
 

 

 

Abstract—We investigate the impact of Bayesian opponent 

modeling upon the evolution of a player for a simplified poker 

game. Through the evolution of Artificial Neural Networks 

using NEAT we create and compare players both utilizing and 

ignoring Bayesian opponent beliefs. We test the effectiveness of 

this model against various collections of dynamic and partially 

randomized opponents and find that using a Bayesian 

opponent model enhances our AI players even when dealing 

with a previously unseen collection of players. We further 

utilize the inherent recurrency of our evolved players in order 

to recognize the opponent models of multiple players. Through 

ablative studies upon the inputs of the network, we show that 

utilization of an opponent model as an evolutionary aid yields 

significantly stronger players in this case.  

I.   INTRODUCTION 

Poker has simple rules, with many layers of tactical 

complexity [1]; each player is dealt a set number of cards 

(which varies for different types of poker, and is generally 

between one and seven), and then one or more betting 

round(s) take place, within which each player tries to 

convince their opponent that they have the best hand. The 

layers of complexity appear in the performance of the 

betting round, as each player‘s betting action can represent a 

strong hand or a bluff. Bravado through bluffing can either 

be successful or ruinous for a player, and knowing the right 

time to play a hand separates successful players from 

mediocre ones. The three actions that can be performed in-

game are common to all forms of poker, as follows: 
 

 Bet/Raise: Add money to the pot, and increase the 

monetary risk for the bettor and the opponents. 
 

 Check/Call: Make the smallest bet required to stay in 

the hand (which may be nothing). 
 

 Fold: Take no further part in the proceedings of the 

hand. 
1 

These basic actions are an essential staple of all poker 

games. It is the underlying strategy behind the decision 

making process of a player that makes the game of poker 

arguably one of the most skilful card games in the world. 

The complexity of Poker play results largely from the fact 

that the only information available to a player of the game‘s 

state is that of their card(s) held, any community cards 

known to all, and that of any past actions the opponents have 

made. This paper investigates the analysis of those past 
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actions using Bayesian inference in order to use the resulting 

probabilistic model to aid the evolution of an Artificial 

Neural Network (ANN) controlled agent. Specifically we 

assess the performance of agents controlled by evolutionary 

neural networks, with and without access to Bayesian 

opponent models, in a number of scenarios. We investigate a 

single-card simplification of poker that nevertheless captures 

some of the important tactical subtleties of the full game, 

while being more amenable to analysis.  

Poker has driven numerous research efforts for many 

years, early efforts including Findler‘s research into machine 

cognition using Poker, judging that dynamic or opponent-

adaptive play is necessary in order to be successful, and that 

static play styles can be easily beaten once the style has been 

learnt [2]. However, Poker has been overshadowed 

somewhat in comparison to games such as Chess [3]. One of 

the reasons for this is arguably due to the difficulty (and 

combinatorial explosion) that results from having imperfect 

information.  

Even though it is intrinsically possible to generate game 

theoretically optimal strategies for poker [4], this analysis 

would take far too long to conduct in practice, even for the 

simple version of poker which we consider in this paper, 

partly due to the prospective use of bluffing: an opponent‘s 

bet could represent a bluffing move, or a show of 

confidence, this being difficult for any player to determine. 

Several approaches to understanding the mechanics behind 

games of imperfect information have been based upon 

simplified variants of poker [4], [5], [6]. In recent years, 

great strides in creating an artificially intelligent Poker 

player for full poker have come from Darse Billings and 

University of Alberta‘s GAMES group [7], [8], [9]. Billings 

reduces the complexity of the gaming situation by 

eliminating betting rounds; simplifying the problem, but 

maintaining the fundamental nature of Poker. Billings‘ 

approach to opponent modeling uses a predictive neural 

network based system that, when given a set of inputs of an 

opponent‘s last action and the current state of play, will 

produce a probability distribution of the opponent‘s next 

action. Our approach is such that instead of simply 

predicting an opponent‘s next action, we predict the 

opponent‘s playing style in relation to past actions 

performed, against a small set of possible styles.  Schaeffer 

[9] defined some ‗ground rules‘ for creating a world-class 

poker player, forming an integral part of the Loki system. 

These requirements include hand strength, betting strategy, 

bluffing, unpredictability and opponent modeling. This paper 

will compare players with and without opponent models to 

investigate this requirement. 

Opponent modeling has been seen as having a greater 

impact on success in games of poker than most other games, 
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indeed poker is an important testbed for opponent modeling 

research. In the case of [10], modeling is implemented by 

adjusting weights representing beliefs in an opponent‘s 

cards. Similarly, Saund‘s approach captures and analyses 

betting actions in relation to inferring the downcards held by 

an opponent in seven-card stud poker, as well as 

determining that opponent action analysis is important in 

determining successful play [11]. Barone and While‘s poker 

work [12], [13], [14] has involved the investigation of 

evolutionary approaches to play against various ‗styles‘ of 

opponent. Our previous work [15] involved opponents of a 

similar nature to Barone‘s, and described a means of 

representing them, which we will use again in this paper, in 

order to determine appropriate reactions.  

II.   ONE CARD POKER 

 Our research uses a simple version of poker, as defined in 

our previous work, which still maintains useful tactical ideas 

from full-scale poker [15]. The deck consists of ten cards, 

numbered 1, 2, .., 10. Each player has an initial credit of 10 

chips, and each hand entered requires a one-chip ante from 

each player, after which each player is dealt one card. This 

approach is similar to that of Koller and Pfeffer [4], which 

uses an 8-card deck to find an optimal mixed strategy using 

game theory with each player having only one card and one 

chip each, and Burns [16], which investigates the optimality 

of commonsense poker strategies, uses a deck in which each 

player is dealt a card classed as ‗high‘ or ‗low‘. The winner 

of the hand is the player with the highest valued card at the 

showdown, or the last player left if all opponents fold.  

After the cards are dealt, players make a decision whether 

to fold, check or bet given the value of their card. Betting 

(which is equivalent to a ‗raise‘ action), and each subsequent 

reraise costs one chip. Once all players have matched one 

another‘s bets (or all but one player has folded) the 

showdown is reached, and the player with the highest card 

(or only player remaining) receives the pot. The players 

continue playing further hands until there exists a 

tournament winner who has won all of the chips. In our 

previous work [15], there existed no betting limit, which 

culminated in some tournaments ending after a single hand. 

In this current work, a bet limit of 4 chips per player per 

hand is employed. The strategies which can be employed in 

this version of Poker, particularly of bluffing and opponent 

modeling, echo those that can be employed in a full-scale 

Poker game.  

III.   THE AI PLAYERS 

A.  Distinct Style Players 

 Poker players may usefully be categorized into four main 

styles: 

 Loose Aggressive (LA): A player that typically over-

values hand strength, who will constantly force the pot 

higher, even with a relatively weak hand. 

 Loose Passive (LP): A player that will also over value 

their hand, but will generally call, and only bet when 

they believe that they are likely to win the hand. 

 Tight Aggressive (TA): A player that accurately values 

their card, and will fold more often, but any hand where 

a high card is held, then the player will bet 

aggressively. 

 Tight Passive (TP): A player that plays very few hands, 

and even when doing so will generally call, and only 

bet in rare situations when a win is most likely. 
 

Barone and While recognized these play styles as part of 

their investigation into evolutionary adaptive poker play, 

and have also been utilized as part of Kendall and Willdig‘s 

work [12], [13], [14], [17].  

Each of these styles of player was created using a simple 

deterministic design [Fig. 1]. A player‘s style is 

characterized by a probability pair (α, β), where α represents 

the minimum win probability (the probability this player has 

the best hand) required for a player to remain in the hand, 

and β represents the minimum win probability for the player 

to bet. Then α is responsible for whether a player is tight or 

loose, and β for whether a player is passive or aggressive. If 

the win probability is less than α, the player will make a 

checking action if no money needs to be placed in the pot to 

remain in the hand, and fold otherwise. It should be noted 

that these players act on card strength alone, and ignore 

opponents‘ actions. 

 

 

Fig. 1.  Layout of a simple player 

A pair (α, β) represents a deterministic player, with a 

distinct play style. The α and β values for each playing style 

are defined in Table I. 

TABLE I 

α AND β VALUES FOR EACH STYLE OF DETERMINISTIC PLAYER 

 Α β 

LA 0.1 0.2 

LP 0.1 0.9 

TA 0.5 0.6 

TP 0.5 0.9 

B. Evolving an ANN-Controlled Opponent  

In our previous work, ―Anti-Players‖ were created as a 

‗nemesis‘ to each of the LA, LP, TA, and TP players. (α, β) 

pairs were tested in 0.1 increments for 0  α  β  1 to 

determine the best  (α‘, β‘) pair against each opponent style. 
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Although our previous agent‘s approach involved a dynamic 

means of learning to approach an opponent, the strictly static 

nature of the agent‘s response renders it unable to use more 

complex tactics such as check-raises, for example. Our 

motivation in this paper is to investigate the potential for 

evolving a player to be able to develop complex strategic 

behaviours. In this investigation, we evolve a player using a 

C#.NET implementation of NEAT, SharpNEAT [18]. Our 

reasoning behind using the NEAT algorithm is due to the 

successes of NEAT‘s topological and weight evolution in 

finding a suitable network structure for various problems, 

including game-playing agent control and pole-balancing 

experiments [19], [20]. 

An issue for every researcher using ANN‘s in their work 

is that of the number and form of their inputs, Davidson 

[21], [22] used ANN‘s to predict an opponent‘s next action, 

and mainly used binary values for Boolean inputs 

representing the stage of the game and the last action of an 

opponent, and real values from 0 to 1 for all others (such as 

pot odds) in order to represent opponent playing habits. The 

design of our network structure (which is simpler than 

Davidson‘s approach due to the format of our game) can be 

seen in Fig. 2.  

 

Fig. 2. Design of player network 

The ‗Last Opponent Action‘ inputs translate the last 

action of the opponent into binary. The ‗Current Credit‘ 

input represents the ratio of chips the player has in 

comparison to the number of chips available at the table 

(including all opponent-held chips). The final (and arguably 

most important) input is that of the card held, which is 

represented by its number divided by the total number of 

cards. The outputs of the network represent the action to be 

taken, the action represented by the largest numerical output 

is the action performed. 

IV.   EXPERIMENTAL RESULTS 

 The evolution of an ANN-controlled player can be seen 

in Figs 3 through 6. All experiments are run on a Pentium 

Core 2 Quad 2.4 GHz with 4GB RAM using C#.NET 3.5 

running under Windows Vista 64-bit SP1. In these 

experiments the fitness of each of the genomes in a 

population is represented by T, the percentage of 

tournaments won by the player (i.e. the tournaments where 

this player wins all the chips of all opponents) over 100 

tournaments. We use a population size of 100, a node-

addition probability of 0.005, and a node-connection 

addition probability of 0.01. The node addition probability 

represents the probability that a new node will be added to 

the network, and the node addition probability represents the 

probability of adding a new connection between any two 

nodes of the network. These are indicative of the mutative 

stage of the evolution. There are further capabilities within 

NEAT to destroy connections and nodes, but have not been 

enabled here, as unsuitable solutions are generally evolved 

out of the genome, lessening the need for such destructive 

measures on potentially promising solutions. Each of the 

subsequent graphs has been averaged over 5 individiual 

runs; note that the ‗best fitness‘ in these graphs represents 

the average best fitness, and that these results have been run 

for 400 generations, but graphs have been pruned in order 

for ease of reading, and has been done so only when no 

further improvement has been exhibited by the evolution. It 

should be further noted that, with respect to the ‗best‘ 

solution at the end of evolution, the results given against LA 

and LP opponents have a standard deviation of 2 tournament 

wins (2% of all tournaments played in this case), and those 

against TA and TP opponents are accurate to within 5 

tournament wins (5%). This is due to the stochastic nature of 

the cards in determining success, as well as the difficulty of 

playing against tighter styles of player. 

As we can see (Figs 3-5), network evolution versus a 

single static opponent (otherwise known as ‗heads-up‘ play) 

works sufficiently well, with opposition to LA, LP, and TA 

styles reaching a ‗best‘ success rate of 100%, with average 

population fitness above 90%. This is unsurprising, as it has 

been seen that even a static counter-approach to defeating 

static styles can be successful [2], [15], and here we use a 

dynamically learned approach.  

 
Fig. 3.  Evolution of an ANN against a simple Loose Aggressive Player 
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 Fig. 4.  Evolution of an ANN against a simple Loose Passive Player 

 
Fig. 5.  Evolution of an ANN against a simple Tight Aggressive Player 

 When we observe Fig. 6, however, we notice that our 

evolution fails to reach an exceptionally high success rate 

against a single Tight Passive player, even after many 

generations. This is due to the Tight Passive strategy being 

stronger than the other static strategies, such that our 

previous work [15] labeled them as the most ‗threatening‘ 

play style, and also the hardest to gauge due to the frequency 

at which checking actions occur over any display of 

strength. Nonetheless, even in this case tournament success 

of the evolved NEAT network is impressive. 

 
Fig. 6.  Evolution of an ANN against a simple Tight Passive Player 

 Given that a NEAT-evolved player is capable of defeating 

a single individual style, we aim to evolve a player capable 

of defeating all four types of opponent in order to reduce the 

necessity of selection between individual strategies; Fig. 7 

shows the evolution of a player continuing to use the inputs 

described in Fig. 2. We make each candidate solution play 

100 games against each opponent in every generation, such 

that they will play 100 games against an LA opponent, then 

100 games against an LP opponent, and so on. The fitness f 

of each solution is again the percentage of tournaments won 

against all opponent styles. 

 
Fig 7.  Evolution of an ANN against all types of opponent. 

A.  Augmenting Evolution with Bayesian Analysis 

 It is noted that the evolved player average reaches a 

maximum average success rate of 87% over 100 

tournaments. If we consider Figs. 2-5, we can tell that our 

players should potentially be able to gain a greater success 

rate than this against these opponents. An opponent model 

can aid in representing the individual nature of an adversary, 

and as such could aid in the correct selection of an 

appropriate reaction to each opponent.  Fig. 8 shows the 

structure of our proposed network design. 

Our previous work [15] has emphasized that Bayes‘ rule 

can be a powerful learning approach that can analyse the 

past play information of an opponent, and determine useful 

information about each opponent‘s respective playing style. 

  
Fig. 8.  Design of proposed player 
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The usage of Bayesian probabilities to model 

uncertainties is popular in relation to imperfect information 

games such as Poker [16].  




a

aPaBP

APABP

BP

APABP
BAP

)()|(

)()|(

)(

)()|(
)|(     (1) 

Equation (1) gives Bayes‘ rule where A is a random 

variable representing player type, and B is a random variable 

representing player action. Our calculation uses an a priori 

belief of 0.25 as P(A) for each of the four player strategies 

for the first iteration. The probabilities in Table III represent 

an a priori P(B | A) which were evaluated by analysing the 

past actions of players of style A over 100,000 games. P(A) 

is the prior belief of an opponent‘s play style, and as such is 

set to 0.25 initially as all opponent styles are assumed 

equally likely at the start of a game. Bayes‘ rule updates the 

initial probability of player style belief such that P(A | B) for 

the current iteration becomes P(A) for the next action 

analysed (i.e. our belief of style P(A) is the result of P(A | B) 

for the last action analysed). P(B) is represented by the 

summation of P(B | A)P(A) for all possible A (represented by 

a), and is used as a normalising constant. 
TABLE III 

ACTION PROBABILITIES FOR EACH OPPONENT STYLE 

 FOLD 
CHECK 
/CALL 

BET 
/RAISE 

LA 0.36 0.05 0.59 

LP 0.60 0.29 0.11 

TA 0.73 0.02 0.25 

TP 0.87 0.07 0.06 

These per-style beliefs are used as four further inputs to 

augment the evolution of our player. Fig. 9 displays the 

effect that opponent model augmentation has upon the 

evolution. 

 
Fig. 9.  Evolution of a Bayesian Model-augmented ANN against all 

opponent styles. 

We can see that the network quickly evolves to a solution 

which reaches a best tournament success of an impressive 

97% over 100 tournaments. The limitation of average 

population performance can most likely be attributed to the 

increased number of inputs, which increases the search space 

and increases the difficulty of learning. In the 400 

generations of evolution, no further improvement was seen 

after the first 100. 

B. Increasing the Complexity 

 Much research into Poker has looked into simple two-

player, one-on-one games (more commonly known as 

‗heads up‘ Poker) [4], [5], [7], [12], [16], [23], which 

reduces evaluation complexity, especially in relation to 

dealing with opponent models. The increased complexity of 

a 3 vs. 1 game, for example, calls for our neural network to 

interpret the information of 3 opponents instead of 1 [6], 

[11], [15]. We believe that the ability of NEAT to evolve 

network topologies as well as weights might lend itself to 

such a problem, particularly due to the strong possibility of 

creating recurrent neural networks. Our aim of reacting to 

more than one opponent shall take advantage of the 

‗memory‘ afforded to us through the recurrent connections 

[24]. We use the same network inputs as Fig. 8, and 

iteratively pass the inputs for the first second, third, and 

(potentially) nth opponent. If evolution allows, this will 

result in a ‗memory‘ of the previous opponents which 

should influence the current decision. After the final 

opponent‘s data is input, the output is received, and the 

action represented by the largest numerical output is 

performed (through analysis of the outputs we have seen 

that, after evolution, these values usually give a very clear 

decision). The fitness f for this experiment is represented by 

Equation (2), where a represents the number of player 

styles, T represents the fraction of tournaments won (over 

100 tournaments), Hw represents the number of hands won 

by the player, and Hp represents the total number of hands 

played. 

f =   𝑇𝑎  𝑎−1 +
𝐻𝑤

𝐻𝑝
   (2) 

The ratio of hand success is added in order to aid initial 

evolutionary candidates due to the increased complexity of 

evolving a player against three opponents. Initial results 

from evolution without this value had difficulty in evolving 

initial reasonable strategies. 

Fig 10.  Evolution of a three-input recurrent network against all four types 

of opponent in a four-player scenario 
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As can be observed in Fig. 10, the success of the player 

(without an opponent model) is modest with a best 

tournament win percentage (over 100 tournaments) of 54%, 

and an average win percentage of 38%, higher than the 25% 

which a set of 4 equally-matched players would obtain. 

When we use Bayesian inference of opponent actions (Fig. 

11), however, we obtain an average success rate of over 

70%, the same as that enjoyed by the same approach in the 

simpler 1 vs. 1 environment from Fig. 9, and a best 

tournament success rate of 97%.  
 

 
Fig 11.  Evolution of a Bayesian-augmented ANN against all types of 

opponent in a four-player scenario 

The fitness of our evolved players was measured purely 

against tables of matching types; one table against three LA 

players, one against three LP players, one against three TA 

players, and one against three TP players. In Fig. 12 we 

illustrate the tournament success of the best solution from 

Fig. 11‘s evolution against all possible mixed player-table 

combinations, and as we can see, the network has excellent 

success rates against opponent combinations it was not 

trained against. This is arguably due to the advantage a 

player receives once it has access to beliefs about an 

opponent‘s style of play. An issue of note with Fig. 12 is the 

low success rates against tables of primarily loose players, 

including tables which consist of three LA, and three LP 

types, these being one of the four combinations it was 

evolved against. The nature of a 4-player game of poker 

differs from a 1 vs. 1 game, as a greater number of loose 

opponents mean that there is a greater probability of an 

opponent holding a good hand than if there was only one 

adversary. The choice of action in this case is therefore 

made much harder given the loose nature of all the 

opponents. 

The inclusion of an opponent model appears to aid both 

the evolution and decision process of the agent. This appears 

to be due to the ANN‘s ability to utilise the opponent 

model‘s separation of opponent types in order to determine a 

reasonable course of actions against the opponent(s). In 

order to test this theory, we perform an ablative study upon 

our evolved ‗best‘ network. For this, we disable sets of 

inputs to our network to observe how well the player can 

cope without certain abilities available. In this experiment 

we compare three inputs that we feel are essential to the 

players‘ function, namely opponent model information, last 

action information, and the recurrent nature of our evolved 

networks. 

 
Fig 12.  Tournament performance of the best evolved genome against all 

combinations of 3 opponents over 100 tournaments 

 
Fig 13.  Tournament performance of ablated configurations of the ‗best‘ 

evolved genome over 100 tournaments 

 Fig. 13 shows the difference in the fraction of 

tournaments won when each of the inputs of the player‘s 

network are disabled. The greatest difference appears in 

relation to the removal of recurrence (in this case, only a 

single player‘s data is passed to the network, excluding all 

players at the table) and that of the most recent action by the 

opponent. The removal of recurrence removes the 

iteratively-passed opponent data, and hence memory of 

opponent characteristics, which greatly impairs 

performance. A noticeable facet of this is related to tables of 

three similarly-typed opponents; in Fig. 13 we can see that 

in each of the situations where there are three opponents of 

the same type, the loss of recurrence causes a slightly less 

damaging effect. The removal of most recent action has a 

significantly damaging effect upon the success of our player, 
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which is understandable due to the importance of taking our 

opponent‘s most recent action to infer the strength of their 

downcard. As for the removal of opponent model, the effect 

is again pronounced in all cases (although less so than the 

other two effects above). We believe that this means that the 

opponent model is integral to the operation of our neural 

network in terms of being able to determine a strategy 

tailored to the nature of the opponents. 

C. Dynamic opponents 

In order to test the ability of our player to adjust to the 

potentially dynamic nature of opponents, we create two sets 

of tests: firstly we test our player against each of the 

standard four types of opponent, but we make our opponent 

bluff (bet when the player decides it should actually fold) 

with probability p, which is adjusted in increments of 

0.01where 0  p  1. Fig 14 shows the results of these tests. 

 
Fig 14.  Tournament performance of the ‗best‘ evolved genome against 

partially randomized opponents over 100 tournaments 

 ―Bluffing‖ improves the performance of a TP player: at a 

bluff probability of 0.12 our player drops to a 72% 

tournament success rate. This is understandable, as 

approaches call for a level of bluffing in order to attain an 

optimal strategy [4], [5]. As the chance of performing a 

bluffing action rises, so does the success of our player 

against the bluffing TP player. Reasoning for this is due to 

the nature of player styles, our player‘s model now assumes 

that the opponent is loose aggressive, and caters for the 

eventuality that our randomized player will be bluffing a 

large portion of the time. As for the other types of opponent, 

they will all mostly be classified as being an LA player as p 

rises. Bluffing does not improve play quality of LA, LP or 

TA players. 

 If a players‘ current tactic is unsuccessful, then it is 

sensible for the player to change their current strategy; we 

implement a series of players that transition from one style 

to another once their chips are at a level that is 50% of their 

initial chips at the start of the game. We can see in Fig. 15 

that our player is able to cope suitably against our varied-

style opponents. It is notable that our player is most 

susceptible to opponent strategy change when moving from 

a weaker style to a tight one. The main reasoning behind this 

is that our Bayesian modeler has to readjust its style-

representative weights in order to accommodate the 

opponent‘s shift in style, and as such a lag is involved in 

―understanding‖ the opponents‘ strategy. The transition 

from a stronger style to a looser one is not likely to be an 

effective strategy, and our results confirm this.  However, 

moving from a tight style to a loose one can be a good way 

of scaring opponents out of the game until they realize the 

strategy in play. The failing of this approach against our 

ANN strategy, however is that the probabilistic way in 

which our modeler updates its beliefs means that these 

beliefs will be altered significantly when a tight player 

repeatedly performs an action that it should rarely do (the 

main example being to move from TP to LA, drastically 

increasing the frequency of betting actions; see Table III).  

 
Fig 15.  Tournament performance of the ‗best‘ evolved genome against 

dynamically styled opponents over 100 tournaments 

 

V.   CONCLUSION 

In this paper players are evolved using NEAT for a 

simplified game of poker. We first show it is easy to evolve 

a player against individual opponents of a fixed style. We 

then compare the utility of opponent models in aiding the 

evolution and performance of game-playing agents against 

players that do not make use of such information. Against a 

single adversary, the results show little difference between 

approaches that use an opponent model, and those which do 

not. We then compare our players in an environment where 

there is more than one opponent. Results show the benefits 

of using opponent models increase with increased numbers 

of opponents. In this instance, the evolved player relies upon 

Bayesian opponent modelling and the recurrent nature of the 

evolved neural network is shown to be crucial in order to 

apply the appropriate strategy for each set of different 

opponents, and is able to generalise and defeat tables of 

opponent combinations not yet encountered. Furthermore, 

we test the approach against opponents that employ simple 

bluffing tactics, as well as simple dynamic strategy 

approaches. In these experiments we find that our opponent-

model augmented NEAT networks are able to perform well 

against these dynamic opponents. 

Through our own (human-computer) interactions with the 

‗best‘ evolved player, we have noted that it plays tightly, 

which is good for a close game, but does not take advantage 

of any potential for bluffing, as well as being very 

susceptible to bluffing by the opponent.  
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VI.   FUTURE WORK 

In future, we aim to investigate further methods for 

representation of a game player in terms of their tactical 

strengths and weaknesses. Playing effectively against an 

opponent requires the discovery of the opponents‘ 

weaknesses. Our aim is for a player to discover these tactics 

for itself before using a means of action selection tailored to 

the opponent. Our future work aims to evolve a bluff-aware 

approach; this would include finding a means of discovering 

when our opponent is bluffing, and to augment our AI 

players so that they can successfully perform deceptive 

strategies. As for our current approach, we feel that using 

our opponent model could potentially be upscaled to 

evolving an agent for full-scale Texas Hold ‗em, but some 

simplification may need to arise in relation to betting 

rounds, as well as the representation of cards held and hand 

strength, as well as the potential for cards to improve, or 

conversely worsen. The number of ANN inputs would 

potentially need to drastically increase in order to evolve a 

decision-making agent, but we shall investigate the potential 

for improving the evolution of a more complex agent using 

opponent models. 
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