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Synopsis 
•  Why do we have to calibrate? 
•  Idealistic formalism à Realistic practice 
•  Fundamental Calibration Principles 

–  Practical Calibration Considerations 
–  Baseline-based vs.  Antenna-based Calibration 
–  Solving 

•  Scalar Calibration Example 
•  Generalizations 

–  Full Polarization 
–  A Dictionary of Calibration Effects 
–  Calibration Heuristics and ‘Bootstrapping’ 

•  New Calibration Challenges 
•  Summary 
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Why Calibration? 

•  Synthesis radio telescopes, though well-designed, are not perfect (e.g., 
surface accuracy, receiver noise, polarization purity, gain stability, geometric 
model errors, etc.) 

•  Need to accommodate deliberate engineering (e.g., frequency down-
conversion, analog/digital electronics, filter bandpass, etc.) 

•  Hardware or control software occasionally fails or behaves unpredictably 
•  Scheduling/observation errors sometimes occur (e.g., wrong source 

positions) 
•  Atmospheric conditions not ideal 
•  Radio Frequency Interference (RFI) 
 

    Determining instrumental and environmental properties (calibration) 
 is a prerequisite to  

determining radio source properties 

4 



5 

From Idealistic to Realistic 
•  Formally, we wish to use our interferometer to obtain the visibility 

function: 

 
•  ….a Fourier transform which we intend to invert to obtain an image of the 

sky: 

 
–  V(u,v) describes the amplitude and phase of 2D sinusoids that add up to 

an image of the sky  
•  Amplitude:  “~how concentrated?” 
•  Phase:  “~where?” 
•  c.f.  Young’s Double-Slit Interference Experiment (1804) 

•  How do we measure V(u,v)? 
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How do we measure V(u,v)? 
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d = wλ +uλ tanθ( )cosθ −wλ

= uλ sinθ +wλ cosθ −1( )

d l( ) = uλl +wλ 1− l2 −1( )   (1D) 

 sinθ = l;  cosθ = 1− l2( )

d l,m( ) = uλl + vλm+wλ 1− l2 −m2 −1( )   (2D)  

≈ uλl + vλm        l,m <<1( )

sj = sie
i2πd l,m( )

•  Consider direction-dependent arrival 
geometry for E-field disturbance 
reception at two points, i and j, relative 
to the phase center direction 

i j 

Direction-dependent signals: 



How do we measure V(u,v)? 
•  Correlate the E-field disturbances, xi & xj 

arriving at spatially separate sensors 
–  delay-aligned for the phase-center 
–  si & sj are the direction-dependent E-

field disturbances  
•  Direction integral and product can be 

reversed, because the E-field disturbances 
from different directions don’t correlate  

•  si and sj (for a specific direction) differ 
only by a phase factor given by the arrival 
geometry 

•  <|si|2> is proportional to the brightness 
distribution, I(l,m) 
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Vij
obs = xi ⋅ x j

*

Δt

= si dli dmi ⋅
sky
∫ sj

* dlj dmj
sky
∫

Δt

= sis j
* dl dm

sky
∫

Δt

= si
2 e−i2πd l,m( ) dl dm

sky
∫

= I l,m( )e−i2πd l,m( ) dl dm
sky
∫

= I l,m( )e−i2π ul+vm( ) dl dm
sky
∫



But in reality… 
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•  Weather 
•  Realistic Antennas  
•  Electronics… 
•  Digital correlation 
•  …and the whole is 

moving! 
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Realistic Visibility 
•  So, in practice, we obtain an imperfect visibility measurement: 

–  xi & xj are mutually delay-compensated for the phase center 
–  Averaging duration is set by the expected timescales for variation of the 

correlation result (~seconds) 
•  Jij is a generalized operator characterizing the net effect of the observing 

process for antennas i and j on baseline ij, which we must calibrate 
–  Includes any required scaling to physical units 

•  Sometimes Jij corrupts the measurement irrevocably, resulting in data that 
must be edited or “flagged” 

Vij
obs u,v( ) = xi t( ) ⋅ x j* t( ) Δt

= JijVij
true u,v( )



Realistic Visibility:  Noise 

•  Normalized visibility: 
 
–  Extra 2 (cf single-dish) comes from formation from separate telescopes 

•  Absolute visibility: 

–  Ti, Tj are the system temperatures (total sampled powers), in whatever 
units the corresponding data are in 

–  (The numerator, as measured by the correlator, is the factor by which 
visibilities are typically normalized, e.g.  ALMA) 

•  Formal Visibility Weights: 
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σ ij =
1

2ΔνΔt

σ ij =
TiTj
2ΔνΔt

wij =
1
σ ij
2



11 

Practical Calibration Considerations 
•  A priori “calibrations” (provided by the observatory) 

–  Antenna positions, earth orientation and rate, clock(s), frequency reference 
–  Antenna pointing/focus, voltage pattern, gain curve 
–  Calibrator coordinates, flux densities, polarization properties 

•  Absolute engineering calibration (dBm, K, volts)? 
–  Amplitude:  episodic (ALMA) or continuous (EVLA/VLBA) Tsys or switched-

power monitoring to enable calibration to nominal K (or Jy, with antenna 
efficiency information) 

–  Phase:  WVR (ALMA), otherwise practically impossible (relative antenna 
phase) 

–  Traditionally,  we concentrate instead on ensuring instrumental stability on 
adequate timescales 

•  Cross-calibration a better choice 
–  Observe strong astronomical sources near science target against which 

calibration (Jij) can be solved, and transfer solutions to target observations 
–  Choose appropriate calibrators; usually point sources because we can easily 

predict their visibilities  (Amp ~ constant,  phase ~ 0) 
–  Choose appropriate timescales for calibration 
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“Absolute” Astronomical Calibrations 
•  Flux Density Calibration 

–  Radio astronomy flux density scale set according to several 
“constant” radio sources, and planets/moons 

–  Use resolved models where appropriate 
•  Astrometry 

–  Most calibrators come from astrometric catalogs;  sky coordinate 
accuracy of target images tied to that of the calibrators  

–  Beware of resolved and evolving structures, and phase transfer 
biases due to troposphere (especially for  VLBI) 

•  Polarization 
–  Usual flux density calibrators also have significant stable linear 

polarization position angle for registration 
–  Calibrator circular polarization usually assumed zero (?) 

•  Relative calibration solutions (and dynamic range) insensitive to errors 
in these “scaling” parameters 
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Baseline-based Cross-Calibration 

•  Simplest, most-obvious calibration approach: measure complex response 
of each baseline on a standard source, and scale science target visibilities 
accordingly 
–  “Baseline-based” Calibration: 

•  Only option for single baseline “arrays” 
•  Calibration precision same as calibrator visibility sensitivity (on 

timescale of calibration solution).  Improves only with calibrator 
strength. 

•  Calibration accuracy sensitive to departures of calibrator from assumed 
structure 
–  Un-modeled calibrator structure transferred (in inverse) to science target! 
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Antenna-based Cross Calibration 
•  Measured visibilities are formed from a product of antenna-based 

signals.  Can we take advantage of this fact? 
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Antenna-based Cross Calibration 
•  The net time-dependent E-field signal sampled by antenna i, xi(t), is a 

combination of the desired signal, si(t,l,m), corrupted by a factor Ji(t,l,m) 
and integrated over the sky (l,m), and diluted by noise, ni(t):  

•  xi(t) is sampled (complex) voltage provided to the correlator input 
•  Ji(t,l,m) is the product of a series of effects encountered by the 

incoming signal 
•  Ji(t,l,m) is an antenna-based complex number  
•  Usually, |ni|2 >> |si’|2  (i.e., noise dominates) 

)()(

)(),,(),,()(

tnts

tndldmmltsmltJtx

ii

sky
iiii

+ʹ′=

+= ∫



•  The correlation of two 
realistic (aligned for a 
specific direction) signals 
from different antennas: 

•  Noise correlations have 
zero mean—even if           
|ni|2>> |si|2, the correlation 
process isolates desired 
signals: 

•  Same analysis as before, 
except we carry Ji, Jj terms 
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Correlation of Realistic Signals - I 

xi ⋅ x j
*

Δt
= #si + ni( ) ⋅ #sj + nj( )

*

Δt
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*

Δt
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Δt
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+ ni ⋅nj

*

Δt

= #si ⋅ #sj
*

Δt

= Jisi dli dmi ⋅
sky
∫ J j

*sj
* dlj dmj

sky
∫

Δt

= JiJ j
*sis j

* dl dm
sky
∫

Δt

= JiJ j
*I l,m( )e−i2π ul+vm( ) dl dm

sky
∫



17 

The Scalar Measurement Equation 

 
•  First, isolate non-direction-dependent effects, and factor them from the integral: 

•  Next, we recognize that over small fields of view, it is possible to assume 
Jsky=1.0, and we have a relationship between ideal and observed Visibilities: 

•  Standard calibration of most existing arrays reduces to solving this last equation 
for the Ji, assuming a visibility model Vij

mod for a calibrator  
•  NB:  visibilities corrupted by difference of antenna-based phases, and product of 

antenna-based amplitudes 

Vij
obs = JiJ j

*I(l,m)e−i2π uijl+vijm( ) dl dm
sky
∫

= Ji
visJ j

vis*( ) Ji
skyJ j

sky*( ) I(l,m)e−i2π uijl+vijm( ) dl dm
sky
∫

= JiJ j
* I(l,m)e−i2π uijl+vijm( ) dl dm
sky
∫

Vij
obs = JiJ j

*Vij
true
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Aside:  Auto-correlations and Single Dishes 
•  The auto-correlation of a signal from a single antenna: 

•  This is an integrated (sky) power measurement plus non-zero-
mean noise, i.e., the Tsys 

•  Desired signal not simply isolated from noise 
•  Noise usually dominates 

•  Single dish radio astronomy calibration strategies rely on switching 
(differencing) schemes to isolate desired signal from the noise 
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Solving for the  Ji 
•  We can write: 

•  …and define chi-squared: 

•  …and minimize chi-squared w.r.t. each Ji*, yielding (iteration): 

 

•  (…which we may be gratified to recognize as a peculiarly weighted 
average of the implicit Ji contribution to Vobs:) 

0* =− mod
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Solving for Ji (cont) 
•  Formal errors: 

•  For a ~uniform array (~same sensitivity on all baselines, ~same 
calibration magnitude on all antennas) and point-like calibrator: 

 
•  Calibration error decreases with increasing calibrator strength and 

square-root of Nant (c.f. baseline-based calibration). 
•  Other properties of the antenna-based solution: 

–  Minimal degrees of freedom (Nant factors, Nant(Nant-1)/2 measurements) 
–  Net calibration for a baseline involves a phase difference, so absolute 

directional information is lost 
–  Closure… 

σ Ji
=

1
Vij

mod 2 J j
2
σ ij,Δt
2

j≠i
∑

σ Ji
≈

σ ij,Δt

V mod J j
2

Nant −1( )
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Antenna-based Calibration and Closure 
•  Success of synthesis telescopes relies on antenna-based calibration  

–  Fundamentally, any information that can be factored into antenna-based terms, 
could be antenna-based effects, and not source visibility 

–  For Nant > 3, source visibility information cannot be entirely obliterated by any 
antenna-based calibration 

•  Observables independent of antenna-based calibration: 
–  Closure phase (3 baselines): 

–  Closure amplitude (4 baselines): 
  

•  Baseline-based calibration formally violates closure! 
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Reference Antenna 
•  Since the “antenna-based” phase solution is derived from antenna phase 

differences, we do not measure phase absolutely 
–  relative astrometry 

•  Phase solutions typically referred to a specific antenna, the refant, which is 
assumed to have constant phase (zero, in both polarizations) 
–  refant typically near array center 
–  The refant’s phase variation distributed to all other antennas’ solutions 
–  For adequate time sampling, ensures reliable interpolation of phase, 

without ambiguity (c.f. arbitrary phase offsets between solutions) 
–  Asserts stable cross-hand phase frame (which must be calibrated) 

•  Problems: 
–  A single good refant not always available over whole observation, due 

to flagging, etc. 
–  Cross-hand phase at refant may not, in fact, be stable… 
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Corrected Visibility 

•  Visibility… 

 
•  …and weights! 

 
–  (calibrate the sigmas) 
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Vij
obs = JiJ j

*Vij
true    →    Vij
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−1J j
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What Is Delivered by a Synthesis Array? 
•  An enormous list of complex visibilities!  (Enormous!) 

–  At each timestamp (~1-10s intervals):  N(N-1)/2 baselines 
•  EVLA:  351baselines 
•  VLBA:  45 baselines 
•  ALMA:  1225-2016 baselines 

–  For each baseline:  up to 64 Spectral Windows (“spws”, “subbands” or “IFs”) 
–  For each spectral window:  tens to thousands of channels 
–  For each channel: 1, 2, or 4 complex correlations (polarizations) 

•  EVLA or VLBA:  RR or LL or (RR,LL), or (RR,RL,LR,LL) 
•  ALMA:  XX or YY or (XX,YY) or (XX,XY,YX,YY) 

–  With each correlation, a weight value and a flag (T/F) 
–  Meta-info: Coordinates, antenna, field, frequency label info  

•  Ntotal = Nt x Nbl x Nspw x Nchan x Ncorr visibilities 
–  ~few 106 x Nspw x Nchan x Ncorr vis/hour   à10s to 100s of GB per observation 



A Typical Dataset (Polarimetry) 

•  Array: 
–  EVLA D-configuration (Apr 2010) 

•  Sources: 
–  Science Target:  3C391 (7 mosaic pointings) 
–  Near-target calibrator: J1822-0938 (~11 deg from target) 
–  Flux Density calibrator: 3C286 
–  Instrumental Polarization Calibrator: 3c84 

•  Signals: 
–  RR,RL,LR,LL correlations 
–  One spectral window centered at 4600 MHz, 128 MHz bandwidth, 64 channels 
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The Array 
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UV-coverages 

3C286  
Flux Density 

J1822-0938 
Gain Calibrator 

3C391 
Science Target 

3C84 
Instr. Poln Calibrator 



28 

The Visibility Data   (source colors) 
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The Visibility Data (baseline colors) 
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The Visibility Data (baseline colors) 
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The Visibility Data (baseline colors) 
 

Baselines to 
antenna ea21 
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A Single Baseline – Amp (source colors) 
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A Single Baseline – Phase (source colors) 
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A Single Baseline – 2 scans on 3C286 
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Single Baseline, Single Integration 
Visibility Spectra (4 correlations) 

baseline ea17-ea21 
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Single Baseline, Single Scan 
Visibility Spectra (4 correlations) 

baseline ea17-ea21 
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Single Baseline, Single Scan (time-averaged) 
Visibility Spectra (4 correlations) 

baseline ea17-ea21 
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Data Examination and Editing 
•  After observation, initial data examination and editing very important 

–  Will observations meet goals for calibration and science requirements? 
•  What to edit (much of this is now automated): 

–  Some real-time flagging occurred during observation (antennas off-source, LO 
out-of-lock, etc.).  Any such bad data left over?  (check operator’s logs) 

–  Any persistently ‘dead’ antennas (check operator’s logs) 
–  Periods of especially poor weather?  (check operator’s log) 
–  Any antennas shadowing others?  Edit such data. 
–  Amplitude and phase should be continuously varying—edit outliers 
–  Radio Frequency Interference (RFI)? 

•  Caution: 
–  Be careful editing noise-dominated data. 
–  Be conservative: those antennas/timeranges which are obviously bad on 

calibrators are probably (less obviously) bad on weak target sources—edit them 
–  Distinguish between bad (hopeless) data and poorly-calibrated data.  E.g., some 

antennas may have significantly different amplitude response which may not be 
fatal—it may only need to be calibrated 

–  Choose (phase) reference antenna wisely (ever-present, stable response) 
•  Increasing data volumes increasingly demand automated editing algorithms… 
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Editing Example 
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Editing Example 

Scan transitions/setup 

Dead antenna   Slew   
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Editing Example 
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Editing Example (before) 
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Editing Example (after) 
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Simple Scalar Calibration Example 
•  Array: 

–  EVLA D-configuration (Apr 2010) 

•  Sources: 
–  Science Target:  3C391 (7 mosaic pointings) 
–  Near-target calibrator: J1822-0938 (~11 deg from target; unknown flux 

density, assumed 1 Jy) 
–  Flux Density calibrator: 3C286  (7.747 Jy, essentially unresolved) 

•  Signals: 
–  RR correlation only for this illustration (total intensity only) 
–  One spectral window centered at 4600 MHz, 128 MHz bandwidth 
–  64 observed spectral channels averaged with normalized bandpass 

calibration applied (this illustration considers only the time-dependent 
‘gain’ calibration) 

–  (extracted from a continuum polarimetry mosaic observation) 
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Views of the Uncalibrated Data 
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Views of the Uncalibrated Data 
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Views of the Uncalibrated Data 
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Uncalibrated Images 

J1822-0938 
(calibrator) 

3C391 
(science) 
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Rationale for Antenna-based Calibration 
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The Calibration Process 
•  Solve for antenna-based gain factors for each scan on all calibrators 

(Vmod=S for f.d. calibrator; Vmod=1.0 for others) : 

•  Bootstrap flux density scale by enforcing gain consistency over all 
calibrators: 
 

 
•  Correct data (interpolate, as needed): 

mod
ijji

obs
ij VGGV *=

( ) 0.1 
,

=
antennastimeii calfdGG

obs
ijji

cor
ij VGGV 1*1 −−=
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The Antenna-based Calibration Solution 

•  Reference antenna: ea21  (phase = 0) 



ea17 

ea12 

ea21 (refant) 
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The Antenna-based Calibration Solution 
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The Antenna-based Calibration Solution 

•  3C286’s gains have correct scale 
•  Thus, J1822-0938 is 2.32 Jy (not 1.0 Jy, as assumed) 

3C286 

J1822-0938 
(assuming 1.0 Jy) 



54 

Effect of Antenna-based Calibration: 
Phase (before) 
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Effect of Antenna-based Calibration 
Phase (after) 
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Effect of Antenna-based Calibration 
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Effect of Antenna-based Calibration 
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Effect of Antenna-based Calibration 
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Effect of Antenna-based Calibration 
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Effect of Antenna-based Calibration 
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Effect of Antenna-based Calibration 
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Calibration Effect on Imaging 

J1822-0938 
(calibrator) 

3C391 
(science) 
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Calibration Effect on Imaging 

J1822-0938 
(calibrator) 

3C391 
(science) 
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Calibration Effect on Imaging 

J1822-0938 
(calibrator) 

3C391 
(science) 
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Calibration Effect on Imaging 

J1822-0938 
(calibrator) 

3C391 
(science) 

•  Dave Wilner’s lecture “Imaging and Deconvolution” (this afternoon!) 
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Evaluating Calibration Performance 
•  Are solutions continuous? 

–  Noise-like solutions are just that—noise (beware:  calibration of pure 
noise generates a spurious point source) 

–  Discontinuities indicate instrumental glitches (interpolate with care) 
–  Any additional editing required? 

•  Are calibrator data fully described by antenna-based effects? 
–  Phase and amplitude closure errors are the baseline-based residuals 
–  Are calibrators sufficiently point-like?  If not, self-calibrate:  model 

calibrator visibilities (by imaging, deconvolving and transforming) and re-
solve for calibration; iterate to isolate source structure from calibration 
components 
•  Crystal Brogan’s lecture:  “Advanced Calibration” (Thursday) 

•  Any evidence of unsampled variation?  Is interpolation of solutions 
appropriate? 
–  Reduce calibration timescale, if SNR permits 

•  Greg Taylor’s lecture: “Error Recognition” (Monday) 
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Summary of Scalar Example 
•  Dominant calibration effects are antenna-based 

•  Minimizes degrees of freedom 
•  More precise 
•  Preserves closure 
•  Permits higher dynamic range safely! 

•  Point-like calibrators effective 
•  Flux density bootstrapping 
 



Generalizations 
•  Full-polarization Matrix Formalism 
•  Calibration Effects Factorization 
•  Calibration Heuristics and ‘Bootstrapping’ 
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Full-Polarization Formalism (Matrices!) 
•  Need dual-polarization basis (p,q) to fully sample the incoming EM wave 

front, where p,q = R,L (circular basis) or p,q = X,Y (linear basis): 

•  Devices can be built to sample these circular (R,L) or linear (X,Y) basis 
states in the signal domain (Stokes Vector is defined in “power” 
domain) 

•  Some components of Ji involve mixing of basis states, so dual-
polarization matrix description desirable or even required for proper 
calibration  
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Full-Polarization Formalism:  Signal Domain 
•  Substitute: 

•  The Jones matrix thus corrupts the vector wavefront signal as follows:  
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Full-Polarization Formalism: Correlation - I 
•  Four correlations are possible from two polarizations.  The coherency 

matrix represents correlation in the matrix formalism: 

•  Observed visibilities: 
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Full-Polarization Formalism: Correlation - II 
•  And finally, for fun, expand the correlation of corrupted signals: 

 
•  UGLY, but we rarely, if ever, need to worry about algebraic detail at 

this level---just let this occur “inside” the matrix formalism, and work 
(think) with the matrix short-hand notation 

•  Synthesis instrument design driven by minimizing off-diagonal terms  
in Ji 
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The Matrix Measurement Equation 
•  We can now write down the Measurement Equation in matrix notation: 

 
–  Ic(l,m) is the 2x2 matrix of Stokes parameter combinations 

corresponding to the coherency matrix of correlations (basis-
dependent) 

•  …and consider how the Ji are products of many effects. 


Vij

obs =

Ji

Ic (l,m)


J j
*+( )e−i2π uijl+vijm( ) dl dm
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∫
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A Dictionary of Calibration Components 
•  Ji contains many components, in principle: 

•  F = ionospheric effects 
•  T = tropospheric effects 
•  P = parallactic angle 
•  X = linear polarization position angle 
•  E = antenna voltage pattern 
•  D = polarization leakage 
•  G = electronic gain 
•  B = bandpass response 
•  K = geometric compensation 
•  M, A = baseline-based corrections 

•  Order of terms follows signal path (right to left) 
•  Each term has matrix form of Ji with terms embodying its particular 

algebra (on- vs. off-diagonal terms, etc.) 
•  Direction-dependent terms must stay inside FT integral 
•  ‘Full’ calibration is traditionally a bootstrapping process wherein 

relevant terms (usually a minority of above list) are considered in 
decreasing order of dominance, relying on approximate separability 

iiiiiiiiii FTPXEDGBKJ
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Ionospheric Effects, F 

•  The ionosphere introduces a dispersive path-length offset: 
•  More important at lower frequencies (<5 GHz) 
•  Varies more at solar maximum and at sunrise/sunset, when ionosphere is most 

active and variable 
•  Direction-dependent within wide field-of-view 

•  The ionosphere is birefringent: Faraday rotation: 

•  as high as 20 rad/m2 during periods of high solar activity will rotate linear 
polarization position angle by ε = 50 degrees at 1.4 GHz 

•  Varies over the array, and with time as line-of-sight magnetic field and electron 
density vary, violating the usual assumption of stability in position angle calibration 

•  Book: Chapter 5, sect. 4.3,4.4,9.3; Chapter 6, sect. 6; Chapter 29, sect.3 
–  Michiel Brentjens lecture:  “Polarization in Interferometry” (next!) 
–  Tracy Clark’s lecture:  “Low Frequency Interferometry” (Monday)  
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Tropospheric Effects, T 

•  The troposphere causes polarization-independent amplitude and phase 
effects due to emission/opacity and refraction, respectively 

•  Up to 2.3m excess path length at zenith compared to vacuum 
•  Higher noise contribution, less signal transmission:  Lower SNR 
•  Most important at ν > 20 GHz where water vapor and oxygen absorb/emit 
•  Zenith-angle-dependent (more troposphere path nearer horizon) 
•  Clouds, weather = variability in phase and opacity; may vary across array 
•  Water vapor radiometry (estimate phase from power measurements) 
•  Phase transfer from low to high frequencies (delay calibration) 

•  Book: Chapter 5: sect. 4.3,4.4; Chapter 28, sect. 3  
•  ALMA! 

–  Crystal Brogan’s lecture:  “Advanced Calibration Techniques” (Thursday) 
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Parallactic Angle, P 

•  Changing orientation of sky in telescope’s field of view 
•  Constant for equatorial telescopes 
•  Varies for alt-az-mounted telescopes: 

•  Rotates the position angle of linearly polarized radiation 
•  Analytically known, and its variation provides leverage for determining 

polarization-dependent effects 
	



•  Book:  Chapter 6, sect. 2.1 
•  Michiel Brentjens’ lecture:  “Polarization in Interferometry” (next!) 
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Linear Polarization Position Angle, X 

•  Configuration of optics and electronics (and refant) causes a net linear 
polarization position angle offset 

•  Can be treated as an offset to the parallactic angle, P 
•  Calibrated by registration with a strongly polarized source with 

known polarization position angle (e.g., flux density calibrators) 
•  For circular feeds, this is a phase difference between the R and L 

polarizations, which is frequency-dependent (a R-L phase bandpass) 
•  For linear feeds, this is the orientation of the dipoles in the frame of 

the telescope 

•  Michiel Brentjens’ lecture:  “Polarization in Interferometry” (next!) 
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Antenna Voltage Pattern, E 

•  Antennas of all designs have direction-dependent gain within field-of-view 
•  Important when region of interest on sky comparable to or larger than λ/D 
•  Important at lower frequencies where radio source surface density is greater and 

wide-field imaging techniques required 
•  Beam squint:  Ep and Eq offset, yielding spurious polarization 
•  Sky rotates within field-of-view for alt-az antennas, so off-axis sources move 

through the pattern  
•  Direction dependence of polarization leakage (D) may be included in E (off-diagonal 

terms then non-zero) 

•  Shape and efficiency of the voltage pattern may change with zenith angle:   
‘gain curve’ 

•  Book: Chapters 19, 20 
–  Steve Myers’ lecture:  “Wide Field Imaging I” (Thursday) 
–  Brian Mason’s lecture:  “Wide Field Imaging II” (Monday) 
–  Urvashi Rao Venkata’s lecture:  “Wide Bandwidth Imaging” (Monday) 
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Polarization Leakage, D 

•  Antenna & polarizer are not ideal, so orthogonal polarizations not 
perfectly isolated 

•  Well-designed feeds have d ~ a few percent or less 
•  A geometric property of the optics design, so frequency-dependent 
•  For R,L systems, total-intensity imaging affected as ~dQ, dU, so only important 

at high dynamic range (Q,U,d each ~few %, typically) 
•  For R,L systems, linear polarization imaging affected as ~dI, so almost always 

important 
•  For small arrays (no differential parallactic angle coverage), only relative D 

solution is possible from standard linearized solution, so parallel-hands cannot 
be corrected absolutely (closure errors) 

•  Best calibrator: Strong, point-like, observed over large range of 
parallactic angle (to separate source polarization from D) 

•  Book: Chapter 6 
•  Michiel Brentjens’ lecture:  “Polarization in Interferometry” (next!) 
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“Electronic” Gain, G 

•  Catch-all for most amplitude and phase effects introduced by antenna 
electronics and other generic effects 

•  Most commonly treated calibration component 
•  Dominates other effects for most standard observations 
•  Includes scaling from engineering (correlation coefficient) to radio astronomy 

units (Jy), by scaling solution amplitudes according to observations of a flux 
density calibrator 

•  Includes any internal system monitoring, like EVLA switched power calibration 
•  Often also includes tropospheric and (on-axis) ionospheric effects which are 

typically difficult to separate uniquely from the electronic response 
•  Excludes frequency dependent effects (see B) 

•  Best calibrator: strong, point-like, near science target; observed often 
enough to track expected variations 
–  Also observe a flux density standard 

•  Book: Chapter 5 
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Bandpass Response, B 

•  G-like component describing frequency-dependence of antenna 
electronics, etc. 

•  Filters used to select frequency passband not square 
•  Optical and electronic reflections introduce ripples across band 
•  Often assumed time-independent, but not necessarily so 
•  Typically (but not necessarily) normalized 
•  ALMA Tsys is a “bandpass” 

•  Best calibrator: strong, point-like; observed long enough to get 
sufficient per-channel SNR, and often enough to track variations 

•  Book: Chapter 12, sect. 2 
•  Mark Lacy’s lecture: “Spectral Line Data Analysis” (today!) 
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Geometric Compensation, K 
•  Must get geometry right for Synthesis Fourier Transform relation to work in 

real time 
•  Antenna positions (geodesy) 
•  Source directions (time-dependent in topocenter!) (astrometry) 
•  Clocks  
•  Electronic path-lengths introduce delays (polarization, spw differences) 
•  Longer baselines generally have larger relative geometry errors, especially if clocks are 

independent (VLBI) 
•  Importance scales with frequency 

•  K is a clock- & geometry-parameterized version of G (see chapter 5, section 
2.1, equation 5-3 & chapters 22, 23) 

•  All-sky observations used to isolate geometry parameters 

•  Book: Chapter 5, sect. 2.1;  Chapters 22, 23 
–  Adam Deller’s lecture: “Very Long Baseline Interferometry” (Thursday) 
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Non-closing Effects: M, A 
•  Baseline-based errors which do not decompose into antenna-based 

components 
–  Digital correlators designed to limit such effects to well-understood and 

uniform (not dependent on baseline) scaling laws (absorbed in f.d. calibration) 
–  Simple noise (additive) 
–  Additional errors can result from averaging in time and frequency over variation 

in antenna-based effects and visibilities (practical instruments are finite!) 
–  Instrumental polarization effects in parallel hands  
–  Correlated “noise” (e.g., RFI) 
–  Difficult to distinguish from source structure (visibility) effects 
–  Geodesy and astrometry observers consider determination of radio source 

structure—a baseline-based effect—as a required calibration if antenna positions 
are to be determined accurately 

–  Separate factors for each element of the coherency matrix; M multiplies, A adds 
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 Solving the Measurement Equation 
•  Formally, solving for any antenna-based visibility calibration 

component is always the same general non-linear fitting problem: 

 
–  Observed and Model visibilities are corrected/corrupted by available 

prior calibration solutions 
–  Resulting solution used as prior in subsequent solves, as necessary 
–  Each solution is relative to priors and assumed source model 
–  Iterate sequences, as needed à generalized self-calibration 

•  Viability and accuracy of the overall calibration depends on isolation 
of different effects using proper calibration observations, and appropriate 
solving strategies 


Vij

corrected⋅obs =

Ji

Vij

corrupted⋅mod

J j
*+



Measurement Equation Heuristics 
•  When considering which effects are relevant to a particular observation, 

and how to sequence calibration determination, it is convenient to express 
the Measurement Equation in a “Heuristic Operator” notation: 

  Vobs = M B G D E X P T F  Vtrue + A 
 

•  Rigorous notation, antenna-basedness, etc., suppressed 
•  Usually, only a subset of terms are considered, though highest-

dynamic range observations may require more 
•  An expression of a “Calibration Model” 

–  Order is important (handled in software) 
–  Solve for terms in decreasing order of dominance, iterate to isolate 
–  NB: Non-trivial direction-dependent solutions involve convolutional 

treatment of the visibilities, and is coupled to the imaging and 
deconvolution process---see advanced imaging lectures….) 

Fourteenth Synthesis Imaging Workshop 86 
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Decoupling Calibration Effects 
•  Multiplicative gain (G) term will soak up many different effects;  known 

priors should be compensated for explicitly, especially when direction-
dependent differences (e.g., between calibrator and target) will limit the 
accuracy of calibration transfer: 
–  Zenith angle-dependent atmospheric opacity, phase (T,F) 
–  Zenith angle-dependent gain curve (E) 
–  Antenna position errors (K) 

•  Early calibration solves (e.g., G) are always subject to more subtle, 
uncorrected effects  
–  E.g., instrumental polarization (D), which introduces gain calibration 

errors and causes apparent closure errors in parallel-hand correlations 
–  When possible, iterate and alternate solves to decouple effects… 
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Calibration Heuristics – Spectral Line 
Total Intensity Spectral Line (B=bandpass, G=gain):  

Vobs = B G Vtrue 
1.  Preliminary Gain solve on B-calibrator:   

Vobs = GB Vmod 

2.  Bandpass Solve (using GB) on B-calibrator (then discard GB):   
Vobs = B (GB Vmod) 

3.  Gain solve (using inverse of B) on all calibrators: 
(B’  Vobs) = G Vmod 

4.  Flux Density scaling: 
G  Gf     (enforce gain consistency) 

5.  Correct with inverted (primes) solutions: 
Vcor = Gf’ B’  Vobs 

6.  Image! 
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Calibration Heuristics – Polarimetry 
Polarimetry (B=bandpass, G=gain, D=instr. poln, X=pos. ang., P=parallactic ang.):  

Vobs = B G D X P Vtrue 
1.  Preliminary Gain solve on B-calibrator:   

Vobs = GB Vmod 

2.  Bandpass (B) Solve (using GB) on B-calibrator (then discard GB):   
Vobs = B (GB Vmod) 

3.  Gain (G) solve (using parallactic angle P,  inverse of B) on calibrators: 
(B’  Vobs) = G (PVmod) 

4.  Instrumental Polarization (D) solve (using P, inverse of G,B) on 
instrumental polarization calibrator: 

 (G’ B’  Vobs) = D (P Vmod) 
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Calibration Heuristics – Polarimetry 
 

5.  Polarization position angle solve (using P, inverse of D,G,B) on 
position angle calibrator: 

(D’ G’ B’  Vobs) = X (P Vmod) 
6.  Flux Density scaling: 

G  Gf     (enforce gain consistency) 

7.  Correct with inverted solutions: 
Vcor = P’ X’ D’ Gf’ B’  Vobs 

8.  Image! 

•  To use external priors, e.g., T (opacity), K (ant. position errors),          
E (gaincurve), revise step 3 above as: 
3.   (B’ K’  Vobs) = G (E P T Vmod) 
–  and carry T, K, and E forward along with G to subsequent steps 
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New Calibration Challenges (EVLA,  ALMA)  
•  ‘Delay-aware’ gain (self-) calibration 

•  Troposphere and Ionosphere introduce time-variable phase effects which are easily 
parameterized in frequency and should be (c.f. merely sampling the calibration in 
frequency) 

•  Frequency-dependent Instrumental Polarization 
•  Contribution of geometric optics is wavelength-dependent (standing waves) 

•  Voltage pattern 
–  Frequency-dependence voltage pattern 
–  Wide-field accuracy (sidelobes, rotation) 
–  Instrumental polarization (incl. frequency-dependence) 

•  WVR 
•  RFI mitigation 
•  Pipeline Heuristics 
•  Generalized refant algorithms 

àIncreased sensitivity:  Can implied dynamic range be reached by  
calibration and imaging techniques?  
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Summary 
•  Determining calibration is as important as determining source 

structure—can’t have one without the other 
•  Data examination and editing an important part of calibration 
•  Calibration dominated by antenna-based effects 

–   permits efficient, accurate and defensible separation of calibration 
from astronomical information (satisfies closure) 

•  Full calibration formalism algebra-rich, but is modular 
•  Calibration an iterative process, improving various components in 

turn, as needed 
•  Point sources are the best calibrators 
•  Observe calibrators according requirements of calibration 

components 


