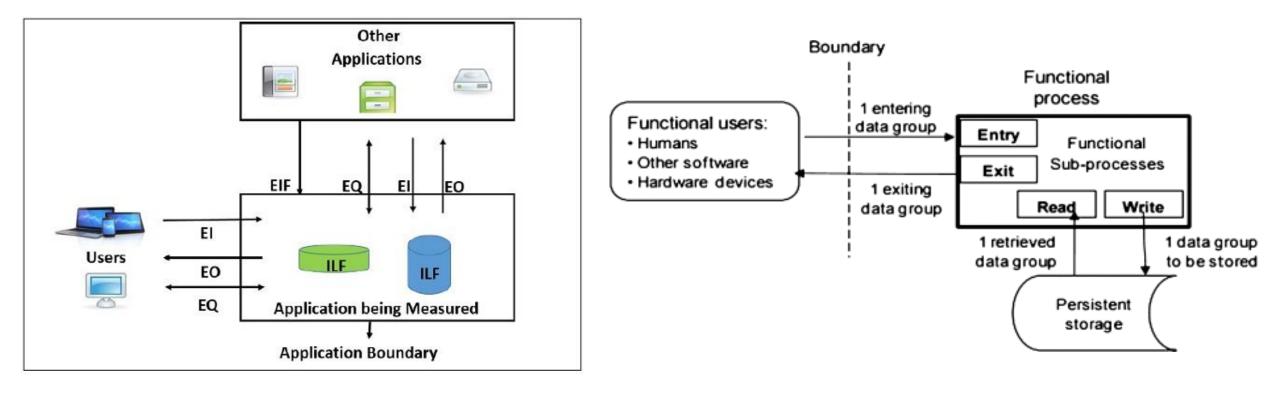

Calibrating COCOMO® II for Functional Size Metrics

Anandi Hira University of Southern California

Joint Software and IT Cost Forum 2020

Motivation


COCOMO[®] II (Constructive Cost Model)

COCOMO[®] II is an open and free model

2 Prominent Functional Size Methods

IFPUG Software Model for Function Points (FPs) COSMIC Software Model for Function Points (CFPs)

Challenges for Organizations/Teams

07

-1,0002

1002

502

2002

1502

IFPUG Function Points FPs)

2502

- Research papers and organizations typically do not account for effort factors.
- Teams will not have much data initially.
- Sharing data across teams cause high variance.
- Empirical research doesn't propose generalized model.
- Public datasets varied with high variance.

40?

-1000

602

807

1002

COSMICFunctionPointsCFPs)

1202

1402

COCOMO[®] II Effort Estimation Model

$$PM = A \times Size^{(B + C \times (\sum SF))} \times \prod EM$$

Exponent ranges from 0.9 to 1.2, with 1.0997 as default

- PM = Software development effort (in Person-months)
- Size = Size in Thousand Source Lines of Code (KSLOC)
- A = Calibrated Productivity constant (KSLOC/PM)
- B, C = Calibrated Exponent constants
- SF = Scale Factors have exponential effect
- EM = Effort Multipliers have multiplicative effect

Datasets

Unified Code Count (UCC)

- Maintenance projects
 - Add new features (10)
 - Modify existing features (23)
- Code metrics tool
- Command line program
- Implemented in C++, Java
- Each project by new team
- 32 data points

Confidential Industry

- New development, with some reuse from previous work
- Firmware and software interacts with hardware
- Command line program
- Implemented in C, Verilog, VHDL
- Data from 2 teams
- 18 data points

Methodology

Research Question and Hypothesis

- 1. Can calibrated COCOMO[®] II for FPs and CFPs perform better than options suggested in research?
- Null Hypothesis (H₀): Calibrated COCOMO[®] II will not perform better than the currently available options.
- 2. Do functional size metrics, using the calibrated COCOMO[®] II model, perform better on some types of projects compared to others?
- Null Hypothesis (H₀): Functional size metrics perform equally well on all types of projects.

Calibrating COCOMO[®] II $PM = A \times Size^{(B + C \times (\sum SF))} \times \prod EM$

- 1. Productivity Rates
 - New Development
 - Enhancement New Features
 - Enhancement Modify Existing Features
- Adjust factors that may have relationship with size – Complexity (CPLX)
- 3. Adjust Exponent constants to adjust the rate at which effort grows with respect to size

Regressions to Compare (Question 1)

Compare Improvement

- 1. Linear Regression
- 2. Nonlinear Regression (log transform)
- 3. Convert FPs to SLOC using ratios published by Capers Jones
- 4. Convert FPs (and CFPs) to SLOC with custom conversion ratio
- 5. Convert CFPs to FPs and use existing model (linear and nonlinear)

Calibration Comparisons

Step-wise to determine significance

- 1. Productivity Factor
- 2. New Dev/Enh
- 3. New Dev/Add/Mod
- 4. Prod Factor & Complexity
- 5. New Dev/Enh & Complexity
- 6. New Dev/Add/Mod & Complexity

Calibrate for Productivity Rates and Complexity (CPLX) factor.

Compare R² for best fit before moving to Step 2.

2-Step Calibration P-hrs $= \mathbf{A} \times Size^{(B + C \times (\sum SF))} \times \mathbf{BM}$ $log(P-hrs) = log(A) + (B + C \times$ (ΣSF) × $log(Size) + log(\prod EM - CPLX) +$ log(CPLX)

 $log(P-hrs) - log(\prod EM-CPLX) = log(A) +$ $(B + C \times (\sum SF)) \times log(Size) + log(CPLX)$

A number for now – throw away. Will calibrate in Step 2

2-Step Calibration

 $log(P-hrs) - log(\prod EM-CPLX) = log(A) +$ $(B + C \times (\sum SF)) \times log(Size) + log(CPLX)$

 $log(P-hrs) - log(\prod EM-CPLX) - log(A)$ $log(CPLX) = (B + C \times (\Sigma SF)) \times log(Size)$

Calibrate for Exponent constants B & C.

 $\frac{\log(P - hrs) - \log(\prod EM - CPLX) - \log(A) - \log(CPLX)}{\log(Size)}$ $= \mathbf{B} + \mathbf{C} \times \left(\sum SF\right)$

Normalize Effort

With Respect to Effort Factors defined by COCOMO[®] II

 $P-hrs = A \times Size^{(B + C \times (\sum SF))} \times$ EM $\frac{P-hrs}{\prod EM} = A \times Size^{(B+C\times(\sum SF))}$ *P*-hrs $\prod EM \times Size^{(C \times (\sum SF))}$ $= A \times Size^{(B + C \times (\sum SF)) - (C \times (\sum SF))}$ $\frac{P-hrs}{\prod EM \times Size^{(C \times (\sum SF))}} = A \times Size^{B}$

Software Estimation Prediction Accuracy Statistics

R²: how closely the regression curve fits the data points

MMRE: Mean Magnitude of Relative Error. Ideally ≤ 25%

PRED(25): Percentage of
estimates within 25% of actuals.
Ideally ≥ 75%

Types of Projects (Question 2)

- 1. Low parsing projects UCC: control and data management operations, 1-3 computational operations
- 2. High parsing projects UCC: control and data management operations, 3-5 computational operations
- 3. Data transfers, interact with Hardware Industry: control, data management, device-dependent, and simple computations
- 4. Record, Encrypt, Decrypt Industry: control, data management, device-dependent, and complex computations
- 5. Input and Outputs Industry, UCC: control and data management operations, 0 computational operations. Industry also includes some device-dependent operations.

Details of the calibrated COCOMO® II model Functional Size Metrics

Calibration Step 1 Results Step-wise process to determine significance

	IFPUG FPs (FPs)	COSMIC FPs (CFPs)
Prod Factor	0.404	0.631
New/Enh	0.655	0.748
New/Add/Mod	0.804	0.777
Prod Factor & CPLX	0.921	0.954
New/Enh & CPLX	0.922	0.973
New/Add/Mod & CPLX	0.957	0.975

Perform Step 2 of Calibration (exponent) on last model.

Original vs Calibrated COCOMO[®] II Model

$$P-hrs = A \times Size^{(B + C \times (\sum SF))} \times \prod EM$$

	Α	В	С
COCOMO [®] II (SLOC)	446.88	0.91	0.01
FP, New Development	52.602		
FP, Add Features	100.51	0.833 0.	0.011
FP, Modify Features	43.84		
CFP, New Development	166.94	0.629 0.014	
CFP, Add Features	95.04		0.014
CFP, Modify Feature	76.32		

Original vs Calibrated Exponent

$$P - hrs$$

= A × Size^{(B + C × (\sum SF))} × \[EM

Exponent Range:	Low	Default	High
COCOMO [®] II (SLOC)	0.91	1.0997	1.2262
COCOMO [®] II (FPs)	0.833	1.0511	1.1963
COCOMO [®] II (CFPs)	0.629	0.9015	1.0829

Original vs Calibrated Complexity Factor

$$PM = A \times Size^{(B + C \times (\sum SF))} \times \prod EM$$

Complexity Range:	Very Low	Nominal	Extra High
COCOMO [®] II (SLOC)	0.73	1	1.74
COCOMO [®] II (FPs)	0.57	1	2.298
COCOMO [®] II (CFPs)	0.53	1	2.57

Calibrated COCOMO[®] || vs Options in Research

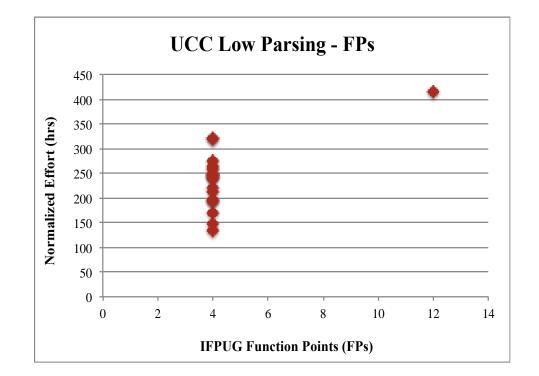
Does Calibrated COCOMO[®] II perform better than options suggested or provided in research papers?

IFPUG FPs

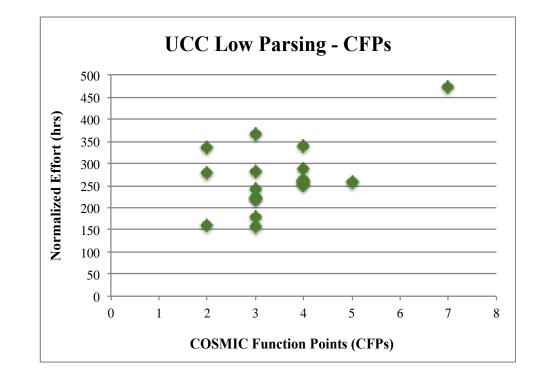
Statistic	Linear	Nonlinear	Jones Conversion to SLOC	Local Conversion to SLOC	Calibrated COCOMO [®] II
MMRE	89.87%	72.86%	47.92%	72.07%	31.14%
PRED(25)	20%	36%	14%	2%	68%

Conclusion: Calibrated COCOMO[®] II performed better than other options

COSMIC FPs

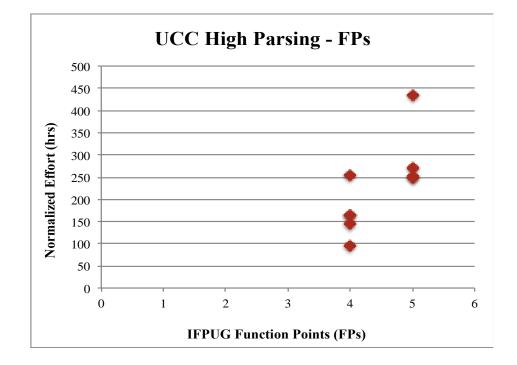

Statistic	Linear	Nonlinear	Local Conversion to SLOC	Conversion to FPs - Linear	Conversion to FPs - Nonlinear	Calibrated COCOMO [®] II
MMRE	96.2%	56.02%	80.05%	89.38%	70.39%	20.94%
PRED(25)	18%	38%	4%	22%	20%	70%

Conclusion: Calibrated COCOMO[®] II performed better than other options

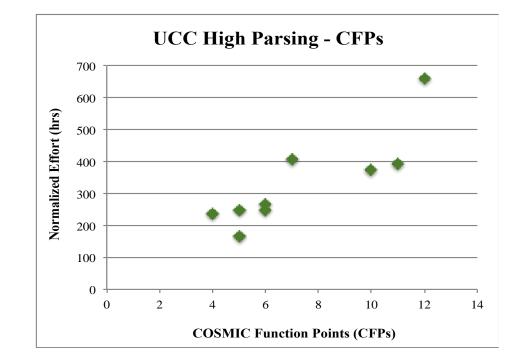

Do functional size metrics, with the calibrated COCOMO[®] II model, perform better on some types of projects compared to others?

Analysis by Project Type

1. Low parsing projects - UCC

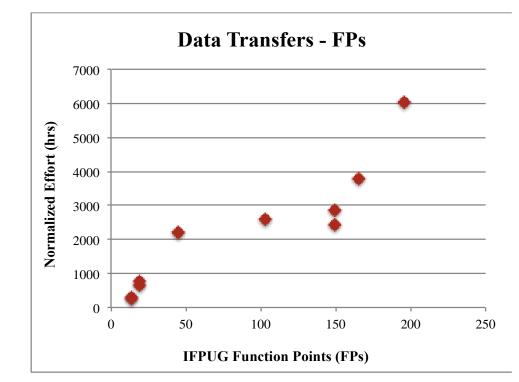


PRED(25)	80
MMRE	16.21
Corr Coeff	0.378

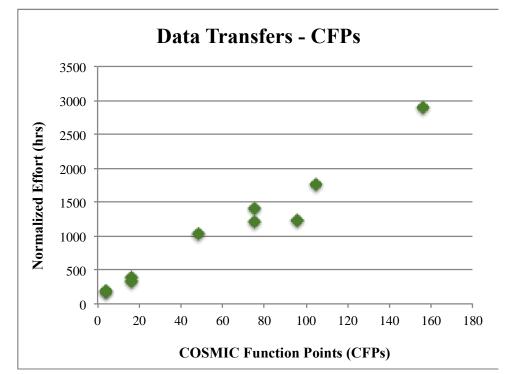


PRED(25)	75
MMRE	19.27
Corr Coeff	0.328

2. High parsing projects - UCC

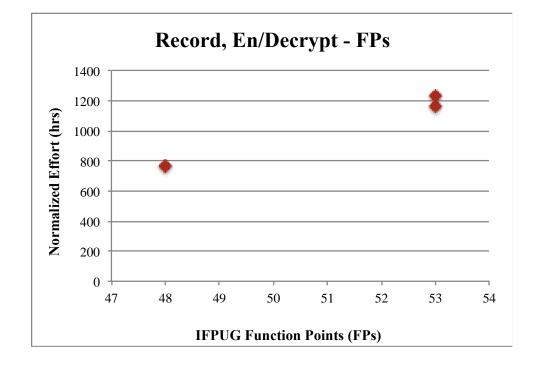


PRED(25)	66.67
MMRE	33.51
Corr Coeff	0.693

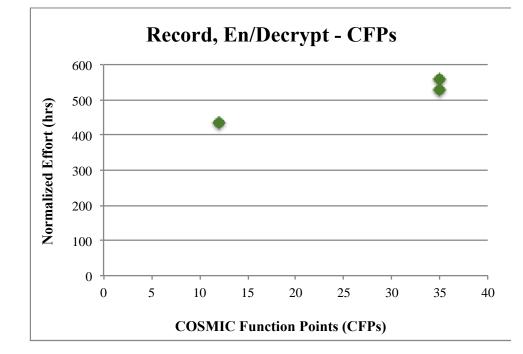


PRED(25)	77.78
MMRE	21.76
Corr Coeff	0.882

3. Data Transfer, HW – Industry

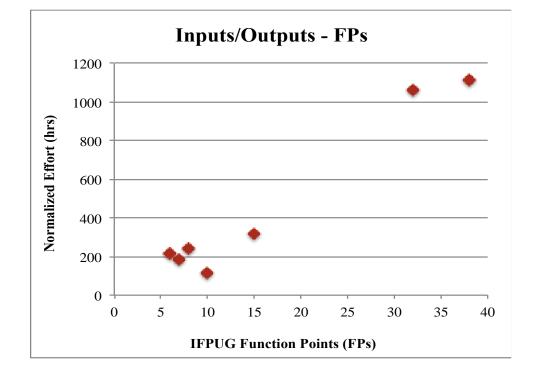


PRED(25)	50
MMRE	31.85
Corr Coeff	0.973

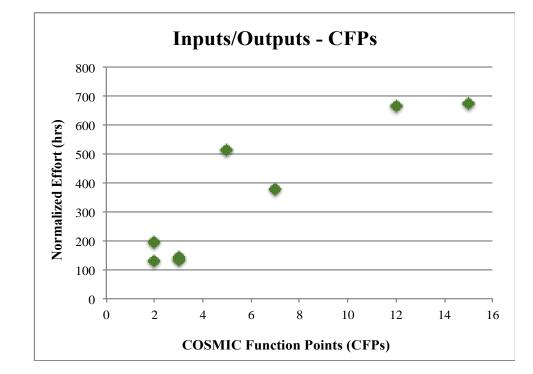


PRED(25)	80
MMRE	19.36
Corr Coeff	0.973

4. Record, Encrypt, Decrypt – Industry



PRED(25)	100
MMRE	21.53
Corr Coeff	0.866



PRED(25)	66.67
MMRE	15.45
Corr Coeff	0.866

5. Inputs/Outputs – Industry, UCC

PRED(25)	50
MMRE	68.49
Corr Coeff	0.683

PRED(25)	37.5
MMRE	28.22
Corr Coeff	0.868

Conclusions

Conclusions (1/2)

Hypothesis 1

- Calibrated COCOMO[®] II will not improve effort estimation accuracy compared to other suggested methods.
 - False: Calibrated COCOMO[®] II performed better for FPs and CFPs by a minimum
 - PRED(25): 32%
 - MMRE: 21.44%

COCOMO® II Calibration

- Different productivity rates for New Development, Add Modules, and Modifying Existing Modules
- 2. Complexity has stronger impact (in both low and high directions) on effort compared to SLOC.
- 3. Effort grows at different rate with respect to functional size metrics compared to SLOC

Conclusions (2/2)

Hypothesis (2)

- Functional Size Metrics perform similarly well on all types of projects
 - Performance varies
 - See table to right where
 - Red X means correlation coefficient and/or accuracy low
 - Green check means correlation and accuracy within acceptable ranges

	FPs	CFPs
Low Parse – UCC	X	X
High Parse – UCC	X	\checkmark
Data Transfer – Industry	X	\checkmark
Record, Encrypt, Decrypt – Industry	\checkmark	×
Inputs/Outputs – UCC, Industry	X	×

IFPUG vs COSMIC Function Points

IFPUG Function Points

- New development tasks
- Large number of data transferred
- Components with encryption and decryption functionality

COSMIC Function Points

- Generally across multiple datasets
- Smaller/various changes in data transferred
- Maintenance tasks
- Object-Oriented Design

Future Work

- Reuse factors in functional size (equivalent size like reuse model in COCOMO[®] II for SLOC)
- Separate the 5 types of Complexity as separate factors:
 - Control, Computational, Device-Dependent, Data Management, and User Interface Operations
 - Each may have different impacts
- Size metric that accounts for changes in algorithms