

Abstract—We investigate the impact of Bayesian opponent

modeling upon the evolution of a player for a simplified poker

game. Through the evolution of Artificial Neural Networks

using NEAT we create and compare players both utilizing and

ignoring Bayesian opponent beliefs. We test the effectiveness of

this model against various collections of dynamic and partially

randomized opponents and find that using a Bayesian

opponent model enhances our AI players even when dealing

with a previously unseen collection of players. We further

utilize the inherent recurrency of our evolved players in order

to recognize the opponent models of multiple players. Through

ablative studies upon the inputs of the network, we show that

utilization of an opponent model as an evolutionary aid yields

significantly stronger players in this case.

I. INTRODUCTION

Poker has simple rules, with many layers of tactical

complexity [1]; each player is dealt a set number of cards

(which varies for different types of poker, and is generally

between one and seven), and then one or more betting

round(s) take place, within which each player tries to

convince their opponent that they have the best hand. The

layers of complexity appear in the performance of the

betting round, as each player‘s betting action can represent a

strong hand or a bluff. Bravado through bluffing can either

be successful or ruinous for a player, and knowing the right

time to play a hand separates successful players from

mediocre ones. The three actions that can be performed in-

game are common to all forms of poker, as follows:

 Bet/Raise: Add money to the pot, and increase the

monetary risk for the bettor and the opponents.

 Check/Call: Make the smallest bet required to stay in

the hand (which may be nothing).

 Fold: Take no further part in the proceedings of the

hand.
1

These basic actions are an essential staple of all poker

games. It is the underlying strategy behind the decision

making process of a player that makes the game of poker

arguably one of the most skilful card games in the world.

The complexity of Poker play results largely from the fact

that the only information available to a player of the game‘s

state is that of their card(s) held, any community cards

known to all, and that of any past actions the opponents have

made. This paper investigates the analysis of those past

R.J.S.Baker, P.I.Cowling, T.W.G.Randall and P.Jiang are with the

MOSAIC Research Centre, Department of Computing, University of

Bradford, BD7 1DP, UK. E-mail: R.J.S.Baker, P.I.Cowling, T.W.G.Randall

and P.Jiang@bradford.ac.uk

actions using Bayesian inference in order to use the resulting

probabilistic model to aid the evolution of an Artificial

Neural Network (ANN) controlled agent. Specifically we

assess the performance of agents controlled by evolutionary

neural networks, with and without access to Bayesian

opponent models, in a number of scenarios. We investigate a

single-card simplification of poker that nevertheless captures

some of the important tactical subtleties of the full game,

while being more amenable to analysis.

Poker has driven numerous research efforts for many

years, early efforts including Findler‘s research into machine

cognition using Poker, judging that dynamic or opponent-

adaptive play is necessary in order to be successful, and that

static play styles can be easily beaten once the style has been

learnt [2]. However, Poker has been overshadowed

somewhat in comparison to games such as Chess [3]. One of

the reasons for this is arguably due to the difficulty (and

combinatorial explosion) that results from having imperfect

information.

Even though it is intrinsically possible to generate game

theoretically optimal strategies for poker [4], this analysis

would take far too long to conduct in practice, even for the

simple version of poker which we consider in this paper,

partly due to the prospective use of bluffing: an opponent‘s

bet could represent a bluffing move, or a show of

confidence, this being difficult for any player to determine.

Several approaches to understanding the mechanics behind

games of imperfect information have been based upon

simplified variants of poker [4], [5], [6]. In recent years,

great strides in creating an artificially intelligent Poker

player for full poker have come from Darse Billings and

University of Alberta‘s GAMES group [7], [8], [9]. Billings

reduces the complexity of the gaming situation by

eliminating betting rounds; simplifying the problem, but

maintaining the fundamental nature of Poker. Billings‘

approach to opponent modeling uses a predictive neural

network based system that, when given a set of inputs of an

opponent‘s last action and the current state of play, will

produce a probability distribution of the opponent‘s next

action. Our approach is such that instead of simply

predicting an opponent‘s next action, we predict the

opponent‘s playing style in relation to past actions

performed, against a small set of possible styles. Schaeffer

[9] defined some ‗ground rules‘ for creating a world-class

poker player, forming an integral part of the Loki system.

These requirements include hand strength, betting strategy,

bluffing, unpredictability and opponent modeling. This paper

will compare players with and without opponent models to

investigate this requirement.

Opponent modeling has been seen as having a greater

impact on success in games of poker than most other games,

Can Opponent Models Aid Poker Player Evolution?

R.J.S.Baker, Member, IEEE, P.I.Cowling, Member, IEEE, T.W.G.Randall, Member, IEEE, and

P.Jiang, Member, IEEE,

978-1-4244-2974-5/08/$25.00 ©2008 Crown 23

indeed poker is an important testbed for opponent modeling

research. In the case of [10], modeling is implemented by

adjusting weights representing beliefs in an opponent‘s

cards. Similarly, Saund‘s approach captures and analyses

betting actions in relation to inferring the downcards held by

an opponent in seven-card stud poker, as well as

determining that opponent action analysis is important in

determining successful play [11]. Barone and While‘s poker

work [12], [13], [14] has involved the investigation of

evolutionary approaches to play against various ‗styles‘ of

opponent. Our previous work [15] involved opponents of a

similar nature to Barone‘s, and described a means of

representing them, which we will use again in this paper, in

order to determine appropriate reactions.

II. ONE CARD POKER

 Our research uses a simple version of poker, as defined in

our previous work, which still maintains useful tactical ideas

from full-scale poker [15]. The deck consists of ten cards,

numbered 1, 2, .., 10. Each player has an initial credit of 10

chips, and each hand entered requires a one-chip ante from

each player, after which each player is dealt one card. This

approach is similar to that of Koller and Pfeffer [4], which

uses an 8-card deck to find an optimal mixed strategy using

game theory with each player having only one card and one

chip each, and Burns [16], which investigates the optimality

of commonsense poker strategies, uses a deck in which each

player is dealt a card classed as ‗high‘ or ‗low‘. The winner

of the hand is the player with the highest valued card at the

showdown, or the last player left if all opponents fold.

After the cards are dealt, players make a decision whether

to fold, check or bet given the value of their card. Betting

(which is equivalent to a ‗raise‘ action), and each subsequent

reraise costs one chip. Once all players have matched one

another‘s bets (or all but one player has folded) the

showdown is reached, and the player with the highest card

(or only player remaining) receives the pot. The players

continue playing further hands until there exists a

tournament winner who has won all of the chips. In our

previous work [15], there existed no betting limit, which

culminated in some tournaments ending after a single hand.

In this current work, a bet limit of 4 chips per player per

hand is employed. The strategies which can be employed in

this version of Poker, particularly of bluffing and opponent

modeling, echo those that can be employed in a full-scale

Poker game.

III. THE AI PLAYERS

A. Distinct Style Players

 Poker players may usefully be categorized into four main

styles:

 Loose Aggressive (LA): A player that typically over-

values hand strength, who will constantly force the pot

higher, even with a relatively weak hand.

 Loose Passive (LP): A player that will also over value

their hand, but will generally call, and only bet when

they believe that they are likely to win the hand.

 Tight Aggressive (TA): A player that accurately values

their card, and will fold more often, but any hand where

a high card is held, then the player will bet

aggressively.

 Tight Passive (TP): A player that plays very few hands,

and even when doing so will generally call, and only

bet in rare situations when a win is most likely.

Barone and While recognized these play styles as part of

their investigation into evolutionary adaptive poker play,

and have also been utilized as part of Kendall and Willdig‘s

work [12], [13], [14], [17].

Each of these styles of player was created using a simple

deterministic design [Fig. 1]. A player‘s style is

characterized by a probability pair (α, β), where α represents

the minimum win probability (the probability this player has

the best hand) required for a player to remain in the hand,

and β represents the minimum win probability for the player

to bet. Then α is responsible for whether a player is tight or

loose, and β for whether a player is passive or aggressive. If

the win probability is less than α, the player will make a

checking action if no money needs to be placed in the pot to

remain in the hand, and fold otherwise. It should be noted

that these players act on card strength alone, and ignore

opponents‘ actions.

Fig. 1. Layout of a simple player

A pair (α, β) represents a deterministic player, with a

distinct play style. The α and β values for each playing style

are defined in Table I.

TABLE I

α AND β VALUES FOR EACH STYLE OF DETERMINISTIC PLAYER

 Α β

LA 0.1 0.2

LP 0.1 0.9

TA 0.5 0.6

TP 0.5 0.9

B. Evolving an ANN-Controlled Opponent

In our previous work, ―Anti-Players‖ were created as a

‗nemesis‘ to each of the LA, LP, TA, and TP players. (α, β)

pairs were tested in 0.1 increments for 0  α  β  1 to

determine the best (α‘, β‘) pair against each opponent style.

24 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

Although our previous agent‘s approach involved a dynamic

means of learning to approach an opponent, the strictly static

nature of the agent‘s response renders it unable to use more

complex tactics such as check-raises, for example. Our

motivation in this paper is to investigate the potential for

evolving a player to be able to develop complex strategic

behaviours. In this investigation, we evolve a player using a

C#.NET implementation of NEAT, SharpNEAT [18]. Our

reasoning behind using the NEAT algorithm is due to the

successes of NEAT‘s topological and weight evolution in

finding a suitable network structure for various problems,

including game-playing agent control and pole-balancing

experiments [19], [20].

An issue for every researcher using ANN‘s in their work

is that of the number and form of their inputs, Davidson

[21], [22] used ANN‘s to predict an opponent‘s next action,

and mainly used binary values for Boolean inputs

representing the stage of the game and the last action of an

opponent, and real values from 0 to 1 for all others (such as

pot odds) in order to represent opponent playing habits. The

design of our network structure (which is simpler than

Davidson‘s approach due to the format of our game) can be

seen in Fig. 2.

Fig. 2. Design of player network

The ‗Last Opponent Action‘ inputs translate the last

action of the opponent into binary. The ‗Current Credit‘

input represents the ratio of chips the player has in

comparison to the number of chips available at the table

(including all opponent-held chips). The final (and arguably

most important) input is that of the card held, which is

represented by its number divided by the total number of

cards. The outputs of the network represent the action to be

taken, the action represented by the largest numerical output

is the action performed.

IV. EXPERIMENTAL RESULTS

 The evolution of an ANN-controlled player can be seen

in Figs 3 through 6. All experiments are run on a Pentium

Core 2 Quad 2.4 GHz with 4GB RAM using C#.NET 3.5

running under Windows Vista 64-bit SP1. In these

experiments the fitness of each of the genomes in a

population is represented by T, the percentage of

tournaments won by the player (i.e. the tournaments where

this player wins all the chips of all opponents) over 100

tournaments. We use a population size of 100, a node-

addition probability of 0.005, and a node-connection

addition probability of 0.01. The node addition probability

represents the probability that a new node will be added to

the network, and the node addition probability represents the

probability of adding a new connection between any two

nodes of the network. These are indicative of the mutative

stage of the evolution. There are further capabilities within

NEAT to destroy connections and nodes, but have not been

enabled here, as unsuitable solutions are generally evolved

out of the genome, lessening the need for such destructive

measures on potentially promising solutions. Each of the

subsequent graphs has been averaged over 5 individiual

runs; note that the ‗best fitness‘ in these graphs represents

the average best fitness, and that these results have been run

for 400 generations, but graphs have been pruned in order

for ease of reading, and has been done so only when no

further improvement has been exhibited by the evolution. It

should be further noted that, with respect to the ‗best‘

solution at the end of evolution, the results given against LA

and LP opponents have a standard deviation of 2 tournament

wins (2% of all tournaments played in this case), and those

against TA and TP opponents are accurate to within 5

tournament wins (5%). This is due to the stochastic nature of

the cards in determining success, as well as the difficulty of

playing against tighter styles of player.

As we can see (Figs 3-5), network evolution versus a

single static opponent (otherwise known as ‗heads-up‘ play)

works sufficiently well, with opposition to LA, LP, and TA

styles reaching a ‗best‘ success rate of 100%, with average

population fitness above 90%. This is unsurprising, as it has

been seen that even a static counter-approach to defeating

static styles can be successful [2], [15], and here we use a

dynamically learned approach.

Fig. 3. Evolution of an ANN against a simple Loose Aggressive Player

0

10

20

30

40

50

60

70

80

90

100

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

%
 T

o
u

rn
am

e
n

t
W

in
s

Generations

BestFitness MeanFitness

252008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

 Fig. 4. Evolution of an ANN against a simple Loose Passive Player

Fig. 5. Evolution of an ANN against a simple Tight Aggressive Player

 When we observe Fig. 6, however, we notice that our

evolution fails to reach an exceptionally high success rate

against a single Tight Passive player, even after many

generations. This is due to the Tight Passive strategy being

stronger than the other static strategies, such that our

previous work [15] labeled them as the most ‗threatening‘

play style, and also the hardest to gauge due to the frequency

at which checking actions occur over any display of

strength. Nonetheless, even in this case tournament success

of the evolved NEAT network is impressive.

Fig. 6. Evolution of an ANN against a simple Tight Passive Player

 Given that a NEAT-evolved player is capable of defeating

a single individual style, we aim to evolve a player capable

of defeating all four types of opponent in order to reduce the

necessity of selection between individual strategies; Fig. 7

shows the evolution of a player continuing to use the inputs

described in Fig. 2. We make each candidate solution play

100 games against each opponent in every generation, such

that they will play 100 games against an LA opponent, then

100 games against an LP opponent, and so on. The fitness f

of each solution is again the percentage of tournaments won

against all opponent styles.

Fig 7. Evolution of an ANN against all types of opponent.

A. Augmenting Evolution with Bayesian Analysis

 It is noted that the evolved player average reaches a

maximum average success rate of 87% over 100

tournaments. If we consider Figs. 2-5, we can tell that our

players should potentially be able to gain a greater success

rate than this against these opponents. An opponent model

can aid in representing the individual nature of an adversary,

and as such could aid in the correct selection of an

appropriate reaction to each opponent. Fig. 8 shows the

structure of our proposed network design.

Our previous work [15] has emphasized that Bayes‘ rule

can be a powerful learning approach that can analyse the

past play information of an opponent, and determine useful

information about each opponent‘s respective playing style.

Fig. 8. Design of proposed player

0

10

20

30

40

50

60

70

80

90

100

1 6
1

1
1

6
2

1
2

6
3

1
3

6
4

1
4

6
5

1
5

6
6

1
6

6
7

1
7

6
8

1
8

6
9

1
9

6
1

0
1

%
 T

o
u

rn
am

e
n

t
W

in
s

Generations
BestFitness MeanFitness

0

10

20

30

40

50

60

70

80

90

100

2 20 26 32 38 44 50 56 62 68 74 80 86 92 98 104110

%
 T

o
u

rn
am

e
n

t
W

in
s

Generations
BestFitness MeanFitness

0

10

20

30

40

50

60

70

80

90

100

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

%
 T

o
u

rn
am

e
n

t
W

in
s

Generations

BestFitness MeanFitness

0

10

20

30

40

50

60

70

80

90

100

1

1
6

3
1

4
6

6
1

7
6

9
1

1
0

6

1
2

1

1
3

6

1
5

1

1
6

6

1
8

1

1
9

6

2
1

1

2
2

6

2
4

1

2
5

6

2
7

1

2
8

6

3
0

1

%
 T

o
u

rn
am

e
n

t
W

in
s

Generations

BestFitness MeanFitness

26 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

The usage of Bayesian probabilities to model

uncertainties is popular in relation to imperfect information

games such as Poker [16].




a

aPaBP

APABP

BP

APABP
BAP

)()|(

)()|(

)(

)()|(
)|((1)

Equation (1) gives Bayes‘ rule where A is a random

variable representing player type, and B is a random variable

representing player action. Our calculation uses an a priori

belief of 0.25 as P(A) for each of the four player strategies

for the first iteration. The probabilities in Table III represent

an a priori P(B | A) which were evaluated by analysing the

past actions of players of style A over 100,000 games. P(A)

is the prior belief of an opponent‘s play style, and as such is

set to 0.25 initially as all opponent styles are assumed

equally likely at the start of a game. Bayes‘ rule updates the

initial probability of player style belief such that P(A | B) for

the current iteration becomes P(A) for the next action

analysed (i.e. our belief of style P(A) is the result of P(A | B)

for the last action analysed). P(B) is represented by the

summation of P(B | A)P(A) for all possible A (represented by

a), and is used as a normalising constant.
TABLE III

ACTION PROBABILITIES FOR EACH OPPONENT STYLE

 FOLD
CHECK
/CALL

BET
/RAISE

LA 0.36 0.05 0.59

LP 0.60 0.29 0.11

TA 0.73 0.02 0.25

TP 0.87 0.07 0.06

These per-style beliefs are used as four further inputs to

augment the evolution of our player. Fig. 9 displays the

effect that opponent model augmentation has upon the

evolution.

Fig. 9. Evolution of a Bayesian Model-augmented ANN against all

opponent styles.

We can see that the network quickly evolves to a solution

which reaches a best tournament success of an impressive

97% over 100 tournaments. The limitation of average

population performance can most likely be attributed to the

increased number of inputs, which increases the search space

and increases the difficulty of learning. In the 400

generations of evolution, no further improvement was seen

after the first 100.

B. Increasing the Complexity

 Much research into Poker has looked into simple two-

player, one-on-one games (more commonly known as

‗heads up‘ Poker) [4], [5], [7], [12], [16], [23], which

reduces evaluation complexity, especially in relation to

dealing with opponent models. The increased complexity of

a 3 vs. 1 game, for example, calls for our neural network to

interpret the information of 3 opponents instead of 1 [6],

[11], [15]. We believe that the ability of NEAT to evolve

network topologies as well as weights might lend itself to

such a problem, particularly due to the strong possibility of

creating recurrent neural networks. Our aim of reacting to

more than one opponent shall take advantage of the

‗memory‘ afforded to us through the recurrent connections

[24]. We use the same network inputs as Fig. 8, and

iteratively pass the inputs for the first second, third, and

(potentially) nth opponent. If evolution allows, this will

result in a ‗memory‘ of the previous opponents which

should influence the current decision. After the final

opponent‘s data is input, the output is received, and the

action represented by the largest numerical output is

performed (through analysis of the outputs we have seen

that, after evolution, these values usually give a very clear

decision). The fitness f for this experiment is represented by

Equation (2), where a represents the number of player

styles, T represents the fraction of tournaments won (over

100 tournaments), Hw represents the number of hands won

by the player, and Hp represents the total number of hands

played.

f = 𝑇𝑎 𝑎−1 +
𝐻𝑤

𝐻𝑝
 (2)

The ratio of hand success is added in order to aid initial

evolutionary candidates due to the increased complexity of

evolving a player against three opponents. Initial results

from evolution without this value had difficulty in evolving

initial reasonable strategies.

Fig 10. Evolution of a three-input recurrent network against all four types

of opponent in a four-player scenario

0

10

20

30

40

50

60

70

80

90

100

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

%
 T

o
u

rn
am

e
n

t
W

in
s

Generations
BestFitness MeanFitness

0

10

20

30

40

50

60

70

80

90

100

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

%
 T

o
u

rn
am

e
n

t
W

in
s

Generations
BestFitness MeanFitness

272008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

As can be observed in Fig. 10, the success of the player

(without an opponent model) is modest with a best

tournament win percentage (over 100 tournaments) of 54%,

and an average win percentage of 38%, higher than the 25%

which a set of 4 equally-matched players would obtain.

When we use Bayesian inference of opponent actions (Fig.

11), however, we obtain an average success rate of over

70%, the same as that enjoyed by the same approach in the

simpler 1 vs. 1 environment from Fig. 9, and a best

tournament success rate of 97%.

Fig 11. Evolution of a Bayesian-augmented ANN against all types of

opponent in a four-player scenario

The fitness of our evolved players was measured purely

against tables of matching types; one table against three LA

players, one against three LP players, one against three TA

players, and one against three TP players. In Fig. 12 we

illustrate the tournament success of the best solution from

Fig. 11‘s evolution against all possible mixed player-table

combinations, and as we can see, the network has excellent

success rates against opponent combinations it was not

trained against. This is arguably due to the advantage a

player receives once it has access to beliefs about an

opponent‘s style of play. An issue of note with Fig. 12 is the

low success rates against tables of primarily loose players,

including tables which consist of three LA, and three LP

types, these being one of the four combinations it was

evolved against. The nature of a 4-player game of poker

differs from a 1 vs. 1 game, as a greater number of loose

opponents mean that there is a greater probability of an

opponent holding a good hand than if there was only one

adversary. The choice of action in this case is therefore

made much harder given the loose nature of all the

opponents.

The inclusion of an opponent model appears to aid both

the evolution and decision process of the agent. This appears

to be due to the ANN‘s ability to utilise the opponent

model‘s separation of opponent types in order to determine a

reasonable course of actions against the opponent(s). In

order to test this theory, we perform an ablative study upon

our evolved ‗best‘ network. For this, we disable sets of

inputs to our network to observe how well the player can

cope without certain abilities available. In this experiment

we compare three inputs that we feel are essential to the

players‘ function, namely opponent model information, last

action information, and the recurrent nature of our evolved

networks.

Fig 12. Tournament performance of the best evolved genome against all

combinations of 3 opponents over 100 tournaments

Fig 13. Tournament performance of ablated configurations of the ‗best‘

evolved genome over 100 tournaments

 Fig. 13 shows the difference in the fraction of

tournaments won when each of the inputs of the player‘s

network are disabled. The greatest difference appears in

relation to the removal of recurrence (in this case, only a

single player‘s data is passed to the network, excluding all

players at the table) and that of the most recent action by the

opponent. The removal of recurrence removes the

iteratively-passed opponent data, and hence memory of

opponent characteristics, which greatly impairs

performance. A noticeable facet of this is related to tables of

three similarly-typed opponents; in Fig. 13 we can see that

in each of the situations where there are three opponents of

the same type, the loss of recurrence causes a slightly less

damaging effect. The removal of most recent action has a

significantly damaging effect upon the success of our player,

0

10

20

30

40

50

60

70

80

90

100

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

%
 T

o
u

rn
am

e
n

t
W

in
s

Generations

BestFitness MeanFitness

0

10

20

30

40

50

60

70

80

90

100

LA
, LA

, LA

LA
, LA

, LP

LA
, LA

, TA

LA
, LA

, TP

LA
, LP

, LP

LA
, LP

, TA

LA
, LP

, TP

LA
, TA

, TA

LA
, TA

, TP

LA
, TP

, TP

LP
, LP

, LP

LP
, LP

, TA

LP
, LP

, TP

LP
, TA

, TA

LP
, TA

, TP

LP
, TP

, TP

TA
, TA

, TA

TA
, TA

, TP

TA
, TP

, TP

TP
, TP

, TP

%
 T

o
u

rn
am

e
n

t
W

in
s

0

10

20

30

40

50

60

70

80

90

100

LA
, LA

, LA

LA
, LA

, LP

LA
, LA

, TA

LA
, LA

, TP

LA
, LP

, LP

LA
, LP

, TA

LA
, LP

 ,TP

LA
, TA

, TA

LA
, TA

, TP

LA
, TP

, TP

LP
, LP

, LP

LP
, LP

, TA

LP
, LP

, TP

LP
, TA

, TA

LP
, TA

, TP

LP
, TP

, TP

TA
, TA

, TA

TA
, TA

, TP

TA
, TP

, TP

TP
, TP

, TP

%
 T

o
u

rn
am

e
n

t
W

in
s

Best Genome Opponent Model Ablation

Last Action Ablation Recurrence Ablation

28 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

which is understandable due to the importance of taking our

opponent‘s most recent action to infer the strength of their

downcard. As for the removal of opponent model, the effect

is again pronounced in all cases (although less so than the

other two effects above). We believe that this means that the

opponent model is integral to the operation of our neural

network in terms of being able to determine a strategy

tailored to the nature of the opponents.

C. Dynamic opponents

In order to test the ability of our player to adjust to the

potentially dynamic nature of opponents, we create two sets

of tests: firstly we test our player against each of the

standard four types of opponent, but we make our opponent

bluff (bet when the player decides it should actually fold)

with probability p, which is adjusted in increments of

0.01where 0  p  1. Fig 14 shows the results of these tests.

Fig 14. Tournament performance of the ‗best‘ evolved genome against

partially randomized opponents over 100 tournaments

 ―Bluffing‖ improves the performance of a TP player: at a

bluff probability of 0.12 our player drops to a 72%

tournament success rate. This is understandable, as

approaches call for a level of bluffing in order to attain an

optimal strategy [4], [5]. As the chance of performing a

bluffing action rises, so does the success of our player

against the bluffing TP player. Reasoning for this is due to

the nature of player styles, our player‘s model now assumes

that the opponent is loose aggressive, and caters for the

eventuality that our randomized player will be bluffing a

large portion of the time. As for the other types of opponent,

they will all mostly be classified as being an LA player as p

rises. Bluffing does not improve play quality of LA, LP or

TA players.

 If a players‘ current tactic is unsuccessful, then it is

sensible for the player to change their current strategy; we

implement a series of players that transition from one style

to another once their chips are at a level that is 50% of their

initial chips at the start of the game. We can see in Fig. 15

that our player is able to cope suitably against our varied-

style opponents. It is notable that our player is most

susceptible to opponent strategy change when moving from

a weaker style to a tight one. The main reasoning behind this

is that our Bayesian modeler has to readjust its style-

representative weights in order to accommodate the

opponent‘s shift in style, and as such a lag is involved in

―understanding‖ the opponents‘ strategy. The transition

from a stronger style to a looser one is not likely to be an

effective strategy, and our results confirm this. However,

moving from a tight style to a loose one can be a good way

of scaring opponents out of the game until they realize the

strategy in play. The failing of this approach against our

ANN strategy, however is that the probabilistic way in

which our modeler updates its beliefs means that these

beliefs will be altered significantly when a tight player

repeatedly performs an action that it should rarely do (the

main example being to move from TP to LA, drastically

increasing the frequency of betting actions; see Table III).

Fig 15. Tournament performance of the ‗best‘ evolved genome against

dynamically styled opponents over 100 tournaments

V. CONCLUSION

In this paper players are evolved using NEAT for a

simplified game of poker. We first show it is easy to evolve

a player against individual opponents of a fixed style. We

then compare the utility of opponent models in aiding the

evolution and performance of game-playing agents against

players that do not make use of such information. Against a

single adversary, the results show little difference between

approaches that use an opponent model, and those which do

not. We then compare our players in an environment where

there is more than one opponent. Results show the benefits

of using opponent models increase with increased numbers

of opponents. In this instance, the evolved player relies upon

Bayesian opponent modelling and the recurrent nature of the

evolved neural network is shown to be crucial in order to

apply the appropriate strategy for each set of different

opponents, and is able to generalise and defeat tables of

opponent combinations not yet encountered. Furthermore,

we test the approach against opponents that employ simple

bluffing tactics, as well as simple dynamic strategy

approaches. In these experiments we find that our opponent-

model augmented NEAT networks are able to perform well

against these dynamic opponents.

Through our own (human-computer) interactions with the

‗best‘ evolved player, we have noted that it plays tightly,

which is good for a close game, but does not take advantage

of any potential for bluffing, as well as being very

susceptible to bluffing by the opponent.

60

65

70

75

80

85

90

95

100

0

0
.0

6

0
.1

2

0
.1

8

0
.2

4

0
.3

0
.3

6

0
.4

2

0
.4

8

0
.5

4

0
.6

0
.6

6

0
.7

2

0
.7

8

0
.8

4

0
.9

0
.9

6

%
 T

o
u

rn
am

e
n

t
W

in
s

P(Bluff)

LA

LP

TA

TP

0

10

20

30

40

50

60

70

80

90

100

LA
 to

 LP

LA
 to

 TA

LA
 to

 TP

LP
 to

 LA

LP
 to

 TA

LP
 to

 TP

TA
 to

 LA

TA
 to

 LP

TA
 to

 TP

TP
 to

 LA

TP
 to

 LP

TP
 to

 TA

%
 T

o
u

rn
am

e
n

t
W

in
s

292008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

VI. FUTURE WORK

In future, we aim to investigate further methods for

representation of a game player in terms of their tactical

strengths and weaknesses. Playing effectively against an

opponent requires the discovery of the opponents‘

weaknesses. Our aim is for a player to discover these tactics

for itself before using a means of action selection tailored to

the opponent. Our future work aims to evolve a bluff-aware

approach; this would include finding a means of discovering

when our opponent is bluffing, and to augment our AI

players so that they can successfully perform deceptive

strategies. As for our current approach, we feel that using

our opponent model could potentially be upscaled to

evolving an agent for full-scale Texas Hold ‗em, but some

simplification may need to arise in relation to betting

rounds, as well as the representation of cards held and hand

strength, as well as the potential for cards to improve, or

conversely worsen. The number of ANN inputs would

potentially need to drastically increase in order to evolve a

decision-making agent, but we shall investigate the potential

for improving the evolution of a more complex agent using

opponent models.

REFERENCES

[1] D. Sklansky, The Theory of Poker. Two Plus Two Publishing, 1992.

[2] N. Findler, "Studies in Machine Cognition Using the Game of Poker."

CACM 20(4), pp 230-245, 1977
[3] M. Campbell, A.J. Haone Jr, F-h. Hsu, Deep Blue, Artificial

Intelligence, 2002, Vol.134, (pp.57-83)

[4] D. Koller, A. Pfeffer, Representations and solutions for game

theoretic problems Artificial Intelligence, 1997, (pp.167–215)

[5] J. von Neumann, O. Morgenstern, Theory of Games and Economic

Behavior. Princeton NJ: Princeton Univ. Press, 1944
[6] M. Sakaguchi, S. Sakai, Solutions of some three-person stud and draw

poker. Mathematics Japonica 1992, (pp. 1147-1160)

[7] D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T.
Schauenberg, and D. Szafron, Approximating game-theoretic optimal

strategies for full-scale poker In Proceedings of the eighteenth

International Joint Conference on Artificial Intelligence 2003, (pp.
661-668).

[8] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron, The challenge

of poker. Artificial Intelligence Journal, 2002, (pp. 201–240).

[9] J. Schaeffer, D. Billings, L. Peña, D. Szafron, Learning to play strong
poker In ICML-99, Proceedings of the 16th International Conference

on Machine Learning, 1999

[10] D. Billings, D. Papp, J. Schaeffer, D. Szafron, Opponent modeling in
poker Proceedings of the fifteenth national/tenth conference on

Artificial intelligence/Innovative applications of artificial intelligence,

1998, (pp. 493 - 499)
[11] E. Saund, Capturing the information conveyed by opponents‘ betting

behaviour in poker. In proceedings of 2006 IEEE Symposium on

Computational Intelligence and Games (CIG), (pp. 126-133)
[12] L. Barone, L. While, An adaptive learning model for simplified poker

using evolutionary algorithms In proceedings of Congress of

Evolutionary Computation 1999 (CEC‘99), July 6-9, Washington DC,
(pp 153-160).

[13] L. Barone, L. While, Evolving Adaptive Play for Simplified Poker. In

proceedings of IEE International Conference on Computational
Intelligence (ICEC-98), pp 108-113, 1998.

[14] L. Barone, While, L. Adaptive Learning for Poker. In proceedings of

the Genetic and Evolutionary Computation Conference, pp 566-573,
2000.

[15] R.J.S. Baker, and P.I. Cowling, Bayesian Opponent Modeling in a

Simple Poker Environment, IEEE Symposium on Computational
Intelligence and Games (CIG 2007), Honolulu, USA.

[16] K. Burns, Style in poker, In Proceedings of 2006 IEEE Symposium on

Computational Intelligence and Games (CIG), (pp.257-264)
[17] G. Kendall and M. Willdig, An Investigation of an Adaptive Poker

Player. In proceedings of 14th Australian Joint Conference on

Artificial Intelligence, 2001, pp. 189-200.
[18] D.B. D‘Ambrosio, K.O. Stanley, A novel generative encoding for

exploiting neural network sensor and output geometry, in Proceedings

of the Genetic and Evolutionary Computation Conference
[19] K.O. Stanley, R. Miikkulainen, Evolving Neural Networks through

Augmenting Topologies. Evolutionary Computation 2002, 10 (2): 99-

127
[20] S. Whiteson, P. Stone, K.O. Stanley, R. Miikkulainen, N. Kohl,

Automatic Feature Selection via Neuroevolution. In Proceedings of

the Genetic and Evolutionary Computation Conference, 2005.

[21] A. Davidson, (1999) Using Artificial Neural Networks to Model

Opponents in Texas Hold 'Em. [Unpublished manuscript]. Available:
http://spaz.ca/aaron/poker/nnpoker.pdf.

[22] A. Davidson, D. Billings, J. Schaeffer, and D. Szafron, Improved

Opponent Modeling in Poker. Proceedings of the 2000 International
Conference on Artificial Intelligence (ICAI'2000). 1999, 1467--1473.

[23] F. Southey, M.P. Bowling, B. Larson, C. Piccione, N. Burch, D.

Billings, D. Rayner, Bayes‘ Bluff: Opponent Modelling in Poker. In
Proceedings of the 21st Annual Conference on Uncertainty in

Artificial Intelligence (UAI-05), 2005, pp 550-555

[24] J.L. Elman, Finding structure in time. Cognitive Science, 1990, 14,
179-211.

30 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

