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Abstract

We simulate a monolayer and bilayer of water between graphene sheets
using density functional theory (DFT) and Car-Parrinello molecular dy-
namics (CPMD) and compare our results with a related study on the
system [1]. We have also successfully written and implemented a CPMD
code, including the SHAKE algorithm that allows for dynamics in the
presence of constraints, for a toy system - the hydrogen atom. We present
the energy trace and norm of the Kohn-Sham orbital of the electrons from
this run. We also present a method for the minimization of the energy
of the system that reflects the connection between CPMD and simulated
annealing.

1 Introduction

The importance of water cannot be downplayed. Bulk water runs in oceans,
lakes and even our very own bodies. It is a crucial ingredient in photosynthesis
and can act as a lubricant in many biological and geological processes. Its solid
form is even more fascinating, as it varies in structure and property. Ice is of
crucial importance in many fields ranging from material science to biology. De-
spite a large number of experimental and theoretical studies on various phases
of water, many of its properties remain elusive. In particular, uncertainties re-
main on various ground state structures of ice in its phase diagram (Figure 1).

Most ice structures are locally tetrahedral. This is true even in the amor-
phous phases and in the so-called cubic-ice phase. Interestingly, experiments
have shown that the local tetrahedral environment may be broken for confined
ice. In particular, we are fascinated by a recent Nature article that ice can
form a simple cubic lattice when sandwiched between layers of graphene [1].
This study performed a classical molecular dynamics simulation on the system
using an empirical interaction potential and found that the structure of bilayer
ice changes from disordered to a cubic lattice at a transition pressure of 1GPa,
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Figure 1: Phase diagram for bulk ice

whereas a monolayer of ice always prefers a square lattice. In this project, we at-
tempt to simulate the same system using DFT as well as an ab-initio molecular
dynamics method, Car-Parrinello molecular dynamics and compare our results
with those in Ref. [1].

1.1 Why do we care about CPMD?

Car-Parrinello Molecular Dynamics, which was first published in 1985 [3], has
found widespread applicability in computational physics and materials science.
Up until then, DFT was primarily used for ab-initio electronic structure calcu-
lations and classical MD with external force fields was used to study dynamics.
The main drawback of DFT is that is works very well only when studying the
electronic structure properties of ordered and homogenous systems, such as crys-
tals. While classical MD can deal with disordered or amorphous systems well,
the force fields used (which are normally empirical), don’t take into account the
variation in the electronic structure of the material with the movement of the
atoms, which is crucial for forming an breaking chemical bonds for example [6].

The formulation of CPMD allows for the study of disordered systems and the
ability to follow the evolution of the electronic potential during the simulation,
by combining the best aspects of DFT and classical MD. CPMD is also widely
used to study chemical reactions occurring in liquids and large biomolecules.
In fact, Car and Parrinello demonstrated their method for amorphous silicon
and computational results were for the first time in very good agreement with
experimental results [3].

CPMD relies on the separation of time scales between the nuclear and elec-
tronic motions, also known as the Born-Oppenheimer or the adiabatic approx-
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imation. This means that the motion of the ions only carry physical meaning
when the electronic orbitals are always near their ground state as they follow
the nuclear motion during the simulation. Starting close to the ground state of
the electronic orbitals (obtained through a standard DFT calculation or using
a steepest descent/damped dynamics algorithm), CPMD evolves the the ions
using Hellman-Feynman forces and the electrons using a fictitious electron dy-
namics imposed to keep the evolution adiabatic. This approach allows for a
great reduction in computation time, in comparison to DFT calculations which
involve a matrix diagonalization at every step of the self-consistent loop, an op-
eration that grows in computation time with the number of degrees of freedom.
Hence to this day, DFT is typically used for model systems and not for studying
dynamical evolution.

1.1.1 Limitations

The adiabatic approximation has to be maintained in order to keep the electrons
close to the ground state. If the adiabatic approximation were not maintained,
the ions can transfer kinetic energy to the electrons and vice-versa. Since the
Hellman-Feynman theorem assumes that the ions move an on adiabatic potential
surface, the forces on the ions would end up being inaccurate as well. What
this means practically is that the energy gap of the system (energy required to
excite the electrons) should be much higher than timescale of the ionic motion.
This is generally true for insulators and semiconductors, but not for metals, for
which CPMD cannot be directly applied. In addition, a small enough fictitious
mass for the electrons must be chosen to allow the orbitals to follow the ions
adiabatically.
CPMD also suffers from the typical drawbacks that DFT suffers from, such as
the inability to describe van der Waals forces, the band gap problem and the
inability to accurately describe highly correlated electrons with localized d and
f orbitals. [6].

2 Theory

2.1 Density Functional Theory

The first step of a CPMD calculation is to relax the system close to the elec-
tronic ground state so that the subsequent molecular dynamics will be adiabatic.
Most widely available software packages such as Quantum Espresso relax to the
electronic ground state using steepest descent before starting the CPMD run.
In our implementation of the code, however, we relax to the electronic ground
state using a DFT calculation. The principal idea behind a DFT calculation is
the Kohn-Sham equation, which represents the total energy of the system as a
functional of the electronic density.

HKS(~r) = −1

2
~∇2 + VKS [n](~r) (1)
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VKS(~r) is a functional of the density, given by:

VKS(~r) = Vext(~r) +
δEhartree
δn(~r)

+
δEXC
δn(~r)

(2)

The idea then is to perform a self-consistent calculation by ”guessing” an
initial electronic density n(~r) and solving for the energy, and then iterating until
we reach the ground state energy and density, as shown in Figure 2.1 [7]. In
practice, the eigenvalues of the Kohn-Sham equation are calculated in Fourier
space.

Figure 2: Self-Consistent Loop

2.2 Electronic Car-Parrinello

In Carr and Parrinello’s original 1985 paper, they described their method as
an ”unified approach for molecular dynamics and density-functional theory”.
That is, their theory would allow us to either compute ground-state electronic
properties or perform ab initio molecular dynamics simulation. [3] Over the
years, so much focus was put on the molecular dynamics part that the method
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has come to be known as CPMD. Here we will present a practical review of the
theory starting with its easier half (ground-state electronic structure calculation)
and present a mathematical perspective (simulated annealing). We use basis
parametrization of the electronic wave functions to connect the theory with
practical implementation.

At its heart, the CP method is a constraint optimization scheme based on
the Rayleigh-Ritz variational Principle. That is, after a functional is chosen, the
ground state of Equation 1 can be obtained by direct minimization of the Kohn-
Sham functional, instead of using an SCF procedure. Let us first consider the
case where the ions are fixed and electronic orbitals are allowed to vary without
any external constraint (there is still the internal constraint that the orbitals
being orthonormal). Once a set of Nb basis functions {bk(~r)} is chosen, each of
the Ne electronic orbitals can be written as a linear combination of the basis
functions

ψi(~r) =

Nb∑
k=1

cikbk(~r), i = 1, 2, · · · , Ne (3)

then the Kohn-Sham functional E is nothing but a multi-variable function of
the coefficients {cik}. The variational Principle guarantees that the best ap-
proximation to the ground state energy and orbital coefficients within the span
of the chosen basis set can be obtained by minimizing the objective function

O = E({cik}) (4)

subject to the constraint

g =

∫
ψ∗
i (~r)ψj(~r)d~r − δij = 0⇒

g =

Nb∑
k,k′=1

c∗ikcjk′

(∫
b∗k(~r)bk′(~r)d~r

)
− δij = 0 (5)

At this point, the problem of obtaining ground-state electronic energy and or-
bitals is a purely mathematical one, namely minimize (4) subject to (5). Since
E({cik}) is a 3Ne dimensional function of complex variables, its global mini-
mum is a needle in a cosmic haystack. Fortunately just two years before Car
and Parrinello published their method, Kirkpatrick, Delatt and Vecchi brought
one of the best mathematical tools for finding a needle in a hay stack (simu-
lated annealing) to the physics community. [4] Their method uses Metropolis
moves to explore the phase space and can be directly applied to the problem at
hand. However, CP realized they could take the idea one step further. Drawing
inspiration from classical MD simulation, we see that well-designed Metropolis
moves can be a more efficient way to explore the phase space than Lagrangian
dynamics, however it loses all information pertaining to dynamical correlation.
By switching from Metropolis moves back to Lagrangian dynamics, one loses
some efficiency but will be able to capture dynamical correlation. In classical
MD, it is obvious that one should use the masses of the particles as damping
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factors for the time derivatives of the phase space parameters (positions of the
particles). Here on the other hand, this parameter will have to be chosen. That
is, the Lagrangian for the electronic degrees of freedom is

L =
∑
i

1

2
µ

∫
|ψ̇i(~r)|2d~r − E[{ψi}]

+
∑
ij

Λij

[∫
ψ∗
i (~r)ψj(~r)− δij

]

=

Ne∑
i=1

1

2
µ

Nb∑
k,k′=1

ċ∗ik ċjk′

(∫
b∗k(~r)bk′(~r)d~r

)
− E({~ci})


+

Ne∑
i,j=1

Λij

 Nb∑
k,k′=1

c∗ikcjk′

(∫
b∗k(~r)bk′(~r)d~r

)
− δij

 (6)

where µ is the fictitious mass for the electrons, serving as the damping factor
for the phase space parameters (orbital coefficients {~ci}). Λij is a matrix of
Lagrangian multipliers to reinforce the orthonormality of the orbitals. The
resulting equations of motion can be integrated with a standard MD integrator
such as the Verlet algorithm, and the Lagrangian multipliers can be obtained
almost exactly with an iterative method called SHAKE. [5]

2.3 CPMD

There is no reason why (4) and (5) cannot include the ionic degrees of freedom
and that is exactly the idea behind CPMD. The full CPMD Lagrangian

L =
∑
i

1

2
µ

∫
|ψ̇i(~r)|2d~r +

∑
I

1

2
MI

~̇R2
I +

∑
ν

1

2
µν α̇

2
ν

− E[{ψi}, {~RI}, {αν}] +
∑
ij

Λij

[∫
ψ∗
i (~r)ψj(~r)− δij

]
(7)

where I label the ions with MI being the mass of ion I and ~RI being the position
of ion I. αµ are any additional parameters the Hamiltonian depends on, which
could arise from external volume or pressure constraints for example. µν are the
damping factors for these extra parameters. The equations of motion arising
from (7) are 

µψ̈i = − δE
δψ∗i

+
∑
k

Λikψk

MI
~̈RI = −~∇~RI

E

µν α̈ν = − ∂E
∂αν

(8)
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When the wave function are put into a basis, the electronic equation of motion
becomes

µ~̈ci = −

(
H~ci −

∑
k

λik~ck

)
(9)

which can be integrated with Verlet to obtain [7]

~c n+1
i = 2~c ni − ~c n−1

i − (∆t)2

µ

(
H~c ni −

∑
k

λik~c
n
k

)
(10)

2.3.1 SHAKE algorithm

The following discussion of the SHAKE algorithm has been adapted from Ref.
[8]. The equation of motion for the electronic degrees of freedom in CPMD,
when using the plane wave basis is:

cn+1
i (~G) = 2cni (~G)−cn−1

i (~G)− (∆t)2

µ
(
∑
~G

H(~G, ~G
′
)cni (~G

′
)−
∑
k

λikc
n
k (~G)) (11)

In Equation 11, n denotes the current time step, ci(~G) are the plane wave
coefficients of the ith Kohn-Sham orbital, λik is the matrix of Lagrangian mul-
tipliers and µ is the pseudo-mass of the electron. Remember that the Lagrange
multipliers were introduced in order to satisfy the constraint that the orbitals
are orthonormal during every simulation step of the CMPD calculation. We
need to ensure that the constraints are indeed satisfied, i.e. we need to figure
out how to time evolve the Lagrange multipliers. Also, note that when you have
just one orbital, as in the case of a hydrogen atom, the above equation can be
rewritten as:

cn+1(~G) = 2cn(~G)− cn−1(~G)− (∆t)2

µ
(
∑
~G

H(~G, ~G
′
)cn(~G

′
)− λcn(~G)) (12)

The common algorithm used to time evolve the Lagrange multipliers is called
the SHAKE algorithm. We’ll give a brief overview of it here.

When you have constraints, the Lagrangian is: Lc = Lu −
∑
α λασα(~q),

where σα = 0 is the constraint to be satisfied for each α. Note that in our case
the generalized coordinates ~q will be the plane wave coefficients of the Kohn-
Sham orbitals.
This Lagrangian leads to the equation of motion

µ~̈qi = − ~∇iU −
∑
α

λα ~∇iσα (13)
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The second term in Equation 13 can be interpreted as the force applied to keep
the constraints satisfied.

Now, the idea is that we require that the constraints stay exactly satisfied
at every time step of the CPMD simulation. Some algebra shows that in the
velocity Verlet picture, the discretized equation of motion reads as:

~qci (t+ ∆t) = ~qui (t+ ∆t)− ∆t2

m

∑
α

λα ~∇iσα(t) (14)

In Equation 14, the subscripts c and u denote the constrained and uncon-
strained solutions. We want the constraints to be satisfied at t + ∆t, i.e.
σcα(t + ∆t) = 0. We can perform a Taylor expansion of this expression around
the ”unconstrained” constraint function, i.e. the constraint function evaluated
after evolving the generalized coordinates according to Equation 14.

σcα(t+∆t) = σuα(t+∆t)+

N∑
i=1

~∇iσuα(t+∆t).(~qci (t+∆t)− ~qui (t+∆t))+O(∆t4) (15)

Using Equation 14, Equation 15 can be rewritten as:

σcα(t+ ∆t) = σuα(t+ ∆t)−
N∑
i=1

∑
β

∆t2

m
λβ ~∇iσcβ(t). ~∇iσuα(t+ ∆t) (16)

Equation 16 is a complicated matrix equation. The idea of the SHAKE
algorithm is the decouple the constraints and treat each σα independently. This
is done by the following approximation (compare to Equation 14):

~qci (t+ ∆t)− ~qui (t+ ∆t) =
−∆t2λα

m
~∇iσα(t)

This approximation leads to:

σuα(t+ ∆t) = ∆t2λα

N∑
i=1

1

m
~∇iσuα(t+ ∆t).~∇iσcα(t) (17)

So at every time step, the new Lagrange multiplier is calculated by:

λα(∆t2) =
σuα(t+ ∆t)∑N

i=1
1
m
~∇iσuα(t+ ∆t).~∇iσcα(t)

(18)

So the idea is that you treat all the constraints successively at each time
step and repeat this process until the constraints are satisfied with the desired
accuracy, and then move on to the next CPMD time step.
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3 Simulation of Water between Graphene Sheets

We simulate a monolayer and bilayer of water at different coverages between
two fixed graphene sheets, following Ref. [1]. The authors of Ref. [1] found
that a monolayer of water relaxes to a square lattice, whereas a bilayer of wa-
ter transitions from a disordered state (with local tetrahedral coordination) to a
cubic lattice at a pressure of 1 GPa. An empirical force field called the extended
simple point charge model (SPC/E) is used in Ref. [1] to describe the inter-
actions between the water molecules. This is a sum of a long-range Coulomb
potential and a short-range Lennard Jones potential. This force field takes into
account the dipole interactions between water molecules.
In this project, we model the same system using the ab-initio methods of DFT
and CPMD and probe if we get similar results to those in Ref. [1].

3.1 Simulation Setup

Our simulation setup consists of 4×4 sheets of graphene separated by 6.5 Å for
a monolayer of ice and by 9 Å for a bilayer of ice, as shown in Figure 3.

For the DFT run, the plane wave cutoff used is 520 eV and the k-space grid is
5×5×1. It is worthwhile to note that if we are interested in the band structure
of the graphene-water system, a much finer k-grid will be required.
The CPMD run uses the following convergence parameters:
Fictitious electron mass (µ) = 100 a.u.
Time step (∆t) = 4.84× 10−17s
Number of simulation steps = 10000

We initialize the system in either a square or a triangular lattice and see how
the system evolves and compare the final stable structures. If we didn’t have a
limitation on the computer time available to us, we would be able to start at
completely random positions of the water molecules as was done in Ref. [1].

Figure 3: Simulation setup. Brown atoms are carbon, red atoms are the oxygen
atoms of water.
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3.2 Monolayer of Water

3.2.1 Quarter Coverage

We perform DFT and CPMD calculations on a monolayer of water at quarter
coverage, in square and triangular configurations as shown in Figures 4 and 5.
The setup consists of 64 carbon atoms and 4 water molecules.
For the DFT run, we observe that the square ice configuration is more stable
and is lower in energy than the triangular configuration by 5.94 eV, whereas
our CPMD results show that the square ice is more stable by 6.53 eV.
CPMD calculations performed at 0, 0.5 and 1 GPa all show the same qualitative
differences, matching the result in the Ref [1]. At low coverage, our results agree
with results from a standard MD simulation.

Figure 4: Top view of the square lattice at quarter coverage of a single layer of
water

Figure 5: Top view of the triangular lattice at quarter coverage of a single layer
of water

3.2.2 Full Coverage

At full coverage, there are 16 water molecules instead of 4. Again, we perform
DFT and CPMD calculations at full coverage for a monolayer of water.
Interestingly, in the DFT calculation, the square lattice relaxes to a triangular
lattice, indicating that the triangular lattice is more stable by 5.8 eV, whereas
our CPMD results show that the triangular lattice is 0.033 eV more stable than
the square lattice. A plausible reason for this discrepancy between our results
and the results in Ref [1] is discussed in Section 3.6.

The square and triangular structures are shown in Figures 6 and 7.
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Figure 6: Top view of the square lattice at full coverage of a single layer of water

Figure 7: Top view of the triangular lattice at full coverage of a single layer of
water

3.3 Bilayer of Water

3.4 Full Coverage

With a bilayer of water, we are interested in the effect of water layer stacking on
the ground state energy. Ref. [1] found that the ice molecules arrange themselves
in an AB stacking with no in-plane ordering, but transition to a cubic lattice
at 1 GPa. However, experiments have observed an AA stacking, with the water
molecules arranged in a cubic lattice.
In the DFT calculation, we start with water arranged in a cubic lattice with
AA and AB stacking, in order to compare the final energies of both systems.
Again, following the same pattern as in the monolayer ice at full coverage, the
water molecules arrange themselves in a triangular lattice when starting with
AA stacking (Figure 8). When starting with AB stacking, in-plane order is
lost, but the water molecules maintain local tetrahedral configuration (Figure
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9). Since our pure DFT run does not include a pressure contribution, these
results are at 0 GPa. Therefore, our DFT results seem to agree with Ref. [1]
for AB stacking. For AA stacking, it is interesting to note that in-plane order
is more or less maintained. The ground state energy of ice in AA stacking lower
than that of the system in AB stacking by 7.9 eV.

Figure 8: Relaxed structure when starting with a bilayer of ice with AA stacking

Figure 9: Relaxed structure when starting with a bilayer of ice with AB stacking

Our CPMD results for AA and AB stacking show that the AA stacked
structure is more stable by 0.154 eV. However since we were limited to running
the CPMD calculation for a short amount of time, it remained more or less in
the cubic lattice that we started with. Comparing this result with the DFT
result tells us that the AA stacking is only a local minimum, because the AB
stacking in the DFT run eventually relaxes to an amorphous, disordered state
with much lower energy.
Hence our results again disagree with Ref [1] with the water molecules in our
case seeming to prefer a triangular lattice as opposed to a cubic lattice. An
explanation for this discrepancy is given in Section 3.6.
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3.5 Quarter Coverage

Since we were able to recover the same results as Ref. [1] in the case of a
monolayer of water at quarter coverage, but not at full coverage, we surmise
that the same may be true for bilayers. So we did a BOMD run at quarter
coverage at different pressures: 0, 1 and 1.5 GPa. The reason we didn’t do a
CPMD simulation is because we were not able to converge the fictitious kinetic
energy of the electron despite many different choices for the fictitious mass and
time step.
We again initialize the system in AA and AB stacking. As expected, AA stacking
is higher in energy than AB stacking at all pressures by 0.122 - 0.131 eV. Just as
in the case of full coverage, the AB stacking disorders at low pressure, including
at 1GPa, the transition pressure observed in Ref. [1]. However at P=1.5 GPa,
AB stacking maintains in-plane order in a square lattice as shown in Figure 10.

Figure 10: Relaxed structure when starting with a bilayer of ice with AB stack-
ing

3.6 Discussion of Results

Our results indicate that we are in good agreement with Ref [1] at low coverage
of water on graphene, but not at high coverage. This can be interpreted as
an effect of the Van der Waals forces between water molecules, a virtue of their
dipole moment. It is well-known that DFT cannot capture Van der Waals forces
very well [6] and our implementation of CPMD did not include empirical Van
der Waals interaction potentials.
At low coverage, there is 4-5Ådistance between the water molecules, presumably
leading to weak Van der Waals interactions. This explains why we discovered
that square ice is more stable than triangular ice, similar to Ref [1].
At high coverage, the maximum separation between water molecules is around
2.8Å, comparable to a separation of 2.7Åbetween water molecules in bulk ice.
This presumably leads to strong Van der Waals interactions, which aren’t cap-
tured by our CPMD calculations. Ref [1] uses an empirical force field to describe
the interactions between water molecules. It was however not clear from the
work that Van der Waals interactions could have been responsible for the ob-
served structure of ice. Our results seem to suggest that the greater relative
stability of square and cubic ice could be an effect of the dipole interactions
between the water molecules and could have little to do with the dynamics of
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the system.
However, when we simulated a bilayer of water at quarter coverage at different
pressures, we were able to recover the same trends as Ref. [1]. As expected, we
found that AA stacking was less stable than AB stacking. AB stacking relaxes
to a disordered structure at low pressures, just as in the case of full coverage.
But at 1.5 GPa, it maintains in-plane ordering in a square lattice. We think
that the higher transition pressure that we observe can be explained as follows:
At high coverage, we argue that the water molecules are too close, resulting in
strong Van der Waals interactions. At low coverage, we circumvent that prob-
lem by moving the water molecules far away from each other. But now, they
are too far away (compared to the side length of the square lattice in Ref. [1]).
So, we think that a higher transition pressure is required to compensate for the
larger distance between the water molecules.

4 CPMD implementation for Hydrogen Atom

4.1 SHAKE algorithm in the context of the hydrogen atom

For a hydrogen atom, there is just one Kohn-Sham orbital, ψ which can be

expanded in the plane wave basis as: ψ =
∑

~G c(
~G)ei

~G·~r. Our equations of
motion are formulated in terms of the expansion coefficients (look at Equation
11).
Since there is just one orbital, there is only one constraint function, given by:

σ =
∑
~G

c∗(~G)c(~G)− 1 = 0

Also, Equation 18 simplifies to:

λ(∆t2) =
σu(t+ ∆t)

1
m
~∇c(~G)σ

u(t+ ∆t).~∇c(~G)σ
c(t)

(19)

The steps for implementing the SHAKE algorithm in this case are:

1. Time evolve the coefficients using Equation 12. The initial Lagrange mul-
tiplier is just the DFT energy of the system.

2. From these coefficients, you can calculate a new constraint function (which
will not in general satisfy the required constraint). Let’s call this

σu(t+ ∆t) =
∑
~G

c∗u(~G)cu(~G)− 1

The subscripts u as usual denote the ”unconstrained” case.
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3. Now, we can calculate the correct Lagrange multiplier using Equation 19.
But to do this, we need to know how to compute the gradient of the
constraint function with respect to the expansion coefficients. Thankfully
this can be done analytically and is just:

~∇c(~G)σ = c∗(~G)

4. So, at every time step we can calculate the correct Lagrange multiplier
using:

λ(∆t2) =
σu(t+ ∆t)

1
m
~c∗t+∆t · ~c∗t

. The numerator is obtained as per Step 2. The first term in the denomi-
nator is obtained from the coefficients at t+ ∆t (which correspond to an
orbital that is not orthonormal in general) and the second term from the
coefficients at t (which correspond to an orthonormal orbital). The vector
of these coefficients is just a vector in the reciprocal space, i.e. each term
of the vector corresponds to an allowed ~G value.

5. Recalculate the coefficients such that they satisfy the constraint using:

cc(t+ ∆t) = cu(t+ ∆t)− ∆t2

m
λ∇cσ(t)

for every c(~G). Most importantly note that the σ in this equation is
evaluated at t and not t+ ∆t (obviously since we’re only now calculating
the coefficients at t + ∆t which will let us compute the new constraint
function).

4.2 Description of the Code

For our toy system, the hydrogen atom, there is only one classical ion and
one Kohn-Sham orbital with no external constraint. The Lagrangian for the
hydrogen atom is

L =
1

2
µ

∫
|ψ̇(~r)|2d~r +

1

2
M ~̇R2 − E(ψ, ~R) + λ

(∫
|ψ|2 − 1

)
(20)

where λ is the Lagrange multiplier to be determined by SHAKE. The Kohn-
Sham energy functional of hydrogen atom only has two contributions, namely
kinetic and external potential

E[ψ, ~R] =

∫
ψ∗Hψd~r = −1

2

∫
~∇2
~rψd~r +

∫
Vext(~r)n(~r)d~r (21)

Vext(~r) = − 1

|~r − ~R|
(22)
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The equations of motions are{
µψ̈ = − δE

δψ∗ + λψ = −(Hψ − λψ)

M ~̈RI = −~∇~RI
E

(23)

which can be integrated with the Verlet algorithm{
ψn+1 = 2ψn − ψn−1 − (∆t)2

µ (Hψn − λψn)

~Rn+1 = 2~Rn − ~Rn−1 − (∆t)2

M
~∇~RE

(24)

For practical implementation, we have chosen a set of a finite number of plane
wave functions commensurate with a given box size of L within a plane wave
cutoff of Ecut. That is

~B(Ecut) = {b~k(~r) =
1√
V
e−i

~k·~r | ~k =
2π

L3
(n1k̂x + n2k̂y + n3k̂z);

n1, n2, n3 ∈ N;
1

2
|~k|2 < Ecut} (25)

This basis set is orthonormal and has the additional benefit of being the only
set needed for an extended system with periodic boundary. The ground state
electronic wave function as well as the Hamiltonian are expanded in this basis
~B1 = ~B(Ecut). For reason that will become apparent later, we expand density

and external potential in a basis with twice the plane wave cutoff ~B2 = ~B(2Ecut)

|ψ〉 =
Nb1∑
i=1

ci |B1i〉

H =
Nb1∑
i,j=1

hij |B1i〉 〈B1j |

n(~r) =
Nb2∑
i=1

niB2i(~r)

Vext(~r) =
Nb2∑
i=1

viB2i(~r)

(26)

To construct the Hamiltonian, we only need to know the expansion coefficients
of the external potential

hij = 〈B1i| −
1

2
∇2 + V̂ext|B1j〉

=− 1

2
|~k1j |δij +

∫
Vext(~r)B

∗
1i(~r)B1j(~r)d~r

=− 1

2
|~k1j |δij +

1

V

∫ (Nb2∑
p=1

vp
1√
V
ei
~k2p·~r

)
ei(
~k1j−~k1i)·~rd~r

=− 1

2
|~k1j |δij +

1√
V

Nb2∑
p=1

vpδ(~k2p − (~k1i − ~k1j)) (27)
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It is now clear why the plane wave basis set for external potential needs to be
bigger than that for the wave function and Hamiltonian, namely a plane wave
function with wave vector ~k1i−~k1j may not be in ~B1. The expansion coefficients
for the external potential can be obtained through a Fourier transform of (22).
It is worth noting that once the Hamiltonian is fully written in the plane wave
basis, one could directly diagonalize it to obtain the ground state wave function
in the plane wave basis, aka the coefficients ~co that corresponds to the ground
state wave function.

4.3 Relation to Simulated Annealing

To demonstrate the CP method’s ability to solve for the electronic ground state
wave function, we use an initial guess for the ground state coefficients ~c that
is perturbed from those of the true ground state ~co by a random vector. Then
we evolve the electronic degrees of freedom keeping the ions fixed. This effec-
tively minimizes the Kohn-Sham energy function through a simulated annealing
procedure which should reproduce the ground state eigenvalue and eigenvector
obtained using DFT. This is indeed what we observed. Figures 11 and 12 show
plots of the energy trace and the norm of the electronic orbital in a typical run.
The energy trace converges from some higher value to the ground state value of
−0.5Ha and the norm of the orbital is kept constant at 1 within 10−4, which
verifies the correctness of our implementation of the SHAKE algorithm. The
final converged energy is always higher than the DFT ground state because of
the finite size of CPMD timestep.

Figure 11: Energy trace of a CPMD run

17



Figure 12: Norm of the hydrogen orbitals during a CPMD run

Figure 13 shows the final CPMD energy as a function of timestep demon-
strating a converge to the true DFT ground state in the zero timestep limit.

Figure 13: Timestep convergence
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5 Conclusions

We simulated a monolayer and bilayer of water between two sheets of graphene,
at a quarter and full coverage and discovered that the ground state is a square or
cubic ice structure at low coverage (in agreement with Ref [1]), but is triangular
or disordered (with local tetrahedral coordination) at higher coverage. However,
for a bilayer of water at quarter coverage, we are able to recover the same trends
as in Ref. [1]. We reason that this might be a result of the strong Van der Waals
interactions between water molecules that are not captured by CPMD or DFT
calculations. We also conclude that our results suggest that the dynamics of
the water molecules don’t necessarily play a huge role in square ice formation
between graphene sheets.
We also implemented a CPMD code for a hydrogen atom and demonstrate
energy minimization that is effectively equivalent to a Hartree-Fock approach,
using the simulated annealing interpretation of CPMD.
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