Cambridge Architectural Mesh

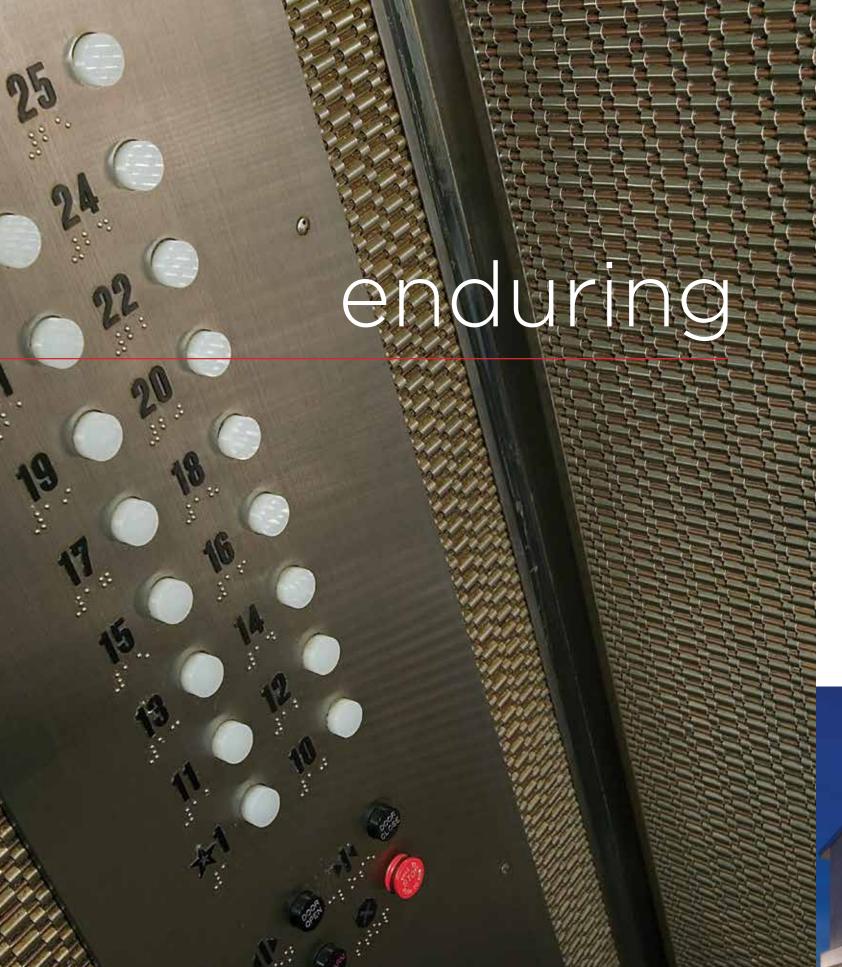
from inspiration to installation

On the cover and at left: ARIA Resort and Casino Las Vegas, Nevada Architect: Pelli Clarke Pelli Architects

> Perhaps it's an ability to be open, yet closed, at once. To reflect light directly and indirectly, brilliantly and diffusely, together. To be rigid or flexible. Or, to be geometrically simplistic at a distance, yet vexingly complex up close. Perhaps, it's all of these unique characteristics at work.

Whatever the reason, what's undeniable is woven metal fabric's uncanny knack for inspiring creative minds. Which is precisely where Cambridge Architectural comes in: to ensure that architects and designers have the knowledge, products, systems, and support to transform visionary designs of today into lasting architectural realities of tomorrow.


Welcome to Cambridge Architectural.


About Us	4
Cotton Bowl	10
Taylor Family Digital Library	12
Lane Avenue Parking Garage	14
Texas A&M	16
UB Law	18
Topgolf	20
Georgia Bioscience	22
Product Portfolio	248

"The mesh allowed us to do the seemingly impossible: create a single element that could function as both a solid wall and open window." Danny Forster, principal of

Danny Forster Design Studios

Courtyard by Marriott, New York City, New York >

< Beautiful woven mesh, installed in 1958, still clads elevator interiors at the iconic Seagram Building in New York City.

WOVEN METAL FABRIC

Each distinct pattern of Cambridge woven metal fabric is itself a work of art, designed with a specific geometry, open area, dimension, and flexibility. Woven by skilled artisans from a multitude of combinations of highly durable, yet readily recyclable metals, including stainless, bronze, aluminum, and brass, metal fabric is an intrinsically sustainable building material.

ARCHITECTURAL FUNCTIONS

The visual beauty of woven metal usually upstages the material's critical functional offerings. These include: solar shading, acoustic transparency, ventilation, security and safety, space sculpting, and masking.

ANY BUILDING TYPE

From parking garages and pedestrian bridges, to performing arts venues and major sports complexes, Cambridge metal fabrics are gracing structures across the country and around the world. Woven through interiors and exteriors of museums, libraries, hospitals, research centers, universities, casinos, stadiums, hotels, retail establishments, government facilities, and religious facilities, Cambridge mesh is transforming the ordinary into the extraordinary.

^ National World War II Museum, New Orleans, Louisiana. Architect: Voorsanger Mathes, LLC

ENGINEERED ATTACHMENT SYSTEMS

Cambridge offers a large variety of flexible and rigid mesh patterns as well as the best-engineered attachment systems in the industry. Cambridge continually develops new mesh patterns, finishes, attachment systems, and innovative ways to use mesh material to achieve certain architectural looks or functionalities. A complete product catalog is located on page 24.

POPULAR APPLICATIONS:

- Canopies
- Solar Shading
- CeilingsCurtains
- Security Screens
- Elevators
- SignageStair Towers
- Facades
- Wall Cladding
- Handrail Infills
- Parking Facilities

< Translational Research Institute, Orlando, Florida. Architect: Flad Architects

original While Cambridge today is a recognized

global leader, our roots were planted 100

home. Our manufacturing experience and

hands and on the faces of every craftsman

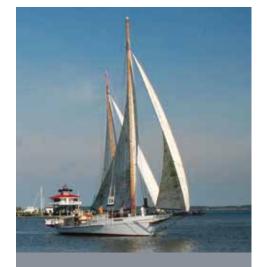
years ago in the small town we still call

passion for excellence is evident in the

who weaves our metal fabrics.

AN AMERICAN ORIGINAL

Cambridge Architectural collaborates closely with architects, designers, and contractors to specify, customize, and install woven metal into the built environment in ways that are both aesthetic and functional.


HERITAGE

Cambridge Architectural evolved from a world-renowned American industrial wire belt manufacturer with a century of successful engineered solutions. The company's first architectural application was installed in 1957 at the Seagram Building in New York City (cladding for the building's elevator cabs that remain in place today). After four decades of market experience, the Cambridge Architectural division was officially established in 2002.

EXPERTISE

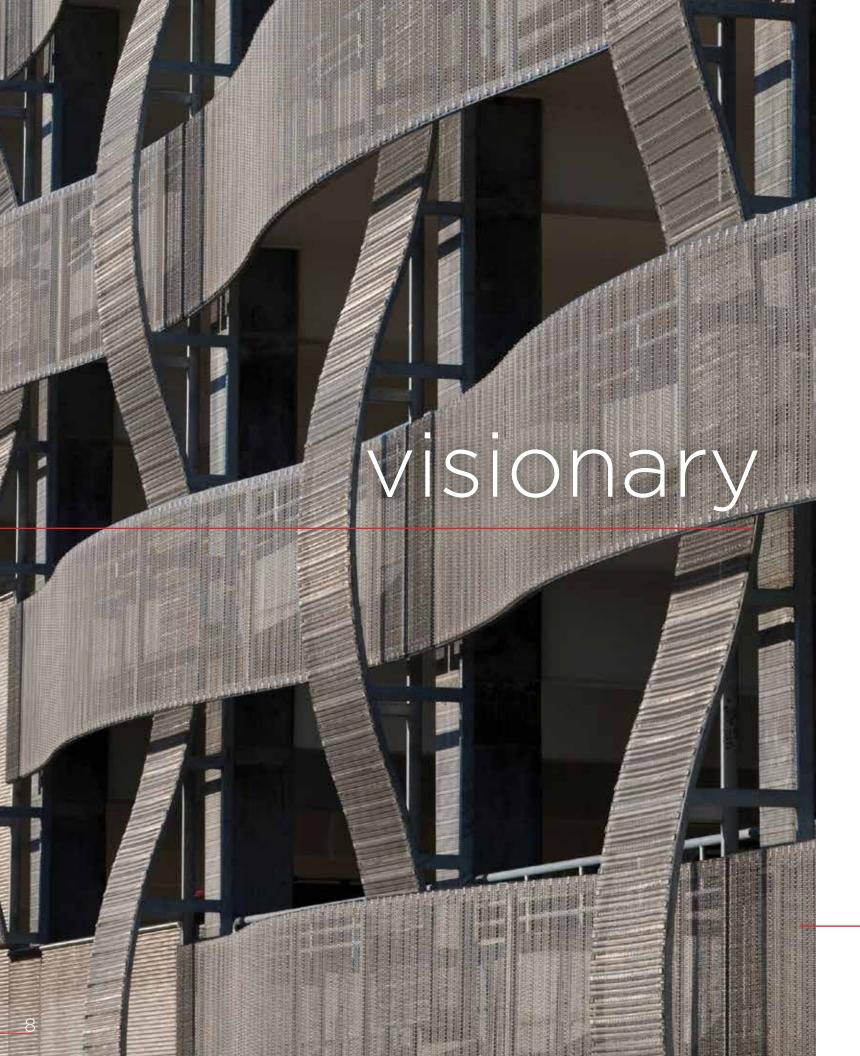
Having established a leading position in the marketplace, Cambridge's expertise extends far beyond materials manufacturing. Our 400+ employees call on collective and progressive experience with every facet of design, engineering, fabrication and installation at each stage of every project. Cambridge provides full-scale project management and engineering services with

Near the shores of Maryland's Chesapeake Bay, historic Cambridge is home to third-generation artisans and professionals dedicated to making woven metal mesh the hallmark of beautiful, durable and sustainable environments.

access to hundreds of skilled craftsmen, creative minds, and market experts to execute the architect's or designer's vision.

GLOBAL

Today, Cambridge clients benefit from the company's global manufacturing operations in combination with its North American headquarters, offering full-service consultation services, research and development, engineering, prototyping, and more. Our expanding international portfolio in Europe, the Middle East and Latin America has introduced Cambridge's ingenuity and know-how to these expanding markets.


EDUCATION

As trailblazers, Cambridge Architectural places high value on continuing education and offers AIA-certified CEU courses that allow architects to receive LU/SD/HSW credits.

We also offer a Cambridge CPD seminar for British architects through RIBA under the Designing and Building It curriculum.

INNOVATION

Continuously striving to innovate new systems and designs, Cambridge's track record for unique product development is evident in the almost two dozen U.S. and European patents including a special Miami-Dade-certified (high wind) attachment system capable of withstanding hurricane force winds. Another eight patents are currently granted provisionally or pending.

COLLABORATION

Cambridge provides complete systems customized to the application. Cambridge collaborates with architects and designers to develop mesh solutions that most fully realize the conceptual intent. Cambridge consultants also present possibilities that may not have even been considered and offer valuable expertise on how to properly specify architectural mesh for each project.

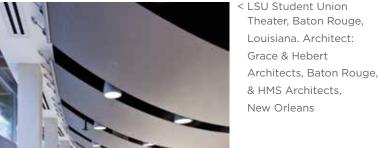
The contemporary, shimmering, diaphanous look locked us in on this product.

Raffi Tomassian DNK Architects, Inc.

Cincinnati Children's Hospital Parking Facility Cincinnati, Ohio Architect: DNK Architects, Inc. Cincinnati, Ohio

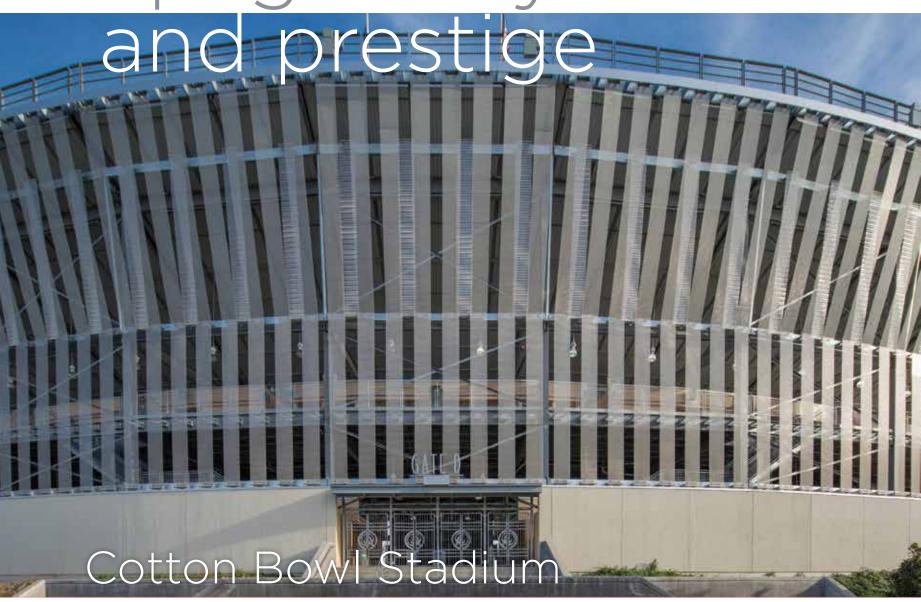
< Loewe Retail Store, Valencia, Spain. Architect: Peter Marino Architect

EXECUTION


Cambridge Architectural's talented engineering team assists with any special design requirements and provides all required drawings, documentation and code approvals. Cambridge's expansive project portfolio is testament to the company's ability to execute the most technically challenging projects.

Once specified, Cambridge project managers go to work, professionally interfacing with the contractors to schedule a seamless, on-time installation. Cambridge's U.S.-based manufacturing provides a significant delivery lead-time advantage.

SUSTAINABILITY


As a member of the United States Green Building Council, Cambridge is committed to promoting methods, technology and products resulting in environmentally responsible and healthy buildings. Select Cambridge staff members receive ongoing education and training on pertinent issues. This team, in turn, develops systems that meet or exceed LEED requirements and provides consultation and direction on a project-by-project basis.

restoring pageantry

Dallas, Texas

Architect: James Carpenter Design Associates, Inc., New York, New York

Design/Build Firm:Heery International, Atlanta, GeorgiaGeneral Contractor:Balfour Beatty Construction, Dallas, TexasInstaller:NOW Specialties, Inc., Houston, Texas

Owner: City of Dallas / Office of Cultural Affairs Public Art Program and

Dallas Park and Recreation Department

Cambridge System: Mid-Balance Mesh

Pellican Mesh Eclipse Attachment

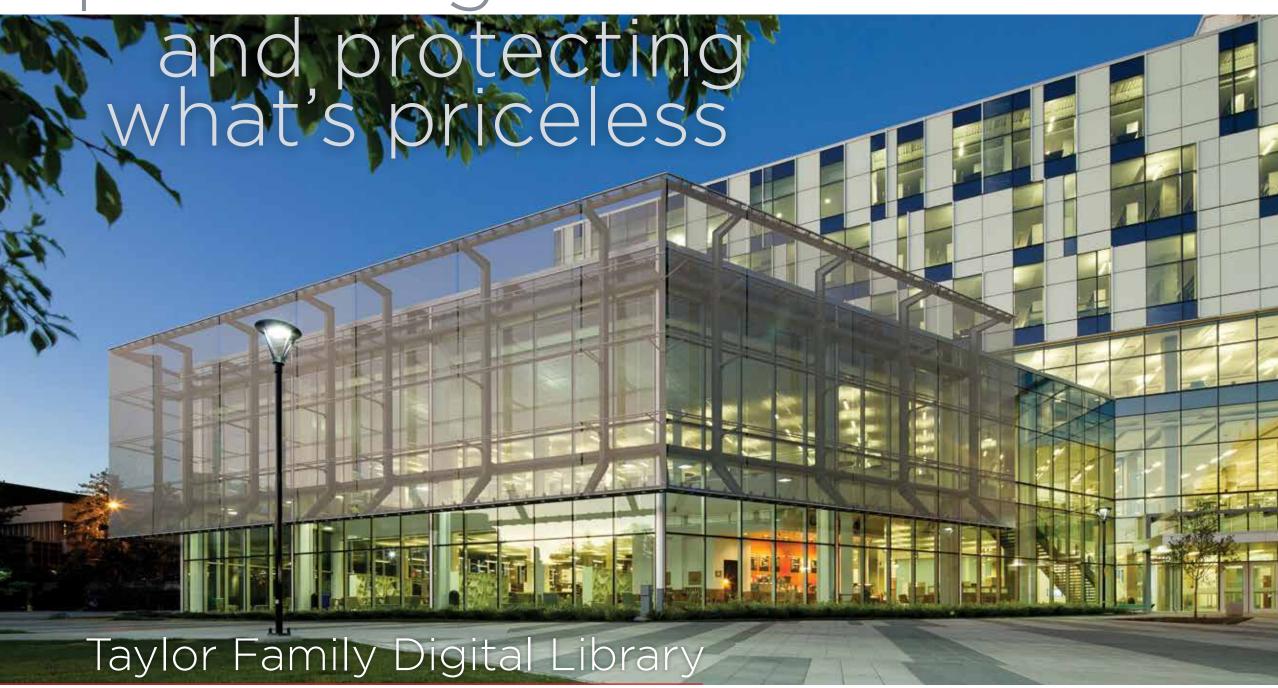
PROJECT

The City of Dallas' Parks and Recreation Department, Landmark Commission, and Office of Cultural Affairs launched a public art competition to redesign the end zone facades and draw attention to the historic complex. James Carpenter Design Associates was awarded the commission with a design entitled "Light Veil."

APPLICATION & BENEFITS

Ribbons of metal mesh in two patterns cascade from the top of the Cotton Bowl, cinch in the middle, and continue to flow downward sculpting an elegant curtain. Incorporating 50,000 sq. ft. of Mid-Balance and Pellican panels mounted in-tension, the mesh creates a diaphanous veil around the 91,200-seat stadium, yet allows views into and out of the facility.

Cambridge engineers worked closely with Heery International to provide working drawings for the installation and recommend structural attachments. The Cotton Bowl's stunning and imaginative new facade, befittingly reflects the pageantry and prestige of the games held at the historically significant sports facility.



We used two different scales of mesh, which became a design tool. We placed long ribbons of smaller scale stainless mesh from the top of the structure all the way down to the bottom. Then, on the upper portion of the structure, we used the larger scale stainless mesh that reflects much more sunlight. When we overlap the two, you sense the depth between both patterns as it transforms the surface into a diaphanous veil.

Katharine McClellan, Senior Designer at James Carpenter

) 11

preserving

Calgary, Alberta

Architect: Kasian Architecture Interior Design and Planning, Vancouver, Canada

Contractor: CANA Construction, Calgary, Canada
Installer: Flynn Canada Ltd., Rockyview, Canada

Owner: University of Calgary

Cambridge Mid-Balance Mesh
Eclipse Attachment

BUILDING COUNCIL

The mesh reduced the amount of solar heat gain, diminished glare, and lent an interesting and beautiful dimension to the building.

Bill Chomik
Principal Design Architect,
Kasian Architecture Interior

PROJECT

The University of Calgary's Taylor Family Digital Library is a state-of-the-art facility housing one million maps and aerial photographs, 850,000 architectural drawings, and 32,000 print monographs. Cambridge Architectural's 5,630-square-foot Mid-Balance mesh façade shades and protects these rare documents, and the library's occupants, while giving the innovative research and learning center a 21st Century modern aesthetic.

APPLICATION & BENEFITS

The large Mid-Balance stainless steel façade shades and reduces glare, protecting the nine million library assets while reducing solar heat gain and optimizing energy performance in regularly occupied areas of the building. Anchored with the Eclipse attachment system, the large mesh panels filter intense sun, while still allowing sufficient ambient daylight and unobstructed views to the campus quad outside of the Information Commons - a glassed-in area meant for students to learn and relax in while using the facility. The result is a comfortable and beautiful open space ideal for academic endeavors and collaboration. The stainless steel mesh and attachment materials are also 100% recyclable and require nearly zero maintenance.

driving sustainable

PROJECT

The Ohio State University's multi-level 1,400-space parking facility serves the central campus of this enormous university. Built for sustainability, the structure incentivizes eco-friendly drivers by providing low emission, fuel-efficient vehicle parking spaces on two levels.

APPLICATION & BENEFITS

A complex pattern of metal mesh panels was incorporated into the façade design for both function—solar shading, fall protection and ventilation—and aesthetic. Suspended by cables, Cambridge's Mid-Balance mesh appears to float weightlessly on the exterior. At night, linear LED lights radiate an elegant glow.

The dynamic exterior cladding maximizes views and functions as a protective barrier while inviting expansive views and maximizing airflow.

The architectural mesh's transparency created a visually lightweight and dramatic textural surface on the building during the day, and at night, the fabric was dense enough to reflect warm hued LED lighting integrated into the panel design.

Pete Confar, Principal, Acock Associates Architects

Columbus, Ohio

Architect: Acock Associates Architects, Columbus, Ohio

Desman Associates, Cleveland, Ohio

Contractor: cHc Fabricators - Columbus, Ohio

Owner: The Ohio State University

Cambridge Mid-Balance Mesh **System:** Eclipse Attachment

a new brand of Texas pride

Texas A&M

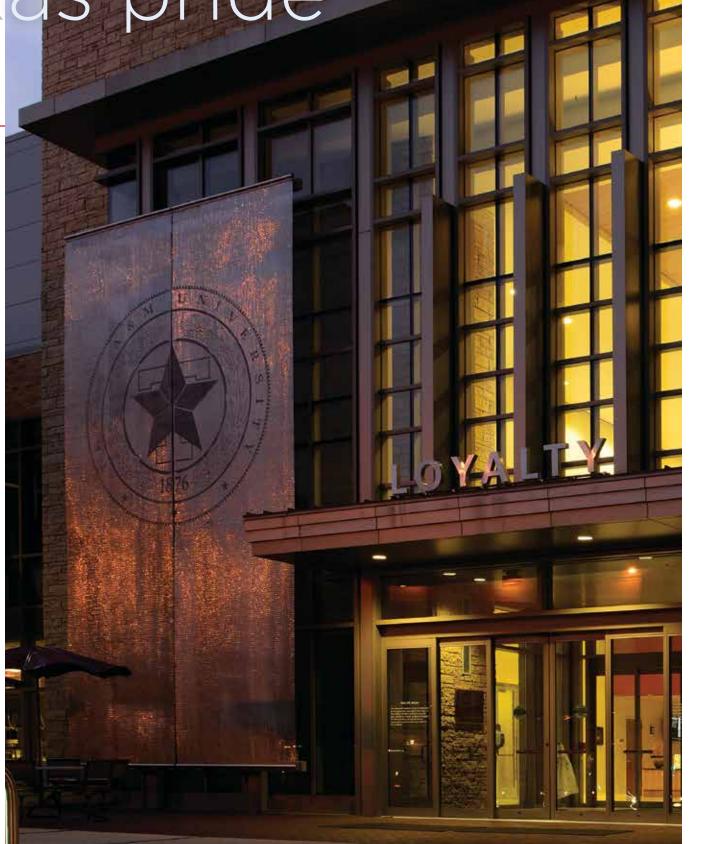
University
Memorial Student
Center

Architect: Perkins+Will

Contractor: Vaughn Construction,

Houston, Texas

Installer: Orozco Construction,


Houston, Texas

Owner: Texas A&M University

Cambridge System:

Graph Mesh Eclipse Attachment

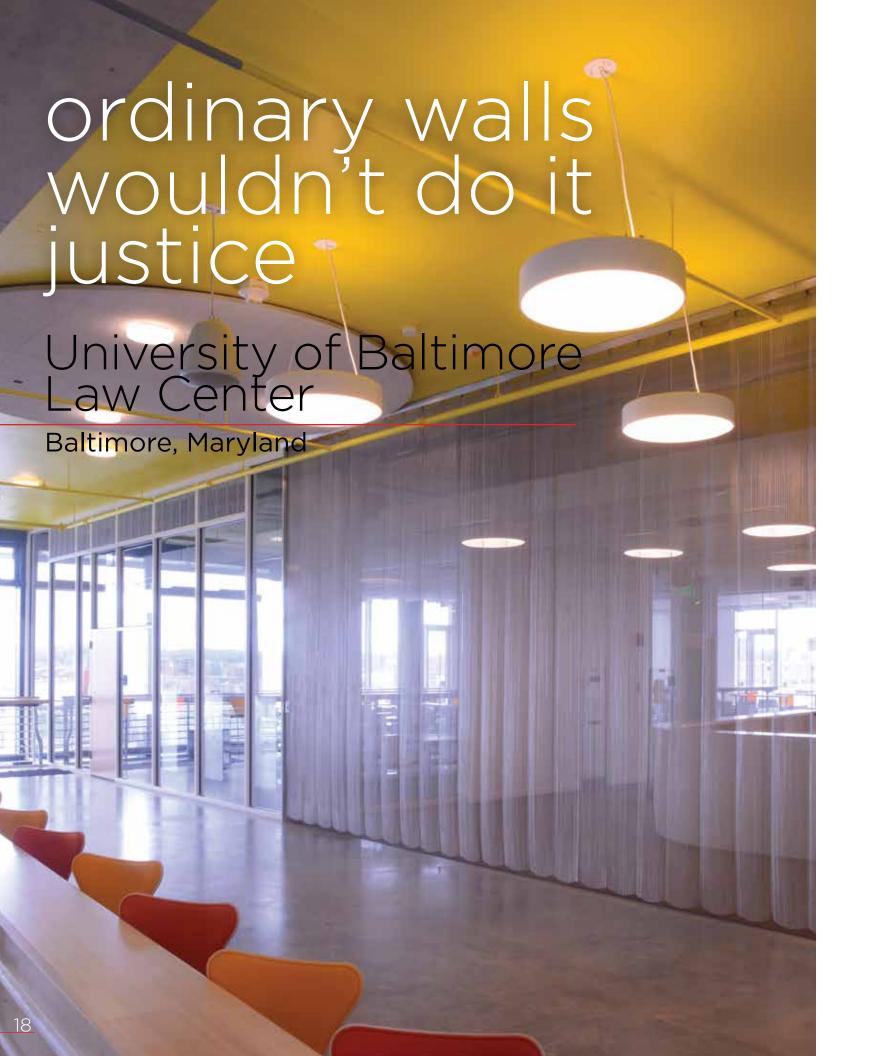
U Binding Railing Infill

The function was key, but the aesthetic of the mesh was what drew us to Cambridge. The refinement the system brings to the student center is exactly what we hoped to achieve.

Vance Cheatham
Design Principal
Perkins+Will Architects

PROJECT

Living up to the reputation in Texas that bigger is better was no problem for Cambridge Architectural. To accomplish Perkins+Will's vision for a dramatic metal mesh entry into the magnificent Texas A&M University Memorial Student Center, Cambridge forged a revolutionary attachment system to execute the large-scale installation.


APPLICATION & BENEFITS

Perkins+Will utilized Graph mesh throughout the project. For the building façade, Cambridge Architectural's Eclipse tension system secured the mesh to the structure in two enormous side-by-side panels, each over 27 feet in height. Cambridge also blast-etched the University's logo in the panels. The architect maintained continuity of design by incorporating the Graph mesh into the adjacent stairwell and balcony railing infill panels. The overall result is a beautiful yet functional use of metal mesh in U binding railing infills as an advanced building material element.

Perkins+Will designed the Texas A&M Memorial Student Center to be fully compliant with the Americans with Disabilities Act and to achieve LEED Silver standards.

Cambridge mesh was chosen for its high-quality appearance, sustainable features and fall-protection.

PROJECT

A striking 33' Shade mesh curtain designed and fabricated by Cambridge Architectural is a stunning centerpiece of the majestic John and Frances Angelos Law Center at the University of Baltimore. Commissioned by principal architect Behnisch Architekten to anchor the 7th floor lobby in the almost 200,000-square-foot landmark building. The stainless steel metal space divider is one of the two applications produced by Cambridge at the \$107 million Law Center.

APPLICATION & BENEFITS

Fabricated of Shade metal mesh and installed using Cambridge's pioneering curtain attachment system, the 771 sq. ft. curtain conveys an ethereal aesthetic while providing strength. The flexible, open pattern optimizes light and ventilation.

Designed also for ease of use, the mesh curtain moves smoothly and seamlessly along a concealed, ceiling mounted track. Cambridge developed a customized anchor system to secure the draped mesh to the rollers.

Architect: Behnisch Architekten,

Boston, Massachusetts

Contractor: Whiting Turner,

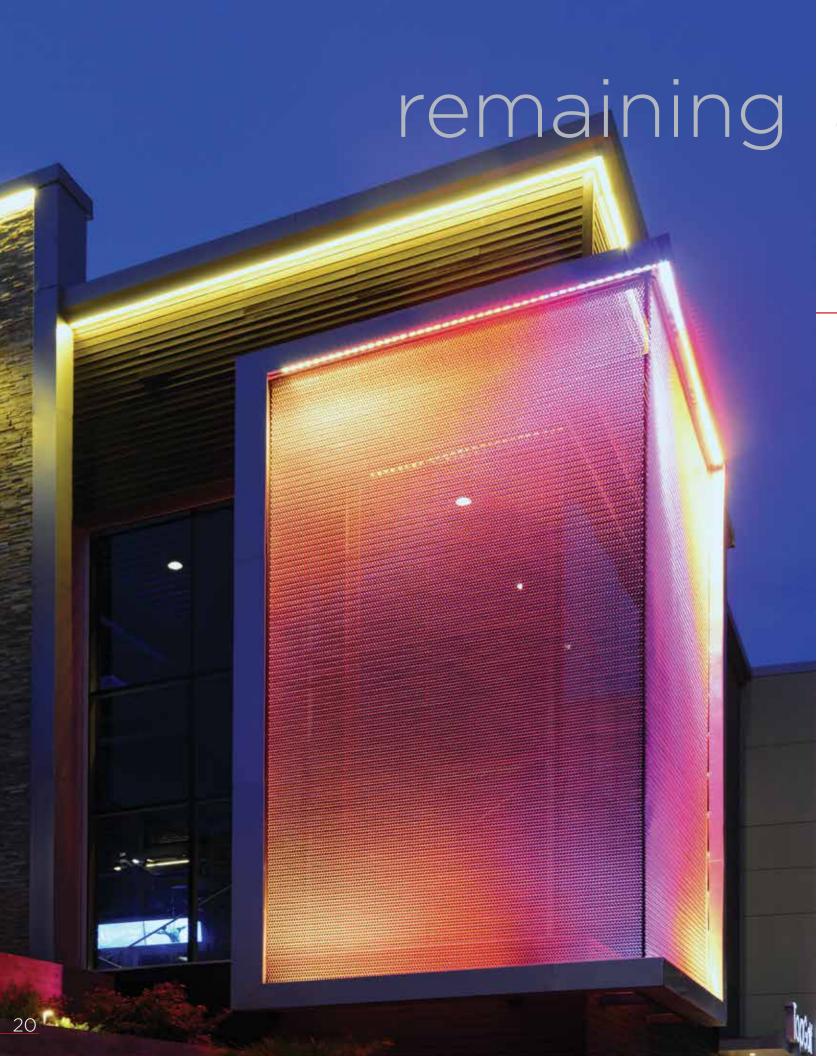
Baltimore

Installer: Commercial Interiors,

Baltimore

Owner: University of Baltimore

Cambridge System:


Shade Mesh Curtain Attachment

We wanted a sustainable solution in a durable curtain application.
Cambridge's stainless steel mesh satisfied these needs while exuding the elegant nature of a fabric curtain.

Stefan Behnisch Partner, Behnisch Architekten

at the top of their game

Topgolf

Multiple Locations

PROJECT

Topgolf is the ultimate golf entertainment complex and the new Houston location (pictured here) is the company's largest and most impressive, with 102 driving range hitting bays on three levels and a sprawling layout of bars, eateries and meeting rooms covering 65,000 square feet. At night, the front of the facility is awash with color, highlighted with the bright blue Topgolf logo, making for a most inviting entrance.

APPLICATION & BENEFITS

Panels of Cambridge Scale flexible mesh accent the building's exterior and are mounted to the structure using our Eclipse attachment system. The mesh and attachment material is made of stainless steel, making it ideal for outdoor use and the textured surface of the mesh itself reflects brilliantly the multi-color LED lighting beamed up against it.

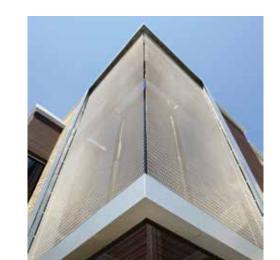
Architect: Aria Group Architects,

Oak Park, Illinois

Contractor: ARCO/Murray Installer: Cambridge

Architectural Mesh

Topgolf International Owner:


Scale Mesh Cambridge System:

Eyebolt Attachment

Cambridge was willing to help us create the exact design we wanted. The mesh serves a dual function, at night it creates the backdrop for a sophisticated light show, and during the day it protects an interior decorative stair from full sun exposure.

Nicole Poole LEED AP, Project Designer, Aria Group Architects, Inc.

wrapping

PROJECT

The Georgia BioScience Training Center is a dynamic mixture of research facility, business incubator and workforce development. The Center's distinctive, high-tech design is a powerful recruitment tool for the state's growing bio-manufacturing industry.

APPLICATION & BENEFITS

Clad with 149 custom-woven steel panels, Cambridge's architectural mesh creates a striking, futuristic façade. The metal mesh exterior envelope also shades interior lobbies, classrooms and laboratories from the Georgia sun.

Combining superior aesthetics with valuable energy savings, the Center also features
Matte mesh curtains surrounding an open-air courtyard and conference room. At night,
LED lights illuminate the mesh of the landmark building.

Social Circle, Georgia

Architect: Cooper Carry, Atlanta

Contractor: Whiting Turner, Atlanta

Installer: Cambridge Architectural Mesh

Owner: Georgia Quick Start,

a division of Technical College System of Georgia

Cambridge Lanier Mesh **System:** Matte Mesh

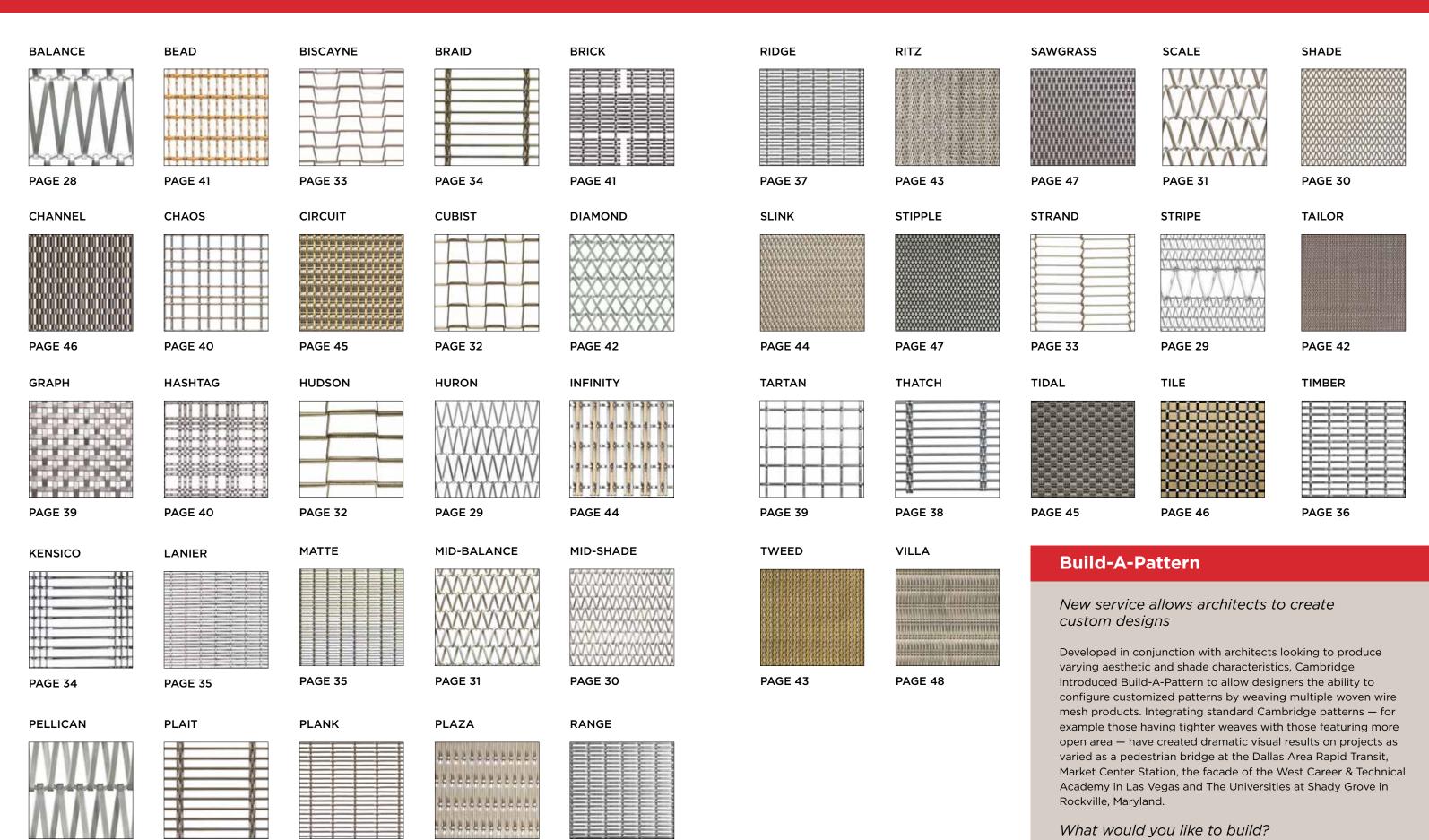
Rigid-mesh-in-tension Eye-bolt Attachment We infused stainless steel into the exterior design to capture the performance benefits of shading while expressing the client's brand of a decidedly hi-tech facility. The mesh facets and plane changes provide a dynamic, crystalline aesthetic with ever changing shadows and reflections that suggest a sense of movement.

Nathan Williamson, Cooper Carry

Cambridge Systems

TABLE OF CONTENTS

Standard Materials Page 25
Mesh Index Page 26
Mesh Patterns Page 28
Attachments Page 49
Materials & Finishes Page 54



Mesh	T304 (SS)	T316 (SS)	Alum	Brass	Bronze	Copper
Balance	•	•				
Bead	•	•		•	•	•
Braid	•	•				
Brick	•	•	•			
Channel	•	•		•	•	•
Chaos	•	•	•	•	•	•
Circuit	•	•		•	•	•
Cubist	•	•		_		
Diamond	•	•		•	•	•
Graph	•	•	•	•	•	•
Hashtag	•	•	•	•	•	•
Hudson	•	•		_		
Huron	•	•	•	•	•	•
Infinity					•	•
Kensico	•	•	•	•	•	•
Lanier	•	•	•	•	•	•
Matte	•	•				
Mid-Balance	•	•		•	•	•
Mid-Shade	•	•	•	•	•	•
Pellican	•	•		_		
Plait	•	•	•	•	•	•
Plank	•	•	•	•	•	•
Plaza	•	•		•	•	•
Range	•	•	•	•	•	•
Ridge	•	•	•	•	•	•
Ritz	•	•	•	•		
Sawgrass	•	•	•	•	•	•
Scale	•	•	•	•	•	•
Shade	•	•	•	•	•	•
Slink	•	•		•		
Stipple	•	•		•	•	•
Strand	•	•				
Stripe	•	•	•	•	•	•
Tailor	•	•		•		
Tartan	•	•	•	•	•	•
Thatch	•	•	•	•	•	•
Tidal	•	•		•	•	•
Tile	•	•	•	•	•	•
Timber	•	•	•	•	•	•
Tweed	•	•	•	•		
Villa	•	•	•	•	•	•

- Stock samples are available in stainless steel. Other options subject to availability.
- Custom material options available upon request.

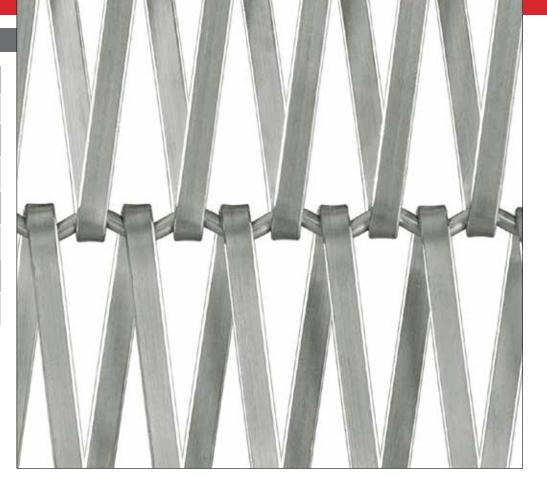
MESH INDEX

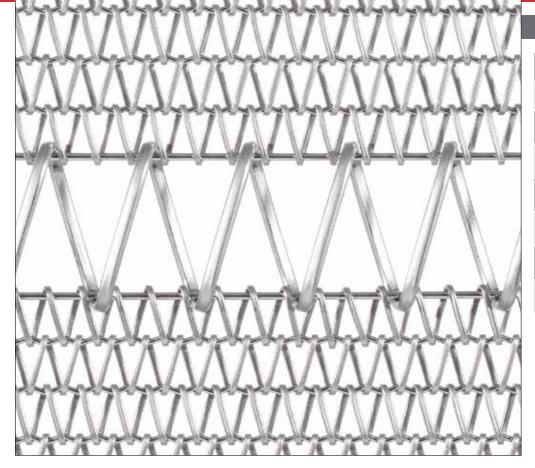
MESH INDEX

 $\frac{26}{2}$

PAGE 37

PAGE 38

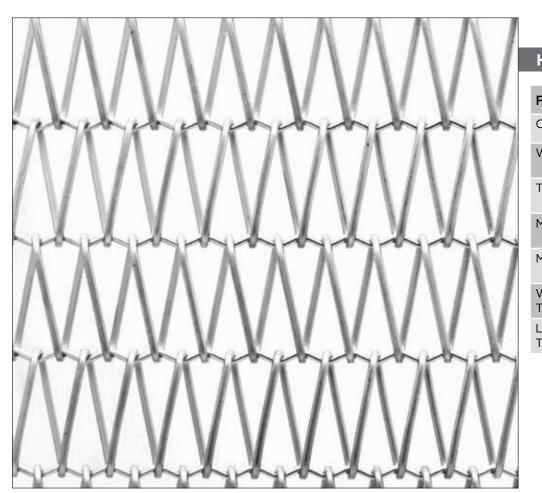

PAGE 28


PAGE 36

PAGE 48

PELLICAN

FLEXIBLE MESH				
Open Area	29%			
Weight in SS	2.50 lbs/SF	12.21 kg/m2		
Thickness	0.940 inches	23.9 mm		
Max Width	240 inches	6.10 meters		
Max Length	100 feet	30.48 meters		
Width Tolerance	+/- 0.5 inches	+/- 13 mm		
Length Tolerance	+/- 3 inches	+/- 76 mm		

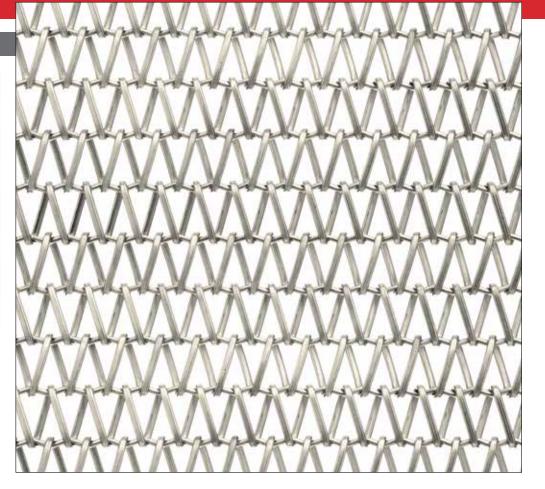

STRIPE®

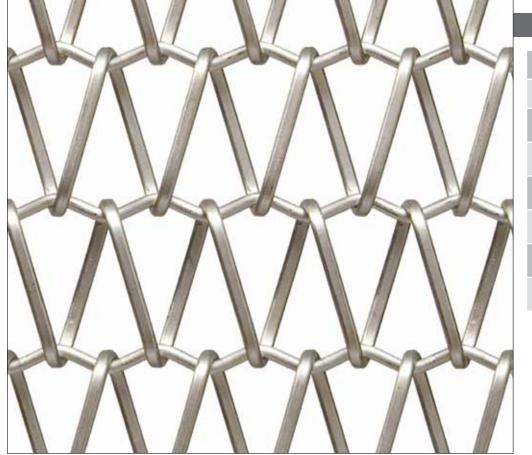
FLEXIBLE MESH				
Open Area	46%			
Weight in SS	1.52 lbs/SF	7.43 kg/m2		
Thickness	0.800 inches	20.3 mm		
Max Width	240 inches	6.10 meters		
Max Length	100 feet	30.48 meters		
Width Tolerance	+/- 0.5 inches	+/- 13 mm		
Length Tolerance	+/- 1 inch	+/- 25 mm		

BALANCE

FLEXIBLE MESH				
Open Area	52%			
Weight in SS	2.01 lbs/SF	9.81 kg/m2		
Thickness	0.875 inches	22.2 mm		
Max Width	240 inches	6.10 meters		
Max Length	100 feet	30.48 meters		
Width Tolerance	+/- 0.75 inches	+/- 19 mm		
Length Tolerance	+/- 3 inches	+/- 76 mm		

HURON

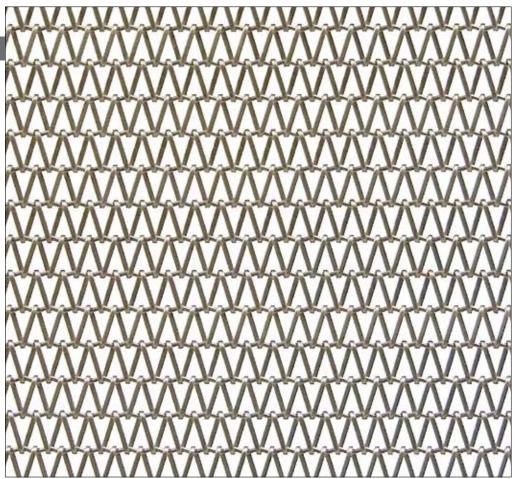

FLEXIBLE MESH				
Open Area	55%			
Weight in SS	1.31 lbs/SF	6.40 kg/m2		
Thickness	0.350 inches	8.89 mm		
Max Width	240 inches	6.10 meters		
Max Length	100 feet	30.48 meters		
Width Tolerance	+/- 0.5 inches	+/- 13 mm		
Length Tolerance	+/- 1 inch	+/- 25 mm		

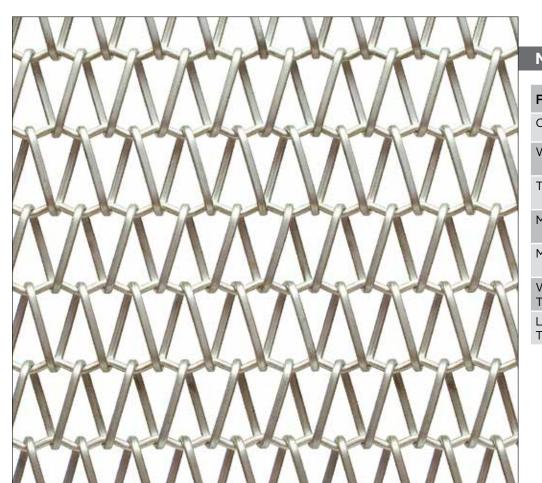

<u>29</u>

MESH

MID-SHADE

FLEXIBLE MESH				
Open Area	42%			
Weight in SS	1.40 lbs/SF	6.84 kg/m2		
Thickness	0.252 inches	6.4 mm		
Max Width	240 inches	6.10 meters		
Max Length	100 feet	30.48 meters		
Width Tolerance	+/- 0.5 inches	+/- 13 mm		
Length Tolerance	+/- 1 inch	+/- 25 mm		

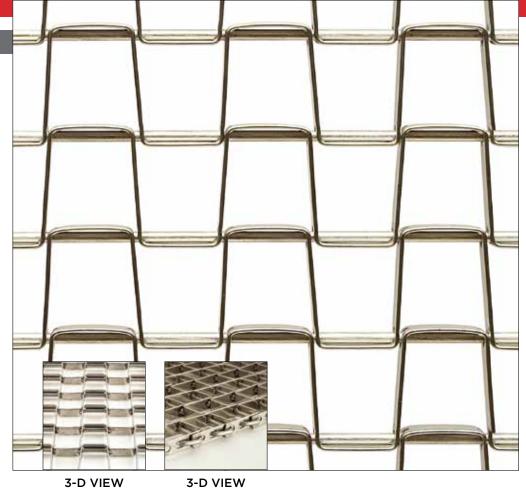



SCALE

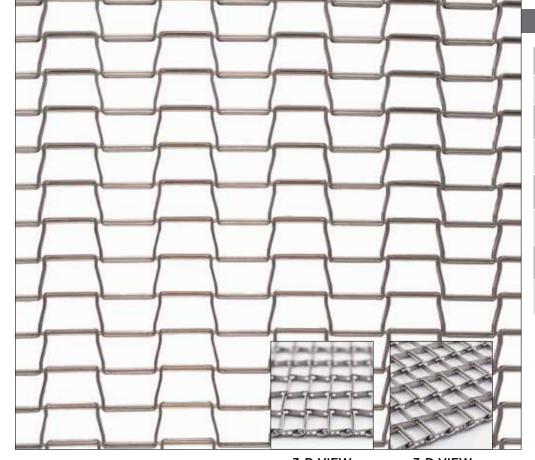
FLEXIBLE MESH				
Open Area	59%			
Weight in SS	1.94 lbs/SF	9.47 kg/m2		
Thickness	0.800 inches	20.3 mm		
Max Width	240 inches	6.10 meters		
Max Length	100 feet	30.48 meters		
Width Tolerance	+/- 0.5 inches	+/- 13 mm		
Length Tolerance	+/- 1 inch	+/- 25 mm		

SHADE

FLEXIBLE M	ESH	
Open Area	41%	
Weight in SS	0.94 lbs/SF	4.59 kg/m2
Thickness	0.168 inches	4.3 mm
Max Width	180 inches	4.57 meters
Max Length	100 feet	30.48 meters
Width Tolerance	+/- 0.375 inches	+/- 10 mm
Length Tolerance	+/- 0.375 inches	+/- 10 mm



MID-BALANCE


FLEXIBLE MESH				
Open Area	50%			
Weight in SS	1.57 lbs/SF	7.67 kg/m2		
Thickness	0.304 inches	7.7 mm		
Max Width	240 inches	6.10 meters		
Max Length	100 feet	30.48 meters		
Width Tolerance	+/- 0.5 inches	+/- 13 mm		
Length Tolerance	+/- 1 inch	+/- 25 mm		
•		, -		

CUBIST

FLEXIBLE MESH				
Open Area	80%			
Weight in SS	1.81 lbs/SF	8.84 kg/m2		
Thickness	0.375 inches	9.5 mm		
Max Width	240 inches	6.10 meters		
Max Length	100 feet	30.48 meters		
Width Tolerance	+/- 1 inch	+/- 25 mm		
Length Tolerance	+/- 1 inch	+/- 25 mm		


3-D VIEW 3-D VIEW

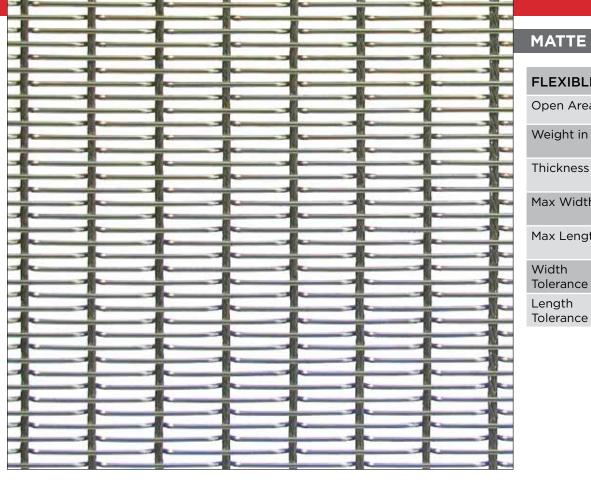
BISCAYNE

FLEXIBLE MESH				
Open Area	78%			
Weight in SS	0.80 lbs/SF	3.91 kg/m2		
Thickness	0.162 inches	4.11 mm		
Max Width	120 inches	3.05 meters		
Max Length	100 feet	30.48 meters		
Width Tolerance	+/- 0.75 inches	+/- 19 mm		
Length Tolerance	+/- 0.5 inches	+/- 13 mm		

HUDSON

FLEXIBLE M	ESH	
Open Area	82%	
Weight in SS	1.46 lbs/SF	7.13 kg/m2
Thickness	0.375 inches	9.5 mm
Max Width	120 inches	3.05 meters
Max Length	100 feet	30.48 meters
Width Tolerance	+/- 2 inches	+/- 51 mm
Length Tolerance	+/- 1 inch	+/- 25 mm

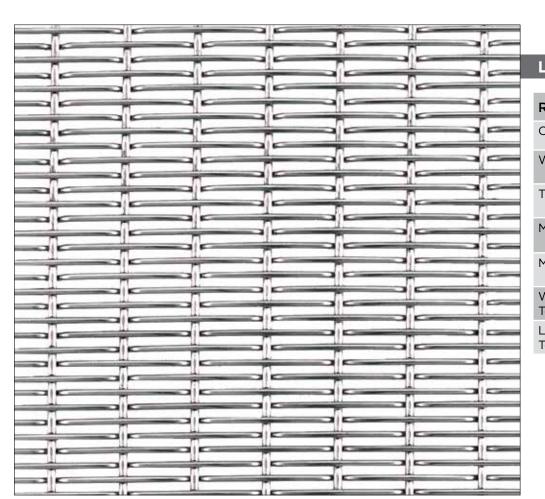
	3-D VIEW	3-D VIEW	
		6	1
1			S
		9	FL
			Op
		7	We
6		-	Th
1			
9		9	Ma
			Ma
			Wi
		-	Le To
			lo
9		7	F
		7	1
S		4	F


STRAND

FLEXIBLE MESH			
Open Area	76%		
Weight in SS	0.75 lbs/SF	3.66 kg/m2	
Thickness	.240 inches	6.1 mm	
Max Width	144 inches	3.66 meters	
Max Length	100 feet	30.48 meters	
Width Tolerance	+/- 0.5 inches	+/- 13 mm	
Length Tolerance	+/- 1 inch	+/- 25 mm	

BRAID

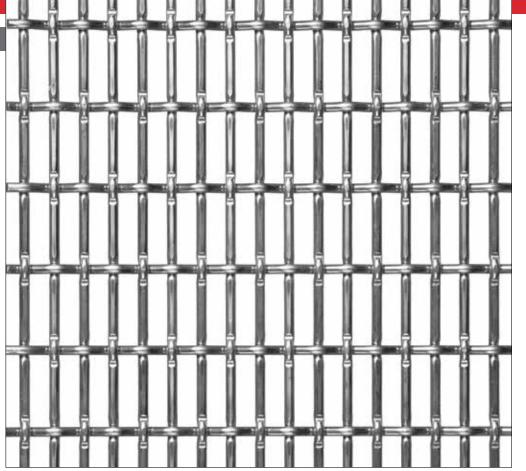
FLEXIBLE MESH		
Open Area	65%	
Weight in SS	1.80 lbs/SF	8.79 kg/m2
Thickness	0.375 inches	9.5 mm
Max Width	240 inches	6.10 meters
Max Length	100 feet	30.48 meters
Width Tolerance	+/- 0.5 inches	+/- 13 mm
Length Tolerance	+/- 1 inch	+/- 25 mm

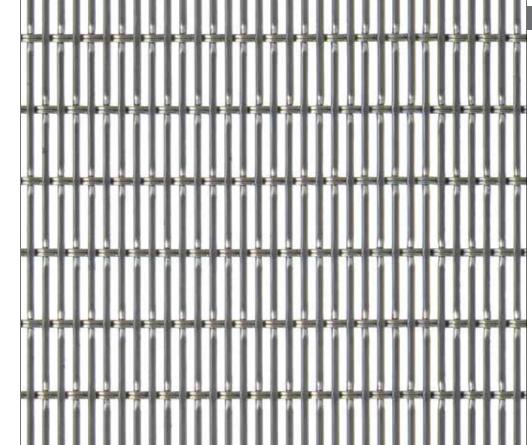


FLEXIBLE MESH			
Open Area	50%		
Weight in SS	1.06 lbs/SF	5.18 kg/m2	
Thickness	0.177 inches	4.5 mm	
Max Width	216 inches	5.49 meters	
Max Length	100 feet	30.48 meters	
Width Tolerance	+/- 0.25 inches	+/- 6 mm	
Length Tolerance	+/- 0.5 inches	+/- 13 mm	

KENSICO

RIGID MESH	l	
Open Area	66%	
Weight in SS	1.32 lbs/SF	6.44 kg/m2
Thickness	0.332 inches	8.4 mm
Max Width	116 inches	2.94 meters
Max Length	50 feet	15.24 meters
Width Tolerance	+/- 0.25 inches	+/- 6 mm
Length Tolerance	+/- 0.5 inches	+/- 13 mm

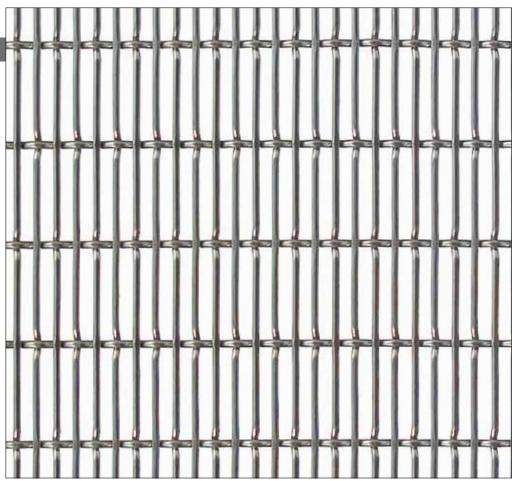

LANIER

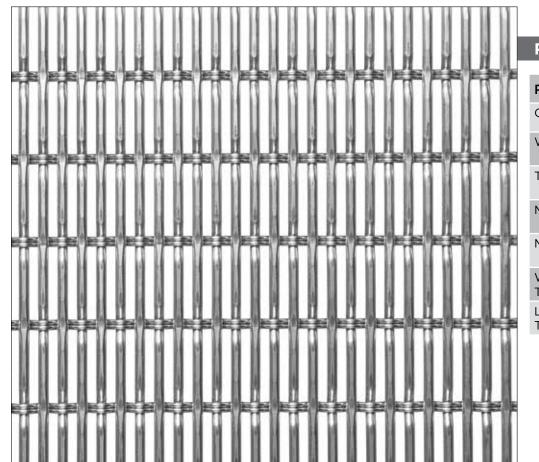

RIGID MESH			
Open Area	48%		
Weight in SS	1.28 lbs/SF	6.25 kg/m2	
Thickness	0.182 inches	4.6 mm	
Max Width	116 inches	2.94 meters	
Max Length	50 feet	15.24 meters	
Width Tolerance	+/- 0.25 inches	+/- 6 mm	
Length Tolerance	+/- 0.5 inches	+/- 13 mm	

MESH _____ MESH

TIMBER

RIGID MESH		
Open Area	58%	
Weight in SS	1.58 lbs/SF	7.71 kg/m2
Thickness	0.200 inches	5.1 mm
Max Width	116 inches	2.94 meters
Max Length	50 feet	15.24 meters
Width Tolerance	+/- 0.25 inches	+/- 6 mm
Length Tolerance	+/- 0.375 inches	+/- 10 mm

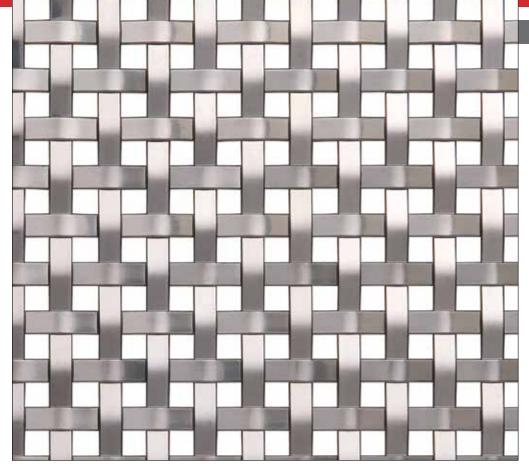



RIDGE

RIGID MESH		
Open Area	40%	
Weight in SS	1.48 lbs/SF	7.23 kg/m2
Thickness	0.130 inches	3.3 mm
Max Width	116 inches	2.94 meters
Max Length	50 feet	15.24 meters
Width Tolerance	+/- 0.25 inches	+/- 6 mm
Length Tolerance	+/- 0.25 inches	+/- 6 mm

PLANK

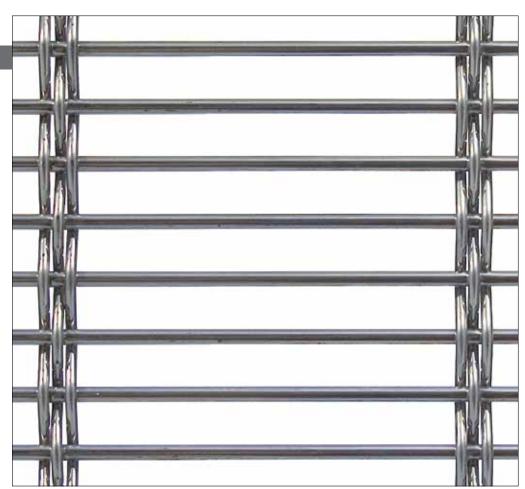
RIGID MESH		
Open Area	56%	
Weight in SS	1.30 lbs/SF	6.35 kg/m2
Thickness	0.164 inches	4.2 mm
Max Width	116 inches	2.94 meters
Max Length	50 feet	15.24 meters
Width Tolerance	+/- 0.25 inches	+/- 6 mm
Length Tolerance	+/- 0.25 inches	+/- 6 mm

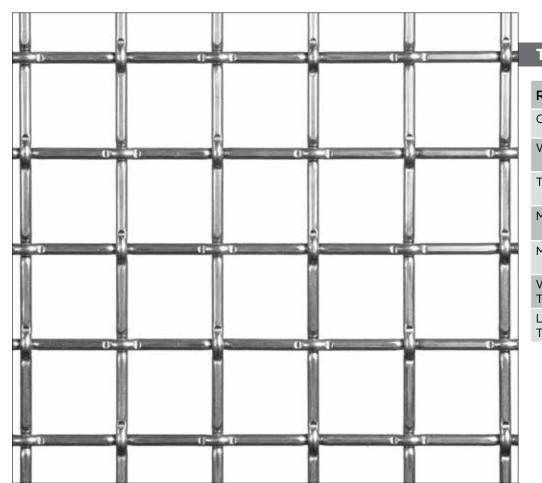

RANGE

RIGID MESH			
Open Area	42%		
Weight in SS	2.08 lbs/SF	10.16 kg/m2	
Thickness	0.174 inches	4.4 mm	
Max Width	116 inches	2.94 meters	
Max Length	50 feet	15.24 meters	
Width Tolerance	+/- 0.25 inches	+/- 6 mm	
Length Tolerance	+/- 0.25 inches	+/- 6 mm	

THATCH

RIGID MESH		
Open Area	62%	
Weight in SS	1.50 lbs/SF	7.32 kg/m2
Thickness	.265 inches	6.7 mm
Max Width	240 inches	6.10 meters
Max Length	10 feet	3.05 meters
Width Tolerance	+/- 0.25 inches	+/- 6 mm
Length Tolerance	+/- 0.5 inches	+/- 13 mm

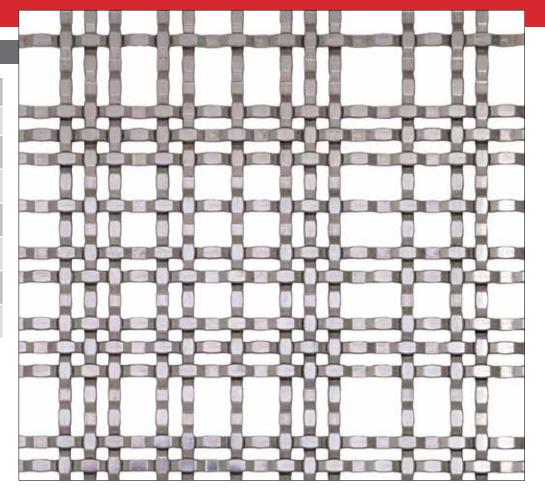


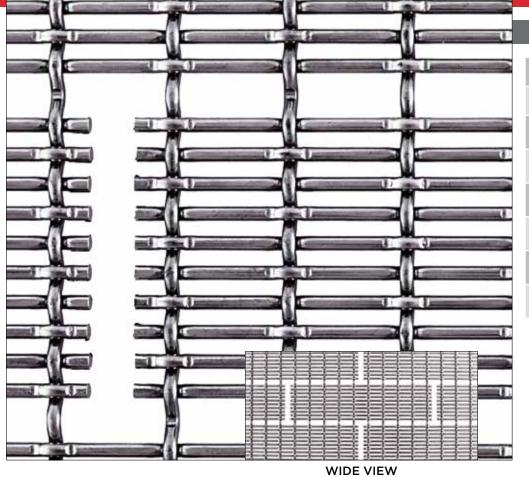

GRAPH

RIGID MESH	RIGID MESH		
Open Area	25%		
Weight in SS	1.90 lbs/SF	9.28 kg/m2	
Thickness	0.105 inches	2.7 mm	
Max Width	116 inches	2.94 meters	
Max Length	50 feet	15.24 meters	
Width Tolerance	+/- 0.25 inches	+/- 6 mm	
Length Tolerance	+/- 0.25 inches	+/- 6 mm	

PLAIT

RIGID MESH		
Open Area	64%	
Weight in SS	1.80 lbs/SF	8.79 kg/m2
Thickness	0.370 inches	9.4 mm
Max Width	240 inches	6.10 meters
Max Length	10 feet	3.05 meters
Width Tolerance	+/- 0.25 inches	+/- 6 mm
Length Tolerance	+/- 0.5 inches	+/- 13 mm

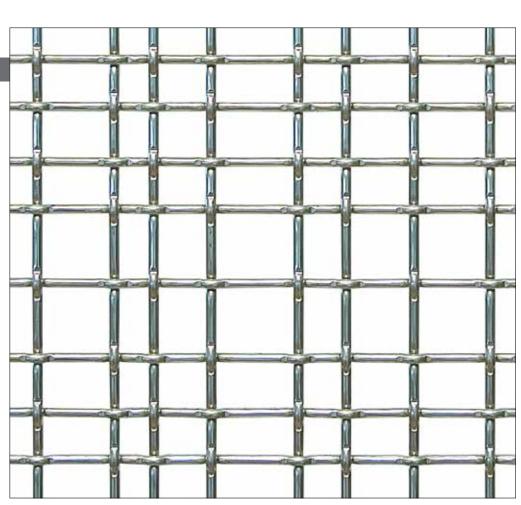


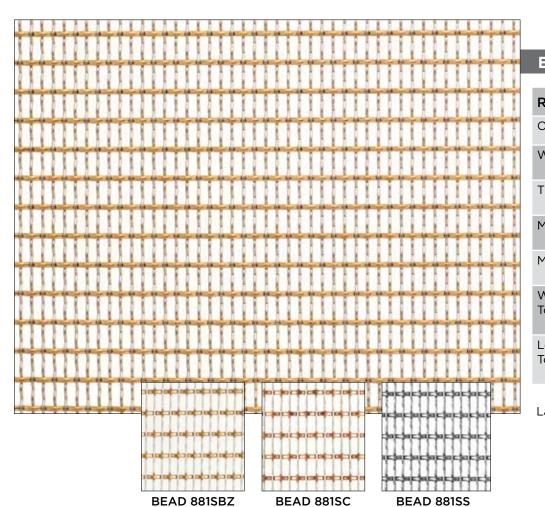

TARTAN

RIGID MESH		
Open Area	77%	
Weight in SS	1.00 lbs/SF	4.88 kg/m2
Thickness	.240 inches	6.1 mm
Max Width	116 inches	2.94 meters
Max Length	50 feet	15.24 meters
Width Tolerance	+/- 0.25 inches	+/- 6 mm
Length Tolerance	+/- 0.25 inches	+/- 6 mm

HASHTAG

RIGID MESH		
Open Area	45%	
Weight in SS	1.37 lbs/SF	6.68 kg/m2
Thickness	0.102 inches	2.6 mm
Max Width	114 inches	2.90 meters
Max Length	50 feet	15.24 meters
Width Tolerance	+/- 0.25 inches	+/- 6 mm
Length Tolerance	+/- 0.25 inches	+/- 6 mm



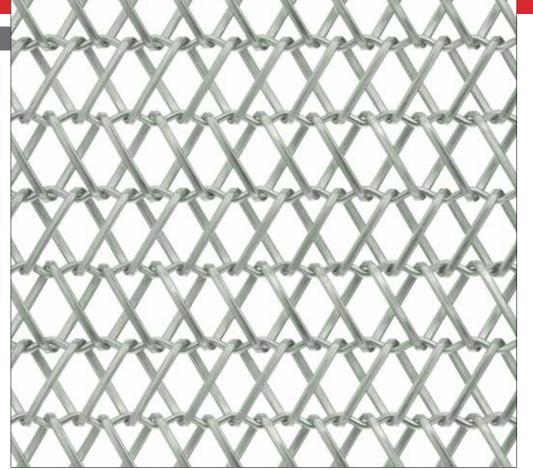

BRICK

RIGID MESH		
Open Area	50%	
Weight in SS	2.30 lbs/SF	11.23 kg/m2
Thickness	0.242 inches	6.1 mm
Max Width	114 inches	2.9 meters
Max Length	5 feet	1.524 meters
Width Tolerance	+/- 0.5 inches	+/- 13 mm
Length Tolerance	+/- 0.25 inches	+/- 6 mm

CHAOS

RIGID MESH		
Open Area	69%	
Weight in SS	1.38 lbs/SF	6.74 kg/m2
Thickness	0.255 inches	6.5 mm
Max Width	105 inches	2.67 meters
Max Length	50 feet	15.24 meters
Width Tolerance	+/- 0.125 inches	+/- 3 mm
Length Tolerance	+/- 0.125 inches	+/- 3 mm

BEAD

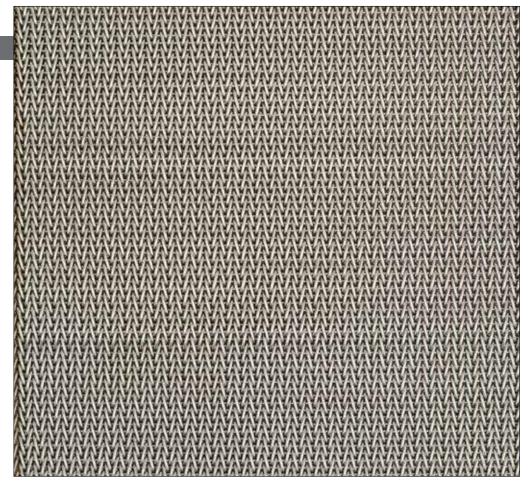

RIGID MESH		
Open Area	53.9%	
Weight in SS	.84 lbs/SF	9.04 kg/m2
Thickness	0.98 inches	2.5 mm
Max Width	70 inches	1.78 meters
Max Length	14 feet	4.26 meters
Width Tolerance	+/- 0.125 inches	+/- 3 mm
Length Tolerance	+/- 0.125 inches	+/- 3 mm

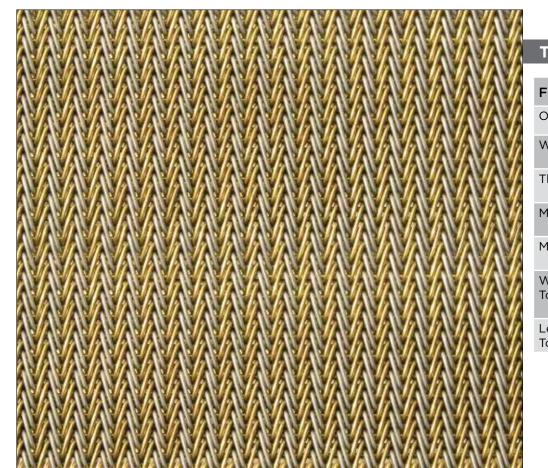
Large Photo: Bead 881SB

MESH MESH

DIAMOND

FLEXIBLE MESH		
Open Area	53%	
Weight in SS	1.40 lbs/SF	6.84 kg/m2
Thickness	0.375 inches	9.5 mm
Max Width	120 inches	3.05 meters
Max Length	100 feet	30.48 meters
Width Tolerance	+/- 0.5 inches	+/- 13 mm
Length Tolerance	+/- 1 inch	+/- 25 mm



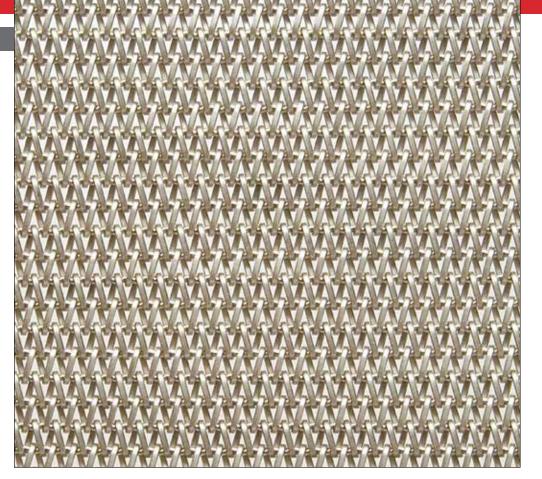

RITZ

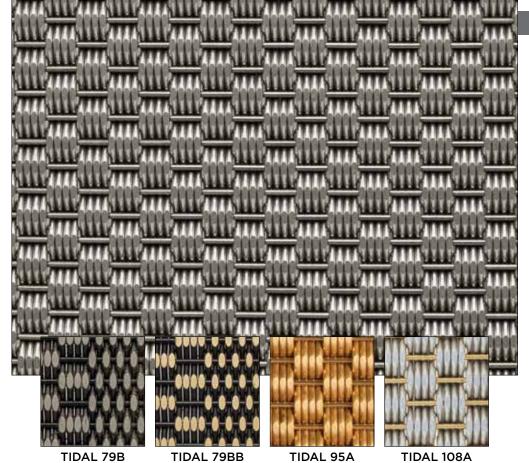
FLEXIBLE MESH		
Open Area	1%	
Weight in SS	3.90 lbs/SF	19.04 kg/m2
Thickness	0.300 inches	7.6 mm
Max Width	120 inches	3.05 meters
Max Length	100 feet	30.48 meters
Width Tolerance	+/- 0.375 inches	+/- 10 mm
Length Tolerance	+/- 0.25 inches	+/- 6 mm

TAILOR

FLEXIBLE M	ESH	
Open Area	1%	
Weight in SS	3.0 lbs/SF	14.65 kg/m2
Thickness	.160 inches	4.1 mm
Max Width	120 inches	3.05 meters
Max Length	100 feet	30.48 meters
Width Tolerance	+/- 0.375 inches	+/- 10 mm
Length Tolerance	+/- 0.25 inches	+/- 6 mm

TWEED


FLEXIBLE MESH		
Open Area	1%	
Weight in SS	4.15 lbs/SF	20.26 kg/m2
Thickness	.230 inches	5.8 mm
Max Width	120 inches	3.05 meters
Max Length	100 feet	30.48 meters
Width Tolerance	+/- 0.375 inches	+/- 10 mm
Length Tolerance	+/- 0.25 inches	+/- 6 mm


 $\frac{42}{4}$

MESH MESH

SLINK

FLEXIBLE M	FLEXIBLE MESH		
Open Area	13%		
Weight in SS	1.62 lbs/SF	7.91 kg/m2	
Thickness	.154 inches	3.9 mm	
Max Width	120 inches	3.05 meters	
Max Length	100 feet	30.48 meters	
Width Tolerance	+/- 0.375 inches	+/- 10 mm	
Length Tolerance	+/- 0.375 inches	+/- 10 mm	

TIDAL

RIGID MESH		
Open Area	0%	
Weight in SS	3.70 lbs/SF	18.06 kg/m2
Thickness	0.193 inches	4.9 mm
Max Width	60 inches	1.52 meters
Max Length	10 feet	3.05 meters
Width Tolerance	+/- 0.125 inches	+/- 3 mm
Length Tolerance	+/- 0.125 inches	+/- 3 mm

RIGID MESH		
Open Area	0%	
Weight in SS	3.70 lbs/SF	18.06 kg/m2
Thickness	0.193 inches	4.9 mm
Max Width	60 inches	1.52 meters
Max Length	10 feet	3.05 meters
Width Tolerance	+/- 0.125 inches	+/- 3 mm
Length Tolerance	+/- 0.125 inches	+/- 3 mm

Large Photo: Tidal 96A

INFINITY

RIGID MESH	RIGID MESH		
Open Area	58%		
Weight in SS	2.00 lbs/SF	9.76 kg/m2	
Thickness	0.225 inches	5.7 mm	
Max Width	60 inches	1.52 meters	
Max Length	10 feet	3.05 meters	
Width Tolerance	+/125 inches	+/- 3 mm	
Length Tolerance	0.125 inches	+/- 3 mm	

INFINITY 512A

INFINITY 516A

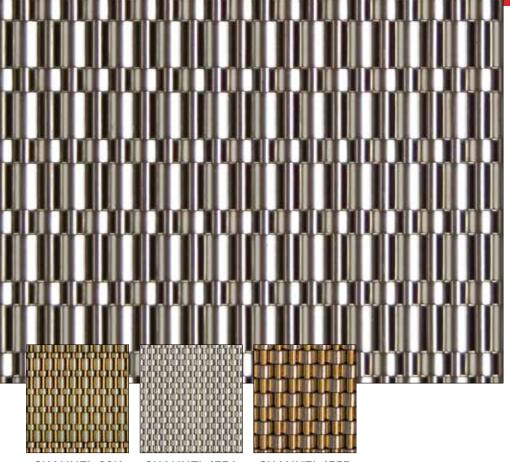
CIRCUIT 113A

CIRCUIT 141A

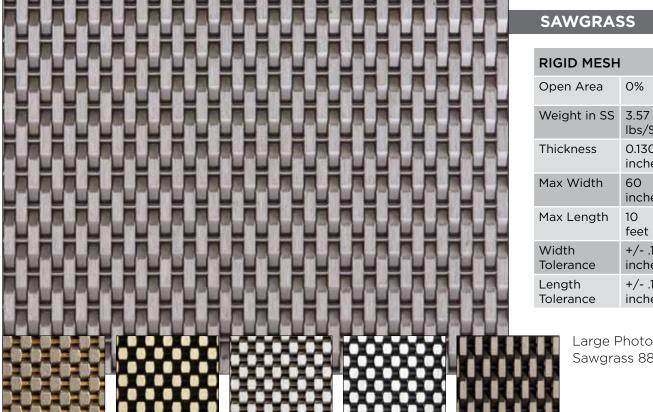
CIRCUIT 105A

CIRCUIT

RIGID MESH		
Open Area	0%	
Weight in SS	3.38 lbs/SF	16.50 kg/m2
Thickness	0.196 inches	5.0 mm
Max Width	60 inches	1.52 meters
Max Length	10 feet	3.048 meters
Width Tolerance	+/- 0.125 inches	+/- 3 mm
Length Tolerance	+/- 0.125 inches	+/- 3 mm


Large Photo: Circuit 114A

MESH


CHANNEL

RIGID MESH		
Open Area	0%	
Weight in SS	4.00 lbs/SF	19.53 kg/m2
Thickness	0.215 inches	5.5 mm
Max Width	120 inches	3.05 meters
Max Length	12 feet	3.65 meters
Width Tolerance	+/- 0.25 inches	+/- 6 mm
Length Tolerance	+/- 0.375 inches	+/- 10 mm

Large Photo: Channel 29SS

CHANNEL 29K CHANNEL 135A CHANNEL 135B

SAWGRASS 32A SAWGRASS 33B SAWGRASS 51A SAWGRASS 51B SAWGRASS 88B

Large Photo: Sawgrass 88A 17.43

3.3

mm 1.52

kg/m2

meters

meters

3 mm

+/-

3 mm

3.05

lbs/SF

inches

0.130

60 inches

feet

+/- .125

+/- .125

inches

inches

TILE

RIGID MESH		
Open Area	6%	
Weight in SS	3.90 lbs/SF	19.04 kg/m2
Thickness	0.135 inches	3.4 mm
Max Width	60 inches	1.52 meters
Max Length	10 feet	3.05 meters
Width Tolerance	+/375 inches	+/- 10 mm
Length	+/375	+/-

46

STIPPLE **RIGID MESH**

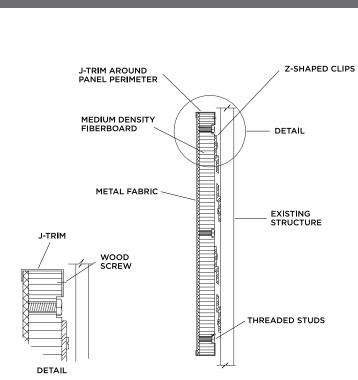
Open Area 0% 17.43 Weight in SS 3.57 lbs/SF kg/m2 0.132 Thickness 3.4 inches mm Max Width 60 1.52 inches meters Max Length 10 3.05 feet meters Width +/- .125 +/-3 mm Tolerance inches +/- .125 +/-Length Tolerance inches 3 mm

Large Photo: Stipple 19A

STIPPLE 12A

STIPPLE 12B

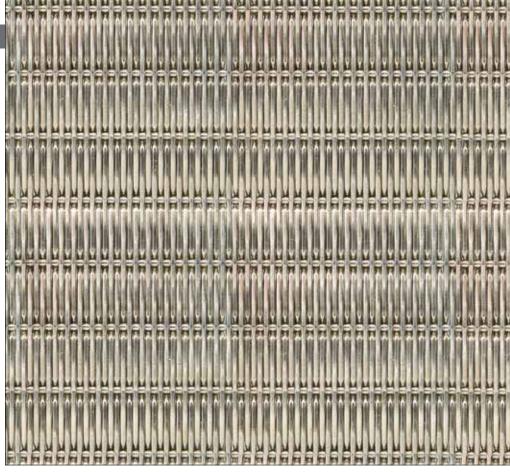
STIPPLE 19B STIPPLE 19H

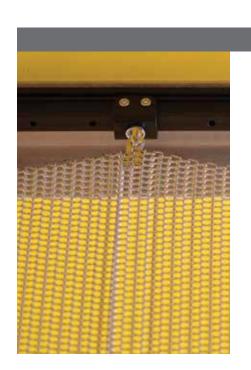

MESH ATTACHMENTS

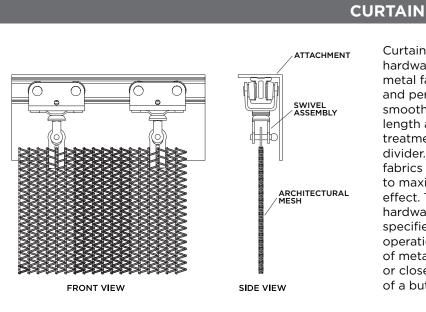
PLAZA

RIGID MESH		
Open Area	18%	
Weight in SS	3.70 lbs/SF	18.06 kg/m2
Thickness	0.225 inches	5.7 mm
Max Width	60 inches	1.52 meters
Max Length	10 feet	3.05 meters
Width Tolerance	+/- 0.25 inches	+/- 6 mm
Length Tolerance	+/- 0.25 inches	+/- 6 mm

Large Photo: Plaza 75A

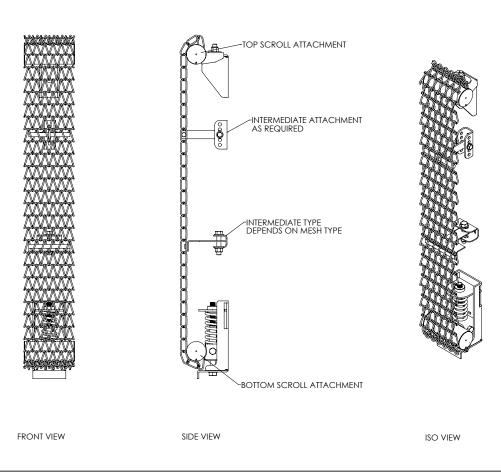



Panel attachment hardware fastens closed metal fabric to a substrate such as Medium Density Fiberboard (MDF). Z-clips join panels to the substructure.


PANEL

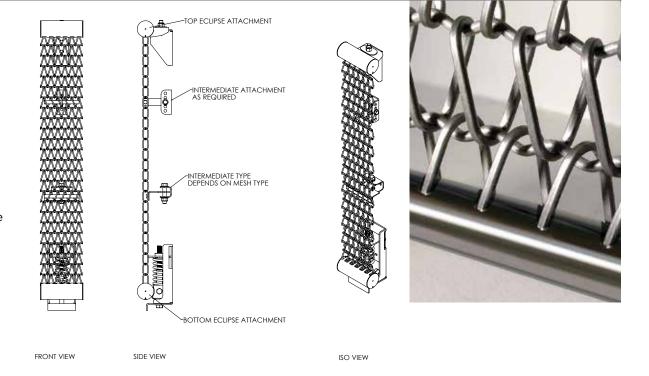
VILLA

RIGID MESH		
Open Area	0%	
Weight in SS	2.10 lbs/SF	10.25 kg/m2
Thickness	0.155 inches	3.9 mm
Max Width	144 inches	3.66 meters
Max Length	10 feet	3.05 meters
Width Tolerance	+/- 0.125 inches	+/- 3 mm
Length Tolerance	+/- 0.25 inches	+/- 6 mm


Curtain attachment hardware attaches flexible metal fabric to carriers and permits it to roll smoothly along the track length as a window treatment or draping space divider. Flexible metal fabrics are hung sideways to maximize the draping effect. This attachment hardware can also be specified for motorized operation, where the curtain of metal fabric is opened or closed with the touch of a button.

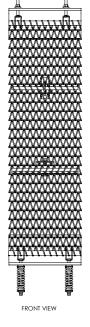
<u>48</u>

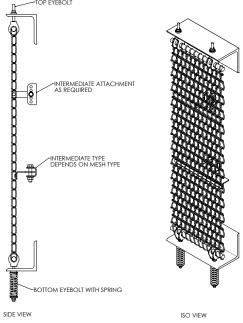
ATTACHMENTS ATTACHMENTS


SCROLL

Scroll tension attachment hardware keeps the focus on the metal fabric by hiding the attachment behind it. Scroll conceals the bracket that attaches to the structural support. Scroll uniquely grips the metal fabric, holding it in tension. Scroll is appropriate for lengths of metal fabric up to 100'.

ECLIPSE™


Eclipse tension attachment hardware provides tailored edges for expanses of flexible metal fabric. Elegant, custom-cut apertures receive the metal fabric ends in tubing that is integrated into a bracket and structural support design. The tube provides a visual reveal between panel lengths, and tube sizes may vary to emphasize or de-emphasize the attachment. Eclipse is appropriate for lengths of metal fabric up to 100'.



EYEBOLT

The Eyebolt attachment is a less elegant but lower cost mesh mounting system.
Contact your Cambridge
Architectural representative for weight load limitations.

Engineering and Project Management Support

Cambridge's in-house engineering support and mesh system design sets us apart from other metal fabricators. From early concept and construction documents to final shop drawings, our engineers and project managers have exceptional experience in the art and science of architectural mesh systems. Our support and resources include:

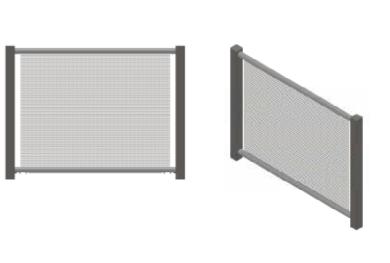
Conceptual Level and Early Design

- Assistance selecting proper mesh, materials, and attachment options to meet project objectives
- Preliminary loading calculations based on specifications, attachment systems, sizes, and site attributes (such as wind and ice loads)
- Sample drawings, sketches and information on specific mesh and attachments
- Conceptual budget estimates for mesh, attachments, and installation

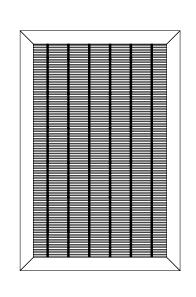
Design Development and Construction Document

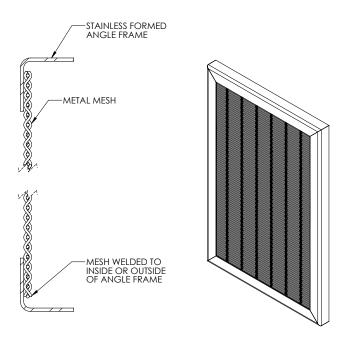
- Detail and specification development
- System design and preliminary engineering calculations
- Web-based and in-person design meetings

Under-Contract Engineering

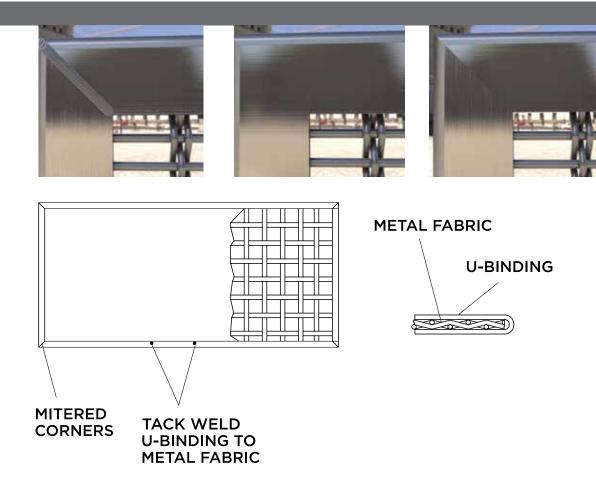

- Mock-up design and fabrication
- Shop drawing development and submissions under licensed PE
- Customized installation and maintenance instructions
- On-site meetings to support final designs and installation
- Studies and submissions for safety, wind or jurisdictional requirements
- Reports and submission for Green Building, other certification systems

ATTACHMENTS ATTACHMENTS


RAILFLEX[™] ANGLE FRAME


Railflex tension attachment hardware is specifically designed for handrail systems. The ends of flexible metal fabric panels are concealed in handrail tubing, allowing for a seamless transition from rail to flexible mesh. Custom-cut apertures receive the metal fabric in the handrail tubing which is integrated into a bracket and structural support design.

Custom options available on a per project basis.



Angle Frame attachment system is designed to provide mounting for either flexible or rigid mesh in applications where cost-effective panel systems are required. Utilizing a formed stainless steel angle as the structural element, the mesh is tack welded either on the interior of the frame, leaving a border; or it can be welded to the outside of the frame to conceal the angle. The steel angle itself can be left unfinished; or exposed surfaces can be polished and finished.

U BINDING

With U Binding attachment hardware, metal fabric is tack welded to a u-binding frame with mitered corners that are welded and ground smooth for a brushed finish.

Moreno Valley College, Moreno Valley, California Architect: DLR Group, Riverside, California

MATERIALS

T316 STAINLESS STEEL STAINLESS STEEL

Primarily used for interiors with a naturally bright silver finish.

Can be powder coated to add color and corrosion resistance.

18-20% Chromium

8-10% Nickel

Primarily used for exteriors with a naturally bright silver finish.

Can be powder coated to add color and corrosion resistance.

16-18% Chromium

10-14% Nickel

COPPER

Rich color primarily used on interior panels.

Can be left natural to patina over time or lacquered to reduce patina formation.

2-3% Molybdenum

BRASS

Rich color primarily used on interior panels.

and Zinc.

Naturally patinas slower than pure copper.

Alloy of Copper

Can be left natural to patina over time or lacquered to reduce patina formation.

BRONZE

Alloy of Copper and Tin.

Rich color primarily used on interior panels.

Naturally patinas slower than pure copper.

Can be left natural to patina over time or lacquered to reduce patina formation.

ALUMINUM

Can be used for interiors and exteriors.

Can be anodized or powder coated to add color and enhance corrosion resistance.

STANDARD FINISHES

MILL FINISH STAINLESS STEEL

Consistent silver finish created during the manufacturing of the raw material.

Applies to the wire and sheets used to make the mesh and attachment systems.

BRUSHED FINISH STAINLESS STEEL

Directionally

Created during the product finishing polishers.

Can be specified on a variety of the mesh and attachment systems.

grained surface.

steps using abrasive

ANODIZED ALUMINUM

Chemical process used to increase the thickness of the aluminum oxide layer on aluminum materials.

Available in a variety of color and durability options.

Interior and exterior options available.

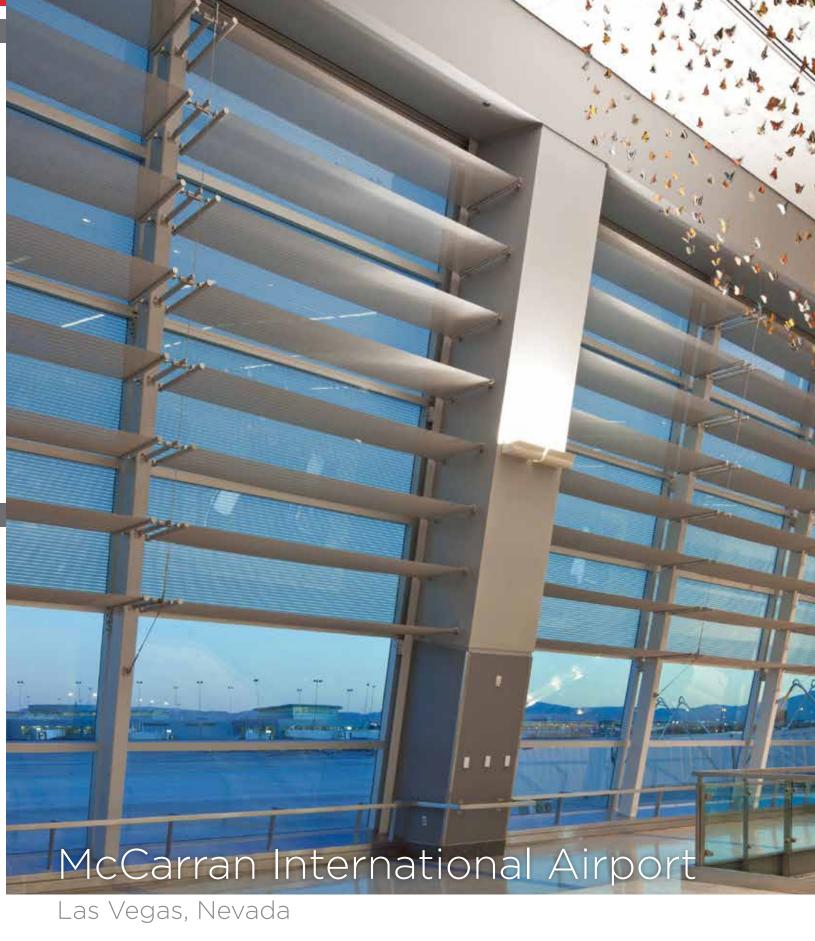
Can be applied to any aluminum mesh and attachment systems.

POWDER

COAT

Electrostatically applied and baked on finish.

Available in a wide variety of color and durability options.


Can be applied on a variety of mesh and attachment systems.

LACQUER

Clear coat used to reduce patina formation on copper, brass, and bronze.

Available in a wide variety of color options.

Colored lacquer and secondary sanding can produce a two tone product with a colored background and brushed finish base metal foreground on certain mesh options.

Other custom finishes can be quoted if needed.

Architect: PGAL, Las Vegas, Nevada

Pleasant Hill, California

Architect: Donald MacDonald Architects, San Francisco, California

Cambridge Architectural 105 Goodwill Road Cambridge, MD 21613

Toll Free 866 806 2385 Intl. 00+1-410-901-8686

sales@CambridgeArchitectural.com CambridgeArchitectural.com

