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Supercomputing application landspace

 Simulations
• physical phenomena
• physics-based codes
• behavior of physical entities in space and time
• run single large problem with high interaction between parts

 Analysis
• Bioinformatics - BLAST, genomic expression
• Financial predictions - Monte Carlo methods to (eg.) price derivatives
• Text mining
• Database search
• Run large number of independent problems on compute/data intensive

backend processors
• Gather results at front end

To benefit from acceleration, applications must follow 90-10
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90-10 is hard to find in scientific simulations

 Acceleration using only library routines will be negligible
for scientific codes.
• Even Linpack needs at least 5X DGEMM

acceleration of 64-bit floating point operations
 Acceleration of compute kernels is problematic.

• Long, complex double precision code sequences:
not a good fit for FPGA

• Collection of little hot spots whose data structures
are enmeshed in surrounding serial code

 The Amdahl’s Law limitation also applies to other co-
processors.



4Gokhale FPGA 09

Lawrence Livermore National Laboratory

Assessing FPGAs as simulation co-processors

 Study execution profile
• oprofile, PAPI, TAU
• quantify time spent at loop or even line granularity
• find representative data sets

− execution profile may vary greatly depending on data set
• want 90% time in a small kernel, preferably library function

 Study code of likely acceleration candidates
• data type - integer, single precision FP, double FP
• types of operations - divides, transcendental functions
• numbers of operations - how many FP units are needed

 Study data profile
• data consumed and produced in a region must be communicated between global

microprocessor memory and FPGA board memory
• need to know amount of data transferred (per loop iteration)
• need to know if communication and computation can be overlapped

 ERSA 2005, RSSI 2006
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Scientific simulation profiles

In 5 routines, already
optimized in sse55%GROMACS

Conjugate gradient solver10%POP

EDIMER
Large, complex routine

40%GAMESS

Collection of matrix algebra
routines55%MILC

DGEMM74%LINPACK

CommentCompute
Kernel %Code

Speedup of 2X-3X at the very most
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FPGAs for analysis problems

 Signal and image processing
• Integer and single precision FP
• Amenable to streaming, pipelining
• Compute within the data acquisition pipeline
• Lots of working, real world implementations, eg. Cibola Flight

Experiment with 9 Virtex 1000’s for signal processing on-board
a satellite, launched March 2007

Los Alamos 09 March 2007 A small-but-smart satellite experiment, the
Cibola Flight Experiment (CFE) developed at Los Alamos National
Laboratory for the Department of Energy's National Nuclear
Security Administration (NNSA), has launched aboard a United
Launch Alliance Atlas-5 rocket and was successfully placed in orbit
350 miles above Earth. The satellite will test leading-edge
technologies that will be incorporated into future generations of
satellites that will monitor the globe for nuclear detonations.
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Discussion

 Science mission to study lightning, ionospheric
disturbances, other sources of RF atmospheric noise

 Understand effects of ionosphere on communications

 Algorithm development was difficult
• needs team of scientists, embedded systems

programmers, hardware designers
• tried tools such as simulink

− custom board made integration within existing
platform difficult
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Graph algorithms on FPGA

 Graph algorithms
• Point to point shortest path on road network (a la

mapquest): Zach Baker at LANL
• All-to-all shortest path of very large sparse semantic

graphs: Scott Kohn and Andy Yoo at LLNL
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Example: Point to point shortest path

 Used for route planning in TranSIMs, simulating road traffic on
road networks in large metropolitan areas

 Opportunity for parallel execution of route planning
• 100K - 1,000K routes to compute
• Can complete in nearly arbitrary order
• Lat/long of all road nodes provided

 Latency dominated computation
• Mitigate through application-specific multi-threaded approach

 Implemented on Cray XD1 node
• Dual Opteron + Xilinx Virtex2Pro50 FPGA for every
• RapidArray HT connection to FPGA

IEEE FCCM 2007
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Point-to-point shortest path

 A* algorithm
• Uses distance to

destination to decide
which possible paths to
pursue

• Hardware-friendly
priority queue
implementation needed

• Bandwidth to road
network graph critical to
performance
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Adaptations for hardware: priority queue

 Software A* uses Fibonacci Heap
• O(log(n)) average performance
• Complicated data structure
• Heap can grow without bound during execution

 Hardware approach uses bubble sort!
• Needs only a single memory port
• Sort speed not as important: parallel A* units
• Buffer limited to 32 entries, determined by analysis of data set
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Parallel A* units

 Each unit contains
• Distance calculation block
• bubble sort hardware block

to sort the queue
 Customized cache in memory

controller
• Cache from DRAM into

QDRII SRAM
• LRU page replacement
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Performance

 Compare Opteron only to Opteron + FPGA
 FPGA algorithm uses Opteron’s DRAM to load SRAM

cache
 Access to 2024294 edges, with 778 page loads
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Discussion

 A 50X speedup for a latency-driven random-access
algorithm truly demonstrates a disruptive technology

BUT …
 Hardware implementation in VHDL by experienced

hardware/software designer
 Six months to build/debug hardware
 Needs considerable expertise with FPGA, CAD tools,

board level architecture, system level architecture,
software algorithms and their implication for hardware

 Needs coordination between software and hardware
 Hard to get out into general use due to expense of

custom hardware
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Example: Path finding in semantic graphs

Semantic graphs are used to
analyze relationships in large data
sets coming from heterogeneous
data sources

How is A related to B?
Is a certain activity pattern in the data?

We need to analyze graphs that are
orders of magnitude larger than those
processed using current technology, 1012

nodes, faster - in minutes instead of days

M. Newman and M. Girvan, Finding and
evaluating community structure in networks,
Phys. Rev., 2003

T. Coffman, S. Greenblatt, S. Marcus,
Graph-based technologies for
intelligence analysis,
CACM, 2004
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Database storage appliance

BI Applications

Local Applications

Bulk data movement: 250
GB/hour - uncompressed

(1 TB/hour Target)
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Methodology

 Represent graph as SQL table where each row
represents an edge

 Pose the shortest path problem as SQL query
 Query is optimized on host
 Sub-queries dispatched to all the FPGA/PPC

processors who read their part of the database and
filter the table rows

 Rows matching the query are returned back to host
 User sees SQL interface only
 SC 2007



FPGA-accelerated storage server vs. BG/L

Bi-directional Breadth-First 
Graph Search Algorithm

• 10X More Edges
• 12X Productivity Improvement
• 300 Billion Edge Problem Not
Achievable on BG/L

218 sec1.4 secAvg. Search
Time

2 week,
100 lines of SQL

code

6 months,
2000 lines of

C code

Level of Effort

64865, 538Processors

Scale-Free
 (“real world”

problem)

Random
(academic
problem)

Graph
Description

300 billion30 billionGraph Edges

Netezza 8650
(2006)

IBM BG/L
(2005)
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Discussion

 Pros
• Appliance approach hides existence of FPGA from user
• Familiar software-oriented interface
• No need to do synthesis, place, and route

 Cons
• Cost
• Limited application classes
• Closed source, not extensible

 But …
• software package tailored to graph algorithms runs on

commodity cluster, beats Netezza parallel architecture on
representative graph queries
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Comparison of various co-processors

 Matched filter over
hyperspectral imagery
• Locate geographic,

atmospheric features
• Wide spectral content,

divided into 100’s of bands
• Large data cubes (eg. 240 x

240 x 1000) collected in real
time

 Compare Cell, FPGA, and GPU
 Justin Tripp, Zach Baker of

LANL (FCCM, 2007)
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Hyperspectral imagery applications
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Matched filter algorithm
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Discussion

 FPGA was fastest on the portions it could do, but our
implementation couldn’t do all the parts
• soft processor could be used, but
• takes area, memory, bandwidth from replicated data paths

 Cell was overall fastest, but data had to be reorganized to work on
the Cell version of the algorithm

 GPU was judged over all “winner” in terms of speedup/$
• newer GPU architectures are even more amenable to general

purpose data intensive processing
− GPU/CUDA used to calculate Reed-Solomon codes for

RAID (Sandia 2008)
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Summary

 FPGA co-processors have shown orders of magnitude speed up
on certain problems, BUT

 Application domains must be carefully chosen to circumvent
Amdahl’s Law

 Cost of FPGAs and associated algorithm development tools is too
high for most applications

 Design-code-test cycle is too long
 Multi-core processors are competitive to FPGAs, especially for

floating point dominated kernels, and may overtake FPGAs for
algorithm acceleration

 Good niche for FPGA algorithm acceleration might be
• part of data acquisition pipeline
• high performance appliance
• low power/energy scenarios


