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A Special Message to
the Utterly Confused
Calculus Student
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

Our message to the utterly confused calculus student is very simple: You don’t
have to be confused anymore.

We were once confused calculus students. We aren’t confused anymore. We
have taught many utterly confused calculus students both in formal class set-
tings and one-on-one. All this experience has taught us what causes confusion
in calculus and how to eliminate that confusion. The topics we discuss here are
aimed right at the heart of those topics that we know cause the most trouble.
Follow us through this book, and you won’t be confused anymore either. 

Anyone who has taught calculus will tell you that there are two problem areas
that prevent students from learning the subject. The first problem is a lack of
algebra skills or perhaps a lack of confidence in applying recently learned
algebra skills. We attack this problem two ways. One of the largest chapters in
this book is the one devoted to a review of the algebra skills you need to be
successful in working calculus problems. Don’t pass by this chapter. There are
insights for even those who consider themselves good at algebra. When we do
a problem we take you through the steps, the calculus steps and all those pesky

Copyright © 2007 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



little algebra steps, tricks some might call them. When we give an example it is
a complete presentation. Not only do we do the problem completely but also
we explain along the way why things are done a certain way.

The second problem of the utterly confused calculus student is the inability to
set up the problems. In most problems the calculus is easy, the algebra possibly
tedious, but writing the problem in mathematical statements the most difficult
step of all. Translating a word problem into a math problem (words to equa-
tion) is not easy. We spend time in the problems showing you how to make word
sentences into mathematical equations. Where there are patterns to problems
we point them out so when you see similar problems, on tests perhaps, you will
remember how to do them.

Our message to utterly confused calculus students is simple. You don’t have to
be confused anymore. We have been there, done that, know what it takes to
remove the confusion, and have written it all down for you.

xii A SPECIAL MESSAGE



xiii

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ 

How to Study Calculus
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

Calculus courses are different from most courses in other disciplines. One big
difference is in testing. There is very little writing in a calculus test. There is a
lot of mathematical manipulation.

In many disciplines you learn the material by reading and listening and demon-
strate mastery of that material by writing about it. In mathematics there is some
reading, and some listening, but demonstrating mastery of the material is by
doing problems.

For example there is a great deal of reading in a history course, but mastery of
the material is demonstrated by writing about history. In your calculus course
there should be a lot of problem solving with mastery of the material demon-
strated by doing problems.

In your calculus course, practicing working potential problems is essential to
success on the tests. Practicing problems, not just reading them but actually
writing them down, may be the only way for you to achieve the most modest of
success on a calculus test.

To succeed on your calculus tests you need to do three things, PROBLEMS,
PROBLEMS, and PROBLEMS. Practice doing problems typical of what you
expect on the exam and you will do well on that exam. This book contains
explanations of how to do many problems that we have found to be the most
confusing to our students. Understanding these problems will help you to
understand calculus and do well on the exams.
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General Guidelines for Effective

Calculus Study

1. If at all possible avoid last minute cramming. It is inefficient.

2. Concentrate your time on your best estimate of those problems that are
going to be on the tests.

3. Review your lecture notes regularly, not just before the test.

4. Keep up. Do the homework regularly. Watching your instructor do a prob-
lem that you have not even attempted is not efficient.

5. Taking a course is not a spectator event. Try the problems, get confused if that’s
what it takes, but don’t expect to absorb calculus. What you absorb doesn’t mat-
ter on the test. It is what comes off the end of your pencil that counts.

6. Consider starting an informal study group. Pick people to study with who
study and don’t whine. When you study with someone agree to stick to the
topic and help one other.

Preparing for Tests

1. Expect problems similar to the ones done in class. Practice doing them.
Don’t just read the solutions.

2. Look for modifications of problems discussed in class.

3. If old tests are available, work the problems.

4. Make sure there are no little mathematical “tricks” that will cause you prob-
lems on the test.

Test Taking Strategies

1. Avoid prolonged contact with fellow students just before the test. The nerv-
ous tension, frustration, and defeatism expressed by fellow students are not
for you.

2. Decide whether to do the problems in order or look over the entire test and
do the easiest first. This is a personal preference. Do what works best for you.

3. Know where you are timewise during the test. 

4. Do the problems as neatly as you can.

5. Ask yourself if an answer is reasonable. If a return on investment answer is
0.03%, it is probably wrong.

xiv HOW TO STUDY CALCULUS
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Preface
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

The purpose of this book is to present basic calculus concepts and show you
how to do the problems. The emphasis is on problems with the concepts devel-
oped within the context of the problems. In this way the development of the
calculus comes about as a means of solving problems. Another advantage of
this approach is that performance in a calculus course is measured by your
ability to do problems. We emphasize problems.

This book is intended as a supplement in your formal study and application of
calculus. It is not intended to be a complete coverage of all the topics you may
encounter in your calculus course. We have identified those topics that cause
the most confusion among students and have concentrated on those topics.
Skill development in translating words to equations and attention to algebraic
manipulation are emphasized.

This book is intended for the nonengineering calculus student. Those studying
calculus for scientists and engineers may also benefit from this book  Concepts
are discussed but the main thrust of the book is to show you how to solve applied
problems. We have used problems from business, medicine, finance, economics,
chemistry, sociology, physics, and health and environmental sciences. All the
problems are at a level understandable to those in different disciplines.

This book should also serve as a reference to those already working in the var-
ious disciplines where calculus is employed. If you encounter calculus occa-
sionally and need a simple reference that will explain how problems are done
this book should be a help to you. 

xv
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It is the sincere desire of the authors that this book help you to better understand
calculus concepts and be able to work the associated problems. We would like to
thank the many students who have contributed to this work, many of whom
started out utterly confused, by offering suggestions for improvements. Also we
would like to thank the people at McGraw-Hill who have confidence in our
approach to teaching calculus and support this second edition.
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CHAPTER 1

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

MATHEMATICAL
BACKGROUND
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

You should read this chapter if you need to review or you need to learn about

➜Methods of solving quadratic equations

➜The binomial expansion

➜Trigonometric functions––right angle trig and graphs

➜The various coordinate systems

➜Basics of logarithms and exponents

➜Graphing algebraic and trigonometric functions

1
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Some of the topics may be familiar to you, while others may not. Depending on
the mathematical level of your course and your mathematical background,
some topics may not be of interest to you.

Each topic is covered in sufficient depth to allow you to perform the mathe-
matical manipulations necessary for a particular problem without getting
bogged down in lengthy derivations. The explanations are, of necessity, brief. If
you are totally unfamiliar with a topic it may be necessary for you to consult an
algebra or calculus text for a more thorough explanation.

The most efficient use of this chapter is for you to do a brief review of the top-
ics, spending time on those sections that are unfamiliar to you and that you know
you will need in your course, and then refer to specific topics as they are encoun-
tered in the solution to problems. Even if you are familiar with a topic review
might “fill in the gaps” or give you a better insight into certain mathematical
operations. With this reference you should be able to perform all the algebraic
operations necessary to complete the problems in your calculus course.

1-1 Solving Equations
The simplest equations to solve are the linear equations of the form ax � b � 0,
which have as their solution . The next most complicated equations
are the quadratics. The simplest  quadratic is the type that can be solved by tak-
ing square roots directly.

Example 1-1 Solve for x: .

Solution: Divide by 4, and then take the square root of both sides.

Both plus and minus values are legitimate solutions. The reality of the problem
producing the equation may dictate that one of the solutions be discarded.

The next complication in quadratic equations is the factorable equation.

Example 1-2 Solve by factoring.

Solution: The solutions, the values
of that make each parenthesis equal to zero, and satisfy the factored equation,
are and .x � �2x � 3

x
(x � 3)(x � 2) � 01x2 � x � 6 � 0

x2 � x � 6 � 0

4x2

4 �
36
4 1 x2 � 9 1 x � �3

4x2 � 36

x � �b/a

2 CALCULUS FOR THE UTTERLY CONFUSED



If the quadratic cannot be solved by factoring, the most convenient solution is by
quadratic formula, a general formula for solution of any quadratic equation in
the form . The solution according to the quadratic formula is 

Problems in your course should rarely produce square roots of negative num-
bers. If your solution to a quadratic produces any square roots of negative
numbers, you are probably doing something wrong in the problem.

Example 1-3 Solve by using the quadratic formula.

Solution: Substitute the constants into the formula and perform the opera-
tions. Writing above the equation you are solving helps in
identifying the constants and keeping track of the algebraic signs.

The quadratic formula comes from a generalized solution to quadratics known
as “completing the square.” Completing the square is rarely used in solving
quadratics. The formula is much easier. It is, however, used in certain calculus
problems, so an explanation of the technique is appropriate. A completing the
square approach is also used in graphing certain functions.

The basic procedure for solving by completing the square is to make the equation
a perfect square, much as was done with the simple example, . Work
with the and x coefficients so as to make a perfect square of both sides of the
equation and then solve by direct square root. This is best seen by example.

Look first at the equation , which can be factored and has solu-
tions of �5 and �1, to see how completing the square produces these solutions.

Example 1-4 Solve by completing the square.

Solution: The equation can be made into a perfect square by adding 4 to both
sides of the equation to read or , which, upon
direct square root, yields , producing solutions �5 and �1.x � 3 � �2

(x � 3)2 � 4x2 � 6x � 9 � 4

x2 � 6x � 5 � 0

x2 � 6x � 5 � 0

x2
4x2 � 36

x �
�b � 2b2 � 4ac

2a
�

�5 � 225 � 4(1)(3)
2(1)

�
5 � 213

2 � 4.30, 0.70

ax2 � bx � c � 0
x2 � 5x � 3 � 0

ax2 � bx � c � 0

x2 � 5x � 3 � 0

x �
�b � 2b2 � 4ac

2a

ax2 � bx � c � 0

Mathematical Background 3



As you can imagine the right combina-
tion of coefficients of and x can make
the problem awkward. Most calculus
problems involving completing the
square are not especially difficult. The
general procedure for completing the
square is the following:

• If necessary, divide to make the coef-
ficient of the term equal to 1.

• Move the constant term to the right
side of the equation.

• Take 1/2 of the x coefficient, square it,
and add to both sides of the equation.
This makes the left side a perfect
square and the right side a number.

• Write the left side as a perfect square
and take the square root of both sides
for the solution.

Example 1-5 Solve by completing the square.

Solution: Move the 1, the constant term, to the right side: . Add
1/2 of 4 (the coefficient of x) squared to both sides: x2 � 4x � 4 � 4 � 1. The
left side is a perfect square and the right side a number: . Take
square roots for the solutions: or .

Certain cubic equations such as can be solved directly producing the sin-
gle answer . Cubic equations with quadratic ( ) and linear (x) terms can
be solved by factoring (if possible) or approximated using graphical techniques.
Calculus will allow you to apply graphical techniques to solving cubics.

1-2 Binomial Expansions
Squaring is done so often that most would immediately write

. Cubing is not so familiar but easily accomplished by
multiplying by to obtain . 

There is a simple procedure for finding the power of . Envision a
string of s multiplied together . Notice that the first term has
coefficient 1 with a raised to the power, and the last term has coefficient
1 with b raised to the power. The terms in between contain a to progressivelynth

nth
(a � b)n(a � b)

(a � b)nth

a3 � 3a2b � 3ab2 � b3(a � b)(a2 � 2ab � b2)
(a � b)a2 � 2ab � b2

(a � b)

x2x � 2
x3 � 8

x � �2 � 23, � 2 � 23x � 2 � �23
(x � 2)2 � 3

x2 � 4x � �1

x2 � 4x � 1 � 0

x2

x2

4 CALCULUS FOR THE UTTERLY CONFUSED



decreasing powers, , and b to progressively increasing pow-
ers, 0, 1, 2, . . . The coefficients can be obtained from an array of numbers or
more conveniently from the binomial expansion or binomial theorem

The factorial notation may be new to you. The definitions are

0! � 1, 1! � 1, 2! � 2 ⋅ 1, 3! � 3 ⋅ 2 ⋅ 1, etc.

Use of the binomial expansion to verify is one of the suggested problems.

1-3 Trigonometry
The trigonometric relations can be defined in terms of right angle trigonometry
or through their functions. The basic trigonometric relations, as they relate to
right triangles, are shown in the box below.

(a � b)3

(a � b)n �
an

0!
�

nan�1b
1!

�
n(n � 1)an�2b2

2!
� c

n, n � 1, n � 2, . . .

Mathematical Background 5

Graphs of the trigonometric relations are shown in Fig. 1-1.

Fig. 1-1

tanq = b/a
cosq = a/c
sinq  = b/c Opposite (b)

side from
angle

Adjacent (a)
side to angle

Hypotenuse (c)

BASIC TRIGONOMETRIC FUNCTIONS

q

2p

2p

2p

tanq
sinq

cosq

p

p

p

q

q

q
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The tangent function is also defined in terms of sine and cosine:
.

Angles are measured in radians and degrees.
Radian measure is a pure number, the ratio of
arc length to radius to produce the desired
angle. Figure 1-2 shows the relationship of arc
length to radius to define the angle.

The relation between radians and degrees is .

Example 1-6 Convert rad to degrees and 270� to radians.

Solution: , ,

There are a large number of trigonometric identities that can be derived using
geometry and algebra. Several of the more common are in the following box:

270�
2p rad
360�

�
3p
2 rad � 4.7 rad

0.36 rad
360�

2p rad
� 20.6�

p

6
rad

360�
2p rad

� 30�

p/6 and 0.36

2p rad � 360�

tan u � sin u/cos u

1-4 Coordinate Systems
The standard two-dimensional coordinate system works well for most calculus
problems. In working problems in two dimensions do not hesitate to arrange
the coordinate system for your convenience. The x-coordinate does not have to
be horizontal and increasing to the right. It is best, however, to maintain the
x-y orientation. With the fingers of the right hand pointed in the direction of
x they should naturally curl in the direction of y. Positions in the standard right
angle coordinate system are given with two numbers. In a polar coordinate sys-
tem positions are given by a number and an angle. In Fig. 1-3 it is clear that any
point (x, y) can also be specified by ( ). r, u

Fig. 1-2

TRIGONOMETRIC IDENTITIES

a2 � b2 � c2 sin2q  � cos2q  � 1

sinq � cos(90° � q) cosq  � sin(90° � q)

sin(a � b) � sin a cos b � cos a sin b

cos(a � b) � cos a cos b  � sin a sin b

tan(a � b) �
tana � tanb

1 7 tana  tanb

tanu �
1

tan(90� � u)

s

r
q = s/r or s = rq q



Rather than moving distances in mutually perpendicular directions, the r and
locate points by moving a distance r from the origin along what would be the �x
direction, then rotating counterclockwise through an angle . The relationship
between rectangular and polar coordinates is also shown in Fig. 1-3.

Example 1-7 Find the polar coordinates for the point (3, 4).

Solution: and u � tan �1(4/3) � 53�r � 232 � 42 � 5

u

u

Mathematical Background 7

Example 1-8 Find the rectangular points for (3, 120°).

Solution: x � 3 cos 120° � �1.5 and y � 3 sin 120° � 2.6

As a check, you can verify that (�1.5)2 � 2.62 � 32.

Three-dimensional coordinate systems are usually right handed. In Fig. 1-4
imagine your right hand positioned with fingers extended in the �x direction
closing naturally so that your fingers rotate into the direction of the �y axis
while your thumb points in the direction of the �z axis.  It is this rotation of

Fig. 1-3

Quick Tip

Be sure that you understand how to calculate q � tan−1(4/3) � 53� on your cal-

culator. This is not 1/tan(4/3). This is the inverse tangent. Instead of the ratio

of two sides of a right triangle (the regular tangent function), the inverse tangent

does the opposite: it calculates the angle from a number, the ratio of the two

sides of the triangle. On most calculators you need to hit a 2nd function key or

”inv” key to perform this ”inverse” operation.

x

y

q  = tan–1 (y/x)

x = r cos q 

y = r sin q

x2 + y2r =
y = r sin q

x = r cos q
q



x into y to produce z with the right hand that
specifies a right-handed coordinate system.
Points in the three-dimensional system are
specified with three numbers (x, y, z).

For certain types of problems, locating a point
in space is more convenient with a cylindrical
coordinate system, as shown in Fig. 1-5. Notice
that this is also a right-handed coordinate sys-
tem with the central axis of the cylinder as the
z-axis.

8 CALCULUS FOR THE UTTERLY CONFUSED

A point is located by specifying a radius measured out from the origin in the �x
direction, an angle in the x-y plane measured from the x-axis, and a height
above the x-y plane. Thus the coordinates in the cylindrical system are .
The relation of these coordinates to x, y, z is given in Fig. 1-5.

1-5 Logarithms and Exponents
Logarithms and exponents are used to describe several physical phenomena.
The exponential function is a unique one with the general shape shown
in Fig. 1-6. 

y � ax

(r, u, z)

Fig. 1-5

Fig. 1-6

x

z

y

Fig. 1-4

x

y

z

z

r
q  = tan−1(y/x)

sinq
cosq

y2x2r

ry

rx

+=

=
=

q

x

y
y = axy = a-x



This exponential equation cannot be solved for x using normal alge-
braic techniques. The solution to is one of the definitions of the loga-
rithmic function:

The language of exponents and logarithms is much the same. In exponential
functions we say “a is the base raised to the power x.” In logarithm functions
we say “x is the logarithm to the base a of y.” The laws for the manipulation of
exponents and logarithms are similar. The manipulative rules for exponents and
logarithms are summarized in the box below.

The term “log” is usually used to mean logarithms to the base 10, while “ln” is
used to mean logarithms to the base e. The terms “natural” (for base e) and
“common” (for base 10) are frequently used.

y � ax 1 x � loga y

y � ax
y � ax
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Example 1-9 Convert the exponential statement to a logarithmic
statement.

Solution: is the same statement as x � logay, so is 2 �
log10 100.

Example 1-10 Convert the exponential statement to a (natural) log-
arithmic statement.

Solution: so

Example 1-11 Convert log 2 � 0.301 to an exponential statement.

Solution: 100.301 � 2

ln 7.4 � 2e2 � 7.4

e2 � 7.4

100 � 102y � ax

100 � 102

LAWS OF EXPONENTS AND LOGARITHMS

(ax)y � axy y loga x � loga xy

axay � ax�y log a x � log a y � log a xy

loga x � loga y � loga
x
y

ax

ay � ax�y



Example 1-12 Find log(2.1)(4.3)1.6.

Solution: On your hand calculator raise 4.3 to the 1.6 power and multiply this
result by 2.1. Now take the log to obtain 1.34.

Second Solution: Applying the laws for the manipulation of logarithms write:

log(2.1)(4.3)1.6 � log 2.1 � log 4.31.6 � log 2.1 � 1.6 log 4.3 � 0.32 � 1.01 � 1.33

(Note the round-off error in this second solution.) This second solution is rarely
used for numbers. It is, however, used in solving equations.

Example 1-13 Solve .

Solution: Apply a manipulative rule for logarithms: or
.

Now switch to exponentials: x � e3.31 � 27.4

3.31 � ln x
4 � ln 2 � ln x

4 � ln 2x
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Quick Tip

A very convenient phrase to remember in working with logarithms is “a logarithm

is an exponent.” If the logarithm of something is a number or an expression, then

that number or expression is the exponent of the base of the logarithm.

1-6 Functions and Graphs
Functions can be viewed as a series of mathematical orders. The typical func-
tion is written starting with y, or , read as “f of x,” short for function of x.
The mathematical function is a series of orders or
operations to be performed on an as yet to be specified value of x. This set of
orders is: square x, add 2 times x, and add 1. The operations specified in the
function can be performed on individual values of x or graphed to show a con-
tinuous “function.” It is the graphing that is most encountered in calculus. We’ll
look at a variety of algebraic functions eventually leading into the concept of
the limit.

y or f(x) � x2 � 2x � 1
f(x)



Example 1-14 Perform the functions on the number 2 or
find .

Solution: Performing the operations on the specified function

In visualizing problems it is very helpful to know what certain functions look
like. You should review the functions described in this section until you can
look at a function and picture “in your mind’s eye” what it looks like. This skill
will prove valuable to you as you progress through your calculus course.

Linear

The linear algebraic function (see Fig. 1-7) is
, where m is the slope of the straight

line and b is the intercept, the point where the line
crosses the y-axis. This is not the only form for the
linear function, but it is the one that is used in
graphing and is the one most easily visualized.

Example 1-15 Graph the function .

Solution: This is a straight line, and it is in the cor-
rect form for graphing. Because the slope is posi-
tive, the curve rises with increasing x. The coeffi-
cient 2 tells you that the curve is steeper than a
slope 1, (which has a 45� angle). The constant �3 is
the intercept, the point where the line crosses the y-
axis. (See Fig. 1-8.)

You should go through this little visualization exer-
cise with every function you graph. Knowing the
general shape of the curve makes graphing much
easier. With a little experience you should look at
this function and immediately visualize that (1) it is a straight line (first power),
(2) it has a positive slope greater than 1 so it is a rather steep line rising to the
right, and (3) the constant term means that the line crosses the y-axis at �3.

Knowing generally what the line looks like, place the first (easiest) point at x � 0,
y � �3. Again knowing that the line rises to the right, pick x � 2, y � 1, and as
a check x � 3, y � 3.

y � 2x � 3

y � mx � b

f(2) � 23 � 3(2) � 7 � 8 � 6 � 7 � 9

f(2)
f(x) � x3 � 3x � 7
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Fig. 1-7

Fig. 1-8

y

x

b

y = mx + b

x

y

y = 2x −3



If you are not familiar with visualizing the function before you start calculating
points, graph a few straight lines, but go through the exercise outlined above
before you place any points on the graph.

Quadratics

The next most complicated function is the quadratic
(see Fig. 1-9), and the simplest quadratic is , a
curve of increasing slope, symmetric about the y-axis
(y has the same value for x � � or �1, � or �2, etc.).
This symmetry property is very useful in graphing.
Quadratics are also called parabolas. Adding a con-
stant to obtain serves to move the curve
up or down the y-axis in the same way the constant
term moves the straight line up and down the y-axis.

Example 1-16 Graph .

Solution: First note that the curve is a parabola with the symmetry attendant
to parabolas and it is moved down on the y-axis by the �3. The point

is the key point, being the apex or lowest point for the curve,
and the defining point for the symmetry line, which is the y-axis. Now, knowing
the general shape of the curve add the point . This is sufficient
information to construct the graph as shown in Fig. 1-9. Further points can be
added if necessary.

Adding a constant a in front of the x2 either sharpens (a > 1) or flattens (a < 1)
the graph. A negative a value causes the curve to open down.

Example 1-17 Graph .

Solution: Looking at the function, note that it is
a parabola ( term), it is flatter than normal (0.5
coefficient), it opens up (positive coefficient of the

term), and it is moved up the axis one unit. Now
put in some numbers: is the apex,
and the y-axis is the symmetry line. Add the points

and sketch the graph (Fig. 1-10). 

Example 1-18 Graph .

Solution: Look at the function and verify the following statement. This is a
parabola that opens down, is sharper than normal, and is displaced two units in

y � �2x2 � 2

x � �2, y � 3

x � 0, y � 1
x2

x2

y � 0.5x2 � 1

x � �2, y � 1

x � 0, y � �3

y � x2 � 3

y � x2 � c

y � x2
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Fig. 1-9

x

y

y = x2

y = x2 − 3

Fig. 1-10

x

− 22 2−= xy

5.0 2 + 1= xy

y



the negative direction. Put in the two points and and verify the
graph shown in Fig. 1-10.

Adding a linear term, a constant times x, so that the function has the form
produces the most complicated quadratic. The addition of

this constant term moves the curve both up and down and sideways. If the
quadratic function is factorable then the places where it crosses the x-axis are
obtained directly from the factored form.

Example 1-19 Graph the function .

Solution: This is a parabola that opens up, and is displaced up or down and
sideways. This quadratic is factorable to . The values 
and make , so these are the points where the curve crosses the
x-axis. Place these points on the graph.

Now here is where the symmetry property of
parabolas is used. Because of the symmetry,
the parabola must be symmetric about a line
halfway between and , or about
the line . The apex of the parabola is
on this line so substitute to find the
appropriate value of y: f(�1) � (�1�4)
(�1�2) � �9. These three points are suffi-
cient to sketch the curve (see Fig. 1-11).

Before moving on to the graphing of quadrat-
ics that are not factorable there is one other
quadratic that is rather simple yet it illustrates the method necessary for rapid
graphing of nonfactorable quadratics.

Example 1-20 Graph .

Solution: Notice in Fig. 1-12 that the right side of
this equation is a perfect square and the equation can
be written as . The apex of the curve is
at , and any variation of x from �2 makes y
positive. And the parabola is symmetric about the
line . If or , . If or

, . This is sufficient information to
sketch the curve. Notice, however, in the second solu-
tion an even easier means for graphing the function.

y � 4x � �4
x � 0y � 1x � �3x � �1x � �2

x � �2
y � (x � 2)2

y � x2 � 4x � 4

x � �1
x � �1

x � �4x � 2

y � 0x � �4
x � 2y � (x � 4)(x � 2)

y � f(x) � x2 � 2x � 8

y � ax2 � bx � c

x � �1x � 0
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Fig. 1-12

Fig. 1-11

x

y

y x= x2 + 2 − 8

y x= +( (x − 2)4)

y = (x + 2)2

x

y
Y

x = −2



Second Solution: The curve can be written in the form if is defined
as . At , and the line effectively defines a new
axis. Call it the Y-axis. This is the axis of symmetry determined in the previous
solution. Drawing in the new axis allows graphing of the simple equation

about this new axis.y � X 2

x � �2X � 0x � �2X � x � 2
Xy � X 2
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Example 1-21 Graph .

Solution: Based on experience with the
previous problem subtract 2 from both sides
to at least get the right side a perfect square:
y � 2 � x2 � 6x � 9 � (x � 3)2. This form of
the equation suggests the definitions

and , so that the
equation reads . This is a parabola
of standard shape on the new coordinate sys-
tem with origin at . The new coordinate
axes are the lines and . This
rather formidable looking function can now be drawn quite easily with the new
coordinate axes. (See Fig. 1-13.)

The key step in getting started on Example 1-21 is recognizing that subtracting 2
from both sides makes a perfect square on the right. This step is not always obvi-
ous, so we need a method of converting the right-hand side into a perfect square.
This method is a variation of the “completing the square” technique for solving
quadratic equations. If you are not very familiar with completing the square (this
should include nearly everyone) go back in this chapter and review the process
before going on. Now that you have “completing the square” clearly in your mind
we’ll graph a nonfactorable quadratic with a procedure that always works.

Example 1-22 Graph .

Solution: 1. Move the constant to the left side of the equation: y � 7 � x2 � 4x.
Next, determine what will make the right-hand side a perfect square. In this case

y � x2 � 4x � 7

y � 2x � 3
(3,2)

Y � X 2
X � x � 3Y � y � 2

y � x2 � 6x � 11

Pattern

The previous problem and the following problem illustrate the progression of

perfect square to completing the square approaches to graphing quadratics. This

is a valuable time-saving method of graphing.

Fig. 1-13

x

y

X

Y

y = x -  6x + 112

Y = X 2

y = 2

x = 3



�4 makes a perfect square on the right so add
this to both sides: or

.

2. Now, make the shift in axes with the defi-
nitions and . The origin
of the “new” coordinate axes is (�2,3).
Determining the origin from these defining
equations helps to prevent scrambling the
(�2,3) and getting the origin in the wrong
place. The values (�2,3) make X and Y zero
and this is the apex of the curve on the
new coordinate axes.

3. Graph the curve as shown in Fig. 1-14.

Higher Power Curves

The graphing of cubic and higher power curves
requires techniques you will learn in your calculus
course. There are, however, some features of higher
power curves that can be learned from an “algebraic”
look at the curves.

The simple curves for and are shown
in Fig. 1-15. Adding a constant term to either of these
curves serves to move them up or down on the y-axis
the same as it does for a quadratic or straight line.
Cubics plus a constant are relatively easy to sketch.
Adding a quadratic or linear term adds complications
that are almost always easiest handled by learning the
calculus necessary to help you graph the curve. If a
curve contains an term, this term will eventually
predominate for sufficiently large x.

Operationally, this means that if you have an expression
y � x3 � ()x2 � ()x � (), while there may be consider-
able gyration of the curve near the origin, for large (pos-
itive or negative) x the curve will eventually take the shape shown in Fig. 1-15.

The same is true for other higher power curves. The curve is similar in
shape to , it just rises more rapidly. The addition of other (lower than 4)
power terms again may add some interesting twists to the curve but for large x
it will eventually rise sharply. 

y � x2
y � x4

x3

y � �x3y � x3

Y � X 2

X � x � 2Y � y � 3

y � 3 � (x � 2)2
y � 3 � x2 � 4x � 4
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Fig. 1-15

Fig. 1-14
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1-7 Conics
The next general category of curves is called conics, because they have shapes
generated by passing a plane through a cone. They contain x and y terms to the
second power. The simplest of these curves is generated with and equal to
a constant. More complicated curves have positive coefficients for these terms,
and the most complicated conics have positive and negative coefficients.

Circles

Circles are functions in the form 
with the constant written in what turns out to be
a convenient form, . The curve

is composed of a collection of points
in the x-y plane whose squares equal . Look at
Fig. 1-16 and note that for each point that
satisfies the equation, a right triangle can be con-
structed with sides x, y, and r, and the
Pythagorean theorem defines the relationship

. A circle is a collection of points,
equal distance from a point called the center.

Example 1-23 Graph .

Solution: Look at the function and recognize that it
is a circle. It has radius 3 and it is centered about the
origin. At , , and at . Now
draw the circle (Fig. 1-17). Note that someone may try
to confuse you by writing this function as .
Don’t let them.

Example 1-24 Graph x2 � 6x � 9 � y2 � 16.

Solution: At first glance it looks as though
a page is missing between Examples 1-23
and 1-24. But if you make the identifica-
tion that is the perfect square
of then the equation reads

if and .
This is the identification that worked so well
for parabolas. In the new coordinate system
with origin at (3,0) this curve is a circle of
radius 4, centered on the point (3,0) (Fig. 1-18).
Set up the new coordinate system and graph
the circle. At , , and at , .X � �4Y � 0Y � �4X � 0

Y � yX � x � 3X 2 � Y2 � 16
(x � 3)

x2 � 6x � 9

y2 � 9 � x2

x � �3y � 0,y � �3x � 0

x2 � y2 � 9

x2 � y2 � r2

(x,y)
r2

x2 � y2 � r2
x2 � y2 � r2

x2 � y2 � const.

y2x2
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Fig. 1-16
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If the function were written it would not have been quite so
easy to recognize the curve. Looking at this latter rearrangement, the clue that
this is a circle is that the and terms are both positive when they are together
on the same side of the equation. No matter how scrambled the terms are, if you
can recognize that the curve is a circle you can separate out the terms and make
some sense out of them by making perfect squares. This next problem will give
you an example that is about as complicated as you will encounter. 

Example 1-25 Graph .

Solution: Notice that the x and y terms are at least grouped together and further
that the constant has been moved to the right side of the equation. This is similar
to the first step in solving an equation by completing the square. Now with the
equation written in this form write the perfect squares that satisfy the and x
terms and the and y terms adding the appropriate constants to the right side.

Make the identification

X � x � 3 and Y � y � 1 so X 2 � Y 2 � 20

This is a circle of radius centered
about the point (�3,�1) (Fig. 1-19). A
rather formidable function is not so diffi-
cult when viewed properly.

Circles can at first be very confusing. If
the and coefficients can be made
equal to 1 and they are positive, then you
are dealing with a circle. Knowing the curve is a circle is a long way toward
drawing it correctly.

Ellipses

Ellipses have and terms with positive but different coefficients. The two
forms for the equation of an ellipse are

or x2

a2 �
y2

b2 � 1ax2 � by2 � c2

y2x2

y2x2

220

(x � 3)2 � (y � 1)2 � 20

(x � 3)2 � (y � 1)2 � 10 � 9 � 1

x2 � 6x � y2 � 2y � 10

y2
x2

x2 � 6x � y2 � 2y � 10

y2x2

y2 � 6x � x2 � 7
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Each form has its advantages with the latter form being the more convenient
for graphing.

Example 1-26 Graph .

Solution: This is an ellipse because the x and y terms are squared and have dif-
ferent positive coefficients. The different coefficients indicate a stretching or com-
pression of the curve in the x or y direction. It is not necessary to know the direc-
tion. That comes out of the graphing technique. Rewrite the equation into a more
convenient form for graphing by dividing by 36.

Now in this form set first so , and
then , so . With these points and the
knowledge that it is a circle compressed in one
direction, sketch the curve (Fig. 1-20).

Example 1-27 Graph .

Solution: The problem is presented in this somewhat artificial form to illustrate
the axis shifting used so effectively in the graphing of parabolas and circles.

Based on this experience immediately
write

with the definitions , Y � y � 4.

The origin of the new coordinate system
is at (�1,4), and in this new coordinate
system when and when

, .

Sketch the curve (Fig. 1-21).

Example 1-28 Graph x2 � 4x � 9y2 � 18y � �4.

Solution: The different positive coefficients of the and terms tell us this
is an ellipse. The linear terms in x and y tell us it is displaced off the x-y axis.

y2x2

X � �4Y � 0
Y � �6X � 0,

X � x � 1

X 2

16
�

Y 2

36
� 1

(x � 1)2

16
�

(y � 4)2

36
� 1

x � �3y � 0
y � �2x � 0,

x2

9 �
y2

4 � 1

4x2 � 9y2 � 36
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Fig. 1-21

Fig. 1-20
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Graphing this curve is going to require a completing the square approach with
considerable attention to detail.

First, write .

Now do the completing the square exercise, being very careful of the 9 outside
the parentheses: 

Now divide to reach 

Define and to achieve 

Graph on the new coordinate system: when , , and when ,
.

Alternate Solution: An alternative to
graphing in the new coordinate system is to
go back to the original coordinate system.
When , substitute and write

or , and when
, substitute and write 

or . Either way gives the same
points on the graph (Fig. 1-22).

Hyperbolas

Ellipses are different from circles because of numerical coefficients for the
and terms. Hyperbolas are different from ellipses and circles because one

of the coefficients of these and terms is negative. This makes the analysis
somewhat more complicated. Hyperbolas are written in one of two forms, both
of which are sometimes needed in the graphing.

or

Example 1-29 Graph �4x2 � 25y2 � 100.

Solution: The form of the equation tells us this is a hyperbola. Now proceed
as if this were a circle or ellipse: If , , and if , there are no realy � 0y � �2x � 0

�
x2

a2 7
y2

b2 � 1� ax2 7 by2 � c2

y2x2
y2x2

y � 1 � 1
y � 1 � �1Y � �1

x � �2 � 3x � 2 � �3
X � �3

X � �3
Y � 0Y � �1X � 0

X 2

9 �
Y 2

1
� 1

Y � y � 1X � x � 2

(x � 2)2

9 �
(y � 1)2

1
� 1

(x2 � 4x � 4) � 9(y2 � 2y � 1) � �4 � 4 � 9 � 9

(x � 2)2 � 9(y � 1)2 � �4 � 4 � 9 � 9

x2 � 4x � 9(y2 � 2y) � �4

Mathematical Background 19

Fig. 1-22

x

y

X

Y
x x2 4 18y =+ + 9y2 − −4



values of x. If the curve goes through the points and and does not
exist along the line , then the curve must have two separate parts!
Rearrange the equation to and note immediately that for real
values of x, y has to be greater than 2 or less than �2. The curve does not exist
in the region bounded by the lines and .

At this point in the analysis we have two points and a region where the curve
does not exist. Further analysis requires a departure from the usual techniques
applied to conics. Rewrite the equation again, but this time in the form y � …

How this helps in graphing is that for
large values of x, the function begins
to look like a straight line,

(for large x the +4 is small
compared to ). Use these two
straight lines, one of slope and the
other of slope �(2/5), as guides in draw-
ing the curve. With the points and

and these lines as guides, the
curve can be sketched (Fig. 1-23). In the
language of mathematics these straight
lines are asymptotes or asymptote lines.
Asymptotes are lines the curve
approaches but does not touch.

Now that you know the general shape of hyperbolas, we can look at some
hyperbolas that are not symmetric about the origin. The next problem is some-
what artificial, but it is instructive and illustrates a situation that comes up in the
graphing of hyperbolas.

Example 1-30 Graph .

Solution: This function is in a convenient form for graphing, especially if we
make the identification and . This hyperbola is displaced
up and down and sideways to the new coordinate system with origin at (1,3). In

Y � y � 3X � x � 1

(x � 1)2

9 �
(y � 3)2

4 � 1

(0,�2)
(0,2)

(2/5)
4x2/25

y < �(2/5)x

y � �24x2/25 � 4

y2 �
4x2

25
� 4

25y2 � 4x2 � 100

y � �2y � 2

4x2 � 25y2 � 100
y � 0

(0,�2)(0,2)
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this new coordinate system at , Y does not have any real values. At Y � 0,
. Place these points on the graph.

The asymptote lines are most easily drawn in the new coordinate system.

The transformed function is

and for large values of X,

9Y 2 � 4X 2 � 36

Straight lines of slope �(2/3) and �(2/3) are drawn in the new coordinate sys-
tem. With the two points and these asymptote lines the curve can be sketched.

In Fig. 1-24 you will see a rectangle. This
is used by some as a convenient con-
struct for drawing the asymptote lines
and finding the critical points of the
curve. Two sides of the rectangle inter-
sect the X-axis at the points where the
curve crosses this axis and the diagonals
of the rectangle have slopes . 

Example 1-31 Graph 9x2 � 4y2 � 54x
� 32y � 19.

Solution: This is a hyperbola, and the presence of the linear terms indicates it
is moved up and down and sideways. Graphing requires a completing the
square approach. Follow the completing the square approach through the equa-
tions below. Watch the multiplication of the parentheses very carefully.

Make the identification and so the function can be
written

or   X
2

4 �
Y 2

9 � 19X 2 � 4Y 2 � 36

Y � y � 4X � x � 3

9(x � 3)2 � 4(y � 4)2 � 19 � 81 � 64 � 36

9(x2 � 6x) � 4(y2 � 8y) � 19

9x2 � 4y2 � 54x � 32y � 19

� (2/3)

Y < �(2/3)XY < �(2/3)XY 2 � (4/9)X 2 � 4

X 2

9 �
Y 2

4 � 1

(x � 1)2

9 �
(y � 3)2

4 � 1

X � �3
X � 0
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Fig. 1-24

x

y

X

Y



Draw in the new axes with origin at . When X � 0, there are no real Y
values. When , . Place these points on the graph. The asymptotes
come out of the y � … equation. Follow along the rearrangement to find the
asymptote lines. (See Fig. 1-25.)

For large values of X, . The addition of these asymptote lines
allows completion of the graph.

Y < �(3/2)X

Y � �2(9/4)X 2 � 9

Y 2 � (9/4)X 2 � 9

X � �2Y � 0
(3,�4)
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Quick Tip

In graphing conics the first thing to determine is whether the equation is a cir-

cle, ellipse, or hyperbola. This is accomplished by looking at the numerical coef-

ficients, their algebraic signs, and whether they are (numerically) different.

Knowing the curve, the analytical techniques begin by looking for the values of

x when y � 0, and the values of y when x � 0. The answers to these questions

give the intercepts for the circle and ellipse, and the square root of a negative

number for one determines that the curve is a hyperbola. The addition of linear

terms moves the conics up and down and sideways and almost always requires

a completing the square type of analysis, complete with axis shifting. 

Fig. 1-25

x

y

X

Y

Y = (3/2)X Y = −(3/2)X

9x2 − 4y2 − 54x − 32y = 19



If you can figure out what the curve looks like and can find the intercepts (
and ) you are a long way toward graphing the function. The shifting of
axes just takes attention to detail.

1-8 Graphing Trigonometric Functions
Graphing the trigonometric functions does not usually present any prob-
lems. There are a few pitfalls, but with the correct graphing technique these
can be avoided. Before graphing the functions you need to know their gen-
eral shape. The trigonometric relations are defined in an earlier section and
their functions shown graphically. If you are not very familiar with the shape
of the sine, cosine, and tangent functions draw them out on a 3 � 5 card and
use this card as a bookmark in your text or study guide and review it every
time you open your book (possibly even more often) until the word sine
projects an image of a sine function in your mind, and likewise for cosine
and tangent.

Let’s look first at the sine function 
and its graph in Fig. 1-26. The , called the
argument of the function, is cyclic in ; when-
ever goes from 0 to the sine function goes
through one cycle. Also notice that there is a
symmetry in the function. The shape of the
curve from 0 to is mirrored in the shape
from to . Similarly, the shape of the curve
from 0 to is mirrored in the shape from to

. In order to draw the complete sine curve
we only need to know the points defining the first quarter cycle. This property of
sine curves that allows construction of the entire curve if the points for the first
quarter cycle are known will prove very valu-
able in graphing sine functions with complex
arguments. Operationally, the values of the
function are determined by “punching them
up” on a hand calculator.

Example 1-32 Graph .

Solution: The 2 here is called the amplitude
and simply scales the curve in the y direction.
It is handled simply by labeling the y-axis, as
shown in Fig. 1-27.

y � 2 sin x

2p
pp

pp/2
p/2

2pu

2p
u

y � sin u

y � 0
x � 0
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Fig. 1-27

Fig. 1-26

y = sinq  

2p

p/2 3/2 

1

−1

p q

x

2p1

y = 2sin x2
y



Example 1-33 Graph .

Solution: The phrase “cos” describes the
general shape of the curve, the unique
cosine shape. The is the hard part. Look
back at the basic shape of the cosine curve
and note that when , the cosine
curve has gone through of its cycle. The
values of x for the points where 2x is zero
and define the first quarter cycle. (One-
quarter of a cycle is all that is necessary to
graph the function.) To graph this function
(y vs. x) we need to know only those values
of x where the argument of the function ( )
is zero and . The chart in Fig. 1-28 shows
the values necessary for graphing the function.

p/2
2x

p/2

1/4
u � p/2

2x

y � cos 2x
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Quick Tip

Do not start this chart with values of x; start with values for 2x. Read the previ-

ous sentence again. It is the key to correctly graphing trigonometric functions.

Notice that the points on the x-axis are written as multiples of the first quarter

cycle. It is a cumbersome way of writing the points, but it helps prevent mistakes

in labeling the x-axis.

Go back over the logic of graphing trigonometric functions in this way. It is the
key to always getting them graphed correctly. As the functions become more
complicated, the utility and logic of this approach will become more evident.

Example 1-34 Graph .

Solution: This is a sine function: the gener-
al shape of which can be seen clearly in your
mind’s eye. The amplitude of 2 is no problem. The argument requires setting
up a chart to find the values of x defining the first quarter cycle of the sine func-
tion. Numbers associated with the argument of the function, the 3 (in the denom-
inator) in this case, define the frequency of the function. While interesting in some
contexts, knowing the frequency is not important in graphing. (Discussion of the
frequency of periodic functions is contained in Physics for the Utterly Confused.)

x/3

y � 2 sin(x/3)

2x x cos2x
0 0 1

�/2 �/4 0

x

0 0 0
13p/2p/2

sin (x/3)x/3

Fig. 1-28

x

y

4

2p

3pp
 4

 4

4p
 4

y = cos 2x
1

−1



Remember, in setting up the chart set 
equal to zero and solve for x. The sine of
zero is zero. Next set equal to and
solve for x. The sine of is 1. These two
points define the first quarter cycle of the
function. The remainder of the function is
drawn in (Fig. 1-29) using the symmetry
properties of sine functions.

Example 1-35 Graph .

Solution: The introduction of the
p in the argument of the function is
the final complication in graphing
trigonometric functions. This con-
stant in the argument is called the
phase and the sign of this constant
moves the function to the left or right on the
x-axis. It is not necessary to remember which
sign moves the function which way. The place-
ment of the function on the x-axis comes out of
the analysis.

Figure 1-30 shows a sine function with ampli-
tude 1. The 2 affects the frequency and the
moves the function right or left. Set up the p
chart again forcing the argument to be zero or

and determining the appropriate x value.
Set and solve for .
Set and solve for . Draw the graph starting with the
first quarter cycle of the sine function in the region from to .

Example 1-36 Graph .

Solution: The function shown in Fig. 1-31 has another little twist to it, which
has to do with the minus sign.

Follow the development of
the chart and take 2x � p/3 �
0 for the first point. This
point is .

The next point is for . This (second) point is then at .x � 5p/122x � p/3 � p/2

x � p/6 or 2p/12

y � (1/3) cos (2x � p/3)

�(p/4)�(p/2)
x � �(p/4)2x � p � p/2
x � �(p/2)2x � p � 0

p/2

y � sin(2x � p)

p/2
p/2x/3

x/3
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Fig. 1-29

Fig. 1-30

0 0
1�(p/4)p/2

�(p/2)
sin (2x � p)x2x � p

0 1
05p/12p/2

p/6 � 2p/12
cos (2x � p/3)x2x � p/3

3p
 2

9p
 2

12p
2

6p
 2

2 y = 2sin(x/3)

x

y

−2

x

y )2sin( += xy

2

442

p

p

ppp __



Set up the x-y coordinate system and place
the first quarter of the cosine function
between and . With this section
of the cosine function complete, draw in the
remainder of the curve.

Example 1-37 Graph .

Solution: If you are at all unfamiliar with
the tangent function go back and review it in
the trigonometry section. The important
features as far as graphing is concerned are
that is zero when is zero and is 1
when is . The tangent curve goes infi-
nite when goes to , but a point at infin-
ity is not an easy one to deal with.

For the function shown in Fig. 1-32, set up a
chart and find the values of x that make

equal zero and . These two
points allow construction of the function.

p/4x � p/4

p/2u

p/4u

tan uutan u

y � tan (x � p/4)

5p/122p/12
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Solve for .

Solve for .

Be careful while graphing the tangent function, especially this one. This tangent
function is zero when , and 1 when . The standard mistake is
to take the function to infinity at .

✔ Solve quadratic equations either by factoring or formula

✔ Keep the image of the sine, cosine, and tangent functions in your mind

✔ Graph trigonometric functions using the advanced techniques

✔ Switch from rectangular to polar coordinate systems and vice versa

✔ Know the basic laws for manipulating logarithms and exponents

x � 2p/4
x � 2p/4x � p/4

x � p/2 � 2p/4x � p/4 � p/4

x � p/4x � p/4 � 0

x
0 0

12p/4p/4
p/4

tan (x � p/4)x � p/4

Fig. 1-31

x

y
1/3

2p
12

5p
12

y = (1/3) cos(2x − p /3)

p

Fig. 1-32

x

y

4
2p
 4

1

−1

 y = tan(x − p /4)

4

3p
 4

p p_



✔ Evaluate and graph functions

✔ Graph circles (equal and positive coefficients of the x2 and y2 terms)

✔ Graph ellipses (nonequal and positive coefficients of the x2 and y2 terms)

✔ Graph hyperbolas (nonequal and one “�” sign of the x2 and y2 terms)

PROBLEMS

1. Solve by factoring .
2. Solve by factoring .
3. Solve by quadratic formula .
4. Solve by quadratic formula .
5. Write using the binomial expansion.
6. Convert p/4 rad to degrees.
7. Convert 0.45 rad to degrees.
8. Convert 2.6 rad to degrees.
9. Convert 80� to radians.

10. Convert 200� to radians.
11. Switch the point (�4,6) to polar form.
12. Switch the point (2,�5) to polar form.
13. Switch 3 @ 20� to rectangular form.
14. Switch 5 @ 60� to rectangular form.
15. Solve 6 � ln3x for x.
16. Solve .
17. Solve .
18. Write log3 = 0.48 in exponential form.
19. Solve .
20. Evaluate log(3.6)(4.1)3.
21. Evaluate log[(4.2)2/2.3].
22. What is the y intercept for the function ?
23. What is the y intercept for the function ?
24. Graph .
25. Graph .
26. Graph .
27. Graph .
28. Graph .
29. Graph .
30. Graph .
31. Graph 
32. Graph .
33. Graph .y � cos (3x � p/3)

y � tan (x � p/2)
y � 2 sin (2x � p/2).
4y2 � 16x2 � 64
9x2 � 4y2 � 36
4x2 � �25y2 � 100
x2 � 2x � y2 � 4y � �1
(x � 2)2 � (y � 3)2 � 9
y � x2 � 6x � 9
y � x2 � 2x � 8

y � x2 � 3
y � 3x � 2

10x � 0.56

e2x � 6.8
ex � 4.3

(a � b)3
2x2 � 5x � 6 � 0
x2 � 7x � 3 � 0

2x2 � 7x � 4 � 0
x2 � 3x � 10 � 0
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ANSWERS

1.
2.

3.

4.

5.

6.

7.

8.

9.

10.

11. This problem requires a diagram. There are two
problems: first remember that the angle has to
be measured counter-clockwise from the positive
x-axis, and second be careful how you measure the
angle. The angle measured from the �x axis is
determined by tan�1(6/4) � 56.3�. Now subtract
56.3� from 180� for 123.7�. This is the correct num-
ber for the angle. The magnitude is the square root
of 6 squared plus 4 squared or square root of

. Written in polar form the coordinates are
7.2 @ 123.7�.

12. This problem requires a diagram. There are two
problems: first remember that the angle has to be
measured counterclockwise from the positive x-axis,
and second be careful how you measure the angle. If
you try and take the inverse tangent of 2 divided by
�5, you will get a negative number—very confusing.
The safest way to do this problem is to find the small
angle between the y-axis and the arrow. Take the
inverse tangent of 2 over 5 and get 22�. Now add this 22� to 270� for 292�.

52 < 7.2

200�
2p rad
360�

� 3.49 rad

80�
2p rad
360�

� 1.40 rad

2.6 rad
360�

2p rad
� 149�

0.45 rad
360�

2p rad
� 25.8�

p
4 rad

360�
2p rad

� 45�

(a � b)3 �
a3

0!
�

3a2b
1!

�
3 	 2ab2

2!
�

3 	 2 	 1b3

3!
� a3 � 3a2b � 3ab2 � b3

x �
�5 � 225 � 4(2)(�6)

2(2)
�

�5 � 273
4

x �
�7 � 249 � 4(1)(�3)

2 �
�7 � 261

2

(2x � 1)(x � 3) 1 x � 1/2, x � 3
(x � 5)(x � 2) 1 x � 5, x � �2
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The magnitude of the arrow is the square root of 2
squared and 5 squared, or square root of .
Written in polar form the coordinates are 5.4 @ 292�.

13. A diagram is helpful. Look at the diagram and write:

14. Picture the diagram in your mind and carefully calcu-
late the x and y values.

15. 6 � ln3 � lnx, 6 � ln3 � lnx, 1.90 � lnx, x � e1.9 � 6.7
16. ln(4.3) � x, x � 1.46
17. ln(6.8) � 2x, x � 0.96
18.
19. log 0.56 � x, x � �0.25
20. log(3.6) � 3log(4.1) � 2.39
21. 2log(4.2) � log(2.3) � 0.88
22. �2
23. �3
24. This is a parabola that opens up. The function factors are: y � (x � 4)(x � 2),

so the curve crosses the x-axis at 4 and �2. The symmetry line is at x � 1.
25. This is a parabola that opens up and it is a perfect square: . The

curve rests on the x-axis at the point x � �3 and is symmetric about the line
x � �3.

26. This is a circle of radius 3, and it is displaced to the “new” coordinate lines
of x � 2 and y = �3.

27. This is also a circle but it is a little more complicated. Complete the square.
. This circle has radius 2 and is

centered on the point (1,�2).
28. This is an ellipse. Divide by 100, set first x, then y equal to zero and find the

shape for the ellipse.
29. This is a hyperbola. First divide by 36. The curve goes through the

points (2,0) and (�2,0) and does not exist at y � 0. The asymptote lines
are from .

30. This is a hyperbola. Divide by 64. The curve goes through the points (0,4)
and (0, �4) and does not exist at x � 0. The asymptote lines are from

.
31. Set and solve for x. This is the first point on the curve. Set

and solve for x. This is the second point on the curve. Fill
in the remainder of the sin curve from these two points.

32. Set and solve for x. This is the first point on the curve. Set
and solve for x. This is the “45�” point on the tangent curve.

With these points fill in the tangent curve.
x � p/2 � p/4

x � p/2 � 0

2x � p/2 � p/2
2x � p>2 � 0

y � �2x

y < (3/2)x

(x � 1)2 � (y � 2)2 � �1 � 1 � 4 � 4

y � (x � 3)2

100.48 � 3

y � 5 sin (�60�) � �4.3
x � 5 cos (�60�) � 2.5

y � 3 sin 20� � 1.0
x � 3 cos 20� � 2.8

29 < 5.4
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33. Set and solve for x. This is the first point for the cos curve.
Set and solve for x. This is the point needed to complete
the first quarter of the cos curve. Then fill in the rest of the cos curve.

3x � p/3 � p/2
3x � p/3 � 0

My favorite is 
completing the
square.

My favorite is graphing 
hyperbolas.



CHAPTER 2

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

LIMITS AND
CONTINUITY

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

You should read this chapter if you need to review or you need to learn about

➜The concept of a limit

➜Algebraic techniques for finding limits

➜Discontinuities

➜Using discontinuities in graphing

31
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The concept of the limit in calculus is very important. It describes what happens
to a function as a particular value is approached. The derivative, one of the
major themes of calculus, is defined in limit terms. This short chapter will help
you to think in terms of limits. The first thing to understand about limits is that
a limit of a function is not the value of the function. The change in thinking
(from value to limit) is important because most functions are understood as a
series of mathematical operations that can be evaluated at certain points simply
by substitution.

The (polynomial) function can be evaluated for any real num-
ber: replace x with the number and perform the indicated operations. Asking
the limit of this function as x approaches 2, for example, is an uninteresting
question. The function can be evaluated at 2 or any point arbitrarily close to 2
by substituting and performing the operations.

Other functions, such as polynomial fractions, cannot be evaluated at certain
points and these functions are best understood by thinking in terms of limits.
The function can be evaluated for any real number
except �2. Replacing x by �2 produces the meaningless statement 0/0.
Remember that any number times 0 is 0, but any number divided by 0 is
“meaningless” (including 0/0). Looking at the limit of the function, as x
approaches �2, tells us about the function in the vicinity of �2. The limit of
the function is a convenient phrase for the question, “What happens to the
function as a certain value is approached?” Writing this in mathematical nota-
tion we get the following:

The notation in front of the functions is read the limit, as x approaches minus
two. In the case of rational functions, factoring and reducing the fraction helps
in finding the limit. 

Finding the limit of this function as helps in understanding the func-
tion. Since the original function gives the meaningless 0/0 at the point where
x � �2, the function cannot exist, “does not have meaning,” at x � �2.
Graphing the function illustrates this point. The (simplified) function

is a straight line of slope 1 and intercept �2. The function
is also a straight line of slope 1 and intercept �2, but it

does not exist at the point where x � �2. This nonexistence at x � �2 is illus-
trated on the graph in Fig. 2-1 with the open circle.

y � (x2 � 4)/(x � 2)
y � x � 2

x S �2

lim
xS�2

x2�4
x � 2 � lim

xS�2

(x � 2)(x � 2)
x � 2 � lim

xS�2
(x � 2) � �4

y � (x2 � 4)/(x � 2)

y � x2 � 2x � 3
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Example 2-1 Find the limit of as .

Solution: At the fraction is 0/0, so perform some algebra on the fraction
before taking the limit.

As an exercise graph the original function, showing the nonexistence at .

Another category of function that is understood
with the help of limits is polynomial fractions,
where the higher power polynomial is in the
denominator rather than the numerator. The sim-
plest function to look at is . (The product
of two variables equaling a constant describes cer-
tain relationships. For example, pressure and
volume for a fixed amount of gas at constant tem-
perature is described by the cost of
comparable real estate times the commuting dis-
tance from a major commercial center is described
by RD � const.)

This relationship or is best
understood in the context of its graph.
Numbers can be assigned to x, and y values cal-
culated but note how the concept and language
of limits make graphing so much easier. Refer
to Fig. 2-2 during this discussion. First consider
positive values. The point , is so
easy to calculate it should not be ignored. The
curve goes through this point. Now as x is made
a larger and larger positive number, y approaches
zero, but remains positive. This can be expressed
in a simple sentence.

As x approaches plus infinity, y approaches
zero, but remains positive or in mathematical symbolism,

Write the situation for small values of x directly in mathematical symbolism,

As x S 0�, y S �`

As x S �`, y S 0�

y � 1x � 1

y � 1/xxy � 1

pV � const;

y � 1/x

x � 1

lim
xS1

x2 � x � 2
x � 1

� lim
xS1

(x � 2)(x � 1)
x � 1

� lim
xS1

(x � 2) � 3

x � 1

x S 1y � (x2 � x � 2)/(x � 1)
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Fig. 2-1

Fig. 2-2

x

y y = x2 − 4
x + 2

x

y

y = 1/x



What we are saying here is that if x is a very, very, very small number, even
smaller than 0.000000001, the 1 divided by this number is a very, very, very large
number. So as .

With this information, the positive portion of the graph can be drawn. In the
case of pressure and volume or cost of real estate and distance, the problem dic-
tates only positive values. In the function no such restriction exists.

Refer to the graph in Fig. 2-2 and follow the logic and symbolism in the statements

Example 2-2 Graph the function y � 1/(x � 1) using limit concepts and notation.

Solution: At , the function has value 1/0,
which is hard to interpret. Using the limit con-
cept the behavior of the function as x approach-
es 1 is easily understood. Note first that if x is
greater than 1, the function is positive, and if x is
less than 1, the function is negative. Apparently
the function behaves differently as is
approached from either the positive or negative
side. Remember that on the number line, posi-
tive is to the right and negative is to the left. In
taking the limit it is necessary, in this case, to
specify the direction of approach to 1. Notice
how this is done in the notation.

Based on experience with , this function has the same shape; it is just
displaced (or translated) 1 unit to the right. In , is the asymptote
line, but in , is the asymptote line. Follow the logic of the
limit calculations and verify the graph as shown in Fig. 2-3.

Example 2-3 Graph using limit concepts and notation.

Solution: Think limits and write the symbolic statements.

Now draw in the curve. (See Fig. 2-4.)

As x S �`, y S 0�As x S 0�, y S �`

As x S 0�, y S �`As x S �`, y S 0�

y � 1/x2

x � 1y � 1/(x � 1)
x � 0y � 1/x

y � 1/x

lim
xS1(pos)

1
x � 1

� `            lim
xS1(neg)

1
x � 1

� �`

x � 1

x � 1

As x S 0�, y S �`   and   As x S �`, y S 0�

y � 1/x

1/0� S �`x S 0�,
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Fig. 2-3

x

y

y = 1/(x − 1)

x = 1



Example 2-4 Discuss the function 
in the vicinity of .

Solution: The numerator of the function
presents no problem. Even at , the
function is , perfectly understand-
able. Based on past experience, the in
the denominator produces a vertical asymp-
tote at . Place the asymptote line on the
graph. Now, using limit language, describe the
behavior of the function in the vicinity of

.

There is an additional complication as x becomes large, either positive or neg-
ative. For large x the function becomes large number over large number. If,
however, the fraction is multiplied by over the limit can be calculated
easily:

This limit produces a horizontal asymptote.
When x is greater than 5 (refer to the original
function statement), the fraction is positive so
this horizontal asymptote is approached from
the positive side. When x is less than 5, but
greater than �2, the function is negative. At

, . For values of x less than (to
the left of) �2, the function is always positive
and for larger and larger negative x, the func-
tion approaches the limit 1 from the negative
side. Go through the logic and verify the
graph of Fig. 2-5.

As the powers of the polynomials increase, the
functions become harder to graph. In Chapter 4
more complicated polynomials will be
graphed with the aid of calculus.

y � �2/5x � 0

lim
xS`

x � 2
x � 5

B1/x
1/x
R � lim

xS`

1 � 2/x
1 � 5/x

� 1

1/x1/x

As x S 5�, y S �`As x S 5�, y S �`

x � 5

x � 5

x � 5
0/ � 7 � 0

x � �2

x � 5
y �

x � 2
x � 5
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Fig. 2-5

x

y
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Example 2-5 Find the limit of the function as x goes to
infinity.

Solution: Attempting to evaluate the function for large x produces the result
large number over large number. Taking the limit with a little inventive algebra
(multiplying the fraction by over ) produces

Example 2-6 Find the limit of as x goes to infinity.

Solution: Again use a little inventive algebra. Factor an out of the numer-
ator and an out of the denominator:

The first fraction has limit zero and the second limit 1. The product is zero.

This problem illustrates a manipulative rule for limits. 

Similarly and 

Continuous functions are defined mathematically, usually over specific inter-
vals. The requirements of a continuous function are: (1) it exists at every point
in the defined interval and (2) the limit exists at every point and is equal to the
value of the function at that point. Operationally, continuous functions are ones
that can be drawn without lifting your pencil.

A discontinuous function is one that either: (1) doesn’t exist at some point over
the defined interval or (2) the limits from the positive and negative directions are
different. Examples 2-1 through 2-4 are examples of discontinuous functions.

Another often used sample of a discontinuous function is the integer func-
tion, , where the symbolism is read as the largest integer contained
in x. For example, the largest integer contained in 2 is 2. The largest integer
contained in 2.99 is 2. Add as many 9s as you like and the largest integer is
still 2. The limit of the function as x approaches 3 from the negative side
(slightly less than 3) is 2. The limit of the function as x approaches 3 from the
positive side (slightly greater than 3) is 3. This discontinuity at each integer
is shown in Fig. 2-6.

[x]y � [x]

lim
xSc

An � [lim
xSc

A]nlim
xSc

A
B �

lim A
xSc

lim B
xSc

lim
xSc

A 	 B � [lim
xSc

A][lim
xSc

B]

lim
xS`

x4 � 3x2

x5 � 2
� lim

xS`

x4(1 � 3/x2)

x5(1 � 2/x5)
� lim

xS`
B1

xR B1 � 3/x2

1 � 2/x5R � 0

x5
x4

x4 � 3x2

x5 � 2

lim
xS`

3x2 � 2x � 1
x2 � x � 1

B1/x2

1/x2R � lim
xS`

3 � 2/x � 1/x2

1 � 1/x � 1/x2 � 3

1/x21/x2

y �
3x2 � 2x � 1
x2 � x � 1
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Look back over Examples 2-1 through 2-4 and
note that the discontinuity occurs at the verti-
cal asymptote.

Another example of a discontinuous function
is one defined on certain intervals such as

This is a discontinuous function. Though it is
defined everywhere over the interval, the limit
as zero is approached from the positive side is
4, and the limit as zero is approached from the
negative side is 3. The function is shown graph-
ically in Fig. 2-7.

An example of a function that is discontinuous
from one side only is the square root function.
The function is not defined for nega-
tive x because there are no real square roots of
negative numbers. In mathematical symbolism

The function is continuous to zero from the right side but not from the left side.

The cube root function, , behaves differently. There are real cube roots
of both positive and negative numbers as well as zero. This function is continu-
ous over the entire range of real numbers for x.

✔ A limit is not the value of a function

✔ Limits are often different depending on the approach 

✔ Discontinuities and limits can help in graphing

✔ Functions can be discontinuous

PROBLEMS

1. Find .

2. Find .lim
xS0�

1
x4

lim
xS1

x � 2
x � 1

y � 23 x

lim
xS0�

2x � 0      and      lim
xS0�

2x   does not exist

y � 2x

f(x) � bx � 3  for �3 
 x � 0
1.5x � 4  for x � 0

r
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3. Discuss the .

4. Find .

5. For the previous problem discuss the
limit as x approaches 1 from the nega-
tive side.

6. Discuss the .

7. Discuss the .

8. Find .

9. Find .

10. Use limit concepts to graph . 

11. Discuss the function in the vicinity of x � 3.

12. Sketch the graph of using limit concepts.

ANSWERS

1.

2.
3. The limit does not exist at x � 2. However, rewriting the fraction as

, the limit is 4.
4. As x approaches 1 from the positive side the square root is of a smaller and

smaller positive number. This square root is still positive, so the limit is
zero.

5. If x approaches 1 from the negative side (less than 1) the square root is of
a negative number and the limit does not exist. Neither are there any val-
ues of the square root for numbers less than 1.

6. The fraction does not exist for x � 2. It would be 0/0. But factoring or long
dividing the fraction becomes .

7. This problem is similar to the one just above. The fraction does not exist for
x � 1. Factor and note that a factor of (x � 1) is in both the numerator and
denominator making the fraction .

8. Divide up and down by 1/x2 and the fraction is 2 in the limit.

lim
xS1

(x2
� x � 1)

(x � 1) �
3
2

lim
xS2

(x2 � 2x � 4) � 12

lim
xS2

(x � 2)

�`

�
1
2

y �
1
x4

y �
x � 1
x � 3

y �
1

x � 3

lim
xS`

10x2 � 300x � 1
5x � 1

lim
xS`

6x2 � 5x � 100
3x2 � 9

lim
xS1

x3 � 1
x2 � 1

lim
xS2

x3 � 8
x � 2

lim
xS1�

24x � 4

lim
xS2

x2 � 4
x � 2
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9. Divide up and down by 1/x and the denominator
is a number while the numerator goes to infinity
so the limit is infinity.

10. This is a graph like y � 1/x but shifted so the ver-
tical asymptote is at x � 3, where the function
does not exist.

11. Again, this function has a discontinuity at x � 3.
The graph is a little more complicated and
requires a few points in the vicinity of x � 3.

12. This graph is much like the one for y � 1/x2.
Since the powers are 2 and 4, the symmetry will
be the same.

At x � 5, y � 3
At x � 4, y � 5
At x � 1, y � �2
At x � 2, y � �3
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CHAPTER 3

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

DERIVATIVES

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

You should read this chapter if you need to review or you need to learn about

➜Definition of the derivative

➜Derivatives of polynomials

➜Product and quotient rules

➜Trig, exponential, and Log functions

➜ Implicit differentiation and the chain rule

➜Finding limits with derivatives
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The derivative of a function is the slope of that function anywhere the function
is well behaved. A function is well behaved in a region where there is a unique
slope at every point. A constant function, , , is a straight line of
slope zero. A linear equation, , , has a constant slope
(2 and �1 in these cases).

The simplest function that does not have a constant slope is the quadratic,
(see Chapter 1 for a discussion of quadratics). The slope of the quadratic,

considering only positive values of x, increases as x increases. Look at a magni-
fied portion of the curve and approximate the slope of the curve at any
point by writing a general expression for the slope of the straight line connect-
ing two points x and . The notation means a small change in x so the
point is very close to x.x � 
x


xx � 
x

y � x2

y � x2

y � �x � 5y � 2x � 3
y � �3y � 2

42 CALCULUS FOR THE UTTERLY CONFUSED

Figure 3-1 shows the curve and the straight line connecting the points
) and . The slope of the line between these

adjacent points is 

The general expression for the slope of this curve at any point x is the limit of
this approximate slope as goes to zero. Using the mathematical symbolism
of limits, the general expression for the slope of is

This defining equation for the derivative is called , where the d notation indi-
cates the limit of , or , or . For the quadratic, we have the following:f r(x)yr
y/
x

dy/dx

dy
dx

� yr � f r(x) � lim

xS0

(x � 
x)2 � x2


x

y � x2

x

(x � 
x)2 � x2


x

(x � 
x, y � (x � 
x)2)(x, y � x2
y � x2

2)( xxy + ∆=
2)( xx∆y + ∆=

2xy =

2xy =

x xx + ∆
∆x

2 - x

x

y

Fig. 3-1



This general expression for the derivative is used to determine the slope of the
curve at any point. When , the function has value 9 and slope 6.
When , the function has value 16 and slope 8. Another, more general, way
of writing this definition is

(3-1)

where the expression means the value of y at and 
means the value of y at x.

Example 3-1 Use the definition of the derivative to find the derivative of y � x3.

Solution: Follow the definition of the derivative in Equation 3-1.

3-1 Polynomials 
There is a pattern to these derivatives as illustrated in
the adjacent table. The pattern suggests a general rule
for differentiating polynomials.

If , then .f r(x) � cnxn�1f(x) � cxn

dy
dx

� lim

xS0

(3x2 � 3x
x � 
x2) � 3x2

dy
dx

� lim

xS0

(x � 
x)3 � x3


x
�

x3 � 3x2
x � 3x
x2 � 
x3 � x3


x

y(x)x � 
xy(x � 
x)

dy
dx

� lim

xS0

y(x � 
x) � y(x)

x

x � 4
x � 3y � x2

dy
dx

� lim

xS0

(x2 � 2x
x � (
x)2) � x2


x
� lim


xS0
(2x � 
x) � 2x
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Quick Tip

The general power law formula works for positive and negative exponents, and

fractional exponents. For a function f(x) � cxn, the derivative is f’(x) � cnxn−1.

f(x) f�(x)
const 0

mx m
x2 2x
x3 3x2



Example 3-2 Differentiate .

Solution: Following the general definition of the derivative (Equation 3-1)
write:

Looking at the parentheses, the 2s add to zero and the xs add to zero. The
term is in the previous problem as well so

Look at the general power law rule (If , then ) and
notice that if this law were applied to each of the terms, first the , then the x,
this result would be achieved. 

The previous problem is an example of a simple rule: The derivative of a col-
lection of terms is the sum of the derivatives of the individual terms. In mathe-
matical language

If then , and 

if then .

Example 3-3 Using the general power law rule and the sum and difference
rules (above) find the derivative of . 

Solution:

Example 3-4 Find the slope of at .

Solution: Using the expression for y� from the previous problem we can solve
as follows:

yr(2) � 12(2)2 � 6(2) � 2 � 48 � 12 � 2 � 58

x � 2y � 4x3 � 3x2 � 2x � 3

yr � 3(4x2) � 2(3x) � 2(1) � 0 � 12x2 � 6x � 2

y � 4x3 � 3x2 � 2x � 3

f r(x) � ur(x) � vr(x)f(x) � u(x) � v(x)

f r(x) � ur(x) � vr(x)f(x) � u(x) � v(x)

3x3
f r(x) � cnxn�1f(x) � cxn

dy
dx

� 9x2 � 1

� lim

xS0

9x2 � 9x
x � 3
x2 � 1

dy
dx

� lim

xS0

3x3 � 9x2
x � 9x
x2 � 3
x3 � 
x � 3x3


x

(x � 
x)3

dy
dx

� lim

xS0

[3(x � 
x)3 � (x � 
x) � 2] � [3x3 � x � 2]


x

y � 3x3 � x � 2

44 CALCULUS FOR THE UTTERLY CONFUSED



Example 3-5 The cost in dollars to manufacture x number of a certain item is
. This relation is valid for up to 70 items (maximum capac-

ity of the facility) per month. Find the cost to manufacture the 10th, 40th, and
70th items. This is called the marginal cost.

Solution: The general expression for the cost per item is the derivative of the
cost function, .

The derivative can be thought of as a rate. A most convenient way to illustrate
this is with velocity and acceleration. One of the easiest rates to visualize is
velocity, distance divided by time. If something moves 200 meters (m) in 50 sec-
onds (s) we say it has a velocity of . This in produces an average
velocity, in calculus language. The velocity at any instant during the 
may, however, be quite different from the average. To find the instantaneous
velocity we first need to know how x varies with time, or . Then ,
the limit as the time interval becomes shorter and shorter, is an expression for
the instantaneous velocity, v, that can be evaluated at any time. 

If something is changing velocity as it moves then we can take the difference in
velocity between the beginning and end of a time interval and calculate the
average acceleration over that time interval. The instantaneous acceleration
( ), the rate at which the velocity changes, is the derivative of the
velocity-time relation evaluated at any time.

Example 3-6 Find the expression for the instantaneous velocity for the
distance-time function x � kt 3 � lt 2 � mt and evaluate the velocity at t � 1s.
Take , and .

Solution: The general expression for velocity is the time derivative of the
x � f(t), or

and the velocity evaluated at t � 1 is 

v Zt�1 � (3) (2 m/s3)(1 s)2 � (2) (4 m/s2)(1 s) � 5 m/s � 3 m/s

v �
dx
dt

� 3kt2 � 2lt � m

m � 5 m/sl � 4 m/s2k � 2 m/s3,

a � dv/dt

dx/dtx � f(t)

50 s
x/
t
50 s200 m4 m/s

d(CM)
dx

� 0.04x
d(CM)

dx
2
10

� $0.40
d(CM)

dx
2
40

� $1.60
d(CM)

dx
2
70

� $2.80

d(CM)/dx

CM � 120 � 0.02x2
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Example 3-7 Continue Example 3-6 by finding the acceleration at .

Solution: The general expression for the instantaneous acceleration is the
time derivative of the expression for v. (See the previous problem for v.)

and the acceleration at is 

Velocity and acceleration problems are excellent test problems. Be sure you
know that given position as a function of time , the velocity is the first
derivative, and the acceleration is the second derivative.

Given know how to find velocity ( ) and accelera-
tion ( ) and be able to evaluate velocity and acceleration at any time.

The velocity is the first derivative of position, . The acceleration is the
first derivative of the velocity, . Both derivatives come from the same
function. The velocity is the first derivative and the acceleration the second
derivative. It is common to write v as a first derivative and a as a second
derivative:

You will encounter second and third derivatives of the same function in other
areas.

Example 3-8 The gross domestic product (GDP) of a certain country is
in billions of dollars when t is measured in years. This

growth was valid from 1980 to 1990. What was the rate of growth in 1986?

Solution: The growth rate is the derivative of the growth function.

dN
dt

� 2t � 3

N(t) � t 2 � 3t � 80

v �
dx
dt

and a �
d 2x
dt 2 �

d
dt
¢dx

dt
≤

a � dv/dt
v � dx/dt

a � �10
v � 6 � 10tx � 4 � 6t � 5t 2

x � f(t)

a Zt�2 � (6) (2 m/s3)(2 s) � 2(4 m/s2) � 16 m/s2

t � 2 s

a �
dv
dt

� 2 	 3kt � 2l

t � 2 s
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and evaluating for 1986,

While the rate of growth is important the percentage of change is also impor-
tant. In an absolute sense, a change of 50 in the manufacture of 500 items is a
10% change while a change of 50 in 50,000 items is a 0.1% change. Change is
relative to the number of items manufactured. A 0.1% change will probably
require no change in manufacturing but a 10% change might have a significant
effect on manufacturing procedures. In order to get a measure of this relative
change we make the following definition.

This percentage rate of change is defined as

Example 3-9 For the previous problem find the percentage rate of change in
1986.

Solution: The numerator of the fraction, dN/dt from the previous problem is:

The actual number for 1968 is:

The percentage rate of change is then,

In 1986 the GDP is 134 billion, the rate of growth is 15 billion per year and the
percentage rate of growth is 11% per year.

100 15
134

� 11% per year

N(t) � t 2 � 3t � 80
N(6) � 62 � 3(6) � 80

N � 134 billion

dN
dt
2
6

� 15 billions per year

Percentage rate of change � 100
f r(x)
f(x)

Percentage rate of change � 100
rate of change

size of quantity

dN
dt
2
6

� 2(6) � 3 � 15 billion dollars per year.

Derivatives 47



3-2 Product and Quotient Rule 
Having established the derivatives of polynomials and worked some sample
problems let’s move on to fractions and products.

Example 3-10 Find the derivative of the function .

Solution:

Second Solution: The solution could have been obtained much easier by
applying the rule for differentiating a product. The derivative of a product is the
first term times the derivative of the second term plus the second term times the
derivative of the first term. In mathematical symbolism,

For this problem, then,

dy
dx

� x2 d
dx

 (x � 2) � (x � 2) d
dx

x2 � x2(1) � (x � 2)(2x) � 3x2 � 4x

If  f(x) � u(x)v(x)  then f r(x) � u(x)vr(x) � ur(x)v(x)

dy
dx

� 3x2 � 4x

dy
dx

� lim

xS0

(x � 
x)2(x � 
x � 2) � x2(x � 2)

x

y � x2(x � 2)
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dy
dx

� lim

xS0

(x3 � x2
x � 2x2 � 2x2
x � 2x
x2 � 4x
x � x
x2 � 
x3 � 2
x2) � (x3 � 2x2)

x

Quick Tip

In words the product rule is first × d (second) + second × d (first).

A similar, though somewhat more complicated rule applies for fractions.
Again, use the basic definition of the derivative to find the differential of a
fraction and see how the differentiation can be performed much easier with
the fraction rule.



Example 3-11 Use the basic definition of the derivative to find dy/dx of
y � x � 1/x2.
Solution:

Second Solution: The general rule for differentiating a fraction is:

By applying this rule the problem becomes much easier:

�
�x2 � 2x

x4 � �
x � 2

x3

dy
dx

�
x2 d

dx
(x � 1) � (x � 1) d

dx
(x2)

(x2)2 �
x2(1) � (x � 1)(2x)

x4

If  f(x) �
u(x)
v(x)

  then  f r(x) �
v(x)ur(x) � u(x)vr(x)

[v(x)]2

dy
dx

�
�x2 � 2x

x4 � �
x � 2

x3

dy
dx

� lim

xS0

x3 � x2
x � x2 � (x3 � 2x2
x � x
x2 � x2 � 2x
x � 
x2)
(x � 
x)2(x2)(
x)

dy
dx

� lim

xS0

x2(x � 
x � 1) � (x � 1)(x2 � 2x
x � 
x2)
(x � 
x)2(x2)(
x)

dy
dx

� lim

xS0

x � 
x � 1
(x � 
x)2 �

x � 1
x2


x
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Quick Tip

In words the quotient rule is top × d (bottom) − bottom × d (top) all over (bottom)2.

3-3 Trigonometric Functions
There is no gereral rule for determining the derivative of trigonometric func-
tions. Each trigonometric function has a unique derivative. One will be done to
demonstrate the approach. Consult a table of derivatives for the derivative of
each specific trigonometric function.



Example 3-12 Apply the basic definition to find the derivative of the sine
function, .

Solution:

The can be replaced with the sum of two angles identity (see earlier
trigonometric identities).

As goes to zero, goes to 1 (see the graph of the cosine function) so
the problem reduces to 

As approaches zero, approaches . For small angles the sine function
looks like a straight line of slope 1. Check this out with your hand calculator.

Take the sine of 0.2 (rad), a little over 11�, and notice how close the sine of 0.2
is to 0.2. Now decrease the angle to 0.1, 0.01, 0.001, until your calculator no
longer displays a difference between the sine and the angle. The limit of 
over as goes to zero is 1, so the derivative of the sine function is the
cosine function.

The approximation sinu� u for small u is used in many problems in physics and
engineering.

3-4 Implicit Differentiation
The general procedure for differentiating a polynomial function is
to apply the power law rule to each term and write . Another
and often very convenient way of looking at the problem would be to differen-
tiate the entire equation term by term, , and then write

. You should notice that most differential tables are written in
this manner. As functions become more complicated differentiating term by
term like this and implicit differentiation become more convenient. Suppose
you have a function where it is impossible to solve for x
in terms of y or y in terms of x. Implicit differentiation is the only way to find

.dy/dx

x4 � x2y2 � xy3 � 18

dy/dx � 2x � 2
dy � 2xdx � 2dx

dy/dx � 2x � 2
y � x2 � 2x


u
u
sin 
u


usin 
u
u

dy
du

� cos u lim

uS0

sin 
u

u

cos 
u
u

dy
du

� lim

uS0

sin u cos 
u � cos u sin 
u � sin u

u

sin(u � 
u)

dy
du

� lim

uS0

sin(u � 
u) � sin u


u

y � sin u
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Example 3-13 Find for by implicit differentiation.

Solution: The and terms are treated as products.

Separate out the terms multiplying dy and dx.

and solve for .

Example 3-14 Continue Example 3-13 by finding the value of the slope at
x � 2, y � 1

Solution: The is from the previous problem so

The graph of goes through the point (2, 1) and has a slope
at this point of �17.5.

Example 3-15 Factory output in units of product output is Q � 2x3 � x2y � y3

where x is the number of skilled workers and y is the number of unskilled work-
ers. Current production output requires 30 hours of x’s and 20 hours of y’s. If
one skilled worker is added how many unskilled workers can be removed while
maintaining constant output?

Solution: Though it is not necessary, calculate the present output.

Q � 2(30)3 � (30)2(20) � (20)3 � 80,000 units

x4 � x2y2 � xy3 � 18

dy
dx
2
x�2
y�1

� �
4(2)3 � 2(2)(1) � 1
2(2)2(1) � 3(2)(1)

� �
32 � 4 � 1

8 � 6
� �

35
2 � �17.5

dy/dx

dy
dx

� �
4x3 � 2xy2 � y3

2x2y � 3xy2

dy/dx

(2x2y � 3xy2)dy � �(4x3 � 2xy2 � y3)dx

4x3dx � x2(2ydy) � y2(2xdx) � x(3y2dy) � y3dx � 0

4x3dx � x2d(y2) � y2d(x2) � xd(y3) � y3dx � 0

xy3x2y2

x4 � x2y2 � xy3 � 18dy/dx
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The problem requires an implicit differential. The Q is constant so that differ-
ential is zero and it was not necessary to calculate the present output.

Since we are asking the question about the numbers of workers the equation
can be conveniently written in format.

This statement now tells us how many unskilled workers can be removed if one
skilled worker is added. And this is for constant output. Put in the numbers.

Adding one skilled worker replaces three unskilled workers.

3-5 Change of Variable
Implicit differentiation and a change of variable become essential when func-
tions become complicated and more than one rule is needed to perform a
differentiation.

Example 3-16 Find the derivative of .

Solution: You could try to find someone to raise x � 3 to the 25th power or
you could view the x � 3 as a variable and apply the power rule. Implicit dif-
ferential also helps to simplify the problem.

Second Solution: Instead of just thinking of the x � 3 as the variable you can
define a new variable, u � (x � 3) so the function reads y � u25 with implicit deriv-
ative dy � 25u24 du. The derivative of u is from the definition of u, so du � dx and

dy � 25(x � 3)24 dx   and
dy
dx

� 25(x � 3)24

dy � 25(x � 3)24 d(x � 3)   so  
dy
dx

� 25(x � 3)24

y � (x � 3)25


y � �
6(30)2 � 2(30)(20)

(30)2 � 3(20)2 
x � �3.1


y � �
6x2 � 2xy

x2 � 3y2 
x




6x2dx � 2xydx � x2dy � 3y2dy � 0
(x2 � 3y2)dy � �(6x2 � 2xy)dx

dy
dx

� �
6x2 � 2xy

x2 � 3y2
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Example 3-17 Find the derivative of .

Solution: From any Mathematical Table, the derivative of the cosine is nega-
tive sine. Use the power rule first to obtain dy � 3 cos2(x2 � 2)d cos(x2 � 2).
View the x2 � 2 as the variable and take (the derivative of) 

Combining,

Second Solution: Notice how much easier and less susceptible to error the
problem becomes when a change of variable is made early on in the problem.
First set so . Now write the problem as and
differentiate implicitly.

Example 3-18 Use a change of variable approach to find the derivative of

Solution: Let so the function reads with derivative
.

Find and substitute so and
the derivative is 

3-6 Chain Rule
In many practical situations a quantity is given in terms of a variable and
then this variable is expressed in terms of a third variable. A problem may
be described this way because the first variable is not easily written in terms

dy
dx

� 3(2x � 3)(x2 � 3x � 1)

dy � 3(x2 � 3x � 1)2(2x � 3)dxdu � 2xdx � 3dx

dy � 3u2du
y � u3u � x2 � 3x � 1

y � (x2 � 3x � 1)3

dy
dx

� �6x cos 2(x2 � 2) sin (x2 � 2)

� 3[cos 2(x2 � 2)][�sin(x2 � 2)]2xdx

dy � 3(cos 2 u)d cos u � 3(cos 2 u)(�sin u)du

y � cos 3udu � 2xdxu � x2 � 2

dy
dx

� [3 cos 2(x2 � 2)][�2x sin (x2 � 2)] � �6x cos 2(x2 � 2) sin (x2 � 2)

d cos (x2 � 2) � � sin (x2 � 2)d(x2 � 2) � �2x sin (x2 � 2)dx

y � cos 3(x2 � 2)
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of the third or perhaps it is conceptually easier to understand the process in
two steps. 
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Suppose the cost of manufacturing a certain item, say a computer chip, depends
on the number of items produced. The number of items produced depends on
the length of time the “fab” facility operates to produce the chips, the length of
time for the production run. If the cost per unit (dollars per chip) is and
the rate of production (chips per hour) is , then cost per unit of time is the
product of these two derivatives.

Example 3-19 Find du/dt for and .

Solution: This requires a chain derivative: 

Example 3-20 The monthly profit for selling tacos follows:

where q is the number of tacos sold. The relation between number of workers
and tacos is .

Find dP/dn, the profit per worker for q � 1000 tacos sold.

Solution: This problem requires a chain derivative: .

dP
dq

� 30 � 0.004q    and
dq
dn

� 100

dP
dn

�
dP
dq

 
dq
dn

q � 100n

P � �1200 � 30q � 0.002q2

du
dt

�
du
dx

 dx
dt

� (2x � 2)(3t 2)

du
dt

�
du
dx

 dx
dt

x � t 3 � 3u � x2 � 2x

dC
dt

�
dC
dN

 dN
dt

dN/dt
dC/dN

Sand
precious metals 

Chip Factory Chips



dP/dn can now be written.

Substitute for q � 1000 to determine the profit per worker at 1000 tacos sold
per month.

3-7 Logarithms and Exponents
The differentials of several logarithms and exponents are listed below. 

If then 
If and then 

If then 

If y = loga x and  then 

Example 3-21 Find the derivative of .

Solution: Think, or write, and the derivative is

Example 3-22 Find of .

Solution: or

Example 3-23 Find the derivative of .

Solution: This looks bad. But, if you proceed slowly, applying the rules one at
a time, the differentiation is not all that difficult. The hard part is proceeding
logically. This is a product so write

dy � x1.5d[ln (x2 � 2)] � ln (x2 � 2)dx1.5

y � x1.5 ln (x2 � 2)

dy
dx

�
2
xdy �

1
x2 2xdx

y � ln x2dy/dx

dy � eudu � ex2�3(2xdx) or
dy
dx

� 2xex2�3

y � eu

y � ex2�3

dy �
1

(ln a)x
dxa � 0  and a 2 1

dy �
1
x dxy � ln x

dy � (ln a)axdxa � 0  and a 2 1y � ax

dy � exdxy � ex

dP
dn q�1000

� 3000 � 0.4(1000) � 2600

dP
dn

� (30 � 0.004q)(100) � 3000 � 0.4q
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The differential of is, according to the table, 

.

The differential of is .

Putting it all together we get the following:

Example 3-24 Find the derivative of y � tanx/x.

Solution: Your first reaction to this problem probably is to apply a fraction
rule. Apply the fraction rule.

Second Solution: Often viewing a fraction as a product makes for an easier
differential. Switching to an implicit differential and viewing the problem as a
product,

Example 3-25 Find the derivative of .

Solution: This is a product. Proceed methodically and the problem is not difficult.

3-8 L’Hopital’s Rule
There is another technique for finding the limit of an indeterminate form for a
fraction where the limit looks like 0/0 or �/�. The technique is known as
L’Hopital’s rule. 

dy
dx

� e�x(cos x � sin x)

dy � e�xd(sin x) � sin xd(e�x) � e�x(cos x)dx � e�x(sin x)dx

y � e�x sin x

dy
dx

�
x sec 2x � tan x

x2

dy � x�1d(tan x) � (tan x)d(x�1) � x�1 sec 2x dx � (tan x)(�x�2)dx

dy
dx

�
x d

dx
 (tan x) � (tan x) d

dx
x

x2 �
x sec 2x � (tan x)

x2

dy � x1.5 2xdx
x2 � 2

� (1.5)x0.5 In (x2 � 2)dx  or  
dy
dx

�
2x2.5

x2 � 2
� (1.5)x0.5  In(x2 � 2)

(1.5)x0.5dxx1.5

1
x2 � 2

d(x2 � 2) �
2xdx

x2 � 2

ln (x2 � 2)
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The rule is as follows:

For a fraction where the is or the limit is determined by taking the

derivative of the numerator and the derivative of the denominator separately
and again taking the limit.

The rule can be applied multiple times if necessary. Be sure that each time the
rule is applied both the numerator and the denominator are differrentiated.

Example 3-26 Find .

Solution: This is the indeterminate form so apply L’Hopital’s rule.

Second Solution: This answer can also be seen by applying algebra to the
problem: multiplying up and down by 1/x.

Example 3-27 Find .

Solution: Apply L’Hopital’s rule: 

Example 3-28 Find .

Solution: Substituting x � 1 into this fraction produces the indeterminate
form 0/0.

So apply L’Hopital’s rule: .lim
xS1

5x4 � 9x2 � 5
20x4 � 6x2 � 10x

�
4
16

�
1
4

lim
xS1

x5 � 3x3 � 5x � 3
4x5 � 2x3 � 5x2 � 1

lim
xS`

1
2x

� 0

lim
xS`

x � 3
x2 � 5

lim
xS`

x
x � 1

� lim
xS`

x(1/x)
(x � 1)(1/x)

� lim
xS`

1
1 � 1/x

� 1

lim
xS`

1
1 � 1

`/`

lim
xS`

x
x � 1

If  lim
xS`

f(x)
g(x)

is indeterminate, take  lim
xS`

f r(x)
g r(x)

.

`
`

0
0lim

xS`

f(x)
g(x)
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✔ For polynomials follow dy = cnxn�1dx

✔ For products: first d (second) � second d (first)

✔ For quotients: bot d (top) – top d (bot) over bot squared

✔ For two descriptive equations use the chain rule

✔ If the variables cannot be separated use implicit derivative

✔ Use tables for trig, exponential, and log functions 

✔ Apply L’Hopital’s rule to indeterminate forms

PROBLEMS

1. Find the derivative of .
2. Find the derivative of .

3. Find the derivative of .

4. Find the derivative of .
5. The number of pet strollers sold in the United States in the 1995 to 2003

time period was: , where n(t) is in thousands of
carriages when n is the number of the year. The year 1995 corresponds to
t � 5 and so on up to t � 13 for 2003. What was the rate of pet stroller sales
in the year 2000?

6. If and find dy/dx.

7. If and find dy/dx. 
8. Find dy/dx for .
9. Find dy/dx for .

10. Find for .

11. Take the derivative of .
12. Differentiate .

13. Use L’Hopital’s rule to find .

14. Find .lim
xS2

2x � 4
x2 � 3x � 10

lim
xS`

2x � 3
4x

f(u) � cos 2 u
y � ex>3

f(x) � ln (x2 � 2)f r(x)
(xy)2 � 2y � 5x � 0
xy2 � 2x2 � y3 � 3

u � 2x2 � 1y �
1
u

u � x2 � 2y � u3 � 3u2 � 1

n(t) � 0.04t 2 � 0.3t � 15

y � (x2 � 2x � 1)3

y �
x2 � x � 1

(x � 2)

y � (2x3 � 1)(x2 � 2)
y � 4x3 � 3x�1
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ANSWERS

1.
2. This is a product rule problem.

3. This is a quotient rule problem.

4. This problem is best viewed as a change of variable. Write .

5. The word rate in the problem is the key word. It tells you to differentiate.

and evaluating this derivative at t � 10 (year 2000)

or 1100 pet strollers per year.

6. This is a chain derivative problem.

7.

8.

9.

10.

11.
dy
dx

� ex/3d(x/3) �
1
3 ex/3

f r(x) �
dy
dx

�
1

x2 � 2
d(x2 � 2) �

2x
x2 � 2

dy
dx

�
5 � 2xy2

2x2y � 2

(2x2y � 2)dy � (5 � 2xy2)dx
2x2ydy � 2xy2dx � 2dy � 5dx � 0

dy
dx

� �
y2 � 4x

2xy � 3y2

(2xy � 3y2)dy � �(y2 � 4x)dx
y2dx � 2xydy � 4xdx � 3y2dy � 0

dy
dx

�
dy
du

du
dx

� (�u�2)(4x) � �
4x

(2x2 � 1)2

� [3(x2 � 2)2 � 6(x2 � 2)][2x] � 3x4 � 18x2 � 24

dy
dx

�
dy
du

du
dx

� (3u2 � 6u)(2x)

dn/dtZ10 � 0.8 � 0.3 � 1.1

dn/dt � 0.08t � 0.3

yr � 3u2du � 3(x2 � 2x � 1)2(2x � 2) � 3(2x3 � 6x2 � 6x � 2)
y � u3

yr �
x2 � 4x � 1

(x � 2)2

yr �
(x � 2)d(x2 � x � 1) � (x2 � x � 1)d(x � 2)

(x � 2)2

yr � 10x4 � 3x2 � 8x
yr � (2x2 � 1)(3x2) � (x3 � 2)(4x)
yr � (2x2 � 1)d(x3 � 2) � (x3 � 2)d(2x2 � 1)

yr � 12x2 � 3x�2
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12.

13.

14. This is an indeterminate form for x � 2, so use L’Hopital’s rule.

lim
xS2

2
2x � 3 �

2
7

lim 
xS`

2
4 �

1
2

f r(u) � 2(cos u)d(cos u) � �2(sin u)(cos u)
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CHAPTER 4

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

GRAPHING

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ 

You should read this chapter if you need to review or you need to learn about

➜Graphing cubic and higher power curves

➜Finding max and min points of graphs

➜ Identifying points of inflection

➜ Interpreting graphs of real problems
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The next three chapters, graphing, max-min problems, and related rate prob-
lems, all deal with applications of the derivative. They are considered the most
difficult topics in the first semester of calculus, particularly graphing.

Before going any farther in this chap-
ter go back and review the graphing
of parabolas, paying particular atten-
tion to visualizing the curve before
plotting points and sketching the
curve. Also go back and look over the
concept of asymptotes in the chapter
on limits. Many authors approach
graphing in the calculus by using cal-
culus only. We do not use that
approach. Graphing is difficult
enough without using exclusively new
techniques. We use the graphing tech-
niques of algebra; particularly those
techniques discussed in the graphing
of parabolas and higher power curves. Let’s look at a couple of simple problems
and see how the derivative can be used in curve sketching.

Example 4-1 Sketch the graph of .

Solution: This is a straight line parallel to the
x-axis as shown in Fig. 4-1. Further, it is a hor-
izontal line. The derivative of is zero.

Any curve in the form y � const. is a hori-
zontal line parallel to the x-axis and has zero
slope.

Example 4-2 Sketch the graph of .

Solution: The derivative of is 2.
The slope is everywhere constant and equal
to 2 (see Fig. 4-2). Any linear function has a
constant derivative and a constant slope.

Example 4-3 Sketch the graph of 
y � � x 2 � 2x � 8.

Solution: This is a parabola (the 2 in the
exponent) that opens down (the minus sign

y � 2x

y � 2x

y � 4

y � 4
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Fig. 4-1

y

x

y = 4

Fig. 4-2

x

y
y = 2x



in front of the squared term) and it is shifted up or down and sideways (the 8
means it is shifted up and down and the presence of an x term means it is shift-
ed sideways). If you did not know this, go back and review the sections relating
to graphing parabolas.

Factoring, y � (�x � 2)(x � 4) tells
us that the curve crosses the x-axis
when x � 2 and x � �4. These are
the values of x that make y � 0. Place
these two points on the graph and
with the knowledge that the curve
opens down, expect a positive value
of y at the symmetry line, x � �1.
Substituting x � �1 into the original
function produces y � 9. These
points and the knowledge that the
curve is a parabola are sufficient for
drawing the sketch shown in Fig. 4-3.

There is another point that is so easy it
is not worth passing up. Look at the
original function and note that at x � 0, y � 8.

So, where does calculus come in? At the point (�1, 9) the slope of the curve is
zero. This means that the derivative must be zero at the point x � �1. When
the derivative of a function is zero, the slope is zero and the curve is flat (at that
point). Setting the derivative of equal to zero should pro-
duce the value of x � �1.

The function y � �x2 � 2x � 8 has derivative y� � �2x � 2 � �2(x � 1).
Setting produces the solution and we already know

for .

How does calculus help in graphing? When the derivative of a parabola is zero, the
curve has a or shape. Zero slope means the curve is flat and the only place
where a parabola is flat is at a peak or a valley. Because there may be more than
one peak or valley for a specific curve these points are called relative maximum or
relative minimum points. The broader application of this approach is very helpful
in higher (than 2) power curves such as the one in the next problem.

Example 4-4 Sketch the graph of .

Solution: The dominant term is so for large enough values of x the curve
looks like a cubic. It goes up to the right and down to the left. If you have any

x3

y � x 3 � 3x 2 � 2

´¨

x � �1y � 9
x � �1�2(x � 1) � 0

y � �x 2 � 2x � 8
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trouble understanding that last sentence go back to the chapter on graphing and
look up cubics. For x � 0, y � 2. With this most rudimentary analysis we know
that the curve goes up to the right, down to the left, and passes through (0,2).

The derivative of a cubic is a quadratic,
and a quadratic has two solutions or, in this
case, two points where the slope is zero.

The derivative of y � x3 � 3x2 � 2 is y� �
3x 2 � 6x = 3x(x � 2) with solutions x � 0
and x � 2. Substituting these values into
the original function produces the points
(2,�2) and (0,2). Place these points on the
coordinate system, remembering that they
are points on the curve where the slope is
zero, and the curve is easily sketched.

The point (1,0) is easy to calculate. And if
more detail is desired the values of (2,2)
and (�1,�2) can be obtained easily. These last two points show an approximate
position where the curve crosses the x-axis (Fig. 4-4).
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Quick Tip

A third power curve has a second power derivative. The second power derivative

has at most two points, solutions, where the derivative is zero. A fourth power

curve has a third power derivative and at most three points where the derivative

is zero and so on for higher power curves. The number of points where a

polynomial has zero slopes is at most equal to one less than the power of the

polynomial. There is, however, another little twist to this rule as illustrated in the

following problem.

Example 4-5 Sketch the graph of .

Solution: This is a fourth degree equation. The term dominates for large x
so the curve eventually rises to the right and the left. The point (0,1) is easy. The
point (1,0) is almost as easy. Now apply some calculus analysis. Differentiate the
function, set the derivative equal to zero, and find where the curve has zero slope.

3x4

y � 3x 4 � 4x3 � 1

y

x

Fig. 4-4



Differentiating the function, , and setting the
derivative equal to zero, , produces two values of x where the
slope is zero, x � 0 and x � 1. We already have the coordinates of these points,
and now we know the curve has zero slope at these points.

This analysis has produced a dilemma.
How can the curve go up to the right,
go up to the left, and have two points
such as or ? It can’t! One of the
points where the slope is zero must be
a point where the curve, going up or
down, becomes flat and continues on
up or down. The point x � 1 is lower
than the point x � 0 so the point at x �
1 must be the one with shape and
the point at x � 0 must be the one
where the curve flattens out (Fig. 4-5).
The exact shape in the vicinity of both
x � 0 and x � 1 can be checked by try-
ing some points in the original equa-
tion. There is, however, a better way. It
involves calculus and it is easier.

The first derivative of a function set equal to zero determines where the func-
tion has zero slope. At these points the curve is either concave up or concave
down, or has an inflection point where the slope is zero. The second derivative
of the function produces the answers here. To get a feel for how the second
derivative works look at the previous problems.

Example 4-3 is the sketch of and algebra analysis indicates
a parabola that looks like , symmetric about the line x � �1. The first deriv-
ative of y is and setting produces the point
(for zero slope) of x � �1. The second derivative of is

. The second derivative is negative at x � �1 and in fact everywhere on
the curve.

A simple parabola opens up ( ). The first derivative is
and the second derivative is . For a parabola that opens up,

the second derivative is positive at the minimum value.

Look at Example 4-4, the graph of . The first derivative
produces zero slopes at x � 0 and x � 2. The second derivative

is negative at x � 0, and positive at x � 2.yrr � 6x � 6
yr � 3x 2 � 6x

y � x 3 � 3x 2 � 2

yrr � 2yr � 2x � ()
´y � x 2 � ()x � ()

yrr � 2
y � �x 2 � 2x � 8

yr � 0yr � �2x � 2 � �2(x � 1)
¨

y � �x 2 � 2x � 8

´

¨´

12 x 2(x � 1)� 0
yr � 12x 3 � 12x 2 � 12x 2(x � 1)
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Both of these problems illustrate the rule that at points where the first derivative
goes to zero, the curves are concave up when the second derivative is positive
and concave down when the second derivative is negative. This is a calculus
method of determining where the curves are concave up and where they are con-
cave down.

Now let’s take a look at Example 4-5, the one with the horizontal inflection
point. The original function is with first derivative

producing x � 0 and x � 1 as the points where the slope is
zero. The second derivative is . At x � 1, the
second derivative is positive indicating the curve is concave up at this point. At
x � 0, the second derivative has value 0 indicating neither concave up nor
concave down, but a point of inflection.

These three problems illustrate the use of calculus in graphing. What we have
learned so far can be summarized as follows:

• Take the first derivative. Set this first derivative equal to zero and solve the
resulting equation to find points where the curve has zero slope.

• Take the second derivative and evaluate the second derivative at the points
where the slope is zero.

If the second derivative is positive, the curve is concave up.

If the second derivative is negative, the curve is concave down.

If the second derivative is zero, the curve has a point of inflection.

Example 4-6 Sketch the graph of .

Solution: The dominant term is so the curve eventually goes up to the right
and down to the left. The point x � 0, y � 0 is easy. Before differentiating, note
that the curve has zero slope at no more than two points because the highest
power is 3. Follow along the rules as they are written above.

x 3

y � x 3 � x 2 � 2x

yrr � 36x2 � 24x � 12x(3x � 2)
yr � 12x 3 � 12x 2

y � 3x 4 � 4x 3 � 1
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The first derivative is . Setting results in a
quadratic that cannot be factored so apply the quadratic formula

Figure 4-6 is a first cut at the graph. It is
based only on knowing that the curve
goes up to the right, down to the left,
passes through (0,0), and has zero slope
at and .

Is it possible to easily find the points where
the curve crosses the
x-axis? Maybe, maybe not, but it is at least
worth trying a couple of obvious points:

At , .

At , .

At , .

There is no point in trying further num-
bers. A cubic only crosses the x-axis at
most three times and we have the three
places where it crosses. Finding the y val-
ues at the turning points, where the slope
is zero, may or may not be important to
you. With this added information, the
curve can be sketched as in Fig. 4-7.

Second Solution: There is another fea-
ture of this curve that can be analyzed
using calculus. Look at the left part of
the curve that looks like a parabola
opening down and then the right part of
the curve that looks like a parabola opening up. On this left part of the curve
the slope becomes more and more negative until some point, between x � �1.2
and, x � 0.55, the slope of the curve, though still negative, starts becoming more
positive. The point where this happens is also called a point of inflection. The
strict definition of this point (of inflection) is that it is the point where the slope
changes from becoming more negative to becoming more positive or vice versa. 

y(�2) � �8 � 4 � 4 � 0x � �2

y(�1) � �1 � 1 � 2 � 2x � �1

y(1) � 1 � 1 � 2(1) � 0x � 1

y � x3 � x2 � 2

x � �1.2x � 0.55

x �
�2 � 222 � 4(3)(�2)

2(3)
�

�2 � 228
6

� 0.55,�1.2

3x2 � 2x � 2 � 0yr � 3x 2 � 2x � 2
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The first derivative of is and this resulted
in the points and , where the curve crossed the x-axis. The
second derivative is , which is positive at and negative at

confirming the previous analysis of this curve. The new feature is
obtained by setting the second derivative equal to zero . The sec-
ond derivative is zero at . Look again at the curve in Fig. 4-7 and see
that this is a very reasonable point for the curve to change slope from becom-
ing more and more negative to becoming more and more positive. This is
another graphing tool involving calculus. 

Example 4-7 Sketch the graph of .

Solution: This is a fifth degree curve so it increases (rises) rapidly with large
positive x and goes rapidly negative for large negative values of x. The function
factors to producing the point x � 0, y � 0.

The first derivative is 

Setting the first derivative equal to zero ( ) produces three points x � 0,
3/2, and �1. These are the points where the curve has zero slope.

yr � 0

yr � 20x 2(2x � 3)(x � 1)

yr � 20x 2(2x 2 � x � 3)

yr � 40x 4 � 20x3 � 60x 2

y � x 3(8x 2 � 5x � 20)

y � 8x 5 � 5x 4 � 20x 3

x � �1/3
2(3x � 1) � 0

x � �1.2
x � 0.55yrr � 6x � 2

x � �1.2x � 0.55
yr � 3x 2 � 2x � 2y � x 3 � x 2 � 2x
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Quick Tip

The analysis of points of inflection can be confusing, which is why these sub-

tleties have been put off until now. There are two kinds of points of inflection,

one where the curve goes to zero slope but does not have a or shape, and

the other where the curve changes from having an increasingly negative slope to

an increasingly positive slope.

The confusion does not end here, however. The first type of point of inflection is

determined by evaluating the second derivative at the point where the first deriv-

ative goes to zero. The second type of point of inflection, called a critical point,
is found by setting the second derivative equal to zero. Read this paragraph again

and again until the distinction is clear in your mind.

¨´



The second derivative is

To determine the shape of the curve
where the slope equals zero, find y��
at each point: , horizontal
point of inflection; , 
shape; , shape.

The value of the function at each
turning point is found by putting the
values of x in the function.

At , 

At , 

At , 

All the inflection points, both horizontal and vertical, are found by setting
:

. The inflection points are at and the solutions to
are

These are most reasonable points, being where we expect the points of inflec-
tion to occur. The function is sketched in Fig. 4-8.

So far we have looked at polynomials. This is the type of function you will
encounter most often. Your course may or may not include the graphing of
rational functions (polynomial fractions). Polynomial fractions introduce one
more interesting twist to the use of derivatives in curve sketching, and that is:
“What happens to a curve when the derivatives are undefined.” This is best
illustrated by example.

Example 4-8 Sketch the graph of .

Solution: The denominator of is zero at x � �1 meaning that the function
does not exist there, so draw a vertical line at x � �1. For large x, the function

f(x)

f(x) �
x

(x � 1)2

x �
3 � 29 � 4(8)(�6)

2(8)
�

3 � 14.2
16

� �0.70, 1.1

8x2 � 3x � 6 � 0
x � 020x(8x2 � 3x � 6) � 0

yrr � 0

y(�1) � �1(8 � 5 � 20) � 7x � �1

y(3/2) � (3/2)3[8(3/2)2 � 5(3/2) � 20] < �32x � 3/2

y(0) � 0x � 0

¨yrr (�1) � �100
´yrr (3/2) � 225

yrr (0) � 0

yrr � 20x(8x2 � 3x � 6)

yrr � 160x3 � 60x2 � 120x
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looks like 1/x. Look back to Chapter 2 and refresh your memory on what a 1/x
curve looks like and keep this shape in mind throughout the rest of the analy-
sis. An easy point to plot is (0,0). Now take the first derivative of the function.

The derivative is zero when x � 1. And when x � 1, . The curve is flat
at this point. 

At this point in the analysis some “algebraic” analysis is in order. When x is less
than �1, the function is negative and as x gets more and more negative the
function looks like the 1/x curve. When x is between 0 and �1 the function is
negative, and close to �1 the function is large negative. 

The first derivative has shown that the curve is flat at (0,1/4) but the basic shape
of the 1/x curve indicates that looks like the 1/x curve for large x.

The curve to the right of the x � �1 line starts out very negative, passes through
the point (0,0) is flat at (1,1/4) and then assumes the classic 1/x shape for large x.
Now look at the slope situation. To the right of x � �1 the curve rises with nega-
tive slope passing through (0,0) goes flat at (1,1/4) and somewhere beyond x � 1
switches from a slope going more negative to a slope going more positive. This is
a point of inflection that should come out of analysis using the second derivative. 

Take the second derivative.

The second derivative is equal to zero when x � 2. . The second deriv-
ative confirms the inflection in the slope and gives the point (2,2/9) as the spe-
cific point. With this information the curve can be sketched as shown in Fig. 4-9.

f(2) � 2/9

f rr(x) �
2x � 4

(x � 1)4

f rr(x) �
(x � 1)2[�(x � 1) � 3(1 � x)]

(x � 1)6

f rr(x) �
(x � 1)3(�1) � (1 � x)[3(x � 1)2(1)]

(x � 1)6

f(x)

f(x) � 1/4

f r(x) �
1 � x

(x � 1)3

f r(x) �
(x � 1)(1 � x)

(x � 1)4

f r(x) �
(x � 1)2(1) � x[2(x � 1)](1)

(x � 1)4
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Example 4-9 Sketch the graph of .

Solution: At this function is undefined ( ). Therefore, draw a dashed
vertical line on the coordinate axes at indicating that the curve may exist
to the right or left of this line, but not on the line. There is no dominant term in
the same manner as for polynomials but, applying similar reasoning, look what
happens when x is a large positive or negative number. When x is large the

in the denominator looks like x and the function looks like . In the
language of the chapter on limits: As , .

Add a dashed line, , to the coordinate axes remembering that this is an
asymptote line.

Now apply some calculus analysis. The first derivative of the function is, using
the quotient rule:

Before setting , note that the derivative does not exist at . But we
already knew that because the function does not exist at so it is not surpris-
ing that the derivative does not exist there. Note, however, that as x approaches 1
from either the positive or negative side, the slope of the curve is negative. This
information may be helpful in sketching the graph. (See Fig. 4-10.)

x � 1
x � 1yr � 0

yr �
(x � 1)(2x) � x 2

(x � 1)2 �
2x2 � 2x � x 2

(x � 1)2 �
x 2 � 2x
(x � 1)2

y � x

y < xx S �`
y < xx � 1

x � 1
1/0x � 1

y � x 2/(x � 1)
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Setting produces , and the two points where the slope equals
zero are and . The values of the function for these two points are: y(0)
� 0 and so the  slope of the curve  is zero at (0,0) and (2,4).

If you are unsure of the shape of the curve in certain regions, check a point.
With the information generated from the calculus and the concepts of limits you
should get very close to the correct curve. As you gain more confidence you will
not resort to checking specific areas of the curve by testing a point.

The previous problem is typical of the more difficult ones you will encounter in
your course. It is probably beyond what you will encounter on a test because of the
complexity of the analysis and the potential for confusion. Sketches of the graphs
of polynomials are much more popular as test problems. Know how to graph poly-
nomials and you will be well along toward a good test score in graphing.

Having gone through examples of what you can expect to encounter in graph-
ing problems, it is now time to write down some procedural guidelines for
graphing curves of the general form .

Guidelines for Graphing with Calculus
1. Look for the dominant term. If the function is a polynomial, the highest-

power term gives the shape of the curve for large positive or negative numbers

y � f(x)

y(2) � 22/(2 � 1) � 4
x � 2x � 0

x(x � 2) � 0yr � 0
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and one less than this highest power gives the maximum number of points
where the curve has zero slope.

2. If the function is a fraction ask how it behaves for large x. Does it look like
a straight line, a parabola, or what? Also look for places where the curve
does not exist.

3. Take the first derivative. Set the first derivative equal to zero and solve for
values of x where the curve has zero slope. Determine the y value at these
points and add these points to the coordinate axes.

4. Take the second derivative. Evaluate the second derivative at the points
where the slope is zero: If the second derivative is positive, the curve is con-
cave up; if the second derivative is negative, the curve is concave down; if
the second derivative is zero, the curve has a point of horizontal inflection.

5. Set the second derivative equal to zero and solve for values of x where the
curve changes concavity. These are points where the slope of the curve
changes from going more positive to going less positive or from going more
negative to going less negative.

6. Sketch the curve. If you are unsure of the curve in certain places, plot a few points.

These are guidelines for graphing functions. You may not always need all of the
steps listed here. Depending on what you are looking for in the problem, you
may not need to perform each step in detail. These guidelines will, however,
allow you to graph just about any function you encounter. Now it is time for
some application problems.

Example 4-10 The sales for a certain consumer item are growing in a quad-
ratic way with time while the discard rate remains a constant over time.
Analysts expect this trend to continue for 5 years. The number of these items in
the hands of consumers as a function of time is . The
3.2t2 term represents the quadratic growth in sales, the �3t term represents the
discard rate, and the 24 represents the number now in consumer hands. Sketch
the graph of N vs. t. Determine if there is anything else in the graph or the cal-
culus analysis that will help in business planning.

Solution: This function is a quadratic that opens up. It starts at N � 24 when
t � 0. Only positive values of t have meaning. The equation cannot be factored
so let’s continue with the analysis remembering that we can always come back
to the solution for N � 0 if necessary.

The first derivative of the function is .

Setting the first derivative equal to zero produces and the value
for zero slope of N vs. t. The value of the function at is

.N(0.47) � 3.2(0.47)2 � 3(0.47) � 24 � 23.3

t � 0.47t � 0.47
6.4t � 3 � 0

Nr � 6.4t � 3N(t) � 3.2t 2 � 3t � 24

N(t) � 3.2t 2 � 3t � 24
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The second derivative is 6.4, a
positive number so the shape of
the curve at , and every-
where is . With this informa-
tion the curve can be plotted as
in Fig. 4-11. The curve never
crosses the t-axis.

In addition to showing graphi-
cally the number of units pre-
dicted as needed, the first deriv-
ative tells us something else.
For the first half year the num-
ber of items in consumer hands
will decline (the minimum in
the curve is at 0.47 year), then will rise. If the model is correct, suppliers need
to be prepared for modest decrease followed by a much greater increase in
demand for the product.

Example 4-11 The volume of lumber available in a managed forest follows
the formula over the first 60 years’ life of the forest.
Find the general shape of the curve from 0 to 60 years and determine the opti-
mum time for harvesting the forest.

Solution: Only positive time from 0 to 60 years is
interesting. The volume of lumber is in arbitrary
units depending on the size of the forest. The
curve starts out as a quadratic and then begins to
flatten out with the growth of the t3 term. This is
reasonable. Trees grow rapidly in their early years
and then slow down as they reach maturity.

Take the first derivative of the function V �
(0.08)t2 � (0.001)t3 to obtain V� � (0.16)t �
(0.003)t2. Set this first derivative equal to zero to
find the times when the curve has zero slope.

produces values of , and . The time of 533 years
is well beyond where the formula is valid. The time is very reasonable. The
curve is flat at and rises throughout the 60 years when the formula is valid.

Take a second derivative: and set this equal to zero;
produces a value of . This second

derivative test shows a change in concavity at 27 years. This means that the
t � 0.16/0.006 � 27 years0.16 � (0.006)t � 0

Vrr � 0.16 � (0.006)t

t � 0
t � 0

t � 533t � 0t(0.16 � 0.003t) � 0

V � (0.08)t 2 � (0.001)t 3

´
x � 0.47
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change in volume with time, the slope of the V vs. t curve, reaches a maximum
at 27 years and after this time begins to drop off.

The most appropriate time to harvest this forest is at 27 years. A year or two
more or less from this number won’t make much difference because the slope
is not changing rapidly around 27 years (Fig. 4-12).
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Example 4-12 A certain disease is infecting an animal population. Experience
with this disease shows that after injection with the appropriate antidote the
number of animals infected with the disease follows the following formula: 

where t is measured in weeks. Find the time
after the injection when the most animals will
be affected by the disease and the total num-
ber affected. P(t) is measured in thousands.

Solution: The t2 term in the denominator
ensures that as time goes on the number of
infected animals will eventually tend to zero. If
it did not, we should be looking for another antidote! There are no positive values
of t where the curve does not exist. If this model correctly predicts the total num-
ber of animals affected by the disease and the time when this maximum occurs,
then the antidote is working as predicted and we are assured that all the animals
will eventually be cured shortly after the disease peaks.

At t � 0, P(t) � 8. This is when the antidote is administered to the animals.
Finding the general shape of the P vs. t curve is ideally suited to calculus analysis.

P(t) �
(20t � 8)
(t 2 � 1)



The first derivative of is 

Set the first derivative equal to zero and obtain

This equation cannot be factored, so solve by quadratic formula:

t � 0.68,�1.5

Only the positive value has meaning so take t � 0.68 weeks for the zero slope
condition and calculate P

The disease should peak at 0.68 week or 5 days after administration of the anti-
dote with a maximum of 14.8 thousand animals infected on that day. After the
fifth day, the number infected should decline as illustrated in Fig. 4-13.

P(0.68) �
20(0.68) � 8
(0.68)2 � 1

�
13.6 � 8

1.46
�

21.6
1.46

� 14.8

t �
�4 � 216 � 4(5)(�5)

2(5)
�4 � 2116

10

�5t 2 � 4t � 5
(t 2 � 1)2 � 0  or  5t 2 � 4t � 5 � 0

Pr �
(t 2 � 1)20 � (20t � 8)(2t)

(t 2 � 1)2 �
�20t 2 � 16t � 20

(t 2 � 1)2

P(t) �
20t � 8
t 2 � 1
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✔ Apply “algebraic” techniques along with calculus

✔ Use first derivative to find local max or min or inflections

✔ Use second derivative to determine concavity

✔ Use second derivative to find inflections in slopes

PROBLEMS

1. Graph .
2. Graph .
3. Graph .
4. Graph .

5. Graph for positive u.

6. Graph .

ANSWERS

1. This is a parabola that opens up. The func-
tion factors to y � (x � 4)(x � 2) so the
curve crosses the x-axis at 2 and �4. y(0) �
�8. The first derivative is y� � 2x � 2 � 2(x
� 1) with y� � 0 at x � �1. y(�1) � (3)(�3)
� �9. This is the information necessary to
draw the parabola. 

2. This is a cubic with the cubic shape for large
x. The curve goes through (0,2). The first
derivative is y� � 3x2 � 6x � 3x(x � 2) so the
slope is zero at x � 0 and x � 2. y(2) � 8 �
12 � 2 � � 2. At x � 0, is
negative (maxima), and at x � 2, is posi-
tive (minima). This is sufficient information
to draw the curve.

3. This is a fourth degree equation so for large
x it looks like a quadratic, but even more
dramatic. f(0) � �8. The first derivative is

.
The slope is zero when x � 0 and x � �3.
f(�3) � 19. Take the second derivative:
f��(x) � 12x2 � 48x � 36 � 12(x � 3)(x � 1).
At x � 0, the second derivative is positive
indicating a minimum. At x � �3, the

f r(x) � 4x 3 � 24x 2 � 36x � 4x(x � 3)2

yrr
yrryrr � 6x � 6

y �
x 2

x � 2

y � u �
1
u

y � x 3 � 3x 2 � 3x � 1
f(x) � x 4 � 8x 3 � 18x 2 � 8
y � x 3 � 3x 2 � 2
y � x 2 � 2x � 8
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second derivative is zero indi-
cating a point of inflection. The
second derivative is zero when x
� �1 and �3. The point at x �
�3 is a horizontal inflection.
(The first derivative is zero.)
And the point at x � �1 must
be where the curve changes
from becoming more negative
to more positive. (The first
derivative is not zero at this
point.) This is sufficient infor-
mation to sketch the curve.

4. This is a cubic with the cubic
shape for large x. At x � 0, y � 1.
The first derivative is y� � 3x2 �
6x � 3 � 3(x � 1)2. Slope is zero
at x � 1; . The second
derivative is 6x � 6 �
6(x � 1) and is equal to zero at
x � 1, indicating an inflection
point.

5. This curve is a combination of
the classic 1/u shape combined
with a linear term. For large u
the curve approaches a straight
line, and for small u the func-
tion is large. The line y � u is
an asymptote line. The curve
can be sketched with this infor-
mation but application of calcu-
lus provides other important
features. The first derivative is

, and = 0 when
. The curve is flat at u � 1

and y � 2.
6. There is a vertical asymptote at

x � 2, . For large posi-
tive x the curve looks like 
and for large negative x the
curve looks like . y < �x

y < x
y(0) � 0

u 2 � 1
yryr � 1 � 1/u 2

yrr �
y(1) � 2

x

y

(0, −8)

(−1, 3)

(−3, 19)

x

y

(0, 1)

(1, 2)

u

y

(1, 2)



The first derivative is .

The slope is zero when x � 0 and 4. .

Taking a second derivative looks
complicated so look to an “algebra-
ic” technique.

As . As x
2(neg), y � �.

This completes the analysis neces-
sary to sketch the curve.

S
Sx S 2(pos), y S �`

y(4) � 8

yr �
(x � 2)(2x) � x 2(1)

(x � 2)2 �
x(x � 4)
(x � 2)2
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CHAPTER 5

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

MAX-MIN PROBLEMS
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

You should read this chapter if you need to review or you need to learn about

➜Designing containers for minimum volume

➜Finding maximum areas for given constraints

➜Designing beams for maximum strength

➜Maximum production for agricultural crops

➜Minimizing production costs

➜Maximizing profit by price selection

81
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Max-min problems are unique to calculus. As the
name implies, a variable is maximized or minimized
in terms of another variable. A typical problem
would ask the question:

“What is the maximum volume of a cylindrical con-
tainer that can be made from a given amount of
material?” The volume of the container is the vari-
able to be maximized while the surface area of the
container is limited by the amount of material
allowed. In this example an equation for the volume
( ) is the defining equation. It defines the
variable to be maximized, the volume, in terms of
the dimensions of the container. The specification of
a certain amount of material for the container is
called the constraint equation. It relates the variables
in the defining equation so the defining equation can be written in terms of one
variable. This all becomes much clearer after a couple of problems.

Once the defining equation is written in terms of one variable it is differentiated
to find where the slope is zero. Where the slope of this curve is zero, the curve
is at a maximum or a minimum. The value of the second derivative tells whether
that point is a maximum or a minimum. Finding the points where the slope is
zero and then identifying those points as either maximum , or minimum , has
already been done in the graphing chapter. Max-min problems use much the
same analysis techniques as with graphing.

Writing the defining equation is usually relatively easy. The hard part of max-
min problems is finding the constraint equation and then doing the algebra so
as to get the defining equation written in terms of one, other than the one to be
maximized or minimized, variable and in as simple a form as possible.

There are very few max-min problems where the defining equation is written
directly in terms of one variable. They are seen rarely on tests. They are consid-
ered too easy! Let’s slowly go through a couple of max-min problems before setting
down guidelines for working the problems and going on to the more challenging
problems. Learn the procedure and max-min problems are not difficult.

Example 5-1 Design an open-top box for maximum volume. The box is to be
made from a square piece of material of dimension a. (See Fig. 5-1.) What size
square should be cut from each corner to make the box?

Solution: The side of the square taken from each corner is x. After the cor-
ner pieces are removed, the box is formed by bending the sides along the lines
indicated.

´¨

V � c
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The defining equation is .

The bottom of the box is by and
the height is x. The a is a constant, making the
equation for V one with only one variable, x.
Multiplying, we have the following:

Differentiate V, and set the derivative equal to
zero to find the maxima and minima of the curve
of V vs. x.

Setting produces values for x of a/6 and a/2. These are the maxima or
minima. The value a/2 is obviously the minimum since this is a box of zero vol-
ume! The value a/6 must be the maximum. The second derivative test will
tell for sure. The second derivative of V is V� � 24x � 8a. At x � a/2, V� �
12a � 8a � 4a (positive or minima), and at x � a/6, V� � 4a � 8a � � 4a (neg-
ative or maxima).

Maximum volume occurs when the square piece removed from the edge of the
original square is one-sixth the length of the side.

Example 5-2 A rectangular area is to be enclosed with 320 ft of fence (Fig. 5-2).
What dimensions of rectangle give the maximum area?

Solution: The quantity to be maximized is the area, the
product of the lengths of the two sides of the rectangle. The
defining equation, the A equals . . . equation, is .
Before maximizing the area (taking the derivative of A), the
product ab must be written in terms of one variable. This
requires a “constraint” equation relating a to b. The con-
straint in the problem is that the total length of fence

must be equal to 320. With this constraint equation
A can be written in terms of a or b, it makes no difference.

Solve the constraint equation for a, and substitute in the
area equation.

so and A � (160 � b)b � 160b � b2a � 160 � b2a � 2b � 320

2a � 2b

A � ab

Vr � 0

Vr � 12x2 � 8ax � a2 � a2 � 8ax � 12x2 � (a � 6x)(a � 2x)

V � (a2 � 4ax � 4x2)x � 4x3 � 4ax2 � a 2x

a � 2xa � 2x

V � (a � 2x)2x
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The maximum occurs when the graph of A vs. b goes through a maximum. A
maximum is defined, in calculus, as slope zero and second derivative negative.

Differentiating to find and setting this equal to zero we get

160 � 2b � 0 and b � 80.

The second derivative is confirming as a maximum.

Go back to the constraint equation and note that for , . The area
is maximum for a square.

Often max-min problems can be done with the first and second derivative. If
you feel a little insecure, sketch the graph of the function. All the information,
and then some, is already available for sketching the graph.

The original equation 
is a parabola that opens down and goes
through the points and 
with symmetry line at . If you
had any trouble with that last sentence,
go back to the graphing of parabolas
and review the procedure. The calculus
tells us that the slope is zero at 
and that the curve goes through a max-
imum at that point. This confirms what
we already know from algebra analy-
sis. The curve is sketched in Fig. 5-3.

This problem is an excellent pattern for
max-min problems. Go through this
problem again concentrating on the
procedure, not the mathematics, and follow along the guidelines for doing max-
min problems.

Guidelines for Max-Min Problems

1. Draw a diagram to help visualize the problem.

2. Write down the defining equation.

3. Tie the two variables in the defining equation together with a constraint
equation.

4. Write the defining equation in terms of one variable.

b � 80

b � 80
b � 160b � 0

A � 160b � b2

a � 80b � 80

b � 80d 2A
db2 � �2

dA
db

� 160 � 2b
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5. Take the first and second derivatives to find maxima and minima.

6. Go back to the constraint equation and find all the quantities desired in the
problem.

Example 5-3 Revenue as a function of price is given by the formula R(p) �
200p � 8p2. Find the price for maximum revenue.

Solution: This revenue statement is realistic. For small price, p, the revenue
rises linearly but as p increases sales fall off as indicated by the p squared term.
Revenue should peak reaching a maximum when the R vs. p curve goes flat. So,
take the first derivative and find the price for maximum revenue.

and setting this equal to zero . The second

derivative is �16 confirming that the point at 12.50 is a maximum.

Maximum revenue occurs when the price is set at $12.50.

Example 5-4 The strength of a rectangular wooden beam varies jointly as the
width and cube of the depth of the beam. Find the dimensions of the strongest
beam that can be cut from a log of radius R.

Solution: Sketch the round log and the rectan-
gular beam. Do you remember word problems
in algebra that contained phrases like “. . . varies
jointly as . . . ?” This problem is included to
remind you that some instructors use this lan-
guage in calculus problems. The first statement
in the problem, translated into algebra, is

. This is the defining equation.

To translate the problem statement completely,
there should be a constant in front of the w but
we are not going to calculate specific strengths,
just the dimensions for maximum strength so the
constant is not necessary. The constraint equa-
tion involves writing the Pythagorean statement for the right triangle formed by
d, w, and 2R (Fig. 5-4).

The constraint equation can be solved for either d or w and
substituted in the defining equation. Either way does not look too appealing.

d 2 � w 2 � 4R 2

S � wd 3

p �
200
16

� 12.50Rr(p) � 200 � 16p
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Solving for w keeps the numbers smaller so write and sub-
stitute into the defining equation to write S in terms of d only.

Differentiate S with the product rule

Set equal to zero

and . The positive value for d substituted into the constraint equa-
tion produces and .

The maximum strength beam that can be cut from a log of radius R is one of dimen-
sions R and It is not necessary to formally determine that this is a maximum.
It is the only reasonable choice from the first derivative equals zero condition.

Example 5-5 A park area of 5000 m2 is to be built in the shape of a rectangle
along a river. Fencing will be on three sides. What is the minimum length of
fencing for the desired area?

Solution: Fencing is required only on three sides of the
rectangle as shown in Fig. 5-5. The defining equation is for
the perimeter, the variable we want to minimize:

. The constraint equation is from the area
requirement. Stated in the form of an equation the con-
straint is: . In order to write P in terms of one
variable, solve the area equation for b and substitute.

so

Take the derivative of P: and set :

and or .a � 50a 2 � 25002 �
5000

a2

Pr � 0Pr � 2 � 5000(�a�2)

P � 2a �
5000

a � 2a � 5000a�1b �
5000

a

ab � 5000

P � 2a � b

23 R.

w � Rw2 � 4R2 � 3R2 � R2
d � �23 R

3d 2(4R2 � d 2)1/2 �
d4

(4R2 � d 2)1/2  or d 2 � 3(4 R2 � d 2)  or  4d 2 � 12 R2

Sr

� 3d 2(4R2 � d 2)1/2 �
d4

(4R2 � d 2)1/2

Sr � (4R2 � d 2)1/2(3d 2) � d 3Q
1
2R(4R2 � d 2)�1/2(�2d)

S � (4R2 � d 2)1/2d 3

w � (4R2 � d 2)1/2
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The second derivative of P is , which is positive for
all positive values of a, so is a minimum. Putting back into the con-
straint equation: yields

. The dimensions ,
provide the minimum fencing

requirement. The graph of P vs. a is
helpful in understanding this problem.
The form is most con-
venient for graphing. Only positive a

has meaning.

The first step in graphing (see the
guidelines for graphing) is to look for
dominant terms. There are two here.
The 2a term dominates for large a and
the 5000/a term dominates for small a.

In mathematical terms:

as , ; and as , .
The value of the function at , the point where the slope equals zero, is

.

With this information the curve can be sketched as in Fig. 5-6.

Example 5-6 An orange farmer knows from experience that in a certain field
60 orange trees will produce an average of 400 oranges per tree. For each addi-
tional tree planted the average yield per tree will drop by 4 oranges. What num-
ber of trees will produce maximum total yield?

Solution: The total yield for 60 trees with an average of 400 oranges per tree is:

For one more tree the yield is: 

Y Z61 � (61 trees) 
396 oranges

tree � 24,156 oranges

Y Z60 � (60 trees) 
400 oranges

tree � 24,000 oranges

P(50) � 2(50) � 5000/50 � 200

a � 50
P < 2aa S `P S �`a S 0

P � 2a �
5000

a

b � 100
a � 50b � 100

50b � 5000
a � 50a � 50

Prr � �5000(�2a�3) �
5000

a 3
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For another tree (total 62) the yield is: 

Looking at these numbers, the general formula for total yield as the number of
trees is increased is:

where x is the number of trees in excess of 60.

Problem statements similar to this one can be confusing. You may have already
figured that out! One way of getting a handle on the defining equation is to put
in some numbers. In this case, writing the total yield for 60 trees producing an
average of 400 oranges per tree and then increasing the number of trees by 1
and decreasing the yield per tree by 4, then repeating the process (increasing
the number of trees to 62 and decreasing the yield per tree another 4 oranges)
provides an education in how to write the general statement for the yield. The
numbers also allow you to check the defining equation you have written.

Write the yield equation as .
The first derivative of Y is and setting , .

The second derivative of Y is verifying that is a maximum.
The total number of trees for maximum yield is 80 (20 more than the original 60).

Example 5-7 Find the minimum cost to construct a cylindrical container if
material for the top and bottom costs 4 cents per square inch and material for
the sides costs 3 cents per square inch. The container is to have volume 100 in3.

Solution: Draw a cylinder of
radius r and height h. The area of
the top and bottom is . The
area of the side is . Imagine
the side as a piece long, the
circumference of the container,
and h high. (See Fig. 5-7.)

The defining equation is the cost
equation which in words is 4
cents times the area of the top
and bottom plus 3 cents times
the area of the side.

C � 4(pr 2 � pr 2) � 3(2prh) � 8pr 2 � 6prh

2pr
(2pr)h

pr2

x � 20Yrr � �8

x � 20Yr � 0Yr � 160 � 8x
Y � (60 � x)(400 � 4x) � 24,000 � 160x � 4x 2

Y � (60 � x)(400 � 4x)

Y Z62 � (62 trees) 
392 oranges

tree � 24,304 oranges
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The constraint is that the volume must be 100 in3. The volume of a cylindrical
container is the area of the bottom, , times the height, h: .

Set , solve for h, and substitute into the defining equation: 
or and

The first derivative of C is: and setting produces

or and

The second derivative of C is:

is positive for all positive r indicating a minimum for the curve.

Substituting the r for zero slope back into the constraint equation 
produces

or

Example 5-8 Postal rates increase when the girth (once around) plus the
length of a package exceeds 84 in (Fig. 5-8).
What are the dimensions of a “brick-
shaped” box with square ends to provide
maximum volume?

Solution: The defining equation is the
volume, which in this case is the area of the
end, x2, times the length, y: V � x2y.

The constraint is that the girth, 4x, plus the
length, y, is limited to 84: 4x � y � 84.

The simplest way to write the 
equation in one variable is to solve the con-
straint equation for y: and sub-
stitute for y in the defining equation.

V � x 2(84 � 4x) � 84x2 � 4x 3

y � 84 � 4x

V � c

h �
100
p ¢16p

600
≤ 2/3

< 6.1100 � p¢ 600
16p

≤ 2/3

h

100 � pr 2h

Crr

Crr � 16p �
1200

r 3

r �
Å
3 600

16p
< 2.3r 3 �

600
16p

16pr �
600
r 2 � 0

Cr � 0Cr � 16pr � 600r�2

C � 8pr 2 � 6pr 100
pr 2 � 8pr 2 �

600
r � 8pr 2 � 600r�1

h � 100/pr 2
100 � pr2hV � 100

V � pr2hpr 2

Max-Min Problems 89

Fig. 5-8

y
x

x



The first derivative of V is and setting ,
produces two values of x where the slope of V vs. x is zero:

and . The value produces a zero volume, about as minimal
as you can get, so is a good bet for maximum volume.

The second derivative of V is . Evaluating at is
verifying our suspicion that

produced the maximum volume.

Going back to the constraint equation solved for y, the corresponding y dimen-
sion is

.

A box with a square end 14 in on a side and length 28 produces the maximum
volume within the girth and length restrictions.

✔ Write the defining equation

✔ Write the constraint equation

✔ Use the constraint to write the defining in one variable

✔ Differentiate for the max or min

✔ The second derivative confirms max or min

PROBLEMS

1. Maximize with the constraint .
2. Find the minimum for with the constraint .
3. Find the maximum and minimum points for the function f(x) � 2x 3 � 3x 2

� 12x � 1 and use the second derivative to determine whether each point
is a maximum or minimum.

4. Find the maximum and minimum points for the function y � 4x3 + 3x2 �
6x + 1 and use the second derivative to determine whether the points are
maxima or minima.

5. Cylindrical plastic containers are to hold 750 cc. The cost of the cans is
directly proportional to the amount of material in the cans. What dimen-
sions (height and radius) produce minimum cost?

6. A rectangular exercise area for your pet rabbit is to be built using an exist-
ing L-shaped fence. What dimensions provide minimum fencing and 250 m2

area?

2x � y � 8G � x 2 � y 2
x � y � 8P � xy

y � 84 � 4(14) � 84 � 56 � 28

x � 14
Vrr(14) � 168 � 24(14) � 168 � 336 � �168

x � 14VrrVrr � 168 � 24x

x � 14
x � 0x � 14x � 0

12x(14 � x) � 0
Vr � 0Vr � 168x � 12x 2
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7. In a certain manufacturing operation there are at present 40 workers, each
worker capable of producing 50 items per day. For each two additional
workers production per worker drops by 1 item per day. What is the num-
ber of workers for maximum production?

8. Marketing experience indicates that the revenue from the release of a
DVD follows where p is the price of the DVD.
What is the price for maximum revenue?

9. A clothing manufacturer makes sweat shirts. The cost of making x shirts

(valid on production runs up to 500) follows: .

The average cost per shirt is this function divided by the number of shirts

produced. . Find the production run

that has the lowest cost per shirt.

10. You need to make open top boxes from an 8 � 18 in rectangle of material
by cutting squares out of the corners and folding up the sides. Design the
largest volume box that can be made this way.

ANSWERS

1. Substitute for x in the defining equation: and take
the derivative. . Set this derivative to zero and find y � 4. The
second derivative is negative everywhere so this is a maximum. Values of

and produce maximum P.
2. Substitute for y. . The first deriva-

tive is . This gives x � 3.2 as the minimum. The second
derivative is always positive so this is a minimum.

3. The first derivative is which is zero for x � 1 and x � �2.

The second derivative is is positive for x � 1, indicating a

minimum for x � 1, and negative for x � �2, indicating a maximum, for

x � �2.
4. The first derivative is . The curve has extrema at 1/2

and �1. The second derivative is , which is positive at 1/2
indicating a minimum at this point, and negative at x � (1 indicating a max-
imum at this point.

5. We need to minimize the area. (Area is directly related to cost.) The area
of the ends is each and the area of the cylinder walls is the circumfer-
ence of the end caps times the height of the cylinder: . The volume is
the constraint and the volume is the area of the end caps times the height

. The constraint equation is , and the defining equation is750 � pr 2hpr 2h

2prh
pr 2

yrr � 24x � 6
yr � 12x2 � 6x � 6

d 2f

dx 2 � 12x � 6

df
dx

� 6x2 � 6x � 12

Gr � 10x � 32
G � x 2 � (8 � 2x)2 � 5x 2 � 32x � 64

y � 4x � 4

Pr � 8 � 2y
P � (8 � y)y � 8y � y 2

C(x) �
C(x)

x � 2000x�1 � 10 � 0.2x

C(x) � 2000 � 10x � 0.2x 2

R � 20,000p � 1000p 2
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. Solve the constraint equation for h, substitute in the
equation for area and differentiate.

Set

Substitute this r value into the constraint equation to find h � 9.9
6. The problem is to minimize the length of fence a � b with the constraint

that the area ab be equal to 250.

7. The yield follows the equation
. The first

parenthesis represents the number of
items produced per worker and the second is the drop off in production for
each additional worker. Put in values of 0, 1, and 2 to convince yourself that
this is the correct statement of the yield. Write the yield, first derivative to
find the extrema in number of workers and second derivative to determine
that this number produces maximum yield.

The second derivative confirms a maximum in yield with the addition of 7.5
workers.

8. The maximum in revenue is the price when d revenue/d price is equal to
zero and the second derivative is negative.

Rr � 20,000 � 2000p

R � 20,000p � 1000p2

Yrr � �4

Y r � 60 � 4x and for Y r � 0, x � 15

Y � 2000 � 100x � 40x � 2x2 � 2000 � 60x � 2x 2

Y � (40 � 2x)(50 � x)

 substituting in ab � 250, a � 15.8

250
b2 � 1 b2 � 250 b � 15.8  and

dL
db

� �250b�2 � 1

L � 250b�1 � b

a �
250
b

L � a � b with ab � 250,

dA
dr

� 0 so r 3 �
1500
4p � 119 and r � 4.9

dA
dr

� 4pr �
1500

r 2

A � 2pr 2 � 2pr 750
pr 2 � 2pr 2 �

1500
r

A � 2pr 2 � 2prh
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Maximum revenue is for a price of $10.00 for the DVD.
9. The problem asks for the minimum in the curve, so find the first

derivative.
and setting this equal to zero

so x � 100

The second derivative is positive everywhere so a production run of 100
shirts produces the minimum cost per shirt.

10. Draw an 8 � 18 in rectangle showing squares at the corners. The volume,
the quantity to be maximized is .Take the deriva-
tive of V and find the value of a for maximum volume.

Solving for by quadratic formu-
la produces two values, 1.7 and 6.9. The
second derivative is 
and is negative for 1.7 and positive for
6.9 indicating that the 1.7 value is the
maximum value. In addition, the only
value of a that will work is 1.7. An a value of 6.9 makes the cut out squares
greater than the width of the piece. For a � 1.7, the volume is 114.

Vrr � �104 � 24a

Vr � 0

Vr � 144 � 104a � 12a2

V � 144a � 52a 2 � 4a3

V � a(18 � 2a)(8 � 2a)

2000
x 2 � 0.2

C(x)r � �2000x�2 � 0.2

C(x)

Rrr � �2000 maximum

Rr � 0 when p � 10
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CHAPTER 6

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

RELATED RATE
PROBLEMS

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

You should read this chapter if you need to review or you need to learn about

➜Find related rates through implicit differentiation

➜Solve distance-related rates

➜Related rates for moving bodies

➜Geometric-related rates

➜Area-related rates

➜Volume-related rates
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Related rate problems relate one rate, written as a derivative, to another rate writ-
ten as a derivative. An excellent example of a related rate problem, and one that is
in nearly every calculus book including this one, is a ladder sliding down a wall. (See
Fig. 6-1.) The top of the ladder is moving down the wall while the bottom of the lad-
der is moving away from the wall. The rate (speed) the top is moving down the wall
can be related to the rate (speed) the bottom is moving away from the wall. This
problem illustrates well the name of these problems; related rate problems.

A little review is in order. Related rate problems are similar to problems involving
implicit differentiation. Equations in the form such as 
are differentiated term by term according to the rules for differentiating polyno-
mials, products, quotients, or whatever. Equations where the x’s and y’s are mixed
together so the equation cannot be written as or (an x alone or
a y alone on one side of the equation) are differentiated implicitly.

For example, the equation must be differentiated implicitly as

with formed by grouping and rearranging.

If x and y could both change over time then a related rate associated differen-
tiation of this equation would be

In this statement, is directly related to 

or

This is an example of a related rate differentiation. Now take a look at perhaps
not the simplest related rate problem, but possibly the simplest to visualize.
Notice how this problem is written. The general situation is described, then a
rate is specified and the related rate is requested for a certain condition.

Example 6-1 A 7-m-long ladder is sliding down a wall. The bottom of the
ladder is pulled from the wall at What is the rate at which the top of the
ladder is going down when the bottom is from the wall?

Solution: Help to visualize the problem by sketching a ladder leaning against a
wall with the bottom being pulled out from the wall at (Fig. 6-1).dx/dt � 1.5 m/s

3 m
1.5 m/s.

dx
dt

� �
4xy � 3xy2

2y2 � y3

dy
dt

(2y2 � y3) dx
dt

� �(4xy � 3xy2)
dy
dt

dy
dt

dx
dt

2y2 dx
dt

� 4xy
dy
dt

� 3xy2
dy
dt

� y3 dx
dt

� 0

dy/dx

2y2dx � 4xydy � 3xy2dy � y3dx � 0

2xy2 � xy3 � 0

x � f(y)y � f(x)

y � x2 � 2x � 3y � f(x)
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The question, written in mathematical
language, is: “What is when

and ?”

In max-min problems the defining equa-
tion is a mathematical statement of the
problem. In related rate problems the
defining equation is sometimes a little
more obscure, actually sometimes a lot
more obscure! Look at the ladder in the
graphic and think of a way to relate x to
y. Don’t start by trying to write the 
and The rates come out of the
differentiation.

dy/dt.
dx/dt

dx/dt � 1.5 m/sx � 3 m
dy/dt
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Quick Tip

The hardest part of related rate problems is to see, and then write down, a rela-

tionship between the variables. Writing this defining equation that ties the vari-

ables together is the key step in related rate problems.

Fig. 6-1

In this problem the Pythagorean theorem for a right triangle relates x and y.

The defining equation is and taking we write

or

Now the numbers can be put in the equation to find when 
and . What about the y in the denominator? The y can be determined
from the Pythagorean relation . With these numbers, 
is calculated as

The top of the ladder is coming down the wall at when the bottom of
the ladder is 3 m away from the wall and moving at .1.5 m/s

0.71 m/s

dy
dt

� �
x
y

dx
dt

� �
3

6.3
 (1.5 m/s) � �0.71 m/s

dy/dty � 272 � 32 < 6.3
x � 3 m

dx/dt � 1.5 m/sdy/dt

dy
dt

� �
x
y

dx
dt

2x dx
dt

� 2y
dy
dt

� 0

d
dt

x2 � y2 � 72

m/s5.1=dt
dx

y

x

222 7=+ yx



Example 6-2 A girl is flying a kite. The kite is moving horizontally at a height
of when of string is out and the rate of increase in string length is

. How fast is the kite moving in the x-direction for these conditions?

Solution: Visualize the problem and
set up a right triangle with the height,
horizontal direction, and string. In this
problem the kite only moves horizon-
tally, and the string is straight—
idealized—but the conditions make
for a problem that can be solved.

Referring to Fig. 6-2, the problem
question can be written in mathemat-
ical terms as: 

What is , when , the height

of the kite is , and the distance out is 250 ft?

Go back over the problem statement and practice changing the problem state-
ment into this mathematical statement. One of the more challenging parts of
any calculus problem is translating the words into mathematical statements.

The Pythagorean theorem relates the variables x and s in the right triangle:

.

Take to get or The rate is given in the

problem as is the height and the distance out . The x value for

these conditions can be calculated from the Pythagorean theorem:

or

Now the numbers can be put into the formula for :

When the kite is away from the girl, at a height of , and the string is
going out at , the kite is moving horizontally.2.3 ft/s2 ft/s

120 ft250 ft

dx
dt

�
s
x

ds
dt

�
250 ft
219 ft

 (2 ft/s) � 2.3 ft/s

dx/dt

x � 22502 � 1202 � 219x2 � s2 � 1202

(250 ft)(120 ft)

(2 ft/s)ds/dtdx
dt

�
s
x

ds
dt

2x dx
dt

� 2s ds
dt

d
dt

1202 � x2 � s2

120 ft

ds
dt

� 2dx
dt

2 ft/s
250 ft120 ft
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These first two problems have utilized the Pythagorean theorem as their defin-
ing or “getting started” equation. Related rate problems use a variety of defin-
ing statements to tie the variables together. As you go through this chapter be
aware of the various techniques for relating the variables. If you see a related
rate problem on a test that can be analyzed with the Pythagorean theorem, you
will know how to do that problem.

This next problem uses the Pythagorean theorem but it has another little twist.
The information for the problem is given primarily in terms of rates, and the
solution involves three different rates.

Example 6-3 Two ships are traveling at right angles. The first ship, traveling
at 8 m/s, crosses the path of the second ship when it is 1000 m away (from the
point where the paths cross) and traveling at 6 m/s. What are their positions,
separation, and rate of separation 300 s after their paths cross?

Solution: Diagram the problem on an x-y coordinate system with the first ship
going in the y-direction and the second ship going in the x-direction. Figure 6-3
is for , the time when the ships cross paths. The drawing helps to visualize
the problem.

t � 0
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Fig. 6-3

s
m8=dt

dy

s
m6=

dt
dx

1000 m

y

x

t = 0

The position of the first ship at any time t is . The position of the
second ship at any time t is . The separation of the ships
is from the Pythagorean theorem .

The position of the first ship at is its speed times the 

y|300 � (8  m/s)(300 s) � 2400  m

300 s(8 m/s)300 s

s � 2x2 � y2

x � 1000 m � (6  m/s)t
y � (8 m/s)t



The position of the second ship at is the plus the times the

The separation of the ships is a straight Pythagorean theorem problem.

The rate at which they are separating is the fun, that is to say calculus, part of
the problem. The rate at which they are separating is, in calculus talk, , and
we already have the and . Start with the separation written in
Pythagorean theorem form and differentiate, carefully.

Writing

as the first step will help to prevent errors with (1/2)s and the minus signs.

Continuing, and finally

This rate of separation is to be evaluated at (Fig. 6-4).

ds
dt
2
300

�
1

3688 m
[(2800 m)(6 m/s) � (2400 m)(8 m/s)] � 9.8 m

s

t � 300 s

ds
dt

�
1

(x 2 � y2)1/2 ¢xdx
dt

� y
dy
dt
≤

ds �
1
2 (x2 � y2)�1/2 (2xdx � 2ydy)

ds �
1
2(x2 � y2)�1/2d(x2 � y2)

s � (x2 � y2)1/2
dy/dtdx/dt

ds/dt

s � 224002 � 28002 � 3688 m

x|300 � 1000 m � (6 m/s)(300 s) � (1000 � 1800) m � 2800 m

300 s
6 m/s1000 m300 s
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2400 m

s
m8=

dt
dy

s
m6=

dt
dx2800 m

y

x

t = 300



Example 6-4 A 3-ft tall penguin (Penny) is taking a leisurely stroll at 
away from a 12-ft tall penguin way light. What is the length of her shadow
and how fast is the tip of her shadow moving when she is 40 ft away from the
light?

Solution: When you see a triangle in a related rate problem look for similar
triangles. Don’t start the problem looking for derivatives. Concentrate on the
defining equation for the problem. The derivatives come later. 

Your first order of business in a related rate problem is to find relationships
between the variables. In this problem set up the triangle, complete with known
numbers, and then label some of the distances. The change in length of the
hypotenuse of this triangle is not what we are looking for. It is lengths along the
ground: the length from the light to Penny and the length of her shadow. Take x
as the length from beneath the light to Penny, and z as the length from beneath
the light to the end of her shadow. The length of her shadow is . Draw this
triangle (refer to Figs. 6-5 and 6-6).

z � x

0.5 ft/s
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Fig. 6-5

Remember

These next two problems utilize similar triangles to write the defining equation

for the problem. The first problem, concerning the rate a shadow of something

is moving, is in nearly every calculus book. The following problem concerning a

conical-shaped container is also in nearly every calculus book in one form or

another. If you know how to use similar triangles to “get started” on a problem

you will have mastered yet another category of related rate problems.



Notice that the triangle with sides and 3 is similar to the triangle with sides
z and 12. Similar triangles are triangles with the same angles and their sides in
proportion. This means that the ratios of the sides are equal.

Eliminating the fraction, or or , produces a
simple relationship between x and z. The related derivative rates are

Notice that x and z don’t enter into the rate relationship. Penny is moving at 

so the tip of her shadow is moving at 

Since Penny is walking away from the light at and the tip of her shadow is
growing at her shadow is getting longer as she moves away from the light.

As an exercise, go to a desk or table with a lamp. Place a pencil near the lamp
and observe the length of the shadow. The pencil should be a foot or so from
the light and perhaps slightly tilted. Now move the pencil away from the light
and observe the shadow. The shadow will grow and the tip of the shadow will
move faster than the pencil.

0.67 ft/s
0.5 ft/s

dz
dt

�
4
3

dx
dt

�
4
3 ¢0.5 ft

s ≤ � 0.67 ft
s

dx
dt

� 0.5 ft
s

dz
dt

�
4
3

dx
dt

3z � 4x9z � 12x12z � 12x � 3z

z � x
3 �

z
12

z � x
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12

z

z − x x

3



Example 6-5 A conical container of base radius and height is being
filled with sand at the rate of . How fast is the level of the sand rising
when it is above the apex of the conical container? (See Fig. 6-7.)6 ft

2 ft3/min
10 ft5 ft
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Fig. 6-7

10 ft=h

5 ft=r 5

10

y

x

Solution: The formula for the volume of a cone is, from the Mathematical
Tables in the back of the book, .

The dimensions defining the cone are given in the problem so calculating the
total volume of the container is not a problem.

Sketch the cone, and next to the cone sketch the profile of the entire cone
and a partially filled cone with radius x and height y. This is another similar
triangles problem! The radius to height ratio is the same for any radius and
depth. In this case the similar triangles are the ones with sides x and y, and 5
and 10.

The similar triangle statement is or . The question “How fast is
the level of the sand rising . . .?” means, what is dy/dt? Knowing dV/dt and
requiring dy/dt, we need to write V in terms of y only. Time derivatives of V in
terms of y will produce a relation between dV/dt and dy/dt.

Substitute in the V equation:

.V �
1
3px2y �

1
3p¢

y
2 ≤

2

y �
p

12
y3

x �
y
2

5
10

�
x
y

V � (1/3)pr2h



And taking derivatives produces

or .

Adding numbers for ,

.

At a depth of the sand is rising at .

Another category of related rate problems involves increasing or decreasing
area, volume, radius of a sphere, or some other geometric property. These next
two problems involve geometry. In general, geometry problems are not overly
difficult, usually involving just one equation.

Example 6-6 A circular oil slick is forming in such a
way that the radius of the slick is increasing at a con-
stant rate of 12 ft/hr. What will be the rate of area
increase when the slick has radius ? (See Fig. 6-8.)

Solution: The area is related to the radius by 
(see the Mathematical Tables). The rate of A and the
rate of r are directly available from this one equation.

Using the numbers given in the problem

The area of the oil slick is increasing at 22,600 ft2/hr when the radius is .

Example 6-7 The deployment of the safety air bags in automobiles is very
much like blowing up a balloon. If the air bag expands under a volume change
of 10,000 cm3/s, what is the radial change when the bag has 5 cm radius and 10 cm
radius? What is the significance of your result?

Solution: The volume of the bag is

V �
4
3pr3

300 ft

dA
dt
2
300

� 2pr dr
dt

� 2p (300 ft)Q12 ft
hr
R � 22,600 ft2

hr

dA
dt

� 2pr dr
dt

A � pr2

300 ft

0.071 ft/min6 ft

dy
dt

�
4
py2

dV
dt

�
4

(36 ft2)p
¢2 ft3

min
≤ � 0.071 ft

min

y � 6 ft

dy
dt

�
4
py2

dV
dt

dV
dt

�
p
4 y2

dy
dt
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Fig. 6-8

dt
dr



The rate relations are

Now put in the numbers for the 5 cm and 10 cm radii.

Doubling your distance from the air bag decreases its speed when it hits you by
one-fourth. Conclusion: Sit as far away from the air bag as you can!

Example 6-8 An obstruction in an artery is to be removed by inflating a
spherical balloon in the artery. The rate of increase of the radius of the balloon
must be limited to 1 mm/min when the radius is 4 mm. What is the maximum
volume rate increase, the rate at which oxygen is pumped into the balloon, cor-
responding to this radius rate increase? (See Fig. 6-9.)

dr
dt
2
10

�
1

4p(10 cm)210,000 cm3

s � 8 cm
s

dr
dt
2
5

�
1

4p(5 cm)2 10,000 cm3

s � 32 cm
s

dV
dt

�
4
3p ¢3r2 dr

dt
≤ 1  dr

dt
�

1
4pr2

dV
dt
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Fig. 6-9

Oxygen in

Solution: The volume of a sphere is (see the Mathematical
Tables).

Again, the rate relations are immediately available from this equation for the
volume of a sphere.

dV
dt

� 4pr2 dr
dt

V � (4/3)pr3



Evaluating at and 

The maximum rate that the balloon can be filled at the 4 mm radius is
.

These last two problems are illustrative of problems where the formulas are
given to you. In most of these types of problems, differentiating the formula is
the challenge.

Example 6-9 When the price of a certain product is p dollars per unit, cus-
tomer demand is x hundreds of units (per month). The relation between p and
x is . When the price is $4.00 and dropping at the rate of
$0.25 per month, what is the rate of increase in demand?

Solution: This equation requires an implicit type of differentiation to find
, the rate of price change, and , the rate of demand change.

or

or

The rate of price change, , is given in the problem as is p, the price.
The demand rate, x, is not given and must be computed from the original
equation. Substituting for in yields

or . The quadratic formula produces two
answers. The positive 5.4 is the realistic one.

With all the needed values, can be evaluated. Watch the signs closely.

dx
dt
2
4

� �
2(5.4) � 4
2(5.4) � 8

(�0.25) �
14.8
18.8

(0.25) � 0.20

dx/dt

x �
�8 � 264 � 4(1)(�72)

2(1)
�

�8 � 18.8
2 � 5.4,�14.4

x2 � 8x � 72 � 0x2 � 8x � 8 � 80
x2 � 2px � 0.5p2 � 80(p � $4.00)p � 4

dp/dt

dx
dt

� �
2x � p
2x � 2p

dp
dt

(2x � 2p) dx
dt

� (2x � p)
dp
dt

� 02xdx
dt

� 2p dx
dt

� 2x
dp
dt

� p
dp
dt

� 0

dx/dtdp/dt

x2 � 2px � 0.5p2 � 80

201 mm3/min

dV
dt
2
4

� 4p(4 mm)2 ¢1mm
min

≤ � 201 mm3

min

dr
dt

� 1 mm
min

r � 4 mm
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The demand rate is increasing by 0.20 hundreds of units per month when the price
is $4.00 and dropping at the rate of $0.25 per month. Carrying the units through
this problem is difficult because the constants in the original equation must have
the appropriate units to make each term in the equation have the same units.

Example 6-10 The amount of trash, measured in thousands of pounds, accu-
mulating in a city dump follows the formula , where p is
the population in hundreds of thousands. What is the rate of trash increase when
the population is 200 thousand and increasing by 0.2 thousand (0.1%) per month?

Solution: Relating the rate of trash increase, , to the population increase,
, comes directly from implicit type differentiation of the expression for the

amount of trash.

The population and the rate of increase in population are given in the problem
so we have

[0.2 thousand per month]

� 84 thousand of pounds per month.

This is also an interesting max-min problem. Take and set

equal to zero to find . The second derivative so the point

is a minimum. 

The minimum in trash accumulation rate is at 38 thousand people, but at 200
thousand the curve becomes progressively more positive and the trash problem
progressively worse.

Example 6-11 The number of CD players that can be manufactured by a cer-
tain company follows a Cobb-Douglas type of production model, where q, the
production output, depends on the number of workers, n, and the number of
automatic assembly machines, r, according to . With 20 workers
the company is producing 300 CDs per day and has sufficient revenue to pur-
chase one automatic assembly machine per month. How many workers per
month should be laid off to maintain constant production?

q � 20 n0.6r0.4

p � 38

d 2T
dp 2 � 2.6p � 38

dT
dp

� (2.6p � 100)

dT
dt
2
200

� [(2.6)(200) � 100]

dT
dt

� 2.6p
dp
dt

� 100
dp
dt

� (2.6p � 100)
dp
dt

dp/dt
dT/dt

T � 1.3p2 � 100p � 30
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Solution: The first step in the problem is to perform an implicit differentiation
remembering that q has to remain constant.

Now write the rate relationship. This could have been written directly.

It takes 20 workers to produce 300 CDs so the number of automatic assembly
machines can be calculated from the original equation.

Now calculate the related rate.

Adding one automatic assembly machine and releasing 1.4 workers per month
will maintain production.

✔ Relate the variables in the problem

✔ Use a diagram if that will help

✔ Use a variation of implicit differentiation to write the rates

✔ Calculate specific variable values from the defining equation

PROBLEMS

1. For the equation find dy/dt when x � 4 and dx/dt � �6.
2. For find dx/dt when y � 2 and dy/dt � 3.x2 � 2xy � y2 � 0

x2 � y2 � 20

dn
dt

� �
2
3 ¢ 20

9.7 ≤(1) � �1.4

[r 0.4]2.5 � r � S
15

(20)0.6 T
2.5

�
(15)2.5

(20)1.5 � 9.7

r 0.4 �
300

(20)(20)0.6 �
15

200.6

q � 20n0.6 r 0.4 1  300 � (20)(20)0.6 r 0.4

dn
dt

� �
2
3 ¢n

r ≤dr
dt

0.4 ¢n
r ≤ 0.6 dr

dt
� �0.6¢ r

n ≤ 0.4 dn
dt

0 � 20[n0.6(0.4)r�0.6dr � r0.4(0.6)n�0.4dn]

108 CALCULUS FOR THE UTTERLY CONFUSED



3. A rocket launched vertically is tracked by a camera 200 m horizontally away
from the launch point. What is the vertical speed of the rocket when it is 600
m from the camera with this distance (from the camera) increasing at 80 m/s?

4. The cost in dollars per day to produce thumb drives follows
where x is the number of thumb drives pro-

duced each day. The present production level is 200 thumb drives per day
and this rate is increasing at 2 per day. How fast is the average cost chang-
ing? Remember that average cost is C(x) over x.

5. At a price, p, a manufacturer is willing to supply x number of products
according to the equation x2 � xp � p2 � 30. What is the rate of supply of
x when p is $9.00 and increasing at $0.20 per week?

6. The mass of a raindrop is where � is the density of water, 1 g/cm3,
and r is the radius of the drop. At what rate is the radius of a raindrop chang-
ing when it has a radius of 10 mm and is gaining water at the rate of 0.01 g/min?

7. An observer with a telescope is observing the approach of an airplane trav-
eling 700 km/hr towards a point directly over the telescope. The airplane
remains at a constant height of 9.0 km. What is the angular rate of change
(in rad/sec) for the telescope when the airplane is 24 km horizontally from
the telescope?

8. An adiabatic process follows the pressure-volume formula PV1.4 � C, a
constant. For P � 2 N/m2, V � 0.8 m3 and V is increasing at 0.6 m3/s, what
is happening to P.

9. The period, the time for one back-and-forth excursion, of a pendulum is

, where L is the length of the pendulum and g is the accelera
tion due to gravity equal to 9.8 m/s2. If the length of the pendulum stretches
by 0.01% over 1 year, what is the change in the period?

10. The Poiseuille’s law for flow through a cylindrical pipe (blood vessel) is:
, where v is the velocity, K is a constant equal to 6 1/s, L is

the length of the pipe, R is the radius of the pipe and r is the distance out
from the center line of the pipe. For a 100-cm pipe of radius 0.2 cm, find the
rate that the flow velocity is changing half-way between the center line and
the wall when the pipe is contracting at a rate of 0.0004 cm/s?

ANSWERS

1. Start with the implicit derivative and proceed to time

derivatives and to . Now stop and calculate y for

x � 4. .
dy
dt

� �
4
2(�6) � 1242 � y2 � 20 1 y � 2 1

dy
dt

� �
x
y

dx
dt

y
dy
dt

� �xdx
dt

2xdx � 2ydy � 0

v �
K
L(R2 � r2)

T � 2p
Å

L
g

M � r
4
3pr3

C(x) � 4000 � 12x �
x2

200
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2. Whatever

the values for x and y are, , so .

3. Use a diagram. This is a Pythagorean theorem prob-

lem where the variables are from the statement:

x2 + y2 � L2. In this problem the x is constant so take

the rate derivatives. 

Calculate y when L is 600 m.
Now calculate the verti-

cal speed of the rocket.

4. The average cost is . The rate state-

ment is = 

At this point the average cost of producing the thumb drives is dropping at
the rate of $0.18 per day.

5. Write the rate statement: . Want to know

when p � 9 and per week.

Now find x when p = 9. x2 � 9x � 81 � 30 This equation is solved by quad-
ratic formula to yield x = 16, so

The manufacturer is willing to supply 0.30 more items per week or roughly
1 more every 3 weeks for these conditions.

6.

dr
dt

�
1

4(1 g/cm3)p(1 cm)2 ¢0.01
g

min
≤ � 0.0025 cm

min

dM
dt

� r
4
3p (3)r2dr

dt
� 4rp r2dr

dt

dx
dt

�
18 � 16
32 � 9

dp
dt

� 1.5(0.20) � 0.30

(2x � p)dx
dt

� (2p � x)
dp
dt
1 dx

dt
�

2p � x
2x � p

dp
dt

dp
dt

� 0.20dx
dt

2x dx
dt

� x
dp
dt

� p dx
dt

� 2p
dp
dt

� 0

B 1
100

�
4000
2002 R(2) � �0.18

B 1
100

�
4000

x2 Rdx
dt

�
dx
dt

�
1

100
dx
dt

dC(x)
dt

� (4000)(�1)x�2

C(x) �
C(x)

x � 4000x�1 � 12 �
x

100

dy
dt

�
600
566

80 m/s � 85 m/s

2002 � y2 � 6002 1 y � 566

2y
dy
dt

� 2LdL
dt
1

dy
dt

�
L
y

dL
dt

dx
dt

� 3dx
dt

�
dy
dt

2xdx
dt

� 2x
dy
dt

� 2ydx
dt

� 2y
dy
dt

� 0 1   (x � y)dx
dt

� (x � y)
dy
dt

110 CALCULUS FOR THE UTTERLY CONFUSED

L

x = 200 m

y



7. This requires a drawing. Referring to the diagram, and 

y � 9.0 km. To relate the angle use the tangent function, or

. Take the rate derivatives.

x sec 2u
du
dt

� tan u
dx
dt

� 0

9 � x tan u

tan u �
9
x

dx
dt

� �700 km/hr
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700 km/hr

9.0 km

x

y

q

When x is 24, the angle is 21�,

This is roughly 0.3� per min.
8. Take the rate derivatives:

Put in the numbers.

9. Start with and take the rate derivative. .

The . Put this into the rate equation. 

. Notice that this can be written in1
2

2p

2g

1

2L
(0.0001)L �

0.0001
2 2p

Å
L
g

dT
dt

�
dL
dt

� 0.0001 L

dT
dt

�
2p

2g

1
2 L�1/2 dL

dt
T �

2p

2g
L1/2

dP
dt

� �
(1.4)(2 N/m2)

(0.8 m3)
[0.6 m3/s)] � 2.1N/m2

s

P(1.4)V 0.4dV
dt

� V 1.4 dP
dt

� 0 dP
dt

� �
(1.4)PV 0.4

V 1.4
dV
dt

dP
dt

� �
(1.4)P

V
dV
dt

du
dt

�
(cos221�) tan 21�

24 km
(700) km

hr
� 9.8 1

hr
hr

60 min
� 0.16

rad
min

� tan 21�¢�700 km
hr
≤ so 24(sec2 21�) du

dt
�



terms of the original period. . Writing this another way is

instructive. . This states that the fractional change in the

period is 0.00005 per year.

10. Write the general rate statement. Now put in the
numbers.

.dv
dt

� �2 6/s
1.0 m

  (0.002 m)¢0.0004 cm
s ≤ � �1.0 � 10�5 cm

s2

dv
dt

�
K
L (�) 2r dr

dt

dT
T � 0.00005dt

dT
dt

� 0.00005 T
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CHAPTER 7

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

INTEGRATION

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

You should read this chapter if you need to review or you need to learn about

➜The antiderivative

➜Area under the curve

➜Average value of a function

➜Area between curves
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There are many calculus problems where the derivative of a function is known
and the function is desired. For example, if a mathematical expression for the
rate of population growth dP/dt is known, is it possible to “work backwards” to
find the expression for P, how the population varies over time? 

The process of starting with a derivative and working back to the function is
quite naturally called the antiderivative. The antiderivative of a function is an
easy concept but often is operationally difficult. There are many integration
problems where finding the antiderivative will prove a major challenge.

In some problems the integral can be viewed as the area under the curve of the
function being integrated. This is often very helpful in getting a physical “feel”
for the problem and the process of integration. This view of the integral will be
discussed later in the chapter.

Some problems in integration require a great deal of imaginative thinking and
manipulative ability. The simplest first approach to integration is via the anti-
derivative. After that we will move on to using the area under the curve
approach and finally to the more difficult integral problems.

7-1 The Antiderivative
Start with a simple function, . The derivative of that function is written as

and finally as .

Keeping this short review of differentiation in mind, suppose we encountered a
derivative

and want to know how u varies with v. Keep the differential (of ) in front
of you and just work backwards 

can be written as 

Now all we need to do is perform the inverse or “anti” derivative operation to
find u in terms of v. This being mathematics, no operation can be performed
without a symbol. For integration we use this elongated “s” shape, so write

3 du � 3 2vdv

du � 2vdvdu
dv

� 2v

y � x2

du
dv

� 2v

dy/dx � 2xdy � 2xdx
y � x2
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The left side of this equation is the integral of the differential, two inverse oper-
ations. The d acting on u is the derivative, while the acting on du is the anti-
derivative. The result of these inverse operations on u is that the left side of this
equation is u. The operation is somewhat like squaring a square root. The right
side is not so easy except that we have the differential example just above us.
The differential of is , so the integral of is . The function
described by the differential statement is, therefore, .

Conceptually, the antiderivative is not difficult. Actually, finding the antideriv-
ative of a complicated function is often not at all easy. Polynomials are the eas-
iest to work with and that is where we will start.

Example 7-1 Find .

Solution: We seek a function that differentiates to . The differential of 
is , which is very close to what we want. The differential of is so
the is .

Check the answer by differentiating it. The differential of is (inverse
operations), and the differential of is . Doing a few integrals of poly-
nomials leads to a general formula for integrating polynomials.

y3dyy4/4
y3dy1y3dy

y4/41y3dy
y3dyy4/44y3dy

y4y3dy

1y3dy

u � v2du � 2vdv
v22vdv2xdxx2

1

Integration 115

Remember

This formula is valid for all n, including fractions and negative exponents, except

.n � �1

3 xndx �
xn�1

n � 1

That special case will be taken up later and in more detail in Chapter 8,
Exponents and Logarithms. With this general formula for integrating polyno-
mials take the integrals of some other differentials.

Example 7-2 Find the function x in terms of t, starting with the differential
statement

dx
dt

�
1
3t3 � 5t 2 � 4



Solution: First rewrite the problem as .

The integral of is x so write .

Most formal integral problems are presented in this form. Now perform the
integration term by term, the same way the differential was formed to produce
this integral

Don’t forget that the integral of a constant times dt is the constant times t.

The antiderivative as described so far is not the complete story of antideriva-
tives, as is illustrated in the next problem. Take a look at a simple function,

. The derivative is . Now take the antideriva-
tive of .

and

Where did the 7 in the original function go? Differentiating the function pro-
duced a zero for the 7. Integrating the with the antiderivative approach
produced the terms but not the 7. Given an integral problem as

the integral of is and the integral of is but it is impossible to
determine if there is a constant in the expression for y.

The correct solution to this integral is: .y � 1(2x � 2)dx � x2 � 2x � C

2x2dxx22xdx

y � 3 (2x � 2)dx

x2 � 2x
2x � 2

y � 3 (2x � 2)dx � 2x2

2 � 2x � x2 � 2xdy � (2x � 2)dx

2x � 2
dy/dx � 2x � 2y � x2 � 2x � 7

x �
1
3 Q

t 4

4 R � 5Q t
3

3 R � 4t �
t 4

12
�

5t3

3 � 4t

x � 3 Q13t3 � 5t2 � 4Rdtdx

dx � Q
1
3t3 � 5t2 � 4Rdt
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Quick Tip

Integrals obtained by taking the antiderivative must be written with an arbitrary

constant. The constant can be determined if other details are specified in the prob-

lem. Integrals requiring a constant (of integration) are called indefinite integrals.

There is a way around this problem but for the time being just remember to include

the constant and evaluate it if possible from the information in the problem.



Example 7-3 Evaluate .

Solution: Follow the formula for integrating polynomials as stated earlier in
this chapter or from the Mathematical Tables at the end of the book.

Example 7-4 The population of a certain region is growing with time accord-
ing to . Population is measured in thousands and time in years. The
current population is 30 (thousand). What is the expression for P as a function
of t?

Solution: The words “population growing with time” translated into calculus
means

Writing this as an integral problem, we have and

The words “current population . . . 30” mean that at , . Put these num-
bers into the general expression for P to determine C. (If a variable such as P is
given a value when , it is sometimes referred to as “the initial condition.”)

makes so the specific relation is

Example 7-5 A certain car decelerates under braking at a rate of . If
the car is traveling at a speed of (approximately 40 miles per hour) when
the brakes are applied, how far does it take the car to stop?

60 ft/s
16 ft/s2

P � 11t � 0.13t3/2 � 30

C � 3030 � 11(0) � 0.13(0)3/2 � C

t � 0

P � 30t � 0

P � 11t �
0.2t 3/2

3/2
� C � 11t �

0.4
3 t 3/2 � C � 11t � 0.13t 3/2 � C

1dP � 1(11 � 0.2t1/2)dt

11 � 0.22t �
dP
dt

11 � 0.22t

y �
x3

3 �
2x�1

�1
� 3x � C �

x3

3 � 2x�1 � 3x � C

y � 1(x2 � 2x�2 � 3)dx
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Solution: A little review is in order. Position speed and acceleration were dis-
cussed in Chapter 3, Derivatives. You may want to review Examples 3-6 and
3-7 dealing with speed and acceleration. Stated in calculus terminology, speed,

, is change in position with time, and acceleration, , is change
in speed with time. Keep in mind that a is measured in ft/s2, v in ft/s, and s in ft.

In this problem start with the acceleration, which is a negative number, so the
first statement of the problem is . The integral to find v is

When the brakes are applied , so and
so

We are looking for the distance, not the velocity, so one more integral is in order.

The stopping distance s is measured from where, and when, the brakes are
applied so at , . This fact allows evaluation of C2.

so and

To recap what we have done so far, we started with the acceleration, ,
integrated to get the speed, , and integrated again to get

All this work and we still don’t have the stopping distance!

A little more logic provides the final answer. The stopping distance s could be
evaluated if we knew the braking time. But the time can be determined from
the speed statement. When the braking has gone on long enough, the car stops
(setting in produces the time to stop).

or

The stopping distance, using this time, is 

so C2 � 00 � �6(0)2 � 50(0) � C2

s � �8t2 � 60t � �8(3.8)2 � 60(3.8) � �116 � 228 � 112

t � 60/16 � 3.80 � �16t � 60

v � �16t � 60v � 0

s � �8t2 � 60t.
v � �16t � 60

a � �16

s � �8t2 � 60tC2 � 00 � �8(0)2 � 60(0) � C2

s � 0t � 0

s � 3 (�16t � 60)dt � �
16
2 t 2 � 60t � C2 � �8t 2 � 60t � C2

v �
ds
dt

� �16t � 60

C1 � 60
60 � �16(0) � C1v � 60 ft/s(t � 0)

v � � 3 16dt � �16t � C1

dv/dt � �16

a � dv/dtv � ds/dt
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The problems so far have been in the form y equals the integral of some poly-
nomial in x times dx. The next problem illustrates a type of problem where the
derivative depends on both variables.

Example 7-6 The rate of change of a certain variable x with y is equal to the
square root of the product of x and y. Find y as a function of x.

This is a problem where the words prescribe the mathematics. The phrase “the
rate of change of . . . x with y” means derivative; the phrase “the square root of
the product” is clear. Form the product and take the square root. Read the sen-
tence carefully, several times if necessary, and write

With the problem written down, another difficulty appears. This is not a sim-
ple dy equals a polynomial times dx problem. Separating the variables is
going to take a little work. With a little manipulation the statement can be
written as

This process is called separating the variables. While this problem is a little dif-
ferent from previous problems neither integral is difficult.

or

Perform each integration, and with a little algebra x �. . . or

y �. . . can be written as or or 

or

Notice that instead of writing C/2, a new constant C1 was introduced. If at the
end of the problem the constant is evaluated it does not matter whether the
constant is two times the original or any other multiple or root, or whatever of
the original. Also notice that C2 is a new constant.

y � [3x1/2 � C2]
2/3

y3/2 � 3x1/2 � C2x � S
y3/2

3 � C1T
2

x1/2 �
y3/2

3 � C1

x1/2

1/2
�

y3/2

3/2
� C

3 x�1/2dx � 3 y1/2dyx�1/2dx � y1/2dy

dx

2x
� 2ydy

dx
dy

� 2xy
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Example 7-7 The rate of change of y with x is equal to the product of x and y
squared. Find the equation relating y and x.

Solution: Write the words in mathematics (calculus-speak).

Separate the variables and perform the integration.

Example 7-8 Due to an unusually favorable habitat the deer population in a
certain region is growing at an average rate of 0.08t � 5 thousand per month.
Find the formula for population. The present population is 200,000. If the rate
continues, what will be the population in 6 months?

The rate stated in the problem is dP/dt so

or

and integrating

Use t � 0 and P � 299 to evaluate C (the original equation was in thousands):

so C � 200

and the population formula for this region is 

In 6 months, t � 6, the population will be 

Just as there was a “special” derivative associated with lnx there is a “special”
integral associated with 1/x or x�1. The integral of 1/x or x�1 is ln|x|. This is the
natural logarithm, or base e, logarithm and that the absolute value is required.
There are no logarithms of negative numbers—try taking the ln of a negative
number on your calculator. The formal definition of this integral is 

With this definition, do some problems.

3 1
xdx � ln Zx Z � C

P(6) � 0.04(6)2 � 5(6) � 200 � 1.44 � 30 � 200 � 232.44 thousand

P(t) � 0.04t 2 � 5t � 200

200 � 0.04(0)2 � 5(0) � C

P � 3 (0.08t � 5)dt � 0.08t 2

2 � 5t � C � 0.04t 2 � 5t � C

dP � (0.08t � 5)dtdP
dt

� 0.08t � 5

dy

y2 � xdx 1  3 y�2dy � 3 xdx 1  
y�3

�3 � x 2 1  x 2y 3 � �
1
3 � C

dy
dx

� xy2
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Example 7-9 Find .

Solution: This is one of those innocent looking little problems that will drive
you crazy if you don’t know how to handle the fraction (x � 1)/x. The formal
technique is called partial fractions but for this simple fraction all that is neces-
sary is a little logic. Fractions often come from, or at least they can be written
as, other fractions.

If you can see to write the fraction this way, then the problem is not so bad. And
after you have done one or two of these “fraction” problems you will remem-
ber the little “trick.” Application of the “trick” is not difficult. It is knowing to
use it that is important and you now know that. With this algebraic rearrange-
ment the integral is 

Example 7-10 Find .

Solution: Based on your experience from the previous problem write this frac-
tion as three fractions:

Now perform the three integrals to solve the problem.

Partial fractions is a very powerful tool for handling the integration of poly-
nomials over polynomials. In a polynomial where the degree of the numera-
tor is less than the degree of the denominator and when the denominator can
be factored into first degree factors, with no repeat factors, the polynomial
can be reduced by a simple method of partial fractions. This is shown in the
next problem.

� 3x � 2 ln|x| � x�1 � C

3 3x2 � 2x2 � x
x3 � 3 Q3 �

2
x � x�2Rdx � 3x � 2 3 dx

x � 3 x�2dx

3x3 � 2x2 � x
x3 �

3x3

x3 �
2x2

x3 �
x
x3 � 3 �

2
x �

1
x2

3 3x3 � 2x2 � x
x3 dx

3 x � 1
x dx � 3 Q1 �

1
xRdx � 3 dx � 3 1

xdx � x � ln Zx Z � C

x � 1
x �

x
x �

1
x � 1 �

1
x

3 x � 1
x dx
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Example 7-11 Find .

Solution: The denominator can be factored into . Now set up a
fraction statement where there are undetermined constants in the fractions.

Multiply so as to clear the fractions.

Add these last two equations so . This pro-
duces the partial fractions and allows the integral to be written as

Example 7-12 The rate at which algae are growing in a certain pond is pro-
portional to the amount of algae according to , where A is meas-
ured in pounds and t in days. At present there is 300 lb of algae in the pond.
Find the time for the amount of algae to double.

Solution: The rate statement is . The integral of this statement
is accomplished after separating the variables

or and the integration is 

At , there is 300 lb of algae in the pond so

which makes .

Don’t worry about finding a number for , is a perfectly good constant.

The statement connecting A to t is

The doubling time is when , double the original amount, so write 

or and days

(Remember also that .)ln 600 � ln 300 � ln (600/300) � ln 2 � 0.69

t � 34.56.39 � 5.70 � 0.69 � 0.02tln 600 � ln 300 � 0.02t

A � 600

ln A � ln 300 � 0.02t

ln 300ln 300

C � ln 300ln 300 � 0.02(0) � C

t � 0

ln ZA Z � 0.02t � C3 dA
A

� 3 0.02dtdA
A

� 0.02dt

dA/dt � 0.02A

dA/dt � 0.02A

�
1
3 3 dx

x � 2 �
1
3 3 dx

x � 1
�

1
3 Sln Zx � 1 Z � ln Zx � 2 Z T � C

3B � 1  or B � 1/3  and A � �1/3

1 � A(x � 1) � B(x � 2)     so A � B � 0   and  �A � 2B � 1

1
(x � 2)(x � 1)

�
A

x � 2 �
B

x � 1

(x � 2)(x � 1)

3 1
x2 � x � 2

dx
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There is one other integral formula to add to our growing collection and that is
the formula for the integration of the exponential function. It is fairly simple.

This formula becomes particularly useful as the exponent becomes more com-
plicated. These more difficult situations will be taken up in the next chapter.

Example 7-13 Find when and .

Solution: The integral is . Set and to find C.
Remember: anything raised to the zero power is 1.

or so and

This is a good place to stop and take another look at this process called inte-
gration. The antiderivative and formula approach work well on many problems.
The next approach, the area under the curve, has some distinct advantages in
certain problems. After going through the area under the curve view of inte-
gration you will be able to switch back and forth choosing which view is most
convenient for a particular problem.

7-2 Area Under the Curve
Integrals are often introduced as a means of measuring the area under a curve.
In certain problems the area under a curve has physical meaning and is very
helpful in understanding the problem. Rather than doing a formal derivation
relating the integral to the area under a curve we will show how the area is con-
sistent with the antiderivative approach. And as usual we will do this in the con-
text of solving problems.

Example 7-14 Find the area under the curve y � 4, bounded by x � 0 and x � 5.

Solution: Graph the function. It is a straight line at y � 4, parallel to the x-axis.
To find the area, integrate 4dx from x � 0 to x � 5.

This area integral is written as

A � 3
5

0
4dx

y � ex � 2C � 23 � 1 � C3 � e0 � C

x � 0y � 3y � e x � C

x � 0y � 3y � 1exdx

3 exdx � ex � C
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The 0 and 5 mean, evaluate the integral at 5
and then subtract the value for 0. The oper-
ations are

The shaded rectangular area shown as shaded
in Fig. 7-1 has dimensions 4 by 5 and area 20,
the value obtained with this integration.
Integrals written with “limits” on the inte-
gral sign are called definite integrals. Since these limits clearly define the extent
of the area represented, the integral does not need an arbitrary constant.

Example 7-15 Find the area under the curve y � x between x � 0 and x � 4.

Solution: First, graph the curve. The area, by inte-
gration is 

This curve y � x forms a triangle with the x-axis and
the line x � 4 (Fig. 7-2). The area of this triangle is
one-half the base times the height (1/2)(4)(4) � 8,
the same value as obtained through integration.

Example 7-16 Find the area under the curve
between x � 0 and x � 2.

Solution: First, graph the curve (Fig. 7-3). Using
the integral approach the area is 

The area under this curve is less than the area within
a triangle formed with base along the x-axis from
0 to 2, height from y � 0 to 4 and the slant height

A � 3
2

0
x2dx �

x3

3
2 2
0

�
23

3 � 0 �
8
3 < 2.7

y � x2

A � 3
4

0
xdx �

x2

2
2 4
0

� 8 � 0 � 8

A � 3
5

0
4dx � 4x Z50 � 4(5) � 5(0) � 20
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from the point (0,0) to (2,4). Such a triangle has area (1/2)2⋅4 � 4, and as
expected is more than the area of 2.7 computed with the integral.

The curve goes through the points (1,1) and (2,4) so approximate the
area under the curve with a triangle and trapezoid as shown in Fig. 7-4. The
area of the triangle is (1/2)(1)(1) � 1/2. The area of
the trapezoid is (1/2)(sum of opposite faces)(height)
which in this case is (1/2)(1 � 4)(1) � 2.5. The sum
of these areas is 3, even closer to the area of 2.7
obtained through the integral.

If this process were continued with narrower and nar-
rower trapezoids the area would approach the 2.7
value obtained through the integral.

These three problems all point toward an interpre-
tation of the integral of a function as the area under
the graph of that function over the prescribed limits.
The successive approximations of narrower and narrower trapezoids, or rec-
tangles, leading to the area under the curve is the classic definition of the
integral.

Use the same curve as an example, though any curve would work as
well, and look to approximating the area not with trapezoids, but with a
collection of narrow rectangles. The rectangles can be constructed in a vari-
ety of ways, inside the curve, outside the curve or using a mid value (see Fig. 7-5).
It really doesn’t make any difference how they are constructed because we
are going to take the limit by making their width go to zero. The ones shown
here are an average height. Look at the xn’th rectangle of width that has
height xn

2.

x

y � x2

<

y � x2

<
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The area under this curve can be written as a sum of similar rectangles. With
this view, the area under the curve is

with the area getting closer and closer to the actual area as the width of the rec-
tangles decreases and their number increases.

Using a limit approach, and the knowledge that the integral over a specified range
in x is the area under the curve, A is the limit of the sum as goes to zero. 

The integral is viewed as the area generated by summing an infinite number of
rectangles of infinitely small width.

Example 7-17 Find the area under the
curve from x � 1 to x � 3.

Solution: This is a cubic. It rises steeply, and
it crosses the y-axis at �1 and the x-axis at 1
and goes through the point (3,8) (see Fig. 7-6).
The rectangle represents one of the rectangles
that is being summed in the integration
process. The shaded area is

The next several problems will explore some of the unique uses of integral cal-
culus for finding areas.

Example 7-18 Find the area bounded by and the x-axis.

Solution: First graph the function. If you have the least bit of problem graph-
ing this function go to previous sections concerned with graphing parabolas. This
function is a parabola. It opens down and crosses the y-axis at y = 2 (Fig. 7-7).

y � 2 � (1/2)x2

A � Q
81
4 �

12
4 R � Q

1
4 �

4
4R �

69
4 �

3
4 �

72
4 � 18

A � 3
3

1
(x3 � 1)dx � S

x4

4 � xT
3

1

y � x3 � 1

A � lim

xS0an (x2

n)
x � 3
x

0
x2dx


x

A < a
n

(x2
n)
x
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The limits on the integral have to be
from where the curve crosses the x-
axis on the negative side to where it
crosses on the positive side. To find
these points set and solve for x.

or
or or 

The shaded area is the area desired so
the integral is

Second Solution: There is a little faster, a little easier, and a little less prone to
error way of doing this problem. Remember the symmetry that was so helpful
in graphing parabolas? Not only is there a symmetry in the graph of the curve
between 0 and 2 and 0 and �2, but the area under the curve from 0 to 2 is the
same as the area under the curve from 0 to �2. Therefore, the entire area
between this curve and the x-axis is twice the area calculation between x � 0
and x � 2. Notice the lack of negative numbers in this solution.

In doing area problems look for symmetry that will make the problem easier
and cut down on the amount of numbers you have to manipulate.

Example 7-19 Find the area between the coordinate axes and the curve
. (See Fig. 7-8.)

Solution: This has got to be an odd looking curve. Start by looking at where
the curve crosses the axes. At x � 0, y � �2 and at y � 0, x � 4. One other

y � 2x � 2

� 2b B2(2) �
23

6
R � [0]r � 2b4 �

4
3 r �

16
3

A � 2 3
2

0
[2 � (1>2)x2]dx � 2B2x �

x3

6
R 2

0

A � S4 �
4
3 T � S�4 �

�8
6
T � S

12
3 �

4
3 T � S�

12
3 �

4
3 T � S

8
3 T� S�

8
3 T �

16
3

A � 3
2

�2
[2 � (1/2)x2]dx � S2x �

x3

6
T
2

�2
� S2(2) �

23

6
T � S2(�2) �

(�2)3

6
T

x � �24 � x2
2 � (1/2)x20 � 2 � (1/2)x2

y � 0
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point, x � 1, y � �1, is sufficient, along with
the points where the curve crosses the axes,
to sketch the curve.

The shaded area is the only area between
the curve and the axes. The area is

The area is negative! Are areas below the axis negative? Just to be sure, change
the limits on the integral to 4 and 5 and see if that area comes out positive, as
we would expect from the graph.

This area comes out positive and very small, about as expected considering the
curve.

The previous example illustrates an important point. Be careful when finding
an area below the axis. You can end up with a negative number for the area.
The following problem, Example 7-20, is a typical test problem involving posi-
tive and negative area. There is a simple way to handle this negative area situ-
ation as illustrated in this problem.

Example 7-20 Calculate the area between the curve and the
x-axis between x � 0 and x � 2.

Solution: Do not write down the integral of with the prescribed
limits and perform the integration to find the answer.

x2 � x � 2

y � x2 � x � 2

A � B2(53/2 � 43/2)
3 R � 10 � 8 � B2(11.2 � 8)

3 R � 2 � 2.1 � 2 � 0.1

A � 3
5

4
(x1/2 � 2)dx � Bx3/2

3/2
� 2xR 5

4
� B2(5)3/2

3 � 2(5)R � B2(4)3/2

3 � 2(4)R

�
16
3 � 8 �

16
3 �

24
3 � �

8
3

� B2(4)3/2

3 � 2(4)R � [0]

A � 3
4

0
(x1/2 � 2)dx � Bx3/2

3/2
� 2xR 4

0
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If you do, you will get the problem wrong!
Sketch the graph of this function. Factor y �
x2 � x � 2 � (x � 1)(x � 2) and notice that
the curve crosses the x-axis at x � 1 and x �
�2. Look at the limits of the integration. At x
� 0, y � �2. At x � 2, y � 4. With this infor-
mation the curve can be sketched (Fig. 7-9).
More detail for the sketch is not necessary.

The area between this curve and the x-axis
has to be calculated in two pieces correspon-
ding to the two areas marked A1 and A2.

Notice the integrand is written as [0�(x2 � x � 2)]. This statement is the “top
curve,” y � 0, minus the “bottom curve” . Writing the integrand
this way, top curve minus bottom curve, keeps the area positive. This is the pre-
ferred way of writing the problem. It will prove very helpful in more compli-
cated problems.

Now find the second area, A2. The integrand would be viewed as
top curve minus bottom curve, which is 0.

A2 �
7
3 �

3
2 � 2 �

14
6

�
9
6

�
12
6

�
11
6

� S
8
3 �

1
3 T � S

4
2 �

1
2 T � [�4�2]

A2 � S
23

3 �
22

2 � 2(2)T � S
13

3 �
12

2 � 2(1)T

A2 � 3
2

1
(x2 � x � 2)dx � Bx3

3 �
x2

2 � 2xR 2

1

x2 � x � 2

y � x2 � x � 2

A1 � �B13

3 �
12

2 � 2(1)R � [0] � �B2
6

�
3
6

�
12
6

� �B�
7
6
R �

7
6

A1 � 3
1

0
[0 � (x2 � x � 2)]dx � �Bx3

3 �
x2

2 � 2xR 1

0
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The total area between the curve and the x-axis is the sum of these two areas.

Second Standard Mistake: Don’t make this mistake. If you take the integral of
between the limits of 0 and 2 you will get an answer that is equal to A2

� A1. It will look great but it is wrong. Take the integral of , use the lim-
its 0 and 2 and verify that this is the difference in the areas and the incorrect answer.
This is the kind of problem that math profs. use to separate the As from the Bs.

We’ve had As and we’ve had Bs. As are better.

These next few problems take you to another level. The “standard mistake” of
the previous problem can be avoided by graphing. Likewise graphing is essen-
tial in these next few problems. As we mentioned in “A Special Message” to the
Utterly Confused Calculus Student at the beginning of this book, graphing is one
of the skills you need to do calculus problems. We keep emphasizing this point
because we know that a primary source of confusion in integration is inability
to visualize the problem, and you visualize problems by graphing the curves.

Example 7-21 Find the area in
the positive x and y region between
the curves and y � 4 �
(0.5)x2.

Solution: Graph the two curves
in the positive x and y region (see
Fig. 7-10).

The straight line is easy. The
parabola is 4 at x � 0 and opens
down. The parabola crosses the
x-axis when y � 0 or x2 � 8.

As far as the limits of integration
are concerned the important point
is where the curves cross. This point is found by setting the two equations for y
equal and solving for x.

There is a point along the y � (0.5)x curve that satisfies y � 4 � (0.5)x2. This
point is where the curves cross and is found by setting (0.5)x equal to 4 � (0.5)x2

and solving the equation

or x2 � x � 8 � 0(0.5)x � 4 � (0.5)x2

y � (0.5)x

x2 � x � 2
x2 � x � 2

A � A1 � A2 �
7
6

�
11
6

�
18
6

� 3
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This quadratic is solved by formula

Only the positive root is interesting in this problem. The figure is a sketch, not
a detailed drawing. The essential feature is the point where the curves cross and
the visualization that the integral is over dx and between the two curves. Great
detail is not necessary. A clear picture of the curves, where they cross, and the
limits is sufficient information.

The integral is written as going from the top curve, or most positive part of the
dx rectangle, to the bottom curve, or most negative part of the rectangle with
the appropriate limits 0 and 2.4.

Example 7-22 Find the area bound-
ed by the y-axis and the curves

and .

Solution: The curve is a
straight line of slope 1 that intercepts
the y-axis at �1. The other curve starts
at and increases. To integrate in
the x-direction the limits are required.
In this case the upper limit in x is
where the curves cross, which is
obtained by setting the equations for y
equal and solving

and squaring

This quadratic is factorable, , producing values of and
.x � 4

x � 1(x � 4)(x � 1) � 0

x � x2 � 4x � 4 or x2 � 5x � 4 � 0

1 � 2x � x � 1 or 2x � x � 2

y � 1

y � x � 1

y � x � 1y � 1 � 2x

A � B4(2.4) �
2.43

6
�

2.42

4 R � [0] � [9.6 � 2.3 � 1.4] � 5.9

A � 3
2.4

0
[(4 � 0.5x2) � (0.5)x]dx � S4x �

x3

6
�

0.5x2

2 T
2.4

0

x �
�1 � 212 � 4(1)(�8)

2(1)
�

�1 � 233
2 � 2.4
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The value requires a negative square root to work in both original equa-
tions and is seen from Fig. 7-11 as incorrect. The value x � 4 is the correct limit
value. The x � 1 point is a spurious one caused by squaring a square root and
then factoring the resulting equation. With the limits, set up the integral from
0 to 4 of the upper curve minus the lower curve and integrate.

The next two problems are practical problems illustrating how calculus can help
in forecasting revenue generation in the one instance, and yield from a mining
operation in the other instance. The unique aspect of these problems is that
they start not with a statement of revenue, but with a statement of revenue rate,
the revenue generated per year and the yield of the mine in tons per year.
Watch the way these problems are worded. Don’t be fooled on a test by mis-
reading a rate statement.

Example 7-23 A certain machine generates revenue at the rate of
, where R is in dollars per year and t is in years. As the machine

ages the cost of repairs increases according to: C(t) � 500 � 2t2. How long is the
machine profitable and what are the total earnings to this point in time?

Solution: The two curves are both parabolas, the R(t) curve opening down
and the C(t) curve opening up. The curves are sketched here (Fig. 7-12). Detail is
not necessary. 

R(t) � 2000 � 5t2

A � B2(4) �
43/2

3/2
�

42

2 R � B8 �
2
3(8) � 8R �

16
3

A � 3
4

0
[(1 � 2x) � (x � 1)]dx � 3

4

0
(2 � x1/2 � x)dx � B2x �

x3/2

3/2
�

x2

2
R 4

0

x � 1
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When the revenue generated per year equals the cost of repairs per year the
machine stops being profitable.

Mathematically, this situation occurs when the curves cross. The time when they
cross is found by setting the equations equal and solving for the time.

The total earnings up to 14.6 years is the (revenue generated) area under the
R(t) curve minus the (cost) area under the C(t) curve. This is an integral. Look
at the units. The rate of return in dollars per year times the time is the total
number of dollars.

The total earnings until the machine becomes unprofitable, that is, costs more
to operate each year than it returns in revenue, is $14,638.

Example 7-24 In a mine the yield per unit cost
for a particular ore is declining according to

, where the yield is in millions of tons
per year and t is in years. Find the time for the mine
to produce 60 million tons of ore.

Solution: Be careful with rate statements like this
one. The yield equation is in millions of tons per
year, not millions of tons total. Since the yield is in
millions of tons per year, the time for 60 million tons
has to come from an integration over time.
Integration is required rather than multiplication
because the rate per year is changing. The total yield
then is 

T � 3
t

0
(8 � 0.4t)dt � B8t �

0.4t2

2 R t

0
� 8t � 0.2t2

Y � 8 � 0.4t

E � B1500t �
7t 3

3 R 14.6

0
� 1500(14.6) �

7(14.6)3

3 � 21900 � 7262 � 14,638

E � 3
14.6

0
[(2000 � 5t 2) � (500 � 2t 2)]dt � 3

14.6

0
[1500 � 7t 2 ]dt

1500
7 � t 2 or t �

Å
1500

7 � 14.6 years

2000 � 5t2 � 500 � 2t2 or 1500 � 7t2
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Notice that in this problem the limits are 0 and t because we are looking for the
time to produce a total of 60 (million tons). Therefore, set in the equation 

generated by the integral and solve for the time.

or or

This quadratic is factorable to producing time values of
10 and 30.

Go back to the original statement for the yield and note that at
the yield is and at the yield is

.

The 10 year figure is the realistic one. Who would work the mine until the yield
reached zero and then continue, putting ore back, until the 60 million total was
achieved?

Further Insight Solution: If the yield is then in 10 years the yield
goes from 8 (starting at zero time) to in a linear fashion so the aver-
age yield over the 10 years is 6. This 6 million tons per year average times the
10 years produces the 60 million tons.

The 30 year figure is also true. If the yield goes according to for
30 years then the yield goes from 8 at time zero to �4 at the end of 30 years
and the average is 2 million tons per year for 30 years for the 60 million ton
total.

No one would actually do this because when the yield went to zero you would
have to start putting ore back into the mine to achieve your 60 million tons
total! You would also expect the yield equation to not accurately represent the
mine production after the production rate had gone to zero.

Sometimes, in problems involving quadratics, solutions are generated that are
mathematically correct but unrealistic. It is good practice to always look at the
answer and ask if it is reasonable.

Example 7-25 A demographic study indicates that the population of a certain
town is growing at the rate of people per month, when x is measured
in months. What will be the increase in population between the 10th and 12th
months?

4 � 2x0.8

Y � 8 � 0.4t

8 � 4 � 4
Y � 8 � 0.4t

Y(30) � 8 � 0.4(30) � 8 � 12 � �4
t � 30Y(10) � 8 � 0.4(10) � 4t � 10

Y � 8 � 0.4t

(t � 10)(t � 30) � 0

t2 � 40t � 300 � 00.2t2 � 8t � 60 � 060 � 8t � 0.2t2

T � 8t � 0.2t2

T � 60
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Solution: This is an integral problem. The growth function has to be integrated
and evaluated at the 10th and 12th months. Write the integral as the number
( ) and use the growth function integrated over time.

Before going any further review how to take a fractional power with your cal-
culator. To find enter 12 on your calculator, then find a key that raises
“things” to a power (this key will look like or ) and press it. Your calcula-
tor will probably blink and continue to display the 12. That’s OK. Don’t worry
about the 12, enter 1.8, and press the equal sign. The calculator should take a
short time to display 88.

A total of 36 people will enter the town in the 10th to 12th month interval.

Example 7-26 A rare stamp is, and has been, appreci-
ating at the rate of in thousands of dollars per
year when t is measured in years. If this stamp is pur-
chased for $5000 for a newborn child and allowed to
appreciate, what will be the value of the stamp on the
child’s 18th birthday?

Solution: This is a rate problem and an integral is required. The stamp is pur-
chased (at ) for $5000. Integrate the rate over time with the limits of 0 and
18 to find the value after 18 years.

In 18 years the stamp will be worth $171,000.

7-3 Average Value of a Function
Integral calculus can be used to determine the average values of functions. The
average value of some quantity that may be varying in a very complicated way

V � 3
18

0
(5 � 0.5t)dt � B5t �

0.5t2

2
R 18

0
� B5(18) �

0.5(18)2

2
R � [90 � 81] � 171

t � 0

5 � 0.5t

N(10 � 12) � B48 �
2(88)

1.8
R � B40 �

2(63)
1.8

R � [48 � 98] � [40 � 70] � 36

xyyx
(12)1.8

N(10 � 12) � B4(12) �
2(12)1.8

1.8
R � B4(10) �

2(10)1.8

1.8
R

N(10 � 12) � 3
12

10
(4 � 2x 0.8 )dx � B4x �

2x1.8

1.8
R 12

10

10 � 12
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can be a valuable piece of information. The average value of a function is the
area under the curve of that function over a certain range divided by that range.
The area under the curve is viewed as the area of a rectangle with one dimen-
sion equal to the range of the integral and the other dimension, the height equal
to the average height to produce the area under the curve. 

The formal definition is

The several problems in this section show how to find the average value of sev-
eral different functions and illustrate applications of the technique.

Example 7-27 On an employee stock
purchase plan one share of stock is pur-
chased each month for 10 months. The
share prices start at $10 at the end of
the first month and decrease by $1 per
month thereafter for the duration of
the offer. This is an incentive (to stay
with the company) plan and it does not
reflect the actual stock price.

Solution: You don’t need calculus to
do this problem. Graph the stock pur-
chase price as in Fig. 7-13. Look at the
graph and conclude that the average
purchase price is $5 over the 10
month interval for a total cost of $50 for the 10 shares.

Think Calculus Solution: The area enclosed by the triangle in Fig. 7-13 repre-
sents the total cost for the 10 shares of stock, $50. This area is also (1/2) base �
height . This area could be represented by a rectangle of
the same base and height 5. The height of 5 is an average height of the trian-
gle. In mathematical language the height of the rectangle would be

Example 7-28 In another stock purchase plan one share of stock is offered
each month starting at $40. The history of the stock indicates the price will fol-
low for the next year where t is in months. If 12 shares are pur-
chased according to this plan, what will be the average price of the stock?

C � 40 � 0.8t

Height �
area of rectangle
base of rectangle

� (1/2)(10)(10) � 50

Average value �
1

b � a 3
b

a
f(x)dx
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Solution: Graph the price of the stock as shown in
Fig 7-14. The area under the curve is the total cost for
the 12 shares. This (total cost) area divided by 12, the
base of the rectangle with area equivalent to this total
cost, gives the average price of the stock. 
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Following the form of integral stated earlier we calculate

The average price of the stock will be $44.80.

The average-value-of-a-function problems so far have had pretty tame-looking
functions. This next problem will illustrate how to apply the average value of a
function to some more complex functions.

Cavg �
1
12

[480 � 57.6] � 44.8

Cavg � B40(12) �
(0.8)(12)2

2 R

Cavg �
1
12
B40t �

0.8t2

2 R 12

0

Cavg �
1

12 � 0 3
12

0
(40 � 0.8t)dt

   1 
Share  

Fig. 7-14

Cost per
share tC 8.040 +=

12
Time



Example 7-29 Find the average value of the function from
to .

Solution: It is important to graph this function, or at least put in some values
so we know whether the function is positive or negative over the region. In
some problems it may be perfectly acceptable for the values of the function to
be negative, while in other functions we may be confined to averaging only pos-
itive values. The dominant term is the cubic so for large x the curve has the
cubic shape (see Chapter 1, Mathematical Background). A third-degree equa-
tion has at most two points where the slope is zero (see Chapter 4, Graphing).

Since only a rough sketch is necessary perhaps it will prove sufficient to just find
a few points and place them on the graph.

This function is positive over the range where it is to be averaged. Don’t be fooled
by an exam question that asks you to average all the positive values for a function
over a certain range and then gives you a function that is negative over part of the
range.

The shaded area in Fig. 7-15, the prescribed region in x, is all above the axis so
the integral for the average value of the function can be written knowing that
there will not be a negative area.

yavg �
1
4 b35 �

56
3 r �

1
4 b105

3 �
56
3 r �

1
4 b49

3 r �
49
12

� 4.1

yavg �
1
4 b B 81

4 �
54
3 � 12R � B1

4 �
2
3 � 3R r �

1
4 b80

4 �
56
3 � 15r

yavg �
1
4 b B34

4 �
2(3)3

3 � 3(4)R � B (�1)4

4 �
2(�1)3

3 � 3(�1)R r

yavg �
1

3 � (�1) 3
3

�1
(x3 � 2x 2 � 3)dx �

1
4Bx4

4 �
2x3

3 � 3xR 3

�1

y(�1) � (�1)3 � 2(�1)2 � 3 � 0

y(3) � 33 � 2(3)2 � 3 � 12

y(2) � 23 � 2(2)2 � 3 � 3

y(1) � 13 � 2(1)2 � 3 � 2

y(0) � 03 � 2(0)2 � 3 � 3

x � 3x � �1
y � x3 � 2x2 � 3
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Look at the graph and ask if this is reasonable. This average value means that the
rectangle equivalent to the area under this curve would have base 4 and height
4.1, which looks very reasonable. The mistake you are looking for here is a sign
mistake amongst the fractions or forgetting the (1/4) outside the whole integral.

7-4 Area between Curves Using dy
All of the area under the curve and average value of a function problems
encountered so far have been ones where the integration was carried out in the
x-direction. There are problems where this is inconvenient or even impossible,
and it is necessary to integrate in the dy direction. This takes a little reorientation
from the usual. In addition, the integrals are often more difficult. These problems
tend to separate the As from the Bs. Follow through the several examples and learn
how to find areas using integration in the y-direction as well as the x-direction.

Example 7-30 Find the area bounded by the curves and .

Solution: The curve is a parabola, but it is an unusual one in that it is
written , rather than the more familiar . This means that the
parabola is symmetric about the x-axis rather than the y-axis. The two curves

and are graphed in Fig. 7-16.

Imagine placing a representative rectangle of width dx on this graph. There is a
problem almost immediately. The rectangle doesn’t go from one curve to another.
It begins and ends on the same curve!

x � 4x � y2

y � x2x � y2
x � y2

x � 4x � y2
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You could solve for y to get 
and then use a symmetry argument and say
that the desired area is twice the area
between the curve , , and

. This would work for this particular
problem but with only a slight modification
to the parabola (add a constant, for
instance) the solution for y becomes most
complicated.

Using a rectangle of width dy is much easier.
Draw a rectangle as shown in Fig. 7-16 and
integrate over dy. The most convenient lim-
its of the integral are and , the
top half of the desired area. The shaded area is then twice this integral.

Example 7-31 Find the area bounded by , , and .

Solution: To do this problem in dx would require two separate integrals, one
from 0 out to the value of x for the intersection of and , and
another from this point out to .

It is easier to integrate in the y-direction.
This integral is no longer the “top
curve” minus the “bottom curve” but
the “most positive in x curve” minus the
“least positive in x curve.”

The “most positive in x curve” is
, which has to be rewritten

as . (To integrate in the y-
direction, the equations have to be in
terms of ys.) The “least positive in x
curve” is . Figure 7-17 shows the
curves and the rectangle.

The limits for y are zero and the value
of y where the line and thex � 3 � y

x � y2

x � 3 � y
y � �x � 3

x � 3
x � y2y � �x � 3

y � 0y � �x � 3x � y2

A � 2 3
2

0
y2dy � B2y3

3 R 2

0
�

16
3

y � 2y � 0

x � 3
y � 0y � 2x

y � 2xx � y2
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parabola intersect. This intersection point is obtained by setting these
two equations equal and solving for y.

or

This quadratic has to be solved by formula: 

The positive root, 1.3, is the one for this point.

The integral for the shaded area is 

Example 7-32 Find the area between and .

Solution: First graph the parabola
and the line as

shown in Fig. 7-18. This is one of the
more difficult problems in area
between two curves because of the lit-
tle piece of the area near the apex of
the curve. An integration in x is incor-
rect because in this piece of area near
the apex of the curve you would be
integrating between the same curve.
This integration must be done in the
y-direction if it is to be performed with
one integral.

y � x � 2x � y2

y � x � 2x � y2

A � 3.9 � 0.84 � 0.73 � 2.3

A � b B3(1.3) �
(1.3)2

2 �
(1.3)3

3 R � [0]r

A � B3y �
y2

2 �
y3

3 R
1.3

0

A � 3
1.3

0
[(3 � y) � y2]dy

y �
�1 � 21 � 4(1)(�3)

2(1)
�

�1 � 213
2 � 1.3,�2.3

y2 � y � 3 � 03 � y � y2

x � y2
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Rewrite the line as and set this equal to to find the values of
y where the curves intersect.

or or producing values of
and

The points where the curves intersect are obtained from either equation: (2,4)
and .

The integral for the desired area is 

Example 7-33 Find the area between and the x-axis from to
.

Solution: Graph from 
to as shown in Fig. 7-19. Here is
another instance where symmetry can
be used in calculating the area.

The area between and 
is twice the area between and

. Writing the area in the form of
an integral,

A � 2 3
p/2

0
sin xdx � �2 cos x 2p/2

0
� �2[0�1] � 2

x � p
x � 0

x � p/2x � 0

x � p
x � 0y � sin x

x � p
x � 0y � sin x

A � 6 �
8
3 �

1
2 � 2 �

1
3 � 8 �

9
3 �

1
2 � 5 �

1
2 �

9
2

A � b B2 � 4 �
8
3R � B1

2 � 2 �
1
3R r

A � b B22

2 � 2(2) �
23

3 R � B (�1)2

2 � 2(�1) �
(�1)3

3 R r

A � By2

2 � 2y �
y3

3 R
2

�1

A � 3
2

�1
[(y � 2) � y2]dy

(1,�1)

y � �1.y � 2
(y � 2)(y � 1) � 0y2 � y � 2 � 0y2 � y � 2

x � y2x � y � 2
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The easiest way to verify this integral is to refer to the Mathematical Tables. If
you have any trouble recalling the shape of the cosine curve, check Chapter 1,
Mathematical Background.

✔ The antiderivative: an educated guessing game

✔ Area under the curve in both dx and dy directions

✔ Use integrals to find average values of functions 

PROBLEMS

1. Find .

2. Find .
3. The racoon population in a park is growing according to

, where R is the number of racoons in hundreds and t is
the time in years. If the current population is 260 racoons, what will be the
population at the end of 4 years?

4. A coconut is thrown down from a cliff with an initial velocity (down) of
5.0 m/s. How far does the coconut travel in 3.0 s. Take the acceleration of
gravity as 9.8 m/s2.

5. Solve .

6. Solve for x: .

7. Solve .

8. Find the area between the x-axis and from x � �3 to x � 2.
9. Find the area between y � 5 and .

10. Find the average value of the function from x � 0 to x � 3.
11. Find the area between and x � y.

ANSWERS
1. Follow the pattern and write .

2. . Check by differentiating: .

3. . At t � 0, R(0) � 260 � C so R(t) � 2t � 0.16t5/4 �

260 and at t � 4, .R(4) � 2(4) � 0.16(4)5>4 � 260 � 269

R(t) � 2t � 0.2 t5/4

5/4
� C

1
33x2dx �

1
2(�2)x�3dx � 3dxx3

3 �
x�2

2 � 3x � C

y6

6

x � 6 � y2
f(x) � 2x � 1

y � x2
y � �x � 2

3 x2 � 2x � 1
x2 dx

3 1
x � 1

dx

dy/dx � x2y2

dR/dt � 2 � 0.2t1/4

1(x2 � x�3 � 3)dx

1y5dy
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4. The velocity, acceleration, and
distance traveled are all in the
same direction, down, so take
the down direction as positive.
Start with acceleration, which
in calculus-speak is d(velocity)/
d(time).

At t � 0, v = 5.0 m/s � C1 so

Again in calculus-speak, v is ds/dt

The distance is measured positive down from the top of the cliff so at t � 0,
s � 0 � C2.

5.

6. Let u � x � 1 and du � dx so so 

7. Long divide for 

8. Be careful of this question! If you perform the integral from �3 to 2 you will
get it wrong. Do two integrals. 

A2 � S
x2

2 � 2xT
3

�2 � S
32

2 � 2(3)T � S
(�2)2

2 � 2(�2)T �
25
2

A2 � 3
3

�2
[(0) � (�x � 2)]dx � 3

3

�2
(x � 2)dx

A1 � S�
4
2 � 4T � S�

9
2 � 6T �

1
2

A1 � 3
�2

�3
(�x � 2)dx � �

x2

2 �2x 2�2

�3

3 Q1 �
2
x �

1
x2Rdx � x � 2 ln Zx Z � x�1 � C

3 1
x � 1

� ln Zx � 1 Z3 du
u � ln Zu Z

y�2dy � x2dx  
y�1

�1
�

x3

3 � C1  �3 � y(x3 � 3C1)

s(3) � 15m
s � 44m

s � 59m
s

ds � 9.8m
s2tdt � 5.0m

s dt  s � 9.8m
s2

t2

2 � 5.0m
s t � C2

v � 9.8 m
s2 t � 5.0 m

s

v � 9.8 m
s2 t � C1

3 dv � 3 9.8 m
s2 dtdv

dt
� 9.8 m

s2

144 CALCULUS FOR THE UTTERLY CONFUSED

=
s
m

8.9
2

a = s
m0.5ov

s



Total area is the sum of these two areas, or 13.

9. Use the symmetry and remember “upper
curve – lower curve.”

Total area is 

10. f(0 � 3)avg �
1

3 � 0 3
3

0
2x � 1dx

2025
3

S525 �
525

3 T � [0] �
1025

3

1
2A � 3

25

0
(5 � x2)dx � 5x �

x3

3
225

0
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y = 5
y

x

(6, 0)

x

y
(2, 2)

(3, − 3)
x = 6 − y2

x = y
dy



Let .

11. This is a problem where graphing really helps. Look at the graph and real-
ize that the integral has to be over dy. From the graph and a little algebra
find where the curves intersect.

At
At
Remember that the integral is from the most positive curve to the less
positive curve.

A � 3
2

�3
[(6 � y2) � y]dy � 6y �

y2

2 �
y3

3
2 2
�3

�
125
6

y � �3, x � �3
y � 2, x � 2

y � 6 � y2 1 y2 � y � 6 � (y � 3)(y � 2)

f(0 � 3)avg �
1
3

2
3(x � 1)3/2 2 3

0
�

16
9 �

2
9 �

14
9

u � x � 1  so du � dx  and the integral is 1u1/2du �
u3/2

3/2
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CHAPTER 8

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

TRIGONOMETRIC
FUNCTIONS
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

You should read this chapter if you need to review or you need to learn about

➜Right angle trigonometry

➜Non-right angle triangles

➜Radians and small angles

➜Sine and cosine laws

➜Trigonometric functions

➜Differentiating trigonometric functions

➜ Integrating trigonometric functions
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The review of the essentials of trigonometry in Chapter 1, Mathematical Back-
ground, is a review of the bare necessities for getting started in calculus. Now
that you understand differentials and integrals, it is time to move on to a more
complete understanding of trigonometry. This chapter covers from right angle
trigonometry to the differentiation and integration of trigonometric functions.
If you want a comprehensive review of trigonometry that will help you in your
study of calculus this is the chapter for you. Formulas for the area and volume
of geometric figures encountered in this chapter are in the Mathematical Tables
at the end of the book. We begin the study of trigonometry at the very basis of
trigonometry, the right triangle.

8-1 Right Angle Trigonometry
The basic right triangle is shown in Fig. 8-1. An angle and the three sides are
labeled as shown. The side “opposite” is opposite the angle, whichever one it
may be, and the “adjacent” is the side adjacent to the angle. The hypotenuse is
always the side opposite the right angle. The little square placed in the corner
indicates a right angle and the other angle is designated with a .u
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Fig. 8-1

The ratio of the sides and either side, the opposite or adjacent, to the hypotenuse
is unique for each angle. These three ratio combinations are called the sine,
cosine, and tangent. The inverses of these ratios are almost totally uninteresting.

The angles are measured in degrees with 360 degrees the total (complete circle)
angle. A right angle is 90 degrees, written 90�. Each degree is further subdivided
into 60 minutes, and each minute into 60 seconds. Your hand calculator prob-
ably works in degrees and decimal parts of degrees unless you have done

Adjacent ( a)

Hypotenuse (c)
Opposite (b)

a
b

c
a

c
b

==

==

==

Adjacent
Opposite

tanq

Hypotenuse
Adjacent

cosq

Hypotenuse

Opposite
sinq

q



something to make it read minutes and seconds. The minutes and seconds fea-
ture may not be available on your calculator. Most calculations are carried out
to the nearest degree or nearest tenth of a degree.

The three basic ratios, the sine (sin), cosine (cos), and tangent (tan), are defined
in Fig 8-1. The ability to calculate this ratio information is stored in your hand
calculator. If it is not stored in your present calculator, get a better calculator.
This information is so important and the calculator so inexpensive you should
obtain one. If you are not familiar with how to work the calculator, practice tak-
ing a few sines, cosines, and tangents.

, , ]

If you did not get these numbers when you punched in your calculator
may have been in the wrong mode. Your calculator will take the sine in three dif-
ferent modes, degrees, rads (short for radians), and grads. Here’s a simple rule.
Never use grads, rarely use rads, and always check you calculator for mode. Being
in the wrong mode is too embarrassing a mistake to make on a test. Actually you
will, or may, use rads occasionally, but not in the context of right angle trigonom-
etry problems. Rads will be taken up later. For now, stick to degrees.

A couple of simple problems will illustrate the use of these angle ratios in right
angle trig.

Example 8-1 Fifty feet out from the base of a tree the angle measured to the
top of the tree is 35�. How tall is the tree?

Solution: Figure 8-2 shows the tree,
distance along the ground, the adjacent
50 ft side, and the 35� angle. The tan-
gent function relates the two sides to
the angle.

Solve this statement for h the same as
with any algebra statement.

The height of the tree is 35 ft.

h � (50 ft) tan 35� � (50 ft)(0.70) � 35 ft

tan 35� �
opposite
adjacent

�
h

50 ft

sin 30�

tan 45� � 1.00cos 75� � 0.2697[ sin 30� � 0.50
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Fig. 8-2

35°

h

50 ft



Example 8-2 A certain right triangle has sides 5 and 7. Find the angles and the
other side.

Solution: Sketch a right triangle and
label the sides as shown in Fig. 8-3.

Start by calculating the angle .

This presents a new manipulative
problem in that we seek the angle with
tangent ratio 5/7. On your hand calcu-
lator, enter 5 divided by 7 to display
the decimal 0.71.

Now perform the inverse tan function. This is usually a key labeled “inv” or
“arc” or “ ,” or sometimes the operation requires two keys “arc” and
“tan,” or “inv” and “tan.” The is the more popular. Pressing the appro-
priate key or series of keys should produce an angle of 35.5�. Remember to
keep your calculator in degree mode.

The mathematical operation performed by these sequence of keystrokes is the
inverse of . Take the of each side of the equation.

or

Rather than say “tangent to the minus 1” the words “arc” or “inverse” are used.
The equation would be said, “theta is the arctangent of five over
seven” or, “theta is the inverse tangent of five over seven.”

Now calculate the angle . All the angles of the triangle have to add to so
. The angle is .

Find the hypotenuse using the cosine function.

or

The hypotenuse is 8.6.

Another useful property of right triangles is the Pythagorean theorem. In
words, the Pythagorean theorem is: in a right triangle the sum of each side

c �
7

cos 35.5�
� 8.6cos 35.5� �

7
c

54.5�f180� � 90� � 35.5� � 54.5�
180�f

u � tan�1(5/7)

u � tan�1(0.71) � 35.5�tan�1( tan u) � tan�1(5/7)

tan u � 5/7tan�1tan u

tan�1
tan�1

tan u �
5
7

u
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Fig. 8-3

c
5

7

q
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(individually) squared equals the hypotenuse squared. Referring to Fig. 8-1, the
theorem is written symbolically as .

Example 8-3 Find all the sides and angles in a right triangle with side 4 and
opposite angle .

Solution: Sketch the triangle (see
Fig. 8-4).

Find the hypotenuse using the sine
function.

or

Now use the Pythagorean theorem to find the adjacent side.

or or

The other angle is .

Example 8-4 A force of 70 lb is pulling on a box sliding along a floor. The
rope exerting the force is at an angle of 20� from the floor. What forces acting
parallel to the floor and perpendicular to the floor would produce this force?

Solution: Finding the components of a force or speed is common in many
problems. The force is viewed as having components along the floor, because
that is the direction of motion of the box, and perpendicular to the floor as
shown in Fig. 8-5.

90� � 28� � 62�

a � 7.5a2 � c2 � 42 � 8.52 � 42 � 56.6c2 � 42 � a2

c �
4

sin 28�
�

4
0.47 � 8.5

sin 28� �
4
c

28�

a2 � b2 � c2
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Fig. 8-4

Fig. 8-5

28°
a

4
c

20°

70 lb 
70 lb 

20°

FH = (70 lb) cos20°

EV = (70 lb) sin20°



The horizontal component of the force is .

Write and solve for .

The vertical component of the force is .

Notice that the horizontal force and the vertical force do not add up to the
70 lb. The reason for this is that they are not in the same direction. Certain
measured quantities have this directional property. To describe motion or force
it is necessary to add a direction. If you move 3 ft and then 4 ft you will be at
very different positions relative to your starting point if you make both moves
either in a straight line, at right angles to one other or first forward and then
backward. Depending on the angle between the subsequent moves you will be
anywhere from 1 to from your starting point.

To describe temperature no such direction is required. Temperature is just a num-
ber, while motion requires a number plus a direction for complete description.

The components of the force are the sides of a right triangle and as such their
squares should add up to the square of the hypotenuse (Pythagorean theorem).

or

8-2 Special Triangles
There are certain triangles that occur often enough to have their own names.
When someone describes a problem using the phrase “similar” triangles, for
example, it is important to know what that means. These definitions of triangles
are not difficult, though they are sometimes difficult to remember on tests. The
features and some typical uses of these triangles are shown below.

Pythagorean Triangles

Certain integral-number-sided right triangles satisfy
the Pythagorean theorem. These triangles occur
often enough so you should at least be aware of them.
The simplest is the 3, 4, 5 triangle: . The
double of this one also works: .

Congruent Triangles

Two triangles are congruent if they are exactly the
same, sides the same, and angles the same.

62 � 82 � 102
32 � 42 � 52

662 � 242 � 702a2 � b2 � c2

7 ft

FV � (70 lb) sin 20� � 24 lb

FHcos 20� �
FH

70 lb

FH � (70 lb) cos 20o � 66 lb
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Equilateral Triangles

Equilateral triangles have all their sides equal and all their angles equal. Since
all three equal angles must add to , the angles in an equilateral triangle are
each .

Isosceles Triangles

An isosceles triangle has two sides equal and the two angles opposite the equal
sides also equal.

Similar Triangles

Similar triangles have the same angles. A triangle similar to another is either
larger or smaller than the other. The angles are the same and the sides are in
proportion. The proportion is illustrated in Fig. 8-6.

60�
180�
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Fig. 8-6

Example 8-5 Similar triangles often occur one inscribed inside another. For
the situation shown in Fig. 8-7, find the height of the “inner” triangle.

Solution: These are similar trian-
gles. Their angles are the same and
the ratios of their sides are equal.
In the larger triangle the side ratio
is 10/26. In the smaller triangle this
ratio is h/20. Set these ratios equal
and solve for h.

or h �
(20)(10)

26
� 7.7h

20 �
10
26

Fig. 8-7

'a 'b

'c

a b

c''' c

c

b

b

a

a
==

10
h

20 6



8-3 Radians and Small Angles
Right angle trigonometry is closely related to the circle. Figure 8-8 shows a cir-
cle on a right angle coordinate system with a radius and the projection of that
radius on both the x- and y-axes. The radius is 1. If the angle is measured coun-
terclockwise from the x-axis (mathematicians always measure angles counter-
clockwise), then the sine and cosine are defined as:

or

or

If you knew nothing about radians
and degrees and were confronted
with the problem of deciding how
to measure an angle for a circle
of radius 1, you probably would
take the ratio of the arc length to
the radius, and if the radius were 1
then the angle would be measured
by the arc length. Figure 8-9 shows
a radius, the angle, and the arc
length. For a circle of radius 1, the
circumference is so a complete
angle, all the way around, in this
rather logical system would have
an arc length of . One-quarter
of the way around would be a right
angle and have an arc length of , and
so on. This arc length to radius ratio pro-
duces a pure number (no units) and
defines what is known as radian measure.
The relation between degrees and radians
is radians.

A radian, because of its definition, is
dimensionless so the use of the word radi-
an or rad as a unit is for convenience and a
reminder that the angle is not measured in
degrees. Radians are not cancelled as
meters or seconds or other conventional units. Radian or “rad” is a phantom unit:
sometimes it is used and sometimes it is not used. A common expression such as
10 revolutions per minute (rpm) in radians would be 10( rad) per minute.2p

360� � 2p

p/2

2p

2p

u

a � cos ucos u � a/1

b � sin usin u � b/1
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Fig. 8-8

x

y

bb

a

a

= cosq

= sinq

q

Fig. 8-9

r sr
s=

x

y

q

q



Example 8-6 Convert to radians and 1 radian to degrees.

Solution: Use unit multiplication here. Watch the units and keep the ratios
correct and everything will work out fine.

You need to remember that . The other number, is
not so important and can be worked out with the definition.2p � 360�

57.3�/radian2p  rad � 360�

1 rad 360�
2p  rad

� 57.3�76�
2p  rad

360�
� 1.33 rad

76�
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Danger

Go through the following exercise so you are absolutely sure you know how to

go back and forth between radians and degrees. This is another mistake that is

embarrassing and costly on exams.

Fig. 8-10

Place your calculator in degree mode and take . You should see 0.84
displayed. Now place your calculator in rad mode. There is usually a DRG
(degree, rad, grad) key that cycles through the various modes. There also
should be some indicator on the face of the calculator indicating the mode, usu-
ally a D or R or G. In rad mode take . (One radian is approximately 57.3�)
You should see the same number, 0.84, displayed. Try a few other angles in radi-
ans and degrees to insure that you know how to find the trigonometric function
of any angle, whether in degrees or radians.

Refer to Fig. 8-10, which shows a triangle with a very small angle inscribed in a
small part of a circle. The angle measured in radians, and the sine and tangent
of the angle, are defined in Fig. 8-10.

sin 1

sin 57.3�

sb

a

c

c
s= c

b=sinq a
b=tanqq

q



For small enough angles, s is approximately the same as b, and a is approxi-
mately the same as c. Therefore, for small angles with the angle measured in
radians, the angle, the sine of that angle, and the tangent of that angle are all
nearly equal. The next problem illustrates the error in making the approxima-
tion that the sine is the angle for some small angles.

Example 8-7 What is the difference (error) between the angle in radians, the
sine, and the tangent for an angle of 0.1 radians?

Solution: As a warm up to this problem take the sine of and the tangent
of .

The difference between these two is approximately 5 parts in 1000 or 0.5%
error. Now

The difference between the sine and the angle at 0.1 radians is 2 parts in 1000. 

The difference between the tangent and the angle at 0.1 radians is 3 parts in 1000.

The difference between the sine and the tangent at 0.1 radians is 5 parts in 1000.

Example 8-8 Redo Example 8-7 but at 0.5 radians, approximately .

Solution: , , 

The difference between and at 0.5 radians is about 4%, and the differ-
ence between and is about 10%.

Use the approximation for angles up to and possibly ,
but certainly not much bigger. If you find an old slide rule, you will see a scale
for sine and tangent that goes to 5.7�

8-4 Non-Right Angle Trigonometry
You may encounter some situations requiring the side or angle in a non-right
triangle. The laws relating the sides and angles in non-right triangles are not

20�10�u � sin u � tan u

tan uu

sin uu

tan u � 0.55sin u � 0.48u � 0.5

30�

tan (0.1) � 0.1003

sin (0.1) � 0.0998

u (in radians) � 0.1000

tan 5.7� � 0.0998sin 5.7� � 0.0993

5.7�
5.7�
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surprisingly called the law of sines and the law of cosines. These laws will not be
derived; rather they will be stated and illustrated with problems. Actually the
law of sines and the law of cosines are applicable to any triangle. Their greatest
utility, however, is in non-right triangles.

Law of Cosines

Referring to Fig. 8-11, the law of cosines is
written symbolically as b2 � c2 � 2bc(cos A) �
a2 Small letters refer to the sides and capital
letters to the angles.

In words, the law of cosines is “one side
squared plus an adjacent side squared minus
twice the product of the two sides and the
cosine of the included angle equals the side opposite the angle squared.” This
statement is a clearer explanation of the law of cosines. Any side and adjacent
side and included angle follow the law of cosines.

Follow the statement, refer to Fig. 8-11, and write the following: 

or

Example 8-9 Find the base and the two equal angles of an isosceles triangle
with equal sides 4 and included angle, .

Solution: An isosceles triangle has two sides and
the opposite two angles equal. The word “base”
implies that the unequal side is horizontal. An
isosceles triangle as described in the problem state-
ment is shown in Fig. 8-12.

Following the written statement of the law of cosines,
“One side squared plus an adjacent side squared
minus twice the product of the two sides and the
cosine of the included angle equals the side opposite
the angle squared,” the equation can be written as 

or b � 2.7b2 � 7.5

32 � 32( cos 40�) � b2

42 � 42 � 2 	 4 	 4( cos 40�) � b2

40�

c2 � a2 � 2ac(cos B) � b2b2 � a2 � 2ab(cos C) � c2
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Fig. 8-12

40°
44

b

Fig. 8-11

a

b
c

A

B

C



The base is 2.7, and to complete the picture the equal angles are each
.

Example 8-10 Find the distance and angle to the final position for a person
who travels 6 m at north of east and then 8 m at north of east.

Solution: Instead of an x-y coordinate system use the N-S-E-W system repre-
senting the compass directions and place arrows representing the 6- and 8-m
distances as shown in Fig. 8-13.

50�20�

(70� � 70� � 40� � 180�)
70�
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Fig. 8-13

50°

20°

N

E

6

8l

a

b

Perhaps the hardest part of this problem is finding the large angle 
between the 6- and 8-m lengths. The dashed line at the tip of the line representing
the 6 m is parallel to the E-axis, so the little angle labeled is (alternate
interior angles of a bisector of parallel lines). The angle labeled is 
( . Therefore, the large angle between the 6- and 8-m lines and oppo-
site the line from the start to the finish is the sum of these two angles

.

Now write the law of cosines for the length l.

Before going any farther on this problem, stop and look at the . Take
on your hand calculator and you will see �0.87 displayed. This is most

reasonable. The length, l, is greater than 6 or 8, and just from looking at the
sketch l is close to 14, the sum of 6 and 8. With a negative number for the ,cos 150�

cos 150�
cos 150�

62 � 82 � 2 	 6 	 8(cos 150�) � l 2

130� � 20� � 150�

180� � 50�)
130�b

20�a

(a � b)



the law of cosines looks as though it is going to produce a reasonable number.
Now proceed with the calculation.

or

The important point to notice in this problem, and that is why it was included,
is that the law of cosines works for angles greater than .

Law of Sines

Referring to Fig. 8-14, the law of sines is written sym-
bolically as 

The law of sines works in some instances when the law
of cosines does not. The following problem is an exam-
ple where the law of sines works and the law of cosines
does not.

Example 8-11 For a non-right triangle with angles and and
one opposite side , find all the sides and angles.

Solution: Sketch the triangle as in Fig. 8-15.

Notice that the law of cosines will not work in
this problem. There are not two sides given.

Using the law of sines and solv-

ing for a we calculate 

Do not at this point divide 30 by 40; take the sine
and multiply by 11!

Carefully find , then divide by , and
finally multiply by 11.

a � 11 sin 30�
sin 40�

� 110.50
0.64

� 8.6

sin 40�sin 30�

a � 11 sin 30�
sin 40�

sin 40�
11

�
sin 30�

a

b � 11
B � 40�A � 30�

sin A
a �

sin B
b

�
sin C

c

90�

l � 13.5l 2 � 183

36 � 64 � (2)(6)(8)(�0.87) � l 2
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Fig. 8-15

B = 40°

b = 11

A = 30°

C c

a

Fig. 8-14

a

A

b

B

c

C



The angle C is .

And finally use the law of sines to find side c.

or

Example 8-12 You need to determine the distances from two points, A and
B, on one side of a canyon to a single point, C, on the opposite side of the
canyon. At point A you measure an angle of between points B and C. At
point B, 300 m from point A, you measure an angle of between points A and
C. What is the distance from A to C and B to C?

Solution: Draw a diagram and use the
law of sines. The angle at C is from 180� �
65� � 40� � 75�. Set up the law of sines and
note that this law can be written upside
down from the normal way (see Fig. 8-16).

8-5 Trigonometric Functions
The definition of the trigonometric functions starts with the right triangle
inscribed in the unit circle first shown in Fig. 8-8.

Place a unit circle on a right angle coordinate system as shown in Fig. 8-17. The
sides of the inscribed triangle are the sine and cosine of the angle, . These sides
of the inscribed triangle are also the projections of the point on the circle that
defines the angle on the axes. The projection on the x-axis is the cosine of , and
the projection on the y-axis is the sine of .

As the point defining the angle moves around the circle in a counterclockwise
manner, the projection on the x-axis traces out the cosine function and the

u

u

u

b �
sin 40�
sin 75�

 300 � 200

a �
sin 65�
sin 75�

 300 � 281

300
sin 75�

�
a

sin 65�
�

b
sin 40�

40�
65�

c � 11 sin 110�
sin 40�

� 110.94
0.64

� 16.2sin 110�
c �

sin 40�
11

(180� � 30� � 40� � 110�)110�
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Fig. 8-16
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projection on the y-axis traces out the sine function. We will eventually graph
the sine function vs. angle, but right now work with the unit circle a little longer.

Follow the sine function and confirm the values in Table 8-1 as the angle is
increased. Remember that the angle increases counterclockwise from what
would be the �x-axis.

Sine

At , the projection on the y-axis that is the value of the sine function is 0.

At or , the projections on the x- and y-axes are the same. Applying
the Pythagorean theorem, two equal lengths, l, squared equal the radius (of 1)
squared.

or or or

With your hand calculator, confirm that . Confirm
this number in Table 8-1.

sin 45� � cos (p/4) � 0.71

l � 1/22 � 0.71l 2 � 1/22l 2 � 1l 2 � l 2 � 12

45�u � p/4

u � 0
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TABLE 8-1

0
sin 0 0.71 1 0.71 0 0
cos 1 0.71 0 0 0.71 1
tan 0 1 0 1 �1 0� `�1� `

�0.71�1�0.71
�071�1�0.71

2p7p/43p/25p/4p3p/4p/2p/4

Fig. 8-17

x

cosq=x

sinqyy

q

=



At , the projection on the y-axis is 1.

At , the projection on the y-axis is positive and equal to the value at
.

At , the sine function goes to zero.

At , the projection on the y-axis is negative, but numerically equal
to the value at .

At , the sine function has value �1, and at , �0.71, and
finally back to zero at .

Cosine

At the cosine function is the projection on the x-axis, or 1. As goes
from 0 to the shape of the cosine curve is the same as the shape of the sine
curve. They just start at different places; the sine curve starts at zero and the
cosine curve starts at 1.

Tangent

The tangent function can be thought of as either y-projection over x-projection
or sine function over cosine function. Use whichever is more convenient.

At , , and so .

At , the projections are the same so .

At , the over is . There is no point at so look
to a limit view of how the tangent curve behaves in the vicinity of . As 
approaches , with values less than , the becomes small making the
tangent of become a very large positive number. When goes just beyond ,

is a small negative number making a very large negative number.

On one side of the tangent function goes to plus infinity and on the other side
it goes to minus infinity. The best way to depict this on the chart is with ��. In
limit language, the tangent function has a vertical asymptote at , , and every

interval in both directions. The tangent function is usually graphed between
and so a complete curve from minus infinity to plus infinity is shown.

The sine, cosine, and tangent functions are graphed in Figs. 8-18 and 8-19.

8-6 Identities
It is not our intention to work out all of the many trigonometric identities. What
we will do is show you how broad categories of identities are developed, working

p/2�p/2
p

3p/2p/2

p/2

tan ucos u
p/2uu

cos up/2p/2
up/2

1/01/0cos (p/2)sin (p/2)u � p/2

tan (p/4) � 1u � p/4

(sin u/ cos u) � 0cos u � 1sin u � 0u � 0

2p,
uu � 0,

2p
u � 7p/4u � 3p/2

p/4
u � 5p/4

u � p

p/4
u � 3p/4

u � p/2

162 CALCULUS FOR THE UTTERLY CONFUSED



out a few examples along the way. Our purpose is to give you a flavor for
trigonometric identities, not make you an expert at them.

The simplest of the identities are the reciprocals of the sine, cosine, and tangent
functions. These are called the cosecant (csc), secant (sec), and cotangent (cot).

Look back to Fig. 8-8 and Fig. 8-17 and notice that the inscribed right triangle
has radius 1 and write the Pythagorean theorem statement for these inscribed
triangles. In terms of the x and y components, the statement would be 

In terms of the trigonometric functions the statement would be 

This last statement is often called trigonometric identity number one. Divide
this statement by to obtain

or 1 � tan 2 u � sec 2 u tan 2 u � 1 �
1

cos 2 u

cos 2u

 sin 2 u � cos 2 u � 1

x2 � y2 � 1

 csc u �
1

sin u
  sec u �

1
cos u  cot u �

1
tan u
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Fig. 8-18

tanq

cosq

q

q

-p/2

p/2
2pp/2 3p/2

-p/4

p/4

p



A variety of similar identities based on can be created and
are tabulated in the Mathematical Tables.

Another category of identity concerns the sum or difference of two angles and
angles plus or minus . These can be worked out with the unit circle but they
are easier to see from the function graphs. Look just at the sine function graph
in Fig. 8-19 and follow the argument presented below.

180�

 sin 2 u � cos 2 u � 1
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On the sine function graph a vertical line is drawn indicating the position and
value of . The point � has the same numeric value for the sine function as 
(it is just negative) so identitywise . Similarly and

have the same value, so . The has
the same numeric value as , one is just the negative of the other, so

. The relations between the sine and cosine are a little
more complicated, but not much. Many of the popular trigonometric identities
dealing with different angles being equal to or the negative of one another are
listed in the Mathematical Tables.

Similar to these relationships are the difference identities. These can be
worked out geometrically, but are most easily seen in Fig. 8-18. The sine and
cosine functions are displaced by . Look at the two graphs and write

and . There are more of these in
Mathematical Tables.

Another category of identities is the sum and difference formulas and the half
and double angle formulas. Many of these identities come about from a derivation
similar to the one given below for the cosine of the difference of two angles. In
addition, this exercise is a good review of basics.

Figure 8-17 shows that any point on the unit circle can be given by the coordi-
nates x and y or the coordinates and . On a unit circle the coordinatessin ucos u

cos u � sin (90� � u)sin u � cos (u � 90�)
90�

90�

sin u � � sin (p � u)
sin u

sin (p � u)sin u � sin (p � u)sin (p � u)
sin usin u � �sin (�u)

uuu

Fig. 8-19

2p

sinq

−q

q p − q

p + q



of the angle are . The coordinates of another angle, , are
(see Fig. 8-20).(cosf, sinf)

f(cos u, sin u)u
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Fig. 8-20

x

y

d
(cosf, sinf)

(cosq, sinq)

cosq - cosf

sinq - sinf f
q

The distance between these two points, d, in terms of the Pythagorean theorem, is

In words, this is “the hypotenuse d squared equals the difference in x-coordinate
squared plus the difference in the y-coordinate squared.”

and so this statement reduces to

The distance can also be written in terms of the law of cosines. The sides are
1, and the included angle is , which makes the statement easier.

Set these two statements equal to produce an identity.

cos (u � f) � sin u sinf � cos u cosf

2 � 2 cos (u � f) � 2 � 2( sin u sinf � cos u sinf)

d 2 � 12 � 12 � 2(1)(1) cos (u � f)

(u � f)
d 2

d 2 � 2 � 2 sin u sinf � 2 cos u cosf
sin 2f � cos 2f � 1sin 2u � cos 2u � 1

d 2 � [sin 2u � 2 sin u sinf � sin 2f] � [cos 2u � 2 cos u cosf � cos 2f]

d 2 � ( sin u � sinf)2 � ( cos u � cosf)2



This identity gives the cosine of the difference of two angles in terms of the sines
and cosines of the individual angles. A myriad of sum and difference of two
angle formulas as well as double and half angle formulas come from exercises
similar to this one. Fortunately they are all tabulated in many places, most
notable in Mathematical Tables in the back of this book. These tables given here
are not complete, just sufficient for most of the problems you will encounter.

8-7 Differentiating Trigonometric

Functions
A somewhat intuitive justification for the derivative of the sine function was given
in Chapter 3, Derivatives. Now it is time to look a little more closely at deriva-
tives of trigonometric functions and apply those derivatives to some problems.

The derivative of the sine function is the cosine function and the derivative of
the cosine function is the negative of the sine function. The justification for the
derivative of the sine function (Chapter 3) is enough to give you a feel for how
the derivatives of trigonometric functions come about. The more popular deriv-
atives are listed below, with a larger list presented in the Mathematical Tables.

, , 

One thing that occurs fairly often in trigonometric functions is that the variable,
the , the x, or whatever is not simply or x but something more complicated,
like 2x, for example.

Example 8-13 Find the derivative of .

Solution: This kind of problem is best done in an implicit style. Write 
and then differentiate according to the formula for the differential of the cosine.

In words, “the differential of is equal to minus (times the) differ-
ential of 2x.” And the differential of 2x is 2dx.

With this experience .

The implicit derivative approach with the equation written in one line is the
easier method.

d
dx

( cos 2x) � �2 sin 2x

sin 2xcos 2x

d(cos 2x) � �(sin 2x)d(2x) � �2(sin 2x)dx

d(cos 2x)

cos 2x

uu

d(tan u) � sec 2udud(cos u) � � sin udud(sin u) � cos udu
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Example 8-14 Find for .

Solution: Before differentiating the we first have to deal with the cube of
. If the problem were , the implicit style derivative would read

.

For the function , an approach parallel to the one above would pro-
duce . 

The is , so .

Example 8-15 Find of .

Solution: Go slowly and don’t get confused. Do the tangent squared part of
the derivative and then take care of the part.

or

The problem can be rewritten using the identity .
Rewrite the problem as

Take the differential in implicit form

so

Example 8-16 What is the angle between and the x-axis when the
curve crosses the axis?

Solution: This is one of those innocent looking problems that look easy but
perhaps is not so easy. Oh, but it is not difficult for Captain Calculus, because
“The Captain” always “thinks calculus.”

y � cos 3x

dy
du

� 4 tan 2u sec 22u

dy � 2 sec 2ud sec 2u � 2 sec 2u( tan 2u sec 2ud2u) � 4 tan 2u sec 22udu

y � sec 22u � 1

 sec 2 2u � 1 � tan2 2u

dy
du

� 4(tan 2u)(sec 2 2u)d � 4(tan 2u)(sec 2 2u)du

dy � 2(tan 2u)(sec 2 2u)d(2u)

dy � 2(tan 2u)d(tan 2u)

2u

y � tan 22u
dy
dx

dy
dx

� 3( sin 2x)( cos x)( cos x)dxd( sin x)

dy � 3( sin 2x)d( sin x)
y � sin 3x

dy � 3u2du
y � u3sin x

sin x

y � sin 3x
dy
dx

Trigonometric Functions 167



The phrase “the angle” should trigger
a connection between geometry and
calculus. To know the slope is to know
the angle so if we know the slope
when the curve crosses the axis then
we can easily find the angle. The
slope, in general, is the derivative.

or

What we need is the specific slope when the function crosses the
x-axis. We have the general expression for the slope so all we need is the x-value
when the function crosses the x-axis.

The function crosses the x-axis when or .
Substituting into the general expression for the slope, we calculate

Figure 8-21 shows the first quarter
cycle of the curve . The
slope is clearly negative at this point.
The angle between the axis and the
curve as shown in Fig. 8-21 has tangent
of 3. Solve for .

Example 8-17 The rise and fall of
ocean tides follows ,
where y is the relative height of the
ocean, taking as the midpoint
between high and low tide, and t is the
time in hours from the midpoint in
height. When, in the cycle, is the tide ris-
ing at its greatest rate, what is that rate?

Solution: The sine function describes the up and down motion of the tide. The 3
ft is the height or depth of the ocean from the midpoint between high and low tide.

y � 0

y � (3 ft)sinQ
2p
11

tR

u � 72�tan�1u � 3

y � cos 3x

dy
dx
2
x�p/6

� �3 sin (3p/6) � �3 sin (p/2) � �3

p/6
x � p/63x � p/2y � cos 3x

y � cos 3x

dy
dx

� �3 sin 3x

dy � � sin 3xd3x � �3 sin 3xdx
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This is a job for 

Captain Calculus!

C

Fig. 8-21

x

y

y 3xcos=

p /6 p /3

q



The is determined by the frequency
of the tide and the nature of the sine func-
tion. The time for one tide cycle is approx-
imately 11hr. When t has gone from 0 to 11,
the argument of the sine function, the

, has gone from 0 to , or through
one complete cycle. Read this paragraph
again and perhaps again, until you under-
stand how to write descriptions of process-
es that vary in a sinusoidal manner.

The function is graphed in Fig. 8-22. The ver-
tical scale shows the 3 ft up and down of the
tide and the horizontal scale shows one
complete cycle after 11 hr.

2p(2p/11)t

2p/11
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Fig. 8-22

11

t

y

−3 ft

3 ft
= ty

11
2πft)sin3( � �

The rate at which the tide is rising is the time derivative of y.

The has the units . If t is measured in hours then must have the
units of reciprocal hours so that the sine is of a pure number. It is impossible to
take the sine of or 6 hr or $1.25. The only choices in taking a sine are a pure
number (radians) or degrees. Use this pure number requirement to keep units
straight.

3 ft

2p/111/hr2p/11

dy
dt

� (3ft)Q
2p

11 hr
R cos Q

2p
11

tR � Q
6p
11

ft
hr
R cos Q

2p
11

tR



The rate at which the tide is rising, , is a maximum when is max-
imum. The cosine function is a maximum at 0 or in this case at . This point,

, corresponds to the midpoint between high and low tide (see Fig. 8-21).

The tide is rising at its fastest rate midway between high and low tide.

The maximum rate is .

Second Solution: Captain Calculus, who always “thinks calculus,” would not
need to take a derivative to know when the tide was rising at maximum rate.
The Captain would look at the sine curve (Fig. 8-22) describing how the ocean
level was going up and down with the tide and ask where the slope had the
greatest positive value. Just by looking at the curve, the maximum positive
slope and the greatest rate of rise of the tide are at the midpoint between high
and low tide.

8-8 Integrating Trigonometric Functions
Three basic integral formulas can be obtained by taking the antiderivative of
the differential formulas at the beginning of the previous section.

, , 

, , 

Two other popular integrals of trigonometric functions are

,

These and a few other trigonometric integrals are listed at the back of the book
in the Mathematical Tables.

Handling integrals other than the standard integral, , is a
little harder with integrals than it was with differentials. The following problem
illustrates the procedure.

1 sin , cos , or tan (x)dx

3 cot udu � ln (sin u)3 tan udu � �ln (cos u)

3 sec 2udu � tan u3 sin udu � � cos u3 cos udu � sin u

3 d(tan u) � 3 sec 2 udu3 d(cos u) � � 3 sin udu3 d(sin u) � 3 cos udu

2p
11

ft
hr

� 0.57 ft
hr

t � 0
t � 0

cos (2p/11)tdy/dt
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Example 8-18 Find the integral of .

Solution: Here again is a case where is known but this is not the

exact problem. The first step in this problem is to make the look like
.

Constants can be placed inside or outside the integral sign; it makes no differ-
ence. To make this problem read , multiply by and take the 2 in the
numerator inside the integral and associate it with the d , and leave the remain-
ing outside the integral.

Now the integral is in the form and has the following solution:

Example 8-19 Find .

Solution: Don’t be fooled by this integral. It is not a power law problem. It is
not an easy integral and do not get involved in trying to work it out. Go to the
Mathematical Tables or some table of integrals and copy the answer.

Example 9-20 Find the average value of the sine function from 0 to .

Solution: The average value of the function uses the definition of the average
value of a function over a range (see Chapter 7, Integration). The integration is
over the first half-cycle of the sine function as shown in Fig. 8-22. The average
value of the function from 0 to is

x Zavg �
1

p � 0 3
p

0
sin udu

px � sin u

p

y � 3 sin 3 udu � �
1
3 cosu(sin 2u � 2)

y � 1 sin 3udu

y �
1
2(�cos 2u) � �

1
2 cos 2u

1 sin udu

y �
1
2 3 sin 2ud2u

1/2
u

2/21 sin udu

1 sin udu
1 sin 2udu

1 sin udu

y � 3 sin 2udu
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Carry out the integration to find the average value of the sine function over one
half-cycle.

Figure 8-23 shows the rectangle with
height 0.64 and base with area
equal to the area under the first half-
cycle of .

Example 8-21 The power delivered
by a loudspeaker is 
where is the peak power and is
a constant with the units of recipro-
cal time. What is the average power
in terms of the peak power?

Solution: Start by graphing (Fig. 8-24). The is not
important to the graph. When has gone from 0 to 2 , the sine
function has gone through one cycle.

pvt
vtsinvt

vPo

P � Po sin 2vt

sin u

p

�
1
p[�(�1) � (�1)] �

2
p � 0.64

x Zavg �
1
p S� cos uT

p

0
�

1
p[�cosp � (�cos 0)]
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Fig. 8-23

x

1
0.64

p q

Fig. 8-24

PP o
2sin=

2π tw

oP
w t

Now graph the curve. Look first at the range from 0 to . The curve
starts at zero when , and goes to 1 when , and then back to zero
again when .vt � p

vt � p/2vt � 0
 sin2p sin2



The curve, however, has a different shape from the sin curve. The unique
shape of the curve is due to the fact that when a number less than 1 is
squared, the result is smaller [ ]. The smaller the number, the smaller
the result on squaring [ but ].

When the sin curve is negative, the curve is positive (see Fig. 8-24). The
curve is periodic in so the average value of the curve is the average

value between 0 and .

The average value of this -type function follows the definition of the aver-
age value of the function.

The integral is (from the Mathematical Tables) so

The average power for the loudspeaker is one-half the peak power.

Example 8-22 What is the area bounded by , , and ?

Solution: The sine and cosine functions are
shown in Fig. 8-25. The integral of the area
between the curves is in the x-direction and
has form . The integral is
from to the intersection point of the
two curves. At this point

or or

From the graph of , when
. Check the number in your hand cal-

culator. Take the inverse tangent of 1. Table 8-1
also shows equal to at so
the complete integral, complete with limits, is

A � 3
p/4

0
( cos x � sin x)dx

x � p/4cos xsin x

x � p/4
tan x � 1tan x

tan x � 1sin x
cos x � 1sin x � cos x

x � 0
1( cos x � sin x)dx

x � 0y2 � sin xy1 � cos x

Pavg �
Po
p B1

2vt �
1
4 sin 2vtR �

Po
p b Bp2 �

1
4 sin 2pR � B0 �

1
4 sin 0R r �

Po

2

1
2 u �

1
4 sin 2u1 sin 2 udu

P Zavg �
1

p � 0Po 3
p

0
sin 2vtd(vt)

sin 2

p

sin 2psin 2
sin 2

0.32 � 0.090.92 � 0.81
0.52 � 0.25

 sin2
 sin2
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y sin x2 =

y cos x1=



Example 8-23 A certain company is selling golf shirts with the college logo
through college bookstores. Because of an expanding market overall sales are
growing at 2t thousands of dollars per month, t. Superimposed over this linear
growth is a sinusoidal variation following the academic year and described by

in thousands of dollars and with corresponding to January.
Determine the rate of sales at the end of March .

Solution: The equation describing sales is

The general expression for the change in sales is

The rate of change of sales at the end of March is obtained by evaluat-

ing the at .

At the end of March sales are at the linear rate of 2 thousand dollars per month.

Example 8-24 For the previous problem find the total sales for the 3 months
from January through March.

Solution: Sales follow . The total sales over any period
is the integral of S, with appropriate limits. The limits for this January to March
period are t � 0 and t � 3.

S � 2t � 0.1 cos 2p t
12

dS
dt
2
t�3

� 2 �
(0.1)p

6
sinp2 � 2

t � 3dS
dt

(t � 3)

dS � 2dt � (0.1) sin 2p t
12

dQ2p t
12
R or dS

dt
� 2 �

(0.1)p
6

sin 2p t
12

S � 2t � 0.1 cos 2p t
12

(t � 3)
t � 0(0.1) cos 2p t

12

A � 0.71 � 0.71 � 1 � 1.41 � 1 � 0.41

A � [ sin x � cos x]p/4
0 � S sinp4 � cosp4 T � [ sin 0 � cos 0]
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Total sales for the January to March period were 9.2 thousands of dollars.

✔ Solve right and non-right triangles

✔ Know how to derive simple identities

✔ Differentiate trigonometric functions

✔ Integrate trigonometric functions

✔ Apply differentiation and integration to practical problems

✔ Use tables for differentiation of trigonometric functions 

✔ Use tables for integration of trigonometric functions

PROBLEMS

1. A cross country skier skis 1.2 km north and then 2.0 km east. How far and
in what direction is she from her starting point?

2. Two sides of a non-right triangle are 4.0 and 5.0 and the included angle is
38�. What are the other angles and side?

3. Convert: 2 rad to degrees, to degrees and 85� to radians.
4. Find the derivative of .
5. Find the derivative of .
6. .

7. Evaluate .

8. Evaluate .1x sin x2dx
1 sec x( sec x � tan x)dx

y(x) � tan (x2) � sec (2 � 3x)
f(t) � cos 2t
f(s) � sin (3s � 1)
p/3

S0S3 � 9 �
0.6
p � 9.2

S0S3 � 9 �
0.6
p S sin

p
2 � sin 0T

S0S3 � t2 2 3
0

�
0.6
p sinpt

6
2 3
0

S0S3 � 3
3

0
2tdt � 3

3

0
0.1 6
p cospt

6
dpt

6

S0S3 � 3
3

0
[2t � (0.1) cospt/6]dt
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9. Sales of a certain product follow a cyclical sales pattern according to
, where t is the time in months measured from

January 1 and S is the number of sales in thousands. What is the average
sales for the first quarter of the year?

10. What is the area under the curve of x sinx from 0 to 2 .

ANSWERS

You may need to consult a table of differen-
tials and integrals to solve these problems.
1. Draw a vector diagram representing her

trip. Her distance from the starting point
is

The angle is 

2. Use the law of cosines to find side b.

so b � 3.08
Use the law of sines to find A and C.

3.

4. Use the chain rule and think of (3s + 1) as another variable, u.

5.
6.

7.

8. Make a change of variable: let . If there were no x out-
side the argument of the sin then this would be a much more difficult integral.
1
2 3 sin udu � �

1
2 cos u so integral is �

1
2 cos x2

u � x2 so du � 2xdx
tan x � sec x � C
1 sec 2xdx � 1 sec x tan xdx

dy
dx

� 2x sec 2(x2) � 3 sec (2 � 3x) tan (2 � 3x)

dy � sec 2(x2)d(x2) � sec (2 � 3x) tan (2 � 3x)d(2 � 3x)
f r(t) � �2 sin t cos t

df � cos (3s � 1)d(3s � 1) � 3 cos (3s � 1)ds 1  f r(s) � 3 cos (3s � 1)

2 rad 360o

2p rad
� 115� p3

360�
2p � 60� 85�

2p
360�

� 1.48

sin C �
4

3.08 sin 38� C � 53�

 sin A �
5

3.08 sin 38� A � 88�

sin A
5.0

�
sin 38�
3.08 �

sin C
4.0

b2 � 42 � 52 � 2(4)(5) cos 38�

u � tan�1 2
1.2

� 59�

R � 21.22 � 2.0 2 � 2.3 km

p

S(t) � 30 � 12 cos
pt
8

1.2

2.0

Rq

a = 5.0 

b
c = 4.0

A

B = 38°

C



9. This is an average value integral over the first 3 months of the year.

The average monthly sales for the first 3 months is 39 thousand.
10. The curve is a somewhat distorted sin function. The area is the definite inte-

gral of the function over the interval.

. This integral can be performed by a technique called inte-

gration by parts which is taken up in the next chapter or it can be “guessed”
with just a few tries. Follow along on the guessing approach. First a cosine
is involved because of the integral of the sine, so start with cosx and differ-
entiate to find the integrand. The differential of cos x is �sin x which is a
start. Now for a little better guess try �x cos x which has differential xsinx
which is the integrand but it has the added differential term �cos x. This is
taken care of by adding a sinx. The final integrand is from d(�x cos x � sin x)
� �x sin x � cos x � cos x � x sinx. A little tortured, but not impossible.
With a little experience these can go rather quickly. This, however, is prob-
ably not high on your list of skills to learn. Buy  mathematical tables. 

A � 1p0 x sin xdx

Avg Sales �
1
3 S30t �

96
p sinpt

8 T
3

0
�

1
3 S90 �

96
p sin 3p

8 T � 39

Avg Sales �
1
3 S30 3

3

0
dt � 12 8

p 3
3

0
cospt

8 dpt
8 T

Avg Sales �
1

3 � 0 3
3

0
Q30 � 12 cospt

8 Rdt �
1
3 S30 3

3

0
dt � 12 3

3

0
cospt

8 dtT
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CHAPTER 9

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

EXPONENTS
AND LOGARITHMS

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ 

You should read this chapter if you need to review or you need to learn about

➜Basics of exponents and logarithms

➜Exponential functions

➜The number e

➜Growth and decay problems

➜Limited growth exponentials

➜The logistic function

179
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The short review of exponents and logarithms in Chapter1, Mathematical
Background, presumed a rudimentary knowledge of exponents and logarithms.
No such presumption is made in this chapter. Here we start with basic defini-
tions and work up to differentiation
and integration of exponential and log-
arithmic functions.

Exponential functions describe a wide
variety of phenomena including
radioactive decay, bacteria growth,
learning retention, growth of invest-
ments, proliferation of disease, certain
electrical phenomena, logistic-type
growth and on and on, providing many
good examples of the application of
exponential functions.

The statement of some of these phe-
nomena is often quite simple but the
specific laws governing them and the
predictive ability of these laws require
a good understanding of exponents,
logarithms, and calculus. This chapter
is very applications oriented. No mat-
ter what your field of interest, there
will be some applications that bear
directly on your area of interest.

9-1 Exponent Basics
A number written as , which is just a short-hand way of writing , is a
number, 8 in this case, written in exponential form where 2 is called the base and
3 the exponent. Two numbers such as and 52 cannot be added and the answer
written in a meaningful exponential form. The is equal to and the 53

equal to . There is no combination of 3s and 2s and 5s that represents the
addition of the two numbers. The only way to add the numbers is to write as
9 and as 125 and add them to obtain 134. Likewise, there is no way to subtract
numbers written as exponents. Even plus cannot be written as an exponent.

Multiplying is much easier: is , just add the exponents. Visualize as
four 3s multiplied together and as three 3s multiplied together and all of them
multiplied together as seven 3s multiplied together. 

33
343734 	 33

3232
53

32
5 	 5 	 5

3 	 332
32

2 	 2 	 223
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When I'm on my
birdhouse, I'm as 
powerful as an 
exponent!



Dividing is equally easy: . Five 3s divided by three 3s means there are
two of them remaining in the numerator.

Raising to a power is a slight variation on multiplying. The form is viewed
as times or . These examples illustrate the three basic laws of exponents.

Negative exponents mean reciprocal or one over: .

The laws of exponents work equally well for negative and fractional exponents.

Example 9-1 Evaluate: ; 57/511; ; ; , 30.2/32.

Solution: For add the exponents to obtain .

For 57/511 subtract the exponents keeping the signs correct to obtain
.

For add the exponents keeping the signs correct to obtain
.

For multiply the exponents to obtain .

For multiply the exponents keeping the fractions correct to obtain .

For 30.2/32 read the problem as and add the exponents to obtain .

9-2 Exponential Functions
Exponential functions are in the form . Taking the function reads

. This is a rapidly increasing function as tabulated and shown in Fig. 9-1.

The function is also interesting and is tabulated and graphed in
Fig. 9-2. Remember that any number raised to the zeroth power is 1.

Example 9-2 Certain cells grow by splitting; one
cell begets two and each of these begets two (more)
with each cycle taking 3 hr. A simple model for the
growth in the number of cells is , where 
is the number of cells at and t is the time in
hours. If 1000 cells are left to grow over 60 hr, how
many cells are there at the end of the 60 hr?

t � 0
NoN � No2t/3

y � 2�x

y � 2x
a � 2y � ax

3�2.830.2 	 3�2

73(73>2)2

4�12(42)�6

3�7�4 � 3�3
3�7 	 34

57�11 � 5�4

2823 	 25

(73/2)2(42)�63�7 	 3423 	 25

a�m �
1

am

(am)n � am	nam

an � am�nam 	 an � am�n

262323
(23)2

35/33 � 32
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Solution: At time zero there are 1000 cells. At the end of 3 hr there are 2000
cells, and at the end of 6 hr there is another doubling to 4000 cells. The model
as described in words and by the equation is consistent. Make
the time go on for 9 hr and the number doubles again to 8000 cells.

Use the formula for this specific situation to find the number at 60 hr.

The power of an exponential function to generate large numbers is tremendous.

N � No2t/3 � (1000)260/3 � (1000)220 � 1.0 � 109 cells

N � (1000)2t/3
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Fig. 9-1

x 0 1 2 3 −1 −2

y 1 2 4 8 1/2 1/4

xy 2=

y

x

−xy = 2

y

x

x  1 2 −1 −2

y 1 1/2 1/4 2 4 

0

Fig. 9-2



Example 9-3 The return on a certain investment follows ,
where R is in dollars when t is in months. How fast is the return declining at the
third month?

Solution: The question concerns a rate and in calculus talk this means the dif-
ferential of R with respect to time. So,

The decline in return at 3 months is: .

Example 9-4 The return on $1000 invested in a mining operation produces
the following returns in dollars for the months indicated: R(1) � 200, R(2) �
165, R(3) � 145, R(4) � 116, R(5) � 86, R(6) � 72, R(7) � 52, R(8) � 50, and
R(9) � 38. Based on this data, what is the rate the return is declining at the third
and sixth months?

Solution: An algebra oriented person
would probably take the data for the
second and fourth months, find the
slope symmetric about the third month
and use this as the rate of decline.
Captain Calculus would not be content
with this approach. The Captain would
place the data on a spread sheet, have
the spread sheet draw the graph depict-
ing the data and calculate the equation
describing the return over time, and
then differentiate this equation and
evaluate it at month three.

The rate equation (from the spread sheet calculation) is

and the derivative is 

At month three the rate of decline is

dR
dt
2
t�3

� 3.6(3) � 38 � �$27.20/month

dR
dt

� 3.6t � 38

R � 1.8t2 � 38t � 238

dR
dt
2
t�3

� �800e�0.8(3) � (�)$72/month

dR � 1000e�0.8td(�0.8t) � �800e�0.8tdt 1  dR
dt

� �800e�0.8t

R(t) � 1000e�0.8t
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This answer is most reasonable. At low t the decline is steep and as time goes
on the rate of decline becomes less and less.
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R t 
 1 200
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4 116 
5 86 
6 72 
7 52 
8 50 
9 38 

Return on Mining Investment

y = 1.8149x2− 38.533x + 237.86
0

50

100

150

200

250

0 2 4 6 8 10
Month

C
as

h 
R

et
ur

n

Example 9-5 The number of hot tubs sold in the United States between 1995
and 2003 followed the model: , where t is the year and
n(t) is in thousands of hot tubs. The year 1995 corresponds to t � 1 and so on
up to t � 9 for 2003. What was the rate of hot tub sales in the year 2000?

Solution: The rate of hot tub sales is dn/dt and in the year 2000 the rate was
dn/dt evaluated for t � 6.

According to this model hot tub sales in 2000 were 780 units.

Example 9-6 The return on the purchase of a Wi-Fi tower is predicted to be
over the next 4 years. In this model year 0 is the first year

and so on up to the fourth year at t � 4. What will be the total return over these
4 years?

R(t) � 2000e0.1t

dn
dt
2
t�6

� 0.08(6) � 0.3 � 0.78

dn
dt

� 0.08t � 0.3

n(t) � 0.04t2 � 0.3t � 15



Solution: Because of the way the model is written the integral is from 0 to 4.
Visualize the area as representing the return for each year summed over the
4 years.

The total return for the 4 years when this model is presumed to be valid is
$9836.

Example 9-7 The cost in dollars for fuel to operate a truck for t months fol-
lows the model: . The 2.20 represents the base cost per
gallon of fuel with the 0.1t the predicted increase. The 400 is 20 working days
per month times 20 gallons per day average. What is the total cost for 1 year
(0 to 12 months)?

Solution: Integrate this cost equation over t and from 0 to 12.

The operating cost for the year is $13440.

Example 9-8 A nominal $10,000 invested in a gas well produces the following
results for the first 6 months: R(1) � 260, R(2) � 225, R(3) � 206, R(4) � 195,
R(5) � 180, and R(6) � 178. Find the equation that fits this data and predict the
total return for this investment for the first 12 months.

Place the data in a spread sheet and have the spread sheet program graphically
display the data. Then have the program, draw a second degree polynomial
approximation and write an equation to fit the data. .
Assuming that the model derived from this data will continue for 12 months the
predicted value for each month can be determined. The question, however,

R � 3.2t2 � 38.5t � 293

3C(t) � 400[264 � 7.2] � $13440/year

3C(t) � 400 3
12

0
(2.20 � 0.1t)dt � 400B2.20t 2 12

0
� 0.1 t2

2
2 12

0
R

C(t) � 400(2.20 � 0.1t)

3R(t) � 20,000[e0.4 � 1] � $9836

3R(t) � 2000 3
4

0
e0.1tdt �

2000
0.1 3

4

0
e0.1td(0.1t) � 20,000e0.1t 2 4

0
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concerns the total return over the 12 months and this is the integral of this func-
tion from 0 to 12.

With data for 6 months a model was developed using a spread sheet program
and this model was used to predict the total return for the first 12 months.

9-3 The Number e
The number e, approximately 2.72, is an irrational number (irrational numbers
cannot be written as fractions) that occurs in nature in many different places.
Two of the definitions are associated with calculus and are outlined here.

The first definition of e involves a limit. The number e is defined as

That is a rather strange looking definition but one that is easy to check on your
hand calculator.

The definition states that as x gets closer and closer to infinity, the operation
approaches a limit, the number e.Q1 �

1
xR

x

e � lim
xS`

Q1 �
1
xR

x

R(12)total � [1152 � 2772 � 3516] � $1896

R(12)total � 3
12

0
(3.2t 2 � 38.5t � 293)dt � S

3.2t3

3 �
38.5t 2

2 � 293tT
12

0
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Try a few numbers in your hand calculator.
These few short calculations produce a
value for e good to three significant figures.
Your hand calculator probably computes e
with this algorithm and a high enough value
for x to reproduce the precision appropriate
to your calculator. 

The second definition of e is that is the exponential function whose
derivative is everywhere equal to the value of the function. In calculus language
this means we are looking for a number a such that

of a x is ax. Such a number exists and it is the number e.

The value of e can be determined by taking the function y � ax and looking for
the value of a where the slope is equal to the value. Use a simple calculus
method for determining the slope as illustrated in Fig. 9-3.

d
dx

y � e x
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y = ax

y = a +x ∆x

x + ∆xx x

y = ax

slope

Fig. 9-3

Set up a spread sheet to calculate the slope for various combinations of as. Start
with a � 2 and a � 3. Use the point 2.5 and calculate the value of the function
and the slope. Notice that for a � 2 the value is higher than the slope and that
for a � 3 the value is less than the slope. This means that the number whose
slope is the same as its value is between 2 and 3.

x
1 1�1 2
2 1�0.5 2.25
10 1.1 2.59
100 1.01 2.70
1000 1.001 2.72

Q1 �
1
xR

x
1 �

1
x



Now use a values of 2.6 and 2.8. The slope is lower than the value for a � 2.6
and higher for a � 2.8. This means that the number is between 2.6 and 2.8.
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Number Exponent ∆x Value at x + ∆x Value at x Slope
a x ∆x ax+ ∆x ax (a x + ∆x � ax)/∆x
2 2.5 0.1 6.06 5.66 4.06
3 2.5 0.1 17.40 15.59 18.10

Number Exponent ∆x Value at x + ∆x Value at x Slope
a x ∆x ax+ ∆x ax (ax + ∆x � ax)/∆x

2.6 2.5 0.01 11.005 10.900 10.465
2.8 2.5 0.01 13.255 13.119 13.577

Now use a values of 2.7 and 2.75. This again indicates that the number is
between 2.7 and 2.75.

Number Exponent ∆x Value at x + ∆x Value at x Slope
a x ∆x ax+ ∆x ax (ax + ∆x � ax)/∆x

2.7 2.5 0.001 11.9906 11.9787 11.9038
2.75 2.5 0.001 12.5537 12.5410 12.6929

Finally take a values of 2.71 and 2.72, which shows that the number e is between
2.71 and 2.72.

Number Exponent ∆x Value at x + ∆x Value at x Slope
a x ∆x ax+ ∆x ax (ax + ∆x � ax)/∆x

2.71 2.5 0.0001 12.09112 12.08991 12.05362
2.72 2.5 0.0001 12.20297 12.20175 12.21007

This process can be carried on to the precision of the spread sheet. 

The result of this exercise is that the derivative (slope) of the function y � e x is e x.

In calculus language this means that or .

Likewise the integral of is also . .3 e udu � eueueu

d(ex) � e xdxd
dx

(e x)� ex



These two very calculus oriented questions:

“What number do you get when you take ?” and

“What value of a in the function gives a derivative equal to itself?”
produce the number e.

Most of the exponential problems in the remainder of this chapter will use the
number e. As we get further into the study of logarithms, e will return again as
an important number.

Taking this one step further, any function represented by the symbol u is dif-
ferentiated as 

The integral of is also 

Example 9-9 Find for .

Solution: The safest way to do this problem is in an implicit derivative format.

and

Example 9-10 Find for .

Solution: Again, use an implicit derivative format.

and

Example 9-11 Find .

Solution: Change the integral to so it is in standard form,

, and write

3 e3xdx �
1
3 3 e3xd(3x) �

1
3 e3x

3 eudu � eu

1
3 3 e3xd(3x)

3 e3xdx

dy
dt

� 3t 2(e t 3)dy � et 3d(t 3) � 3t 2(et 3)dt

y � e t 3dy
dt

dy
dt

� a(e at)dy � e atd(at) � a(e at)dt

y � eat
dy
dt

3 eudu � eu

eueu

d(eu) � e udu

y � ax

lim
xS`

Q1 �
1
xR

x
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Example 9-12 What is the accumulated balance on
$1000 placed at 6% interest for 5 years if the interest
is compounded (a) quarterly or (b) monthly?

Solution: If the interest on a principal amount is
compounded once at the end of an interval the
amount is , where r is the rate of return
written as a decimal. 

A one time 10% interest payment on $1000 would produce A � $1000(1 �
0.10) � $1100. If this $1100 remained at the 10% and the interest com-
pounded again at the end of the next interval the amount would be

. The expression in brack-
ets represents the amount after one compounding and the entire expression
represents the amount after two compoundings.

Depending on the number of compoundings, in general the amount would be
, where r is the rate for the compounding interval and n is the

number of intervals.

Interest is usually stated on a yearly basis with specified compounding. The
phrase “6% compounded quarterly” means that the 6% is divided by 4 for the
rate per interval (quarter) and there are 4 intervals per year. In mathematical
symbolism

would be the balance for an amount P placed at 6% interest for 4 quarters or
1 year.

The stated problem asks for the accumulated balance on $1000 after 5 years at
6% interest compounded quarterly so the appropriate formula is 

If the compounding is done monthly then the rate has to be divided by 12 and
the number of compoundings increased to .

Example 9-13 In the previous problem what would be the balance at the end
of  5 years if the compounding were increased to instantaneous compounding?

A � $1000Q1 �
0.06
12
R

60
� $1348.85

12 � 5 � 60

A � $1000Q1 �
0.06

4 R
20

� $1000(1.015)20 � $1346.86

A � P Q1 �
0.06

4 R
4

A � P(1 � r)n

A � [P(1 � r)](1 � r) � $1100(1 � 0.10) � $1210

A � P(1 � r)
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Solution: Start with the statement
, where k represents

the compounding rate (12 for monthly,
365 for daily) and kt is the number of
compoundings over time.

This looks so much like the definition
of e, define as n so the expression
for the amount reads

A � .

Now, knowing the laws of exponents, A can be written as .

As the number of intervals increases (k increases and k/r increases) the com-
punding approaches instantaneous and the expression in the brackets becomes 

So in the limiting case of instantaneous compounding the amount is .

For this problem with , , and , the maximum bal-
ance for instantaneous compounding is

9-4 Logarithms
There are several definitions of logarithms. We will consider only the simpler
ones. Further, we will consider only natural, or base e, logarithms.

The simplest definition of a logarithm is that it is a function that allows the
exponential equation to be written in the form x � . . . . The equation

cannot be solved for x with conventional algebraic methods. The loga-
rithmic function is the way out of this dilemma. The equivalence between expo-
nents and logarithms is 

3 ln y � xy � ex

y � e x
y � e x

A � $1000(e0.06 	 5) � $1000(e0.3) � $1349.86

t � 5 yearsr � 0.06P � $1000

A � Pert

lim
nS`

Q1 �
1
nR

n
� e

A � P S Q1 �
1
nR

n
T
rt

P Q1 �
1
nR

nrt

k/r

A � P Q1 �
r
k
R

kt
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Although there are exponential equations other than base e, most of the expo-
nential and logarithmic functions you encounter will be base e. Your hand cal-
culator uses base e and base 10, though base 10 is used rarely. The notation ln,
as opposed to log, specifies base e. The logarithmic equation just above is read
as “log base e” or “ln e” or simply “log” with the later presuming that if the base
were other than e it would be specified.

Run a few numbers on your calculator to become familiar with taking loga-
rithms and calculating with exponents. This is not something you do every day
and you don’t want to make a calculating mistake on a test.

On your hand calculator raise e to a power, then take the ln of that number to
return to the original power (number). [ ] As you go through
the problems in this chapter keep your calculator handy and practice “punch-
ing the numbers.”

Example 9-14 Solve the equations and .

Solution: The equation has to be switched to a logarithmic one:
with .

The equation has to be switched to an exponential one: with
.u � 4.06

u � e1.4ln u � 1.4

x � 1.95x � ln 7
7 � ex

ln u � 1.47 � e x

e3 � 20;  ln20 � 3
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The key phrase to remember in switching from an exponential equation to a log-

arithmic equation and vice versa is “a logarithm is an exponent.” The logarithm

of something is a number and that number is the exponent of e.
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There are manipulative laws for logarithms that parallel similar laws for
exponents.

A little manipulation of exponents will verify the first law.

Set and so that and . Form the product
, and convert to a logarithm equation lnuv � k � l � lnu �

lnv.

The derivative of is 

or

Example 9-15 Find of .

Solution: Use the chain rule and go slowly.

or

Example 9-16 Find for .

Solution:

or

dy
dx

�
4x

2x2 � 1

dy �
1

2x2 � 1
d(2x2 � 1) �

1
2x2 � 1

 (4x)dx �
4x

2x2 � 1
dx

y � ln (2x2 � 1)
dy
dx

dy
dx

� x(1 � 2 ln x)

dy � x2d(ln x) � (ln x)d(x2) � x2 1
x dx � (ln x)(2x dx) � (x � 2x ln x)dx

y � x 2 ln x
dy
dx

d
dx

 (ln x) �
1
xd(ln x) �

1
x dx

ln x

uv � ek 	 el � ek�l
el � vek � ul � ln vk � ln u

ln (uv) � ln u � ln v

ln u
v � ln u � ln v

ln un � n ln u
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Example 9-17 Find the derivative of  .

Solution: This looks bad. But, if you proceed slowly, applying the rules one at
a time, the differentiation is not all that difficult. The hard part is proceeding
logically. This is a product so write

The differential of is .

The differential of is . Putting it all together we write

or

Example 9-18 Find the derivative of .

Solution: This is a product. Proceed methodically and the problem is not difficult.

There is a simple rule for differentiating logarithmic functions that some authors
use.

If then .

This is equivalent to using the chain derivative approach and the derivative of
a logarithm as defined in the Mathematical Tables.

Verify for yourself that the two forms are equivalent by working Example 9-15
both ways.

Integration of the logarithmic function follows , which is
used so rarely that we only give this one example.

3 ln x dx � x ln x � x

dy �
1

f(x)
d( f(x))

dy
dx

�

d
dx

 ( f(x))

f(x)
y � ln f(x)

dy
dx

� e�x( cos x � sin x)

dy � e�xd( sin x) � sin xd(e�x) � e�x( cos x)dx � e�x( sin x)dx

y � e�x sin x

dy
dx

�
2x2.5

x2 � 2
� 1.5x 0.5 ln (x2 � 2)dy � x1.5 2xdx

x2 � 2
� 1.5x 0.5  ln (x2 � 2)dx

1.5x 0.5dxx1.5

1
x2 � 2

d(x2 � 2) �
2xdx

x2 � 2
ln (x2 � 2)

dy � x1.5d[ln (x2 � 2)] � ln (x2 � 2)dx1.5

y � x1.5 ln (x2 � 2)
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Example 9-19 Find .

Solution:

9-5 Growth and Decay Problems
The growth and decay model is appropriate to many phenomena, such seem-
ingly diverse problems as population growth, radioactive decay, the spread of
disease, the cooling of a cup of coffee, and the num-
ber of yeast in a culture, just to name a few. Before
working some problems, a very simple model of bac-
teria or yeast growth will be developed and worked
through in detail. Notice the pattern in the problem.
Many mathematical models of different phenomena
parallel this one.

A simple experiment performed in elementary
chemistry, biology, or physical science courses is the
growth of bacteria or yeast. In this experiment a cer-
tain number (the number is often determined or
measured by weight) of bacteria are placed in a nutrient environment. This
means that the bacteria have optimum growing conditions, food, temperature,
and the like. Their growth is then limited by their growth mechanism and not
by anything external.

The bacteria grow by budding, one bacterium grows on another, splitting, each
bacterium divides producing two identical bacteria, so that each bacterium over
an average time period becomes two bacteria and these two repeat the same
process in the same time period and on and on. At any time in the process the
number of bacteria produced per unit of time is proportional to the number
present. This is the mathematical statement of the growth model for bacteria.
In symbolic form, , the number produced per unit of time is proportional
to the number present, .

Solving this statement for N as a function of time is a calculus problem, and one
we already have some experience with.

In practical terms the difficulty with the rate statement is that the N is on the
wrong side of the equation. It needs to be associated with the dN if we are to

dN
dt

� kN

kN
dN/dt

y �
1
2 3 ln 2x d(2x) � 2x ln 2x � 2x

y � 3 ln 2x dx
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make any progress toward a solution. A little algebra fixes this.

Now integrate both sides of the equation. (Remember: 

)

3

The constant is required because there are no limits on the integrals. 

In this problem, as with every problem in growth or decay, there is an initial
amount of material. In this case there is an initial number of bacteria at the start
of the experiment. Call this initial amount . In the language of mathematics,
at , . Substitute these values into .

so

With the constant evaluated in terms of the initial amount of material the basic
relation is 

or or

If you had any trouble manipulating the logarithms in the previous line, go back
and review the manipulative rules for logarithms. At this point switch to an
exponential format.

3 or

This last statement correctly describes the model. The number of bacteria at
any time starts out at ( ) and increases with time in an exponential
manner.

This is the general growth law for something with growth propor-
tional to the number present. Some text authors begin the discussion of growth
and decay with this equation. This approach is simple but neglects the develop-
ment of a mathematical model of a simple statement that “the growth of . . . is
proportional to the number of . . . present at any time.” A little reflection will
convince you that this model fits many different phenomena.

Suppose in this bacteria growth problem that 100 bacteria are introduced into
a growth environment (water, nutrients, and the like) and that 2 hr later the

N � Noekt

e0 � 1No

N � Noe ktN
No

� ektln
N
No

� kt

ln
N
No

� ktln N � ln No � ktln N � kt � ln No

C � ln Noln No � k(0) � C

ln N � kt � CN � Not � 0
No

ln N � kt � C3 dN
N � 3 kdt

so 3 dx
x � ln x

3 d(ln x) � 3 dx
x

dN
N � kdt
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bacteria are separated from the environment or otherwise identified and that
their number has increased to 130. Can this information be used to determine
the growth law?

With these two numbers, N and , and the time interval the constant k can be
evaluated. The calculation is a little logarithm and exponent intense but follow
along with your calculator. Substitute as follows:

or

To solve for k switch to a logarithmic equation. (Remember: “A log-
arithm is an exponent.”) The logarithm of something is an exponent so

or

The specific law governing the growth of these bacteria in this environment is

With this law it is possible to predict how many of these bacteria would be pres-
ent, say, after 12 hr and starting with 50 bacteria. Put in the 50 for and the 12 hr
for t and we get

This model that starts with the statement that the growth rate is proportional to
the amount present can, with a modest amount of calculus and initial informa-
tion, be used to predict future growth.

There is a standard pattern to growth and decay problems that always works.
The general procedure for these problems is outlined below.

1. Any problem where the number of events is proportional to the number of
participants present can be written as equals a constant (+k for

growth and for decay) times the number: .

2. Rearrange to and integrate to get ln N �

�kt + N0. Take an initial number , at , to evaluate , and

write lnN � �kt + lnNo.

3. Rearrange the equation to and switch to an exponential format

or .N � Noe�ktN
No

� e�kt

ln
N
No

� �kt

A � ln Not � 0No

3 dN
N � �k 3 dtdN

N � �kdt

dN
dt

� �kN�k

dN/dt

N � 50e0.13 	 12 � 50(4.76) � 238

No

N � Noe 0.13t

k �
1
2 ln 1.30 � 0.13ln 1.30 � 2k

1.30 � e 2k

1.30 � e 2k130 � 100e 2k

No

Exponents and Logarithms 197



4. One data point, a certain N at a specific time, allows calculation of k. (For
example, a 20% increase in in 1 hr means or .
Switch to a logarithmic equation and and finally write

.)

5. With the calculation of k, the specific growth or decay equation is written
for the same conditions that produced the initial data. With this specific
growth or decay equation N at any time can be predicted.

Refer to this procedure in subsequent problems. It is a very logical procedure
for growth and decay problems and it works. Growth and decay problems are
favorite test problems. Know how to work them and especially know how to
switch from exponential equations to logarithmic equations and vice versa and
know how to take logs and perform exponentiation on your hand calculator.

Example 9-20 If “a fool and his money are soon parted,” the rate at which it
leaves is probably proportional to the amount remaining. If a certain fool start-
ing with $20,000 starts gambling his money away and after 2 hr has lost $2000,
how long will it take for him to loose 90% of the original amount?

Solution: The basic assumption in this problem is
that the fool will loose in proportion to the amount
he has at any time. Humans are a little harder to
predict than bacteria, but this is a good assumption.
Follow the procedural steps as written previously
and be aware of the logic in the problem.

Step 1: The statement “the rate at which the fool
looses money is proportional to the amount pres-
ent” means that 

Step 2: Rearrange, integrate, and evaluate the constant of integration with the
initial data.

,

At t � 0, the fool has $20,000, so ln20,000 � �k(0) + C and C � ln20,000.

Now the equation reads

ln A � �kt � ln 20,000

ln A � �kt � CdA
A

� �kdt, 3 dA
A

� �k 3 dt

dA
dt

� �kA

N � Noe0.18t
k � ln 1.2 � 0.18

1.2 � e1k1.2No � Noe1kNo
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Step 3: Rearrange and switch to exponents.

, and switching to exponents or .

Step 4: Use the given data to determine k.
At , A has declined to 18,000, so put these numbers into the amount
statement and find k.

,

Switch to logarithms to solve this equation for k.

, k � �
ln (0.9)

2 � 0.053�2k � ln (0.9)

0.9 � e�2k18,000 � 2000e�2k

t � 2 hrs

A � 20,000e�ktA
20,000 � e�ktln A

20,000 � �kt
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As you were following along this problem and “punching the numbers,” so
you would be very proficient at this logarithm and exponent calculating for
the test on this topic, you may have noticed that your calculator displayed a
negative number for ln(0.9). This is correct. In the original statement of the
problem, so that the calculation of k should produce a posi-
tive number. The reason for the ln of numbers less than 1 being negative has
to do with one of those other definitions of the ln and will be taken up shortly. 

dA/dt � �kA

Step 5: The specific equation for this situation is .

The time for 10% remaining is the time for A to reach 2000. Substitute for
and solve for t.

,

Switching to logarithms, or .

Based on this model, it would take this particular fool 43 hr to loose 90% of an
original amount of $20,000.

Example 9-21 Hot or cold objects cool down or heat up to the temperature
of their surroundings. The temperature difference, , between the object and
its surroundings decreases over time in proportion to that temperature differ-
ence. This is Newton’s law of cooling. If a cup of coffee cools from to 80�C85�C


T

t � �
1

0.053
 ln (0.1) � 43 hrsln (0.1) � �0.053t

0.1 � e�0.053t2000 � 20,000e�0.53t

A � 2000

A � 20,000e�0.053t



in 2 minutes in room temperature surroundings, how long does it take for the
coffee to cool from to ( is room temperature)?

Solution: Don’t be fooled by the wording of this problem.
It is not the temperature that is important, but the difference
in temperature between the coffee and its surroundings.
The definitive statement is “the change in the temperature
difference is proportional to the difference.” Call the dif-
ference in temperature between the coffee and its surround-
ings. The mathematical statement of Newton’s law of cooling
then is

Rearrange and integrate.

When the coffee starts cooling, the temperature difference is 65�C � (85 � 20)�C
so and so the equation becomes

or

Switching to exponents we write

or

Be careful with this next step. The temperature changes by 5�C so the temper-
ature difference is now 60�C, and this occurs over 2 min so put in these values
and evaluate k.

, , and switching to logarithms 

, k � �
1
2 ln 60

65
� 0.04�2k � ln 60

65

60
65

� e�2k60 � 65e�2k


T � 65e�kt
T
65

� e�kt

ln 
T
65

� �ktln (
T ) � �kt � ln 65

C � ln 65ln 65 � �k(0) � C

d(
T)

T

� �kdt,    3 1

T

d(
T ) � �k 3 dt, ln(
T ) � �kt � C

d(
T)
dt

� �k(
T )


T

20�C30�C85�C
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The temperature difference statement is now

Be careful again. Go back and read the question and make sure you understand
that the desired time is for the temperature to reach a 10�C difference between
the coffee and its surroundings. Use the 10�C temperature difference and cal-
culate the time.

, , , 

It takes 47 min for this cup of coffee to cool to within of room temperature.

Example 9-22 A wildlife manager needs to reach a 10,000 population of
mule-eared deer in a certain habitat in 6 years. There are presently no deer in
the habitat. The environment is such that the deer can grow without being lim-
ited by their environment. This means that the growth of the deer population
will be proportional to the population, . In order to determine the
growth equation, 100 deer are introduced into the habitat. There are half males
and half females, the same ratio as when they reproduce. At the end of the year
there are 130 deer. How many deer need to be introduced to the habitat to
achieve the 10,000 goal in the remaining 5 years?

Solution: The first part of the problem is to determine the growth equation.
Starting with

, the general growth equation is 

The 100 deer population grows to 130 in 1 year so put this data into 
and determine k.

or so that on switching, or 

The specific growth law for these deer in this habitat is . Now solve
for the initial number needed to produce the 10,000 population in 5 more
years.

or

This number minus the 130 already there, or , deer need to
be introduced to achieve the 10,000 goal in the prescribed time.

2725 � 130 � 2595

Po � 272510,000 � Poe0.26?5 � Poe1.30 � 3.67Po

Po

P � Poe0.26t

k � 0.26ln 1.30 � k1.30 � e1k130 � 100e1k

P � Poekt

P � PoektdP
dt

� kP

dP/dt � kP

10� C

t � �
1

0.04 ln 10
65

� 47 minutes�0.04t � ln 10
65

10
65

� e�0.04t10 � 65e�0.04t


T � 65e�0.04t
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9-6 The Natural Logarithm
Another and more formal definition of the natural logarithm relates the to
portions of the area under the curve .

The natural logarithm of any num-

ber x is defined by .

The curve and the graphi-
cal depiction of as the area
under the curve are shown in
Fig. 9-4. The area under the curve
between and is ln2.
This area can be determined by
taking as many narrow trapezoids
or rectangles approximating this
area as necessary to achieve a
desired precision. 

Look more closely at the piece of
the curve between and

(Fig. 9-5). The area under
this part of the curve is approxi-
mated by the area of the rectangle

and the (area
of the) small triangle (1/2)(0.10) �
(0.09) � 0.0045.

The total area of this rectangle and
triangle is 0.0955, thus ln1.1 �
0.0955. The logarithm produced in
most hand calculators is 0.0953,
just a little bit smaller than this
number as is expected from the
shape of the curve.

For numbers less than 1, the inte-
gration in dx is in the negative direction. This produces the negative numbers
for logarithms of numbers less than 1.

The function is shown in Fig. 9-6. Referring to Fig. 9-4 and remember-
ing that the definition of is the area under the curve, note the following
features of the curve.ln x

ln x
y � ln x

0.10 � 0.91 � 0.091

t � 1.1
t � 1

x � 2x � 1

ln x
y � 1/t

ln x � 3
x

1

dt
t

y � 1/t
ln x
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• Only positive values of x are
allowed.

• is zero (no area).

• As x goes from 1 to 0, (the
area) goes from 0 to large nega-
tive numbers.

• As x goes from 1 to large positive
numbers, increases with the
increase less and less as x goes to
large positive numbers.

The connection between this defini-
tion of the natural logarithm and the
constant e is amazing! The constant
e raised to the power equal to the
area under the curve is equal to the upper limit of the integral.

The precise calculation of the area corresponding to an upper limit for the inte-
gral of 1.1 is 0.0953.

Verify for yourself that , and that .

Again, a reasonably simple area problem in calculus produces a number that
occurs other places in nature.

9-7 Limited Exponential Growth
In many real-life problems growth is limited. Exponential models are used to
describe limited growth. The simplest model for limited growth involving expo-
nentials is one in the form . This statement is the result of a
rate equation that is more complicated than the ones discussed earlier. This
form of limited rate equation is shown in Fig. 9-7. Note that the N starts at zero
at time zero. In when , and .
After a long time, or becomes very small so that N approaches . The
slope of the curve is the derivative, or

dN
dt

� Noke�kt � Nok 1
ekt

dN � d(�Noe�kt) � �Nod(e�kt) � �Noe�ktd(�kt) � �No(�k)e�ktdt

No1/e kte�kt
N � No(1 � 1) � 0e0 � 1t � 0N � No(1 � e�kt)

N � No(1 � e�kt)

ln 1.1 � 0.00953e0.0953 � 1.1

ln (upper limit of area calculation) � area

earea � upper limit of area calculation

ln x

ln x

ln 1
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At the slope is (positive) and as time goes on the slope decreases.
This type of curve is sometimes called the learning curve because it describes
someone learning a skill and eventually reaching a limit in productivity with
that skill.

Example 9-23 Workers hired to assemble
sewing machines become more skilled with
experience. The most experienced workers
can assemble 10 sewing machines per day.
The learning curves are different for differ-
ent workers but they all eventually reach a
peak production of 10 sewing machines per
day. A newly hired assembler learns to
assemble 5 sewing machines per day after
6 working days. How long will it take for this
worker to reach 9 sewing machines per day? 

Solution: The simple learning curve model is most appropriate for this prob-
lem. is the maximum rate of sewing machine assembly. The general
equation governing the number of sewing machines assembled per day then is

The k can be determined with the information that after 6 days this particular
worker can assemble 5 sewing machines per day. Substitute and 
and solve for k.

t � 6N � 5

N � 10(1 � e�kt) � 10 � 10e�kt

No � 10

Nokt � 0
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, , , and switching to logarithms

,

The specific learning equation for this worker is 

The time for this worker to achieve a rate of 9 sewing machines per day is
obtained by putting in 9 for N and solving for t.

, , 

and switching to logarithms

,

It will take this worker 20 days to be able to assemble 9 sewing machines per day.

This type of limited growth relationship is most often encountered in the analy-
sis of electric circuits. The simplest circuit to consider is one containing a bat-
tery, a resistor and a capacitor. The battery is the source of electric current. The
resistor opposes the flow of that current. And the capacitor stores charge and
as it stores this charge assumes a voltage (q � CV ). A schematic diagram of a
typical circuit is shown in Fig. 9-8.

Charging

Assume the capacitor, C, has zero charge and voltage, and place the switch, S,
in the charging (up) position. When the battery voltage is applied to the R and
C, voltages across these components vary with time. Initially there is a large

t � �
1

0.115
 ln 0.1 � 20 days�0.115t � ln 0.1

0.1 � e�0.115t�1 � �10e�0.115t9 � 10 � 10e�0.115t

N � 10(1 � e�0.115t)

k � �
1
6

ln 1
2 � 0.115ln 1

2 � �6k

e�6k �
1
2�5 � �10e�6k5 � 10 � 10e�6k
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current transporting charge to the capacitor. As charge builds up on the capac-
itor a voltage develops across the capacitor, and the current decreases. The
parameters V, R, C, and the charge, q, and current, i � dq/dt control the volt-
ages, current, and charge within the circuit.

The analysis starts with a voltage statement that is true for any instant of time.

In this statement, remember that i � dq/dt. The last equation can be integrated
using a change of variable. Replace q � CV with x so dq � dx.

Then and the integral of the left side is 

so

Notice that the logarithm equation goes into an exponential equation. This is
not an every day mathematical operation. Review the previous chapters on
exponential to logarithm transforms if you need to brush up on this procedure.
Rewrite the equation

and apply the condition that at so
finally

Obtaining this expression for q looks easy and it is if you remember to choose
the constant as a logarithm, thus making the equations easier to manipulate,
remember how to switch from a logarithmic equation to an exponential equa-
tion, and apply the initial conditions correctly.

The voltage across the capacitor is related to the value of C and the charge on
the capacitor at any time according to q � CV. The voltage across the capaci-
tor in this circuit is

q
C

� VC � V(1 � e�t/RC )

q � CV(1 � e�t/RC)

t � 0, q � 0, or 0 � CV � K1 or K1 � �CV

q � CV � K1e
�t/RC

ln (q � CV) � �
1

RC
t � ln K1

ln (x) � ln (q � CV)3 dx
x � �

1
RC 3 dt

V � iR �
q
C
 or CV � q � RC

dq
dt

 or 
dq

q � CV
� �

1
RC

dt
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The current in the resistor is

The voltage across the resistor is

There are two graphs that are helpful in understanding the situation: one is
q vs. t, and the other is i vs. t. These are shown in Fig. 9-9.

VR � iR � Ve�t/RC

i �
dq
dt

�
V
R e�t/RC
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CV V/R

Fig. 9-9

Notice in the curve of q v.s t, that at t � 0, q � 0, and as 

In the curve of i vs. t, at t � 0, i � V/R, and as .

At t � 0 the charge on the capacitor is zero and the current is maximum and as
t goes to infinity the current goes to zero and the charge reaches its maximum
of CV.

The Time Constant

In biological systems that grow exponentially the systems are often character-
ized by giving the doubling time, the time for the system to double in number,
size, or mass. In electrical systems that grow exponentially the systems are char-
acterized by a time constant, the time to make the exponent of e equal to 1. The
time constant for this circuit is RC.

Look at the equation above and the q vs. t graph. When 
and the charge on the capacitor has risen to 0.63 of its final value. A similar

t � RC, 1 � e�1 � 0.63

t S `, i S 0

t S `, q S CV.



statement can be made about the voltage on the capacitor. After one time con-
stant, the voltage on the capacitor is 0.63 of the battery voltage.

The current, meanwhile, has in one time constant dropped to of its
initial value. 

Example 9-24 A resistor and a capacitor are placed in series with
a battery as shown in Fig. 9-8. Find the charge on the capacitor, the cur-
rent, and the voltages on the capacitor and resistor at the instant the switch is
closed, .

Solution: At the charge on the capacitor is zero.

At , the current is .

At , the voltage on the capacitor is zero (it has no charge) and the entire
battery voltage of is across the resistor.

Example 9-25 For the circuit of the previous problem, find the time constant,
and the charge, current, and VR, and VC at a time equal to one time constant.

Solution: The time constant is . The
charge on the capacitor at t � 0.20 s is 

The current at t � 0.20s is

The voltage across the capacitor is .
The voltage across the resistor is .

These problems can be deceptively easy. Be sure you know how to manipulate
the exponents on your calculator. Don’t get a test problem wrong because you
did not practice all the steps in the problem and were unfamiliar with manipu-
lating exponents on your calculator.

Example 9-26 For the circuit of the previous two problems, how long does it
take for the capacitor to reach 80% of its final charge? 

12 V � 7.6 V � 4.4 V
VC � V(1 � e�1) � 12 V 	 0.63 � 7.6 V

i Zt�RC �
V
R e�1 �

12 V
1.0 � 104 �

 0.37 � 4.4 � 10�4A

q Zt�RC � CV(1 � e�1) � 12 V(20 � 10�6F)0.63 � 1.5 � 10�4C

RC � 10 � 103 � 	 20 � 10�6F � 0.20 s

12 V
t � 0

i � V/R � 12 V/10 � 103 � � 1.2 � 10�3 At � 0

t � 0

t � 0

12 V
20mF10 k�

e�1 � 0.37
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Solution: This problem is similar to radioactive decay problems where we
want to know the time for half the material to decay. There is a fair amount of
algebraic manipulation that is easier to follow without numbers, so the problem
will be worked as far as possible with symbols.

Start with and note that the final (fully charged) q is equal
to CV. Mathematically, when 

To find the time for 80% charge set q equal to 80% of the final charge, or
, and solve for t.

For convenience switch to positive exponents so 

In order to solve for t, switch the exponential equation to a logarithmic equa-
tion. One of the functions of logarithms is to solve for variables in exponents.

Now put in the values for R and C.

.

As a check note that 

Discharging 

After the capacitor is left to charge for a long time (many time constants) the
charge is CV. Move the switch to the discharge position (down in Fig. 9-8)
where R and C are in series. When the charged capacitor and resistor are placed
in series the charged capacitor acts as a battery. The voltage on the capacitor is

, and this voltage appears across the resistor as . As time goes on, the
charge on the capacitor is depleted and the current drops (eventually) to zero.
The charge decays according to 

and the current according to 

i �
dq
dt

�
d
dt

CVe�t/RC � �
V
R e�t/RC

q � CVe�t/RC

iRq/C

1 � e�t/RC � 1 � e�0.32/0.20 � 0.80

t � RC ln5 � 1.0 � 104 � 	 20 � 10�6F 	 ln5 � 0.32 s

t/RC � ln5  or  t � RC ln5

1/et/RC � 0.20  or  et/RC � 1/0.20 � 5

0.80CV � CV(1 � e�t/RC)  or  080 � 1 � e�t/RC  or  e�t/RC � 0.20

q � 0.80CV

t S `, e�t/RC S 0 and 1 � e�t/RC S 1 so q S CV.
q � CV(1 � e�t/RC)
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The negative sign indicates that the current in the resistor is in the opposite
direction from the charging situation, which must be the case.

Mathematical analysis of the discharge circuit starts with a voltage type of
statement similar to the one used in the charging case.

and solving

Again notice that the choice of constant is very convenient because 

Now impose the initial condition. At 

The charge on the capacitor decays with the same time constant, RC.

Example 9-27 If the circuit used in the previous problems is placed in the dis-
charge mode, how long does it take for the circuit to discharge to 50% of its
original (total) charge?

Solution: Solve for t when .

It is more convenient to write 0.50 as 1/2, so when the statement is converted to
logarithms,

In terms of time constants this would be , (RC)ln2, time constants, or 0.69 of
a time constant.

ln2

t � RC ln2 � 1.0 � 104 � 	 20 � 10�6 F 	 ln2 � (0.20)(0.69 s) � 0.14 s

ln 0.50 � �
t

RC
 is ln1 � ln2 � �

t
RC

 and since ln1 � 0

0.50 CV � CVe�t/RC  or  0.50 � e�t/RC

q � 0.50 CVq � CVe�t/RC

q � CVe�t/RC

t � 0, q � CV, so K2 � CV and

ln
q

K2
� �

1
RC

t  or  
q

K2
� e�t/RC  or  q � K2e

�t/RC

lnq � (�1/RC) t � lnK2

iR �
q
C

� 0  or  
dq
dt

� �
1

RC
q  or  

dq
q � �

1
RC

dt
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It makes sense that our answer is less than one time constant since it takes less
time for the charge to decline to 50% of its initial value than to 37% ( ) of its
initial value.

Example 9-28 An RC circuit is observed during discharge to have an initial
capacitor potential of 100 V and after 3.0 s to have a potential of 20 V. How long
will it take for the capacitor to discharge to 1.0 V.

Solution: The voltage across the capacitor at any time is determined by
rewritten as q/C, or , where is the voltage at

.

Take 

Switching to logarithms

Knowing this number, the specific decay law for this circuit can be written 

Now calculate the time for the voltage to drop to 1.0 V.

Switching to logarithms

Go back over this problem and note the procedure.

1. After reading the problem, the general law (equation) was written down,
.

2. Next the data from the problem (100 V going to 20 V in 3.0 s) was used to
find RC.

3. With RC the specific law for this problem was written; .

4. Finally, with this specific law the predictive calculation was performed to
find the time for the 100 V to decay to 1.0 V. 

V � 100 Ve�t/1.9

VC � Voe�t/RC

�ln 100 � �(t/1.9) or t � 1.9 	 ln 100 � 8.6 s

1.0 V � 100 Ve�t/1.9 or (1/100) � e�t/1.9

V � (100 V)e�t/1.9

3.0
RC

� ln5 or 3.0
ln5

� RC or RC � 1.9 s

20 V � 100 Ve�3.0/RC or 2/10 � e�3.0/RC or e3.0/RC � 5

Vo � 100, VC � 20 V, and t � 3.0 s and write

t � 0
VoVC � Voe�t/RCq � CVe�t/RC

1/e
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This analysis procedure is typical of growth and decay problems in general. Be
familiar with the steps in this procedure. It will keep you from getting lost and
not knowing how to proceed in problems like this.

9-8 The Logistic Function
Another type of exponential function used to describe limited growth has the
form

At , . This is the present rate or number, whatever R represents.

As t goes to infinity, goes to 0 and R approaches B. B is the maxi-
mum rate or number.

This curve has the general shape shown in Fig. 9-10.

e�kt � 1/ekt

R �
B

1 � A
t � 0

R �
B

1 � Ae�kt
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Fig. 9-10

Many industries follow this type of a growth curve. When a new product is
introduced there is considerable demand, but as more and more people acquire,
the product sales drop to a level determined by the number of new people
entering the marketplace and replacement of old or outdated product. The
automobile industry is an excellent example of this type of growth.

The exponential part of the definition is sometimes written as . This form is
workable if data defining the function is available for small values of x. Look at

bx



the logistic function in this form and see how it is convenient for evaluating the
constants for small x.

Multiply the right side of this function up and down by .

For small values of x
the term bx is approximately 1, so the function can be written as

This use of data for small x also works using the form. The exponential is the
most popular form for the logistic equation.

Example 9-29 A microchip production line has a theoretical maximum output
of 400 chips per day. The factory production managers know from experience
that new microchip production lines reach maximum production according to 

where R is in hundreds of chips per day.

Sketch the function and find the production rate on the first day of operation,
the tenth day of operation, and finally, the maximum rate of production.

Solution: The curve is the standard one shown in Fig. 9-11.

R �
400

1 � 3e�0.08t

ekt

f(x) < N
1 � A

bx for small x

f(x) �
Nbx

(1 � Ab�x)bx �
N

bx � A
bx

bx

f(x) �
N

1 � Ab�x
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Take for the first day of production so we have

Take for the tenth day of production so

As t goes to infinity, the denominator in the rate equation goes to 1 and the
maximum rate goes to 400 chips per day.

Example 9-30 The fish population on a fish farm are assumed to grow accord-
ing to a logistic curve. The farm will support a maximum of 2000 fish. The farm
is started with 200 fish (t � 0) and at the end of 2 months (t � 2) there are
350 fish. What is the fish population at 6 months?

Solution: Since there is data for small t look at both forms of the logistic func-
tion; the basic function and the approximation for small t.

The maximum number of fish is 2000, so N � 2000.

At t � 0 there are 200 fish so

Now use the condition that at t � 2, there are 350 fish.

With a little more algebra and switching to logarithms.

The function can now be written

F(t) �
2000

1 � 9e�0.32t

e 2k � 1.91 1  ln 1.91 � 2k 1  k � 0.32

9e�2k � 4.71 1  e�2k � 0.524

350 �
2000

1 � 9e�2k 1  1 � 9e�2k �
2000
350

200 �
2000

1 � A
 1  A � 9

F(t) �
N

1 � Ae�kt or F(t) < N
1 � A

ekt for small t

R �
400

1 � 3e�0.08(10) �
400

1 � 3(0.45)
� 170 chips per day

t � 10

R �
400

1 � 3(1)
�

400
4 � 100 chips per day

t � 0
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and evaluated at the end of 6 months.

fish

✔ Interval and instantaneous compound interest

✔ Know how to differentiate logarithms and exponents

✔ Know how to integrate logarithms and exponents

✔ Differentiate and integrate trigonometric functions

✔ Solve growth and decay problems

✔ Use spread sheets to find rates and predict total returns 

✔ Solve limited growth exponentials

✔ Solve problems that fit a logistic model

se spread sheets to find rates and predict total returns 
* Solve limited growth exponentials

PROBLEMS

1. Differentiate , , and .

2. Integrate , and .

3. An amount of $2000 is invested at 12% with compounding quarterly.
Determine how long it takes to grow the $2000 to $5000.

4. The current and voltage in an R-L (resistance and inductor) circuit behave
in much the same way as for an R-C circuit. The voltage statement valid at

every instant after the switch is closed is .

Solve this equation for i and di/dt for a 60 V battery connected to a 50 � 10�3 H
inductor and a 180 Ω resistor.

5. What is the time constant for the circuit of problem 4?
6. Radioactive materials decay in direct proportion to the amount of materi-

al present. Radioactive Polonium decays with a half-life of 140 days. How
much of a 300 g sample remains after 360 days. You may want to review the
procedure for growth and decay problems in the text before working this
problem.

7. For the previous problem how long does it take for 90% of the material to
decay?

8. $100,000 invested in an oil well produces the following results for the first
6 months: R(1) � 2700, R(2) � 2150, R(3) � 2010, R(4) � 1800, R(5) � 1760,

V � iR � L di
dt

� 0

3 x 3e x 4�2dx3 Q3ex �
2
x �

x2

2 Rdx3 x dx
x2 � 1

f(x) � (x2 � 1) ln xf(x) � x ln xf(x) � ln (x � 1)

F(6) �
2000

1 � 9e�1.94 � 872
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and R(6) � 1680. Find the equation that fits this data and find the rate of
decline at R(5).

9. For the previous problem, what is the expected return over the first
12 months?

10. The number of pet strollers sold by a certain company in the 1995 to 2003
range was with t measured in thousands of
strollers. The year 1995 corresponds to t � 5 and so on up to t � 13 for 2003.
What was the rate of stroller sales in the year 2000?

11. Use the logistic formula with base e to describe the growth of tattoo parlors
as the industry matures. Assume that a 3 million population metropolis can
support 200 parlors. In 1990, t � 0, there are 6 parlors. In 1993, t � 3, there
are 12 parlors. Determine the specific logistic formula and predict the num-
ber of parlors in 1996, t � 6.

12. Sales of the Supertimewaster video game are following the logistic model
given below, where q is the number of games sold per month and t is the
time in months. What is the rate of sales at 10 months?

ANSWERS

1.

.

2. Let 

can be integrated with a change of variable. First rewrite the

integral as . With a new variable and 

the integral is now so . 

3. Start with the statement , where P is the initial amount, r is

the annual rate, k is the compounding interval and t is the number of years. 

Enter the numbers and the expression looks like .A � ($2000)Q1 �
0.12

4 R
4t

A � PQ1 �
r
k
R

kt

3 x3ex4�4dx �
1
4[ex4�2]1

4 3 eudu � eu

du � 4x3dxu � x4 � 21
4 3 4x3ex4�2dx

3 x 3ex4�2dx

3ex � 2ln Zx Z �
x3

6

3 xdx
x2 � 1

1 1
2 3 du

u �
1
2 ln u �

1
2 ln Zx2 � 1 Zu � x2 � 1  so du � 2xdx

df(x) � (x2 � 1) dx
x � ln x(2xdx) 1  

df
dx

�
x2 � 1

x � 2x ln x

df(x) � xd ln x � ln xdx 1  
df
dx

� 1 � ln x

df(x) �
1

x � 1
d(x � 1) 1  

df
dx

�
1

x � 1

q(t) �
5000

1 � 2e�0.4t

n(t) � 0.04t2 � 0.3t � 15
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Now impose the requirement for A to reach $5000: .
With a little manipulation, . This is one of those inocuous
looking equations that can drive you crazy! If the base were e, it would be
appropriate to take logarithms. Since the base is 1.03, we need either base
1.03 logarithms, a mechanism for switching bases of logarithms, or another
method for solving for t. It is possible to switch bases of logarithms but in
this case a few key strokes on a calculator or a spread sheet will solve the
problem nicely. Raise 1.03 to a few powers and find what power produces
2.5 to the two significant figures given in the problem. About 10 key strokes
and a fraction of a minute produces a number of 31.1 for the exponent 4t so
about 7.8 years are necessary at these conditions to grow $2000 to $5000. 

4. The solution is similar to the one for the R-C circuit done in the text. A
review of that more detailed analysis may be helpful before continuing.

Rewrite this equation as .

Switching to a more convenient form (separate the variables) for integration

Integrating with a change of variable to ,

or or 

Switching to exponentials 
The constant, K, can be evaluated in either of these equations by imposing
the initial condition that 

and and Now put in the numbers.

First find

.

5. The time constant .

6. The basic equation is . The minus sign is for decay. Rewrite 

and integrate. , . At t � 0, N � 300 so K � 300.

The amount goes to 150 g in 140 days soln
N

300 � �kt 1  N � 300e�kt

ln N � �kt � ln KdN
N � �kdt

dN
dt

� �kN

t �
L
R �

50 � 10�3 H
180 �

� 2.8 � 10�4 s

di
dt

�
60 V

50 � 10�3 H
e�3.6�103t

i �
60 V

180 �
e�3.6�103t

R
L �

180 �
50 � 10�3 H

� 3.6 � 103 (1/s)

di
dt

�
V
Le�Rt/Li �

V
R(1 � e�Rt/L)

at t � 0, i � 0, 0 � V/R � K so K � �V/R

i � (V/R) � Ke�Rt/L or i � (V/R) � Ke�Rt/L

ln B i � V/R
K � �

R
LtRln (i � V/R) � ln K � �

R
L t�

R
L t � ln K

ln Qi �
V
RR �i � V/R

3 di
i � (V/R)

� � 3 R
L dt

di
dt

�
V
L � i R

L  or  di
dt

� Q
V
R � iR R

L

2.5 � (1.03)4t
$5000 � ($2000)(1.03)4t
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This gives the specific relationship and for 360 days

7. It is easiest to go back to the basic equation and write .
So .

8. Place the data on a spread sheet, then have the spread sheet draw the graph
and write the equation that best fits the data.
The equation for cash return is and the rate of
return at R(5) is the differential of this equation evaluated at 5.

dollars per monthdR
dt
2
t�5

� 98(5) � 529 � �39dR
dt

� 98t � 529

R � 49t2 � 529t � 3120

ln 0.10 � �0.005t 1  t � 460 days
0.10No � Noe�0.005t

N � 300e�1.8 � 50 g
N � 300e�0.005t

150 � 300e�140k 1  1
2 � e�140k 1  �ln 2 � �140k 1  k � 0.005
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R t 

1

2 2150

3 2010

4 1800

5 1760

6 1680 

Return on Oil Well

y =  49.107x2 − 528.89x + 3123

0
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1000

1500

2000

2500
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C
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h
 R

et
u

rn2700

9. Based on the data and the rate equation the estimated return for the first
12 months is the integral of the rate statement from 0 to 12.

dollars

10. The year 2000 corresponds to t � 10 so take the derivative of n and evaluate at

t � 10 dn
dt

� 0.08 t � 0.3 1  dn
dt
2
10 � 0.8 � 0.3 � 1.1  or 1100  strollers

� S
49(12)3

3 �
529(12)2

2 � 3123(12)T � 28368

3
12

0
(49t 2 � 529t � 3123)dt � B49t 3

3 �
529t 2

2 � 3123tR 2 12

0



11. Start with the logistic formula and multiply up and down

by so . , the estimated maximum number of

parlors. Substitute to evaluate A. 

The logistic formula now reads and substituting 

gives the value for k. , ,

, , . The specific formula is f(t) �

, and the number of parlors in 1996, is f(6) �

12. Take dq/dt and evaluate at 10 months. and

games per month. Depending on where you round off you may

get a number slightly different from this.

dq
dt
2
10

� 70

dq
dt

�
0 � 5000(2)(�0.4)e�0.4t

(1 � 2e�0.4t)2

200
1 � 32e�1.44 � 23

t � 6200
1 � 32e�0.24t

k � 0.24ln 0.49 � �3ke�3k � 0.49

12 	 32e�3k � 18812 �
200

1 � 32e�3kt � 3  and f(t) � 12

f(t) �
200

1 � 32e�kt

6 �
200

1 � A
  for A � 32t � 0  and f(t) � 6

N � 200f(t) �
N

ekt � A
e ktekt

f(t) �
N

1 � Ae�kt
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If our cells are
decaying, why are
we still growing?

Because our growing
cells are growing
faster than our
decaying cells are
decaying.

I knew that. 



CHAPTER 10

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ 

MORE INTEGRALS
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

You should read this chapter if you need to review or you need to learn about

➜Volumes

➜Arc lengths

➜Surfaces of revolution

➜Change of variable

➜ Integration by parts

➜Partial fractions

➜Approximation methods
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There is an almost limitless supply of increasingly complex integrals and appli-
cations of integrals. Depending on your interests, certain topics and integrals in
this chapter may be very interesting to you while others may be completely
uninteresting.

If you are looking for help with a particular integral or a particular application,
you may want to survey the chapter to find those problems and associated dis-
cussions that fit your interest. We have concentrated on four topics: volumes,
arc lengths, surface areas, and non-standard integrals that occur often in real-
world problems. This latter area is often called techniques of integration, the
name suggesting the study of integration techniques that work for a number of
different problems. Most texts and extensive integral tables are organized
around various categories of integrals. Within the space limitations, we have
attempted to pick those integrals and applications that will help the largest
number of people. We start with a discussion of volumes.

10-1 Volumes
Finding volumes of non-standard geometric shapes can only be accomplished
with calculus. This work is a logical extension of the study of the calculation of
areas using calculus. You will find many parallels between area and volume cal-
culations. Finding volumes is also extremely visual. If you can visualize the
problem, you can usually do it. We start with some simple problems and work
up to the more challenging ones. The first problem uses the method of disks to
calculate the volume generated by rotating a parabola of a fixed height about
its symmetry axis. Next the problem is done again using the method of cylin-
drical shells. 

Example 10-1 Find the volume generated by rotating about the y-axis
and bounded by the plane .

Solution: This is a three-dimensional picture. Start with the curve from
up to (and ). The rotation of this part of the parabola about

the y-axis produces a rounded cone shape (Fig. 10-1).

The volume can be viewed as a collection (integral?) of disks of width dy and
radius dictated by the radius of the cone. The volume of each of these disks
is generically . The radius of the disk is x so thep � (radius)2 � thickness

x � �2y � 4y � 0
y � x2

y � 4
y � x2
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In two dimensions, defines a horizontal line at . In three dimen-
sions, defines a plane normal to the y-axis and parallel to the x-z plane.y � 4

y � 4y � 4



differential volume of each disk can be written .
The sum of all these disks is an integral over y.

Start by writing .

The first thing wrong with this integral is the term. If
the integral is over dy, we can’t have xs under the inte-
gral sign. Replace by its equivalent, y.

The next thing that needs to be added to the integral is
the limits. There are none. Integration in the y-direction
is from to . The curve starts at , and
the problem gives the upper boundary as the plane

.

The volume integral is .

Example 10-2 Find the volume generated by rotating about the y-axis
and bounded by the plane using the method of cylindrical shells.

Solution: In the previous problem the volume was visualized as a stack of disks
of thickness dy. This is the method of disks.

This problem prescribes using the method of cylindrical shells. Visualize a
cylinder, actually a cylindrical shell, of radius x, height the difference between

and and width dx.

The volume of the cylindrical shell, as shown in Fig. 10-2, is 2 times the radius
times the height of the shell times the thickness of the shell. The 2 times the radius
effectively wraps the rectangle of height between
the curves and width dx around the y-axis.

The radius is x, the height of the rectangle is
(the top of the rectangle is at and

the bottom of the rectangle is on the 
curve), and the width is dx, so the differential
volume is . The sum of these cylin-
drical shells is an integral over x.

Start by writing an integral

3 2px(4 � x2)dx

2px(4 � x2)dx

y � x2
y � 4(4 � x2)

p

p

y � x2y � 4

y � 4
y � x2

V � p 3
4

0
ydy � p

y2

2 P
4

0
� 8p

y � 4

y � 0y � 4y � 0

x2

x2

3px2dy

px2dy
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Fig. 10-1
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4
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The integral is in x from 0 to 2 so

Example 10-3 Find the
volume generated by rotat-
ing the area bounded by

, , and
about the x-axis.

Solution: Start by finding
the area to be rotated. The
line and the circle
intersect at on the x-
axis. The line inter-
sects the circle when 
( , ,

). The circle and the
line intersect at (3, 4).

Visualize the volume obtained by rotating this area about the x-axis as com-
posed of disks with outer radius equal to 4, inner radius on the circle, and width
dx. See Fig. 10-3. The outer radius of the disk is 4 and the inner radius is the
solution of for y ( , ). The differential
volume of the disk is [(outer radius)2 minus (inner radius)2] times dx. The inte-
gral in dx is from 3 to 5, so the volume integral is

V � pU
125 � 81

3 V �
44p

3

� pU
125

3 � 27V

V � pU S�45 �
125

3 T � [�27 � 9]V � pU�45 �
125
3 � 27 � 9V

� p S�9x �
x3

3 T
5

3

V � 3
5

3
p[42 � (25 � x2)]dx � p 3

5

3
(16 � 25 � x2)dx � p 3

5

3
(�9 � x2)dx

p

y � 225 � x2x2 � y2 � 25x2 � y2 � 25

y � 4
x � 3

x2 � 9x2 � 42 � 25
y � 4

y � 4
x � 5

x � 5

y � 4
x � 5x2 � y2 � 25

� 2p[8 � 4] � 8p

V � 3
2

0
2px(4 � x2)dx � 2p 3

2

0
(4x � x3)dx � 2p S4x2

2 �
x4

4 T
2

0
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Example 10-4 Find the volume of cement required to build the top of a bird-
bath. The bottom of the birdbath follows the parabola . The inside of
the birdbath follows . All the dimensions are in feet. The top
edge of the birdbath is bounded by the horizontal line .

Solution: Start with the profile
of the birdbath in x-y as shown in
Fig. 10-4. The bottom parabola,

, starts at , ,
and intersects when 
( , , ).

The top parabola starts at ,
and intersects 

when

( , , ).

Now rotate the profile around the y-axis. The volume of the birdbath is the vol-
ume inside the bottom parabola up to minus the volume inside the topy � 0.4

x � 1.60.2 � 0.08 x20.4 � 0.2 � 0.08 x2

x � 1.6
y � 0.4y � 0.2
x � 0

x � 2x2 � 40.4 � 0.1 x2
x � 2y � 0.4
y � 0x � 0y � 0.1 x2

y � 0.4
y � 0.20 � 0.08 x2

y � 0.1 x2
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Fig. 10-4

Fig. 10-5

parabola up to . Figure 10-5 shows the birdbath and the disks. The vol-
ume of the disks is times (radius)2 times thickness.

The volume within the bottom parabola is .3
0.4

0
p(xbottom)2dy � p 3

0.4

0

y
0.1

dy

p

y � 0.4

(1.6, 0.4) (2, 0.4) 

2.0=y

y

x

4.0=y

(1.6, 0.4) (2, 0.4)

y

x

4.0=y

dy

2.0=y

There's nothing like a 
parabolic birdbath. 



The volume within the inner parabola is 

Be careful of the limits!

The volume of cement in the birdbath is the larger volume minus the smaller
volume as shown by the disks in Fig. 10-5. The volume integral is 

10-2 Arc Lengths
A small length of a curve in x-y denoted by ds can
be written in terms of dx and dy using
Pythagorean theorem. The geometry of ds, dx,
and dy are shown in Fig. 10-6 and the Pythagorean
relation is 

Any small change in s can be viewed as a small change in x and a small change
in y. Solve this equation for ds

and factor out first a dx, and then a dy.

ds �
Å

1 � Q
dy
dx
R

2
dx �

Å
1 � Q

dx
dy
R

2
dy

ds � 2dx2 � dy2

ds2 � dx2 � dy2

V � 0.8p �
p
4 � p(0.8 � 0.25) � 0.55p � 1.73 ft3 of cement

� 0.8p �
p

0.08 50 � 0.026

V �
p

0.1
50.086 �

p
0.08 5[0.08 � 0.08] � [0.02 � 0.04]6

V �
p

0.1
U

0.16
2 V �

p
0.08 U S

0.16
2 � 0.08T � S

0.04
2 � 0.04T V

V �
p

0.1 3
0.4

0
ydy �

p
0.08 3

0.4

0.2
(y � 0.2)dy �

p

0.1
U

y2

2 V
0.4

0
�
p

0.08 U
y2

2 � 0.2yV
0.4

0.2

3
0.4

0.2
p(xinner)

2dy � p 3
0.4

0.2

y � 0.2
0.08 dy
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This little exercise is sufficiently easy so that you do not have to use precious
memory space remembering it, just work it out as needed. The total length of an
arc is the integral between the appropriate limits of this differential statement.

Because of the square root, and the square of the slope, the integrals are usually
not easy. 

The curve turns out to be one of the easier arc lengths to calculate.
Form .

and so

The general integral for arc length of this curve is .

Most of the time the integrals are so difficult it is worth looking at both formu-
las for the arc length in an attempt to find the easiest integral. The other possi-
ble integral starts from .

and

The term in the denominator cannot be conveniently written in terms of y
without getting into fractional powers so the previous integral looks at this
point to be the easier. This type of integral will be taken up in an example later.

Example 10-5 Find the length of arc between x � 0 and x � 1 for the curve
.

Solution: First find dy/dx and form the two square roots to see which looks
easier.

 1  ds �
Å

1 �
4
9x

dy

dy �
3
2 x1/2dx 1  

dy
dx

�
3
2 x1/2 1  ds �

Å
1 �

9x
4 dx

y � x3/2

x4

Q
dx
dy
R

2

�
4y2

9x4
dx
dy

�
2y

3x2

dx/dy

s � 3Å1 �
9x
4 dx

Q
dy
dx
R

2
�

9x4

4y2 �
9x4

4x3 �
9x
4

dy
dx

�
3x2

2y
2ydy � 3x2dx

dy/dx
y2 � x3

3ds � 3Å1 � Q
dy
dx
R

2
dx � 3Å1 � Q

dx
dy
R

2
dy
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The integral in dx is easier so set up the integral with limits.

A change of variable should help: let .

In this case, with a complicated change of variable it looked easier to change the
limits on the integral than convert back to x’s.

10-3 Surfaces of Revolution
Determining the surface area of non-standard shapes is another uniquely cal-
culus problem. The technique for finding the surface area of a shape produced
by rotating a curve is similar to finding volumes and additionally uses concepts
from length of arc calculations.

Start with a parabola, , rotated about the y-axis and consider the surface
of that parabola up to . The curve doesn’t have to be a parabola. A
parabola is just convenient to visualize. The surface area is viewed as a collec-
tion of strips wrapped around the parabola. The area of these strips is 2p
(radius), the length around, times the width of the strip, ds. The differential
piece of surface for a curve rotated about the y-axis is (Fig. 10-7).

The ds is or .

Since the length of the strip ds is written look
first at the

form for ds

Start with and and

. This looks to be the
best form for ds, because it does not contain a fraction inside the square root.
Å

1 � Q
dy
dx
R

2
� 21 � 4x2

Q
dy
dx
R

2
� 4x2

dy
dx

� 2x

Å
1 � Q

dy
dx
R

2
dx

2px

Å
1 � Q

dx
dy
R

2
dy

Å
1 � Q

dy
dx
R

2
dx

2pxds

y � 4
y � x2

S � 3
13/4

1
u1/2 4

9 du �
4
9

2
3 u3/2 P

13/4

1
�

8
27 S Q

13
4 R

3/2

� 13/2T � 1.44

u � 1 � 9x/4  and du � (9/4)dx

S � 3
1

0Å
1 �

9x
4 dx
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ds

y

x

2xy =

Fig. 10-7



The integral for the surface area of the parabola then is 

The integrals encountered in surface area calculations are usually worse than
the ones for arc length. The next section will start on techniques of integration
and this integral will be evaluated there.

Example 10-6 Find the area generated by rotating the curve 
about the y-axis from y � 0 to y � 2.

Solution: Sketch the curve (Fig. 10-8). Take the derivative and look for which
of the two integrals that looks easiest.

Rewrite the equation of the curve as . 

Then and . The area inte-

gral in dy looks to be the easiest. so

Now make a change of variable with and .

10-4 Techniques of Integration
In this section we show you some techniques for handling particularly difficult
looking integrals. Along the way some interesting practical problems that so far
have been avoided because of the difficulty of integrating will be done. These
techniques of integration are categorized by technique. We start with the simpler
techniques and work through the more popular, or more often encountered.

A �
2p
3

1
4 3

17

1
2u du �

p

6
2
3 u3/2 2 17

1
�
p
9  [(17)3/2 � 1] � 24

du � 4y3dyu � 1 � y4

A � 2p 3
2

0
x21 � y4 dy �

2p
3 3

2

0
y321 � y4 dy

ds �
Å

1 � Q
dx
dy
R

2
dy

dx
dy

� y2dx �
1
3 3y2dy � y2dy

y3 � 3x

y � (3x)1/3

A � 2p 3
2

0
x21 � 4x2dx
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Change of Variable 

The change of variable technique is also called the method of substitution. As
the names imply the approach is to define a new variable that will transform the
integral to one that is a standard form. The procedure is to define a new vari-
able, take the derivative of that new variable and then write the integral in
terms of the new variable and derivative. There is some skill in picking the new
variable and sometimes you just have to try a few. The best first guess for a
change of variable is to look for the worst looking part of the integral and make
that worst looking part the new variable or at least incorporate it into the new
variable. The best way to understand any of these techniques is to jump right in
and start doing some problems.

Example 10-7 Find .

Solution: Make a change of variable. Let so that . This
transforms the integral.

Remember to translate back to the original variable at the end of the problem.

Example 10-8 Find .

Solution: The worst looking part of this integral is the lnx so make a substitu-

tion v � ln x so that . This transforms the integral into a standard form.

This is a bit of a strange answer, but then it was a bit of a strange integral.

Example 10-9 Find .

Solution: A new variable would allow the to be written as a
power, and integrals of a variable raised to a power d (variable) are standard inte-
grals. Let with . The integral is transformed and solved.

3 23 � 2xdx � �
1
2 3w1/2dw � �

1
2

w3/2

3/2
� �

1
3 w 3/2 � �

1
3 (3 � 2x)3/2

dw � �2dxw � 3 � 2x

23 � 2x3 � 2x

123 � 2xdx

3 dx
x lnx

� 3 1
v dv � lnv � ln(lnx)

dv �
1
x dx

3 dx
x lnx

3 xex 2dx �
1
2 3 eudu �

1
2 eu �

1
2 e x 2

du � 2xdxu � x2

3 xe x 2dx
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Example 10-10 Find the arc length between
and for the curve .

Solution: This is the curve used as the example

in the discussion of arc lengths (previous section).

A rough sketch of the curve is shown in Fig. 10-9.

Taking the square root of both sides the 

equation produces .

This is a curve that has a shape somewhere
between the shape of , a straight line, and

, a parabola. The curve slopes upward but
not as rapidly as the quadratic.

The general formula for the arc length is .

For the curve , and so the arc length

from to is

The integral has been simplified to the point where a change of variable is in
order. Let so that and rewrite the integral.

The limits on the integral can be confusing. The strictly correct way to evaluate
the integral is to change the limits when the variable is changed. Looking at the

�
1
27 [172.6 � 46.9] � 4.66

S �
1
27 5[4 � 27]3/2 � [4 � 9]3/26 �

1
27 [313/2 � 133/2]

S �
1
2 3

3

1
24 � 9xdx �

1
2

1
9 3

x�3

x�1
u1/2du �

1
18

u3/2

3/2
2 x�3

x�1
�

1
27 (4 � 9x)3/2 2 x�3

x�1

du � 9dxu � 4 � 9x

S � 3
3

1 Å
1 �

9x
4 dx � 3

3

1 Å
4 � 9x

4 dx �
1
2 3

3

1
24 � 9x dx

x � 3x � 1

Q
dy
dx
R

2
�

9x4

4y2 �
9x4

4x3 �
9x
4

dy
dx

�
3x2

2y
y2 � x3

S � 3
3

1 Å
1 � Q

dy
dx
R

2
dx

y � x2
y � x

y � x1.5

y2 � x3

y2 � x3x � 3x � 1
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definition of u; for , , and for , u � 4 � 9(3) � 31.
Using this approach the integrals would read

However you choose to do the problem be careful of the limits. If you write
or in the limits you will avoid getting confused. There are enough

pitfalls in evaluating these integrals without getting tripped up with the limits.

Example 10-11 Find the surface area of rotated about the y-axis from
to .

Solution: The surface area is the area generated by rotating the parabola
about the y-axis up to , which corresponds to . This is the problem
used to illustrate the calculation of surface areas. The integral is the integral of
a strip of surface area with length equal to the circumference, (radius) times
the differential length along any arc of the surface, ds.

Figure 10-10 shows the parabola up to corresponding to and the
differential strip of area. The differential
area is

and of is so

In looking for a change of variable, look for
the worst part of the integral, which is the . Let with

. Replace with v and with . Change the limits. When
, , and when , .

A �
p
4 S

v3/2

3/2
T
17

1
�
p

6
 [173/2 � 13/2] �

p

6
 [70.1 � 1] � 36.2

A � 2p 3
2

0
x21 � 4x2dx � 2p 1

8 3
17

1
v1//2dv

v � 17x � 2v � 1x � 0
dv/8xdx1 � 4x2dv � 8xdx

v � 1 � 4x21 � 4x2

A � 2p 3
2

0
x21 � 4x2dx

2xy � x2
dy
dx

dA � 2pxds � 2px
Å

1 � Q
dy
dx
R

2
dx

x � 2y � 4

2p

x � 2y � 4

x � 2x � 0
y � x2

u � cx � c

S �
1
2 3

3

1
24 � 9xdx �

1
2

1
9 3

31

13
u1/2du �

1
18

u3/2

3/2
2 31

13
�

1
27

 [313/2 � 133/2] � 4.66

x � 3u � 4 � 9(1) � 13x � 1
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Example 10-12 Find .

Solution: The worst part of this integral is the so let and
. The integral transforms to a standard integral.

Example 10-13 The price of a product varies with supply and demand in such
a way that with k to be determined by conditions. Find the
price as a function of time and graph the price vs. time. The price is $4.50 when

, and $4.00 when . The t is in years.

Solution: The first step in solving for is to write the rate statement in a
form that can be integrated.

or

Deal with this integral in p as a separate exercise. Make a substitution for
by letting so and the integral becomes

With this little side calculation and remembering that integrating

produces a constant of integration, the integration produces

Rearranging for convenience in writing as an exponent: ln(5 � 2p) � �2kt �
2C. And writing as an exponential (This is the only way to get an equation that
reads ) we get

The constant of integration can be carried as long as you like but defining a new
constant at this point looks convenient. Make equal to 2D.

p � 2.5 � De�2kt

�2p � �5 � 2De�2kt

e�2C

5 � 2p � e�2kt�2C � e�2kte�2C

p � . . .

�
1
2 ln (5 � 2p) � kt � C

3 dp
5 � 2p

� 3kdt

3 dp
5 � 2p

� �
1
2 3

dz
z � �

1
2 lnz � �

1
2 ln(5 � 2p)

dz � �2dpz � 5 � 2p5 � 2p

3 dp
5 � 2p

� 3 kdt
dp

5 � 2p
� kdt

p(t)

t � 2t � 0

dp/dt � k(5 � 2p)

3 tan (3x � 2)dx �
1
3 3 tan wdw � �

1
3 ln (cos w) � �

1
3 ln [ cos (3x � 2)]

dw � 3dx
w � 3x � 23x � 2

3 tan (3x � 2)dx
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Now apply the condition that
at .

and

so

The second condition that 
when will define the constant k.

, ,

Switch to logarithms:

,

,

and               

Finally,

Now graph the function. At ,
as given in the problem. As time

goes on, the term gets smaller
and smaller and as , . The
line is an asymptote. The curve
is shown in Fig. 10-11.

Trigonometric Integrals 

There are a large, large number of trigonometric integrals. Some are relatively
easy. Most are relatively difficult. Solving trigonometric integrals involves
changes of variables and using trigonometric identities and a good bit of ingenu-
ity, imagination some might call it. The following several problems demonstrate
the more popular techniques (did someone say tricks?) for solving trigono-
metric integrals.

p � 2.5
p S 2.5t S `

2e�0.144t
p � 4.5

t � 0

p � 2.5 � 2e�0.144t

2k � 0.144

k � �
1
4 ln 0.75 � 0.072

�4k � ln 0.75

0.75 � e�4k

1.5 � 2e�4k4 � 2.5 � 2e�4k

t � 2
p � 4

p � 2.5 � 2e�2kt

�D � 24.5 � 2.5 � D(1)

t � 0p � 4.5
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Example 10-14 Find .

Solution: Recognizing that is the derivative of suggests a change of
variable might make this integral into a standard form. Take and

. Making these substitutions

Example 10-15 Find .

Solution: This problem is a little harder than the previous one. If we let
and , the integral becomes

which doesn’t seem to be much of an improvement. However, using the identity
, and the integral becomes

Example 10-16 Find .

Solution: Use the identity to replace so the integral
now reads

Now make a change of variable. Let and so that the
integral now reads

� 2 S
( sin x)3/2

3 �
( sin x)7/2

7 T

3w1/2(1 � w2)dw � 3 (w1/2 � w5/2)dw �
w3/2

3/2
�

w7/2

7/2

dw � cos x dxw � sin x

3 2 sin x (1 � sin 2x) cos x dx

cos 2xsin 2x � cos 2x � 1

3 2 sin x( cos 3x)dx

�
sin 4x

4 Q1 �
2 sin 2x

3 R

3 v3(1 � v2)dv � 3 (v3 � v5)dv �
v4

4 �
v6

6
�

v4

4 Q1 �
2v2

3 R

cos 2x � 1 � sin 2xsin 2x � cos 2x � 1

3 ( sin 3x)( cos 3x)dx � 3 v3( cos 2x)dv

dv � cos x dxv � sin x

3 ( sin 3x)( cos 3x)dx

3 sin 2x cos x dx � 3 u2du �
u3

3 �
sin 3x

3

du � cos xdx
u � sin x

sin xcos x

3 sin 2x cos x dx
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All trigonometric integrals are not this easy. Though there are some patterns to
doing trigonometric integrals, as demonstrated in the previous problems,
trigonometric integrals can be some of the most difficult you will encounter.
Fortunately, there are tables of trigonometric integrals that will help you out of
most problems.

10-5 Integration by Parts
Integration by parts is somewhat similar to the method of substitution in that

the correct association will make a difficult integral into a not so difficult inte-
gral. The formula for integration by parts, which we will not derive or even jus-
tify, is found in the Mathematical Tables.

The key to successful application of this rule is the correct initial choice of u and
dv. Sometimes you have to try more than one combination to get one to work
well. The purpose of the choice is to make the integral on the right side easier
and not harder than the one you started with. The best way to learn this is to go
directly to some problems and see how it is done.

Example 10-17 Find .

Solution: Fit the integral to the pattern .

A good first identification is to take as dv, and x as u. If this identification

is made then and makes . Follow the pattern and

write

The integral is so

3 xexdx � xex � ex � ex(x � 1)

ex3 exdx

3 x(exdx) � xex � 3 exdx

3 u(dv) � uv � 3 vdu

ex � v3 exdx � 3 dvdu � dx

exdx

3 udv � uv � 3 vdu

3 xexdx

3 udv � uv � 3 vdu
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Example 10-18 Find by integration by parts.

Solution: The form of integration by parts is . Take

and . From these identifications and 

makes . Write the original integral as an integration by parts.

The can itself be integrated by parts as was done in the previous problem.

Use the result of Example 10-17 to write

This problem is an excellent example of the multiple uses of integration by
parts. Multiple integrations by parts are typical of complex exponential and
trigonometric integrals.

Example 10-19 Find by integration by parts.

Solution: Let and dv � dx, so and so that

Example 10-20 The income for a certain company is a combination of steady
growth and a cyclic component with the income following ,
where S is in tens of thousands of dollars per month and t is a quarter of a year
( corresponds to 3 months, or one-quarter). The income for any period is
the integral of this income per month function over that period. Find the
income for the next 3 quarters.

Solution: The income for 3 quarters is the integral of S over t from t � 0 to t � 3.

S � 3
3

0
[2t � 3t sin (pt/2)] dt � 2 3

3

0
t dt � Q

2
pR

2

3
t�3

t�0
Q
pt
2 R sin Qpt

2 RdQ
pt
2 R

t � 1

S � 2t � t sin (pt/2)

3 ln xdx � x ln x � 3 x dx
x � x ln x � x � C

3 udv � uv � 3 vdu

v � 3 dx � xdu �
dx
xu � ln x

3 ln xdx

3 x2exdx � x2ex � 2(xex � ex) � x2ex � 2xex � 2ex � ex(x2 � 2x � 2)

3 xexdx

3 x2exdx � x2ex � 2 3 xexdx

v � ex

3 dv � 3 exdxdu � 2xdxdv � exdxu � x2

3 u(dv) � uv � 3 vdu

3 x2exdx
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Take the first integral as and the second integral as . The first integral

and means that $90,000 in income was received in the 3 quar-

ters (S is in tens of thousands of dollars).

Make a change of variable in the second equation. Let so .
The new limits are: for , and for , . The second integral
now reads

The integration is performed by parts.

Let and producing and or
.

The and so the second bracket is zero.

The and so

this integral is

This means a loss due to this cyclic
component of $4000. The total income over the 3 quarters is $90,000 minus
$4000 or $86,000.

10-6 Partial Fractions
A single complicated fraction can often be written as two fractions, each of
which is less complicated than the original. 

S2 � Q
2
pR

2
(�1) � �Q

2
pR

2

� �0.40

sin
3p
2 � �1cos

3p
2 � 0

(0) cos 0 � 0sin 0 � 0

S2 � Q
2
pR

2 b B�
3p
2 cos Q3p2 R � sin 3p

2 R � [�(0) cos 0 � sin 0]r

S2 � Q
2
pR

2
S�y cos y � 3 (�cos y)dyT

y�3p/2

y�0 � Q
2
pR

2
S�y cos y � sin yT

y�3p/2

y�0

v � � cos y
3 dv � 3 sin ydydu � dydv � sin ydyu � y

3 udv � uv � 3 vdu

S2 � Q
2
pR

2

3
y�3p/2

y�0
y sin ydy

y � 3p/2t � 3y � 0t � 0
dy � d(pt/2)y � pt/2

S1 �
2t2

2 P
t�3

t�0
� 9

S2S1
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The fraction

can be written as or as

If you needed to integrate this fraction it would be much easier to integrate
three simpler fractions, than the more complicated single fraction. Making mul-
tiple simpler fractions from a single fraction is a logical process that is best
learned by working an example.

To use partial fractions the denominator has to be factorable and it is most
convenient if the numerator is one degree less than the denominator. If the
numerator and denominator are the same degree or the numerator is a higher
degree than the denominator, then long divide to reduce the fraction. The
first partial fractions to consider all have nonrepeating and nonquadratic fac-
tors in their denominators. 

Example 10-21 Write in partial fractions.

Solution: The denominator of the fraction can be factored x2 � x � 2 � (x � 2) �
(x � 1) indicating that the fraction can be written as something over the first fac-
tor and something else over the second factor. Set up two fractions with unde-
termined numerators and equal to the original fraction.

As with most equations involving fractions multiply both sides by the common
denominator to clear the fractions.

Equating the constants and the coefficients of x produces two identities:
and . This is sufficient information to determine A and

B. Subtract the second identity from the first [ ]
to eliminate A. Now or . If , then 
( ) and the original fraction is now written as 

2
(x � 2)(x � 1)

�
2/3

(x � 2)
�

2/3
(x � 1)

A � B � 0
A � 2/3B � �2/3B � �2/33B � �2

(A � B � 0) � (A � 2B � 2)
A � 2B � 2A � B � 0

� (A � B)x � (A � 2B)

2 � A(x � 1) � B(x � 2) � Ax � A � Bx � 2B

2
(x � 2)(x � 1)

�
A

x � 2 �
B

x � 1

2
x2 � x � 2

1
x �

2
x2 �

1
x3

x2

x3 �
2x
x3 �

1
x3

x2 � 2x � 1
x3
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Example 10-22 Integrate by partial fractions.

Solution: First write the fraction in terms of partial fractions. The denomina-
tor is factorable so write

Multiply by the common denominator.

Write the identities . With ,

Multiply the first equation by 2 and add the equations to eliminate B so
or . Substitute in so B � 2 � 11/4 � 8/4 � 11/4 �

�3/4. The fraction now is written as

The integral now reads

The integral is a logarithmic derivative. 

Replace with u and so is in the form .

The three integrals can now be written easily.

3 3x2 � 7x � 4
x3 � 4x

� ln x �
3
4 ln (x � 2) �

11
4  ln (x � 2)

3 1
x dx3 1

x � a dxdu � dxx � a

3 1
x � a dx

3 3x2 � 7x � 4
x3 � 4x

� 3 1
x dx �

3
4 3 1

x � 2 dx �
11
4 3 1

x � 2 dx

3x2 � 7x � 4
x3 � 4x

�
1
x �

3/4
x � 2 �

11/4
x � 2

B � C � 2C � 11/44C � 11

B � C � 2
�2B � 2C � 7

A � 1
A � B � C � 3
�2B � 2C � 7

�4A � �4

� (A � B � C)x2 � (�2B � 2C)x � (�4A)

3x2 � 7x � 4 � A(x2 � 4) � B(x2 � 2x) � C(x2 � 2x)

3x2 � 7x � 4
x(x � 2)(x � 2)

�
A
x �

B
x � 2 �

C
x � 2

3 3x2 � 7x � 4
x3 � 4x
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The next complication in partial fractions is when there is a repeating factor in
the denominator. This requires two partial fractions, one with the factor to the
first power and a second with the factor to the second power. If the denomina-
tor contains multiple identical factors, then make as many fractions as there are
factors. And the final complication is when there is a quadratic factor in the
denominator. A quadratic factor requires a numerator in the fraction that is a
constant plus another constant times the variable. This is best illustrated with
the next two examples. 

Example 10-23 Find the using partial fractions.

Solution: The partial fraction is written as

Multiply by the common denominator and compare coefficients.

A � �4, B � A � �1, B � A � 1 � �5, so the integral is written as 

Example 10-24 Find using partial fractions.

Solution: When the denominator is factored there is a repeating term plus a
quadratic term, that is, one that cannot be factored. This quadratic term is han-
dled with a fraction with a constant plus a constant times x in the numerator.

5x3 � 3x2 � 2x � 1
x2(x2 � 1)

�
A
x �

B
x2 �

Cx � D
x2 � 1

3 5x3 � 3x2 � 2x � 1
x4 � x2 dx

� �4 ln (x � 1) � 5(x � 1)�1 � C

3 x2 � 4x � 1
(x � 1)2 dx � � 3 4

x � 1
dx � 3 5

(x � 1)2 dx

x2 � 4x � 1 � A(x � 1) � B � Ax � A � B

x2 � 4x � 1
(x � 1)2 �

A
(x � 1)

�
B

(x � 1)2

3 x2 � 4x � 1
(x � 1)2 dx
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Multiply by the common denominator and compare coefficients.

so the integral is written as

That last integral came from a Table of Integrals. Quadratic partial fractions
usually produce very difficult integrals.

10-7 Integrals from Tables
One of the best techniques of integration is to use the table of integrals found
in most texts. A table of integrals is found in the Mathematical Tables included
at the back of this book.

Some instructors do not allow the use
of tables on tests. We do not share
that view. Why take up precious
memory space with formulas that are
available in an inexpensive mathe-
matical table? Regardless of your
instructor, you will eventually want to
use tables, and these examples will
give you an introduction to the
process. Most tables are organized by
categories: trigonometric, logarith-
mic, exponential, quadratics or frac-
tions, or whatever. The examples we
have chosen are, hopefully, appropri-
ate for what you will encounter.

� 2 ln u x u � x�1 �
3
2 ln (x2 � 1) � 2 tan �1x � K3 5x3 � 3x2 � 2x � 1

x4 � x2 dx

3 5x3 � 3x2 � 2x � 1
x4 � x2 dx � 2 3 dx

x � 3 dx
x2 � 3 3x � 2

x2 � 1
dx

B � �1, D � �2, A � 2  and C �  3

5x3 � 3x2 � 2x � 1 � (A � C)x3 � (B � D)x2 � Ax � B

5x3 � 3x2 � 2x � 1 � Ax(x2 � 1) � B(x2 � 1) � (Cx � D)x2
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Example 10-25 Find .

Solution: An integral in this form is in the tables. It reads 

Make the identification that and and write down the integral.

Example 10-26 Find .

Solution: An integral in this form is in the tables. It reads

Make the identification that , , and and write down the integral.

Using the tables is this easy. Go slowly and make sure you are identified with
the correct integral and make the substitutions. Remember that some tables
include the constant of integration and some do not. If you are working an
indefinite integral be sure to include the constant in any calculation.

10-8 Approximate Methods
When all else fails, use numeric integration! For the definite integral

the area under the curve of y vs. x from a to b is the value of the integral. 

y � 3
b

a
(some impossible to integrate function of x)dx

3 dx
x(1 � 2x)

�
1
1

 ln 2 x
1 � 2x

2 � ln 2 x
1 � 2x

2

b � 2a � 1x � u

3 du
u(a � bu)

�
1
a ln 2 u

a � bu
2

3 dx
x(1 � 2x)

3 dx

x2x2 � 4
� �

1
2 ln 224 � x2 � 2

x 2
a � 2x � u

3 du

u2a2 � u2
� �

1
a ln 22a2 � u2 � a

u 2

3 dx

x2x2 � 4
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There are several different approximation methods. The general approach to
numerical integration will be illustrated by a relatively simple one, the trape-
zoidal rule or method. As the name implies the area to be determined is
divided up into trapezoids. Consider the area under some general curve as
shown in Fig. 10-12. Divide the region within the limits into several narrow
regions bounded by the vertical lines at with a fixed width 
between each line. Corresponding to each of the values is a value of
the function . The first two regions are shown in exploded view and
better illustrate that the curve is approximated by a straight line creating a col-
lection of trapezoids.

f0, f1, f2,c
x0, x1, x2c


xx0, x1, x2c
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Fig. 10-12

The area of the first region is the large rectangle with dimensions and plus
the small rectangle on top of it with base and height . 

The area of the first region is 

The area of the second region is 

By analogy the next region is 

A2 � f2
x �
1
2 [f3 � f2]
x

A1 � f1
x �
1
2 [f2 � f1]
x

A0 � f0
x �
1
2 [f1 � f0]
x

f1 � f0
x
f0
x

A0

f0

f0 f1

f1
f2

f2
f3

x3x2
x2 x1

x1 x0
x0

y

x



The total area taken over all the intervals is the sum of these individual areas.

Multiplying and collecting terms, we calculate

Certain of these terms combine and the pattern that emerges is

Continuing the pattern, the last area, call it n, has an associated term .

Another way of writing the area sum is

The term is the left-most limit and the term is the right-most limit. The
width of each individual region, , is the extent of the limits divided
by n, the number of intervals.

Apply this technique to a simple and then a not so simple problem.

Example 10-27 Find the value of the definite integral of the curve 
from to using the trapezoidal rule for the area under the curve.

Solution: Take the square root of both sides of the equation to find y as a func-
tion of x : . This curve is something less than a quadratic. The integral to 

be evaluated is and it is the area under from to .

A rough sketch of the curve is shown in Fig. 10-13.

x � 2x � 0y � x1.73
2

0
x1.7dx

y � x1.7

x � 2x � 0
y2 � x2.9

(b � a)
x
fnf0

A �

x
2 [f0 � 2 f1 � 2 f2 � c � 2 fn�1 � fn]

fn

x
2

A � f0

x
2 � f1
x � f2
x � c

� f2

x
2 � cA � f0
x � f0


x
2 � f1
x � f1


x
2 � f1


x
2 � f2
x � f2


x
2

�
1
2 [f3 � f2]
x � c

A � f0
x �
1
2 [f1 � f0]
x � f1
x �

1
2 [f2 � f1]
x � f2
x

A � A0 � A1 � A2 � c
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Use 10 intervals so that and .

Following the trapezoidal rule for area we write

Adding the numbers

Check this answer by performing the integral and evaluating .

Example 10-28 Evaluate

using the trapezoidal rule with 4 intervals.

Solution: In the range between and
, the function goes from 1 to 0.

A detailed curve is not necessary to the cal-
culation. However, a rough sketch is shown in
Fig. 10-14. Four intervals means that

and using the formula for the
trapezoidal rule

Example 10-29 Suppose that $2000 is invested
in a fund at the beginning of each of 10 years and
that the average rate of return is 20% per year.
What is the total value of this fund at the end of the 10 years?

Solution: Visualize the process with the aid of the time line. The first $2000
grows compounded at 20% for 10 years so this is . 2000e0.20(10)

A �
0.25

2  [1 � 2.00 � 1.97 � 1.75 � 0] � 0.84

A �

x
2  [f0 � 2f0.25 � 2 f0.50 � 2 f0.75 � f1]


x � 0.25

21 � x5x � 1
x � 0

3
1

0

21 � x5dx

3
2

0

x1.7dx

� 4.45 � 5.43 � 3.25] � 2.42

A � 0.10[0 � 0.13 � 0.42 � 0.84 � 1.37 � 2 � 2.73 � 3.54

A �

x
2 [ f0 � 2 f0.2 � 2 f0.4 �c� 2 f1.8 � f2.0]


x/2 � 0.10
x � 0.20
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2.92 xy =
3.2

2
x

y

Fig. 10-13

21 xy =

1

1

y

x

−

Fig. 10-14



Refer to Example 9-7 for a discussion of the effective rate for continuous
compounding.

Use the continuous compounding as an approximation, because the $2000 is
deposited at the beginning of each interval rather than in small increments
throughout the interval.
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)10(20.02000

0 1 2 3 4 5 6 7 8 9 10

e

)9(20.02000e

)8(20.02000e

The first $2000 grows compounded at 20% for 10 years to an amount
.

The second $2000 grows compounded at 20% for 9 years to an amount
.

The third $2000 grows compounded at 20% for 8 years to an amount
.

And so on through the 10 deposits.

The general expression for the terms is , where t goes from 0 to 9.
The total amount at the end of the 10 years is $2000 times the 10 years plus the
interest earned on the different intervals. This can be expressed as a sum

with

This is the notation for adding, or summing, all the exponents. If the funds

were deposited continuously and the compounding was continuous, then this
sum would be an integral. Many programs for placing funds in a compounding
account are monthly throughout the year rather than once at the beginning of
the year, making those programs closer to the continuous model. For this case
the integral is an approximation! In mathematical language, the funds being
deposited continuously means that the interval goes to zero, or n, the number

a
n�10

n�0

t0 � 0, t1, ca
n�10

n�0
2000e0.20(10�tn)
t

2000e0.20(10�t)

2000e0.20(8)

2000e0.20(9)

2000e0.20(10)



of intervals, goes to infinity. In symbolic language we write

The exponent can be reworked to so the integral for the
total amount is 

Make a change of variable and integrate.

This number is lower than the actual amount if the funds were deposited at the
beginning of each year. If the funds were placed continuously throughout the
year then this number is correct. Programs for making calculations similar to
this one are usually found in financial calculators. If you have one, check this
answer with the answer from your calculator. Your calculator uses a calculating
algorithm similar, if not identical, to the summation notation used earlier in the
problem.

✔ Find volumes by discs and shells

✔ Know the formula for arc length

✔ Wrap the arc length for surfaces of revolution

✔ Integrate by changing variables

✔ Use integration by parts

✔ Apply partial fractions 

✔ Know how to use tables

✔ Be able to apply approximation methods

A � �10,000e2 [e�2 � 1] � 10,000e2 S1 �
1
e2 T � $63900

A �
2000

�0.20 e 23
10

0
e�0.20td(�0.20t) � �10,000 e 2 Se�0.20tT

10

0

A � 2000e2 3
10

0
e�0.20tdt

e0.20(10�t) � e2e�0.20t

lim
nS`

a
n

2000e0.20(10�tn)
t � 3
10

0
2000e0.20(10�t)dt
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PROBLEMS

1. Find the volume of the cone generated by rotating the line y � 3x about the
y-axis and bounded by the line y � 4. Use the method of disks.

2. Find the volume generated by rotating the area between and the
x-axis from x � 0 to x � 1 about the y-axis.

3. Solve the integral using partial fractions.

4. Integrate by parts.

5. Sales of a certain product follow a cyclic pattern superimposed on constant
sales in the form with S measured in hundreds of
items sold and t is the month measured from June 1st each year. Find the
average monthly sales during the summer months of June, July, and August. 

6. Use the trapezoidal rule with 10 intervals to find the area under the curve
from x = 0 to x � 1.

ANSWERS

1. Draw a diagram including the disk. The volume of the disk is so the
total volume is the integral

2. Sketch the curve. For small x the x2 term domi-
nates, and for larger x the x3 term begins to dom-
inate. In this problem it would be very difficult to
use disks. First we would have to find the equa-
tion for x �. This is no small task. Next we would
have to find the peak in the curve and subtract
the portion of the curve up to this peak from the
portion of the curve from this peak to 1. In this
problem the best procedure is to use what some
authors call the method of shells, where the lit-
tle rectangle shown as dx is rotated about the
y-axis with the integral carried out over 0 to 1 in x. The shell has height

, width dx, and is rotated (2px) about the y-axis. The volume
integral is

V � 3
1

0
2px(x2 � x3)dx � 2pB x4

4 �
x5

5
R 2 1

0

� 2pB1
4 �

1
5
R � 0.31

y � x2 � x3

V � 3
4

0
px2dy � 3

4

0

py2

9 dy �
p
27 y3 2 4

0
�
p(4)3

27 � 7.4

px2dy

y � 2x

S � 25 � 10 cos (pt/8)

3 x sin x dx

3 4x � 1
x2 � x � 2

dx

y � x2 � x3
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x



3. The denominator can be factored so write
the partial fraction form.

Multiply by the common denominator and
compare coefficients.

Write the integral in partial fraction form.

4. Using the form and let and dv �

sinx dx so v � �cosx. The integration is then

5. Find the average sales with the average value integral.

6. Use the trapezoidal formula with .

A �
0.1
2 [0 � 0.316 � 0.447 � 0.548 � 0.632 � 0.707

� 0.775 � 0.837 � 0.894 � 0.949 � 1] � 0.355

A �

x
2 [f0 � 2f1 � 2f2 � c � 2fn�1 � fn]


x � 0.10

Avg �
1
3 B75 �

80
p sinpt

8
2 3
0

R �
1
3 [75 � 23.5] � 32.8

Avg �
1

3 � 0 3
3

0
25dt � 3

3

0
10 cospt

8 dt �
1
3B25t 2 3

0

�
80
p 3

3

0
cospt

8 d pt
8 R

3 x sin xdx � �x cos x � 3 cos xdx � �x cos x � sin x

u � x  so du � dx3 udv � uv � 3 vdu

�lnZx � 1Z � K

3 4x � 1
x2 � x � 2

dx � 3 3
(x � 2)

dx � 3 1
(x � 1)

dx � 3 ln Zx � 2Z

�A � 2B � �1 A � 3
A � B � 4     3B � 3 1  B � 1

4x � 1 � A(x � 1) � B(x � 2) � (A � B)x � A � 2B

4x � 1
x2 � x � 2

�
A

(x � 2)
�

B
(x � 1)
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32 xxy =

dx

y

x

−
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Did you enjoy the book?
Oh yes, I'm looking 
forward to the movie!

I'd like to play
Captain Calculus.

I see you more as the 
bird singing on the 
natural log. 

Liebie, you're an 

incurable romantic. I'm smart, too. 
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Geometry

r is radius, h is height, a and b are sides

254 CALCULUS FOR THE UTTERLY CONFUSED

Perimeter Area Volume

square side a 4a
rectangle sides a and b 2a +2b ab
circle radius r
sphere radius r
cylinder r and h
cone r and h
trapezoid a, b, h
triangle b and h (1/2)bh

(1/2)(a � b)h
(p/3)r2hpr2r2 � h2
pr2h2prh
(4/3)pr34pr2

pr22pr

a2

Algebra

Any quadratic equation of the form has solution

.

Factorials

Binomial expansion

.

Conics
parabola

circle

ellipse or

hyperbola or �
x2

a2 7
y2

b2 � 1� ax2 7 by2 � c2

x2

a2 �
y2

b2 � 1ax2 � by2 � c2

x2 � y2 � r2

y � ax2 � bx � c

  for b2 � a2

(a � b)n �
an

0!
�

nan�1b
1!

�
n(n � 1)an�2b2

2!
� c

0! � 1,  1! � 1,  2! � 2 ? 1! � 2 ? 1,  3! � 3 ? 2! � 3 ? 2 ? 1,  etc.

x �
�b � 2b2 � 4ac

2a

ax2 � bx � c � 0



Trigonometry
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Adjacent (a)

Hypotenuse (c)
Opposite (b)

a
b

c
a

c
b

==

==

==

Adjacent

Opposite
tanq

Hypotenuse

Adjacent
cosq

Hypotenuse

Opposite
sinq

q

Law of sines

Law of cosines

Trigonometric Functions

360� � 2p radians

c2 � a2 � b2 � 2ab cos C

a
sin A

�
b

sin B
�

c
sin C

cosecu �
1

sin u
    secu �

1
cos u    cotu �

1
tan u

tanq

cosq

sinq

p /2
p /2

p /4

- p /4

- p /2 p /2

2p

2p

3p /2

3p /2

p

p

q

q



Trigonometric Identities

Exponents and Logarithms

Differential and Integral Formulas

3 ln xdx � x ln x � xd ln x �
1
x dx

3 exdx � exdex � exdx

3 xndx �
xn�1

n � 1
dxn � nxn�1dx

3 u dv
dx

dx � uv � 3 v du
dx

dxd u
v �

vdu � udv
v2

3 udv � u 3 dv � 3 vdu � uv � 3 vdud(uv) � udv � vdu

3 (du � dv) � u � vd(u � v) � du � dv

3 adx � axd(ax) � adx

logau
n � n logaulogau � logav � loga

u
vlogau � logav � loga (uv)

a�m �
1

am(am)n � am?nam

an � am�nam ? an � am�n

tan (a � b) �
tana � tanb

1 7 tana tanb

cos 2a � cos 2a � sin 2asin 2a � 2 sina cosa

cos (a � b) � cosa cosb 7 sina sinb

sin (a � b) � sina cosb � cosa sinb

tan u � cot(90� � u)cos u � sin (90� � u)sin u � cos (90� � u)

a2 � b2 � c2sin 2u � cos 2u � 1
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Integral Formulas

3 dx
a2 � x2 �

1
2a

ln a � x
a � x

3 dx
x2 � a2 �

1
a tan �1 x

a

3 xeaxdx �
eax

a2  (ax � 1)

3 eaxdx �
eax

a

3 x ln xdx �
x2

2 ln x �
x2

4

3 x cos xdx � cos x � x sin x

3 x sin xdx � sin x � x cos x

3 dx
cos x � ln (sec x � tan x)

3 dx
sin x

� ln ( csc x � cot x)

3 cot xdx � ln ( sin x)d cot x � � csc2xdx

3 csc xdx � ln ( cscx � cotx)d cscx � � cotx csc xdx

3 sec xdx � ln ( sec x � tan x)d sec x � tan x sec xdx

3 tan xdx � �ln ( cos x)d tan x � sec 2xdx

3 cos xdx � sin xd cos x � � sin xdx

3 sin xdx � � cosd sin x � cos xdx
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3 dx

2a2 � x2
� sin�1 ¢x

a ≤
3 2a2 � x2 dx �

1
2Bx2a2 � x2 � a2 sin �1¢x

a ≤ R
3 dx

2x2 � a2
� ln ¢x � 2x2 � a2≤

3 2x2 � a2 dx �
1
2 Bx2x2 � a2 � a2 ln (x � 2x2 � a2)R

3 x2a � bx dx � �
2(2a � 3bx)2(a � bx)3

15b2

3 2a � bx dx �
2

3b
2(a � bx)3

3 xdx
a � bx2 �

1
2b

ln ¢x2 �
a
b
≤

3 dx
a � bx2 �

1

2ab
tan �1 x2ab

a

3 xdx
a � bx

�
1
b2 [a � bx � a ln (a � bx)]

3 dx
a � bx

�
1
b

ln (a � bx)

3 (a � bx)n dx �
(a � bx)n�1

(n � 1)b
  except n � �1

3 dx
x2 � a2 �

1
2a

ln x � a
x � a
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Acceleration, 46, 117
Angle:

definition of, 6
in degrees, 6, 255
in radians, 6

Antiderivative, 114, 116
Approximation:

area, 125, 243
interest, 190, 246
trapezoidal rule, 125, 243

Arc length, 226
Area:

under a curve, 123
between curves, 130, 139, 173
formulas, 254

Asymptotes, 20, 35, 71, 203, 207, 212, 234
Average value of a function, 135, 171

Binomial expansion, 4, 254

Chain rule, 53
Change of variable, 52
Circle, 16
Completing the square, 3, 17
Compound interest, 190, 246
Concavity, 66
Congruent triangles, 152
Conics:

formulas, 254
graphing, 16

Constant of integration, 116

Continuous compounding, 190
Coordinate systems, 6
Cosine:

definition, 5, 148
function, 5, 24, 162
law of, 157

Cubic equation, 15
Curve sketching, 62

Decay laws, 205
Definite integral, 84
Derivative:

definition, 42
notation, 42
power rule, 43
of a product, 48
of a quotient, 49

Differential:
definition, 42
formula, 256
rules, 43, 48, 49

Discontinuity, 33
Disks, method of, 224
Doubling time, 207

e, the number, 196
Ellipse, 17
Equilateral triangles, 153
Exponent laws, 9, 181, 256
Exponential:

decay, 196 
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Exponential (Cont.):
derivative, 187, 189
equation, 181
function, 181
growth, 198

Factorial, 5
Factoring, 2
First derivative, 63
Function:

continuous, 36
definition of, 10
exponential, 181
implicit, 50
logarithmic, 193
polynomial, 43
trigonometric, 5, 23, 255

Geometric formulas, 255
Graphing, 61
Growth laws, 195, 203, 212

Half-life, 180
Horizontal asymptote, 34, 204, 212
Hyperbola, 19

Implicit differential, 50
Indefinite integral, 114
Integral:

definite, 116
exponential, 123
formulas, 257
powers, 115
tables of, 242, 256
trigonometric, 234

Integration:
of exponentials, 188
of logarithms, 194
numerical, 243
by parts, 236
by substitution, 229
by trapezoidal rule, 243

Interest:
compound, 190, 246
continuous, 190

Isosceles triangles, 153

Law of cosines, 157
Law of exponents, 9, 181, 256

Law of sines, 159
Law of supply and demand, 233
Learning curve, 204
Length of arc, 160
Limit, 32
Limited growth, 205
Limits of integration, 124
Line:

equation for, 11
intercepts, 11
slope, 11

Linear equation, 11
Linear function, 11
Logarithm:

definitions, 191, 202
derivative, 193, 256
graph of, 203
integral of, 194, 256
laws, 9, 191, 256
natural, 202

Logistic function, 212

Maximum, 66
second derivative, 67

Method:
of disks, 224
of shells, 223

Minimum, 66
second derivative, 67

Motion, 117

Natural logarithm:
definition, 202
derivative, 193 
graph, 150
integral, 149

Newton’s law of cooling, 200
Numerical integration, 243

Parabola, 12
Partial fractions, 171
Perimeter formulas, 254
Phase, 25
Polynomials, 43
Power rule:

for differentiation, 43
for integration, 115

Product rule, 48
Pythagorean theorem, 15, 108

262 INDEX



Quadratic:
completing the square, 2
equation, 3, 13
formula, 2

Quotient rule, 48

Radian, 6 
Rational function, 134
R-C circuit, 205
Related rates, 96
R-L circuit, 215

Second derivative, 67
Second derivative test, 67
Separation of variables, 119
Shells, method of, 223
Similar triangles, 153
Sine:

definition, 5
function, 23, 160
law of, 159

Slope, 11, 42
Spread sheets, 184
Substitution method, 229
Summation notation, 124

Sums, 243
Surface:

area, 228
of revolution, 228

Tangent:
definition, 5
function, 162

Time constant, 207
Trapezoidal rule, 123, 243
Trigonometric:

definitions, 5, 148, 255
differentiation of, 256
equations, 168
functions, 23, 160
identities, 119, 183
integration of, 62, 256
tables, 170, 257

Variable, change of, 228
Velocity, 46, 117
Volumes:

by disks, 224
formulas, 254
by shells, 223
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