0    x xy y x represents a parabola because
2 24 ( 8) 4 4 4 64 64 0        B AC .

b) 2 22 1 0   x xy y represents an ellipse because
2 24 (1) 4 2 1 7 0       B AC

c) 23 5 1 0   xy y y represents a hyperbola because
2 24 (3) 4(0)( 1) 9 0     B AC .

Exercises

Use the discriminant 2 4B AC to decide whether the equations in Exercise 1-8 represent
parabolas, ellipse, or hyperbola.

1. 2 23 18 27 5 7 4x xy y x y     

2. 2 22 15 2 0x xy y x y    

3. 2 22 4 2 3 6x y xy x y    

4. 2 2 3 2 10x y x y   

5. 2 23 6 3 4 5 12x xy y x y    
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6. 2 22 4.9 3 4 7x xy y x   

7. 2 225 21 4 350 0x xy y x   

8. 2 23 12 12 435 9 72 0x xy y x y     

In Exercise 9-13, rotate the coordinate axes to change the given equation into an equation
that has no cross product (xy) term. Then identify the graph of the equation. (The new
equation will vary with the size and direction of the rotation you use.)

9. 2 2 1x xy y   10. 2 23 2 1x xy y  

11. 2 23 2 3 1x xy y   12. 1 0xy y x   

13. 2 23 4 3 7x xy y  

14. Find the sine and cosine of an angle through which the coordinate axes can be rotated
to eliminate the cross product term from the equation

2 24 4 8 5 16 5 0x xy y x y     .

Do not carry out the rotation.

In Exercises 15-17, use a calculator to find an angle  through which the coordinate axes
can be rotated to change the given equation into a quadratic equation that has no cross
product term. Then find sin and cos to 2 decimal places and use Eqs.(6a) to (6f) to find
the coefficients of the new equation to the nearest decimal place. In each case, say
whether the conic section is an ellipse, a hyperbola, or a parabola.

15. 2 22 3 3 7 0x xy y x     16. 2 22 12 18 49 0x xy y   

17. 2 23 5 2 8 1 0x xy y y    

18. What effect does a 180  rotation about the origin have on the equations of the
following conic sections? Give the new equation in each case.

 The ellipse 2 2 2 2( / ) ( / ) 1x a y b  ( )a b

 The hyperbola 2 2 2 2( / ) ( / ) 1x a y b 

 The circle 2 2 2x y a 

 The line y mx

 The line y mx b 
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CHAPTER.17 PARAMETRIZATIONS OF PLANE CURVES
Definitions If x and y are given as continuous functions

( ),x f t ( )y g t

over an interval of t -values, then the set of points ( , ) ( ( ), ( ))x y f t g t defined by these
equations is a curve in the coordinate plane. The equations are parametric equations for
the curve. The variable t is a parameter for the curve and its domain I is the parameter
interval. If I is a closed interval, a t b  , the point ( ( ), ( ))f a g a is the initial point of the
curve and ( ( ), ( ))f b g b is the terminal point of the curve. When we give parametric
equations and a parameter interval for a curve in the plane, we say that we have
parameterized the curve. The equations and interval constitute a parameterization of the
curve.

In many applications t denotes time, but in some applications denote an angle or the
distance a particle has traveled along its path from its starting point.

Problem Give the parametrization of the circle 2 2 1.x y 

Solution

The equations and parameter interval
cos , sin , 0 2x t y t t    

describe the position ( , )P x y of a particle that moves counter clockwise around the circle
2 2 1x y  as t increases.

The point lies on this circle for every value of ,t because
2 2 2 2cos sin 1.x y t t   

But how much of the circle does the point ( , )P x y actually traverse?

To find out, we track the motion as t runs from 0 to 2 . The parameter t is the radian
measure of the angle that radius OP makes with the positive x  axis. The particle starts
at (1, 0) , moves up and to the left as t approaches / 2 , and continues around the circle to
stop again at (1,0) when 2t  . The particle traces the circle exactly once.

Problem The equations and parameter interval
cos , sin , 0x t y t t    

describe the position ( , )P x y of a particle that moves counter clockwise around the circle
2 2 1x y  as t increases and traces only half of the circle.

Problem Verify that the equations and parameter interval
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cos , sin , 0x t y t t     

describe the position ( , )P x y of a particle that moves clockwise around the circle 2 2 1x y 
as t increases from 0 to  and covers only half of the circle.

Solution

We know that the point P lies on this circle for all t because its coordinates satisfy the
circle’s equation. How much of the circle does the particle traverse? To find out, we track
the motion as t runs from 0 to  . As in Example 1, the particle starts at (1,0). But now as t
increases, y becomes negative, decreasing to 1 when / 2t  and then increasing back to
0 as t approaches  . The motion stops at t  with only the lower half of the circle
covered.

Problem Describe the motion of a particle whose position ( , )P x y at time t is given by

cos , sin , 0 2 .x a t y b t t     Solution

We find a Cartesian equation for the particle’s coordinates by eliminating t between
the equations

cos , sin
yxt t

a b
  .

We accomplish this with the identity 2 2cos sin 1t t  , which gives
22 22

2 2
1, or 1

y yx x
a b a b

            
.

The particle’s coordinates ( , )x y satisfy the equation
2 2 2 2( / ) ( / ) 1x a y b  , so the particle moves along this ellipse. When 0t  , the particle’s

coordinates are

cos(0)x a a  , sin (0) 0, y b

so the motion starts at ( , 0)a . As t increases, the particle rises and moves towards the left,
moving counter clockwise. It traverses the ellipse once, returning to its starting position
( , 0)a at time 2t  (Fig.6).

Exercises

Exercises 1-12 give parametric equations and parameter intervals for the motion of a
particle in the xy -plane. Identify the particle’s path by finding a Cartesian equation for it.
Graph the Cartesian equation. (The graphs will vary with the equation used.) Indicate
the portion of the graph traced by the particle and the direction of motion.

1. cos 2x t , sin 2y t , 0 t  

2. cos( ))x t  , sin( ) y t , 0 t  

3. 4sinx t , 2cosy t , 0 t  

4. 4sinx t , 5cosy t , 0 2t  
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5. x t  , y t , 0t 

6. 2sec 1x t  , tany t , / 2 / 2  t 

7. cscx t , coty t , 0 t  

8. 1x t  , 1y t  , t   

9. 3 3x t  , 2y t , 0 1t 

10. x t , 24y t  , 0 2t 

11. 1x t  , y t , 0t 

12. 2sinhx t , 2coshy t , t   

13. Find parametric equations and a parameter interval for the motion of a particle that
starts at ( ,0)a and traces the ellipse ( 2 2 2 2( / ) ( / ) 1x a y b 

a) once clockwise, b) once counterclockwise,

b) twice clockwise, d) twice counterclockwise.

14. Find parametric equations for the circle 2 2 2x y a  using as parameter the arc length
s measured counterclockwise from the point ( ,0)a to the point ( , ).x y
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CHAPTER.18  CALCULUS PARAMETRIZED CURVES

Slopes of Parameterized Curves

Consider a parameterized curve ( ), ( ). x f t y g t The curve is differentiable at t t 0 if
f and g are differentiable at 0 .t t The curve is differentiable if it is differentiable at

every parameter value.  The curve is smooth if f and g are continuous and not
simultaneously zero.

Formula for Finding
dy
dx

from
dy
dt

and dx
dt

dx
dt

0  
 

At a point on a differentiable parametrized curve where y is also a differentiable

function of ,x the derivatives , ,
dydx

dt dt
and dy

dx
are related by the Chain Rule equation

.dy dy dx
dt dx dt

If 0,dx
dt

we may divide both sides of the above equation by dx
dt

to solve for dy

dx
and obtain

.

dy
dy dt

dxdx
dt

Problem Find the tangent to the right-hand hyperbola branch

sec , tan , ,
2 2

     x t y t t

at the point ( 2, 1), where
4
 t

Solution
The slope of the curve at t is

2sec sec .
sec tan tan

  

dy
dy t tdt

dxdx t t t
dt

Hence the slope at the point
4
 t is obtained by setting

4
 t in the above equation and

is given by

4

sec( / 4) 2 2.
tan( / 4) 1

  



t

dy

dx

The point-slope equation of the tangent is
0 0( )  y y m x x



School of Distance Education

Calculus and Analytic Geometry Page 106

1 2( 2)  y x

2 2 1  y x

2 1. y x

The Parametric Formula for
2

2

d y
dx

If the parametric equations for a curve define y as a twice-differentiable function of ,x

then
2

2

d y

dx
can be calculated as follows:

2

2
( )

dy
d y d dty

dxdx dx
dt



 

Problem Find
2

2

d y

dx
if 3 22 , .x t t y t t   

Answer

To use (3), we have to evaluate dy

dt

 and dx
dt

.  Also, to evaluate dy
y

dx
  we have to evaluate

dy

dt
also.

Now 2( ) 1 2
dy d t t t
dt dt
   

and 3 2(2 ) 2 3 .dx d t t t
dt dt
   

Hence 2

1 2 .
2 3

dy
dy tdty

dxdx t
dt

   


Also,
2 2

2

1 2
2 3( )

d t
d y d dt ty

dxdx dx
dt

     .

Using quotient rule,

   
   

2 2
2 3

2 22 2 2

2 3 ( 2) 1 2 ( 6 )1 2 4 12 12 .
2 3 2 3 2 3

              

t t td t t t
dt t t t

Hence,  
 

2 3

222 2 3

32 2 2

4 12 12

2 3 4 12 12 .
2 3 2 3

  
    
 

t t

td y t t
dx t t
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Lengths of Parametrized Curves.  Centroids

The length of a smooth curve ( ), ( ), ,x f t y g t a t b    is given by the following
integral:

t b

t a

L




 
22 dydx dt

dt dt

         
.

Problem Find the length of the arc of the curve
sin 2 (1 cos 2 ), cos 2 (1 cos 2 )   x a t t y a t t

measured from the origin to any point.

Solution

The origin corresponds to the point ( , ) (0,0)x y , which  implies 0x and hence
 tta 2cos12sin0  , which gives a value for t as t = 0.  In other words, t = 0 is the

parametric value corresponding to the origin.  Also, the parametric value of an arbitrary
point is t.  Since it is required to find length of the arc from the origin to any point on the
curve, the limits of integration are t = 0 and t = t.

Now differentiating 1sin 2 sin 4
2

x a t a t  with respect to t, we get

2 cos2 2 cos4 4 cos3 cosdx a t a t a t t
dt
  

Also, differentiating 





 


2

4cos1
2cos

t
tay , with respect to t, we obtain

  ttatta
dt

dy
3cossin42sin4sin2 

Hence

   2

1

2 2
2 2

0
4 cos3 .cos 4 sin .cos3

t t

t

dx dy
L dt a t t a t t dt

dt dt
         
    

.3sin
3

4
3cos4

0
tadtta

t
 

Problem Find the centroid of the first-quadrant arc of the astroid
3 3cos , sin ,0 2 .   x t y t t

Solution

We take the curve’s density to be 1  and calculate the curve’s mass and moments
about the coordinate axes.

The distribution of mass is symmetric about the line y x , so x y . A typical
segment of the curve has mass
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22

1 3cos sin              
dydxdm ds ds dt t t dt

dt dt
 , using the previous example.

The curve’s mass is
/ 2 / 2

0 0

33cos sin ,
2

 
   M dm t t dt again using the previous example

The curve’s moment about the x  axis is
/ 2 3

0
sin 3cos sin


   xM y dm t t t dt

/ 25/ 2 4

0
0

sin 33 sin cos 3
5 5

tt t dt


     , using reduction formula

Hence,
3/ 5 2
3/ 2 5

xMy
M

   .

Therefore, x also equals to 2
5

and the centroid is the point (2/5, 2/5).

The Area of a Surface of Revolution
If a smooth curve ( ), ( ),   x f t y g t a t b , is traversed exactly once as t increases

from toa b , then:

(i). the area of the surface generated by revolving the curve about the x  axis ( 0)y  is
given by

22

2
b

a

dydxS y dt
dt dt

          

(ii). the area of the surface generated by revolving the curve about the y axis ( 0)x is
given by

22

2
b

a

dydxS x dt
dt dt

          

Problem The standard parameterization of the circle of radius 1 centered at the point
(0,1) in the xy  plane is

cos ,x t 1 sin , y t 0 2  t

Use this parametrization to find the area of the surface swept out by revolving the circle
about the x  axis.
Solution

We evaluate the formula
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2 2

2
b

a

dydxS y dt
dy dt


       

  


2 2 2

0
2 (1 sin ) ( sin ) (cos )


    t t t dt

2

0
2 (1 sin )t dt


  , since 2 2sin cos 1 t t

 2 2

0
2 cos 4t t

    .

Exercises

In Exercise 1-6, find an equation for the line tangent to the curve at the point defined by
the given value of t. Also, find the value of 2 2/d y dx at this point.

1. sin 2 , cos 2 , 1/ 6x t y t t    

2. cos , 3 cos , 2 / 3x t y t t   

3. 2sec 1, tan , / 4x t y t t     

4. 1, 3 , 3x t y t t    

5. 1/ , 2 1n , 1x t y t t    

6. cos , 1 sin , / 2x t y t t    

Assuming that the equations in Exercises 7-8 define x and y implicitly as differentiable
functions ( ), ( ),x f t y g t  find the slope of the curve ( ), ( ),x f t y g t  as the given value of t.

7. 5 , ( 1) 1n , 1x t y t y t    

8. sin 2 , sin 2 ,x t x t t t t y t     

Find the lengths of the curves in Exercises 9-11

9. 3 2, 3 / 2, 0 3x t y t t   

10. 3/ 2 2(2 3) /3, / 2, 0 3x t y t t t     

11. 1n (sec tan ) sin , cos , 0 / 3x t t t y t t      

Find the areas of the surfaces generated by revolving the curves in Exercises 12-13 above
indicated axes.

12. 3/ 2(2 / 3) , 2 , 0 3 : axisx t y t t y    

13. 1n (sec tan ) sin , cos , 0 / 3; axisx t t t y t t x      

14. The line segment joining the origin to the point ( , )h r is revolved about the x  axis to
generate a cone of height h and base radius r. Find the cone’s surface area with the
parametric equations , , 0 1x ht y rt t    . Check your result with the geometry
formula: Area r (Slant height).

15. a) Find the coordinates of the centroid of the curve

cos , sin , 0t tx e t y e t t    
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b) Sketch the curve. Find the centroids coordinate to the nearest tenth and add the
centroid to your sketch.

16. Most centroid calculations for curves are done with a calculator or computer that has
an integral evaluation program. As a case in point, find to the nearest hundredth, the
coordinates of the centroid of the curve

3 2, 3 / 2, 0 3x t y t t    .

CHAPTER.19  POLAR COORDINATES

To define polar co-ordinates we first fix an
origin O called pole (or origin) and a
horizontal line originating at O, called
initial ray (or polar axis). Corresponding to
each point P in the plane one can assign
polar co-ordinates (r, ) in which the first
number ‘r’ gives the directed distance from
O to P and the second number  gives the
directed angle from the initial line to the
segment OP (Fig. 1).

Problem 1 Find all polar coordinates
corresponding to the point P with  a polar
coordinate (2, / 6) .

Answer

For 2r , the complete list of angles is

,6
6

,4
6

,2
6

,
6












For 2r , the complete list of angles is

,6
6

5
,4

6

5
,2

6

5
,

6

5



















The corresponding coordinate pairs of P are

,2,1,02
6

,2 





  nn



and ,2,1,02
6

5
,2 






 


 nn



Polar equations - Elementary Coordinate Equations
A polar equation is an equation involving polar co-ordinates.
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b) Sketch the curve. Find the centroids coordinate to the nearest tenth and add the
centroid to your sketch.

16. Most centroid calculations for curves are done with a calculator or computer that has
an integral evaluation program. As a case in point, find to the nearest hundredth, the
coordinates of the centroid of the curve

3 2, 3 / 2, 0 3x t y t t    .

CHAPTER.19  POLAR COORDINATES

To define polar co-ordinates we first fix an
origin O called pole (or origin) and a
horizontal line originating at O, called
initial ray (or polar axis). Corresponding to
each point P in the plane one can assign
polar co-ordinates (r, ) in which the first
number ‘r’ gives the directed distance from
O to P and the second number  gives the
directed angle from the initial line to the
segment OP (Fig. 1).

Problem 1 Find all polar coordinates
corresponding to the point P with  a polar
coordinate (2, / 6) .

Answer
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If we hold r fixed at a constant value 0r a  , the point ( , )P r will lie a units from
the origin O. As  varies over any interval of length 2 , P then traces a circle of radius
a centered at O (Fig. 5).

The equation r a represents the circle of radius a centered at O.

Problem 1 and 1r r   are equations for the circle of radius 1 centered at O.

Line
If we hold  fixed at a constant value 0  and let r vary between  and  the

point ( , )P r traces the line through O that makes an angle of measure 0 with the initial
ray.

Relation to Cartesian Coordinates

We suppose that the polar axis coincides with the positive x-axis of the Cartesian
system. Then the polar coordinates  ,r of a point P and the Cartesian coordinates (x, y)
of the same point are related by the following equations:

x = r cos

y = r sin,

where 2 2 2 x y r and tan 
y
x

.

Problem Find the Cartesian equivalent to the polar equation

2
4

cos 





 


r .

Answer The given equation can be written as

2
4

sinsin
4

coscos 





 





r , using the trigonometry identity

  BABABA sinsincoscoscos 

i.e., 2
2

1
sin

2

1
cos 








 r

i.e., 2
2

1

2

1
 yx , since x = r cos  and y = r sin 

i.e., 2 yx .
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Problem Replace the following polar equations by equivalent Cartesian equations, and
identify their graphs.

a) cos 4r    b) 2 4 cosr r  c) 4
2cos sin

r
 




Answer

We use the substitutions 2 2 2cos , sin ,r x r y r x y    

a)  Using the above, the Cartesian equation corresponding to the polar equation
cos 4r    is 4x   .   Hence the graph is the vertical line 4x   passing through the

point ( 4, 0) on the x - axis.

b)  The Cartesian equation corresponding to the polar equation 2 4 cosr r  is obtained as
follows:

2 2 4x y x 

2 24 0x x y  

2 24 4 4x x y    Completing the square
2 2( 2) 4x y  

The graph is the circle having radius 2 and centered at (2, 0).

c) The Cartesian equation corresponding to the polar equation 4
2cos sin

r
 




is

obtained as follows:
(2cos sin ) 4r   

2 cos sin 4r r  

2 4x y 

2 4y x 

The graph is the straight line having  slope 2m and y intercept 4. b

Problem By changing to Cartesian coordinates, show that sin8r is a circle and

cos1

2


r is a parabola.

Answer

If we multiply sin8r by r, we get

sin82 rr 

which, in Cartesian coordinates, is

yyx 822 

and may be written successively as

0822  yyx
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1616822  yyx

  164 22  yx ,

the equation of the circle of radius 4 centered at (0, 4).  Also,

cos1

2


r

implies 2cos  rr

2 xr

2 xr

4422  xxr

44222  xxyx

 142  xy ,

the equation of a parabola with vertex at (1, 0) and focus at the origin.

Problem Find the polar equivalent of the curve whose Cartesian equation is 122  yx .

Answer
We have cosrx  and sinry  .

Replacing x and y by these values in 122  yx , we get

1sincos 2222   rr

implies   1sincos 222  r

implies 12cos2 r ,

which is the equivalent polar equation.

Exercises

1. Which polar coordinate pairs label the same point?

a) ( 2, / 3) b) (2, / 3) c) ( , )r 

d) ( , )r   e) ( , )r  f) (2, 2 / 3)

g) ( , )r    h) ( 2,2 / 3)

2. Plot the following points. Then find all the polar coordinates of each points.

a) (3, / 4) b) ( 3, / 4) c) (3, / 4) d) ( 3, / 4) 

3. Find the Cartesian coordinates of the following points (given in polar coordinates.).

a)  2, / 4 b) (1,0) c) (0, / 2) d)  2, / 4
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e) ( 3,5 / 6) f) 1(5, tan (4 / 3)) g) ( 1,7 ) h)  2 3,2 /3

Graph the sets of points whose polar coordinates satisfy the equations and inequalities in
Exercises 4-11.

4. 0 2r  5. 1 2r  6. 2 / 3, 2r   

7. 11 / 4, 1r    8. / 2, 0r   9. 0 , 1r    

10. / 4 / 4, 1 1r        11. 0 / 2, 1 2r    

Replace the polar equations in Exercises 12-24 by equivalent Cartesian equations. Then
describe or identify the graph.

12. sin 1r    13. cos 0r   14. 3secr  

15. sin cosr r  16. 2 4 sinr r  17. 2 sin 2 2r  

18. 4 tan secr   19. sin 1n  ln cosr r  

20. 2 2cos sin  21. 2 6 sinr r  

22. 3cosr  23. 2cos sinr   

24. 2sin 5
3

r     
 

Replace the Cartesian equations in Exercises 25-31 by equivalent polar equations.

25. 1y  26. 3x y  27. 2 2 1x y 

28. 2xy  29. 2 2 1x xy y  

30. 2 2( 5) 25x y   31. 2 2( 2) ( 5) 16x y   
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CHAPTER.20  GRAPHING IN POLAR COORDINATES

Problem Graph the cardiod 1 cosr   .

Answer

The equation 1 cosr   remains unchanged when  is changed to . Hence the
curve is symmetric about the x-axis.

As  increases from 0 to  , cos decreases from 1 to –1 and 1 cosr   increases
from a minimum value of 0 to a maximum value of 2. As  increases from to 2  , cos

increases from –1 back to 1 and r decreases from 2 back to 0. The curve starts to repeat
when 2  because the cosine has period 2 .

The curve leaves the origin with slope tan(0) 0 and return to the origin with slope
tan(2 ) 0.  Hence tangent at the origin is the x- axis.

We make a table of values from 0  to   , plot the points, draw a smooth curve
through them with a horizontal tangent at the origin, and reflect the curve across the x 
axis to complete the graph. The curve is called a cardioid because of its heart shape.

Problem 7 Trace the cardioid (1 cos )r a  

Answer

(i) The curve is symmetric about the initial line, since the change of  by  does
not alter the given equation.

(ii) Plot certain points as follows.  From the Table we observe that when  increases
from 0 to ,  the values of r goes on decreasing from 2a to 0 .

 (1 cos )r a  

0 0

1

2

 1 cosr  

3
 1

2

2


2
3
 3

2
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Problem Trace r2 = a2 cos 2.  (Lemniscate of Bernoulli)

(i) The curve is symmetric about the initial line.

(ii) The curve is symmetric about the line  = /2.

(iii) Plot certain points as follows. We connect them from 0 to
4
 and complete the

remaining portions using the symmetry about the line
2
  and about the initial

line .

Exercises

Identify the symmetries of the curves in Exercises 1-6, then sketch the curves

1. 1 cosr   2. 1 sinr   3. 2 sinr  

4. sin( / 2)r  5. 2 cosr  6. 2 sinr  

Graph the lemniscates in Exercises 7-8. What symmetrics do these curves have?

7. 2 4cos2r  8. 2 sin 2r  

Find the slopes of the curves in Exercises 9-10 at the given points. Sketch the curves
along with their tangents at these points.

9. (Cardioid) 1 cos ; / 2r       

10. (Four leaved rose) sin 2 ; / 4, 3 / 4r       

0 2a

3
 3

2
a

2


a

2
3


2
a

 0

 cos2r a  

0 a

6


2
a

4
 0
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Limacons is Old French for “snail Equations for limacons have the form
cos or sinr a b r a b     . There are four basic shapes. Graph the limacons in Exercises

11-14.

11. (Limacons with an inner loop)
1) cos
2

a r   1) sin
2

b r  

12. (Dimpled limacons)
3) cos
2

a r   b) 3 sin
2

r  

13. Oval limacons

) 2 cosa r   b) 2 sinr   

14. Cardioids
) 1 cosa r   ) 1 sinb r   

15. Sketch the region defined by the inequalities 1 2r   and / 2 / 2     .

16. Sketch the region defined by the inequality

0 2 2cosr   

17. Show that the point (2,3 / 4) lies on the curve 2sin 2r 

Find the points of intersection of the pairs of curves in Exercises 18-21.

18. 1 cos , 1 cosr r     19. 2sin , 2sinr r  

20. 22; 4sinr r   21. 21, 2sin 2r r  
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CHAPTER.21  POLAR EQUATIONS FOR CONIC SECTIONS

Introduction

Polar coordinates are important in astronomy and astronautical engineering because
the ellipses, parabolas, and hyperbolas along which satellites, moons, planets, and
comets move can all be described with a single relatively simple coordinate equation. We
develop that equation here.

EQUATION FOR A LINE IN POLAR COORDINATES

To determine the equation of a line we consider the following two cases.

Case (i) When the line passes through the pole:  Then the equation of the line in polar form is

 = 0 ,

where 0 is a constant.

Case (ii) When the line does not  pass through the pole :

Let 0 0 0( , )P r  be the point on the line such that it is the foot of the perpendicular
from origin. Then if  ,rP is any other point on the line, then from the right angled
triangle 0 ,OP P we  have

  0
0cos

r
r

  

or  0 0cos .  r r … (1)

The standard Polar Equation for Lines

If the point 0 0 0( , )P r  is the foot of the perpendicular
from the origin to the line L, and 0 0,r  then the
equation for L is given by Eq. (1) above.

Problem Write the polar equation for the line in
Fig.3. Use the identity cos( ) cos cos sin sinA B A B A B  
to find its Cartesian equation.

Answer

Here 0 3
  and 0 2r , so using

Eq. (1), we obtain

cos 2
3

r    
 

cos cos sin sin 2
3 3

r      
 

1 3cos sin 2
2 2

r r  

1 3 2
2 2

x y 

3 4.x y 
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Problem Find the angle between the lines whose equations are    cosrd and
 11 cos   rd .  Deduce the condition for the lines to be perpendicular.

Answer
    sinsincoscoscos  rrd

i.e.,  sincos yxd 

 slope of this line is 



cot
sin

cos
m

Similarly, slope of the second line is 11 cotm .
If  is the angle between the two lines, then

   







tantan1

tantan

cotcot1

cotcot

1
tan

1

1

1

1

1

1













mm

mm

    1tantan 

or   1 .
If the lines are perpendicular, then  = /2 ,  so 1 +  = /2  or 1 / 2.    

Exercises
Sketch the lines in the following exercises and find the Cartesian equations for them.

1. 3cos 1
4

r    
 

2. cos 2
3

r    
 

3. cos 2
4

r    
 

4. 2cos 3
3

r    
 

Find the polar equation in the form 0 0cos( )r r   for each of the lines in Exercises 5-

5. 2 2 6x y  6. 5y  

7. 3 1x y  8. 4x  

EQUATION FOR A CIRCLE IN POLAR CO-ORDINATES
(i)If the circle of radius a is centered at the pole , its equation is

r = a . … (2)
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(ii) If the circle of radius a is centered at  00 ,r , then using Law of Cosines to the
triangle 0OP P , we get

 2 2 2
0 0 02 cosa r r r r      .     … (3)

Equations of circles passing through the origin
(iii) If the circle of radius a is centered at  00 ,r and passing through the origin,

then ar 0 .  Then, by putting ar 0 in Eq. (3),  gives

 2 2 2
02 cosa a r ar      ,

which simplifies to
 0cos2   ar . …(4)

(iv) Special Case of (iii) : Consider the circle that passes through the origin and
whose centre lies on the initial line. Centre lies on the initial line (i.e., on the positive x-
axis) implies 00  and in that case Eq. (4 ) gives (Fig. 7)

cos2ar  . …(5)

(v) Special Case of (iii) : If the center lies on the positive y-axis, 0 ,
2
  and since

 cos sin ,
2
   Eq.(4) becomes (Fig.8)

2 sin .r a  …(6)
(iv) If the centre lies on the negative x-axis, then the equation of the circle is obtained

by replacing r by r in Eq.(5) and is (Fig. 9)
2 cosr a   . …(7)

(v)  If the center lies on the negative y-axis,  then the equation of the circle is obtained
by replacing r by r in Eq. (6) and is (Fig. 10)

2 sin .r a  

Problem Find the equations of the circles passing through origin and having radius and
center (in polar coordinates) as below:

(i)   Radius :   3 Center :   (3, 0)
(ii)   Radius :   2 Center : (2, / 2)

(iii)   Radius :   1/2 Center : ( 1/ 2, 0)

(iv)   Radius :   1 Center : ( 1, / 2)
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(ii) If the circle of radius a is centered at  00 ,r , then using Law of Cosines to the
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(v)  If the center lies on the negative y-axis,  then the equation of the circle is obtained
by replacing r by r in Eq. (6) and is (Fig. 10)

2 sin .r a  

Problem Find the equations of the circles passing through origin and having radius and
center (in polar coordinates) as below:
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(ii)   Radius :   2 Center : (2, / 2)

(iii)   Radius :   1/2 Center : ( 1/ 2, 0)

(iv)   Radius :   1 Center : ( 1, / 2)
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(ii) If the circle of radius a is centered at  00 ,r , then using Law of Cosines to the
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Answer
(i) 6cosr (ii) 4sinr (iii) cos r (iv) 2sin r

Exercises
Find the polar equations for the circles in Exercises 7-10. Sketch each circle in the
coordinate plane and label it with both its Cartesian and polar equations.

1. 2 2( 6) 36x y   2. 2 2( 5) 25x y   3. 2 2( 2) 4x y  

4. 2 2( 7) 49x y   5. 2 216 0x x y   6. 2 2 4 0
3

x y y  

7. 2 22 0x x y   8. 2 2 0x y y  

ELIPSES, PARABOLAS, AND HYPERBOLAS
To find polar equation for ellipses, parabolas, and hyperbolas, we place one focus at

the origin and the corresponding directrix to the right of the origin along the vertical line
x k . This makes

PF r

and

cosPD k FB k r     .

The conic’s focus – directrix equation PF e PD  then becomes
( cos )r e k r  

which can be solved for r to obtain

1 cos
ker
e 




.

The equation

1 cos
ker
e 




…(8)

represents an ellipse if 0 1e  , a parabola if 1e  and a hyperbola if 1e  .

Problem Using Eq.(8), we give equations of some conics:
1 :
3
e ellipse

3 cos



kr


1:e parabola
1 cos

kr





3:e hyperbola 3
1 3cos



kr


Different equations for conic sections with the change of directrix
There are variations of Eq. (8) from time to time, depending on the location of the

directrix.
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1. If the directrix is the line x k  to the left of the origin (the origin is still a focus) (e
replace Eq.(8) by

1 cos
ker
e 




…(9)

the denominator now has a (  ) instead of a (+).

2. If the directrix is the line y k (the origin is still a focus) , we replace Eq.(8) by

1 sin



ker
e

, …(10)

the equation with sine in them instead of cosine.

3. If the directrix is the line  y k (the origin is still a focus) , we replace Eq. (8) by

1 sin



ker
e

…(11)

the equation with sine in them instead of cosine and a (  ) instead of a (+).

Problem Find the directrix of the parabola
25

10 10cos
r





Answer We divide the numerator and denominator by 10 to put the equation in
standard form:

5/ 2
1 cos

r





.

This is the equation

1 cos
ker
e 




with 5/ 2 and 1k e  . Hence the equation of the directrix is 5/ 2x  .

Ellipse with Eccentricity e and Semimajor Axis a
From the ellipse diagram in we see that k is related to the eccentricity e and the
semimajor axis a by the equation

ak ea
e
 

From this, we find that 2(1 )ke a e  . Replacing ke in Eq. (18) by 2(1 )a e gives the
standard polar equation for an ellipse.

The polar equation of an ellipse with eccentricity e and semimajor axis a is given by
2(1 )

1 cos
a e

r
e 



…(13)

Notice that when 0e  , equation (13) becomes r a , which represents a circle.
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Eq. (13) is the starting point for calculating planetary orbits.

Problem Find a polar equation for an ellipse with semimajor axis 39.44 AU
(astronomical units) and eccentricity 0.25. This is the approximate size of Pluto's orbit
around the sun.

Answer

We use Eq. (13) with 39.44a  and 0.25e  to find
239.44(1 (0.25) ) 147.9 .

1 0.25cos 4 cos
 

 
r

 

At its point of closest approach (perihelion), Pluto is
147.9 29.58AU
4 1

 


r

from the sun.  At its most distant point (aphelion), Pluto is
147.9 49.3AU
4 1

 


r

from the sun .

Problem Find the distance from one focus of the ellipse in Problem 6 to the associated
directrix.

Answer k is related to the eccentricity e and the semimajor axis a by the equation

. ak ea
e

…(14)

Here 39.44a  and 0.25e  ,  so that

139.44 0.25 147.9AU
0.25

k     
 

Exercises

Exercises 1-4 give the eccentricities of conic sections with one focus at the origin, along
with the directrix corresponding to that focus. Find a polar equation for each conic
section.

1. 1, 2e y  2. 2, 4e x  3. 1/ 4, 2e x   4. 1/ 3, 6e y 

Sketch the parabolas and ellipses in Exercises 5-8. Include the directrix that corresponds
to the focus at the origin. Label the vertices with appropriate polar coordinates. Label the
centers of the ellipses as well.

5. 6
2 cos

r





6. 4
2 2cos

r





7. 12
3 3sin

r





8. 4
2 sin

r





Exercises 1-4 give the eccentricities of conic sections with one focus at the origin, along
with the directrix corresponding to that focus. Find a polar equation for each conic
section.
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1. 1, 2e x  2. 5, 6e y   3. 1/ 2, 1e x  4. 1/ 5, 10e y  

Sketch the parabolas and ellipses in Exercises 5-8. Include the directrix that corresponds
to the focus at the origin. Label the vertices with appropriate polar coordinates. Label the
centers of the ellipses as well.

5. 1
1 cos

r





6. 25
10 5cos

r





7. 400
16 8sin

r





8. 8
2 2sin

r





Sketch the regions defined by the inequalities in Exercise 9-10

9. 0 2cosr   10. 3cos 0r  

CHAPTER.22  AREA OF POLAR CURVES IN THE PLANE

The area of the sector enclosed by the curve r = (θ) and the two radii vectors θ = 
and θ = β is given by

21
2

A r d




  .

This is the integral of the area differential
21 .

2
dA r d

Problem Find the area of the curve cos , .  r a b a b

Answer
The required area

 
2 2 22

0 0

1 1 cos
2 2

r d a b d
 

     

 2 2 2

0

1 2 cos cos
2

a ab b d


    

 2 2

0

1 1 cos 22 cos
2 2

a ab b d
     

 
2 22

22

0
00

1 sin 22 sin
2 2 4

b ba ab
 

  
               

.
2

2 









b
a

Problem Find the area enclosed by the curve r2 = a2 cos 2θ.
Answer

The given curve is called the Lemniscate of Bernoulli.
Since replacing r by r and  by  do not alter the equation, the given curve is

symmetrical about the initial line and the line given by .2
  Hence, to draw the entire
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curve we need to draw the portion of the curve between 0 and 2
  and then apply

the symmetries.

The given equation can be written as
2

2
cos2 .r

a
 Since

2

2

a

r is always non-negative,

02cos  implies 220   implies 40   .

Hence, in the region 0 and 2
  , the curve has real portion between 0 and

4
  and no real portion between 4

  and 2
  .  When  varies from 0 to 4

  , r
varies from a to 0.  Using symmetry about the initial line, we can say that there is a loop
between  4( , ) 0,r    and    

4,0,  r .  Again, using symmetry about 2
  , there is also

one loop to the left of .2
  Hence, there are two loops for the given curve.

Hence, the required area is the area enclosed by the two loops.

Now the area enclosed by one loop of the curve (where  varies from
4
  to

4
 

, is given by
/ 4 2/ 4 / 42 2 2

4 4
4

1 1 1 sin 2cos 2 .
2 2 2 2 2

ar d a d a
 

  

  
  

       

So the required area is two times the area of one loop
2

22 .
2
a a  

Problem Find the area of a loop of the curve sin 3r a  .
Answer

Area of one loop
/ 3 / 32 2 2

0 0

1 1 sin 3
2 2

r d a d
 

    
/ 3 2/ 32 2

0 0

1 cos6 sin 6 .
2 2 4 6 12

aa ad
          

Exercises Set A
1. Find the area of the circle sin 2 .r a 

2. Find the area of the curve 3 2cos .r  

3. Find the area enclosed within the curve 4(1 cos ).r  

4. Show   that      the   area    of    one loop of the three leaved rose cos3r a  is
2

.
12
a

5. Find the area of the cardioid  1 cosr a   .

Find the areas of the regions in Exercises 1-3
6. Inside the oval limacon 4 2cosr  

7. Inside one leaf of the four- leaved rose cos 2r 

8. Inside one loop of the lemniscate 2 4sin 2r 

Find the areas of the regions in Exercises 9-11
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9. Inside the cardioid (1 cos )r a  

10. Inside the lemniscate 2 22 cos 2 , 0r a a 

11. Inside the six- leaved rose 2 2sin3r 

Area between two polar curves
Now we give a formula to find the area of a region like the one in Fig.8   which lies

between two polar curves 1 1 2 2( ) and ( )r r r r   from to     .
Area of the region

1 20 ( ) ( ),r r r         is given by

 2 2 2 2
2 1 2 1

1 1 1
2 2 2

A r d r d r r d
  

  
        . …(1)

Problem Find the area of the region that lies inside the circle 1r  and outside the
cardioid 1 cosr   .
Answer

We sketch the region to determine its boundaries and find the limits of integration.
The outer curve is 2 1r  , the inner curve is 1 1 cosr   , and  runs from / 2 to / 2  . The
area, using Eq. (1), is

/ 2
2 2

2 1
/ 2

1 ( )
2

A r r d






 

/ 2
2 2

2 1
0

12 ( )
2

r r d


   , by symmetry

/ 2
2

0
(1 (1 2cos cos ))d


     

/ 2
2

0
(2cos cos )


    d

/ 2

0

1 2cos2cos
2

     
  d

/ 2

0

sin 22sin 2 .
2 4 4


         

Exercises
Find the areas of the regions in Exercises 1-5.
1. Shared by the circles 2cos and 2sin  r r

2. Shared by the circle 2r  and cardioid 2(1 cos )r  

3. Inside the lemniscate 2 6cos2r  and outside the circle 3r 

4. Inside the circle 2cosr   and  outside the circle 1r 

5. Inside the circle 6r  above the line 3cscr 

6. a) Find the area of the shaded region in Fig.9.
b) It looks as if the graph of tan , / 2 / 2r        , could be asymptotic to the lines

1 and 1x x   . Is it? Give reasons for your answer.
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7. Show   that the area of the region included between the  cardioids  cos1 ar and

 1 cosr a   is  
.

2

83 2a

Find the areas of the regions in Exercises 4- 8
1. Shared by the circles 1 and 2sinr r  

2. Shared by the cardioids 2(1 cos ) r and 2(1 cos )r  

3. Inside the circle 3 cosr a  and outside the cardioid (1 cos ), 0r a a  

4. a) Inside the outer loop of the limacon 2cos 1r   (Ref. Fig. 6)
b) Inside the outer loop and outside the inner loop of the limacon 2cos 1r   .

5. Inside the lemniscate 2 6cos2r  to the right of the line (3/ 2)secr  .

CHAPTER.23 LENGTH OF POLAR CURVES
Length of  plane curves in polar co-ordinates

If ( )r f has continuous first derivative for     and if the point ( , )P r traces
the curve ( )r f exactly once as  runs from to ,  then the length of the curve is

2
2 dr

L r d
d







    
 

Problem Find the length of the perimeter of the cardioid  1 cosr a   .

Answer

The curve is symmetrical about the initial line, since the change of  by  does not
alter the given equation.

Hence the perimeter of the given curve is twice the length of the arc of the curve
lying above the initial line.

Above the initial line, the arc varies from  = 0  to   and hence limits of
integration are  = 0 and   .
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Hence the required perimeter is given by

    
2

2 22

0
2 θ 2 1 cos sin θ

θ
dr

s r d a a d
d

 


         

   ,since .sin


a
d

dr


  .8
2

cos8θ
2

sin22θcos122
000

2 aadada 



 

 


Problem In an equiangular spiral cot ,r ae  prove that







  1coslogcot 

a

s ,

where s is the length of the arc measured from  =  0 to any arbitrary point.

Answer

Differentiating the given equation with respect to θ , we obtain

 cotcotae
dθ
dr


Hence

 







θθ
dθaedθ

dθ
dr

rs
0

2cot

0

2
2 cot1 
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  1coslogcot 
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Exercises
 Find the perimeter of the cardioid  1 cosr a  

 Find the perimeter of the circle cos .r a  [The given circle is a circle having
radius ,

2
a passing through the origin, and centered on the positive x-axis

 Show that  the perimeter of the cardioid  4 1 cosr   is 32 .

Find the lengths of the following curves
 The spiral 2 , 0 5r    

 The cardioid 1 cosr  

 The parabolic segment 6 /(1 cos ), 0 / 2r      

 The curve 3cos ( / 3), 0 / 4r     
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 The curve 1 cos2 , 0 2r      

 The spiral / 2, 0r e    

 The curve 2sin ( / 2), 0 , 0r a a     

 The parabolic segment 2 /(1 cos ), / 2r       

 The curve 1 sin 2 , 0 2r      

Calculate the circumference of the following circles ( 0)a 

 r a

 cosr a 

 sinr a 

CHAPTER.24 AREA OF SURFACE OF REVOLUTION
Area of surface of revolution in polar coordinates
If ( )r f  has a continuous first derivative for 1 2    and if the point ( , )P r  traces the
curve ( )r f  exactly once as  runs from  to  , then the areas of the surfaces
generated by revolving the curve about the x- and y- axes are given by the following
formlas:

1. Revolution about the x- axis ( 0)y  :
2

22 sin
dr

S r θ r dθ
dθ




     

 
…(1)

2.  Revolution about the y- axis ( 0)x  :
2

22 cos drS r r d
d




  


    
 

…(2)

Problem Find the area of the surface generated by revolving the right- hand loop of the
lemniscate 2 cos2r  about the y  axis.

Answer We sketch the loop to determine the limits of integration. The point ( , )P r  traces
the curve once, counterclockwise as  runs from / 4 to / 4  , so these are values we
take for and  . Hence using Eq.(2),
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2 24

2 4

4

2 cos 2 cos ,


         
    








     
 

dr drS r r d r r d
d d

as
2

2     
drr r d

2
4      

drr r d

Evaluation of
2

42cos :drr r
d




   
 

Differentiating 2 cos 2 ,r  with respect to , we obtain

2 2sin 2drr
d



   sin 2drr

d



  

2

2sin 2   
 




drr
d

Also,  24 2 2cos 2r r   .


2

4 2 2cos 2 sin 2 1drr r
d

 


     
 

and hence
/ 4

/ 4
2 cos (1)


 




  S d

  / 4

/42 sin


  

2 22 2 2
2 2
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Exercises

Find the areas of the surfaces generated by revolving the curves in Exercises 1-4 about
the indicated axes.

1. cos 2 , 0 / 4,r y      axis

2. 2 cos 2 ,r x  axis

3. / 22 , 0 / 2,r e x      axis

4. 2 cos , 0,r a a y   axis

5.  Show that  the  area of the surface of the solid formed by the revolution of the

cardioids  1 cosr a   about its initial line is 2

5

32
a .

6.  Show that  the  area of the surface of the solid formed by the revolution of the

lemnisacate 2 2 cos2r a  about its initial line is 211 .
2

a  
 

******


