Can you on-sight it?

Victor Zhang
Department of Mechanical Engineering
zhangvwk@stanford.edu

1 Introduction

As a climbing enthusiast, one question that crosses my mind as I am about to try out a new climbing route is: can I complete this
route in one go with no prior information? In the climbing vernacular, this would be called an on-sight. Being able to “on-sight"
a route demands a certain mastery of the climbing art — at least with respect to the difficulty and type of said route. In fact, aside
from the personal satisfaction of on-sighting, professional climbers actually earn more points in competition when they are able
to finish a route in only one go.

The question now is, are there distinctive features that determine the ability of one to on-sight a certain route? Put more formally,
given our chosen set of 8 features comprised of user and route specifics (see Section[3), we use a wide array of different models
(see Section[d)) to classify whether one can on-sight a route or not, using the dataset detailed in Section[3] Section [5]shows the
experimental results, followed by a discussion.

2 Related work

Several surveys on climbing performance exist in the form of articles intended for the general public [6} 15]. However, to my
knowledge very few comprehensive statistical or machine learning studies have been undertaken in the past for a classification
problem in the context of rock climbing, let alone to motivate the question of on-sighting a route. [2] is arguably the closest study
to this present proposal that is publicly available, though the author decided to restrict his analysis to standard linear regression
only, while also striving to answer a different question. [1] is also interesting in itself but differs from our motivation in that the
authors strove to classify the difficulty of climbing routes based on visual input, which is a whole other problem (the dataset used
is thus far different from ours).

3 Dataset and Features

3.1 Description

Sa[]_-]is the world’s largest rock climbing logbook, used to track completed rock climbs all over the planet. A user that completes
a climb puts in additional information including whether it was on-sighted or otherwise. The climb itself includes useful
information such as its consensus difficulty grade and rating, location, and type (lead — tall route climbed with a rope, or boulder
— short route climbed without a rope). Finally, user details can optionally include personal physical specifications such as gender,
height, weight, age and climbing experience (in terms of duration). The users and ascents’ information from this logbook were
scraped and collected on 2017-9-13 as per the data description. The dataset is posted publicly on Kaggle El The raw data contains
the following four dataframes: users (= 63k rows, 22 columns), ascents (=~ 4.1 million rows, 28 columns), climbing methods (5
rows, 4 columns), and climbing grades (83 rows, 14 columns).

3.2 Preprocessing

The raw dataset included features that are arguably irrelevant to the task at hand. In the users dataframe for example, information
such as first and last names, interests and occupation (among others) was deliberately left out especially considering it wasn’t

"https://www.8a.nu/
Zhttps://www.kaggle.com/dcohen2 1/8anu-climbing-logbook

CS229: Machine Learning, Spring 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

in a standardized format. Similarly, several irrelevant and non-standardized features from the ascents, methods and grades
dataframes were removed, such that the only remaining features are:

country, is_female, height, started, birth, grade_id, is_bouldering, year

The first five features are user features, where started denotes the year in which the user started climbing. The latter three are
features specific to an ascent, where year denotes the year in which the user performed the climb. The goal is thus to predict the
binary label is_onsight given the above features.

Additional preprocessing was applied to filter out bogus values. Furthermore, since height and weight were found to be
correlated, it was decided to drop the weight feature as height is generally a more determining factor in climbing performance
among seasoned climbers (which is what this dataset is made of).

As a significant portion of the dataset had missing height, weight and/or started data, a multivariate imputer was used
to estimate the missing data from other features. Note that this is to populate a larger training set only, while our model is
then evaluated on a test set made of a selection of complete data from the original and un-imputed dataset. Formally, let
Sincomplete denote the original (incomplete) dataset. From Sipcomplete, We select a complete dataset Scomplete C Sincomplete- We then
split Scomplete iNtO a training set Siain, orig» @ Validation set Syey, and a test set Sy With a ratio of 70/20/10. Let Simputea be the
dataset after imputing the data in Sincomplete> and 1et Srain, imp = Simputed \ {Stest U Sdev }+ Sirain, imp thus constitutes an alternate,
significantly larger training set than Siain, orig-

The goal is to maximize accuracy on Sge, and then to evaluate the final fine-tuned models on Sies. We experiment with the two
different training sets Siin, orig aNd Sirain, imp» hopefully observing better results with the latter.

3.3 Preliminary analysis

An overview of the statistics of the two training sets Siain, orig> Sirain, imp and the test set Sieq is given in TableE

Set size (10°) | is_onsight (%) | is_bouldering (%) | is_female (%)
Strain,orig ~ 1.76 32.02 29.41 7.92
Strain,imp ~2.17 31.81 28.98 10.50
Stest ~ 0.433 30.14 30.84 9.36

Table 1: Comparison table of Siain, origs Strain, imp and Siese on the label is_onsight and the two binary-valued features
is_bouldering and is_female.

Additionally, histogram similarities (in the sense of the intersection over 20 bins) for the features birth, height and grade_id
are shown in Figure[I] We observe that though the statistics are all similar (with the imputed dataset seemingly better representing
the test set distribution on the label and the female proportion), there is skew towards non-onsighted, non-bouldering (i.e.
lead-climbing) and non-female (i.e. male) completed ascents. Refer to Section] for the methods used to remedy this imbalance.

o,

s,

@,

foge y foge

e
0.98

4 b, KO
gy "y “wn SO) SO
| 1 . 1.000 . 1) f
1.00 0.98 0.995 train_imp - SR 0.98 0.96 train_imp - SR -
0.9%0 0.9950
0.990 0.985 & s
é 0.9925 &
. 0.980 §) 3
1.00 0.97 0.985 train_orig -| L) 1.00 0.96 3 train_orig -| 1.00 0.98 0.9900 2
0.975 3 3
g 0.9875 &
0.980 H El
0970 3 E]
0.98 0.97 1.00 0.975 test- 0.96 0.96 1.00 0.965 test- 0.98 0.98 1.00
0.960

'birth' ‘height' ‘grade_id"

train_imp -

train_orig |

fanejwis weiboisiH

test -

Figure 1: Histogram similarity for the features birth, height and grade_id from top left to bottom right, respectively.

4 Methods

4.1 Models

For this classification task, we attempt the following approaches: logistic regression, support vector machines (SVMs), multi-
layer perceptron (MLP) as well as ensemble methods. For each approach, different hyperparameters and configurations were
carried out. A brief review of these methods is given in this section.

Let {(z(,4®) | i € [1,n]} be a sequence of n independent draws from a joint distribution Pxy . The variable X takes values
in R? with d € N* the number of features and the variable Y (also called the label) takes values in {0, 1}. Let €(h,,) > 0 denote
the excess risk P(Y # h,, (X)) — P(Y # h*(X)), where h* is the optimal Bayes classifier which is defined as follows:

. 1R = 1|X) > 1/2
h(X):{o ifIPgY:1|X§21?2

The goal is to build a classifier /,, (X) such that the excess risk €(h,,) is as small as possible.

e Logistic regression consists in maximizing the log-likelihood of the data assuming n(X) := P(Y = 1|X;0) =
1/(1+e=%"X). The loss to be minimized is

(40) = =3y [logn(a) + (1 = y) log(1 — ()] + Aol

where the rightmost contribution is a (¢, for p € {1, 2}) regularization term and serves the purpose of decreasing the
variance of the model.

e Linear support vector classification solves the following convex optimization problem:

N
minimize 5 16115 + C;&
st. y® (6%“))21—@, i=1,...,m
£>0, i=1,...,m

which is the optimal margin classifier after ¢ regularization (a necessary term for non-linearly separable data which is
the case here as observed later on). Though one can map the input to a higher-dimensional feature space and efficiently
solve this problem with kernels, linear SVM turned out to suffice as shown in Section[5} It is to be noted that the training
complexity is quadratic in the number of samples which makes SVM a method that does not scale very well to our large
training sets (see Section[3.3)). In practice, it was decided, for the sake of computation time, that only a random subset
of length ngmples Would be drawn from the training set.

e Multi-layer perceptron is a fully connected network with an arbitrary number of layers which can each be of arbitrary
size. The activation functions are denoted a, and the function preceding the output is the sigmoid (as for logistic
regression) for binary classification. A regularization term can be added to the loss as well to prevent overfitting the
training set.

e Ensemble methods employed in this study are (i) random forests and (ii) AdaBoost.
(i) Random forests [3]] is a bagging method which consists in drawing with replacement B random samples (X3, Y;)
from the dataset, fitting a regression tree f;, on (X;, Y;,) while selecting, at each candidate split in the learning process,
a random subset of the features to decorrelate the trees. The classifier is then the average of the f3’s, for b € [1, B].

(i) AdaBoost [7]] is a boosting method which consists in building the classifier on B weak learners sequentially (as
opposed to in parallel in the bagging approach) so as to assign a weight to each of them, while using a shrinking
parameter « to slow down learning and prevent overfitting. The final classifier is then the weighted average of the weak
learners. AdaBoost is a particular boosting method in which incorrect classification receives higher weights, prompting
its classifiers to pay more attention to them in the next iteration, and vice versa.

4.2 Metrics

Since the datasets (both training and test) are unbalanced (from Table (1] around 70 % of the points are classified as 0), we expect
poor precision and recall, and a high specificity. For training, the two following options are: either use the unbalanced data as is
and use modeling methods to combat the imbalance, or simply use random undersampling such that each class represents half of
the dataset. While the former option was contemplated, since undersampling would not greatly decrease the training set size
relative to the test set and thus not significantly alter the outcome, the latter option was chosen. Experimental results indeed
showed that the latter was the way to go (see Section [5.)).

Since the test set is heavily skewed, the metric chosen is the F1 score. Note that, had the test set not been skewed (e.g. deliberately
balanced as with the training set), we would have used the AUROC (Area Under the Receiver Operating Characteristic) to
measure the performance of a model because it would have better characterized the performance in identifying each class equally.
The test set should be an estimate of the real-life statistics, and since it seems reasonable to assume these are actually skewed (at
least with respect to the proportion of on-sighted and female-completed routes), it was decided to keep the test set unbalanced
and consequently evaluate the models using the F1 score.

5 Experiments and discussion

5.1 Unbalanced versus balanced

One possible way to deal with an unbalanced dataset is to use boosting. Indeed, the method is used to generate several training
datasets with weights that tip the scales in favor of the most difficult cases, i.e. the minority class. One such method is AdaBoost
(7], which we ran on Syin, orig and Spar, orig- The former was described above in Section @ while the latter was obtained using
random undersampling of the former such that each class is equally represented. The algorithm was run using 50 decision tree
classifiers with a maximum depth of 1 as base estimators. The results are shown on Table [2] after evaluating the classifiers on the
test set.

Strain,orig (%) Sbal,orig (%)
Precision 60.22 51.11
Recall 51.18 78.04
F1 score 55.33 61.77

Table 2: Comparison table of results obtained on the test set after training AdaBoost on Siin, orig and Spal, orig-

We observe that using the balanced dataset for training increases the F1-score by approximately 12%. Therefore, coming back to
the point made previously in Section[d.2] it was decided to deal with the skewed statistics by simply undersampling the training
set.

5.2 Original versus imputed

As detailed in Section@, an alternative training dataset, Siinimp Was generated using additional imputed values. As shown in
the previous subsection, since we are dealing with imbalance using undersampling, another balanced dataset was created out of
Sirain,imp> Which we denote Spaiimp. The hope was that using this larger training set would result in a better generalization and
consequently better test results. AdaBoost with the same setup was run on the two balanced training sets Spal orig and Spatimp-
with the results shown in Table 3] after evaluating the classifiers on the test set.

Sbal,on'g (%) Sbal,imp (%)
Precision 51.11 50.30
Recall 78.04 83.66
F1 score 61.77 62.82

Table 3: Comparison table of results obtained on the test set after training AdaBoost on Sy, orig and Spal, imp-

We observe a slight increase in the F1 score when using the model trained on the larger balanced dataset Spayimp. Thus it was
decided to move forward with Spaiimp and drop Spaiorig. Note that we are now using a dataset of |Sbal,imp| ~ 1.38 - 10 points.

5.3 Comparisons and discussion

A comparison of the results obtained with 5 different models is shown in Table 4] after evaluating the classifiers on the test set.
The corresponding hyperparameters for each model are shown in Table 3]

Logistic regression (%) | SVM (%) | Random forests (%) | AdaBoost (%) | MLP (%)
Training accuracy 65.64 75.19 73.57 74.87 75.16
Training F1 score 71.06 75.95 75.25 76.23 77.15
Precision 40.69 49.03 49.12 50.30 49.13
Recall 91.55 87.34 83.04 83.66 88.20
F1 score 56.34 62.80 61.73 62.82 63.11

Table 4: Model comparison of results obtained on the test set after training on Spay, imp-

The main takeaway observation is that logistic regression, the “simplest" linear classifier, achieves an F1 score that is not that
much lower to that of a 4-layer fully connected network. In other words, it seems challenging to find suitable non-linearities
that would greatly outperform a simple linear model. Figure [2[shows a subset of the training data projected onto the first two

Hyperparameters
Logistic regression | Regularization: {9, A = 1
Kernel: linear

SVM Cc=1

Nsamples = 104

Random forests B =100

B =100
AdaBoost a=1
max_depth =1
Layer dimensions: (5,5,5,5)
a: ReLU
MLP Regularization: {1, A =1

Optimization: Adam (initial 1.r. 1073)
Batch-size: 200

Table 5: Hyperparameters corresponding to the models exposed in Table@ A tolerance of 10~* was set for any implementation
requiring one.

principal eigenvectors of the training set Spaiimp, and it indeed seems non-trivial to separate the two classes even in the first two
principal dimensions: the two classes are mixed together with no obvious coherence — linear or otherwise. It therefore comes
to no great surprise that the non-linear classifiers have trouble finding the relevant weights that would result in a much better
performance than the linear ones — in fact, the training accuracy of each row shows that the models aren’t capable of overfitting
past around 75%.

Despite the poor performance of the advanced non-linear methods relatively to the logistic regression baseline, this study was
nonetheless useful to practically confirm the following: decorrelating the trees with random forests does increase generalization,
AdaBoost does not need its base estimators to be complex (the maximum depth of each decision tree max_depth is only 1) in
order to produce encouraging results, and neural networks perform better when the structure is deep (e.g. (5,5,5,5)) rather than
wide (e.g. (50,50)), thereby learning features at various levels of abstraction while not overfitting the training set.

6 Conclusion and future work

We achieved a baseline F1 score of around 56% using regularized logistic regression and struggled to increase it by a great
amount, with the most successful method being a 4-layer FC network achieving around 63% (thus making for around a 12 %
increase). Future work would include testing other methods such as kernel-induced random forests [8]] and boosting with more
advanced base learners (e.g. an FC network), though it would be surprising to see any substantial increase in performance given
our current results. A more sound way of going about this issue would perhaps be to use Fisher discriminant analysis to infer
features that maximize the class separability, include additional features to render the data more “learnable”, and to try out other
reweighting schemes such as class-balanced loss [4].

In addition, this dataset in itself comes from seasoned climbers and not the general public; as such, the proportions seen in
Section [3.3]are probably not representative of, and the predictions do not generalize to the general climbing population.

First two PCA directions

2nd eigenvector
-

1st eigenvector

Figure 2: A subset of the training set Spai, imp pProjected on the first two principal eigenvectors.

References

[1]

(2]

(3]
[4]

(7]
(8]

Juan Carlos Sarmiento Alejandro Dobles and Peter Satterthwaite. Machine learning methods for climbing route classification.
http://cs229.stanford.edu/proj2017/final-reports/5232206.pdf, 2017.

Steve Bachmeier. Rock climber characteristic analysis or: Does being tall really help? https://github.com/
stevebachmeier/climber-characteristic-analysis, 2019.

Leo Breiman. Random forests. Mach. Learn., 45(1):5-32, October 2001.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-Balanced Loss Based on Effective Number of
Samples. arXiv e-prints, page arXiv:1901.05555, Jan 2019.

Naftali Harris. A statistical analysis of climbing. https://www.naftaliharris.com/blog/
climbing-statistical-analysis/, 2014.

Chris Ring. The height of injustice: Is being tall an advantage in your climbing career? https://rockandice.com/
climbing-news/the-height-of-injustice-is-being-tall-an-advantage-in-your-climbing-career,
2018.

Robert E. Schapire and Yoav Freund. Boosting: Foundations and Algorithms. The MIT Press, 2012.

Erwan Scornet. Random forests and kernel methods. IEEE Trans. Inf. Theor., 62(3):1485-1500, March 2016.

http://cs229.stanford.edu/proj2017/final-reports/5232206.pdf
https://github.com/stevebachmeier/climber-characteristic-analysis
https://github.com/stevebachmeier/climber-characteristic-analysis
https://www.naftaliharris.com/blog/climbing-statistical-analysis/
https://www.naftaliharris.com/blog/climbing-statistical-analysis/
https://rockandice.com/climbing-news/the-height-of-injustice-is-being-tall-an-advantage-in-your-climbing-career
https://rockandice.com/climbing-news/the-height-of-injustice-is-being-tall-an-advantage-in-your-climbing-career

	Introduction
	Related work
	Dataset and Features
	Description
	Preprocessing
	Preliminary analysis

	Methods
	Models
	Metrics

	Experiments and discussion
	Unbalanced versus balanced
	Original versus imputed
	Comparisons and discussion

	Conclusion and future work

