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Abstract—In real-world NoSQL deployments, users have to
trade off CPU, memory, I/O bandwidth and storage space to
achieve the required performance and efficiency goals. Data
compression is a vital component to improve storage space
efficiency, but reading compressed data increases response time.
Therefore, compressed data stores rely heavily on using the
memory as a cache to speed up read operations. However, as large
DRAM capacity is expensive, NoSQL databases have become
costly to deploy and hard to scale. In our work, we present a
persistent caching mechanism for Apache Cassandra on a high-
throughput, low-latency FPGA-based NVMe Flash accelerator
(CAPI-Flash), replacing Cassandra’s in-memory cache. Because
flash is dramatically less expensive per byte than DRAM, our
caching mechanism provides Apache Cassandra with access to a
large caching layer at lower cost. The experimental results show
that for read-intensive workloads, our caching layer provides up
to 85% improved throughput and also reduces CPU usage by
25% compared to default Cassandra.

I. INTRODUCTION

NoSQL data stores are designed to handle large volumes
of data coming in at high velocity. They are increasingly
used in Big Data applications because they do not require
data to be stored in a structured format and also provide
high throughput with low response latency. Apache Cassandra
is a popular example of NoSQL technology that has gained
significant traction in the industry and academia [10]. It is
used in production in hundreds of companies including Apple,
Netflix and Baidu [2].

Data compression is one of the techniques used to maximize
the storage capacity by reducing the volume of data on the
storage and is crucial for storage efficiency. However, reading
data from storage and decompressing it causes long response
times as well as high CPU consumption [22] [24]. Therefore,
NoSQL databases rely on data cached in DRAM to keep
response latencies low [33]. Cassandra typically uses cached
data in DRAM in compressed or uncompressed format to
improve the performance. However, if the working set size
grows larger than the DRAM capacity, Cassandra becomes
costly to deploy and hard to scale due to the DRAM cost.
It is critical to address this scaling bottleneck while keeping
the deployment cost low and yet achieve the performance
objectives.

Emerging technologies in the storage ecosystem such as
Intel’s SPDK [13] and IBM’s CAPI-Flash [8] bypass the
operating system I/O stack. They allow access to flash with
low CPU overhead and low latency. For example, CAPI-
Flash [8] is an FPGA-based NVMe Flash accelerator. It

is based on the POWER8 Coherent Accelerator Processor
Interface (CAPI), which enables cache-coherent hardware
accelerators with address translation capability. CAPI-Flash
enables user-level access to flash without operating system
overhead, eliminating 97% of the code path.

Our goal in this work is to leverage the CAPI-Flash system
to design and implement a high speed persistent caching layer
for Cassandra, that accesses flash with low latency and low
CPU overhead. Our caching mechanism replaces Cassandra’s
default Chunk Cache mechanism and utilizes CAPI-Flash to
cache uncompressed chunks of the Cassandra’s data files.

The contributions of this paper are as follows:
• We evaluate and characterize the read performance and

resource utilization of CAPI-Flash and NVMe SSD.
• We present the design and implementation of the CAPI-

Flash based persistent caching layer.
• We present a comprehensive evaluation of our caching

layer compared to the default mechanism in Cassandra
and show results for various use cases.

II. BACKGROUND
A. Apache Cassandra

Apache Cassandra [25] is an open source distributed
NoSQL database initially developed at Facebook. It is de-
signed to manage large volumes of data while providing high
availability with no single points of failure.

Even though Cassandra’s architecture has significantly
evolved after its inception, it was initially based on Bigtable’s
data model [17]. In this data model, a column is the smallest
component and it consists of the key or column name, value,
and a time stamp for conflict resolution. Columns that share
the same key form a row. Rows are sorted in key order and
organized into column families.

As a storage engine, Cassandra uses a structure similar to
Log Structured Merge (LSM) Trees [28]. LSM-trees are used
in many popular NoSQL systems such as HBase, RocksDB,
MongoDB (WiredTiger) and BigTable. LSM-trees keep the
data sorted in files and avoid in-place updates. Cassandra’s
storage engine consists of three main components: – (1)
Memtable: an in-memory write-back cache that maps the row
by its key and is maintained on a per column-family basis;
(2) Sorted String Table (SSTable): persistent, immutable files
that keep key-value pairs in sorted order; and (3) Commitlog:
append-only files that maintain a history of changes in the
database to provide fault tolerance.
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Fig. 1: Figure 1a shows path of a write operation and Figure 1b shows the path of a read operation in Cassandra.

1) Write and Read Path: Figure 1a shows the write path of
Apache Cassandra. When a write or update operation occurs,
data is applied to the in-memory data structure (Memtable),
which acts as a write-back cache. In order to provide dura-
bility, data is simultaneously appended to on-disk Commitlog
files. At a configurable threshold, Memtables are flushed to
the disk. At the time of flush, data is first serialized and then
sequentially written as SSTable files. Contents of SSTable files
are immutable and not modified after the Memtable is flushed.
Additionally, a partition index file is generated which maps
the location of each key to its offset in the SSTable file. As
Cassandra’s data files are immutable, data that is overwritten or
deleted will continue to reside in the SSTable files. Cassandra
periodically runs compaction to merge rows and columns, evict
deleted rows and consolidate SSTables.

Compression is used in almost all databases in order to
maximize the storage capacity, reduce the volume of the disk
I/O, and improve the page cache residency. If compression
is enabled, Cassandra buffers serialized data into fixed-size
chunks, compresses them, and writes them into the disk as
SSTable files. In the compression-enabled mode, another in-
memory data structure Compression Offset Map is generated
that maps the offsets stored in the partition index file to the
locations of the compressed chunks. Compression reduces the
write footprint to the disk at the cost of CPU cycles.

On the read path (Figure 1b), reading the requested row
data involves merging results from a Memtable and possibly
from multiple SSTables. Cassandra maintains an in-memory
cache (Row Cache) to serve frequently accessed data. The Row
Cache holds the combined row data and is not write through.
If the row is modified, the corresponding entry is invalidated.
As Cassandra does not update data in-place, portions of the
row might reside in multiple SSTables. On a Row Cache miss,
to accelerate the key lookup, Cassandra checks multiple on-
disk and in-memory data structures to avoid costly disk seek
operations to multiple partition index files. The Cassandra
indexing mechanism is not aware of whether the SSTable data
is compressed or not. The partition index maps the SSTable
files as if they are uncompressed. After getting an estimate
from the partition summary, index lookup can be performed
by seeking to a location, followed by a sequential read to find
the offset of the queried row in SSTable.

If compression is enabled, Cassandra first searches the
Chunk Cache for the uncompressed chunk data. We explain the
Chunk Cache mechanism in detail in Section II-A2. If there is

a miss in the Chunk Cache, data is read from SSTable. If the
data is compressed, Cassandra decompresses the entire chunk
and populates the Chunk Cache.

2) Existing Caching Mechanism for Read Operations:
Other than the Row Cache explained in the previous section,
Cassandra mainly relies on the OS page cache and its in-
memory Chunk Cache mechanism to speed up read operations.
Cassandra utilizes the Chunk Cache mechanism to store an
uncompressed version of the frequently accessed compressed
chunks. It is a map from (file name + offset) to the corre-
sponding chunk. Compression is used to improve page cache
residency of the data at the expense of decompressing data at
the time of read and compaction. It reduces the size of the data
on disk and also typically reduces the amount of I/O required
to fetch the data. To avoid processing overhead when the data
is frequently accessed, Cassandra utilizes the Chunk Cache
mechanism to store uncompressed version of the frequently
accessed chunks. Also, for the uncompressed files accessed
through the read() system call and its variants (non memory-
mapped I/O), the Chunk Cache is used to avoid extra copying
from kernel to user space. A request to the Chunk Cache layer
consists of the following information:

(1) File name of the SSTable and the start offset of the
requested row to read within the file; (2) Chunk size of the
file: Compression is configured by column family basis and
the SSTable file inherits the compression properties of the
associated column family. (3) Estimated row size: for each
generated SSTable file, Cassandra maintains an estimated row
size. In the Chunk Cache, this information is used to set the
chunk size of the uncompressed files. However, the record size
information has no effect in the default mode when the Chunk
Cache is used for caching compressed files. A query to chunk
cache returns the entire chunk as a result. A row might extend
across multiple chunks and therefore the Chunk Cache can be
queried multiple times to satisfy a read request.

B. Coherent Accelerator Processor Interface
The Coherent Accelerator Processor Interface(CAPI) [32]

provides a low-latency, memory-coherent path between the
POWER8 core and hardware accelerators. CAPI handles vir-
tual to physical memory translations and allows a CAPI-
attached device to perform Direct Memory Access (DMA)
to application memory without requiring calls to a device
driver or underlying operating system kernel. A CAPI adapter
attaches to PCIe slots and uses PCIe Gen3 as the underlying
transport.



TABLE I: Hardware/Software Stack
Hardware
Configuration

CPU/Memory: POWER8 822LC, 20 cores (8SMT),
3491MHz, 512GB RAM, CPU governor performance
Storage: 1.5 TB HGST Ultrastar SN100 NVMe SSD (PCIe3
x 8), readahead set to 0
CAPI-Flash: 1.92 TB CAPI NVMe Flash Accelerator
Adapter (PCIe3 x 8) using Samsung PM963 M.2 NVMe
SSD as a backend flash device

OS&Kernel Ubuntu 17.04 ppc64le (4.10.0-38)
Kernel Page Size: 4KB, 64KB

Cassandra Apache Cassandra 3.11 patched with [CASSANDRA-13897]
lz4-java 1.5.0 (custom build)

Docker Docker version 17.09.0-ce

Java OpenJDK 1.8.0-internal

YCSB YCSB 0.12.0
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Fig. 2: Micro benchmark results showing 60 seconds of 4KB
random read operations on CAPI-Flash and NVMe SSD.

CAPI-Flash: CAPI-Flash [8] provides a software and hard-
ware stack to exploit the high-throughput and low-latency path
between the POWER8 processor and the flash storage. Each
CAPI-NVMe Flash adapter contains an FPGA interfacing to
CAPI and two 960GB flash drives. The CAPI-Flash software
environment provides the Capiblock API, which allows user
space applications to directly perform I/O to the flash by
offloading the kernel I/O driver functionality to the accelerator
hardware residing on the adapter. Through the Capiblock API,
applications can issue synchronous or asynchronous read/write
requests to the specific logical blocks on the flash with block
granularity (multiples of 4KB).

In Figure 2, we show performance comparison of 4KB
random read operations on CAPI-Flash and NVMe SSD
accessed through traditional I/O. For these micro benchmarks,
we use the hardware configuration defined in Table I. For
both NVMe SSD and CAPI-Flash, we set I/O depth to 64 and
run benchmarks on two cores. We measure the performance
(Figure 2a) by changing the number of threads issuing asyn-
chronous I/O and collect the CPU utilization (Figure 2b) on
two cores. For benchmarking NVMe SSD, we use fio [7]
benchmarking suite and perform direct I/O on the raw device
with kernel asynchronous I/O library. We use fio counter-
part (blockio) for benchmarking CAPI-Flash and distribute
threads evenly on CAPI-Flash’s flash drives. The maximum
read bandwidth of the flash drives of CAPI-Flash is around 2.5
GB/sec and the NVMe SSD is around 3.1 GB/sec. Because the
underlying NVMe flash drives are different, CAPI-Flash has
lower maximum bandwidth and IOPS. However, CAPI-Flash

provides lower CPU utilization/latency at the parity IOPS.
Figures 2a and 2b show that CAPI-Flash can saturate

its maximum bandwidth with a lower number of threads
while consuming only 5% of the 2 assigned cores. We also
observe that with larger number of threads, the CAPI-Flash
performance degrades. This means the concurrency on the
CAPI-Flash needs to be controlled in order to not overwhelm
the device. Using 8 threads, NVMe SSD shows similar perfor-
mance to CAPI-Flash (650k ops/sec) but consumes 10x more
CPU compared to a 2-thread CAPI-Flash setting. NVMe SSD
reaches its maximum bandwidth with 16 threads using 82%
of the assigned cores.

III. DESIGN OF ACCELERATED PERSISTENT READ CACHE

As described in Section II-B, CAPI-Flash provides a raw
block I/O interface for reading and writing to the physical
address space on flash. We designed and implemented a CAPI-
Flash-based read cache for Apache Cassandra, called CAPI
Chunk Cache, by taking advantage of its high-throughput, low-
latency path between flash and the processor.

Figure 3 shows the components of our caching mechanism.
The CAPI Chunk Cache stores uncompressed chunks of

SSTable files. It consists of management components in mem-
ory and chunks in CAPI-Flash. In memory, keys are generated
by the file name and the start offset of the chunks. Values
simply act as pointers to the physical block addresses on the
CAPI-Flash drives. A value also contains a version-based lock
and a temporary reference to a buffer object, which are not
depicted in the figure. The keys (file name and offset) and
the pointers are periodically written to CAPI-Flash with a
checkpoint operation to provide persistence. When a request
misses in the CAPI Chunk Cache, the data is read from
SSTables and decompressed if necessary. In order to avoid
increasing the read latency, the data retrieved from SSTables
is immediately returned to the requester and is also added
to a queue. Then, the contents of the queue are written to
CAPI-Flash in the background, and the CAPI Chunk Cache
is populated. In order to support a wide range of use cases,
we also implemented a memory-based caching layer to cache
reads from CAPI Chunk Cache, but we omit its details because
it was not used in our experiments. We explain the put and
get operations in detail in the Section III-A.

A. Internals

We use a high-performance in-memory caching library
called Caffeine [1] in the in-memory part of the CAPI Chunk
Cache. It is used in production in many NoSQL databases such
as Cassandra and Neo4J [11]. Caffeine is similar to a map data
structure. However, the main difference is that Caffeine evicts
entries automatically in order to constrain the capacity to a
user-defined value. Caffeine evicts the entries that have not
been used recently or very often using the built-in Window
TinyLfu [23] algorithm.

After the data is retrieved from SSTables, it is placed in
a two-stage queue for further processing. In the first stage,
the data is dequeued, and then a pointer object is generated
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Fig. 3: Design of CAPI-Flash backed caching mechanism
that encapsulates the buffer to be written to CAPI-Flash.
This pointer object is inserted into the Caffeine cache, and
a reference to this object is added to the second queue. The
entries placed in the second queue are present both in cache
and the queue until they are written to the flash. When the
reference is dequeued, the buffer it points to is written to flash.
This two-stage mechanism is designed to deal with possible
delays in writing data to the flash. Such delays can occur
during allocation in CAPI-Flash when it runs of out of space
or can be caused by a heavy read/write load. Placing entries in
the Caffeine cache before writing to the flash allows serving
these entries from memory while space allocation and writing
to the flash are in process. It also allows the eviction algorithm
to warm up for these entries. In order to avoid out-of-memory
situations, we limit the total buffer memory used by the entries
stored the queues. If the keys of temporarily placed buffers
are not popular, they can be removed by the eviction before
they are written to flash. In this case, we simply free the buffer
without writing it to the flash. As writing to flash degrades the
read performance, filtering unpopular keys by delaying them
in the queue improves the performance and the flash life time
as flash has limited write durability.

We split the management of the physical address space,
load distribution, maintenance, and storage operations into
separate modules. As mentioned in Section II-B, our CAPI-
Flash device contains two separate flash drives. A machine
can have multiple CAPI-Flash devices, and each flash drive
contained in the device has its own physical address space.
The throughput is maximized when the read/write load is
distributed among the flash drives. Therefore, our design
considers multiple physical address spaces.

For each flash drive, the Space Manager initializes Address
Space instances with a user defined capacity. Therefore, it
limits the amount of CAPI-Flash space that will be used by
the application. Address Space instances are responsible for
free/used space management and collecting metrics regarding
the read/write operations that are performed. Each Address

Space maintains two data structures: (1) a main free list that
stores the free blocks that are ready to be allocated and
(2) a temporary free list that stores the blocks of evicted
entries in between checkpoints. We return the free blocks
in the temporary free list to the main free list only after a
checkpoint operation finishes. We explain the purpose of these
data structures in Section III-D.

The Space Manager constructs a single, contiguous address
space based on a user defined configuration. The Space
Manager is responsible for dispatching read/write requests
or eviction events to the corresponding address spaces. It
periodically collects total used space and one minute moving
average of reads performed on each Address Space. The
Space Manager is also responsible for load balancing among
the Address Spaces. Depending on the popularity of the
chunks stored in Address Spaces, the read/write load might
vary among the Address Spaces. Therefore, load balancing is
required to get optimal performance from CAPI-Flash. For
load balancing, the Space Manager first tries to dispatch
entries according to the read/write metrics collected from the
Address Spaces. If the read/write load is evenly distributed, the
Space Manager dispatches the entry according to the available
space on the Address Spaces. However, there are cases when a
significant imbalance happens between these Address Spaces.
For example, this can occur if the popularity of a chunk
changes or if there is a bulk deletion operation. In these cases,
the load can shift from one flash drive to another. In order
to balance the load, the Space Manager periodically spawns
a maintenance task to move hottest chunks from the heavily
loaded Address Space to the lightly loaded Address Space.

B. Put and Get operations

On put operations, the Space Manager first dispatches
the request to an Address Space. After dispatching, the cor-
responding Address Space allocates blocks on the physical
address space. If there is not enough space on the target
Address Space, the Space Manager blocks until there is



enough space for allocation and then retries dispatching. After
a successful allocation, data is sent to the corresponding
Storage Driver. We implement a lightweight storage driver
that performs asynchronous read/write to CAPI-Flash and is
maintained per Address Space. Storage Drivers process the
results of the asynchronous requests and controls parallelism
on the CAPI-Flash layer. Upon successful completion of the
write request, the corresponding Storage Driver updates the
pointer with the start offset of the record on CAPI-Flash and
frees the temporary buffer residing in the pointer object.

On a get operation, the CAPI Chunk Cache aligns the offset
to the nearest chunk’s offset and then searches the Caffeine
cache. Cassandra’s SSTables are sequentially written and there
is no padding in between the records to align them to block or
chunk start offsets. Therefore, a record can overflow to other
chunks. Returning an incomplete record will cause Cassandra
to query the SSTables, and therefore the Chunk Cache layer,
repetitively. This will increase the read latency. If the record
overflows to the next chunk, we tackle this issue by internally
querying the CAPI Chunk Cache for the next chunk. If the
next chunk is found in the CAPI Chunk Cache, the Space
Manager takes its position and the record size parameters
into consideration and generate a large buffer. To fill up the
buffer from one or more chunks the Space Manager issues
two asynchronous read commands to fill portions of the buffer.
Therefore, we minimize the number of queries to the Chunk
Cache and buffer allocation overhead. For each operation
that reads the pointer object, the CAPI Chunk Cache applies
lightweight version-based locking. During reads, if the entry
gets evicted or its mapping changes due to load balancing, we
revert to reading from SSTables.

C. Eviction

Eviction from the CAPI Chunk Cache happens under two
conditions: (1) Explicit eviction, when an SSTable is deleted
due to compaction or if the column family that maintains
that particular SSTable has been removed. In these cases we
explicitly call eviction on those particular SSTable’s entries.
The physical blocks used by the evicted cache entries are
directly appended to the free list. As a result, tasks that are
waiting for allocation can proceed; (2) weight based eviction,
if the predefined cache size has been exceeded. In this case,
the Caffeine cache determines victim entries. As we protect
mappings for each entry with a version-based lock, during
eviction we acquire a write lock on the entry that changes the
version number. Therefore, if there are any requests pending to
read from this entry, it will gracefully fall back to reading from
SSTables. Freed physical blocks from weight-based eviction
are placed into a temporary free list data structure and later
returned to the main free list for further reuse. Note that the
eviction process manipulates only in-memory data structures
and does not modify any blocks on CAPI-Flash.

D. Checkpoint and Recovery

As warming up cache contents from scratch can be an
expensive operation, we implement a periodic checkpointing

operation to keep the cache contents valid even after Cassan-
dra shuts down and restarts. It persists the contents of our
cache to a designated space on CAPI-Flash. Checkpoints run
in the background and provide a consistent view of cache
entries. As discussed in Section III-A, a major portion of our
caching mechanism is already stored in non-volatile flash. For
checkpoints, we only need to store the in-memory portion,
specifically, the start block address of the chunk, SSTable id,
and its corresponding offset in the SSTable. However, as the
eviction process only updates in-memory data structures, we
must make sure to provide correct mappings for the cache
entries. If an entry gets evicted in between checkpoints and if
the start block address of the evicted entry is reused to store
another chunk, then the entry pointing to that start address
from the last checkpoint will become corrupted. We tackle
this issue by delaying reusing the start block addresses of
the entries evicted by the weight-based eviction until the next
checkpoint. We use the temporary free list for this purpose.
Note that the explicit eviction does not need to use the
temporary free list. As the explicit eviction happens only when
the SSTables are deleted, the checkpoint recovery process
can validate entries by checking whether the corresponding
SSTables exist or not.

At the start of each checkpoint, the Space Manager first
renames the current temporary free list. We refer to this list
as a retired list. Then, the Space Manager creates a fresh
temporary free list. If the cache locality is poor, weight-based
cache evictions will happen frequently. Therefore if the main
free list runs out of space, new writes to the cache will be
rejected until the next checkpoint finishes.

During checkpoint, the Space Manager serializes contents
of the Caffeine Cache into a buffer that is written to a
designated checkpoint space in the CAPI-Flash address spaces.
In our design, we currently consider fixed sized chunks
throughout the database. Checkpoints traverse an in-memory
cache data structure, serialize cache contents into compact
format and write it to CAPI-Flash. In each Address Space,
we use a designated area for checkpoints and each checkpoint
writes to a different designated area. After we successfully
write the checkpoint data, the Space Manager moves the
contents of the retired list to the main free list. This approach
allows us to have a consistent view of the SSTables.

While reconstructing the cache after a graceful or ungraceful
shutdown, the Space Manager first compares timestamps from
the Address Spaces and determine the most recent checkpoint
data. The Space Manager sequentially reads the serialized
cache contents and populate the Caffeine Cache. The check-
points are lightweight as they only have a 12 byte overhead
per chunk.

IV. PERFORMANCE RESULTS

A. Experimental Setup

In this section we evaluate the performance of the CAPI
Chunk Cache with various workloads using YCSB [18].



TABLE II: Workload/Database Parameters

Dataset Total Number of Records: 5 million
Record: 10 fields - 6400 bytes each
Compression Chunk Length: 64KB
Total Size(approx.): 320GB(170G compressed)

DB Cores 5 cores (8 SMT)

DB Memory Cassandra JVM Heap Size: 16GB
Docker Memory Size: 32GB, 64GB

DB Parallelism concurrent {readers | writers}: 128

YCSB Parallelism Total YCSB Instances: 10
Client Threads per Instance: 10

YCSB Read/Update Mix 100% read , 80% read - 20% update

YCSB Workload Duration Warm-up: 600 seconds Execution: 600 seconds

YCSB Key Selection Request Distribution: hotspot
Hot Set Fraction: 30% (approximately 96GB)
Hot Set Operation Fraction: 80%

Tables I and II show the hardware/software stack and
workload parameters used in our experiments.1 We ran the
Cassandra server and the benchmark clients on the same ma-
chine. We ran Cassandra on five dedicated cores in a separate
NUMA node, using a Docker container with cgroups to
control memory and to provide isolation from the benchmark
processes. Container memory size was limited to 32GB and
64GB. In order to avoid network or file system overhead, we
mapped Cassandra’s data folders to the XFS filesystem running
on the host and configured the container to use the host’s
network stack. We allocated 16GB of JVM heap to Cassandra
and disabled the Commitlog. As we configure Cassandra to
store its Memtables on the JVM heap, approximately the
remainder of the memory available in the container is used
for Linux page cache.

The Yahoo! Cloud Serving Benchmark(YCSB) [18] is an
open source benchmarking suite for evaluating performance of
key-value and cloud serving stores. It supports many popular
database systems like MongoDB, HBase and Cassandra. A
YCSB workload consists of load and transactional phases.

The load phase inserts generated data into the database, and
defines the dataset properties such as the number of fields, field
length, and number of records. We generated a dataset larger
than available memory sizes and select a 64KB record size
for fair comparison. A smaller record size can favor CAPI
Chunk Cache too much because reads from SSTable files
waste the I/O bandwidth. YCSB by default generates random-
number fields, which are not compressible and are unrealistic.
We modified YCSB to generate compressible fields. Using
lz4 compression with Cassandra’s default chunk size (64KB),
we achieved 47% reduction in size. For reproducibility, we
compacted the dataset into one SSTable. We ran the load phase
just once and kept using the same dataset. In each run, we start
with a pre-populated SSTable and drop the page cache.

The transactional phase is a mixture of read, insert, up-
date, and scan operations. YCSB allows users to change the
request distribution used to select keys to operate on in the

1Source code of CAPI Chunk Cache and test scripts are available at
https://github.com/bedrisendir/capi-chunkcache

transactional phase. As our goal is to evaluate our caching
mechanism, there is a need to define the hot set size and the
access frequency to the hot set. For this reason, we changed the
request distribution property to hotspot distribution, to define
the hot set. We note that in 64GB memory setting, a huge
portion of the hot set can fit in memory when compressed.

We observe that running a single YCSB client instance
with many threads increases the average latency and slows
down the benchmarking process. Therefore, we ran multiple
instances in parallel on 10 cores. After all instances are
completed, we accumulate the results from all of them. In
real world NoSQL deployments, users typically have certain
performance requirements and try to optimize the resource
efficiency. Resource efficiency [22] is optimized under latency
and throughput constraints. Therefore, we configured YCSB
to throttle the target number of operations per second and
measured the average read/update latency for various settings.

Unless the DIRECT IO flag is enabled, file I/O operations
are performed through the Linux page cache. Therefore, the
kernel page size defines the granularity of storage device
operations. By default, POWER8 (ppc64le) systems use a
64KB page size and a typical x86 based system uses a 4KB
page size. We use a configurable kernel page feature on
POWER8 and use both 64KB and 4KB kernel page sizes for
our evaluation. In our workload, the uncompressed version of
the hot set data is too large to benefit from Cassandra’s default
Chunk Cache, so we disabled it. As a result, the OS page
cache was the main mechanism to cache records in memory
in our experiments. By varying the memory size of the Docker
container, we controlled the approximate size of the page
cache used by the application.

B. Read/Write Mix Workloads

In Figures 4, 5, 6 and 7, we show the performance
and resource utilization in various settings. We first ran a
warm-up phase with 100% read workload. Then, we started
the execution phase by setting a target throughput among
the YCSB instances and collected measurements during the
execution phase. In the baseline settings, we used both
compressed and uncompressed datasets. The uncompressed
baseline (baseline-uncompressed) increases storage
demand, so it is not typical in deployment, but we show its
results for reference. For the CAPI Chunk Cache, we used the
compressed dataset and varied the cache size (100GB, 200GB,
400GB). In the first row of each figure, we show the average
latency (first Y-axis) and the average throughput (second Y-
axis) for varying target throughput rates per second. In the
second row of figures, we show CPU utilization (first Y-axis)
and read bandwidth usage of NVMe SSD (second Y-axis).

Overall, the results show that in most cases instead of
increasing memory from 32GB to 64GB, users can use 100GB
caching space on the CAPI Chunk Cache to get comparable or
better performance. When comparing the latency and through-
put for the 64GB memory compressed baseline to 100GB
CAPI Chunk Cache with 32GB memory, we see improvement
in nearly all cases. For example, we show 27% and 48%
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Fig. 4: Running 100% read workload using the parameters defined in Table II and 64KB kernel pages.
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Fig. 5: Running 100% read workload using the parameters defined in Table II and 4KB kernel pages.

smaller read latency in Figures 4b and 7b, respectively. The
only exceptions are in Figures 5a and 6a, where the target
throughput is low, and even there the difference is modest. As
we increase the caching space to 200GB and 400GB, CAPI
Chunk Cache keeps improving the performance while reducing
the CPU utilization.

In Figures 5 and 7, because of the increased number of I/O
operations with 4KB pages, system CPU cycles are signifi-
cantly increased. Because of this CPU bottleneck Cassandra
cannot drive enough I/O operations on NVMe SSD. However,
we were able to resolve the bottleneck by adding the CAPI
Chunk Cache.

With large target throughput requirements, the 64GB com-
pressed baseline could not reach the required throughput in
all cases. By adding 100GB of CAPI Chunk Cache, we can
improve throughput nearly in all cases. Increasing the CAPI
Chunk Cache size provides more performance and resource
utilization also benefits. For example, when we increase the

size to 400GB and reduce 32GB of memory, we get up to 85%
improvement in throughput while reducing the CPU utilization
by 25% (Figure 4c).

In Figures 6 and 7, additional SSTables were generated
as a result of update operations. As writing data files also
utilize page cache to buffer the writes, it will cause page
cache thrashing. Therefore, the Baseline settings aren’t able
to benefit from page cache as much as in the 100% read
workloads. We also observe that, as the CAPI Chunk Cache
reduced CPU utilization and the pressure on I/O subsystem, as
a side effect, Cassandra’s compaction operations accelerated,
which in turn reduced the read latency.

Even though using the uncompressed dataset is not
comparable with compressed dataset, we observe that in
Figures 5 and 7 uncompressed settings suffer overhead in
the I/O stack and become bottlenecked on CPU. In this case,
we show that our caching mechanism can improve the perfor-
mance and reduce the CPU utilization over uncompressed
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Fig. 6: Running 80% read - 20% update workload using the parameters defined in Table II and 64KB kernel pages.
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Fig. 7: Running 80% read - 20% update workload using the parameters defined in Table II and 4KB kernel pages.

datasets as well.

V. RELATED WORK

There are several studies on benchmarking and evaluat-
ing aspects of NoSQL technologies with different bench-
marks [14], [20], [21], [33]. However, their focus is not on
optimizing resource utilization or performance.

For optimizing deployment costs, Awasthi et al. [16] and
Menon et al. [27] studied the feasibility of combining fast
(SSD) and slow (HDD) storage mediums to store different
components of LSM-tree based NoSQLs. A recent study from
Facebook [22] discusses tunings for RocksDB to optimize
storage efficiency while ensuring service level requirements.
These studies mainly propose tunings or study feasibility of
combining different storage mediums to reduce the deploy-
ment cost. In our work, we focus on reducing the deployment
costs by replacing costly DRAM with CAPI-Flash.

Another way of introducing SSDs for NoSQL workloads is
to use it as a caching layer and an alternative to memory-based

caches. There are several modules integrated with the Linux
kernel that use SSDs as write-back or write-through cache
for spinning disks [3], [6]. FatCache [5], McDipper [9] and
FlashStore [19] work as SSD-backed generic key-value cache.
CaSSanDra [26] introduces a caching layer by extending
Cassandra’s Row Cache using consumer grade SSD. Different
from our work, the Row Cache stores the entire row and is
keyed to the row key. We extended research in this area with
the design of a low-latency caching mechanism specialized for
Cassandra’s chunk based compression mechanism.

There are several solutions that exploit new generation I/O
acceleration technologies such as CAPI-Flash and SPDK to
accelerate NoSQL workloads. In our previous work [30], we
used CAPI-Flash to optimize write-ahead-logging mechanism
of Cassandra and provide high-performance durability for
write-intensive workloads. Thus, it did not optimize read
operations or resource utilization. The Power Systems solution
for Redis [29] leverages CAPI-Flash’s key-value API and uses



flash as a memory expansion for Redis instance. It replaces
the key-value backend of Redis, thus does not provide caching
for storage components. Similar to CaSSanDra [26], CAPI-
RowCache [4] extends Cassandra’s row cache on CAPI-Flash
to speed-up read intensive workloads.

Neo4J [11] enables CAPI-Flash as storage to store its files
instead of the file system. SPDK implements a basic filesys-
tem plug-in called BlobStore that integrates with RockDB’s
storage backend. TOKVS [31] implements durable, append
only storage engine that runs on SPDK. These systems replace
existing storage mechanisms with CAPI-Flash or SPDK. Our
work presents a caching layer for read operations and does
not use any storage components.

VI. CONCLUSION
In this paper, we designed and examined the performance of

a CAPI-Flash based persistent caching mechanism for Cassan-
dra. Our caching mechanism caches uncompressed chunks of
the data files on user-addressable flash. We conducted a com-
prehensive performance analysis of our caching mechanism
against compressed and uncompressed datasets. We believe
that the caching layer that we have presented in this paper can
be applied to the NoSQL deployments that use chunk-based
compression such as RocksDB, HBase and BigTable. We note
that to simplify our experiments, we limited our dataset size
and configured a CAPI Chunk Cache up to 400GBs. However,
our caching mechanism can cache up to 2TB of data per CAPI-
Flash card. In our evaluations, we reduce DRAM allocated for
Cassandra and enable CAPI Chunk Cache that has approxi-
mately 3x, 6x and 13x larger capacity than the reduced DRAM
size. We note that DRAM is typically 6x to 20x the cost per
byte of (NAND) flash [12], [15]. Based on the current cost of
DRAM and CAPI-Flash, DRAM costs 14-16x more per byte
compared to CAPI-Flash card with 2TB of integrated flash.
When our caching mechanism is enabled, users can combine
stronger compression algorithms to get better compression
ratios or use it as a high performance caching layer on slower
but cheaper storage devices. We showed that CAPI Chunk
Cache is low latency and low overhead caching mechanism.
Our caching layer can be utilized to significantly reduce the
deployment cost of Cassandra by replacing costly DRAM
with a caching space on CAPI-Flash layer and provide high
performance.
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