Carbon and Nitrogen Cycles

Biogeochemical Cycles

All living organism elements flow in cycles

Rate of cycling varies

- Biomass vs. organic
- Environment: atmospheric, land, or ocean
- Lack of necessary elements limits growth
 - □ Iron
 - Phosphorus
 - Fixed nitrogen
 - Micronutrients

Biogeochemical Cycles

- Elements move from large sources to sinks
 - Reservoirs provide both
 - Ocean important for carbon, nitrogen
 - Land important for sulfur
- Oxidation state governs element reactivity
 Nitrogen gas plentiful, fixed nitrogen rare
- Measure elements in atmosphere via
 - Chemical reactions
 - Radioactivity measurements

Δ

Carbon Cycle

- Major reservoir is ocean
 - Atmospheric reservoir is much smaller
- Aerobic carbon cycling

- □ Photosynthesis fixes CO₂ into biomass
 - Produces organic carbon compounds
- \Box Lithotrophs also reduce CO₂ to biomass
- □ Respiration returns CO₂ to atmosphere
 - Net gain of O₂, loss of CO₂ in photic zone

RUBISCO & Calvin Cycle

- CO₂ + ribulose 1,5-bisphosphate (5C) → 2 (3C) phosphoglyceric acid
- 6 CO_2 (from RUBISCO rxn) + 12 NADPH + 18 ATP → $C_6H_{12}O_6(PO_3H_2)$ + 12 NADP⁺ + 18 ADP + 17 P_i
- Where does all the NADPH and ATP come from?

Photosynthesis

Photo: Light energy used to make ATP and reducing power (NADPH)

Synthesis: Use ATP and NADPH to reduce CO₂ to Sugar
 RUBISCO
 Calvin Cycle

Photosynthesis

Oxigenic:

Anoxigenic: (not the same as anaerobic)

Carbon Cycle

Anaerobic carbon cycling

□ Lower cycling rate than aerobic cycles

- Less iron, and less redox potential than oxygen
- Subsurface environment
 - Soil, benthos, rock
- □ Fermentation, lithotrophic respiration
 - Incomplete breakdown of biomass carbon
 - Formation of peat, oil, gas

Carbon Cycle

Human activity accelerates CO₂ release

Ocean absorbs most CO₂

□ Increased photosynthesis absorbs CO₂

Forests, ocean environments

- Atmospheric CO₂
 levels rising
 Role of newly discovered microbes
 - unclear

Wastewater Treatment

- Natural treatment
 - Wetlands filter water
 - Slow water passage
 - Bacteria in wetland denitrify water

Municipal treatment

Reduce nutrients to reduce BOD

- Allow microbes to grow, digest nutrients
- Aerate to restore oxygen levels

Nitrogen Cycle

 Multiple oxidation states of Nitrogen
 More than for any other biological molecule

Prokaryotes crucial for nitrogen conversion
 Only natural nitrogen fixers

Haber process doubled biological fixation

Both reduced and oxidized N used for biomass

Nitrogen Cycle—N₂ Fixation

- $\blacksquare N_2 \rightarrow NH_3 \rightarrow NH_4^+$
 - $\square NH_4^+$ is rapidly assimilated into amino acids
- Catalyzed by nitrogenase
 Only works anaerobically
 Occurs in all ecosystems
 - Klebsiella, Clostridium, Pseudomonas in soil
 - Rhizobium within legumes
 - Cyanobacteria in oceans, freshwater

A mutualistic interaction involving nitrogen fixing bacteria invading the roots of suitable host plant resulting in formation of tumor-like growth called a nodule

Interaction with plant roots Nitrogen Fixation in Nodules

- Within the nodules N₂ is reduced to NH₃
- Which supplies the bacteria and plant with nitrogen for growth

Nitrogen Fixation Association with Legumes

Nitrogen Cycle—Nitrification

$\blacksquare NH_4^+ \rightarrow NO_2^- \rightarrow NO_3^-$

 \Box Oxidation of NH₄⁺ provides electrons, energy

 \Box In soil, one species oxidizes NH₄⁺ to NO₂⁻

Nitrosomas

□ 2nd species oxidizes NO₂⁻ to NO₃⁻

Nitrobacter

Excessive fertilizer use causes nitrate runoff
 Eutrophication of streams
 Danger to water supplies

Nitrogen Cycle—Denitrification

$$\mathbb{NO}_3^- \to \mathbb{NO}_2^- \to \mathbb{NO} \to \mathbb{N}_2 \mathbb{O} \to \mathbb{N}_2$$

Dissimilatory nitrate reduction

Nitrate is anaerobic electron acceptor

- □ N₂O (nitrous oxide) buildup if much
 - Prevalent in hypoxic ocean waters
 - Greenhouse gas

□ In some environments, $NO_3^- \rightarrow NH_4^+$

- Anaerobic sludge, cow rumen
- H₂ gas available as electron donor

- H₂S oxidized by anaerobic respirers
 Removes toxic gas
- Other respiration reduces $S^0 \rightarrow H_2S$
- Algae excrete dimethyl sulfide → atmospheric S⁰

Microbiology: An Evolving Science © 2009 W. W. Norton & Company, Inc.

22

Phosphate Cycle

- PO₄³⁻ plentiful but often insoluble
 - □ Precipitates with Mg²⁺, Ca²⁺
 - □ Available phosphate limiting in environment
 - Moves from organic to inorganic forms
 - □ Not often present in reduced form

Iron Cycle

Fe³⁺ (rust) almost insoluble

Limiting for growth, especially in ocean

- □ Reduced by bacterial assimilation to Fe²⁺
 - Accumulated via bacterial siderophores

Anaerobic respiration to Fe²⁺

□ Fe²⁺ used by almost all creatures

 \Box Lithotrophic oxidation: Fe²⁺ \rightarrow Fe³⁺

Other Metals Many metals used by bacteria □ Mn, Hg, As, Cr, V, Se, U Bacteria detoxify some elements $\Box Cr(VI) \rightarrow Cr(III)$ \Box Soluble U(VI) \rightarrow U(IV) Precipitates from solution Desulfovibrio desulfuricans

Bacteria make some elements more toxic

 \Box Hg⁰ \rightarrow (CH₃)Hg⁺

Astrobiology

- Life on other planets?
 - What evidence for life?
 - Biosignatures
 - Microfossils
 - Isotope ratios
 - □ ¹²C/¹³C affected by life
 - Mineral deposits
 - Some deposits caused by living organisms
 - Metabolic activity
 - Carbon cycling? Isotope tracers

Astrobiology

Mars?

Water present?
Essential for all life
Likely present in the past
Life in the past?
Life in the present?
Underground?

Europa Liquid ocean present?

