Calvert's Math in Focus Bar Model Guide

As set forth in the Enrollment Agreement, this lesson manual is the property of Calvert Education Services, LLC. and is leased for use only with the student enrolled.
© 2013 by Calvert Education Services, LLC. All rights reserved, including the right to reproduce this book or portions thereof in any form.

Calvert Education Services • 10713 Gilroy Road, Suite B • Hunt Valley, Maryland 21031
Introduction iv
Addition
Putting Sets Together 1
Part-Part-Whole 2
Comparisons with Addition 3
Subtraction
Taking Away Sets 4
Part-Part-Whole 5
Comparisons with Subtraction 6
Multiplication
Equal Groups 7
Comparisons with Multiplication 8
Division
How Many in Each Group? 9
How Many Groups? 10
Comparisons with Division 11
Multi-Step Problems
Addition and Subtraction 12
Addition and Subtraction, With Whole Known 13
Building on a Bar with Addition and Subtraction 14
Multiplication 15
Division 16
Three-Step Comparisons 17
Using Multiple Bar Models 18
Working Backward 21

Fractions

Adding Like Fractions22Subtracting Like Fractions 23
Finding Equivalent Fractions 24
Comparing Like Fractions 25
Ordering Like Fractions 26
Comparing Unlike Fractions 27
Finding the Fractional Part of a Set 28
Adding Unlike Fractions 29
Adding Mixed Numbers 30
Subtracting Mixed Numbers 31
Multiplying Proper Fractions 32
Multiplying Improper Fractions by Proper Fractions 34
Multiplying Mixed Numbers by Whole Numbers 35
Dividing Whole Numbers by Proper Fractions 36
Dividing Fractions by Fractions 37
Dividing Fractions by Whole Numbers 38
Rates
Rates 39
Percents
Percents. 41
Algebra
Adding Like Terms 43
Subtracting Like Terms 43
Using Variables to Write Expressions 44
Simplifying Algebraic Expressions 45
Expanding Algebraic Expressions 46
Simplifying with Multiple Terms and Decimals 47
Expanding Algebraic Expressions with Fractional Factors 48
Factoring Algebraic Expressions with Multiple Variables 49
Elimination Method 50

Bar models are designed to assist students in solving word problems and other math problems that require higher level thinking. They are tools for students to determine which operation to use and how to understand the different parts of a multi-step math problem. They also help students visualize fractions and algebraic concepts.

Bar models are part of the Singapore Math method that helps students gain a deeper understanding of the problems and the steps of the solutions. For basic operations, bar models are used until students gain mastery. Then they no longer need to use the bar models to help them find the solution. If your student has gained a full understanding of a concept, he does not have to create a bar model for every problem assigned in the textbook. However, it is recommended that he still use a bar model at least twice during relevant lessons to reinforce the skill of using bar models so he is prepared when new kinds of bar models are presented for different concepts.

This companion can be used in several ways:

- Use as a reference guide to learn new types of bar models.
- Review the foundational use of bar models in prior grades.
- Preview the development of bar models over several grades.

In the Table of Contents, the color-coded numbers to the left of the titles represent the grade in which each kind of bar model is used. Since bar modeling skills build on one another, students will also use the bar modeling skills from previous grade(s). If your student has not been exposed to bar modeling or is struggling with a particular type of bar model, look at the models in previous grade(s) and work through those steps.

Students who use bar models to solve problems are able to visualize solutions much more clearly and understand what they need to do in order to arrive at those solutions. Learning and applying barmodeling techniques can help your student become a more confident and efficient problem-solver.

If you require additional assistance with bar modeling, please contact the Calvert Education Counselors at 1-888-487-4652, option 4.

Putting Sets Together

Example

Micah has 11 crayons.
He finds 7 more.
How many crayons does Micah have now?

Write an answer sentence.	Micah has ___ crayons now.
Draw a bar model.	Think: Unequal sets are being put together.
Draw a bar to show the first set.	
Draw a bar to show joining the second set.	
Label the diagram with what you know.	
Show what you need to find.	
Use the completed bar model to help you solve the problem.	Think: I know how many are in each set. I need to find the whole. I can add the sets. $11+7=18$
Complete the answer sentence.	Micah has $\underline{18}$ crayons now.

Part-Part-Whole

Example

Amy has 6 dolls.
She has 9 stuffed bears.
How many toys does Amy have in her collection?

Write an answer sentence.	Amy has ___ toys in her collection.
Draw a bar model.	Think: There is a whole group. It has two unequal parts.
Draw a bar to show Amy's toy collection.	
Mark the bar in two unequal parts.	
Label the diagram with what you know. Show what you need to find.	
Use the completed bar model to help you solve the problem.	Think: I know how many are in each part. I need to find the whole. I can add the parts. $6+9=15$
Complete the answer sentence.	Amy has 15 toys in her collection.

Comparisons with Addition

Example

Kiri has 138 beads in her collection.
Tiffany has 58 more beads in her collection.
How many beads does Tiffany have?

Taking Away Sets

Example

Bella finds 12 seashells on the beach.
She gives 7 seashells to her friends.
How many seashells does Bella have left?

Part-Part-Whole

Example

Two pages of a stamp collection have 19 stamps.
There are 12 stamps on the first page.
How many stamps are on the other page?

Comparisons with Subtraction

Example

David has 56 crayons.
Ryan has 14 fewer crayons.
How many crayons does Ryan have?

Multiplication

Equal Groups

Example

Mr. Ing needs new tires for 4 bikes.
Each bike has 2 tires.
How many tires does Mr. Ing need?

The unitary
method is used to find the value of 1 unit in order to find the value of multiple units in a problem.

Draw a bar to show the first group (one bike).

Add more bars to show all the groups (four bikes).

Label the diagram with what you know. Since each group is the same, you only need to label the first group.

Show what you need to find.
Mr. Ing needs \qquad tires.

Think: Equal groups are being put together.
\square

There are 4 bikes.

Think: I know how many are in each equal group. I need to find the whole.

I can multiply.

$$
\begin{aligned}
1 \text { unit } & \rightarrow 2 \text { tires } \\
4 \text { units } & \rightarrow 4 \times 2=8 \text { tires }
\end{aligned}
$$

Complete the answer sentence.

Mr. Ing needs 8 tires.

Comparisons with Multiplication

Example

Donna makes 6 greeting cards.
Her sister makes 3 times as many greeting cards.
How many greeting cards does her sister make?

Division

How Many in Each Group?

Example

There are 20 books.
Brennan makes 5 equal piles of books.
How many books are in each pile?

Use this bar model when you know the number of equal groups and want to find the number of objects in each group.

Think: A whole is being divided into equal groups.

There are 5 piles of books.

Label the diagram with what you know.

Show what you need to find.

Think: I know how many are in the whole.
I know the number of equal groups.
I can divide.
5 units $\rightarrow 20$ books
1 unit $\rightarrow 20 \div 5=4$ books
Complete the answer sentence.
There are $\underline{4}$ books in each pile.

How Many Groups?

Example

An animal shelter has 12 puppies.
Each bag of food feeds 3 puppies.
How many bags of food does the shelter need?

Comparisons with Division

Example

Jake ate 100 peas.
His little brother ate half as many peas.
How many peas did his little brother eat?

Mult-Step Problems

Addition and Subtraction

Example

Mr. Amani sorts 156 letters.
Ms. Jackson sorts 24 fewer letters.
How many letters do they sort in all?

Bar models may
contain more
than one question
mark, even though you are looking for
a single answer.

Draw a bar model.

Draw bars to show Mr. Amani's letters and Ms.
Jackson's letters. Ms. Jackson sorts fewer letters, so her bar should be shorter.

Label the diagram with what you know, and show what you need to find. Use a vertical brace to show the total.

They sort \qquad letters in all.

Think: There are two groups of letters. They are being compared.

Think: Before I can find how many letters they sort in all, I need to find how many letters Ms. Jackson sorts.

I can subtract.
$156-24=132$
Ms. Jackson sorts 132 letters.

Use the completed bar model to help you solve the problem.

Think: I know how many letters are sorted by Mr. Amani and by Ms. Jackson. I need to find the total number of letters sorted.

I can add.
$156+132=288$

Complete the answer sentence.
They sort $\underline{288}$ letters in all.

Addition and Subtraction, With Whole Known

Example

There are 1,347 soccer fans at the game.
682 of the fans are adults.
How many fewer children than adults are at the game?

Building on a Bar with Addition and Subtraction

Example

A pizza chef has 571 pounds of mozzarella cheese and 458 pounds of provolone cheese.
He bought 259 more pounds of mozzarella.
How much more mozzarella does he have than provolone?

Multiplication

Example

Miko sold 8 cups of lemonade.
Maya sold 3 times as many.
How many cups of lemonade did they sell in all?

Division

Example

April and Dante made a total of 68 bracelets.
Dante made 3 times as many as April.
How many bracelets did Dante make?

Three-Step Comparisons

Example

Caleb has 3 times as much money as Dana.
Amber has $\$ 18$ less than Caleb.
Dana has \$63.
How much money does Amber have?

Write an answer sentence.

Draw a bar model.

Draw bars to show the money amounts for Caleb, Dana, and Amber. Caleb has 3 times as much money as Dana, so his bar should be 3 times as long as Dana's. Amber has less money than Caleb, so her bar should be shorter than Caleb's.

Label the diagram with what you know, and show what you need to find.

Use the bar model to solve the first step of the problem.

Amber has \$ -.

Think: There are three groups of money.
They are being compared.

Dana

Amber

Think: Before I can find much money Amber has, I need to find how much money Caleb has.

There are 3 equal groups of $\$ 63$, so I can use the unitary method and multiply.

1 unit $\rightarrow \$ 63$
3 units $\rightarrow 3 \times \$ 63=\$ 189$
Caleb has \$189.
Think: I know how much money Caleb has.
I know that Amber has $\$ 18$ less than Caleb.
I can subtract.
$189-18=171$
Amber has \$171.

Using Multiple Bar Models

Example 1

Kailynn has \$97.
She wants to buy 5 CDs that each cost $\$ 16$.
How much money will Kailynn have left?

Write an answer sentence.	Kailynn will have \$___ left.
Draw and use a bar model to find the total cost of the CDs.	Think: First, I need to find the total cost of the CDs. Then I can find out how much money Kailynn will have left.
Draw a bar to show the cost of the first CD. Add more bars to represent all of the CDs.	
Label the diagram with what you know and what you need to find.	
Use the first completed bar model to solve the first step of the problem.	Think: I know the cost of each CD. I need to find the cost of all of the CDs. I can use the unitary method and multiply. 1 unit $\rightarrow \$ 16$ 5 units $\rightarrow 5 \times \$ 16=\$ 80$ The CDs cost a total of $\$ 80$.

Draw and use a bar model to find how much money
Kailynn will have left.
Draw a bar to show how much money Kailynn has. Mark the bar in two unequal parts. One part shows the cost of the CDs, and the other part shows the amount she has left over.

Label the diagram with what you know and what you need to find.

Think: I know how much money Kailynn has and the cost of the CDs. I need to find how much money she has left over.

I can subtract.
$97-80=17$
Complete the answer sentence.
Kailynn will have \$17 left.

Using Multiple Bar Models

Example 2

Eva is making lunch for 6 people.
Each person will get 4 carrots and 3 potatoes.
How many vegetables does Eva need in all?

Write an answer sentence.	Eva needs ___ vegetables in all.	
Draw and use a bar model to find how many vegetables each person will get.	Think: First, I need to find the number of vegetables each person will get. Then I can find out how many vegetables Eva needs for 6 people.	
Draw a bar to represent each person's carrots. Join it with a bar that shows each person's potatoes.	1 person	
Label the diagram with what you know and what you need to find.	1 person	
Use the first completed bar model to solve the first step of the problem.	Think: I know how many carrots and how many potatoes each person gets. I need to find the total number of vegetables. I can add.	

Draw and use a bar model to find how many vegetables Eva needs for 6 people.

Draw a bar to represent each person's vegetables. Add more bars to show all 6 people.

Label the diagram with what you know and what you need to find.

Use the completed bar model and the unitary method to help you solve the problem.

Think: I know how many vegetables each person gets. I need to find the total number of vegetables. I can use the unitary method and multiply.

$$
\begin{aligned}
& 1 \text { unit } \rightarrow 7 \text { vegetables } \\
& 6 \text { units } \rightarrow 6 \times 7=42 \text { vegetables }
\end{aligned}
$$

Eva needs 42 vegetables in all.

Using Multiple Bar Models

Example 3

Pam bought 4 boxes of candy.
Each box contains 24 pieces of candy.
She separates the candy into bags of 6 pieces each. How many bags does she use?

Write an answer sentence.	Pam uses ___ bags.
Draw and use a bar model to find how many total pieces of candy.	Think: First, I need to find the total number of candy pieces. Then I can find how many bags she uses.
Draw a bar to show the equal groups.	
Label the diagram with what you know and what you need to find.	
Use the first completed bar model to solve the first step of the problem.	Think: I know how many boxes and how many pieces of candy in each box. I need to find the total number of pieces. I can use the unitary method and multiply. 1 unit $\rightarrow 24$ pieces 4 units $\rightarrow 4 \times 24=96$ pieces There are 96 total pieces of candy.
Draw and use a bar model to find how many bags Pam uses.	
Draw a bar to show the first and last groups. Use dotted lines to represent the unknown number of groups in between.	
Label the diagram with what you know and what you need to find.	
Use the completed bar model to help you solve the problem.	Think: I know how many total pieces of candy. I know how many pieces are in each bag. I can divide. $96 \div 6=16$
Complete the answer sentence.	Pam uses 16 bags.

Working Backward

Example

Together, Josh and Aiden have 150 baseball cards.
Aiden gave 12 of his cards to Josh, and now Josh has twice as many cards as Aiden.
How many baseball cards did they each have at the beginning?

Write an answer sentence.	At the beginning, Josh had \qquad baseball cards and Aiden had \qquad baseball cards.
Think: There are two sets of cards being compared. I Josh now has twice as many cards as Aiden. Fi Then I can find out how many cards they had	how many the boys have altogether, and I know that ed to find how many cards Aiden and Josh have now. beginning.
Draw and use a bar model to find how many cards Jo Think: I know that Josh and Aiden together have 150 baseball cards. I also know that Josh now has twice as many cards as Aiden. There are 3 equal groups, so I can divide the total by 3. $150 \div 3=50$ Aiden has 50 cards now. Josh has twice as many cards, or $2 \times 50=100$ cards now.	Aiden have now.
Draw and use a bar model to find how many cards Jo Think: Before Aiden gave cards to Josh, Josh had fewer cards and Aiden had more cards. I can subtract to find how many cards Josh had, and add to find how many cards Aiden had. Josh: $100-12=88$ Aiden: $50+12=62$	Aiden had at the beginning. Before:
Complete the answer sentence.	At the beginning, Josh had 88 baseball cards and Aiden had 62 baseball cards.

Fractions

Adding Like Fractions

Example

Billy ate $\frac{2}{4}$ of a giant cookie.
Maurice ate $\frac{1}{4}$ of it.
What fraction of the giant cookie did they eat in all?

Write an answer sentence.
Draw a bar model.

Draw a bar to show the entire cookie.

Divide the bar into 4 equal parts. Each part represents a fourth.

Label the diagram with what you know.

Show what you need to find.

Use the completed bar model to help you solve the problem.
Complete the answer sentence.

They ate \square of the giant cookie.

Think: The denominators are the same, so these are like fractions.

Think: I know the fractional amount each person ate. I need to find out how much they ate altogether.
I can add the fractions.
$\frac{2}{4}+\frac{1}{4}=\frac{3}{4}$
They ate $\frac{3}{4}$ of the giant cookie.

Subtracting Like Fractions

Example

Jewel ran $\frac{1}{5}$ of the track before she stops to stretch.
Then she ran more of the track.
She ran $\frac{4}{5}$ of the track in all.
What fraction of the track did Jewel run after her stretch?

Finding Equivalent Fractions

Example

Find an equivalent fraction for $\frac{2}{3}$.

Draw a bar model.

Draw two bars that show $\frac{2}{3}$.

Equally divide each section of the second bar by the same amount.

Think: Because the bar models and the shaded portions are all the same size, I know these fractions are equivalent.

$$
\frac{2}{3}=\frac{4}{6}=\frac{8}{12}
$$

Answer the problem. from equal sized wholes. So, all of my bar models must be the same size.

$\frac{2}{3}$

You can repeat the step to find additional equivalent fractions.

Use the completed bar model to help you solve the problem.

$$
\frac{4}{6} \text { is equivalent to } \frac{2}{3} \text { or } \frac{8}{12} \text { is equivalent to } \frac{2}{3}
$$

Think: When comparing fractions, they must come

Comparing Like Fractions

Example

Chuck and Jill have to read the same book for class.
Chuck reads $\frac{4}{5}$ of the book.
Jill reads $\frac{2}{5}$ of the book.
Who reads more of the book?

Ordering Like Fractions

Example

Put $\frac{2}{5}, \frac{4}{5}$, and $\frac{1}{5}$ in order from least to greatest.

Write an answer sentence.

Draw a bar model.

Draw a bar to represent the first fraction, $\frac{2}{5}$.

Draw a bar to represent the second fraction, $\frac{4}{5}$.

Draw a bar to represent the third fraction, $\frac{1}{5}$.

Use the completed bar model to help you solve the problem.

Complete the answer sentence.

Fractions \qquad and \qquad are ordered from least to greatest.

Think: When ordering like fractions, I only need to compare the numerators.

Think: The more shaded parts of a bar, the greater the value of the fraction.
$\frac{4}{5}$ has the most shaded parts and $\frac{1}{5}$ has the least. Fractions $\frac{1}{\underline{5}}, \frac{2}{5}$, and $\frac{4}{5}$ are ordered from least to greatest.

Comparing Unlike Fractions

Example

Which is greater, $\frac{3}{4}$ or $\frac{2}{6}$?

Finding the Fractional Part of a Set

Example

There are 16 dolls in the collection.
$\frac{3}{4}$ of them are still in the boxes.
How many dolls are still in boxes?

Write an answer sentence.	There are ___ dolls still in boxes.		
Draw a bar model.	Think: I will need to divide my bar by 4 because the denominator is 4.		
Draw and label a bar to show the entire collection.	1 - 16		
Shade $\frac{3}{4}$ of the bar model.	$\xrightarrow{\text { 16 }}$		
Label the diagram to show what you are looking for.	$\xrightarrow{\sim}$ 16		
	\longrightarrow		
	Think: I need to find out how much each segment of the bar is worth. Then I need to find out how much 3 segments are worth.		
Use the completed bar model and the unitary method	4 units $\rightarrow 16$ dolls		
to help you solve the problem.	1 unit $\rightarrow 4$ dolls		
	3 units $\rightarrow 12$ dolls		
	So, $\frac{3}{4}$ of 16 is 12 .		
Complete the answer sentence.	There are 12 dolls still in boxes.		

Adding Unlike Fractions

Example

What is the sum of $\frac{1}{2}$ and $\frac{3}{8}$?
Write an answer sentence.
Draw a bar model.
First find a common denominator.
Draw a bar divided into eighths.
Label and shade $\frac{4}{8}$ on the bar $\frac{3}{8}$ is

Think: Now that the fractions have the same denominator, I can add the numerators. $\frac{4}{8}+\frac{3}{8}=\frac{7}{8}$

Complete the answer sentence.
The sum of $\frac{1}{2}$ and $\frac{3}{8}$ is $\frac{7}{8}$.

Adding Mixed Numbers

Example

Daylynn practices soccer for $2 \frac{1}{2}$ hours a week.
She practices tennis for $1 \frac{2}{3}$ hours a week.
How many hours a week does she practice sports?

Write an answer sentence.	Daylynn practices sports for ___ hours a week.
Draw a bar model.	Think: For me to add these mixed numbers, the fractions must have the same denominator.
Draw a model of the first mixed number, $2 \frac{1}{2}$.	4 -
Draw a model of the second mixed number, $1 \frac{2}{3}$.	$4+\square$
Find a common denominator for the fractions.	
Add additional lines to the fraction portions of your bars to display the new fractions.	
Use the completed bar model to help you solve the problem.	Think: Now that the fractions have the same denominator, I can add the mixed numbers. $\begin{aligned} 2 \frac{1}{2}+1 \frac{2}{3} & =2 \frac{3}{6}+1 \frac{4}{6} \\ & =3 \frac{7}{6} \\ & =4 \frac{1}{6} \end{aligned}$
Complete the answer sentence.	Daylynn practices sports for $4 \frac{1}{6}$ hours a week.

Subtracting Mixed Numbers

Example

Mikelle bought $3 \frac{2}{5}$ pounds of grapes.
She used $2 \frac{1}{3}$ pounds in a fruit salad.
How many pounds of grapes does she have left?
Write an answer sentence.
Draw a bar model.
Fraw a model of the first mixed number, $3 \frac{2}{5}$.
Complete the answer sentence.
Add additional lines to the fraction portions of for me to subtract these mixed numbers, the
your bars to display the new fractions.
the problem.
Cross out the value of the second fraction using
the common denominator, $2 \frac{5}{15}$.

Multiplying Proper Fractions

Example 1

What is the product of $\frac{3}{4}$ and $\frac{1}{3}$?

Think: To find the product I can count the overlapping parts. This amount will be the numerator, and the amount of parts total is the denominator. Then I will need to simplify the fraction.

$$
\frac{3}{12}=\frac{1}{4}
$$

Complete the answer sentence.
The product of $\frac{3}{4}$ and $\frac{1}{3}$ is $\frac{1}{4}$.

Multiplying Proper Fractions (using the Unitary Method)

Example 2

Javier had $\frac{3}{4}$ quart of rice.
He used $\frac{1}{3}$ of it to make dinner.
How much rice did he use to make dinner? How much is left?

Write an answer sentence.	Javier used \qquad quart of rice to make dinner. He has \qquad quart left.
Draw a bar model.	Think: To determine the amount of rice that was used, I need to multiply the fractions.
Draw and label a bar to show the amount of rice Javier began with, $\frac{3}{4}$ quart.	
	1 qt
Draw and label the amounts of the rice that Javier used and has left.	$\frac{3}{4}$ qt
	4 units $\rightarrow 1$ qt
Use the unitary method to determine the amounts used and left.	$\begin{aligned} 1 \text { unit } & \rightarrow \frac{1}{4} \text { qt } \\ 2 \text { units } & \rightarrow \frac{1}{2} \text { qt } \end{aligned}$
Use the completed bar model to help you solve the problem.	Think: I know that Javier used one unit of rice, which equals $\frac{1}{4}$ quart. I also know he has 2 units left, which equals $\frac{2}{4}$, or $\frac{1}{2}$.
Complete the answer sentence.	Javier used $\frac{1}{4}$ quart of rice to make dinner. He has $\frac{1}{2}$ quart left.

Example

$\frac{5}{3} \times \frac{3}{4}=$ \qquad
Write an answer sentence. $\quad \frac{5}{3} \times \frac{3}{4}=$

Draw a bar model.

Draw a bar to show the improper fraction.

Draw and shade the overlap of $\frac{3}{4}$ on the same bars.

Create a new bar model that displays the final fraction.

Use the completed bar model to help you solve the problem.

Think: Because the larger fraction is an improper fraction the model will have more than one bar.

Think: To find the product, I can count the overlapping parts. This amount will be the numerator, and the amount of parts total is the denominator. Then I will need to simplify the fraction.

$$
\begin{aligned}
\frac{15}{12} & =1 \frac{3}{12} \\
& =1 \frac{1}{4}
\end{aligned}
$$

Complete the answer sentence.
$\frac{5}{3} \times \frac{3}{4}=1 \frac{1}{4}$

Multiplying Mixed Numbers by Whole Numbers

Example

A team of 5 children wins a tug-o-war competition.
The grand prize is a huge jar of jellybeans. Each teammate wins $1 \frac{1}{2}$ pounds of the jellybeans.
How many pounds of jellybeans are in the jar?

Dividing Whole Numbers by Proper Fractions

Example

A gardener uses 15 gallons of water on his roses each day. He sprays $\frac{3}{10}$ of a gallon on each rose bush in the nursery.
How many rose bushes does he water each day?

Dividing Fractions by Fractions

Example

A piece of fabric is $\frac{3}{4}$ yard long.
A seamstress cuts it into pieces that are $\frac{1}{8}$ yard long.
Into how many pieces does she cut the fabric?

Write an answer sentence.	The seamstress cuts __ pieces of fabric.			
Draw a bar model.	Think: When dividing fractions, I can multiply by the reciprocal.			
Draw a bar to represent the amount of pieces the seamstress cuts.	$\frac{1}{8} \mathrm{yc}$	$\frac{1}{8} \mathrm{yd}$	$\frac{1}{8} \mathrm{yd}$	$\frac{1}{8} \mathrm{yc}$
	$\frac{3}{4} \mathrm{yd}$			
Label the bar to show the total amount of fabric. Then show what you need to find.	$\frac{1}{8} \mathrm{yc}$	$\frac{1}{8} \mathrm{yd}$	$\frac{1}{8} \mathrm{yd}$	$\frac{1}{8} \text { yo }$
Use the completed bar model to help you solve the problem.	$\text { Think: } \begin{aligned} \frac{3}{4} \div \frac{1}{8} & =\frac{3}{4} \times 8 \\ & =6 \end{aligned}$			
Complete the answer sentence.	The seamstress cuts $\underline{6}$ pieces of fabric.			

Dividing Fractions by Whole Numbers

Example

Li cuts a loaf of bread into thirds.
Then he divides $\frac{2}{3}$ of the loaf into 4 equal parts.
What fraction of the loaf is each of the 4 parts?

Write an answer sentence.	Each part is ___ of the whole loaf of bread.
Draw a bar model. Draw a bar to represent the loaf. Shade and label $\frac{2}{3}$ of the bar.	Think: Dividing a fraction means dividing each fractional part into smaller units.
	$\frac{2}{3}$
Divide the bar so that the shaded portion is cut into 4 equal parts.	
Show what you need to find.	
Use the completed bar model to help you solve the problem.	Think: I can count the segments to find the denominator. Since I am looking for the fractional amount for one slice, or part, of the loaf, the numerator will be 1. $\frac{1}{6}$
Complete the answer sentence.	Each part is $\frac{1}{6}$ of the whole loaf of bread.

Example 1

A copier printed 176 pages in 8 minutes.
How many pages can the copier print per minute?

Write an answer sentence.
Draw a bar model.
Draw a bar to represent the given rate.
Draw another bar to represent the unit rate.

Rates

Example 2

A snail traveled 10 feet in 4 minutes.
At that rate, how long will it take the snail to travel 75 feet?

Write an answer sentence.

Draw and use a bar model to find the snail's speed.

Draw a bar to represent the given rate. Draw another bar to represent the unit rate.

Label the diagram with what you know and what you need to find.

Use the bar model to help you find the unit rate.

It will take the snail \qquad minutes to travel 75 feet.

Think: First, I need to find the speed of the snail as a unit rate in feet per minute. Then I can find out how long it will take the snail to travel 75 feet.

Think: I know the distance traveled in 4 minutes. I need to find the distance traveled in 1 minute. I can use the unitary method and divide.

4 units $\rightarrow 10$ ft
1 unit $\rightarrow 10 \div 4=2.5 \mathrm{ft}$
The snail travels at a speed of 2.5 feet per minute.

Draw and use a bar model to find how many minutes it will take the snail to travel 75 feet.

Draw a bar to show the first and last groups. Use dotted lines to represent the unknown number of groups in between.

Label the diagram with what you know and what you need to find.

Use the completed bar model to help you solve the problem.

Think: I know the snail's speed per minute and the distance it will travel. I need to find how long it will take the snail to travel that distance.

I can divide to find the number of groups of 2.5 ft in 75 ft .
$75 \div 2.5=30$
Complete the answer sentence.
It will take the snail $\underline{\mathbf{3 0}}$ minutes to travel 75 feet.

Example 1

The regular price of a bicycle is $\$ 495$.
During a sale, Marcus bought the bicycle at a discount of 15%.
How much did he save by buying the bicycle during the sale?

Write an answer sentence.

Draw a bar model.

Draw a bar to represent the regular price

Draw a shorter bar to represent the price

Label the diagram with what you know and
of the bicycle. of the bicycle on sale. what you need to find.

Marcus saved \$ \qquad by buying the bicycle during the sale.

Think: The amount that Marcus saved is the dollar amount of the discount during the sale. There are two dollar amounts (the regular price and the sale price), and they are being compared.

Think: I can use the unitary method to find the amount of the discount.

$$
\begin{aligned}
100 \% & \rightarrow \$ 495 \\
1 \% & \rightarrow \$ 495 \div 100=\$ 4.95 \\
15 \% & \rightarrow 15 \times \$ 4.95=\$ 74.25
\end{aligned}
$$

Complete the answer sentence.
Marcus saved \$ 74.25 by buying the bicycle during the sale.

Percents

Example 2

Mr. Patel bought a new refrigerator that cost $\$ 1,175$.
The sales tax was 5%.
How much did Mr. Patel pay for the refrigerator, including tax?

Write an answer sentence.	Mr. Patel paid \$__f for the refrigerator, including tax.
Draw a bar model.	Think: First, I need to find the amount of sales tax. Then, I can find the total amount that Mr. Patel paid for the refrigerator, including tax.
Draw a bar to represent the cost of the refrigerator.	
Join a bar to add on the amount of sales tax.	
Label the diagram with what you know and what you need to find.	
Use the completed bar model and the unitary method to help you solve the problem.	Think: I can use the unitary method to find the amount of sales tax. $\begin{aligned} 100 \% & \rightarrow \$ 1,175 \\ 1 \% & \rightarrow \$ 1,175 \div 100=\$ 11.75 \\ 5 \% & \rightarrow 5 \times \$ 11.75=\$ 58.75 \end{aligned}$ The amount of sales tax is $\$ 58.75$. To find the amount he paid for the refrigerator including the sales tax, I can add. $\$ 1,175+\$ 58.75=\$ 1,233.75$
Complete the answer sentence.	Mr. Patel paid \$1,233.75 for the refrigerator, including tax.

Algebra

Adding Like Terms

Example

Simplify $4 x+2 x$.
Write an answer sentence.
Draw a bar model.
Use the completed bar model to help you solve
the problem.

Complete the answer sentence.

The sum of $4 x$ and $2 x$ is \qquad .

Think: $4 x$ and $2 x$ are like terms.

Think: $4 x+2 x=x+x+x+x+x+x$

$$
=6 x
$$

The sum of $4 x$ and $2 x$ is $\underline{6 x}$.

Subtracting Like Terms

Example

Simplify $6 y-4 y$.

Using Variables to Write Expressions

Example 1

Tammy had 9 racecars. She gives z racecars to her brother.
How many racecars does Tammy have left?
Write an answer sentence.

Draw a bar model.
Tammy had in the beginning.
Label the amount she gives away. Show what
you need to find.

Use the completed bar model to help you solve
the problem.
Complete the answer sentence.

Example 2

There are p golf balls in a box.
How many golf balls are in 6 boxes?

Write an answer sentence.	There are ___ golf balls in 6 boxes.					
Draw a bar model.	Think: I can multiply to find this answer.					
Draw a bar to represent the 6 boxes.						
Label each box with a p to represent the amount of golf balls in each box.	p	p	p	p	p	p
Use the completed bar model to help you solve the problem.	Think: $p \times 6=6 p$					
Complete the answer sentence.	There are $\underline{6 p}$ golf balls in 6 boxes.					

Simplifying Algebraic Expressions

Example

The figure shows a model train track, with the length of 6 pieces labeled.
Find the total length of the track in terms of p.

Write an answer sentence.
Draw a bar model.

Draw a bar to represent the lengths
of all of the track pieces.
Show what you need to find.
Use the completed bar model to help you solve
the problem.
:---
the figure and see that it is less than 5 and 8 ,
so the segments on my bar that represent p
should be shorter than the segment for 5 .

inches.

Expanding Algebraic Expressions

Example

Expand $3(t+3)$.

Simplifying with Multiple Terms and Decimals

Example

Simplify $0.3 x+0.4 x+3$.
This same
process is also
used when working
with fractional
Write an answer sentence.
The simplified form of

Draw a bar model.

Draw a bar to represent the decimals with the variable x in the expression. Because the decimals are to the tenths place, the bar should be divided into 10 equal parts.

Draw another part of the bar to represent 3.

Add the like terms.

Use the completed bar model to help you solve the problem.

Complete the answer sentence.
coefficients.
$0.3 x+0.4 x+3$ is \qquad .

Think: First I will need to identify the like terms and then add them.

Think: $0.3 x+0.4 x+3=0.7 x+3$

The simplified form of $0.3 x+0.4 x+3$ is $0.7 x+3$.

Expanding Algebraic Expressions with Fractional Factors

Example

Expand $\frac{1}{3}(6 x+15)$.

Write an answer sentence.	The expanded form of $\frac{1}{3}(6 x+15)$ is
Draw a bar model.	Think: I will need to create 3 equal groups within the bar model.
Draw a bar to represent the expression in the parentheses.	$6 \mathrm{C}+15$$\times$ \times
Rearrange the bar model to show 3 equal groups. There are three groups because the denominator of the fraction is 3 .	
Another way to draw the bar model is with the like terms grouped together in each section.	

Use the completed bar model to help you solve the problem.

Think: $\frac{1}{3}(6 x+15)=2 x+5$

Complete the answer sentence.
The expanded form of $\frac{1}{3}(6 x+15)$ is $\underline{2 x+5}$.

Factoring Algebraic Expressions with Multiple Variables

Example

Factor $4 x+2 y$.

Write an answer sentence.	The factored form of $4 x+2 y$ is ___.						
Draw a bar model.	Think: I will need to create equal groups of both variables to factor this expression.						
Draw a bar to represent the expression.	$4 x+2 y$	x	x	x	x	y	y
Rearrange the bar model to show	$2(2 x+y)$	x	x	y			
		x	x	y			
Use the completed bar model to help you solve the problem.	Think: $4 x+2 y=2(2 x+y)$						
Complete the answer sentence.	The factored form of $4 x+2 y$ is $\underline{2(2 x+y)}$.						

Elimination Method

Example

Consider the system of linear equations:
$x+y=7$
$x+2 y=11$
Find the value of x.

Use the completed bar model to help you solve the problem.

Complete the answer sentence.

In the set of linear equations, x equals \qquad .

Think: To find the solution for x, I can first find the solution for y.

$$
\text { Think: } \begin{aligned}
x+4 & =7 \\
x & =3
\end{aligned}
$$

In the set of linear equations, x equals $\underline{3}$.

