
Lawrence Livermore National Laboratory

Can FPGAs accelerate Data Analytics?
A Skeptic's View

Maya Gokhale
maya@llnl.gov



2Gokhale FPGA 09

Lawrence Livermore National Laboratory

Supercomputing application landspace

 Simulations
• physical phenomena
• physics-based codes
• behavior of physical entities in space and time
• run single large problem with high interaction between parts

 Analysis
• Bioinformatics - BLAST, genomic expression
• Financial predictions - Monte Carlo methods to (eg.) price derivatives
• Text mining
• Database search
• Run large number of independent problems on compute/data intensive

backend processors
• Gather results at front end

To benefit from acceleration, applications must follow 90-10



3Gokhale FPGA 09

Lawrence Livermore National Laboratory

90-10 is hard to find in scientific simulations

 Acceleration using only library routines will be negligible
for scientific codes.
• Even Linpack needs at least 5X DGEMM

acceleration of 64-bit floating point operations
 Acceleration of compute kernels is problematic.

• Long, complex double precision code sequences:
not a good fit for FPGA

• Collection of little hot spots whose data structures
are enmeshed in surrounding serial code

 The Amdahl’s Law limitation also applies to other co-
processors.



4Gokhale FPGA 09

Lawrence Livermore National Laboratory

Assessing FPGAs as simulation co-processors

 Study execution profile
• oprofile, PAPI, TAU
• quantify time spent at loop or even line granularity
• find representative data sets

− execution profile may vary greatly depending on data set
• want 90% time in a small kernel, preferably library function

 Study code of likely acceleration candidates
• data type - integer, single precision FP, double FP
• types of operations - divides, transcendental functions
• numbers of operations - how many FP units are needed

 Study data profile
• data consumed and produced in a region must be communicated between global

microprocessor memory and FPGA board memory
• need to know amount of data transferred (per loop iteration)
• need to know if communication and computation can be overlapped

 ERSA 2005, RSSI 2006



5Gokhale FPGA 09

Lawrence Livermore National Laboratory

Scientific simulation profiles

In 5 routines, already
optimized in sse55%GROMACS

Conjugate gradient solver10%POP

EDIMER
Large, complex routine

40%GAMESS

Collection of matrix algebra
routines55%MILC

DGEMM74%LINPACK

CommentCompute
Kernel %Code

Speedup of 2X-3X at the very most



6Gokhale FPGA 09

Lawrence Livermore National Laboratory

FPGAs for analysis problems

 Signal and image processing
• Integer and single precision FP
• Amenable to streaming, pipelining
• Compute within the data acquisition pipeline
• Lots of working, real world implementations, eg. Cibola Flight

Experiment with 9 Virtex 1000’s for signal processing on-board
a satellite, launched March 2007

Los Alamos 09 March 2007 A small-but-smart satellite experiment, the
Cibola Flight Experiment (CFE) developed at Los Alamos National
Laboratory for the Department of Energy's National Nuclear
Security Administration (NNSA), has launched aboard a United
Launch Alliance Atlas-5 rocket and was successfully placed in orbit
350 miles above Earth. The satellite will test leading-edge
technologies that will be incorporated into future generations of
satellites that will monitor the globe for nuclear detonations.



7Gokhale FPGA 09

Lawrence Livermore National Laboratory

Discussion

 Science mission to study lightning, ionospheric
disturbances, other sources of RF atmospheric noise

 Understand effects of ionosphere on communications

 Algorithm development was difficult
• needs team of scientists, embedded systems

programmers, hardware designers
• tried tools such as simulink

− custom board made integration within existing
platform difficult



8Gokhale FPGA 09

Lawrence Livermore National Laboratory

Graph algorithms on FPGA

 Graph algorithms
• Point to point shortest path on road network (a la

mapquest): Zach Baker at LANL
• All-to-all shortest path of very large sparse semantic

graphs: Scott Kohn and Andy Yoo at LLNL



9Gokhale FPGA 09

Lawrence Livermore National Laboratory

Example: Point to point shortest path

 Used for route planning in TranSIMs, simulating road traffic on
road networks in large metropolitan areas

 Opportunity for parallel execution of route planning
• 100K - 1,000K routes to compute
• Can complete in nearly arbitrary order
• Lat/long of all road nodes provided

 Latency dominated computation
• Mitigate through application-specific multi-threaded approach

 Implemented on Cray XD1 node
• Dual Opteron + Xilinx Virtex2Pro50 FPGA for every
• RapidArray HT connection to FPGA

IEEE FCCM 2007



10Gokhale FPGA 09

Lawrence Livermore National Laboratory

Point-to-point shortest path

 A* algorithm
• Uses distance to

destination to decide
which possible paths to
pursue

• Hardware-friendly
priority queue
implementation needed

• Bandwidth to road
network graph critical to
performance



11Gokhale FPGA 09

Lawrence Livermore National Laboratory

Adaptations for hardware: priority queue

 Software A* uses Fibonacci Heap
• O(log(n)) average performance
• Complicated data structure
• Heap can grow without bound during execution

 Hardware approach uses bubble sort!
• Needs only a single memory port
• Sort speed not as important: parallel A* units
• Buffer limited to 32 entries, determined by analysis of data set



12Gokhale FPGA 09

Lawrence Livermore National Laboratory

Parallel A* units

 Each unit contains
• Distance calculation block
• bubble sort hardware block

to sort the queue
 Customized cache in memory

controller
• Cache from DRAM into

QDRII SRAM
• LRU page replacement



13Gokhale FPGA 09

Lawrence Livermore National Laboratory

Performance

 Compare Opteron only to Opteron + FPGA
 FPGA algorithm uses Opteron’s DRAM to load SRAM

cache
 Access to 2024294 edges, with 778 page loads



14Gokhale FPGA 09

Lawrence Livermore National Laboratory

Discussion

 A 50X speedup for a latency-driven random-access
algorithm truly demonstrates a disruptive technology

BUT …
 Hardware implementation in VHDL by experienced

hardware/software designer
 Six months to build/debug hardware
 Needs considerable expertise with FPGA, CAD tools,

board level architecture, system level architecture,
software algorithms and their implication for hardware

 Needs coordination between software and hardware
 Hard to get out into general use due to expense of

custom hardware



15Gokhale FPGA 09

Lawrence Livermore National Laboratory

Example: Path finding in semantic graphs

Semantic graphs are used to
analyze relationships in large data
sets coming from heterogeneous
data sources

How is A related to B?
Is a certain activity pattern in the data?

We need to analyze graphs that are
orders of magnitude larger than those
processed using current technology, 1012

nodes, faster - in minutes instead of days

M. Newman and M. Girvan, Finding and
evaluating community structure in networks,
Phys. Rev., 2003

T. Coffman, S. Greenblatt, S. Marcus,
Graph-based technologies for
intelligence analysis,
CACM, 2004



16Gokhale FPGA 09

Lawrence Livermore National Laboratory

Database storage appliance

BI Applications

Local Applications

Bulk data movement: 250
GB/hour - uncompressed

(1 TB/hour Target)

Netezza Performance ServerClient

Fast Loader/
Unloader

ODBC 3.X
JDBC Type 4

SQL/92

SPU

FPGA

SPU
C12
C13

F12
F13

G1
2G1
3C14 F14 G1
4

FPGA

SPU
C21
C22

F21
F22

G2
1G2
2C23 F23 G2
3

FPGA

SPU
C3
0C3
1

F30
F31

G3
0G3
1

FPGA

SPU
C38
C39

F38
F39

G3
8G3
9C40 F40 G4
0

FPGA

A B C D E F G H
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

SMP
Host

C6
F7

C12
F13

C38 F39
G13 G22

C6
C7

F6
F7

G6
G7

scalability

Streaming
data, joins,
& aggs @
50MB/sec



17Gokhale FPGA 09

Lawrence Livermore National Laboratory

Methodology

 Represent graph as SQL table where each row
represents an edge

 Pose the shortest path problem as SQL query
 Query is optimized on host
 Sub-queries dispatched to all the FPGA/PPC

processors who read their part of the database and
filter the table rows

 Rows matching the query are returned back to host
 User sees SQL interface only
 SC 2007



FPGA-accelerated storage server vs. BG/L

Bi-directional Breadth-First 
Graph Search Algorithm

• 10X More Edges
• 12X Productivity Improvement
• 300 Billion Edge Problem Not
Achievable on BG/L

218 sec1.4 secAvg. Search
Time

2 week,
100 lines of SQL

code

6 months,
2000 lines of

C code

Level of Effort

64865, 538Processors

Scale-Free
 (“real world”

problem)

Random
(academic
problem)

Graph
Description

300 billion30 billionGraph Edges

Netezza 8650
(2006)

IBM BG/L
(2005)



19Gokhale FPGA 09

Lawrence Livermore National Laboratory

Discussion

 Pros
• Appliance approach hides existence of FPGA from user
• Familiar software-oriented interface
• No need to do synthesis, place, and route

 Cons
• Cost
• Limited application classes
• Closed source, not extensible

 But …
• software package tailored to graph algorithms runs on

commodity cluster, beats Netezza parallel architecture on
representative graph queries



20Gokhale FPGA 09

Lawrence Livermore National Laboratory

Comparison of various co-processors

 Matched filter over
hyperspectral imagery
• Locate geographic,

atmospheric features
• Wide spectral content,

divided into 100’s of bands
• Large data cubes (eg. 240 x

240 x 1000) collected in real
time

 Compare Cell, FPGA, and GPU
 Justin Tripp, Zach Baker of

LANL (FCCM, 2007)



21Gokhale FPGA 09

Lawrence Livermore National Laboratory

Hyperspectral imagery applications



22Gokhale FPGA 09

Lawrence Livermore National Laboratory

Matched filter algorithm



23Gokhale FPGA 09

Lawrence Livermore National Laboratory

Discussion

 FPGA was fastest on the portions it could do, but our
implementation couldn’t do all the parts
• soft processor could be used, but
• takes area, memory, bandwidth from replicated data paths

 Cell was overall fastest, but data had to be reorganized to work on
the Cell version of the algorithm

 GPU was judged over all “winner” in terms of speedup/$
• newer GPU architectures are even more amenable to general

purpose data intensive processing
− GPU/CUDA used to calculate Reed-Solomon codes for

RAID (Sandia 2008)



24Gokhale FPGA 09

Lawrence Livermore National Laboratory

Summary

 FPGA co-processors have shown orders of magnitude speed up
on certain problems, BUT

 Application domains must be carefully chosen to circumvent
Amdahl’s Law

 Cost of FPGAs and associated algorithm development tools is too
high for most applications

 Design-code-test cycle is too long
 Multi-core processors are competitive to FPGAs, especially for

floating point dominated kernels, and may overtake FPGAs for
algorithm acceleration

 Good niche for FPGA algorithm acceleration might be
• part of data acquisition pipeline
• high performance appliance
• low power/energy scenarios


