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Chapter 1

General Information

This is an online manual is designed for students. The manual is available at
the moment in HTML with frames (for easier navigation), HTML without
frames and PDF formats. Each from these formats has its own advantages.
Please select one better suit your needs.

There is on-line information on the following courses:

• Calculus I.

• Calculus II.

• Geometry.

1.1 Web page

There is a Web page which contains this course description as well as other
information related to this course. Point your Web browser to

http://maths.leeds.ac.uk/ kisilv/courses/math152.html
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1.2 Course description and Schedule

Dates Topics 1 General Information 1.1 Web page
1.2 Course description and Schedule 1.3 Warn-
ings and Disclaimers 9 Infinite Series 9.5 A
brief review of series 9.6 Power Series 9.7 Power
Series Representations of Functions 9.8 Maclaurin
and Taylor Series 9.9 Applications of Taylor Poly-
nomials 11 Vectors and Surfaces 11.2 Vectors
in Three Dimensions 11.3 Dot Product 11.4 Vec-
tor Product 11.5 Lines and Planes 11.6 Surfaces
12 Vector-Valued Functions Vector-Valued Func-
tions 12.1 Limits, Derivatives and Integrals 13 Par-
tial Differentiation 13.1 Functions of Several Vari-
ables 13.2 Limits and Continuity 13.3 Partial Deriv-
atives 13.4 Increments and Differentials 13.5 Chain
Rules 13.6 Directional Derivatives 13.7 Tangent
Planes and Normal Lines 13.8 Extrema of Func-
tions of Several Variables 13.9 Lagrange Multipli-
ers 14 Multiply Integrals 14.1 Double Integ-
rals 14.2 Area and Volume 14.3 Polar Coordinates
14.4 Surface Area 14.5 Triple Integrals 14.7 Cyl-
indrical Coordinates 14.8 Spherical Coordinates
15 Vector Calculus 15.1 Vector Fields 15.2 Line
Integral 15.3 Independence of Path 15.4 Green’s The-
orem 15.5 Surface Integral 15.6 Divergence Theorem
15.7 Stoke’s Theorem

1.3 Warnings and Disclaimers

Before proceeding with this interactive manual we stress the following:

• These Web pages are designed in order to help students as a source
of additional information. They are NOT an obligatory part of the
course.

• The main material introduced during lectures and is contained in Text-
book. This interactive manual is NOT a substitution for any part of
those primary sources of information.

• It is NOT required to be familiar with these pages in order to pass the
examination.



4 CHAPTER 1. GENERAL INFORMATION

• The entire contents of these pages is continuously improved and up-
dated. Even for material of lectures took place weeks or months ago
changes are made.
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Chapter 9

Infinite Series

9.5 A brief review of series

We refer to the chapter Infinite Series of the course Calculus I for the review
of the following topics.

(i). Sequences of numbers

(ii). Convergent and Divergent Series

(iii). Positive Term Series

(iv). Ratio and Root Test

(v). Alternating Series and Absolute Convergence

9.6 Power Series

It is well known that polynomials are simplest functions, particularly it is
easy to differentiate and integrate polynomials. It is desirable to use them
for investigation of other functions. Infinite series reviewed in the previous
sections are very important because they allow to represent functions by
means of power series, which are similar to polynomials in many respects.
An example of such representations is harmonic series

∞∑
n=0

rn =
1

1− r
.
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Definition 9.6.1 Let x be a variable. A power series in x is a series of the
form ∞∑

n=0

bnx
n = b0 + b1x + b2x

2 + · · ·+ bnx
n + · · · ,

where each bk is real number.

A power series turns to be infinite (constant term) series if we will substitute a
constant c instead of the variable x. Such series could converge or diverge. All
power series converge for x = 0. The convergence of power series described
by the following theorem.

Theorem 9.6.2 (i). If a power series
∑

bnx
n converges for a nonzero num-

ber c, then it is absolutely convergent whenever |x| < |c|.
(ii). If a power series

∑
bnx

n diverges for a nonzero number d, then it di-
verges whenever |x| > |d|.

Proof. The proof follows from the Basic Comparison Test of the power
series for |x| and convergent geometric series with r =

∣∣x
c

∣∣. ¤

From this theorem we could conclude that

Theorem 9.6.3 If
∑

bnxn is a power series, then exactly one of the following
true:

(i). The series converges only if x = 0.

(ii). The series is absolutely convergent for every x.

(iii). There is a number r such that the series is absolutely convergent if x
is in open interval (−r, r) and divergent if x < −r or x > r.

The number r from the above theorem is called radius of convergence. The
totality of numbers for which a power series converges is called its interval
of convergence. The interval of convergence may be any of the following four
types: [−r, r], [−r, r), (−r, r], (−r, r).

There is a more general type of power series

Definition 9.6.4 Let b be a real number and x is a variable. A power series
in x− d is a series of the form

∞∑
n=0

bn(x− d)n = b0 + b1(x− d) + b2(x− d)2 + · · ·+ bn(x− d)n + · · · ,

where each bn is a real number.
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This power series is obtained from the series in Definition 9.6.1 by re-
placement of x by x − d. We could obtain a description of convergence of
this series by replacement of x by x− d in Theorem 9.6.3.

The following exercises should be solved in the following way:

(i). Determine the radius r of convergence, usually using Ratio test or Root
Test.

(ii). If the radius r is finite and nonzero determine if the series is convergent
at points x = −r, x = r. Note that the series could be alternating at
one of them and apply Alternating Test.

Exercise 9.6.5 Find the interval of convergence of the power series:

∑ 1

n2 + 4
xn;

∑ 1

ln(n + 1)
xn;

∑ 10n+1

32n
xn;

∑ (3n)!

(2n)!
xn;

∑ 10n

n!
xn;

∑ 1

2n + 1
(x + 3)n;

∑ n

32n−1
(x− 1)2n;

∑ 1√
3n + 4

(3x + 4)n;

9.7 Power Series Representations of Functions

As we have seen in the previous section a power series
∑

bnxn could define
a convergent infinite series

∑
bnc

n for all c ∈ (−r, r) which has a sum f(c).
Thus the power series define a function f(x) =

∑
bnxn with domain (−r, r).

We call it the power series representation of f(x). Power series are used in
calculators and computers.

Example 9.7.1 Find function represented by
∑

(−1)kxk.

The following theorem shows that integration and differentiations could be
done with power series as easy as with polynomials:

Theorem 9.7.2 Suppose that a power series
∑

bnxn has a radius of conver-
gence r > 0, and let f be defined by

f(x) =
∞∑

n=0

bnx
n = b0 + b1x + b2x

2 + · · ·+ bnx
n + · · ·
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for every x ∈ (−r, r). Then for −r < x < r

f ′(x) = b1 + b2x + b3x
2 + · · ·+ nbnxn−1 + · · · (9.7.1)

=
∞∑

n=1

nbnx
n−1;

∫ x

0

f(t) dt = b0x + b1
x2

2
+ b2

x3

3
+ · · ·+ bn

xn+1

n + 1
+ · · · (9.7.2)

=
∞∑

n=0

bn

n + 1
xn+1.

Example 9.7.3 Find power representation for

(i). 1
(1+x)2

.

(ii). ln(1 + x) and calculate ln(1.1) to five decimal places.

(iii). arctan x.

Theorem 9.7.4 If x is any real number,

ex = 1 +
x

1
+

x2

2!
+

x3

3!
+ · · · =

∞∑
n=0

xn

n!
.

Proof. The proof follows from observation that the power series f(x) =∑
xn

n!
satisfies to the equation f ′(x) = f(x) and the only solution to this

equation with initial condition f(0) = 1 is f(x) = ex. ¤
Corollary 9.7.5

e = 1 +
1

1!
+

1

2!
+

1

3!
+ · · · .

Example 9.7.6 Find a power series representation for sinh x, xe−2x.

Exercise 9.7.7 Find a power series representation for f(x), f ′(x),
∫ x

0
f(t) dt.

f(x) =
1

1 + 5x
; f(x) =

1

3− 2x
.

Exercise 9.7.8 Find a power series representation and specify the radius of
convergence for:

x

1− x4
;

x2 − 3

x− 2
.

Exercise 9.7.9 Find a power series representation for

f(x) = x2e(x2); f(x) = x4 arctan(x4).
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9.8 Maclaurin and Taylor Series

We find several power series representation of functions in the previous sec-
tion by a variety of different tools. Could it be done in a regular fashion?
Two following theorem give the answer.

Theorem 9.8.1 If a function f has a power series representation

f(x) =
∞∑

k=0

bnxn

with radius of convergence r > 0, then f (k)(0) exists for every positive integer
k and

f(x) = f(0) +
f ′(0)

1!
x +

f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + · · · =

∞∑
n=0

f (n)(0)

n!
xn

Theorem 9.8.2 If a function f has a power series representation

f(x) =
∞∑

k=0

bn(x− d)n

with radius of convergence r > 0, then f (k)(d) exists for every positive integer
k and

f(x) = f(d)+
f ′(d)

1!
(x−d)+

f ′′(d)

2!
(x−d)2+· · ·+f (n)(d)

n!
(x−d)n+· · · =

∞∑
n=0

f (n)(d)

n!
(x−d)n

Exercise 9.8.3 Find Maclaurin series for:

f(x) = sin 2x; f(x) =
1

1− 2x
.

Remark 9.8.4 It is easy to see that linear approximation formula is just
the Taylor polynomial Pn(x) for n = 1.

The last formula could be split to two parts: the nth-degree Taylor poly-
nomial Pn(x) of f at d:

Pn(x) = f(d) +
f ′(d)

1!
(x− d) +

f ′′(d)

2!
(x− d)2 + · · ·+ f (n)(d)

n!
(x− d)n

and the Taylor remainder

Rn(x) =
f (n+1)(z)

(n + 1)!
(x− d)n+1,

where z ∈ (d, x). Then we could formulate a sufficient condition for the
existence of power series representation of f .
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Theorem 9.8.5 Let f have derivatives of all orders throughout an interval
containing d, and let Rn(x) be the Taylor remainder of f at d. If

lim
n→∞

Rn(x) = 0

for every x in the interval, then f(x) is represented by the Taylor series for
f(x) at d.

Example 9.8.6 Let f be the function defined by

f(x) =

{
e−1/x2

if x 6= 0;
0 if x = 0,

then f cannot be represented by a Maclaurin series.

Exercise 9.8.7 Show that for function f(x) = e−x

lim
n→∞

Rn(x) = 0

and find the Maclaurin series.

The important Maclaurin series are:

Function Maclaurin series Convergence
ex

∑∞
n=0

xn

n!
(−∞,∞)

ln(1 + x)
∑∞

n=0
(−1)nxn+1

n+1
(−1, 1]

sin x
∑∞

n=0
(−1)nx2n+1

(2n+1)!
(−∞,∞)

cos x
∑∞

n=0
(−1)nx2n

(2n)!
(−∞,∞)

sinh x
∑∞

n=0
x2n+1

(2n+1)!
(−∞,∞)

cosh x
∑∞

n=0
x2n

(2n)!
(−∞,∞)

arctan x
∑∞

n=0
(−1)nx2n+1

2n+1
[−1, 1]

Exercise 9.8.8 Find Maclaurin series for sin2 x.

Exercise 9.8.9 Find a series representation of ln x in powers of x− 1.

Exercise 9.8.10 Find first three terms of the Taylor series for f at d:

f(x) = arctan x, d = 1; f(x) = csc x, d = π/3.
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9.9 Applications of Taylor Polynomials

We could use the Taylor polynomial Pn(x) for an approximation of a function
f(x) in a neighborhood of point x0. The important observation is: to keep
amount of calculation on a low level we prefer to consider polynomials Pn(x)
with small n. But for such n the obtained accuracy is tolerable only for a
small neighborhood of x0. If x is remote from x0 to obtain a reasonably good
approximation with Pn(0) for a small n we need to take the Taylor expansion
in another point x′0 which is closer to x.

Exercise 9.9.1 Find the Maclaurin polynomials P1(x), P2(x), P3(x) for
f(x), sketch their graphs. Approximate f(a) to four decimal places by means
of P3(x) and estimate R3(x) to estimate the error.

f(x) = ln(x + 1) a = 0.9.

Exercise 9.9.2 Find the Taylor formula with remainder for the given f(x),
d and n.

f(x) = e−1; d = 1, n = 3.

f(x) = 3
√

x; d = −8, n = 3.
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Vectors and Surfaces

11.2 Vectors in Three Dimensions

Similarly to Cartesian coordinates on the Euclidean plane we could introduce
rectangular coordinate system or xyz-coordinate system in three dimensions.
The origin is usually denoted by O and three axises are OX, OY , OZ. The
positive directions are selected in the way to form the right-handed coordinate
system. In this system the coordinate of a point is an ordered triple of real
numbers (a1, a2, a3). Points with all three coordinates being positive form
the first octant.

Similarly to two dimensional case we have the following formulas

Theorem 11.2.1 (i). The distance between P1(x1, y1, z1) and P2(x2, y2, z2)
is

d(P1, P2) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

(ii). The midpoint of the line segment P1(x1, y1, z1) to P2(x2, y2, z2) is
(

x1 + x2

2
,
y1 + y2

2
,
z1 + z2

2

)

(iii). An equation of a sphere of radius r and center P0(x0, y0, z0) is

(x− x0)
2 + (y − y0)

2 + (z − z0)
2 = r2.

We define vector a = (a1, a2, a3) in the three dimensional case as a trans-
formation which maps point (x, y, z) to (x+ a1, y + a2, z + z3). Vectors could
be added and multiplied by a scalar according to the rules:

a + b = (a1 + b1, a2 + b2, a3 + b3);

ca = (ca1, ca2, ca3);

14
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There is a special null vector 0 = (0, 0, 0) and inverse vector −a = (−a1,−a2,−a3)
for any vector a.

We have the following properties:

(i). a + b = b + a.

(ii). a + (b + c) = (a + b) + c.

(iii). a + 0 = a.

(iv). a +−a = 0.

(v). c(a + b) = ca + ab.

(vi). (c + d)a = ca + da.

(vii). (cd)a = c(da) = d(ca).

(viii). 1a = a.

(ix). 0a = 0 = c0.

We define subtraction of vectors (or difference of vectors) by the rule:

a− b = a + (−b).

Definition 11.2.2 Nonzero vectors a and b have

(i). the same direction if b = ca for some scalar c > 0.

(ii). the opposite direction if b = ca for some scalar c < 0.

Definition 11.2.3 We define vectors:

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

It is obvious that

a = (a1, a2, a3) = a1i + a2j + a3k.

The magnitude of vector is defined to be

‖a‖ =
√

a2
1 + a2

2 + a2
3.
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11.3 Dot Product

Besides addition of vectors and multiplication by the scalar there two different
operation which allows to multiply vectors.

Definition 11.3.1 The dot product (or scalar product, or inner product) a·b
is

a · b = a1b1 + a2b2 + a3b3.

Theorem 11.3.2 Properties of the dot product are:

(i). a · a = ‖a‖2.

(ii). a · b = b · a.

(iii). a · (b + c) = a · b + a · c.
(iv). (ma) · b = ma · b = a · (mb).

(v). 0 · a = 0.

Definition 11.3.3 Let a and b be nonzero vectors.

(i). If b 6= ca then angle θ between a and b is the angle of triangle defined
by them.

(ii). If b = ca then θ = 0 if c > 0 and θ = π if c < 0.

Vectors are orthogonal or perpendicular if θ = π/2. By a convention 0 is
orthogonal and parallel to any vector.

Theorem 11.3.4 For nonzero a and b:

a · b = ‖a‖ ‖b‖ cos θ.

Corollary 11.3.5 For nonzero a and b:

cos θ =
a · b

‖a‖ ‖b‖ .

Corollary 11.3.6 Two vectors a and b are orthogonal if and only if ab = 0.

Corollary 11.3.7 (Cauchy-Schwartz-Bunyakovskii Inequality)

|a · b| ≤ ‖a‖ ‖b‖



11.4. VECTOR PRODUCT 17

Theorem 11.3.8 (Triangle Inequality)

‖a + b‖ ≤ ‖a‖+ ‖b‖ .

We define component of a along b

compba = a · 1

‖b‖b

Definition 11.3.9 The work done by a constant force a as its point of ap-
plication moves along the vector b is a · b.

11.4 Vector Product

Definition 11.4.1 A determinant of order 2 is defined by

∣∣∣∣
a1 a2

b1 b2

∣∣∣∣ = a1b2 − a2b1.

A determinant of order 3 is defined by

∣∣∣∣∣∣

c1 c2 c3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
=

∣∣∣∣
a2 a3

b2 b3

∣∣∣∣ c1 −
∣∣∣∣

a1 a3

b1 b3

∣∣∣∣ c2 +

∣∣∣∣
a1 a2

b1 b2

∣∣∣∣ c1.

Definition 11.4.2 The vector product (or cross product) a× b is

a× b =

∣∣∣∣∣∣

i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣

=

∣∣∣∣
a2 a3

b2 b3

∣∣∣∣ i−
∣∣∣∣

a1 a3

b1 b3

∣∣∣∣ j +

∣∣∣∣
a1 a2

b1 b2

∣∣∣∣k.

Theorem 11.4.3 The vector a× b is orthogonal to both a and b.

Theorem 11.4.4 If θ is the angle between nonzero vectors a and b, then

‖a× b‖ = ‖a‖ ‖b‖ sin θ.

Corollary 11.4.5 Two vectors a and b are parallel if and only if a×b = ~0.

Exercise 11.4.6 Compile the multiplication table for vectors i, j, k.
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Be careful, because:

i× j 6= j× i

(i× j)× j 6= i× (j× j).

Theorem 11.4.7 Properties of the vector product are

(i). a× b = −(b× a).

(ii). (ma)× b = m(a× b) = a× (mb).

(iii). a× (b + c) = a× b + a× c.

(iv). (a + b)× c = a× c + b× c.

(v). (a× b) · c = a · (b× c).

(vi). a× (b× c) = (a · c)b− (a · b)c.

Dot and vector products related to geometric properties.

Exercise 11.4.8 Prove that the distance from a point R to a line l is given
by

d =

∥∥∥ ~PQ× ~PR
∥∥∥

∥∥∥ ~PQ
∥∥∥

.

Exercise 11.4.9 Prove that the volume of the oblique box spanned by three
vectors a, b, c is |(a× b) · c|.

11.5 Lines and Planes

Theorem 11.5.1 Parametric equation for the line through P1(x1, y1, z1) par-
allel to a = (a1, a2, a3) are

x = x1 + a1t, y = y1 + a2t, z = z1 + a3t; t ∈ R.

Note that we obtain the same line if we use any vector b = ca, c 6= 0.

Corollary 11.5.2 Parametric equation for the line through P1(x1, y1, z1)
and P2(x2, y2, z2) are

x = x1 + (x2 − x1)t, y = y1 + (y2 − y1)t, z = z1 + (z2 − z1)t; t ∈ R.
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Exercise 11.5.3 Find equations of the lines:

(i). P (1, 2, 3); a = i + 2j + 3k.

(ii). P1(2,−2, 4), P2(2,−2,−3).

Exercise 11.5.4 Determine whether the lines intersect: x = 2 − 5t, y =
6 + 2t, z = −3− 2t; x = 4− 3v, y = 7 + 5v, z = 1 + 4v.

Definition 11.5.5 Let θ be the angle between nonzero vectors a and b and
let l1 and l2 be lines that are parallel to the position vectors of a and b.

(i). The angles between lines l1 and l2 are θ and π − theta.

(ii). The lines l1 and l2 are parallel iff b = ca for c ∈ R.

(iii). The lines l1 and l2 are orthogonal iff a · b = 0 for c ∈ R.

The plane through P1 with normal vector ~P1P2 is the set of all points P
such that ~P1P is orthogonal to ~P1P2.

Theorem 11.5.6 An equation of the plane through P1(x1, y1, z1) with nor-
mal vector a = (a1, a2, a3) is

a1(x− x1) + a2(y − y1) + a3(z − z1) = 0.

Theorem 11.5.7 The graph of every linear equation ax + by + cz + d = 0
is a plane with normal vector (a, b, c).

Exercise 11.5.8 Find an equation of the plane through P (4, 2,−6) and nor-

mal vector ~OP .

Exercise 11.5.9 Sketch the graph of the equation

(i). y = −2;

(ii). 3x− 2z − 24 = 0;

Definition 11.5.10 Two planes with normal vectors a and b are

(i). parallel if a and b are parallel;

(ii). orthogonal if a and b are orthogonal;

Exercise 11.5.11 Find an equation of the plane through P (3,−2, 4) parallel
to −2x + 3y − z + 5 = 0.
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Theorem 11.5.12 (Symmetric Form for a Line)

x− x1

a1

=
y − y1

a2

=
z − z1

a3

.

Exercise 11.5.13 Show that distance from a point P0(x0, y0, z0) to the plane
ax + by + cz + d = 0 is

h =
∣∣∣compn

~P0P1

∣∣∣ ,

where n = (a, b, c) and P1—any point on the plane.

Exercise 11.5.14 Show that planes 3x+12y−6z = −2 and 5x+20y−10z =
7 are parallel and find distance between them.

Exercise 11.5.15 Find an equation of the plane that contains the point
P (4,−3, 0) and line x = t + 5, y = 2t− 1, z = −t + 7.

Exercise 11.5.16 Show that distance between two lines defined by points
P1, Q1 and P2, Q2 is given by the formula

d =
∣∣∣compn

~P1P2

∣∣∣ , n =
~P1Q1 × ~P2Q2∥∥∥ ~P1Q1 × ~P2Q2

∥∥∥
.

Exercise 11.5.17 Find the distance between point P (3, 1,−1) and line x =
1 + 4t, y = 3− t, z = 3t.

11.6 Surfaces

It is important to represent different surfaces (not only planes) from 3d space
into our two dimensional drawing. Some useful technique is given by trace
on a surface S in a plane, namely by intersection of S an the plane.

There are several classic important types of surfaces. To follows given
examples you need to remember equations of conics in Cartesian coordinates.

Example 11.6.1 z = x2 + y2 define circular paraboloid or paraboloid of
revolution.

Definition 11.6.2 Let C be a curve in a plane, and let l be a line that is
not in a parallel plane. The set of points on all lines that are parallel to l
and intersect C is a cylinder. The curve C called is called directrix of the
cylinder .
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Example 11.6.3 The right circular cylinder is given by the equation x2 +
y2 = r2.

Similarly to quadratic equations equations defining conics the equation

Ax2 + By2 + cz2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0

defines quadric surface. We consider simplest cases with D = E = F = G =
H = I = 0.

Definition 11.6.4 Ellipsoid :

x2

a2
+

y2

b2
+

z2

c2
= 1.

Definition 11.6.5 The hyperboloid of one sheet :

x2

a2
+

y2

b2
− z2

c2
= 1.

Definition 11.6.6 The hyperboloid of two sheets :

−x2

a2
− y2

b2
+

z2

c2
= 1.

Definition 11.6.7 The cone:

x2

a2
+

y2

b2
− z2

c2
= 0.

Definition 11.6.8 The paraboloid :

x2

a2
+

y2

b2
= cz.

Definition 11.6.9 The hyperbolic paraboloid :

y2

b2
− x2

a2
= cz.



Chapter 12

Vector-Valued Functions

Definition 12.0.10 Let D be a set of real numbers. A vector-valued func-
tion r with domain D is a correspondence that assigns to each number t in
D exactly one vector r(t) in R3.

Theorem 12.0.11 If D is a set of real numbers, then r is a vector-valued
function with domain D if and only if there are scalar function f , g, and h
such that

r(t) = f(t) i + g(t) j + h(t)k.

Exercise 12.0.12 Sketch the two vectors

r(t) = t i + 3 sin tj + 3 cos tk, r(0), r(π/2).

Set of endpoints of all vectors ~OP = r(t) define a space curve C. A
parameter equation of the curve C is

x = f(t), y = g(t), z = z(t).

The orientation of C is the direction determined by increasing values of t.

Exercise 12.0.13 Sketch the curve and indicate orientation:

r(t) = t3 i + t2 j + 3k; 0 ≤ t ≤ 4.

The following theorem is completely analogous to arc length of a plane
curve:

Theorem 12.0.14 If a curve C has a smooth parameterization

x = f(t), y = g(t), z = z(t), a ≤ t ≤ b

22
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and if C does not intersect itself, except possibly for t = a and t = b, then
the length L of C is

L =

∫ b

a

√
[f ′(t)]2 + [g′(t)]2 + [h′(t)]2 dt.

Exercise 12.0.15 Find the arc length:

x = et cos t, y = et, z = et sin t; 0 ≤ t ≤ 2π;

x = 2t, y = 4 sin 3t, z = 4 cos 3t; 0 ≤ t ≤ 2π;

12.1 Limits, Derivatives and Integrals of Vector-

valued Functions

All definitions and results in this section are in close relation with the theory
of scalar-valued function Calculus I. We advise to refresh Chapters on Limits
and Derivative from Calculus I course.

Definition 12.1.1 Let r(t) = f(t)i + g(t)j + h(t)k. The limit r(t) as t
approaches a is

lim
t→a

r(t) =
[
lim
t→a

f(t)
]
i +

[
lim
t→a

g(t)
]
j +

[
lim
t→a

h(t)
]
k.

provides f , g, and h have limits as t approaches a.

The next definition coincides with definition of continuity for scalar-
valued function:

Definition 12.1.2 A vector valued function r is continuous at a if

lim
t→a

r(t) = r(a).

Particularly r(t) is continuous iff f(t), g(t), and h(t) are continuous. Similarly
we define derivative

Definition 12.1.3 Let r be a vector-valued function. The derivative is the
vector-valued function r′ defined by

r′(t) = lim
∆t→0

1

∆t
[r(t + ∆t)− r(t)]

for every t such that the limit exists.



24 CHAPTER 12. VECTOR-VALUED FUNCTIONS

Exercise 12.1.4 Find the domain, first and second derivatives of the func-
tions:

r(t) =
3
√

t i +
1

t
j + e−t k;

r(t) = ln(1− t) i + sin t j + t2 k.

Theorem 12.1.5 Let r(t) = f(t)i+ g(t)j+ h(t)k and f , g, and h are differ-
entiable, then

r′(t) = f ′(t) i + g′(t) j + h′(t)k.

The geometric meaning is as expected—this is tangent vector to the curve
defined by r.

Exercise 12.1.6 Find parameter equation for the tangent line to C at P :

x = et, y = tet, z = t2 + 4; P (1, 0, 4).

The properties of the derivative are as follows:

Theorem 12.1.7 If u and v are differentiable vector-valued functions and
c is a scalar, then

(i). [u(t) + v(t)]′ = u′(t) + v′(t);

(ii). [cu(t)]′ = cu′(t);

(iii). [u(t) · v(t)]′ = u′(t) · v(t) + u(t) · v′(t);
(iv). [u(t)× v(t)]′ = u′(t)× v(t) + u(t)× v′(t);

As a consequence of these properties we could easily prove the following

Theorem 12.1.8 If r is differentiable and ‖r‖ is constant, then r′ is ortho-
gonal to r′(t) for every t in the domain of r′.

Finally we define integrals of vector-valued functions using integrals of
scalar-valued functions:

Definition 12.1.9 Let r(t) = f(t)i + g(t)j + h(t)k and f , g, and h are
integrable, then

∫ b

a

r(t) dt =

[∫ b

a

f(t) dt

]
i +

[∫ b

a

g(t) dt

]
j +

[∫ b

a

h(t) dt

]
k.

If R′(t) = r(t), then R(t) is an antiderivative of r(t).
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Theorem 12.1.10 If R(t) is an antiderivative of r(t) on [a, b], then

∫ b

a

r(t) dt = R(t)]ba = R(b)−R(a).

Exercise 12.1.11 Find r(t) subject to the given conditions:

r′(t) = 2i− 4t3 j + 6
√

tk, r(0) = i + 5j + 3k.



Chapter 13

Partial Differentiation

13.1 Functions of Several Variables

It is common that real-world quantities depend from many different para-
meters. Mathematically we describe them as functions of several variables.
We start from definition of functions of two variables.

Definition 13.1.1 Let D be a set of ordered pairs of real numbers. A func-
tion of two variables f is a correspondence that assigns to each pair (x, y) in
D exactly one real number, denoted by f(x, y). The set D is the domain of
f . The range of f consists of all real numbers f(x, y), where (x, y) ∈ D.

Exercise 13.1.2 Describe domain of f and find its values:

f(r, s) =
√

1− r − er/s; f(1, 1), f(0, 4), f(−3, 3)

f(x, y, z) = 2 + tan x + y tan z; f(π/4, 4, π/6), f(0, 0, 0).

Exercise 13.1.3 Sketch graph of f :

f(x, y) =
√

2− 2x− x2 − y2, f(x, y) = 3− x− 3y.

Exercise 13.1.4 Sketch the level curves for f :

f(x, y) = xy, k = −4, 1, 4.

Exercise 13.1.5 (i). Find the equation of level surface of f that contains
the point P .

f(x, y, z) = z2y + x; P (1, 4,−2).

(ii). Describe the level surface of f for given k:

f(x, y, z) = z + x2 + 4y2, k = −6, 6, 12.

26
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13.2 Limits and Continuity

The fundamental notion of limit could be introduced for a function of two
variables as follows

Definition 13.2.1 Let a function f of two variables be defined throughout
the interior of a circle with center (a, b), except possibly at (a, b) itself. The
statement

lim
(x,y)→(a,b)

f(x, y) = L or f(x, y) → L as (x, y) → (a, b)

means that for every ε > 0 there is a δ > 0 such that if

0 <
√

(x− a)2 + (y − b)2 < δ, then |f(x, y)− L| < ε.

Exercise 13.2.2 Find limits

lim
(x,y)→(2,1)

4 + x

2− y
, lim

(x,y)→(−1,3)

y2 + x

(x− 1)(y + 2)
.

Theorem 13.2.3 (Two-Path Rule) If two different paths to a point P (a, b)
produce two different limiting values for f , then lim(x,y)→(a,b) f(x, y) does not
exist.

Exercise 13.2.4 Show that the limit does not exist

lim
(x,y)→(0,0)

x2 − 2xy + 5y2

3x2 + 4y2
, lim

(x,y)→(0,0)

3xy

5x4 + 2y4
.

Definition 13.2.5 A function f of two variables is continuous at an interior
point (a, b) of its domain if

lim
(x,y)→(a,b)

f(x, y) = f(a, b).

Exercise 13.2.6 Describe the set of all points at which f is continuous

f(x, y) =
xy

x2 − y2
, f(x, y) =

√
xy tan z.

Definition 13.2.7 Let a function f of two variables be defined throughout
the interior of a circle with center (a, b, c), except possibly at (a, b, c) itself.
The statement

lim
(x,y,z)→(a,b,c)

f(x, y, z) = L or f(x, y, z) → L as (x, y, z) → (a, b, c)

means that for every ε > 0 there is a δ > 0 such that if

0 <
√

(x− a)2 + (y − b)2 + (z − c)2 < δ, then |f(x, y, z)− L| < ε.
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Theorem 13.2.8 (Composition of Continuous Functions) If a function
f of two variables is continuous at (a, b) and a function g of one variables is
continuous at f(a, b), then the function h(x, y) = g(f(x, y)) is continuous at
(a, b).

Exercise 13.2.9 Use Theorem on Composition of Continuous Functions to
determine where h is continuous.

f(x, y) = 3x + 2y − 4, g(t) = ln(t + 5).

13.3 Partial Derivatives

For functions of several variables the concept of derivative could modified as
follows:

Definition 13.3.1 Let f be a function of two variables. The first partial
derivatives of f with respect to x and y are functions f ′x and f ′y such that

∂

∂x
f(x, y) = f ′x(x, y) = lim

h→0

f(x + h, y)− f(x, y)

h
,

∂

∂x
f(x, y) = f ′x(x, y) = lim

h→0

f(x, y + h)− f(x, y)

h
.

Exercise 13.3.2 Find first partial derivatives of f

f(x, y) = (x3 − y2)5; f(x, y) = ex ln xy;

f(r, s, v, p) = r3 tan s +
√

se(v2) − v cos 2p; f(x, y, z) = xyz exyz.

This notion has a geometrical meaning which is very close to geometrical
meaning of usual derivative derivative.

Theorem 13.3.3 Let S be the graph of z = f(x, y), and let P (a, b, f(a, b))
be a point on S at which f ′x and f ′y exists. Let C1 and C2 be the traces of S
on the planes x = a and y = b, respectively, and let l1 and l2 be the tangent
lines to C1 and C2 at P .

(i). The slope of l1 in the plane x = a is f ′y(a, b).

(ii). The slope of l1 in the plane y = b is f ′x(a, b).
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We could define second partial derivatives by repetition. There are four of
them:

f ′′xx =
∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
;

f ′′yy =
∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
;

f ′′xy =
∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
;

f ′′yx =
∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
.

Exercise 13.3.4 If v = y ln(x2 + z2), find v′′′zzy.

Theorem 13.3.5 Let f be a function of two variables x and y. If f , f ′x, f ′y,
f ′′xy, and f ′′yx are continuous on an open region R, then f ′′xy = f ′′yx through R.

Exercise 13.3.6 Verify that f ′′xy = f ′′yx.

f(x, y) =
x2

x + y
; f(x, y) =

√
x2 + y2 + z2.

Review

Exercise 13.3.7 Find the interval of convergence of the power series:

∑
(−1)n 3n

n!
(x− 4)n;

∑
(−1)n en+1

nn
(x− 1)n.

Exercise 13.3.8 Obtain a power series representation for the function

f(x) = x2 ln(1 + x2); f(x) = arctan
√

x.

Exercise 13.3.9 Find all values of c such that a and b are orthogonal a =
4i + 2j + ck, and b = i + 22j− 3ck.

Exercise 13.3.10 Find the volume of the box having adjacent sides AB,
AC, AD: A(2, 1,−1), B(3, 0, 2), C(4,−2, 1), D(5,−3, 0).

Exercise 13.3.11 Find an equation of the plane through P (−4, 1, 6) and
having the same trace in xz-plane as the plane x + 4y − 5z = 8.
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Exercise 13.3.12 Find arc length of the curve: x = 2t, y = 4 sin 3t, z =
4 cos 3t; 0 ≤ t ≤ 2π.

Exercise 13.3.13 Find a parametric Al equation of the tangent line to curve
x = t sin t, y = t cos t, z = t; at P (π/2, 0, π/2).

Exercise 13.3.14 Show that limit does not exist.

lim
(x,y,z)→(2,0,0)

(x− 2)yz2

(x− 2)4 + y4
.

13.4 Increments and Differentials

Definition 13.4.1 Let w = f(x, y), and let ∆x and ∆ be increments of x
and y, respectively. The increment of function w is

∆w = f(x + ∆x, y + ∆y)− f(x, y).

Theorem 13.4.2 Let w = f(x, y), where the function f is defined on a
rectangular region R = {(x, y) : a < x < b, c < y < d}. Suppose f ′x and f ′y
exist throughout R and are continuous at (x0, y0). Then

∆w = f ′x(x0, y0)∆x + f ′y(x0, y0)∆y + ε1∆x + ε2∆y.

A function w is differentiable if its increment could be represented as above.

Definition 13.4.3 The differential of function w is

dw = f ′x(x0, y0)∆x + f ′y(x0, y0)∆x.

13.5 Chain Rules

Among different rules of derivation most powerful is the

Theorem 13.5.1 (Chain rules) If w = f(u, v), with u = g(x, y), v =
h(x, y), and if f , g, and h are differentiable, then

∂w

∂x
=

∂w

∂u

∂u

∂x
+

∂w

∂v

∂v

∂x
;

∂w

∂y
=

∂w

∂u

∂u

∂y
+

∂w

∂v

∂v

∂y
.

Proof. It follows from the Theorem on Increment. ¤
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This formulas could be better understood and remembered if we will draw a
tree representing dependence of variables.

Exercise 13.5.2 Find ∂w/∂x, ∂wpartialy if w = uv + v2, u = x sin y, v =
y sin x.

Similar formulas are true for different number of variables

Exercise 13.5.3 Find ∂z/∂x, ∂z/∂y if z = pq + qw, p = 2x− y, q = x− 2y,
w = −2x + 2y.

Chain rules could be used to derive already known formulas in a new way.

Exercise 13.5.4 Derive formula (uv)′ = u′v + uv′ using chain rules.

Exercise 13.5.5 Derive from chain rules the following formula for implicit
derivatives of y defined by F (x, y) = 0:

y′ = −F ′
x(x, y)

F ′
y(x, y)

.

13.6 Directional Derivatives

We could give a definition generalizing partial derivatives.

Definition 13.6.1 Let w = f(x, y) and u = u1i + u2j be a unit vector. The
directional derivative of f at P (x, y) in the direction u, denoted Duf(x, y),
is

Du = lim
s→0

f(x + su1, y + su2)− f(x, y)

s
.

Partial derivatives are particular cases of directional derivatives: ∂/∂x =
Di and ∂/∂y = Dj. It is interesting that we could calculate any directional
derivative if we know only partial ones.

Theorem 13.6.2 If f is a differentiable function of two variables, then

Duf(x, y) = f ′x(x, y)u1 + f ′y(x, y)u2.

Proof. It is follows from the Chain Rules. ¤

Exercise 13.6.3 Find directional derivative

f(x, y) = x3 − 3x2y − y3, P (1,−2), u =
1

2
(−i +

√
3j).
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Definition 13.6.4 Let f be a function of two variables. The gradient of f
is the vector valued function

∇f(x, y) = f ′x(x, y)i + f ′y(x, y)j.

Directional derivative in gradient form is

Duf(x, y) = ∇f(x, y) · u.

Exercise 13.6.5 Find gradient

f(x, y) = e3x tan y, P (0, π/4).

From gradient form of directional derivative easily follows the following the-
orem:

Theorem 13.6.6 Let f be a function of two variables that is differentiable
at the point P (x, y).

(i). The maximum value of Du is ‖∇f(x, y)‖.
(ii). The maximum rate of increase of f(x, y) occurs in direction of∇f(x, y).

(iii). The minimum value of Du is −‖∇f(x, y)‖.
(iv). The minimum rate of increase of f(x, y) occurs in direction of−∇f(x, y).

Similarly directional derivatives and gradients could be defined for functions
of three variables.

Exercise 13.6.7 Find directional derivative at P in the direction to Q. Find
directions of maximal and minimal increase of f .

f(x, y, z) =
x

y
− y

z
, P (0,−1, 2), Q(3, 1,−4).

13.7 Tangent Planes and Normal Lines

Theorem 13.7.1 Suppose that F (x, y, z) has continuous first partial deriv-
atives and that S is the graph of F (x, y, z) = 0. If P0 is a point on S and if
F ′

x, F ′
y, F ′

z are not all 0 at P0, then the vector ∇F ]P0 is normal to the tangent
plane to S at P0. And equation of the tangent plane is

F ′
x(x0, y0, z0)(x− x0) + F ′

y(x0, y0, z0)(y − y0) + F ′
z(x0, y0, z0)(z − z0) = 0.
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Theorem 13.7.2 An equation for the tangent plane to the graph of z =
f(x, y) at the point (x0, y0, z0) is

z − z0 = f ′x(x0, y0)(x− x0) + f ′y(x0, y0)(y − y0)

Exercise 13.7.3 Find equation for the tangent plane and normal line to the
graph.

9x2 − 4y2 − 25z2 = 40; P (4, 1,−2).

13.8 Extrema of Functions of Several Vari-

ables

The definition of local maximum, local minimum, which are local extrema,
are the same as for function of one variable.

Definition 13.8.1 Let f be a function of two variables. A pair (a, b) is a
critical point of f if either

(i). f ′x(a, b) = 0 and f ′y(a, b) = 0, or

(ii). f ′x(a, b) or f ′y(a, b) does not exist.

Definition 13.8.2 Let f be a function of two variables that has continuous
second partial derivatives. The discriminant D of f is given by

D(x, y) = f ′′xxf
′′
yy − [f ′′xy]

2 =

∣∣∣∣
f ′′xx f ′′xy

f ′′yx f ′′yy

∣∣∣∣ .

The following result is similar to Second Derivative Test.

Test 13.8.3 (Test for Local Extrema) Let f be a function of two vari-
ables that has continuous second partial derivatives throughout an open disk
R containing a critical point (a, b). If D(a, b) > 0, then f(a, b) is

(i). a local maximum of f if f ′′xx(a, b) < 0.

(ii). a local minimum of f if f ′′xx(a, b) > 0.

If a critical point with existent partial derivatives is not a local extrema then
it is called saddle point. We could determine them by determinant:

Theorem 13.8.4 Let f have continuous second partial derivatives through-
out an open disk R containing an critical point (a, b) with existent derivatives.
If D(a, b) is negative, then (a, b) is a saddle point.
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Exercise 13.8.5 Find extrema and saddle points.

f(x, y) = x2 − 2x + y2 − 6y + 12

f(x, y) = −2x2 − 2xy − 3

2
y2 − 14x− 5y

f(x, y) = −1

3
x3 + xy +

1

2
y2 − 12y.

Exercise 13.8.6 Find the max and min of f in R.

f(x, y) = x2 − 3xy − y2 + 2y − 6x; R = {(x, y)| |x| ≤ 3, |y| ≤ 2}.

Exercise 13.8.7 Find three positive real numbers whose sum is 1000 and
whose product is a maximum.

13.9 Lagrange Multipliers

Theorem 13.9.1 Suppose that f and g are functions of two variables having
continuous first partial derivatives and that ∇g 6= 0 throughout a region. If
f has an extremum f(x0, y0) subject to the constraint g(x, y) = 0, then there
is a real number λ such that

∇f(x0, y0) = λ∇g(x0, y0).

By other words they are among solution of the system





f ′x(x, y) = λg′x(x, y)
f ′y(x, y) = λg′y(x, y)
g(x, y) = 0

.

Exercise 13.9.2 Find the extrema of f subject to the stated constrains

f(x, y) = 2x2 + xy − y2 + y; 2x + 3y = 1.



Chapter 14

Multiply Integrals

We consider the next fundamental operation of calculus for functions of sev-
eral variables.

14.1 Double Integrals

The definite integral of a function of one variable was defined using using
Riemann sum. We could apply the same idea for definition of definite integral
for a function of several variables.

Definition 14.1.1 Let f be a function of two variables that is defined on a
region R. The double integral of f over R, is

∫ ∫

R

f(x, y) dA = lim
‖P‖→0

∑

k

f(xk, yk)∆A,

provided the limit exists for the norm of the partition tensing to 0.

The following is similar to geometrical meaning of definite integral

Definition 14.1.2 (Geometrical Meaning of Double Integral) Let f be
a continuous function of two variables such that f(x, y) is nonnegative for
every (x, y) in a region R. The volume V of the solid that lies under the
graph of z = f(x, y) and over R is

V =

∫ ∫

R

f(x, y) dA.

Double integral has the following properties (see one variable case).
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Theorem 14.1.3 (i).
∫ ∫

R

cf(x, y) dA = c

∫ ∫

R

f(x, y) dA.

(ii).
∫ ∫

R

[f(x, y) + g(x, y)] dA =

∫ ∫

R

f(x, y) dA +

∫ ∫

R

g(x, y) dA

(iii). If R = R1 ∪R2 and R1 ∩R2 = ∅
∫ ∫

R

f(x, y) dA =

∫ ∫

R1

f(x, y) dA +

∫ ∫

R2

f(x, y) dA

(iv). If (x, y) ≥ 0 throughout R, then
∫∫

R
f(x, y) dA ≥ 0.

Practically double integrals evaluated by means of iterated integrals as fol-
lows:

Theorem 14.1.4 Let R be a region of Rx type. If f is continuous on R,
then ∫ ∫

R

f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx.

Exercise 14.1.5 Evaluate
∫ 3

0

∫ −1

−2

(4xy3 + y) dx dy

∫ 1

−1

∫ x+1

x3

(3x + 2y) dy dx.

Exercise 14.1.6 Evaluate
∫∫

R
ex/y dA if R bounded by y = 2x, y = −x,

y = 4.

Exercise 14.1.7 Sketch the region x = 2
√

y,
√

3x =
√

y, y = 2x + 5 and
express the double integral as iterated one.

Exercise 14.1.8 Sketch the region of integration for the iterated integral

∫ 2

−1

∫ x−2

x2−4

f(x, y) dy dx.

Exercise 14.1.9 Reverse the order of integration and evaluate

∫ e

1

∫ ln x

0

y dy dx.
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14.2 Area and Volume

From geometric meaning of double integrals we see that they are usable for
finding volumes (and areas).

Exercise 14.2.1 Describe surface and region related to

∫ 1

0

∫ 1−x2

3−x

(x2 + y2) dy dx.

Exercise 14.2.2 Find volume under the graph z = x2 + 4y2 over triangle
with vertices (0, 0), (1, 0), (1, 2).

Exercise 14.2.3 Sketch the solid in the first octant and find its volume
z = y3, y = x3, x = 0, z = 0, y = 1.

14.3 Polar Coordinates, Double Integrals in

Polar Coordinates

Besides the Cartesian coordinates we could describe a point of the plain by
the distance to the preselected point O (origin or pole) and angle to the ray
at origin (polar axis). This description is called polar coordinates. Here are
some interesting curves and their equation in polar coordinates.

(i). circle (O, R): r = R.

(ii). circle (a, a): r = 2a sin θ.

(iii). cardioid : r = a(1 + cos θ).

(iv). limaçons : r = a + b cos θ.

(v). n-leafed rose: r = a sin nθ.

(vi). spiral of Archimedes : r = aθ.

Exercise∗ 14.3.1 Find equation of a straight line in polar coordinates.

Connection between the Cartesian coordinates and polar coordinates is as
follows:

Theorem 14.3.2 The rectangular coordinates (x, y) and polar coordinates
(r, θ) of a point P are related as follows:
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(i). x = r cos θ, y = r sin θ;

(ii). r2 = x2 + y2, tan θ = y/x if x 6= 0.

Theorem 14.3.3 (Test for Symmetry) (i). The graph of r = f(θ) is
symmetric with respect to the polar axis if f(−θ) = f(θ).

(ii). The graph of r = f(θ) is symmetric with respect to the vertical line if
f(π − θ) = f(θ) or f(−θ) = −f(θ).

(iii). The graph of r = f(θ) is symmetric with respect to the pole if f(π+θ) =
f(θ).

Theorem 14.3.4 The slope m of the tangent line to the graph of r = f(θ)
at the point P (r, θ) is

m =
dr
dθ

sin θ + r cos θ
dr
dθ

cos θ − r sin θ

The element of area in polar coordinates equal to ∆A = 1
2
(r2

2 − r2
1)∆θ =

r̄∆r∆θ, where r̄ = 1
2
(r2−r1). Thus double integral in polar coordinates could

be presented by iterated integral as follows:
∫ ∫

R

f(r, θ) dA =

∫ β

α

∫ g2(θ)

g1(θ)

f(r, θ)r dr dθ.

=

∫ β

α

∫ h2(r)

h1(r)

f(r, θ)r dθ dr.

Exercise 14.3.5 Use double integral to find the area inside r = 2 − 2 cos θ
and outside r = 3.

Exercise 14.3.6 Use polar coordinates to evaluate the integral
∫ ∫

R

x2(x2 + y2)3 dA

R is bounded by semicircle y =
√

1− x2 and the x-axis.

Exercise 14.3.7 Evaluate
∫ a

0

∫ √
a2−x2

0

(x2 + y2)3/2 dy dx.

Exercise 14.3.8 Find volume bounded by paraboloid z = 4x2 + 4y2, the
cylinder x2 + y2 = 3y, and plane z = 0.
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14.4 Surface Area

Theorem 14.4.1 The surface area of the graph z = f(x, y) over the region
R is given by

A =

∫ ∫

R

√
[f ′x(x, y)]2 + [f ′y(x, y)]2 + 1 dA.

Exercise 14.4.2 Setup a double integral for the surface area of the graph
x2 − y2 + z2 = 1 over the square with vertices (0, 1), (1, 0), (−1, 0), (0,−1).

Exercise 14.4.3 Find the area of the surface z = y2 over the triangle with
vertices (0, 0), (0, 2), (2, 2).

Exercise 14.4.4 Find the area of the first-octant part of hyperbolic para-
boloid z = x2 − y2 that is inside the cylinder x2 + y2 = 1.

14.5 Triple Integrals

There is no any principal differences to introduce triple integral, it could be
done using ideas on definite integrals and double integrals.

Definition 14.5.1 Triple integral of f over 3d-region Q is defined by Riemann
sums: ∫ ∫ ∫

Q

f(x, y, z) dV = lim
‖P‖→0

∑

k

f(xk, yk, zk)∆Vk.

To evaluate triple integrals we reduce them by iteration to double integrals:

Theorem 14.5.2

∫ ∫ ∫

Q

f(x, y, z) dV =

∫ ∫

R

[∫ k2(x,y)

k1(x,y)

f(x, y, z) dz

]
dA

=

∫ b

a

∫ h2(x)

h1(x)

∫ k2(x,y)

k1(x,y)

f(x, y, z) dz dy dz.

Exercise 14.5.3 Evaluate the iterated integral

∫ 1

0

∫ 2

−1

∫ 3

1

(6x2z + 5xy2) dz dx dy;

∫ 2

−1

∫ z2

1

∫ x−z

x+z

z dy dx dz.
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Exercise 14.5.4 Describe region represented by integrals

∫ 1

0

∫ √
z

z3

∫ 4−x

0

dy dx dz,

∫ 1

0

∫ 3x

x

∫ xy

0

dz dy dx.

Physical meaning of triple integrals is given by

Theorem 14.5.5 Mass of a solid with a mass density δ(x, y, z) is given by

m =

∫ ∫ ∫

Q

δ(x, y, z) dV

Theorem 14.5.6 Mass of a lamina with an area mass density δ(x, y) is given
by

m =

∫ ∫ ∫

R

δ(x, y) dA

Exercise 14.5.7 Using triple integrals find volume bounded by

(i). x2 + z2 = 4, y2 + z2 = 4.

(ii). z = x2 + y2, y + z = 2.

14.7 Cylindrical Coordinates

The cylindrical coordinates of a point P is the triple of numbers (r, θ, z),
where (r, θ) are the polar coordinates of the projection of P on xy-plane and
z is defined as in rectangular coordinates.

Theorem 14.7.1 The rectangular coordinates (x, y, z) and the cylindrical
coordinates (r, θ, z) of a point are related as follows:

x = r cos θ, y = r sin θ, z = z,

r2 = x2 + y2, tan θ =
x

y
.

Exercise 14.7.2 Describe the graph in cylindrical ccordinates:

(i). r = −3 sec θ.

(ii). z = 2r.

Exercise 14.7.3 Change the equation to cylindrical coordinates:

(i). x2 + y2 = 4z.
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(ii). x2 + z2 = 9.

Theorem 14.7.4 Evaluation of triple integral in cylindrical coordinates:

∫ ∫ ∫

Q

f(r, θ, z) dV =

∫ β

α

∫ g2(θ)

g1(θ)

∫ k2(r,θ)

k1(r,θ)

f(r, θ, z) dz dr dθ.

Exercise 14.7.5 A solid is bounded by the cone z =
√

x2 + y2, the cylinder
x2 + y2 = 4, and the xy-plane. Find its volume.

14.8 Spherical Coordinates

The spherical coordinates of a point is the triple (ρ, φ, θ).

Theorem 14.8.1 The rectangular coordinates (x, y, z) and the spherical co-
ordinates (ρ, φ, θ) of a point related as follows:

x = ρ sin φ cos θ, x = ρ sin φ sin θ, z = ρ cos θ

ρ2 = x2 + y2 + z2.

Exercise 14.8.2 Change coordinates

(i). spherical (1, 3π/4, 2π/3) to rectangular and cylindrical.

(ii). rectangular (1,
√

3, 0) to spherical and cylindrical.

Exercise 14.8.3 Describe graphs

(i). ρ = 5.

(ii). φ = 2π/3.

(iii). θ = π/4.

Exercise 14.8.4 Change the equation to spherical coordinates.

x2 + y2 = 4z; x2 + (y − 2)2 = 4; x2 + z2 = 9.

Theorem 14.8.5 (Evaluation theorem)

∫ ∫ ∫

Q

f(ρ, φ, θ) dV =

∫ n

m

∫ d

c

∫ b

a

f(ρ, φ, θ)ρ2 sin φ dρ dφ dθ.

Exercise 14.8.6 Find volume of the solid that lies outside the cone z2 =
x2 + y2 and inside the sphere x2 + y2 + z2 = 1.
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Exercise 14.8.7 Evaluate integral in spherical coordinates:

∫ √
2

0

∫ √
4−y2

y

∫ √
4−x2−y2

0

√
x2 + y2 + z2 dz dx dy.
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Vector Calculus

15.1 Vector Fields

We could make one more step after vector valued functions and function of
several variables.

Definition 15.1.1 A vector field in three dimensions is a function F whose
domain D is a subset of R3 and whose range is is a subset of V3. If (x, y, z)
is in D, then

F(x, y, z) = M(x, y, z)i + N(x, y, z)j + P (x, y, z)k.

where M , N , and P are scalar functions.

Exercise 15.1.2 Plot the vector field F(x, y) = −yi + xj.

Example of vector field is as follows:

Definition 15.1.3 Let r = xi+yj+zk. A vector field F is an inverse square
field if

F(x, y, z) =
c

‖r‖3 r.

Examples of inverse square field are given by Newton’s law of gravitation and
Coulom’s law of charge interaction.

Definition 15.1.4 A vector filed F is conservative if

F(x, y, z) = ∇f(x, y, z)

for some scalar function f . Then f is potential function and its value f(x, y, z)
is potential in (x, y, z).
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Exercise 15.1.5 Find a vector field with potential f(x, y, z) = sin(x2 +y2 +
z2).

Theorem 15.1.6 Every inverse square vector filed is conservative.

Proof. The potential is given by f(r) = c
r
. ¤

Definition 15.1.7 Let F(x, y, z) = M(x, y, z)i + N(x, y, z)j + P (x, y, z)k.
The curl of F is given by

curlF = ∇× F

=

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

M N P

∣∣∣∣∣∣

=

(
∂P

∂y
− ∂N

∂z

)
i +

(
∂M

∂z
− ∂P

∂x

)
j

(
∂N

∂x
− ∂M

∂y

)
k

Definition 15.1.8 Let F(x, y, z) = M(x, y, z)i + N(x, y, z)j + P (x, y, z)k.
The divergence of F is given by

div F = ∇ · F =
∂M

∂x
+

∂N

∂y
+

∂P

∂z
.

Exercise 15.1.9 Find curlF and div F for

F(x, y, z) = (3x + y)i + xy2zj + xz2k.

Exercise 15.1.10 Prove that for a constant vector a

(i). curl (a× r) = 2a;

(ii). ÷(a× r) = 0.

Exercise 15.1.11 Verify the identities:

curl (F + G) = curlF + curlG;

div (F + G) = div F + div G;

curl (fF) = f(curlF) + (∇f)× F;
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15.2 Line Integral

We could introduce a new type of integrals for functions of several variables.

Definition 15.2.1 The line integrals along a curve C with respect to s, x,
y, respectively are

∫

C

f(x, y) ds = lim
‖P‖→0

∑

k

f(uk, uk)∆sk

∫

C

f(x, y) dx = lim
‖P‖→0

∑

k

f(uk, uk)∆xk

∫

C

f(x, y) dy = lim
‖P‖→0

∑

k

f(uk, uk)∆yk

Let a curve C be given parametrically by x = g(t) and y = h(t). Because

dx = g′(t) dt, dy = h′(t) dt,

ds =
√

(dx)2 + (dy)2 =
√

(g′(t))2 + (h′(t))2 dt.

we obtain

Theorem 15.2.2 (Evaluation formula for line integrals) If a smooth
curve C is given byx = g(t) and y = h(t); a ≤ t ≤ b and f(x, y) is con-
tinuous in a region containing C, then

∫

C

f(x, y) ds =

∫

C

f(g(t), h(t))
√

(g′(t))2 + (h′(t))2 dt
∫

C

f(x, y) dx =

∫

C

f(g(t), h(t))(g′(t) dt
∫

C

f(x, y) dy =

∫

C

f(g(t), h(t))h′(t)) dt

Exercise 15.2.3 Evaluate
∫

C
xy2 ds if C is given by x = cos t, y = sin t;

0 ≤ t ≤ π/2.

Exercise 15.2.4 Evaluate
∫

C
y dy+z dy+x dz if C is the graph of x = sin t,

y = 2 sin t, z = sin2t; 0 ≤ t ≤ π/2.

Exercise 15.2.5 Evaluate
∫

C
xy dx + x2y3 dy if C is the graph of x = y3

from (0, 0) to (1, 1).
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Exercise 15.2.6 Evaluate
∫

C
(x2 +y2) dx+2x dy along three different paths

from (1, 2) to (−2, 8).

Exercise 15.2.7 Evaluate
∫

C
(xy+z) ds if C is the lime segment from (0, 0, 0)

to (1, 2, 3).

Theorem 15.2.8 The mass of a wire is given by

m =

∫

C

δ(x, y) ds,

where δ(x, y) is the linear mass density.

Theorem 15.2.9 The work W done by a force F long a path C is defined
as follows

W =

∫

C

M(x, y, z) dx + N(x, y, z) dy + P (x, y, z) dz.

If T is a unit tangent vector to C at (x, y, z) and r = xi + yj + zk, then

W =

∫

C

F ·T ds =

∫

C

F · dr.

15.3 Independence of Path

There is a condition for an integral be independent from the path.

Theorem 15.3.1 If F(x, y) = M(x, y)i + N(x, y)i is continuous on an open
connected region D, then the line integral

∫
C

F · dr is independent of path
if and only if F is conservative—that is, F(x, y) = ∇f(x, y) for some scalar
function f .

Exercise 15.3.2 Show that
∫

C
F · dr is independent of path by finding a

potential function f for F :

F(x, y) = (6xy2+3y)i+(6x2y+2x)j; F(x, y) = (2xe2y+4y3)i+(2x2e2y+12xy2)j.

In fact we are even able to give a formula for the evaluation:

Theorem 15.3.3 Let F(x, y) = M(x, y)i + N(x, y)i be continuous on an
open connected region D, and C be a piecewise-smooth curve in D with
endpoints A(x1, y1) and B(x2, y2). If F(x, y) = ∇f(x, y) for some scalar
function f , then

∫

C

M(x, y) dx + N(x, y) dy =

∫ (x2,y2)

(x1,y1)

F · dr = [f(x, y)]
(x2,y2)
(x1,y1) .



15.4. GREEN’S THEOREM 47

Particularly
∫

C
F · dr = 0 for every simple closed curve C.

Exercise 15.3.4 Show that integral is independent of path, and find its
value ∫ (1,π/2)

(0,0)

ex sin y dx + ex cos y dy.

Theorem 15.3.5 If F is a conservative force field in two dimensions, then
the work done by F along any path C from A(x1, y1) to B(x2, y2) is equal to
the difference in potentials between A and B.

Theorem 15.3.6 If M(x, y) and N(x, y) have continuous first partial deriv-
atives on a simply connected region D, then the line integral

∫

C

M(x, y) dx + N(x, y) dy

is independent of path in D if and only if

∂M

∂y
=

∂N

∂x
.

Exercise 15.3.7 Use above theorem to show that
∫

C
F · dr is not independ-

ent of path:

(i). F(x, y) = y3 cos xi− 3y2 sin xj.

(ii).
∫

C
ey cos x dx + xey cos z dy + xey sin z dz.

15.4 Green’s Theorem

Theorem 15.4.1 (Green’s Theorem) Let G be a piecewise-smooth simple
closed curve, and let R be the region consisting of G and its interior. If M
and N are continuous functions that have continuous first partial derivatives
throughout an open region D containing R, then

∮

C

M dx + N dy =

∫ ∫

R

(
∂N

∂x
− ∂M

∂y

)
da

Exercise 15.4.2 Use Green’s theorem to evaluate the line integrals

(i).
∮ √

y dx +
√

x dy if C is the tringle with vertices (1, 1), (3, 1), (2, 2).
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(ii).
∮

C
y2 dx + x2 dy if C is the boundary of the region bounded by the

semicircle y =
√

4− x2 and x-axis.

As an application we could derive a formula as follows:

Theorem 15.4.3 If a region R in the xy-plane is bounded by a piece-wise-
smooth simple closed curve C, then the area A of R is

A =

∮

C

x dy = −
∮

C

y dx =
1

2

∮

C

x dy − y dx.

The region R could contains holes, provided we integrate over the entire
boundary and always keep the region R to the left of C.

Exercise 15.4.4 Use the above theorem to find to fine the area bounded by
the graphs y = x3, y2 = x.

Theorem 15.4.5 (Vector Form of Green’s Theorem)

∮

C

F ·T ds =

∫ ∫

R

(∇× F) · k dA.

15.5 Surface Integral

We could define surface integrals in a way similar to definite integral, double,
triple, lines integrals by means of Riemann sums:

∫ ∫

S

g(x, y, z) dS = lim
‖P‖→0

∑

k

g(xk, yk, zk)∆Tk.

To calculate surface integrals we use

Theorem 15.5.1 Evaluation formulas for surface integrals are:
∫ ∫

S

g(x, y, z) dS =

∫ ∫

Rxy

g(x, y, f(x, y))
√

[f ′x(x, y)]2 + [f ′y(x, y)]2 + 1 dA

∫ ∫

S

g(x, y, z) dS =

∫ ∫

Rxz

g(x, h(x, z)z)
√

[h′x(x, z)]2 + [h′z(x, z)]2 + 1 dA

∫ ∫

S

g(x, y, z) dS =

∫ ∫

Rxy

g(k(y, z), y, z)
√

[k′y(y, z)]2 + [k′z(y, z)]2 + 1 dA

Exercise 15.5.2 Evaluate surface integral of g(x, y, z) = x2 + y2 + z2 over
the part of plane z = y + 4 that is inside the cylinder x2 + y2 = 4.



15.6. DIVERGENCE THEOREM 49

Exercise 15.5.3 Express the surface integral
∫∫

S
(xz + 2y) dS over the por-

tion of the graph of y = x3 between the plane y = 0, y = 8, z = 2, and z = 0
as a double integral over a region in yz-plane.

Definition 15.5.4 The flux of vector field F through (or over) a surface S
is ∫ ∫

S

F · n dx.

Exercise 15.5.5 Find
∫∫

S
F · n dx for F = xi − yj and S the first octant

portion of the sphere X2 + y2 + z2 = a2.

Exercise 15.5.6 Find the flux of F(x, y, z) = (x2+z)i+y2zj+(x2+y2+z)k
over S is the first-octant portion of paraboloid z = x2 + y2 that is cut off by
the plane z = 4.

15.6 Divergence Theorem

15.7 Stoke’s Theorem
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coordinate of a point, 12
Coulom’s law of charge interaction,

41
critical point, 31
cross product, 15
curl, 42
cylinder, 18

directrix of, 18
right circular, 19

cylindrical coordinates, 38

derivative, 21
partial

first, 26
second, 27

determinant of order 2, 15
determinant of order 3, 15
difference of vectors, 13

differentiable, 28
differential of function, 28
directional derivative, 29

gradient form, 30
directrix of the cylinder, 18
discriminant, 31
distance, 12, 18

between two lines, 18
between two points, 12
from a point to the plane, 18

divergence, 42
domain, 24
dot product, 14

properties, 14
double integral, 33
double integral in polar coordinates,

36

Ellipsoid, 19
ellipsoid, 19
endpoint, 20
endpoints, 20
extrema

local, 31

first octant, 12
first partial derivatives, 26
flux, 47
function

continuous, 25
differentiable, 28

function of two variables, 24

geometric meaning, 22
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geometrical meaning
double integral, 33

gradient, 30
gradient form, 30
Green’s theorem, 45

vector form, 46

hyperbolic paraboloid, 19
hyperboloid of one sheet, 19
hyperboloid of two sheets, 19

increment of function, 28
inner product, 14
interval of convergence, 6
inverse square field, 41
inverse vector, 13
iterated integrals, 34

level curves, 24
level surface, 24
limaçons, 35
limit, 21, 25
line integrals along a curve, 43
linear mass density, 44
lines

orthogonal, 17
parallel, 17

local extrema, 31
test, 31

local maximum, 31
local minimum, 31

Maclaurin series, 9
magnitude of vector, 13
mass of a wire, 44
maximum

local, 31
minimum

local, 31

Newton’s law of gravitation, 41
norm of the partition, 33

null vector, 13

opposite direction, 13
orientation, 20
origin, 35
orthogonal, 14, 17

paraboloid, 19
paraboloid of revolution, 18
parallel, 17
parameter equation, 20
perpendicular, 14
Physical meaning, 38
plane, 17

equation, 17
planes

orthogonal, 17
parallel, 17

polar axis, 35
polar coordinates, 35
pole, 35
potential, 41
potential function, 41
power series in x, 6
power series in x− d, 6
power series representation of f(x),

7
Properties of the dot product, 14
Properties of the vector product,

16

quadric surface, 19

radius of convergence, 6
range, 24
rectangular coordinate system, 12
Riemann sum, 33
right circular cylinder, 19
right-handed coordinate system, 12
rule

two-path, 25

saddle point, 31
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same direction, 13
scalar product, 14
second partial derivatives, 27
space curve, 20
spherical coordinates, 39
spiral of Archimedes, 35
subtraction of vectors, 13

Taylor remainder, 9
Taylor series, 9
theorem

Green’s, 45
vector form, 46

trace on a surface, 18
triangle inequality, 15
triple integral, 37

physical meaning, 38

vector, 12
angle between, 14
difference, 13
magnitude, 13
opposite direction, 13
orthogonal, 14
perpendicular, 14
same direction, 13
subtraction, 13

vector field in three dimensions, 41
vector product, 15

properties, 16
vector-valued function, 20

continuous, 21
derivative

geometric meaning, 22
derivative of, 21
limit of, 21

volume, 33

work W done by a force F long a
path C, 44

work done by a constant force, 15

work done by a force along a path,
44
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