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Abstract

I introduce a novel high-frequency volatility estimator based on large price moves,

which constitutes a generalization of the range. Just like the standard range maximizes

a single price di�erence on the observed price path, the generalized range maximizes

the sum of multiple price di�erences. It provides a new link between recent advances

in high-frequency volatility estimation and the long-established e�ciency of the range.

I develop an asymptotic theory for the generalized range in a jump-di�usion setting,

originating a family of strongly consistent di�usive volatility estimators that are robust

to jumps. This theory tackles maximization on a time grid not previously studied in

the volatility literature and uncovers valuable distributional properties of price peaks

and troughs.

On simulated data, the generalized range behaves in accordance with the derived

theory and compares favorably to other known estimators of di�usive volatility that

are robust to jumps. On real data, the generalized range is largely robust to mi-

crostructure noise when calculated on bid-ask quotes and proves valuable for intraday

jump detection and short-term forecasting of stock return volatility. In a model-free

environment, the capability of the generalized range to identify large zig-zag price

moves appears to be directly applicable to relative value arbitrage strategies.
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1 Introduction

The importance of volatility for asset pricing, portfolio choice, and risk management cou-

pled with the growing availability of high-frequency quotes and transaction prices has

spurred substantial developments in volatility measurement, modeling, and forecasting be-

yond the traditional models based on daily data such as GARCH. The primary workhorse

for this progress has been the realized volatility (RV) measure of the total daily price vari-

ance de�ned as the sum of squared consecutive intraday returns and valid under most gen-

eral assumptions for the log-price process. Its theoretical and empirical merits have been

scrutinized by Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold and Labys

(2001, 2003), Barndor�-Nielsen and Shephard (2002a,b), and Meddahi (2002) among oth-

ers. The underlying intuition that volatility can be estimated arbitrarily well by increasing

the sampling frequency goes back to Merton (1980). In reality, however, because of market

microstructure e�ects RV is reliable up to about a �ve minute sampling frequency. Impor-

tant recent extensions of RV successfully deal with improving its e�ciency in the presence

of microstructure noise by means of optimal sampling, subsample averaging, or kernel-

based estimation (see A��t-Sahalia, Mykland and Zhang , 2005a,b; Zhang, A��t-Sahalia and

Mykland, 2005; Barndor�-Nielsen, Hansen, Lunde and Shephard, 2005b, 2006; Bandi and

Russel, 2006; Hansen and Lunde, 2006, and references therein).

While RV is the benchmark high-frequency measure of total price variance, there is

an important di�erence between the variance of continuous price changes due to nor-

mal information ow and the variance generated by price discontinuities upon the arrival

of surprising news or abnormal orders. Separate measurement of the more predictable

continuous part and less predictable jump part of total price variance is of interest for

applications such as option pricing. Notable recent extensions of RV to bipower and

multi-power variations allow direct measurement of the di�usive part of total price vari-

ance and disentangling the contribution of jumps (Barndor�-Nielsen and Shephard, 2004,

2006; Huang and Tauchen, 2005). This has allowed the development of novel procedures

for detection of individual jumps (Andersen, Bollerslev, Frederiksen and Nielsen, 2006;

Andersen, Bollerslev and Dobrev, 2006) that uncover previously unmeasurable features of

asset prices. Explicit di�erentiation of the jump and continuous sample path components

leads to gains in terms of volatility forecast accuracy (Andersen, Bollerslev and Diebold,

2005; Andersen, Bollerslev and Huang, 2006).

As far as volatility estimators based on a single intraday price move are concerned, it

has long been known (Parkinson, 1980) that the properly scaled daily range or squared

range are more e�cient than the daily absolute and squared return. This insight has
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inspired numerous further studies such as Garman and Klass (1980), Kunitomo (1992),

Gallant, Hsu and Tauchen (1999), Alizadeh, Brandt and Diebold (2002), and more re-

cently Dijk and Martens (2005) and Christensen and Podolskij (2006a,b). A useful way to

appreciate Parkinson's result is that when volatility has to be estimated from just a single

price move but more observations are available, it is best to take the largest price move

among all the observed. Intuitively, the largest price moves convey a stronger volatility

signal but their properties are more intricate than those of average price moves.

This paper shows that the same intuition generalizes to modern volatility estimators

based on multiple intraday price moves. Roughly speaking, provided that the number

of price moves that should be taken to estimate volatility is smaller than the number of

available observations, it is bene�cial to use the corresponding largest non-overlapping

price moves between peaks and troughs on the observed path. This is quite appealing for

applications on real market data since, regardless of how many observations are available,

the presence of microstructure noise typically imposes a serious restriction on the number

of intraday price moves that can be exploited without substantial measurement distortion.

From this perspective, resorting exclusively to the largest price moves in the course of the

day suggests a possible new way to minimize the e�ciency loss caused by microstructure

noise.

In what follows, I formalize this intuitive idea by means of a novel high-frequency

generalization of the range. In the same way as the standard range maximizes a single

price move on the observed price path, the generalized range (GR) maximizes the sum

of any given number of non-overlapping price moves. The main e�ort in this paper is

to establish a formal link between GR and volatility in a theoretically sound setting. In

particular, assuming that the logarithmic price follows a generic jump-di�usion (with �nite

number of jumps in each time interval), the obtained core theoretical result is that GR

can be properly scaled to de�ne novel strongly consistent and asymptotically unbiased

estimators of the di�usive part of total price variance. The involved maximization on a

time grid does not allow building a close parallel to the existing theory for RV. In order to

derive the almost sure asymptotics of GR, I uncover and utilize distributional properties

of price peaks and troughs (formally de�ned as Brownian h-extrema), which as a useful

new tool for analysis makes a contribution of its own to the volatility literature.

As an estimator of the di�usive part of total price variance, GR delivers a new vi-

able alternative to the bipower variation of Barndor�-Nielsen and Shephard (2004) and

the closely related bipower range of Christensen and Podolskij (2006b). A realistic �nite

sample experiment suggests that GR compares favorably to both alternatives in accor-

dance with the underlying intuition. Moreover, calculation of GR on bid-ask quotes leads
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to a natural selection of the maximum number of price moves that can be used without

distortion by microstructure noise. Improving the measurement of the di�usive volatility

component is of particular help to recently developed jump detection procedures as in

Andersen, Bollerslev, and Dobrev (2006) and volatility forecasting frameworks as in An-

dersen, Bollerslev, and Diebold (2005). An application of GR to short term stock volatility

forecasting provides indirect evidence that GR performs reasonably well as an estimator

of the di�usive part of total price variance not only on simulations but also on real market

data.

Last but not least, the unique features of GR are valuable in �nance applications

even without making particular assumptions on the dynamics of the price process or the

sampling scheme. In particular, the capability of GR to capture large zig-zag price moves

appears to be useful for relative value arbitrage strategies such as pairs-trading considered

in Gatev, Goetzmann, and Rouwenhorst (2006). In accordance with the intuition behind

its very de�nition, the generalized range can simply be used to identify pro�table stock

pairs whose price di�erence follows a convergence/divergence pattern of larger amplitudes.

The paper proceeds as follows. Section 2 formally de�nes the generalized range and

provides some additional interpretation. Section 3 builds an asymptotic theory for the

generalized range and shows that it can be properly scaled to de�ne novel strongly con-

sistent and asymptotically unbiased estimators of the di�usive part of total price variance

in a jump-di�usion setting. Section 4 documents that the generalized range compares

favorably to its bipower variation alternatives on simulated data. Section 5 carries out

an application of the generalized range to volatility forecasting on stock data. Section 6

illustrates in the context of relative value arbitrage strategies that GR appears to be useful

also in a model-free environment. Section 7 concludes.

2 De�nition and Interpretation of the Generalized Range

Given a path p of logarithmic asset prices (cumulative asset returns) on an interval [0; T ],

I de�ne the generalized range GRk of order k as the sum of the magnitudes of the largest

k non-overlapping price moves (ups and downs) along the path. Formally,

GRk(p[0;T ]) = max
0�t1�����t2k�T

kX
i=1

jp(t2i)� p(t2i�1)j : (1)

Figure 1 illustrates the de�nition of GR for order k = 4, i.e. four price moves. GR

has an appealing intuitive interpretation as the maximum trading gain or loss that can
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be attained by executing k consecutive and non-overlapping intraday trades (buy/sell to

open a position and then sell/buy to close it) given the price evolution. In particular, from

a risk measurement perspective, GR captures the outcome of the worst possible timing of

k trades (buying at peaks and selling at troughs), which can be interpreted as a natural

generalization of the maximum drawdown measure of risk used by practitioners1.

GR of order k = 1 reduces to the standard range (high minus low), which has been

extensively studied as a volatility estimator starting with Parkinson (1980). GR of order

k > 1 resembles a power variation measure with k terms, however, it has two distinct new

features: �rst, GR involves maximization on the time grid, and second, GR allows but

does not require the time intervals of its k terms to be adjacent2.

These key features render GR a natural high-frequency generalization of the stan-

dard daily range. It is substantially di�erent from the range-based extensions of realized

volatility concurrently pursued by Dijk and Martens (2005) and Christensen and Podolskij

(2006a,b) who take sums of powers or adjacent products of multiple intraday ranges on

a �xed time grid. Such extensions exploit properties of the standard range within the

established framework of realized volatility. Similarly, one can exploit properties of GR

within the same framework by substituting the standard range with GR in each intraday

interval on the grid. However, �rst one needs to establish GR as a volatility estimator,

which is the main subject of this paper.

The calculation of GR is well-suited for standard optimization packages as the arising

maximization problem on a discrete time grid of price observations has the interpretation of

�nding a maximum ow through a network with gains. More e�cient algorithms exploiting

ad-hoc properties of the particular maximization problem at hand have been developed

by Dobrev (1998).

3 Theoretical Foundations

In what follows, the logarithmic asset price process is assumed to evolve according to a

generic jump-di�usion with jumps of �nite activity. The continuous component is meant

to capture the price changes due to normal market activity (information and transaction

1A quick overview of risk-adjusted measures of performance based on the maximum drawdown can be
found in Vecer (2006) and Magdon-Ismail and Atiya (2004).

2It is easy to see that GR de�nes a norm on the space of log-price process starting at the
origin. Also, the generalized range of any power q � 1 can be de�ned as GR

(q)
k (p[0;T ]) =

max
0�t1�����t2k�T

kP
i=1

jp(t2i)� p(t2i�1)jq . This paper studies GR of power q = 1 since it provides the most

direct high-frequency analog to the standard daily range, while q > 1 poses additional issues arising from
convexity.
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ow), while jumps reect the arrival of surprising news or abnormally large orders. This

setting is theoretically sound since as in Back (1991) it naturally leads to the conclusion

that the price process is a special semi-martingale, ruling out arbitrage.

It is worth noting also that a number of recent studies have con�rmed that, unlike pure

di�usions, jump-di�usion settings of this kind are largely consistent with various �nancial

return series (see Andersen, Benzoni and Lund, 2002; Carr and Wu, 2003; Eraker 2004;

Eraker, Johannes, and Polson, 2003; Maheu and McCurdy, 2004 and Pan, 2002 among

others). Moreover, recently developed procedures for testing the general adequacy of jump-

di�usion models for return distributions as in Andersen, Bollerslev, and Dobrev (2006)

and Andersen, Bollerslev, Frederiksen and Nielsen (2006) have not been able to formally

rule out settings of this kind, while casting serious doubt on pure di�usion models without

jumps.

3.1 Setup and Preview of Main Theory Contributions

In view of the above remarks, without much loss of generality, the log-price process p(t)

will be assumed to follow a standard jump-di�usion governed by the stochastic di�erential

equation

dp(t) = �(t)dt+ �(t)dW (t) + �(t)dq(t); t 2 [0; T ]; (2)

where the volatility process �(t) is strictly positive (bounded away from zero) and c�adl�ag,

W (t) is a Wiener process, q(t) is a �nite-activity counting process with dq(t) = 1 whenever

there is a jump of size �(t) at time t, and dq(t) = 0 otherwise. The �nite jump intensity

will be denoted as �(t), allowing for possible time variation. The drift �(t) is a bounded

variation process and it is easy to show that ignoring it will not a�ect the asymptotic

results obtained below.3

The total variability of the cumulative return process p on the interval [0; T ] is given

by the latent quadratic variation QV[0;T ]. In this setting it can be expressed as the sum

of distinct pure di�usive and jump components:

QV[0;T ] =

Z T

0
�2(s)ds+

X
0<s�T

�(s)2 = IV[0;T ] + JV[0;T ]: (3)

In particular, the di�usive component is de�ned by the integrated variance IV[0;T ] =R T
0 �2(s)ds, while the jump contribution is simply the sum of squared jumps JV[0;T ] =P
0<s�T �(s)

2.

3This point is formalized in the appendix as part of the proof of proposition 7 below.
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Much of the recent work in the area of volatility measurement, modeling, and fore-

casting deals with improving the inference of these two volatility components based on

high-frequency data. First, as a benchmark measure of total volatility has been estab-

lished realized volatility (RV) de�ned as the sum of squared consecutive intraday returns,

with a few notable recent extensions that successfully deal with microstructure noise (see

Andersen and Bollerslev, 1998; Andersen, Bollerslev, Diebold and Labys, 2001, 2003;

Barndor�-Nielsen and Shephard, 2002a, b; and Meddahi, 2002; A��t-Sahalia, Mykland,

and Zhang, 2005a,b; Barndor�-Nielsen, Hansen, Lunde and Shephard, 2005b; and Hansen

and Lunde, 2006, among others). Second, the benchmark tool for measuring the pure

di�usive volatility in the presence of jumps has been the bipower variation (BV) de�ned

as the sum of adjacent products of absolute intraday returns (see Barndor�-Nielsen and

Shephard, 2004, 2006; Andersen, Bollerslev, and Diebold, 2005; Huang and Tauchen,

2005), with a very recent extension to an analogous bipower range measure, which takes

the sum of products of adjacent ranges rather than absolute returns (see Christensen and

Podolskij, 2006b).

In this light, the main contribution of this paper to the current volatility literature is

that GR can be naturally scaled to de�ne a novel measure of the pure di�usive volatility

component in the adopted standard jump-di�usion setting. It compares favorably to both

bipower variation alternatives, especially in the presence of microstructure noise when the

largest price moves exclusively picked by GR tend to remain relatively more robust to

noise than those picked by the bipower variation measures.

It is worth noting also that the involved maximization on the time grid does not allow

building the asymptotic theory for GR in close parallel to the existing theory for RV.

In fact, one of the new auxiliary tools that I exploit in the main derivations that follow,

namely the Brownian h-extrema (a formal de�nition is given below), makes a contribution

of its own to the volatility literature. It is further explored in concurrent work in progress

developing a novel duration-based approach to volatility estimation based on the passage

times between price peaks and troughs that di�er by more than a certain threshold.

3.2 Asymptotic Theory for GR In The Absence of Jumps and Drift

In what follows, GR calculated on n observations of p in the interval [0; T ] will be denoted

as GRnk(p[0;T ]). The notation is purposely simpli�ed not to indicate the sample mesh size

(the maximum distance between adjacent observations), since such extra requirements

will be explicitly stated whenever needed. The infeasible value of GR calculated on the

whole unobserved path of p on [0; T ] (rather than a �nite number of observations) will be
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denoted as GR�k (p[0;T ])
4. As in the case of the standard daily range, the fewer are the

available observations, the larger is the downward bias of the feasible value GRnk(p[0;T ])

relative to the corresponding infeasible value GR�k (p[0;T ]) . Nonetheless, the superscripts

n and � will be suppressed in statements for GR that are valid in both cases. Likewise,

whenever there is no ambiguity, the process p and the time interval [0; T ] may also be

suppressed to simplify notation.

Using this notation, I summarize pathwise properties of GR in the absence of jumps

and use them to establish the asymptotic behavior of GR as its order k gets large, i.e.

when more and more non-overlapping price moves of largest possible magnitude are taken

within a given interval of time.

3.2.1 Pathwise Properties of GR on a Brownian Di�usion

In the absence of jumps, the logarithmic price process in (2) reduces to a Brownian di�usion

and the total variability of the cumulative return process p is entirely due to the pure

di�usive volatility given by the integrated variance IV[0;T ] =
R T
0 �2(s)ds. What makesGR

tractable as a measure of the integrated variance IV[0;T ] in this setting is the invariance

of the maximization operator with respect to continuous non-decreasing time change and

the fact that p can be represented as a time-changed Brownian motion b � � a.s. by the
Dambis-Dubins-Schwarz theorem (Dambis, 1965, and Dubbins and Schwartz, 1965). For

a Brownian di�usion the time change � is given exactly by the continuous non-decreasing

integrated variance process of p de�ned as:

� (t) =

Z t

0
�2(s)ds � IV[0;t]; t 2 [0; T ]

The economic interpretation of � is a time clock that measures �nancial time, business

time, or transaction time, as motivated by Clark (1973) and more recently Ane and Geman

(2000).

Thanks to monotonicity and continuity of the time change � , the de�nition of GR

implies that

GRk(p[0;T ]) = GRk(b[0;� (T )])

In words, GR for the log-price process p on the physical time interval [0; T ] coincides

withGR for the Brownian motion b on the corresponding �nancial time interval [0; � (T )],

4Note that in the absence of jumps the paths of p are continuous a.s. and hence the infeasible value
GR�

k (p[0;T ]) is well-de�ned and �nite a.s.
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whose end point � (T ) is exactly the integrated variance IV[0;T ] that we want to measure.

By using the scaling property of Brownian motion it is straightforward to obtain (see

appendix) also that

GRk(b[0;� (T )]) =
q
IV[0;T ] �GRk(B[0;1]),

where B[0;1] stands for some standard Brownian path on the unit interval [0; 1]. Combining

the above two equalities leads to the following main pathwise property of GR:

P1 - Variance Separability: On each path of the log-price process p in [0; T ], GR

scales by a factor of
p
IV[0;T ] the value of GR on a corresponding (via time-change and

scaling) standard Brownian path B in the interval [0; 1]:

GRk(p[0;T ]) =
q
IV[0;T ] �GRk(B[0;1])

Thus, knowledge of GR on the standard Brownian paths in [0; 1] would su�ce for

disentangling
p
IV[0;T ] from the value of GR on the paths of the process p in [0; T ]. In

essence, it is su�cient to focus on the derivation of the almost sure asymptotics of GR on

the Brownian path space in [0; 1] and then use the above key property to de�ne a family of

strongly consistent di�usive volatility estimators based on GR. Before doing so, though,

it is useful to state also a few other pathwise properties of GR that will play a role in the

analysis.

P2 - Lower Range-Based Bound: GRk �
kP
i=1

max
sk�1�u<v�sk

jp(u)� p(v)j for any

grid of k + 1 times 0 = s0 < s1 < � � � < sk = T , i.e. GRk cannot be lower than the sum

of the ranges of p calculated within any chosen k consecutive intervals in [0; T ].

Clearly, this is a direct implication from the de�nition of GR. More generally, let

0 � t�1 � t�2 � � � � � t�2k � T be optimal times forGRk(p[0;T ]), i.e.
kP
i=1

��p(t�2i)� p(t�2i�1)�� �
GRk(p[0;T ]). Then the involved maximization on the time grid implies also the following

important characteristics of GR:

P3 - Extremality: The optimal times t�1 � t�2 � � � � � t�2k represent points of alter-

nating local maxima and minima for the observations of p in [0; T ]. Moreover, for any

two times u and v of a local maximum and minimum that can be augmented to the optimal

times t�1 � t�2 � � � � � t�2k without destroying the alternation of the corresponding extrema,

it must be the case that jp(u)� p(v)j � min
i=1;:::;k

��p(t�2i)� p(t�2i�1)��.
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P4 - Monotonicity: GRk+1 � GRk with strict inequality whenever the times t�1 �
t�2 � � � � � t�2k do not exhaust all local extrema among the observations of p in [0; T ].

P5 - Non-Increasing Di�erences: GRk+1 �GRk � GRk �GRk�1, i.e. the �rst
order di�erences of GRk with respect to k are non-increasing.

P6 - Dense Coverage: The shortest of the k non-overlapping time intervals t�2 �
t�1; t

�
4 � t�3; � � � ; t�2k � t�2k�1 cannot exceed T=k. Moreover, a.s. the largest of these

intervals also shrinks to zero as k �! 1, provided that the full path of p in [0; T ] is
observed (or the mesh size of the �nite sample shrinks to zero faster enough than 1=k).

The last property follows by the fact that a.s. each path of p is nowhere monotone on

the �nite interval [0; T ], while it is subject to a uniform modulus of continuity as detailed

in the next section. Thus, roughly speaking, when k gets large the growth of GR will be

driven by the largest remaining price moves between local maxima and minima that are

getting closer and closer to each other.

The obtained key properties ofGR set the stage for establishing its almost sure asymp-

totics on a standard Brownian motion.

3.2.2 Almost Sure Asymptotics of GR on a Standard Brownian Motion

Thanks to variance separability (property P1), it su�ces to establish the exact almost sure

asymptotics of GRk as k �! 1 on the space 
 of the unit interval paths of a standard

Brownian motion B. To this end, it is convenient to use the a.s. representation of 
 as

all continuous functions ! : [0;1] �! R restricted to the unit interval and equipped with
the Wiener measure. What needs to be shown is that for almost every Brownian path ! 2

 the asymptotic behavior of the sequence fGRk(!)g

1
k=1 is the same.

It is convenient to focus �rst on the infeasible GR�k (!) calculated on a fully observed

Brownian path ! on the unit interval and then extend the obtained results to the feasible

analog GRnk(!) calculated on n observations of ! subject to a suitable restriction on the

sampling scheme.

Extremality ofGR (property P3) implies that the limiting properties of
�
GR�k (!)

	1
k=1

are determined by the set of local extrema on each Brownian path ! 2 
. It is a well
known fact that the Brownian local extrema in [0; 1] are a.s. a countable and everywhere

dense subset of [0; 1]. Besides, all local extrema are strict and never take the same value

(see, for example, Karatzas and Shreve, 1991, or Revuz and Yor, 1999). In particular, this

means that a.s. there is no discrepancy between the cardinality of the set of all Brownian

local extrema on the path ! and the cardinality of the set of local extrema picked by
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GR�k (!) as k �! 1. Moreover, strict monotonicity (property P4) and dense coverage
(property P6) in this case imply also that a.s. GR�k+1 > GRk for any k and the set of

local extrema picked by GR�k (!) as k �!1 should in fact coincide with the entire set of

local extrema on the path ! 2 
. Nonetheless, not enough is known about the entire set
of Brownian local extrema to deduce the exact asymptotics of GR�k (!) by an argument

of this kind.5

Instead, I resort to the main insights from the previous section. In particular, ex-

tremality (property P3) implies that if

GR�k =
kX
i=1

��B(t�2i)�B(t�2i�1)��
then the optimal times t�1 � t�2 � � � � � t�2k taken without repetitions should form a se-

quence of k+qk+1 distinct times s
�
1 < s�2 < � � � < s�k+qk+1 such thatBs

�
1
; Bs�2 ; � � � ; Bs�k+qk+1

are alternating Brownian local maxima and minima, where qk is some integer between 0

and k � 1. Moreover, each s�i must be a point of global maximum or minimum on the

interval [s�i�1; s
�
i+1]. Hence, if the threshold gk is de�ned as the smallest among the k+ qk

absolute di�erences between these alternating local maxima and minima, i.e.

gk = min
i=1 ; ::: ; k+qk

���Bs�i+1 �Bs�i ��� ,
then Bs�1 ; Bs�2 ; � � � ; Bs�k+qk+1 must in fact be a sequence of Brownian h-extrema for
threshold level h = gk. A point sh is said to be an h-minimum (maximum) of a function

if it is contained in an interval on which sh is the global minimum (maximum) and the

value taken by the function at both end points of the interval is above (below) this global

minimum (maximum) at least by a threshold h.6 The concept of h-extrema is illustrated

by �gure 2, while the following claim formalizes the tight link between Brownian h-extrema

and GR�k :

Claim 1 (Link between Brownian h-extrema and GR�k ) GR
�
k is the sum of the

largest k among k + qk absolute di�erences between adjacent Brownian gk-extrema for an

5The lack of su�cient knowledge about the entire set of Brownian local extrema is largely because
they are not well suited for applying standard tools for analysis such as the reection principle. A very
recent study by Tsirelson (2006) sheds a bit more light on this by demonstrating that a.s. the times of all
Brownian local extrema on [0; 1] coincide with a certain reshu�ing of a randomly drawn in�nite sequence
of independent and uniformly distributed numbers on [0; 1].

6Formally, sh is said to be an h-minimum of a function f(�) if there exist points s�h and s
+
h such that s

�
h

< sh < s
+
h , f(s

�
h ) � f(sh) + h, f(s

+
h ) � f(sh) + h, and f(sh) = min

[s�h ;s
+
h ]
f . Similarly, sh is an h-maximum

of f if sh is an h-minimum of �f .
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appropriate threshold level gk that ensures exactly k + qk + 1 Brownian gk-extrema in the

interval [0; 1], where qk is some integer between 0 and k.

This characterization of GR�k is very helpful, since the distributional properties of

consecutive Brownian local extrema above any �xed threshold have been fully described by

Neveu and Pitman (1989). More precisely, for any �xed threshold h > 0, the Brownian h-

extrema
�
B(sj;[h])

	1
j=0

and their times
�
sj;[h]

	1
j=0

have the following nice renewal property:

1.
��B(sj;[h])�B(sj�1;[h])��� h; j = 1; 2; ::: are independent and identically distributed

exponentially, with parameter h;

2. sj;[h]�sj�1;[h]; j = 1; 2; ::: are independent and identically distributed, with Laplace

transform  (x) = 1= cosh(h
p
2x).

In particular, the mean and variance of the price moves between Brownian h-extrema

and their durations are:

E
���B(sj;[h])�B(sj�1;[h])��� = 2h; E

�
sj;[h] � sj�1;[h]

�
= h2; j = 1; 2; :::

V
���B(sj;[h])�B(sj�1;[h])��� = h2; V

�
sj;[h] � sj�1;[h]

�
= h4; j = 1; 2; ::: (4)

Note that in claim 1 above for the interval [0; 1] to contain k + qk + 1 Brownian gk-

extrema, the threshold gk must go down if qk goes up. Given the renewal property of

Brownian h-extrema, this essentially implies that the maximization in GR�k involves an

implicit trade-o� between a larger number qk and a smaller mean gk when taking the k

largest among k+qk i.i.d. exponential random variables with mean gk (taking into account

also the shift of all of them by gk).

In essence, all this implies that the limiting behavior of GR�k will depend on the

limiting behavior of gk versus qk and the arising exponential order statistics. Lemma 9 in

the appendix exploits the durations between Brownian h-extrema to place an important

restriction on the joint asymptotics of gk and k+qk. Then based on this restriction, lemma

10 and its corollary 11 provide a limsup result forGR�k by exploiting known characteristics

of exponential order statistics. Finally, lemma 12 provides an identical liminf result for

GR�k , which leads to the following core proposition:

Proposition 2 (Almost Sure Asymptotics of GR�k )
1
2k
� 1
2GR�k

a:s:�! 1

Corollary 3 By L2-boundedness
1
2k
� 1
2E
��GR�k �� �! 1, so

�
E
��GR�k ����1GR�k a:s:�! 1

The next step is to extend the derived asymptotic results for the infeasible GR�k to

similar results for the feasibleGRnk calculated on n observations instead of the whole path.

12



This can be achieved by imposing double large sample asymptotics k �!1, n �!1 such

that the sample mesh size �n (i.e. the maximum distance between adjacent observations)

shrinks to zero faster enough than 1=k to make GRnk get closer and closer to GR
�
k a.s.

in the limit7. One way to formalize this idea is to exploit Levy's uniform modulus of

continuity for standard Brownian motion (see, for example, Karatzas and Shreve, 1991,

or Revuz and Yor, 1999):

lim
"�0

sup
0�t�1
0<s<"

jBt+s �Btj
(2s jlog sj)1=2

= 1 a:s:

In essence, Levy's uniform modulus of continuity implies an a.s. upper bound on the

discrepancy between GRnk and GR
�
k given a suitable restriction on the mesh size �n and

leads to the following large sample analog to proposition 2 (leaving again all details for

the appendix):

Proposition 4 (Almost Sure Asymptotics of GRnk)
1
2k
� 1
2GRnk

a:s:�! 1 provided that

the mesh size �n satis�es k�n jlog�nj �! 0 as k �!1, n �!1.

Corollary 5 By L2-boundedness
1
2k
� 1
2E jGRnk j �! 1, so (E jGRnk j)

�1GRnk
a:s:�! 1 pro-

vided that the mesh size �n satis�es k�n jlog�nj �! 0 as k �!1, n �!1.

The obtained asymptotic results for GR on a standard Brownian motion along with

the key variance separability property of GR are exploited in the next section to de�ne

novel di�usive volatility estimators based on GR.

3.3 Di�usive Volatility Estimators Based on GR

Going back to the general jump-di�usion setting of sde (2) above, it turns out that the

obtained results for GR on a Brownian di�usion naturally lead to strongly consistent and

asymptotically unbiased estimators of the di�usive volatility in the potential presence of

�nite number of jumps (and bounded variation drift). The argument is as follows.

First, when there are no jumps, variance separability (property P1) implies that on

each path of the log-price process p in [0; T ], GR scales by a factor of
p
IV[0;T ] the value

of GR on a corresponding (via time-change and scaling) standard Brownian path B in

7Without loss of generality, it is also convenient to assume that no previously sampled observations
are thrown out as n gets large, i.e. only new observations are added. This ensures that for each k � 1;
GRn

k % GR�
k as n �! 1, i.e. the larger the sample size becomes, the closer the �nite sample value of

GR gets from below to its true value calculated on the whole path.
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the interval [0; 1]:

GRk(p[0;T ]) =
q
IV[0;T ] �GRk(B[0;1])

In this case, the established almost sure asymptotics of GRk on the Brownian paths B in

[0; 1] yields:

E�1
�
GRk(B[0;1])

�
�GRk(B[0;1])

a:s:�! 1

The scaling factor e0k
:
=
�
E
�
GRk(B[0;1])

���1 � 1=2k�1=2 is fully determined by the Brow-
nian paths on [0; 1]. Thus,

e0k �GRk(p[0;T ])
a:s:�!

q
IV[0;T ];

which means that in the absence of jumps e0k �GRk(p[0;T ]) de�nes a strongly consistent
estimator of

p
IV[0;T ].

Second, the presence of a �nite number of jumps can cause only a �nite distortion

of the corresponding value of GRk(p[0;T ]) without jumps (for any k the distortion is in

fact uniformly bounded by the sum of the magnitudes of all jumps, see details in the

appendix in the proof of proposition 7 below). At the same time, as k gets large the

scaling factor e0k shrinks to zero at the rate of k
�1=2. Hence, the limiting value of the

product e0k �GRk(p[0;T ]) will not be a�ected by the jumps. Likewise, there will be no
e�ect in the limit in case there is a bounded variation drift as well.

An analogous argument can be followed also after squaring both sides of the above

pathwise equality or taking a logarithm on both sides, while using Slutsky's theorem

to manipulate the a.s. limit accordingly. This gives rise to the following de�nitions of

estimators of
p
IV[0;T ], IV[0;T ], and log

p
IV[0;T ] based on GRk:

De�nition 6 (Estimators of IV[0;T ],
p
IV[0;T ], and log

p
IV[0;T ] based on GR) Let

the log-price process p on [0; T ] be governed by the generic jump-di�usion sde (2) and let

IV[0;T ] =
R T
0 �2(s)ds be the di�usive component of the volatility decomposition (3) in this

setting. Then for all k = 1; 2; ::: the following estimators are well de�ned:

1. An estimator of
p
IV[0;T ] is e

0
k �GRk(p[0;T ]), where e0k

:
= E�1

�
GRk(B[0;1])

�
:

2. An estimator of IV[0;T ] is e
00
k �

�
GRk(p[0;T ])

�2
, where e00k

:
= E�1[

�
GRk(B[0;1])

�2
]:

3. An estimator of log
p
IV[0;T ] is e

000
k +logGRk(p[0;T ]), where e

000
k
:
= �E

�
logGRk(B[0;1])

�
.

In particular, the scaling factors e0k, e
00
k, and e000k are fully determined by the standard

Brownian paths on [0; 1] and can be obtained with arbitrary precision by Monte Carlo

simulation for any �nite sample size n.
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The next two propositions summarize the main properties of these estimators.

Proposition 7 (Strong consistency) The GR-based di�usive volatility estimators de-

�ned above are strongly consistent as k �!1, where in the large sample case the sample
size n grows in accordance with the sampling condition of proposition 2.

Proposition 8 (Asymptotic unbiasedness) The GR-based di�usive volatility estima-

tors de�ned above are asymptotically unbiased as k �!1, where in the large sample case
the sample size n grows in accordance with the sampling condition of proposition 2.

The proof detailed in the appendix shows that the presence of jumps (and possibly

drift) is not the only source of asymptotically negligible bias. The other main driver of

insigni�cant bias is the potential presence of the so called \leverage e�ect", commonly

used to denote any type of dependency between the log-price and volatility innovations

consistent with the empirically documented asymmetric relationship between them (see

for example Bollerslev, Litvinova, and Tauchen, 2005, and references therein).

In any case, the other known di�usive volatility estimators in a jump-di�usion setting,

namely the bipower variation of Barndor�-Nielsen and Shephard (2004, 2006) and its

recent extension by Christensen and Podolskij (2006b), are also strongly consistent and

asymptotically unbiased in the presence of jumps. Moreover, knowledge of the asymptotic

variance of these estimators in the absence of jumps is not directly informative of their

e�ciency in the presence of jumps. Therefore, it is exclusively a matter of �nite sample

analysis to determine whether the di�usive volatility estimators based on GR can o�er

e�ciency gains in a realistic jump-di�usion setting.8 This is the main task of the following

section.

4 Finite Sample E�ciency and Jump Signature Plots

Jumps in asset prices reect the arrival of signi�cant news or abnormal orders that have

not been anticipated. As discussed in section 3, a number of parametric and recent non-

parametric studies have concluded that models for asset prices without jumps cannot �t

reasonably well neither stock returns nor out of the money option prices. Importantly, it

8Knowledge of the asymptotic variance of a di�usive volatility estimator under the null of no jumps
is important for jump detection procedures along the lines of Barndor�-Nielsen and Shephard (2005a),
Andersen, Bollerslev, and Diebold (2005), Huang and Tauchen (2005), Andersen, Bollerslev, Frederiksen,
and Nielsen (2006). Finite sample e�ciency of a di�usive volatility estimator in the presence of jumps is
important for jump detection procedures along the lines of Andersen, Bollerslev, and Dobrev (2006).
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has been found that option prices typically reveal larger jump risk than stock prices. In

this regard, better identi�cation of the realized jump volatility component is essential for

building better understanding and models of jump dynamics.

Notable recent progress in this direction has been made by exploiting the bipower

variation measure of the di�usive volatility component in the presence of jumps, introduced

by Barndor�-Nielsen and Shephard (2004, 2006). The bipower variation, de�ned as the

sum of products of adjacent absolute returns, has made it possible to disentangle the daily

realized jump and di�usive volatility components (Huang and Tauchen, 2005; Andersen,

Bollerslev, and Diebold, 2005; Andersen, Bollerslev, Frederiksen, and Nielsen, 2006) as

well as to detect individual intraday jumps (Andersen, Bollerslev, and Dobrev, 2006;

Andersen, Bollerslev, Frederiksen, and Nielsen, 2006). Very recently Christensen and

Podolskij (2006b) have developed a potential improvement of the original bipower variation

measure by summing products of adjacent ranges instead of absolute returns.

To the best of my knowledge, the closely related bipower variation measures of Barndor�-

Nielsen and Shephard (2004, 2006) and Christensen and Podolskij (2006b) are the only

existing alternatives to GR for estimating the di�usive volatility component in a jump-

di�usion setting (with �nite number of jumps on each day). In what follows, I carry out a

realistic �nite sample experiment and �nd that the e�ciency of GR compares favorably

to both existing alternatives.

4.1 Setup and Estimators

Based on the jump-di�usion models estimated on stock data in Andersen, Benzoni, and

Lund (2002) and Eraker, Johannes, and Polson (2003), here I let the log-price process

evolve according to a standard one-factor a�ne stochastic volatility model with Poisson

jumps:

dp(t) = �(t)dW1(t) + �(t)dq(t);

d�2(t) = �
�
� � �2(t)

�
dt+ ��(t)dW2(t): (5)

The chosen stochastic volatility parameters are roughly consistent with the estimates in

the above studies and have the following interpretation and values: daily unconditional

mean � = 1, strength of mean reversion � = 0:01, volatility of volatility � = 0:1. The

Poisson jump parameters are chosen to produce 20% contribution of jumps to total daily

price variance on average, which is in line with the empirical �ndings in Andersen, Boller-

slev, and Diebold (2005). In particular, the jump arrival rate is set to � = 1, so that

one jump per day arrives on average, while the jump size �(t) is distributed N(0; 0:25).
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Finally, a realistic "leverage e�ect" is incorporated by setting the correlation between re-

turn and volatility innovations to � (dW1(t); dW2(t)) = �0:5, which is also consistent with
the empirically estimated levels on stock data. The resulting mean values of the daily

total volatility and its breakdown in di�usive and jump components (in accordance with

equation 3 above) are as follows: mean daily total volatility QV = IV +JV = 1:25, mean

daily di�usive volatility IV = 1, and mean daily jump volatility JV = 0:25.

In summary, the chosen simulation design is particularly realistic for stocks. Arguably,

the results reported below are representative for a wide range of other reasonable speci�-

cations (available upon request).

The main goal here is to assess the �nite sample e�ciency of GR-based estimates of

the daily di�usive volatility relative to the estimates based on bipower variation measures

for realistic sample sizes n and number of price moves (returns) k taken by each estimator.

In particular, I focus on the following four estimators of the daily IV :

1. The suitably scaled standard bipower variation measure BVk based on k equidistant

intraday returns as de�ned in Barndor�-Nielsen and Shephard (2004, 2006);

2. The suitably scaled subsample averaged bipower variation measure SBVk obtained

by averaging BVk across all available non-overlapping subsamples of k intraday

returns;9

3. The suitably scaled bipower range variation measure RBVk based on k equidistant

intraday ranges as de�ned in Christensen and Podolskij (2006b);

4. The suitably scaled generalized range measure GRk based on the k largest non-

overlapping intraday price moves as de�ned in this paper.

The proper �nite-sample scaling factor for BVk and SBVk is (�=2) � k=(k � 1),
see Barndor�-Nielsen and Shephard (2004). The right �nite sample scaling of RBVk

is achieved by Monte Carlo simulation based on the number of observations m falling

within each intraday interval, as detailed in Christensen and Podolskij (2006b). Finally,

the necessary �nite sample scaling of GRk is obtained by Monte Carlo simulation based

on the daily sample size n in accordance with de�nition 6 above.

It is evident that SBVk, RBVk, and GRk make use of all available data (although

in a substantially di�erent way), while BVk is based only on k out of n observations.

9To the best of my knowledge, subsample averaging has not been formally considered yet in the context
of bipower variations. However, following the insights of Zhang, A��t-Sahalia and Mykland (2005) and
A��t-Sahalia, Mykland, and Zhang (2005b) in the context of realized volatility, it is natural to expect that
subsample averaging is bene�cial also for the bipower variation measure.
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Therefore, it is meaningful to study the �nite sample MSE of each estimator relative to

the corresponding asymptotic variance of BVk in the absence of jumps, whose convergence

rate is k1=2 (see Barndor�-Nielsen and Shephard, 2004). Given that they use more data,

SBVk,RBVk, andGRk should achieve somewhat higher e�ciency thanBVk and, hence,

smaller ratio for the relative MSE 10

In order to make a �nite sample comparison between these estimators for a wide

realistic range of n and k, without much loss of generality it is convenient to restrict

attention to values such that n is a multiple of k. In this case m = n=k is exactly the

number of subsamples across which BVk is averaged to produce SBVk. In particular,

I simulate data for 10,000 days of model (5) based on an Euler scheme and produce a

representative panel of samples of two di�erent types. The �rst sample type has a �xed

daily sample size n = 1500; 3000, 7500, or 15000 with a corresponding set of twenty

di�erent values of k in the range from 2 to 500 that are divisors of each n. The second

sample type keeps constant the ratio between n and k for the same values of k in the range

from 2 to 500. In particular, nk = 5k; 10k, 25k, or 100k is proportional to k, so that the

number of available observations nk is always m = 5; 10; 25 or 100 times larger than k.

Finally, the obtained 10,000 samples for each n or nk are used to produce 10,000

corresponding daily di�usive volatility estimates based on each estimator and value of k.

The e�ciency of the estimators is then compared by producing two panels of volatility

signature plots and RMSE signature plots for the two di�erent sample types (see �gures 3

and 4). The volatility signature plots show as a function of k the mean estimated di�usive

volatility by each estimator across all days. The RMSE signature plots show as a function

of k the RMSE of each estimator relative to the corresponding asymptotic variance of

BVk in the absence of jumps, having convergence rate k
1=2.

4.2 Discussion of Results

Figure 3a presents �nite sample result for �xed sample sizes n = 1500; 3000, 7500, or

15000. The volatility signature plots show the mean of the obtained estimates across all

days as a function of the number of returns k exploited by each estimator. The observed

declining pattern of the upward bias of the estimators as k gets large is in accordance

with their asymptotic unbiasedness and can be interpreted as a \jump signature plot".

In particular, for very small k the estimators capture almost fully the total daily price

variance (including the jump contribution) indicated by the upper bound on each graph,

10In particular, in the absence of jumps the ratio for BVk should be about 1, while it should be smaller
than 1 for the other three estimators. Importantly, in the presence of jumps all ratios should deteriorate
(i.e. get larger) to a di�erent extent depending on the jump-induced bias incurred by each estimator.
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while for large k the mean estimates get closer to the di�usive part denoted by the lower

bound at level 1. Importantly, GR appears to be the least biased estimator virtually for

all considered n and k � 10.
Accordingly, the RMSE signature plots indicate that GR achieves the smallest RMSE

o�ering modest e�ciency gains compared to RBV, and more substantial gains compared

to SBV and BV. The RMSE reduction GR vs. BV is typically in the range 50-60%, the

RMSE reduction GR vs. SBV is typically in the range 40-50%, and the RMSE reduction

GR vs. RBV is typically in the range 10-20%. Apparently, subsample averaging in this

context does not lead to as much improvement as taking larger price moves. The RMSE

plots suggest also that the larger the ratio between n and k, the more substantial is the

bene�t from taking the k largest moves.

To better check that this is indeed the case, �gure 3b plots the results for sample sizes

nk = 5k; 10k, 25k or 100k proportional to k. Indeed, while always observing the same

relative standing of the estimators, the RMSE plots for GR are at di�erent levels for each

di�erent ratio m = nk=k, with relative RMSE just above 0.5 for ratio equal to 100 vs.

relative RMSE about 0.7 for ratio equal to 5. In any case, the overall message from both

�gure 3a and 3b is the same: in the presence of jumps GR is a better estimator of the

di�usive volatility component than its bipower variation alternatives.

Importantly, there is a simple explanation for the obtained conclusion. As detailed in

the proof of proposition 7 above, what annihilates the distortion by jumps in the case of

GR is the scaling factor e0k shrinking to zero as k gets large regardless of whether jumps

take place next to each other or apart from each other. By contrast, the bipower variation

measures have a constant scaling factor and rely on the returns next to jumps to become

small in the limit in order to annihilate the jump distortion. Of course, this does not

always happen even in relatively large samples since consecutive jumps (or larger di�usive

returns) can occur in arbitrary proximity to each other. This is one of the main reasons

why the bipower variation measures are not as good in annihilating jumps as GR.

It is important to make sure, though, that the "jump signature plots" observed on

�gure 3a and 3b are not driven by some other source of bias than jumps, such as the

simulated leverage e�ect. Therefore, �gures 4a and 4b repeat the same plots for a scenario

without jumps, i.e. when the total price variance is entirely due to di�usive volatility.

As can be seen from these plots in the absence of jumps, all four volatility estimators

have a mean very close to the true mean di�usive volatility equal to 1. Moreover, their

relative standing in terms of RMSE is preserved also without jumps, although the e�ciency

gains are slightly lower in this case. This provides indirect evidence that only part of the

e�ciency gains ofGR in the presence of jumps (�gures 3a and 3b) are driven by its smaller
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�nite sample bias. There does not seem to be any other source of signi�cant bias in this

setting that could explain the documented superiority of GR.

Another important observation that can be made from the RMSE plots in �gures 4a

and 4b is that in the absence of jumps all four estimators seem to converge at the same

asymptotic rate k1=2. This is because they are unbiased and their RMSE stays at relative

to the asymptotic variance of BV in the absence of jumps, which is converging at the rate

k1=2. Then comparing back �gures 4a and 4b to �gures 3a and 3b one can see that jumps

have a non-trivial impact on the e�ciency of all four estimators as their RMSE increases

by as much as 50%.

In summary, when it comes to measuring the pure di�usive volatility,GR looks promis-

ing in comparison to the other available alternatives. At the same time, improving the

measurement of the di�usive volatility component is of particular help to recently de-

veloped jump detection procedures as in Andersen, Bollerslev, and Dobrev (2006) and

volatility forecasting frameworks as in Andersen, Bollerslev, and Diebold (2005). The

forecasting application in the following section sheds more light on this point.

5 Volatility Forecasting Based on GR

Andersen, Bollerslev, and Diebold (2005) have shown that almost all of the predictability

in daily, weekly, and monthly return volatilities comes from the non-jump component of

total price variance. Using BV as a robust to jumps volatility measure, the paper pro-

vides a practical framework for non-parametrically disentangling the jump and continuous

components in asset return volatility. The method is applied to the DM/$ exchange rate,

the S&P 500 market index, and the 30-year U.S. Treasury bond yield. In all these cases

the results show that jumps are both highly prevalent and distinctly less persistent than

the continuous sample path variation process.

ApplyingGR to the forecasting framework of Andersen, Bollerslev, and Diebold (2005)

is a natural way to explore whether the modest e�ciency gains from GR's robustness

to jumps lead to better volatility forecasting. As illustrated in the previous section on

simulated data, GR has an advantage in measuring the pure di�usive component and

compares well to BV.

In Andersen, Bollerslev, and Diebold (2005) days with price jumps are identi�ed when

the di�erence between RV and BV based on �ve minute returns is statistically signi�cant

according to the test of Barndor�-Nielsen and Shephard (2004, 2005). If a day has a jump

than the jump component of volatility is represented by the di�erence between RV and

BV, otherwise the jump component is zero. By analogy, to detect jump days based on
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GR, I resort to the jump test developed in Andersen, Bollerslev, and Dobrev (2006). The

jump component of volatility on days with detected jumps is measured by the di�erence

between RV and GR or zero otherwise.

Volatility is forecasted based on the HAR-RV-CJ model of Andersen, Bollerslev, and

Diebold (2005) for daily (h = 1), weekly (h = 5), and monthly (h = 22) volatility mea-

surements:p
RVt;t+h = �0 + �CD

p
Ct + �CW

p
Ct�5;t + �CM

p
Ct�22;t

+�JD
p
Jt + �JW

p
Jt�5;t + �JM

p
Jt�22;t + "t;t+h;

where RV is the average daily measure of total price variance in each period, while C and

J are the corresponding average continuous and jump parts for a day, week, and a month.

I apply the HAR-RV-CJ forecasting framework to NYSE and NASDAQ traded stocks

between July 2001 and December 2005 available through TAQ. I compare the forecast

results with jump detection based on GR versus BV. For the sake of comparison, I focus

on stocks traded on each day of the analyzed period.

When calculating GR on real stock data, it is important to limit the potential distortion

caused by bid-ask bounce. This can be done by calculating GR directly on bid and ask

quotes and exploiting its interpretation as the maximum ex-post trading gain or loss from

k trades. In particular, each buy is based on an ask quote, while each sale is based on a bid

quote. This leads to buying at local minima of the ask quotes and selling at local maxima of

the bid quotes, as illustrated in the top panel of �gure 5. The bid-ask spread automatically

limits the maximum number of pro�table price moves picked by GR, ensuring that it does

not include moves below the spread level. Once the timings of all such price extrema

are obtained, GR must be recalculated on the resultant mid quotes, as illustrated in the

bottom panel of �gure 5, assuming that on average mid-quotes provide unbiased estimates

of the latent price. This two-step procedure limits the impact of microstructure noise on

GR when calculated on real stock data.

Certain stocks are more prone to jumps and irregularities. Given NYSE and NAS-

DAQ institutional di�erences, the NASDAQ traded stocks are more likely to exhibit jump

volatility. In addition, the di�erence in the capitalization level is also an indicator of the

potential level of jumps. I select both large and medium cap stocks. In this way, the

results should be representative for di�erent levels of jumps for liquid stocks. This inves-

tigation is limited to ten stocks on each exchange used for illustration purposes. To my

knowledge, it is the �rst attempt to apply the above volatility forecasting framework to

individual stocks.

Tables 1, 2 and 3 report the regression results for daily, weekly, and monthly volatility
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forecasts respectively. The tables report the regression coe�cients for each stock and the

R-square from each regression. The results based on GR are close to those based on

BV. In fact, GR consistently outperforms BV although by a small (but statistically

signi�cant) margin.11 The regression coe�cients con�rm that the di�usive component

is the main driver of the forecasting equation for individual stocks in close parallel with

the �ndings in Andersen, Bollerslev, and Diebold (2005). However, the high R-square for

stock indices that they report is not consistently observed for all stocks analyzed here,

which is in line with generally lower predictability of volatility for individual stocks.

Nonetheless, this exercise provides indirect evidence thatGR performs reasonably well

as an estimator of the di�usive part of total price variance not only on simulations but

also on real market data. The next section shows that even without imposing a particular

model structure, GR proves useful for applications to relative value arbitrage.

6 Volatility-Based Rules for Pairs-Trading Using GR

Pairs trading is a relative value arbitrage rule which aims to identify a pair of stocks or

other assets whose cumulative return processes are very likely to converge after a diver-

gence. Upon spotting an instance of temporary relative mispricing traders try to make

pro�ts by going long the underpriced stock and shorting the overpriced stock in a zero

investment portfolio. For understandable reasons the rules followed by traders to select

and arbitrage such pairs of stocks are not disclosed.

Gatev, Goetzmann, and Rouwenhorst (2006) show that pro�table pairs can be suc-

cessfully identi�ed by minimizing the distance between the cumulative return paths, i.e.

normalized prices, across all possible stock pairs during a suitable formation period. Such

pairs are then traded in the following months after the formation period by constructing

a zero investment portfolio each time the prices have diverged by more than two historical

standard deviations. The opened positions are unwinded whenever the prices cross again

or at the end of the trading interval, whichever comes �rst. The resulting pairs-trading

strategy generates signi�cant excess returns that cannot be explained by conventional

risk factors, including reversal. The main driver of the pro�ts appears to be temporary

mispricing of close substitutes.

Exploiting the fact that the pro�ts are driven by the resulting convergence/divergence

pattern, here I suggest two alternative volatility-based rules for choosing pro�table stock

pairs. The idea is to pick stock pairs whose price paths may not be as close in mean

11Both a sign test for the median and a t-test for the mean reject the hypothesis that the observed
di�erence in R-square is zero.
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square deviation terms but still converge and diverge. In essence, the proposed rules aim

to recognize strong convergence/divergence patterns of higher amplitudes, i.e. pairs whose

price di�erence has a zig-zag pattern with large ups and downs. For two stocks having

price di�erence within the same range, the one with a wider zig-zag pattern will have

higher volatility. Hence, minimizing the ratio of the range to realized volatility is one way

to pick such stocks. Minimizing the ratio of the range to the generalized range is another

even more direct way to �nd pairs of this kind given that the generalized range of order k

is de�ned as the sum of the magnitudes of the largest k zig-zag moves on each path.

To put all this more formally, consider the price evolution of a pair of stocks SAt and

SBt for a number of consecutive trading days t = t0; t0 + 1; :::; t0 + T . Assume that on

day t0 a zero-investment portfolio is formed by buying $1 worth of stock A and selling $1

worth of stock B. On day t0 + T the portfolio is liquidated by unwinding both positions.

For the sake of simplicity of the notation in this illustration, assume no stock splits and

no dividends. Then the cumulative value of the portfolio on each day until liquidation will

evolve according to:

PA;Bt =
1

SAt0
SAt �

1

SBt0
SBt ; t = t0; t0 + 1:::; t0 + T

In particular, PA;Bt is an excess return, PA;Bt0
= 0, and PA;Bt0+T

is the generated pro�t

upon liquidating the portfolio.

The choice of the stocks A and B is based on the historical evolution of the observed

excess return PA;Bh during a prior formation period h = 0; 1; :::;H:

PA;Bh =
1

SA0
SAh �

1

SB0
SBh ; h = 0; 1:::; H

In Gatev, Goetzmann, and Rouwenhorst (2006) the formation period is one year (about

250 business days) and the trading period is half year after the formation period (about

125 business days). Positions in pairs are opened each time their absolute excess return

gets greater than two historical standard deviations, and pairs are chosen according to the

following rule:

Rule 1 (SD): For each stock A �nd another stock B, which minimizes the sum of

squares SDA;B =
HP
h=0

h
PA;Bh

i2
of the cumulative excess returns PA;Bh , h = 1; :::;H observed

during the formation period. Then take a set of pairs having the smallest SDA;B among

all the obtained.
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The volatility-based rules that I suggest for �nding stock pairs following a zig-zag

pattern of wider amplitude are as follows:

Rule 2 (R/RV): For each stock A �nd another stock B, which minimizes the ratio

of the range to the realized volatility RA;B=
p
RV A;B for the cumulative excess returns

PA;Bh , h = 1; :::;H observed during the formation period, where RA;B = max
h=0;:::;H

h
PA;Bh

i
�

min
h=0;:::;H

h
PA;Bh

i
and RV A;B =

HP
h=1

�
PA;Bh � PA;Bh�1

�2
: Then take a set of pairs having the

smallest ratio RA;B=
p
RV A;B among all the obtained.

Rule 3 (R/GR): For each stock A �nd another stock B, which minimizes the ratio

of the range to the generalized range RA;B=GRA;Bk for the cumulative excess returns PA;Bh

, h = 1; :::;H observed during the formation period, where RA;B = max
h=0;:::;H

h
PA;Bh

i
�

min
h=0;:::;H

h
PA;Bh

i
and GRk = max

0�h1�h2�:::�h2k�H

kP
i=1

���PA;Bh2i
� PA;Bh2i�1

��� ; and k is the parameter
that sets the number of large zig-zag moves12. Then take a set of pairs having the smallest

ratio RA;B=GRA;Bk among all the obtained.

These rules pick largely disjoint sets of stock pairs characterized by di�erent amplitudes

of the zig-zag pattern followed by their normalized price di�erence. Figure 6 illustrates this

point by plotting the normalized price paths of each stock and corresponding cumulative

excess returns of the long-short portfolio for the 20th best pair obtained by the three rules.

The formation period is 2003 and the trading period is the �rst half of 2004. The plotted

stock pairs are representative for each rule regardless of the chosen formation period.

From �gure 6 it is evident that the SD rule picks stocks whose normalized price paths

are closest to each other and the corresponding excess returns for a $1 long / $1 short pair

portfolio are tiny. The R/RV rule, and even more so the R/GR rule, pick stocks whose

normalized prices diverge by more before converging, or equivalently, the resulting excess

returns follow a zig-zag pattern of wider amplitudes. However, the trading threshold levels

(say, two historical standard deviations) are also larger. Hence, from these graphs it is

not possible to directly compare the potential gains from relative arbitrage.

A natural way to resolve this problem is to adjust the size of the initial long and

short positions in each stock from $1 to $gA;B, where the scaling factor gA;B for each

pair is chosen to equate the corresponding trading threshold (say, two historical standard

deviations as in Gatev, Goetzmann, and Rouwenhorst, 2006), to a common new level (say

$1):

12The larger the k, the closer rule 3 becomes to rule 2 in terms of chosen pairs. For k below 10 the rules
have been found to produce largely disjoint sets of best 50 stock pairs.
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gA;B =
1

2�
h
PA;Bh

i
Clearly, with this choice

2�

�
gA;B

1

SA0
SAh � gA;B

1

SB0
SBh

�
= 2�

h
gA;BPA;Bh

i
= 1 ,

which ensures that a relative arbitrage position in each pair scaled by gA;B should be

opened exactly when the historical excess return path of the same scaled position hits the

$1 or -$1 levels.

Figure 7 plots the scaled and unscaled excess return paths of the 50 best pairs obtained

by each rule for the same formation and trading periods as above (2003 and the �rst half

of 2004). Plotting multiple pairs better reveals the overall characteristics of the stock pairs

picked by each rule. The left column of �gure 7 shows the unscaled excess returns as in

the right column of �gure 6, while the right column scales up the positions in each stock

pair to a common trading threshold level of �$1. The mean scaling factor for the selected
pairs is reported in the upper left corner of each scaled plot. One thing to notice is that

the scaling is largest for the SD rule and smallest for the R/GR rule. Since excess returns

with smaller zig-zag amplitudes need to be scaled by more, the scaling factor g directly

indicates the relative amplitude of the zig-zag. The obtained ordering of the rules with

respect to scaling is robust to the formation period and the number of stocks chosen (the

fewer the pairs, the larger the di�erence). The results are in the same spirit for other

possible scalings that equalize the range or the realized volatility of the historical excess

returns instead of the trading thresholds.

It is worth noting that by means of scaling each rule can be gauged to yield potentially

the same gains from relative value arbitrage. However, if there is a common limit to

scaling, then the R/GR rule will be most preferable since it selects stock pairs of widest

zig-zag pattern, which require the smallest scaling of the relative arbitrage trades13.

Since the three sets of stock pairs picked by the di�erent rules are largely disjoint, it

is not immediately clear whether the resulting excess returns from pairs trading based on

the R/RV and R/GR rules will be driven by the same factors as those based on the SD

13The larger is the dollar value of the executed trades, the higher is the price pressure in the opposite
direction that undermines the pro�tability of the strategy. Another capacity constraint could arise from
limits to short selling.
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rule documented by Gatev, Goetzmann, and Rouwenhorst (2006). Further investigation

is necessary to reveal the driving risk factors and to shed light on the observed more

persistent pattern from the formation into the trading period. The initial �ndings in

concurrent work in progress suggest that the volatility-based strategies are pro�table on

average and require fewer trades at the expense of higher risk, especially without �ltering

out penny stocks.

In conclusion, as in Gatev, Goetzmann, and Rouwenhorst (2006), the proposed volatility-

based rules are able to pick stock pairs suitable for relative value arbitrage. The selected

stock pairs are characterized by larger amplitudes of the zig-zag pattern followed by the

cumulative excess returns of the corresponding arbitrage portfolio. This pattern is robust

to the pair formation period and carries well into the trading period.

7 Concluding Remarks

This paper has introduced a novel high-frequency volatility estimator based on large price

moves, which constitutes a generalization of the range. Just like the standard range (high

minus low) maximizes a single price di�erence on the observed price path, the generalized

range maximizes the sum of multiple price di�erences (between consecutive peaks and

troughs). It has an intuitive interpretation as the maximum ex-post gain or loss from

multiple non-overlapping intraday trades. Unlike volatility estimators that take multiple

intraday returns or ranges on a �xed time grid, GR involves maximization on a time grid.

In this way, GR provides a new link between recent advances in volatility estimation on

high-frequency data with the long-established e�ciency of the daily range as a volatility

estimator.

The main contribution of this paper is the derivation of the almost sure asymptotics

of GR in a jump-di�usion setting. In particular, when properly scaled, GR de�nes novel

strongly consistent and asymptotically unbiased estimators of the di�usive component of

total volatility given that jumps of �nite activity are annihilated by the required scal-

ing factor. Building the underlying theory marks a departure from the well-established

theoretical framework of realized volatility since GR is driven by extreme points on the

observed price path without �xing a time grid. In order to derive the almost sure asymp-

totics of GR, I utilize distributional properties of the Brownian h-extrema, which is another

contribution to the volatility literature as a useful new tool for analysis.

The documented performance on simulated data from a realistic jump-di�usion shows

that, in accordance with the intuition, GR compares favorably to the other known type of

di�usive volatility estimators that are robust to jumps, i.e. the bipower variation measures.
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This is partly because in �nite samples GR annihilates jumps in a more robust way than

the bipower measures. A volatility forecasting application on stock data, which exploits the

separation of the jump and the di�usive components of volatility, con�rms the e�ciency

gains from using GR documented on simulated data. In an application to relative value

arbitrage strategies, the capability of GR to identify large zig-zag price moves appears

to be valuable even without making particular assumptions on the dynamics of the price

process or the sampling scheme.

By introducing the novel generalized range measure of volatility and its unique prop-

erties, this paper sets the stage for research in various application areas and further the-

oretical advancements. On the theory front, the Brownian h-extrema used to derive the

core result in this paper, clearly call for further investigation as they open an interest-

ing possibility to estimate volatility based on the passage times between price peaks and

troughs in a new duration-based approach to volatility estimation. Another more direct,

though di�cult, theory extension would be deriving the limiting distribution of GR in the

absence of jumps.

On the application side, �rst, the framework of Brandt and Diebold (2006) for covari-

ance measurement based on the standard range can be readily extended to the generalized

range. In essence, this would allow measuring asset comovements and market betas from

large price moves. Second, as suggested by the pairs trading application, GR appears to

be directly applicable to arbitrage strategies, market timing, and volatility trading. Third,

the ability of GR to identify jumps and large price moves can help studying their determi-

nants from an information perspective. Likewise, studying the limiting behavior of GR in

the presence of microstructure noise could shed more light on the dynamics of bid and ask

quotes within the modeling framework of Hasbrouck (1999). Last, by de�nition, GR can

be used to de�ne a natural ex-post measure of the market timing ability of traders or their

risk exposure, extending the maximum drawdown measure of risk used by practitioners.

Overall, GR opens a number of intriguing venues for future research in the areas of risk

management, portfolio choice, and market microstructure.
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A Appendix: Proofs

Proof of property 1. The equality GRk(b[0;� (T )]) =
p
IV[0;T ] �GRk(B[0;1]) is estab-

lished by the relationship

kX
i=1

jb(� (t2i))� b(� (t2i�1))j =
p
� (T )�

kX
i=1

�����b(� (t2i))p
� (T )

� b(� (t2i�1))p
� (T )

�����
=

p
� (T )�

kX
i=1

����B�� (t2i)� (T )

�
�B

�
� (t2i�1)

� (T )

�����
where � (T ) =

p
IV[0;T ]. The only extra thing to notice is that B (z)=

1p
� (T )

b (z � � (T ))
is the rescaled version of the Brownian motion b mapping the interval [0; � (T )] for � to

the unit interval [0; 1] for z, so by the scaling property of Brownian motion it follows that

B[0;1] is some standard Brownian path on [0; 1].

Lemma 9 Let 
 be the Brownian path space, i.e. the space of continuous functions ! :

[0;1] �! R equipped with the Wiener measure. For each path ! let gk(!) be a threshold
level and qk (!) be a corresponding integer between 0 and k for which GR

�
k calculated

on the path ! is given by the sum of the largest k among k + qk absolute di�erences

between k+ qk +1 Brownian gk-extrema in the interval [0; 1]. Then the random sequences

fqk (!)g1k=1 and fgk (!)g
1
k=1 have the following limiting property:

lim sup
k�!1

(k + qk)
1=2 gk � 1 a:s:

Proof. Consider the durations �kt , t = 1; 2 ; :::; k + qk between the k + qk + 1 Brownian

gk-extrema on each path !. Since all of the extrema fall in the interval [0; 1], the sum of

these durations cannot exceed 1:

k+qkX
t=1

�kt � 1 for each k

At the same time, the characterization of Brownian h-extrema by Neveu and Pitman

(1989) implies that for each k the durations �kt , t = 1; 2 ; :::; k+qk are some i.i.d. draw of

random variables with mean g2k. Hence, the sum of these durations has mean (k + qk) g
2
k

and

k+qkX
t=1

�kt � (k + qk) g2k
a:s:�! 0
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Therefore, for any " > 0

P

(
! : (k + qk) g

2
k �

k+qkX
t=1

�kt > ", i.o.

)
= 0

Hence,

P

(
! :

k+qkX
t=1

�kt � 1 and (k + qk) g2k > 1 + ", i.o.
)
= 0

which in turn implies

lim sup
k�!1

(k + qk) g
2
k � 1 a:s:

m

lim sup
k�!1

(k + qk)
1=2 gk � 1 a:s:

Q.E.D.

Lemma 10 Let 
 be the Brownian path space, i.e. the space of continuous functions ! :

[0;1] �! R equipped with the Wiener measure. Let fqk (!)g1k=1 be a random sequence

of non-negative integers such that qk=k is uniformly bounded a.s. and fgk (!)g1k=1 be a
random sequence of real positive numbers on 
 such that

lim sup
k�!1

(k + qk)
1=2 gk � 1 a:s:

Given any such gk and qk, take k + qk + 1 alternating Brownian gk-extrema on each

Brownian path and let Ek(1) (!), E
k
(2) (!), ..., E

k
(k+qk)

(!) be the corresponding ascendingly

ordered statistics of absolute di�erences between adjacent gk-extrema. Finally, de�ne

Gk (!)
:
=

kX
t=1

Ek(t+qk) (!)

as the sum of the largest k order statistics Ek(1+qk) (!) ; E
k
(2+qk)

(!), ..., Ek(k+qk) (!). Then

lim sup
k�!1

1

2
k�

1
2Gk � 1 a:s:

Proof. From the characterization of Brownian h-extrema by Neveu and Pitman (1989),

it follows that Ek(1) � gk, E
k
(2) � gk, ..., E

k
(k+qk)

� gk are the exponential order statistics of
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some i.i.d. draw from an exponential distribution with mean gk. On the other hand, it

is a known fact that the exponential order statistics have independent and exponentially

distributed di�erences (see Feller, 1971), implying in particular:

Ek(i) � gk =
iX
j=1

Zkj
k + qk + 1� j

where the variables Zkj are an i.i.d. draw from an exponential distribution with mean gk.

In this way,

1

2
k�

1
2Gk =

1

2
k�

1
2

kX
t=1

Ek(t+qk)

=
1

2
k�

1
2

kX
t=1

t+qkX
j=1

 
Zkj

k + qk + 1� j
+ gk

!

=
1

2
k�

1
2

0@kgk + kX
t=1

qkX
j=1

Zkj
k + qk + 1� j

+

kX
t=1

t+qkX
j=1+qk

Zkj
k + qk + 1� j

1A
=

1

2
k�

1
2

0@kgk + k qkX
j=1

Zkj
k + qk + 1� j

+

k+qkX
j=1+qk

Zkj

1A
=

1

2
k�

1
2 gk

0@k + k qkX
j=1

Zkj =gk

k + qk + 1� j
+

k+qkX
j=1+qk

Zkj =gk

1A =

Note that for each k the scaled variables Zkj =gk are i.i.d. exponential with mean 1. Hence,

it is useful to rearrange the last expression as:

1=2k�1=2Gk =
1

2
k�

1
2 gk

0@k + k qkX
j=1

1

k + qk + 1� j
+

k+qkX
j=1+qk

1

1A
+
1

2
k�

1
2 gk

0@ qkX
j=1

k

k + qk + 1� j

�
Zkj =gk � 1

�
+

k+qkX
j=1+qk

�
Zkj =gk � 1

�1A
This representation is of the form

1

2
k�

1
2Gk = Dk +Rk
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where the �rst part is

Dk =
1

2
k�

1
2 gk

0@2k + k qkX
j=1

1

k + qk + 1� j

1A
while the second part is

Rk =
1

2
k�

1
2 gk

0@ qkX
j=1

k

k + qk + 1� j

�
Zkj =gk � 1

�
+

k+qkX
j=1+qk

�
Zkj =gk � 1

�1A
Taking into account the structure of these expressions, it su�ces to show that, �rst,

Rk
a:s:�! 0 and, second, lim sup

k�!1
Dk � 1 a:s:.

To deal with Rk note that

1

k + qk

0@ qkX
j=1

k

k + qk + 1� j

�
Zkj =gk � 1

�
+

k+qkX
j=1+qk

�
Zkj =gk � 1

�1A a:s:�! 0

given that Zkj =gk�1; j = 1; 2; :::; k+qk are k+qk i.i.d. variables with mean 0 and variance
1 and the factors in front of each of them in the summation are strictly bounded away from

0 and do not exceed 1. The limit is preserved after multiplication by 1=2k�1=2gk (k + qk)

because

1

2
k�

1
2 gk (k + qk) =

1

2

h
(k + qk)

1=2 gk

i h
(1 + qk=k)

1=2
i

is uniformly bounded a.s., given that by assumption both qk=k and (k + qk)
1=2 gk are

uniformly bounded a.s. Thus, Rk
a:s:�! 0 as desired.

As far as Dk is concerned, it can be further manipulated as follows:

Dk =
1

2
k1=2gk

0@2 + qkX
j=1

1

k + qk + 1� j

1A
=

h
(k + qk)

1=2 gk

i24(1 + qk=k)�1=2 1
2

0@2 + qkX
j=1

1

k + j

1A35
Note that by assumption

lim sup
k�!1

h
(k + qk)

1=2 gk

i
� 1 a:s:
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while it is straightforward to show by induction on qk = 0; 1; 2; ::: that24(1 + qk=k)�1=2 1
2

0@2 + qkX
j=1

1

k + j

1A35 � 1 for all qk � 0
Therefore, lim sup

k�!1
Dk � 1 a:s: Combining the obtained results for Dk and Rk yields

lim sup
k�!1

1

2
k�

1
2Gk = lim sup

k�!1
(Dk +Rk) � 1 a:s:

Q.E.D.

Corollary 11 lim sup
k�!1

1
2k
� 1
2GR�k � 1 a:s:

Lemma 12 lim inf
k�!1

1
2k
� 1
2GR�k � 1 a:s:

Proof. On each Brownian path B (not anymore restricted to the unit interval) de�ne

the h-extremal generalized range HGRk [h] of order k and threshold h as the sum of the

k price moves between k + 1 consecutive h-extrema B(s0;[h]); B(s1;[h]); B(sk;[h]) on this

path, i.e.

HGRk;[h]
:
=

kX
j=1

���B(sj;[h])�B(sj�1;[h])���
Note that the corresponding total duration (or interval length) �k;[h] = sk;[h] � s0;[h] is

randomly varying with each path. However, the �rst two moments of both HGRk;[h] and

its total duration �k;[h] easily follow from Neveu's and Pitman's (1989) characterization

of Brownian h-extrema and their times:

E
h
HGRk;[h]

i
= 2kh, E

�
�k;[h]

�
= kh2, k = 1; 2; :::

V
h
HGRk;[h]

i
= kh2, V

�
�k;[h]

�
= kh4, k = 1; 2; :::

In particular, if the threshold level h is set to hk (") = (1� ") k�1=2 for any �xed 0 < " < 1,

it follows that the expected value of HGRk;[hk(")] is 2k
1=2 (1� ") with variance (1� ")2,

while the expected value of its duration �k;[hk(")] is (1� ")
2 with variance (1� ")4 =k.

Moreover, by independence it follows:

�k;[hk(")]
a:s:�! (1� ")2

1

2
k�

1
2HGRk;[hk(")]

a:s:�! (1� ")
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Consequently,

P
�
! : �k;[hk(")] > 1, i.o.

	
= 0

and

P

�
! :

1

2
k�

1
2HGRk;[hk(")] < 1� 2", i.o.

�
= 0

On the other hand, as long as �k;[hk(")] � 1, extremality of GRk in [0; 1] guarantees that

HGRk;[hk(")] � GR
�
k

Hence,

P

�
! :

1

2
k�

1
2GR�k < 1� 2", i.o.

�
= 0

Since this is true for an arbitrary 0 < " < 1, it follows

lim inf
k�!1

1

2
k�

1
2GR�k � 1 a:s:

Q.E.D.

Proof of proposition 4. Let " > 0 be arbitrary small. To put a suitable bound

on the discrepancy between GRnk and GR
�
k , observe that Levy's modulus of continuity

implies that there exist � > 0 such that a.s. jBt+s �Btj < 2 (s jlog sj)1=2 for any t 2 [0; 1]
whenever s < �. Now let 
 � 
 be the set of Brownian paths ! with P

�


�
= 1 on which

this inequality holds and the a.s. limit 1=2k�1=2GR�k �! 1 established above is also valid.

Take any path ! 2 
. It is given that k�n jlog�nj �! 0, hence, one can �nd a number

l(!; �) such that

(k�n jlog�nj)1=2 < "=4 for all k > l(!; �):

In addition, it is possible to �nd a number m(!; �) such that���1=2k�1=2GR�k � 1��� < "=2 for all k > m(!; �):

Finally, since k (�n jlog�nj)1=2 �! 0 implies �n �! 0 , there is a number p(!; �) such

that �n < � for all k > p(!; �).

De�ne k(!; �) = max fl(!; �); m(!; �); p(!; �)g and observe that the discrepancy be-
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tween GRnk and GR
�
k is bounded by

2k sup
0�t�1

jBt+�n �Btj

since GRnk and GR
�
k are calculated on at most 2k Brownian points (alternating local

extrema) and the mesh size is �n. By the above choice of k(!; �) it follows that �n < �

whenever k > k(!; �), which in turn implies

��GRnk �GR�k �� < 4k (�n jlog�nj)1=2 = k1=24 (k�n jlog�nj)1=2 < k1=2"

Therefore, the following chain of inequalities holds for all k > k(!; �):���1=2k�1=2GRnk � 1��� �
���1=2k�1=2GRnk � 1=2k�1=2GR�k ���+ ���1=2k�1=2GR�k � 1���

= 1=2k�1=2
��GRnk �GR�k ��+ ���1=2k�1=2GR�k � 1���

� �=2 + �=2 = �

This concludes the proof as we have shown that
��1=2k�1=2GRnk � 1�� < � whenever k >

k(!; �) for any Brownian path ! 2 
, where P
�


�
= 1.

Proof of proposition 7. It su�ces to demonstrate strong consistency of the �rst of the

three estimators e0kGRk(p[0;T ]) as the argument for the other two is along the same lines.

In the absence of jumps and drift, the strong consistency result

e0kGRk(p[0;T ])
a:s:�!

q
IV[0;T ]

follows immediately by combining variance separability of GR on a Brownian di�usion

(property P1) with the almost sure asymptotics of GR on a standard Brownian motion

(propositions 2 and 4).

Thus, it remains to show that a �nite number of jumps does not change the asymptotic

limit of the product e0kGRk(p[0;T ]). To this end, in the presence of jumps it is convenient

to express p as the sum of its continuous di�usive part pc and the complementing jump

part pj :

pt= p
c
t + p

j
t ; t 2 [0; T ]

Then if 0 � t�1 � t�2 � � � � � t�2k � T denote the optimal times for GRk(p[0;T ]), i.e.
kP
i=1

��p(t�2i)� p(t�2i�1)�� � GRk(p[0;T ]), the de�nition of GR and the triangle inequality
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imply:

GRk(p[0;T ]) =
kX
i=1

��p(t�2i)� p(t�2i�1)��
=

kX
i=1

��pc(t�2i)� pc(t�2i�1) + pj(t�2i)� pj(t�2i�1)��
�

kX
i=1

��pc(t�2i)� pc(t�2i�1)��+ kX
i=1

��pj(t�2i)� pj(t�2i�1)��
� GRk(p

c
[0;T ]) +GRk(p

j
[0;T ]):

Likewise, if 0 � t�1 � t�2 � � � � � t�2k � T denote the optimal times for GRk(p
c
[0;T ])

calculated on the continuous part of p, then

GRk(p[0;T ]) �
kX
i=1

��p(t�2i)� p(t�2i�1)��
=

kX
i=1

��pc(t�2i)� pc(t�2i�1) + pj(t�2i)� pj(t�2i�1)��
�

kX
i=1

��pc(t�2i)� pc(t�2i�1)��� kX
i=1

��pj(t�2i)� pj(t�2i�1)��
= GRk(p

c
[0;T ])�

kX
i=1

��pj(t�2i)� pj(t�2i�1)��
� GRk(p

c
[0;T ])�GRk(p

j
[0;T ]):

Combining the above two chains of inequalities yields���GRk(p[0;T ])�GRk(pc[0;T ])��� � GRk(pj[0;T ]):
Here by de�nition the jump component is the sum pj[0;T ] �

P
0<s�T �(s). Therefore, as

long as k gets larger than the corresponding �nite number of jumps in [0; T ] it must be

the case that

GRk(p
j
[0;T ]) �

X
0<s�T

j�(s)j <1:

On the other hand, the scaling factor e0k shrinks to zero at a rate k
�1=2 implying in
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particular that

e0kGRk(p
j
[0;T ]) = e0k

X
0<s�T

j�(s)j �! 0:

Hence,���e0kGRk(p[0;T ])� e0kGRk(pc[0;T ])��� �! 0:

Finally, the already established a.s. limit in the absence of jumps implies that for the

continuous part of p

e0kGRk(p
c
[0;T ])

a:s:�!
q
IV[0;T ];

which combined with the preceding asymptotic equivalence yields the same asymptotic

limit without excluding the jumps from p:

e0kGRk(p[0;T ])
a:s:�!

q
IV[0;T ]

More generally, the same derivation would hold also after adding any process of bounded

variation. In particular, it follows that the obtained asymptotic limit would remain valid

in the presence of a non-zero drift in the jump-di�usion sde (2).

Q.E.D.

Proof of proposition 8. Again, it su�ces to show asymptotic unbiasedness of the �rst

of the three estimators e0kGRk(p[0;T ]) as the argument for the other two is analogous.

It is convenient �rst to consider the case without jumps and drift, and then use the

same argument as in the proof of proposition 7 above to show that the impact of a �nite

number of jumps or a bounded variation drift is asymptotically negligible.

In the absence of jumps and drift, by variance separability (property P1)

GRk(p[0;T ]) =
q
IV[0;T ] �GRk(B[0;1])

on every path. Hence, given that e0k =
�
E
�
GRk(B[0;1])

���1
it follows:

E
�
e0kGRk(p[0;T ]) j IV[0;T ]

�
= e0k

q
IV[0;T ]E

�
GRk(B[0;1]) j IV[0;T ]

�
=

q
IV[0;T ]

E
�
GRk(B[0;1]) j IV[0;T ]

�
E
�
GRk(B[0;1])

�
Now, if the time change is independent, i.e. there is no "leverage e�ect", then the value of
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IV[0;T ] does not contain any information about the corresponding set of Brownian paths

B[0;1] and, hence, E
�
GRk(B[0;1]) j IV[0;T ]

�
� E

�
GRk(B[0;1])

�
. However, in case the value

of IV[0;T ] restricts the attainable Brownian paths B[0;1], then unbiasedness does not hold

anymore. What is guaranteed, though, is that the ratio

E
�
GRk(B[0;1]) j IV[0;T ]

�
E
�
GRk(B[0;1])

� �! 1

has a limiting value of 1 due to the established a.s. limit 1=2k�1=2GRk �! 1 and both

conditional and unconditional L2-boundedness of 1=2k
�1=2GRk Thus, in the absence of

jumps and drift, unbiasedness is achieved in the limit as k gets large

E
�
e0kGRk(p[0;T ]) j IV[0;T ]

�
�!

q
IV[0;T ] as k �!1 ,

while in the particular case of no leverage e�ect (and no jumps) unbiasedness holds for

any k:

E
�
e0kGRk(p[0;T ]) j IV[0;T ]

�
=
q
IV[0;T ]

Either way, when jumps and possibly non-zero drift are present, their impact on the value

of the product e0kGRk(p[0;T ]) vanishes only asymptotically as detailed in the proof of

proposition 7 above. Therefore, only asymptotic unbiasedness holds in the presence of

jumps or non-zero drift, regardless of whether the log-price process is subject to "leverage

e�ect" or not.

Q.E.D.
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Generalized Range for k = 4 Price Moves
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Figure 1. The figure illustrates the generalized range for k=4 price moves represented as line segments on a sample 
log-price path. The generalized range of any order k is defined as the maximized sum of k non-overlapping price 
moves on the observed path.  
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Figure 2. The figure illustrates an h-maximum followed by an h-minimum for an indicated threshold level h on a 
sample log-price path. A point is said to be an h-minimum (maximum) of a function if it is contained in an interval 
on which it is the global minimum (maximum) and the value taken by the function at both end points of the interval 
is above (below) this global minimum (maximum) at least by a threshold h. 
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Figure 3a. Mean and RMSE of the BV, SBV, RBV, and GR estimators of the diffusive part of total volatility as a 
function of the number of returns k = 1, 2, …, 500 exploited by each estimator for four different fixed sample sizes: 
n = 1,500; 3,000; 7,500; 15,000. The plots are based on 10,000 simulated daily jump-diffusion paths with roughly 
20% jump contribution to total daily volatility and subject to leverage effect. 
The common lower bound at level 1 for all plotted means is the true mean diffusive volatility, while the upper 
bound is the total volatility, including the jump contribution. The observed declining pattern of the upward bias of 
all diffusive volatility estimators as k gets large is in accordance with their asymptotic unbiasedness and can be 
interpreted as a “jump signature plot”. 
The RMSE of each estimator is expressed relative to the known asymptotic variance of the corresponding BV 
estimator in the absence of jumps having convergence rate k1/2. For all plotted values of n and k the RMSE 
reduction GR vs. BV is up to 60%, the RMSE reduction GR vs. SBV is up to 50%, the RMSE reduction GR vs. 
RBV is up to 20%.  
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Figure 3b. Mean and RMSE of the BV, SBV, RBV, and GR estimators of the diffusive part of total volatility as a 
function of the number of returns k = 1, 2, …, 500 exploited by each estimator for four different sample sizes 
proportional to k: nk = 5k; 10k; 25k; 100k. The plots are based on 10,000 simulated daily jump-diffusion paths 
with roughly 20% jump contribution to total daily volatility and subject to leverage effect. 
The common lower bound at level 1 for all plotted means is the true mean diffusive volatility, while the upper 
bound is the total volatility, including the jump contribution. The observed declining pattern of the upward bias 
of all diffusive volatility estimators as k gets large is in accordance with their asymptotic unbiasedness and can be 
interpreted as a “jump signature plot”. 
The RMSE of each estimator is expressed relative to the known asymptotic variance of the corresponding BV 
estimator in the absence of jumps having convergence rate k1/2. For all plotted values of nk and k the RMSE 
reduction GR vs. BV is up to 60%, the RMSE reduction GR vs. SBV is up to 50%, and the RMSE reduction GR 
vs. RBV is up to 20%.  
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Figure 4a. Mean and RMSE of the BV, SBV, RBV, and GR estimators of the diffusive part of total volatility as a 
function of the number of returns k = 1, 2, …, 500 exploited by each estimator for four different fixed sample 
sizes: n = 1,500; 3,000; 7,500; 15,000. The plots are based on 10,000 simulated daily jump-diffusion paths with 
0% jump contribution to total daily volatility (i.e. in the absence of jumps) and subject to leverage effect. 
The common mean level 1 for all plotted means is the true mean diffusive volatility, indicating that all estimators 
are equally unbiased when there are no jumps. 
The RMSE of each estimator is expressed relative to the known asymptotic variance of the corresponding BV 
estimator in the absence of jumps having convergence rate k1/2. For all plotted values of n and k the RMSE 
reduction GR vs. BV is up to 55%, the RMSE reduction GR vs. SBV is up to 45%, and the RMSE reduction GR 
vs. RBV is up to 15%.  
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Figure 4b. Mean and RMSE of the BV, SBV, RBV, and GR estimators of the diffusive part of total volatility as a 
function of the number of returns k = 1, 2, …, 500 exploited by each estimator for four different sample sizes 
proportional to k: nk = 5k; 10k; 25k; 100k. The plots are based on 10,000 simulated daily jump-diffusion paths 
with 0% jump contribution to total daily volatility (i.e. in the absence of jumps) and subject to leverage effect. 
The common mean level 1 for all plotted means is the true mean diffusive volatility, indicating that all estimators 
are equally unbiased when there are no jumps. 
The RMSE of each estimator is expressed relative to the known asymptotic variance of the corresponding BV 
estimator in the absence of jumps having convergence rate k1/2. For all plotted values of n and k the RMSE 
reduction GR vs. BV is up to 55%, the RMSE reduction GR vs. SBV is up to 45%, and the RMSE reduction GR 
vs. RBV is up to 15%.  



GR on Bid-Ask Quotes Selects Large Price Moves Exceeding the Spread Level
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GR on the Resultant Mid Quotes Limits the Impact of Microstructure Noise
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Figure 5. The figure illustrates how to calculate GR first on bid-ask stock quotes and then on the corresponding mid 
quotes in order to avoid distortion by microstructure noise. This two-step procedure makes an automatic selection of 
the maximum number of price moves in GR above the noise level, as determined by the spread. The plotted intraday 
quotes are for Helmerich & Payne Inc (NYSE:HP) from 13:45 to 14:00 on May 5, 2005, as recorded in TAQ. 



Rule Normalized Prices: 
Paired Stocks A vs. B 

Cumulative Excess Returns: 
Portfolio $1 Long A + $1 Short B 
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Figure 6. The figure plots the normalized price paths and corresponding cumulative excess returns of the long-short 
portfolio A – B for the twentieth selected stock pair {A, B} by three different rules: SD (minimum sum of squared 
deviations), RV (minimum ratio range to realized volatility), GR (minimum ratio range to generalized range of order 
six). Each plot shows the paths during a formation period of 252 days (year 2003) and the following trading period 
of 126 days (first half of 2004). The left column plots the price evolution of stock A vs. stock B normalized to start 
at $1 (i.e. cumulative returns). The right column plots the excess returns of the portfolio $1 long A and $1 short B. 
The red horizontal lines indicate the corresponding trading threshold level ±$2σ (two historical standard deviations, 
also reported in the upper left corner).  



Rule Unscaled Cumulative Excess Returns: 
50 Portfolios $1 Long A + $1 Short B 

Scaled Cumulative Excess Returns: 
50 Portfolios $gA,B Long A + $gA,B Short B  
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Figure 7. The figure plots the excess return paths for the 50 best long-short pair portfolios A – B selected by three 
different rules: SD (minimum sum of squared deviations), RV (minimum ratio range to realized volatility), GR 
(minimum ratio range to generalized range). Each plot shows the paths during a formation period of 252 days (year 
2003) and the following trading period of 126 days (first half of 2004). The left column plots the unscaled excess returns 
of each pair portfolio $1 long A and $1 short B. The right column plots the excess returns after scaling each portfolio to 
$gA,B long A and $gA,B short B, where the scaling factor gA,B for each pair is chosen to achieve a common trading 
threshold ±$1 (red horizontal lines), defined as two standard deviations during the formation period. The mean scaling 
factor g for the selected pairs is reported in the upper left corner. 




