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Abstract

Deep Learning has driven recent and exciting progress

in computer vision, instilling the belief that these algorithms

could solve any visual task. Yet, datasets commonly used to

train and test computer vision algorithms have pervasive

confounding factors. Such biases make it difficult to truly

estimate the performance of those algorithms and how well

computer vision models can extrapolate outside the distri-

bution in which they were trained. In this work, we propose

a new action classification challenge that is performed well

by humans, but poorly by state-of-the-art Deep Learning

models. As a proof-of-principle, we consider three exem-

plary tasks: drinking, reading, and sitting. The best accu-

racies reached using state-of-the-art computer vision mod-

els were 61.7%, 62.8%, and 76.8%, respectively, while hu-

man participants scored above 90% accuracy on the three

tasks. We propose a rigorous method to reduce confounds

when creating datasets, and when comparing human versus

computer vision performance. Source code and datasets are

publicly available1.

1. Introduction

Deep convolutional neural networks have radically ac-

celerated progress in visual object recognition, with im-

pressive performance on datasets such as ImageNet [31],

achieving top-5 error of 16.4 % in 2012 [20], down to 1.8%

in 2019 [44]. Similar progress has been observed in other

domains such as action recognition, with an error rate of

1.8% [6] in the UCF101 dataset [35].

Such impressive feats have also been accompanied by

vigorous discussions to better understand what the networks

learn and how they classify the images [46, 24, 32, 28, 18].

In addition to showcasing algorithmic successes, system-

atically understanding the networks’ limitations will help

us develop better and more stringent datasets to stress test

1https://github.com/kreimanlab/

DeepLearning-vs-HighLevelVision

Figure 1. Example images from our dataset (Group 2, con-

trolled set). Left to right: drinking, reading, and sitting. Top: pos-

itive images. Bottom: negative images. Above each image, clas-

sification output for ResNet, VGG16, and human psychophysics

measurements (see text for details). The models misclassified the

middle top, bottom left, and bottom right pictures, whereas hu-

mans correctly classified all the pictures. See also Fig. S4.

models and develop better ones. For example, in the

UCF101 dataset, algorithms can rely exclusively on the

background color to classify human activities well above

chance levels. For example, “sky diving” typically corre-

lates with blue pixels (the sky), whereas ‘baseball pitch”

correlates with green pixels (the field).

As an illustration of how to rigorously test state-of-the-

art models, and how to build controlled datasets, we focus

on action recognition from individual frames. We study

three human behaviors: whether a person is drinking or

not, reading or not, and sitting or not (Figure 1, Fig. S4).

Each of these actions is considered independently in a bi-

nary classification task. We first describe how we built a

controlled dataset, next we demonstrate that humans can

rapidly solve these tasks, and finally we show that these

simple binary questions challenge current systems, and in-

troduce initial thoughts on how such tasks could be solved.
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2. Related Work

Object detection. Large datasets for object detection

have played a critical role in recent progress in computer

vision. The success of Krizhevsky et al. [20] on ImageNet

[31] triggered the development of powerful algorithms [44,

41, 25], and multiple datasets such as COCO [23].

Action recognition. In a similar fashion, multiple

datasets have been developed to train algorithms to recog-

nize actions, including the MPII Human Pose [2], COCO

keypoints [23], Leeds Sports Pose [16], UCF101 action

[35], and Posetrack [1] datasets. These datasets led to the

current state-of-the art models for human pose estimation

[40, 39, 42, 5, 29, 4].

Current challenges and possible approaches. There

has been significant progress in developing enhanced algo-

rithms for recognition combining region proposal [11, 10,

9, 14, 12], distinction between foreground/background and

other scene elements [22, 30, 17, 12], and interactions be-

tween image parts [13].

Despite enormous progress triggered by these datasets,

there exist strong low-level biases that correlate with the la-

bels. For example, the work of Xiao et al. showed that a

simple architecture, combining ResNet with several decon-

volution layers, reached the top accuracy of 73.7% mAP

in human pose estimation and tracking [43]. This type of

challenge is particularly notable in datasets like UCF-101:

extracting merely the first frame of each video, converting it

to grayscale, and using an SVM classifier with a linear ker-

nel, it is possible to obtain performance levels well above

chance in “action recognition”. To capitalize on the power

of current algorithms, and to push the development of even

better ones, it is essential to stress test computer vision sys-

tems with sufficiently well-controlled datasets that cannot

be solved by simple heuristics. Here we focus on the prob-

lem of action recognition from static images and provide in-

tuitions about the development of a well-controlled dataset

to challenge computational algorithms.

3. Building a Controlled Dataset

We sought to create a dataset to challenge and improve

current recognition algorithms, focusing on action recogni-

tion from single frames in three examples: drinking, read-

ing, and sitting. Datasets that involve discriminating among

completely different actions (as in UCF-101, [35]), often

incorporate extensive background information that can help

solve the discrimination problem by capitalizing on basic

image heuristics (as noted in the introduction for the exam-

ple of skydiving versus baseball pitch). Therefore, here we

take a different approach and focus on binary tasks of the

form: is the person drinking or not, reading or not, sitting

or not. We do not compare drinking to reading to sitting

(i.e., vertical and not horizontal comparisons in Figure 1).

3.1. Dataset collection

The images originated from two sources: (Group 1) Pho-

tographs manually downloaded from open source materials

on the Internet; (Group 2) New custom photographs taken

by investigators in our lab.

Despite our best efforts, we quickly realized that Group

1 (internet images) contained strong biases: even an SVM

with a linear kernel applied to the image pixels could

classify images with higher-than-chance accuracy. Conse-

quently, we decided to take our own photographs (Group 2,

controlled set, Figure 1, Fig. S4). Special care was taken

to avoid biases when taking pictures. Whenever we took a

photo representing a behavior in a certain setting (e.g., per-

son A drinking from a cup in location L), we also took a

companion photo of the opposite behavior in the same set-

ting (person A holding the same cup in location L but not

drinking). Examples of these image pairs for each behavior

are shown in Figure 1. The opposite behavior could be a

slight change, for example the same picture with and with-

out water in the case of drinking, or changing the direction

of gaze for reading, or changing body posture for sitting.

This procedure ensured that the differences between the two

classes could not be readily ascribed to low-level proper-

ties associated with the two labels. We reasoned that these

differences between the yes and no classes would make the

classification task difficult for current algorithms, while still

being solvable by humans. We conjectured that these sub-

tle, but critical, differences, highlight the key ingredients of

what it means for an algorithm to be able to truly recognize

an action.

The original number of images in the drinking, reading

and sitting datasets were 4,121, 3,071 and 3,684, respec-

tively. These datasets were then split into yes and no classes

according to the labelling procedure described in Section

3.2. About 85% of each dataset consisted of our own pho-

tographs (Group 2), while the rest was from the Internet

(Group 1). All images were converted to grayscale and re-

sized to 256-by-256 pixels (except in Fig. S1 and Fig. S2

which show results for RGB images).

3.2. Labelling images

We created ground truth labels for each image by asking

3 participants to assign each image to a yes or no class for

each action. The participants were given simple guidelines

to define each action: drinking (liquid in mouth), reading

(gaze towards text), and sitting (buttocks on support). In

contrast to the psychophysics tests in Section 4, here the 3

participants had no time constraint to provide labels. We

only kept an image if all the participants agreed on the class

label.
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Figure 2. Images downloaded from the internet carry large biases. Accuracy on the three datasets (red=drinking, green=reading,

blue=sitting) as a function of the percentage of images removed for images from Group 1 (A, Internet) or Group 2 (B, Controlled Set).

Accuracy refers to classification results on test data using an SVM classifier on the fc7 activations of a fine-tuned AlexNet ( Section 3.3).

Error bars = standard deviation. Horizontal dashed line = chance level.

3.3. Removing biases

As noted in the Introduction, spurious correlations be-

tween images and labels can render tasks easy to solve.

To systematically avoid such biases, we implemented a

pruning procedure by ensuring that the images could not

be easily classified by ”simple” deep learning algorithms.

This was done by applying 100 cross-validation itera-

tions (80%/20%) of a fine-tuned AlexNet [20, 26] on each

dataset. The weights were pre-trained on ImageNet [26].

A 2-unit fully-connected layer was added on top of the fc7

layer. Classification was performed by a softmax function

using cross-entropy for the cost function. Weights were up-

dated over 3 epochs, via Stochastic Gradient Descent (SGD)

with momentum 0.9, L2 regularization with λ = 10−4, and

learning rate 10−4.

After fine-tuning, an SVM was applied to the fc7 layer of

fine-tuned AlexNet activations to classify the images. Im-

ages were ranked from easiest (correctly classified in most

of the 100 iterations) to hardest (correctly classified only in

50% of the iterations). We progressively removed images

from the dataset according to their rank and re-applied the

same procedure on the reduced datasets. Figure 2 shows the

resulting drop in accuracy, as a function of the percentage

of images removed.

Images from Group 1 (Internet) were easily classified

(Figure 2A): accuracy was 68.2 ± 3.4% (drinking), 75.7 ±

3.6% (reading), and 85.8 ± 2.7% sitting), where chance is

50%, consistent with the biases inherent to Internet images.

For example, the drinking dataset contained images of ba-

bies in the positive but not in the negative class. Other bi-

ases could be due to the surrounding environment: positive

examples of sitting tended to correlate with indoor pictures,

whereas negative examples tended to be outdoors. After

eliminating 40% of the images, drinking reached an accu-

racy of 50 ± 5.0%, and reading reached an accuracy of

55.7 ± 5.2%. In the case of sitting, we had to remove up

to 70% of images to obtain close to chance-level accuracy.

The Group 2 dataset (our own photographs) was more

difficult to classify (Figure 2B), even without any image re-

moved: accuracy was 63.3± 5.2% (drinking), 47.7± 0.8%

(reading), and 62.9±3.9% (sitting). After eliminating 40%

of the images, drinking reached an accuracy of 50.4±7.3%,

and sitting reached an accuracy of and 52.6 ± 2.4%, while

reading dataset remained close to chance (50%).

3.4. Final dataset

After the processes in Sections 3.2 and 3.3, we obtained

a final dataset for each action: 2,164 images for drinking,

2,524 images for reading, and 2,116 images for sitting, with

50% yes labels. These quantities are of the same order of

magnitude as the number of images per category in the pop-

ular ImageNet dataset, where every class contains between

450 and slightly over 1,000 images. ImageNet contains

many more classes (1,000 instead of the 3 x 2 classes used

here). However, we note that the goal in most analyses of

ImageNet is to discriminate between different classes. Here

we are interested in detecting each action in a binary yes/no

fashion, and we are not trying to discriminate one activ-

ity (e.g., drinking) from the others (e.g., sitting or reading).

Each dataset is split into a training set (80%), validation

(10%), and test set (10%). The persons appearing in the

photographs of each set are uniquely present in that set. For

example, if one person is in the training set, then they are

not present in either the validation or test sets.
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Figure 3. Schematic description of the psychophysics task (Sec-

tion 4). Gif files were presented to mturk workers; each trial con-

sisted of fixation (500 ms), image presentation (50, 150, 400, or

800 ms), and a forced choice yes/no question.

4. Psychophysics evaluation

Ground truth labels were obtained based on the consen-

sus of three subjects who examined the images with no time

limit (Section 3.2). To compare human versus machine per-

formance, we conducted a separate psychophysics test with

limited exposure duration of 50, 150, 400, or 800 ms in

a two-alternative forced choice task implemented with psi-

Turk [27] (Figure 3). The test was delivered to a total of

54 subjects via Amazon Mechanical Turk.

The trial sequence was presented as .gif files to approx-

imately control the duration of image presentation (Figure

3). Each trial consisted in a fixation cross (500 ms), fol-

lowed by the image presented for a duration of either 50,

150, 400 or 800 ms, and finally a two-alternative forced

choice question shown until the subject answered [38]. The

image duration changed randomly from one presentation to

the next. Despite selecting only “master mturk workers”

with a rate of past accepted hits higher than 99%, online

experiments often have subjects who do not fully attend or

understand the task. To avoid including such cases, outlier

subjects that showed a significantly lower accuracy than the

population (p-value < 0.05 on one-tailed t-test) were ex-

cluded from further analyses. This threshold concerned 3

out of 18 (drinking), 3 out of 19 (reading), and 2 out of 17

(sitting) subjects.

The average accuracy as a function of image duration

for the human subjects is shown in Figure 4. Even at

the shortest duration (50 ms), subjects were significantly

above chance in all tasks, with a performance of at least

71.8± 6.1% (drinking), up to 79.7± 6.6% (sitting). As ex-

pected, performance increased with exposure time. At the

longest duration of 800 ms, performance was above 90%

for all three tasks.

5. State-of-the-art models

We considered two main families of strategies to solve

the task: (1) We used state-of-the-art deep convolutional

neural networks pre-trained on the ImageNet dataset [31],

with or without fine-tuning on the current dataset (5.1); and

(2) extraction of putative action-relevant features using the

Detectron algorithm [12], a state-of-the-art object-detection

algorithm pre-trained on the COCO dataset [23].

5.1. Models pretrained on ImageNet and finetuned
on the current dataset

We considered the following deep convolutional neural

networks: AlexNet [20], VGG16 [34], InceptionV3 [37],

ResNetV2 [15], Inception-ResNet [36] and Xception [7]

available from Keras [8]. Weights were pre-trained on Ima-

geNet. The last classification layer, made of 1,000 units for

ImageNet, was replaced by a 512x1 fc layer, followed by

a 1-unit classification layer. All weights were updated via

Adam optimization [19], with a learning rate of 10−4, un-

til validation accuracy stagnated. Cost was measured with

binary cross-entropy and the classifier was Softmax.

We first considered the pre-trained weights followed by

a classification layer. We next considered fine-tuning only

the last layers. We finally considered fine-tuning the entire

network with the images in the current dataset. The model

yielding the highest accuracy on the validation set was ap-

plied to the test set. Results are shown in Figure 5. The

top accuracy on the drinking dataset was 61.7 ± 0.9%, ob-

tained with the Xception network [7]. This is far below the

90.3% accuracy reached by humans on this task. Inception-

ResNet [36] gave the best results for reading and sitting,

with 56.7 ± 1.8% and 66.1 ± 1.4% accuracy respectively.

These values are also far below the 90.7% and 94.1%, re-

spectively, reached by humans.

We tested several additional variations in an attempt to

improve performance. First, using RGB images instead of

grayscale images led to similar performance, well below

the accuracy obtained by humans using grayscale images

(Figure S1). In contrast to uncontrolled datasets where

color can provide strong cues (as in the skydiving versus

baseball pitch example noted in the Introduction), in a more

controlled dataset color does not help much. Second, accu-

racy was slightly improved using artificial data augmenta-

tion. Every image was horizontally flipped with probability

50%, and shifted along x or y axis by a number of pixels

randomly picked in the interval [-30,30] [8]. Third, several

regularization techniques were evaluated but neither L1 nor

L2 normalization improved the accuracy. Finally, replac-

ing the penultimate 512-unit fully-connected layer by 1,024

units with drop-out did not improve the accuracy either. In

sum, none of the networks and variations tested here were

close to human performance, even when forcing humans to

use grayscale images and respond after 50 ms exposure.
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Figure 4. Humans can rapidly detect the three actions. Average accuracy ± SD as a function of exposure time on the three datasets in

the task shown in Figure 3. (***) p < 0.0005, (**) p < 0.05, (*) p < 0.1 on one-tailed, paired t-test. Horizontal dashed line = chance

level.

Figure 5. Deep convolutional neural network models were far from human-level performance. Test performance for each fine-tuned

model is shown (mean±SD). The model with best accuracy on the validation set was retained to be applied on the test set, as described in

section 5.1. We also reproduce here the human performance values for 50ms and 800ms exposure from Figure 4 for comparison purposes.

Human accuracy was significantly better than any of the algorithms, (p < 0.0005, one-tailed t-test). Horizontal dashed line = chance

performance.

We visualized the salient features relevant for classifica-

tion in these networks using Grad-CAM [33]. Figure S3

shows an example visualization for the ResNet-50 network

[15] with weights pre-trained on ImageNet. Even though

the networks often (but not always) focused on relevant

parts of the image (such as the mouth or hands for drink-

ing), the models failed to capture the critical nuances in each

image that distinguish each action. For example, reading

critically depends on assessing whether the gaze is directed

towards text or not.
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5.2. Extraction of putative actionrelevant features

Despite using a variety of state-of-the-art deep convo-

lutional neural network architectures, with or without fine-

tuning, colors, different regularizers, or data augmentation,

humans outperformed all the algorithms by a large amount

(Figure 5).

We reasoned that humans may capitalize on additional

knowledge about the specific elements and interactions be-

tween elements that are involved in defining a given action.

For example, reading depends on the presence of text (a

book, a magazine, a sign), a person, and gaze directed from

the person toward the text. To test this idea, we applied

algorithms where we could impose the definition of each

action by using computational approaches to detect the cor-

responding elements and their interactions.

We employed two implementations of the Detectron al-

gorithm [12] to pursue this approach (Figure 6). In the first

approach (Model A), we used the Detectron X-101-32x8d-

FPN s1x configuration, where 32x8d means 32 groups per

convolutional layer and a bottleneck width of 8 [45], while

s1x refers to the slow learning-rate schedule. This model

was trained on the Keypoint Detection Task from the COCO

dataset [23], comprising 150,000 person instances labelled

with 17 keypoints covering their body (ankles, knees, el-

bows, eyes, among other points).

In the second approach (Model B), we used the Detec-

tron X-101-64x4d-FPN 1x configuration (64 convolutional

groups with a bottleneck width of 4). This model was

trained for the Object Detection Task of the COCO dataset

[23], consisting of 82,000 images with the objective of seg-

menting 81 classes of objects.

Both implementations use Mask R-CNN [14] and Fea-

ture Pyramid Network [21] for the architecture, with 101-

layers ResNeXt as a backbone [45]. Both implementations

obtain the highest performance in their respective tasks.

For sitting, only Model A was used. We extracted the

bounding box, keypoints and the features of the “main” per-

son in the picture. We defined the “main” person as the

largest bounding-box whose probability of belonging to the

class person was higher than a threshold set in the imple-

mentation. Out of the extracted data, we created two vec-

tors: a features vector, made of the 12,544 features asso-

ciated with the person in the picture, and a keypoints vec-

tor. The keypoints vector consisted of the x-coordinate, y-

coordinate, the probability of each detected keypoint, plus

the width and height of the person bounding-box. This re-

sulted in a vector of 53 elements, which were normalized

with respect to the bounding box coordinates. A 3 fc-layer

neural network (512x1, 512x1, 2x1), trained with stochastic

gradient-descent, provided the best results from the features

vector while an SVM classifier was best for the keypoints

vectors. The best accuracy was 76.7± 2.8%, obtained from

the features vectors. Grouping the two vectors together did

not increase accuracy (Figure 7).

For reading, we used both models A and B. Model A

was used to extract the bounding box, keypoints and the

features of the main person in the picture, similarly to the

sitting task. We used model B to extract the bounding box

and features of the text material. We selected the region

of interest whose probability of belonging to the classes tv,

laptop, cell phone or book was higher than a certain thresh-

old. If there were several such items in a picture, we re-

tained the one with the largest bounding box. We combined

the features from both models A and B into features vec-

tors. Keypoints from models A and B were grouped into

keypoints vectors. The same classifiers as for sitting were

used. The best performance was reached from keypoints

vectors with 62.8%± 0.7% accuracy, features vectors gave

56.1%± 0.7% accuracy.

Addressing the drinking task followed a similar reason-

ing to the reading task described previously. We used model

A to extract the bounding box, keypoints and the features of

the main person in the picture. We used model B to ex-

tract the bounding box and features of the beverage. We

selected the region of interest whose probability of belong-

ing to the classes bottle, glass, or cup was higher than a

certain threshold. If there were several such items in a pic-

ture, we retained the one with the largest bounding box. We

combined the features from both models A and B into fea-

tures vectors. Keypoints from model A and B were grouped

into keypoints vectors. The same neural network classifier

as for sitting and reading was used. The best performance

was reached from features vectors with 57.3%±1.6% accu-

racy, while keypoints vectors gave 52.9% ± 2.6% accuracy

(Figure 7).

As discussed in Section 5.1, using RGB images in-

stead of grayscale images led to similar accuracy, with all

the models still falling below human performance levels

(Figure S2).

6. Discussion

Can Deep Learning algorithms learn the concepts of

drinking, reading, and sitting? We consider these basic ac-

tivities as paradigmatic examples of daily actions that hu-

mans can recognize rapidly and seemingly effortlessly in

a wide variety of different scenarios. Exciting progress in

action recognition using datasets like UCF101 [35] might

convey the erroneous impression that it is relatively straight-

forward to develop algorithms that correctly detect activi-

ties like “playing cello”, “breastroke”, or “soccer juggling”.

However, it is important to note that algorithms can per-

form well above chance levels in these datasets, even sim-

ply using a linear classifier on pixel levels using just a sin-

gle frame. In this work, we propose a methodology to build

better controlled datasets. As a proof-of-principle, we intro-

duce a prototype of such a dataset for the actions of drink-

14249



Figure 6. Action-dependent extraction of relevant keypoints and features for reading. Schematic of the implementation of Detectron

[12], as described in Section 5.2. On the reading dataset, we combined two implementations of Detectron. Top: Detectron trained on the

Keypoint dataset of COCO [23] allows to extract features, keypoints and bounding-box of the person in the image. Bottom: Detectron

trained on the Object Detection dataset of COCO allows to extract the bounding-box and features of the reading material in the picture (see

text for details).

Figure 7. Extracting action-relevant features can improve performance but all models remain well below human levels. We extracted

specific keypoints and features using the Detectron algorithm (see Figure 6, and text for details). The combination of action-specific

keypoints and relevant object features improved performance with respect to the architectures studied in Figure 5 for the reading and sitting

datasets. Human performance with 50ms and 800ms exposure is reproduced here from Figure 4 for comparison purposes. Horizontal line

= chance performance. None of these models reached human performance levels.

ing, reading, and sitting. Using this controlled dataset, we

show that the latest artificial neural networks are likely to

extract some correct discriminative features as well as bi-

ased features for these behaviors and that humans outper-

form all of the current networks.

One approach followed by prominent datasets like Im-

ageNet [31] or UCF101 [35] is to collect example images

from internet sources for a wide variety of different classes

is. This approach is fruitful because it inherently repre-

sents to some extent the statistics of images in those internet

sources, because there is some degree of variation captured

in those images, because it enables studying multiple image
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classes, and because it is empirically practical. At the same

time, this approach suffers from the biases inherent to un-

controlled experiments where many confounding variables

may correlate with the variables of interest [3].

Here we take a different approach whereby we consider

detecting the presence or absence of specific actions. Even

in this binary format, and despite our best intentions, it

is difficult to download images from the internet that are

devoid of biases (Figure 2A). For example, perhaps there

are more images of people reading indoors under artificial

light conditions than outdoors and therefore low-level im-

age properties can help distinguish reading from not read-

ing images. These biases are not always easy to infer. Re-

gardless of the exact nature of the biases between the two

classes, it is clear that images downloaded from the Internet

display multiple confounding factors. In an attempt to ame-

liorate such biases, we took our own set of photographs un-

der approximately standardized conditions (Figure 1, Fig.

S4). This approach led to a substantial reduction in the

amount of bias in the dataset (Figure 2B), but it was not

completely bias free. Therefore, we instituted a procedure

to remove images that were easy to classify.

Human subjects were still able to detect the three actions

in the resulting datasets (Figure 4), even when exposure

times were as short as 50 ms. Longer exposures led to close

to ceiling performance for humans.

Computational models pre-trained on object classifica-

tion datasets performed barely above chance in the three

tasks (Figure 2B), even though the same models have been

successful in the original datasets they were trained on. We

re-trained state-of-the-art computational models using our

datasets. Even after extensive fine tuning, data augmenta-

tion, adding color and regularizers, even the best models

were well below human performance (Figure 5). These re-

sults should not be interpreted as a proof that no deep con-

volutional neural network model can reach human level per-

formance in this dataset. On the contrary, we hope that this

dataset will inspire development of better algorithms that

can thrive when the number of biases is significantly re-

duced. An important variable in deep convolutional neural

network approaches is the amount of training data. Each of

our datasets contain more than 2,000 images (that is, more

than 1,000 images for the yes and no classes in each case).

The ImageNet dataset contains between 450 and slightly

more than 1,000 images in each class. The UCF101 dataset

contains on the order of 100 videos for each class. Thus, the

number of images per class in our dataset is comparable or

larger than the ones in prominent datasets in the field.

The total number of different tasks is very different. Here

we only consider three binary tasks, whereas the typical for-

mat of object classification in ImageNet involves a single

task with 1,000 classes and UCF101 involves a single task

with 101 classes. Because of our binary approach, the total

number of different tasks is not relevant to the results shown

here. We assume that the same conclusions would apply

to well-controlled datasets for other actions such as soccer

juggling or not, playing cello or not, and others, but this

remains to be determined. Extending our dataset creation

protocol from 3 tasks to 100, or 1,000, different tasks is

challenging due to the manual approach involved in taking

photographs. However, recent efforts have astutely taken

advantage of Amazon Mechanical Turk to collect pictures

[3], an approach that could pave the way towards creating

larger, yet adequately controlled, datasets.

In the interest of simplicity, here we focus on action

recognition from static images as opposed to video. We

were inspired to focus on static images because it is easy to

thrive in current action recognition challenges by ignoring

the video information. However, there is no doubt that tem-

poral information from videos can provide a major boost to

performance. Video material downloaded from the Inter-

net suffers from similar biases to the ones discussed above

for static images. Additional biases may be introduced in

videos (for example, certain video classes may have more

camera movement than others). It would be interesting to

follow a similar approach to the one suggested here to build

controlled video datasets.

The mechanisms by which human observers recognize

these actions are poorly understood. It is also unclear how

much class-specific training humans have with these ac-

tions. It is interesting to conjecture that many actions can

be defined by an agent, an object, and a specific interaction

between the two. Drinking involves a person (or animal),

liquid, and a mechanism by which the liquid flows into the

agent’s mouth. Similarly, reading involves a person, text,

and gaze directed from the person to the text. Following up

on this conjecture, we provide initial steps towards defining

variables of interest for action recognition using the Detec-

tron algorithm (Figure 6).

When designing experiments, scientists typically devote

major efforts to minimizing possible biases and confound-

ing factors. Building less biased datasets can help challenge

existing algorithms and develop better algorithms that can

robustly generalize to real-world problems.

Acknowledgements

This work was supported by NIH R01EY026025 and by

the Center for Minds, Brains and Machines, funded by NSF

STC award CCF-1231216. This work was inspired by dis-

cussions with and lectures presented by Shimon Ullman.

We thank all the participants who were models in our pho-

tographs. In particular, we are grateful to Pranav Misra and

Rachel Wherry who took and labeled the initial pictures.

14251



References

[1] M. Andriluka, U. Iqbal, E. Ensafutdinov, L. Pishchulin, A.

Milan, J. Gall, and Schiele B. PoseTrack: A benchmark for

human pose estimation and tracking. In CVPR, 2018. 2

[2] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and

Bernt Schiele. 2d human pose estimation: New benchmark

and state of the art analysis. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2014. 2

[3] Andrei Barbu, David Mayo, Julian Alverio, William Luo,

Christopher Wang, Dan Gutfreund, Josh Tenenbaum, and

Boris Katz. Objectnet: A large-scale bias-controlled dataset

for pushing the limits of object recognition models. pages

9453–9463, 2019. 8

[4] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and

Yaser Sheikh. OpenPose: realtime multi-person 2D pose

estimation using Part Affinity Fields. In arXiv preprint

arXiv:1812.08008, 2018. 2

[5] Joao Carreira, Pulkit Agrawal, Katerina Fragkiadaki, and Ji-

tendra Malik. Human pose estimation with iterative error

feedback, 2015. 2

[6] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset, 2017.

1

[7] François Chollet. Xception: Deep learning with depthwise

separable convolutions. CoRR, abs/1610.02357, 2016. 4

[8] François Chollet et al. Keras. https://keras.io, 2015.

4

[9] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Ob-

ject detection via region-based fully convolutional networks,

2016. 2

[10] Ross Girshick. Fast r-cnn, 2015. 2

[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation, 2013. 2

[12] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr

Dollár, and Kaiming He. Detectron. https://github.

com/facebookresearch/detectron, 2018. 2, 4, 6,

7

[13] Georgia Gkioxari, Ross Girshick, Piotr Dollár, and Kaiming

He. Detecting and recognizing human-object interactions,

2017. 2

[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn, 2017. 2, 6

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Identity mappings in deep residual networks. CoRR,

abs/1603.05027, 2016. 4, 5

[16] Sam Johnson and Mark Everingham. Clustered pose and

nonlinear appearance models for human pose estimation. In

Proceedings of the British Machine Vision Conference, 2010.

doi:10.5244/C.24.12. 2

[17] Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla.

Bayesian segnet: Model uncertainty in deep convolu-

tional encoder-decoder architectures for scene understand-

ing, 2015. 2

[18] Pieter-Jan Kindermans, Kristof T. Schütt, Maximilian Alber,
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