

Causes of Heat Loss

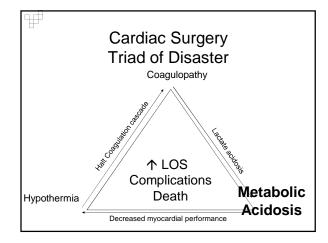
- ▼ Cooled during cardiopulmonary bypass
- **▼** Cold OR room
- ▼ Cool room and/or fan on
- ▼ Cold fluids
 - 1 unit of pRBC can lower body Temp 0.25° C
 - 1 liter of fluids unit can lower body Temp 0.5° C
- No blankets
- ▼ Head uncovered

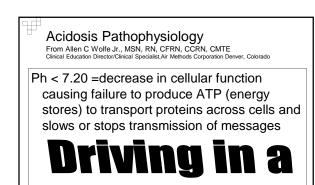
Alarming Consequences of Hypothermia

- Increased oxygen debt
 - Cold hemoglobin can not release oxygen to the cells
 - Left shift of the oxyhemoglobin dissociation curve Prolonged ventilation
- Increased lactic acid production
- Change from aerobic to anaerobic metabolism
- Leads to acidosis
- Coagulopathy
- Prolonged clotting cascade
 Platelet dysfunction platelets are extremely temperature dependent
- Altered fibrinolytic system
- Altered cardiovascular function
 - Decreased cardiac output/contractility
 - Risk of arrhythmias
 - Increased SVR due to vasoconstriction

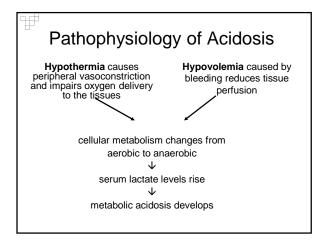
Alarming Consequences of Hypothermia (cont)

- 5. Hyperglycemia
 - Decrease insulin production
- 6. Increased Risk of Infection
 - · Impairs neutrophil function
 - · Tissue hypoxia from vasoconstriction
- 7. Altered drug metabolism
 - · Delayed emergence from anesthesia
- 8. Shivering
 - Increases myocardial oxygen demand and consumption




Rewarming techniques

- ▼ Warm room no fan
- ▼ Warm blankets keep patient covered
- ▼ Bare Hugger
- ▼ Use blood warmer to give blood products
 - · Have blood warmer and bare hugger in room



#

Alarming Consequences of Acidosis

- ▼ Decreased cardiac contractility & cardiac output
- Impaired response to catecholamine
 - (ie intropes are not effective)
- ▼ Increased PVR
- Vasodilation decreased SVR
- ▼ Bradycardia
- ▼ Increased arrhythmia risk
- Coagulopathy
- ▼ Compensatory hyperventilation.

Identify Cause of Lactic Acidosis

- ▼ Type A Lactic Acidosis
- ▼ Type B Lactic Acidosis

Treat the Cause!

Ħ

Metabolic Acidosis

- ▼ Type B Lactic Acidosis
 - Occurs in the absence of tissue hypoxia
 - May be catecholamine-induced metabolic effect (especially with epinephrine)
 - May be caused by hyperglycemia & alterations in fatty acid metabolism

Disruption of normal regulatory mechanisms during surgery

- Plasma glucose elevates
- Insulin secretion is depressed
- Elevated blood levels of catabolic hormones render patient resistant to insulin
- Ketones form as a result of incomplete oxidation.
- If not treated, metabolic acidosis may develop within hours
- Insulin corrects abnormality

Date/Time	1600	1830	2030	2300	0200	0600
PH	7.47	7.32	7.27	7.19	7.28	7.38
PCO2	31	42	44	34	33	34
PO2	192	156	92	115	85	87
CO2 conc	24	24	20	14	16	21
O2 Sat	99	99	95	97	95	96
BE	-1	-4	-8	-14	-10	-5
O2 flow Rate/mode	100% IMV 10	80% IMV 10	60% IMV10	60% IMV 10	50% IMV 6	50% CPAI
K+	3.9	4.0	2.9	3.5	4.9	
Glucose				414	322	221
Treatment			Regular ir 20 SQ 2 ambs Bi	nsulin 5 Units IV	20 units SQ insulin	

Date/Tim e	2400	0600	
PH	7.40	7.26	
Pco2	34	46	
PO2	110	91	
CO2 conc	22	22	
O2 Sat BE O2 flow Rate/mode	98 - 3 50% IMV10	96 - 7 50% IMV 4	
K+ Glucose Treatment	5.0	5.3 327	

If Potassium is LOW, Be Careful when giving...

- ▼ Insulin
- ▼ Calcium
- ▼ Digoxin

Serum glucose should not decrease more than 75 - 100 ml/dl per hour to prevent...

- ▼ Hypoglycemia
- ▼ Hypokalemia
- ▼ Cerebral Edema

Severe hypoglycemia can lead to coma and death!

Admission ABGs Interpret these Patient A Patient B 1. Pt A = Respiratory Acidosis Pt B = Metabolic Acidosis ph 7.29 7.33 pCO_2 60 32 2. Pt A = Metabolic Acidosis $Pt \; B = \; Respiratory \; Acidosis \;$ $p0_2$ 132 100 TCO₂ 31 20 3. Both metabolic Acidosis O₂ % 98 98 4. Both Respiratory Acidosis ΒE -8 -1

Admission ABGs Answer

Interpret these

1. Pt A = Respiratory Acidosis
Pt B = Metabolic Acidosis

2.

Metabolic Acidosis

Ongoing Metabolic Acidosis means something is not being perfused

- ▼ Type A Lactic Acidosis
 - Reflects impaired tissue oxygenation & anaerobic metabolism resulting from circulatory failure
 - The lactate ion more than the acidemia contributes to potential cardiovascular dysfunction

The Value of Lactate

- Serum lactate levels are used to assess the acid-base state and adequacy of tissue perfusion
- By product of anaerobic metabolism if tissue hypoxia (from hypoperfusion) exists
- A change from aerobic to anerobic metabolsim

- ▼ Lactate is primarily excreted by liver.
- ▼ Treatment: Treat the Cause
- ▼ NaHCO₃ (Bicarb) is truly only a "Band-Aid" and should only be used for severe metabolic acidosis = ph < 7.2 & HCO₃ < 6mqEq/L
 </p>

Treat the Cause!

The Value of Lactate

Serial lactate levels predictor of perfusion

- Normal <2.5mmol/L
- Mild acidosis 2.5-4.9mmol/L (mortality 25-35%)
- Moderate acidosis 5.0-9.9mmol/L (mortality 60-75%)
- Severe acidosis > 10mmol/L (mortality > 95%)

Shoemaker, WC et al. Textbook of critical care. 1995. WB Saunders

Lactate Levels

"Surviving Sepsis 2014"

- ▼ Normal 1-2
 - · Cells are alive & well
- ▼ Moderate 2 4
 - DECREASED cellular perfusion
 - Cells STRUGGLE to survive
 - · May indicate severe sepsis
- ▼ Severe > 4
 - · COMPLETE TISSUE HYPOXIA
 - · Cells DIE
 - Hypotension refractory to adequate fluid resuscitation indicates septic shock

Surviving Sepsis Campaign 2014

Serum Lactic Acid Levels

- May be the first indication that something is wrong
- Excess lactate demonstrates measurement of tissue oxygen debt
- Results in metabolic acidosis due to tissue hypoperfusion and "starvation"

Serum Lactic Acid Levels

- Increasing lactic acid levels mean the tissues are hypoperfused and patient is getting worse.
- Decreasing lactic acid levels mean the tissues are getting perfused and the patient is getting better.

Do not draw lactate levels more than every 4 hours Lactate level takes 4 hours to rise and 4 hours to release

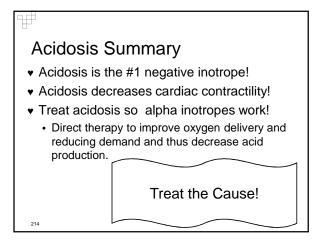
Base deficit/excess

- Amount of total base (buffer) that is needed to achieve acid-base balance.
- ▼ BD/BE is depicted by HCO₃.CI, phosphates, sulfates, proteins and organic acids. To figure BD/BE, lab uses the PH, PaCo2 and Hct.
- ▼ Normal -2- +2
- ▼ If < 2, the patient is not perfusing</p>

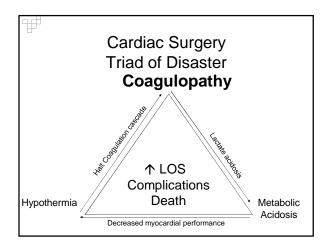
Base deficit

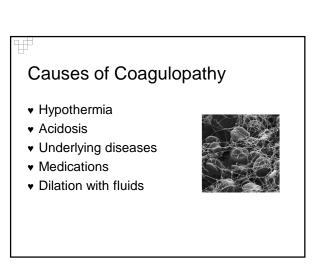
- ▼ Normal -2 to +2
- ▼ Mild Hypoperfusion: -2 to -5
- ▼ Moderate Hypoperfusion: 6 to -14
- ▼ Severe Hypoperfusion: < 15</p>

Source: Davis J et al: Journal of Trauma, 1996. Davis K et al. Journal of Trauma, 2002

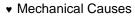

Which patient are you more concerned about?

	1.0600	2.0800
PH	7.37	7.35
PCO2	36	32
PO2	77	87
CO2	22	18
O2%	94	96
BE	-4	-8




Which patient are you more concerned about?

Answer 2



Causes

- · Bleeding from suture lines
- · Clip comes off graft
- · Aortic or ventricular rupture
- · Chest wall bleeders
- ▼ Abnormal clotting factors due to
 - · Preop anticoagulant meds
 - · Systemic heparinization during CPB
 - Breakdown of factors during CPB

BLEEDING

Signs & Symptoms

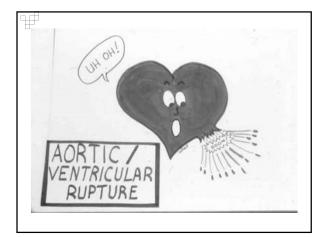
- ▼ CT bleeding > 100 200 cc/hr
- ◆ Low or labile B/P
- **▼** Low CVP or PAD
- ▼ Falling SvO₂ and CO/CI
- ▼ Abnormal clotting Factors
- ▼ Bleeding from line sites, incisions

Treatments

- Monitor CT output. May need to replace CT output cc for cc with packed cells
- ▼ Keep sedated and keep B/P < 140 to prevent stress on suture lines
- Keep CT patent by gently milking and stripping
- Use warming blanket to keep normal thermic.
 - · Hypothermia interferes with clotting factors

Treatment: Blood and Blood Products

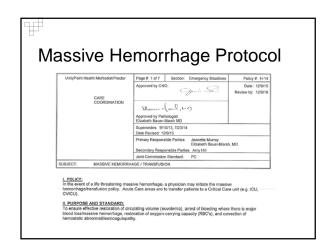
- ▼ Give blood and blood products
- FFP for ↑ PT or PTT
- ▼ Platelet Phoresis for ↓ Platelet count
- ▼ Cryoprecipitate for ↓ Fibrinogen level
- ▼ Packed cells for ↓ H & H

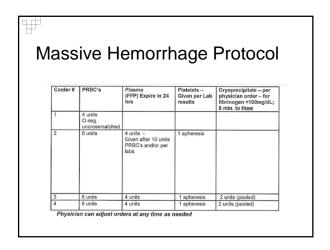

Rule of thumb

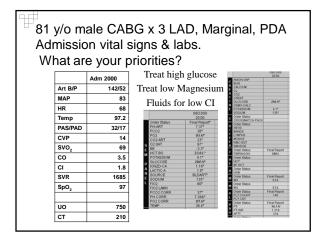
- ▼ Replace CT output ml for ml
- ▼ Minimum after every 4th unit pRBCs
 - Calcium Chloride
 - FFP
- ▼ Recommend 1 pRBC to 1 FFP

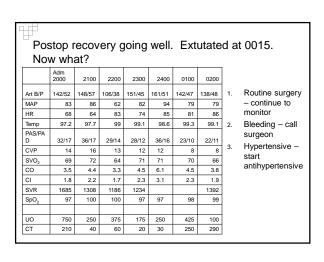
Treatments

- ▼ Pharmacological Interventions
 - Protamine to reverse effects of systemic heparinization
 - Aminocaproic Acid (Amicar) to inhibit conversion of plasminogen to plasmin
 - Desmopressin to improve platelet function
 - Recombinant Activated Factor VII (NovaSeven) stimulates the generation of thrombin
- May need to return to surgery to repair mechanical cause of bleeding

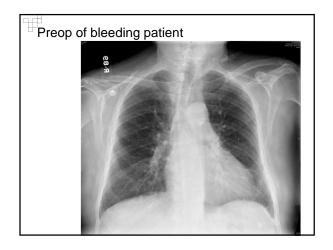


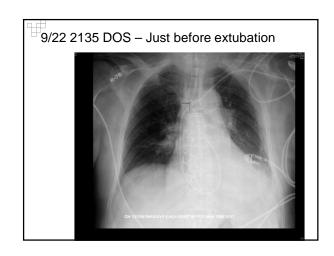


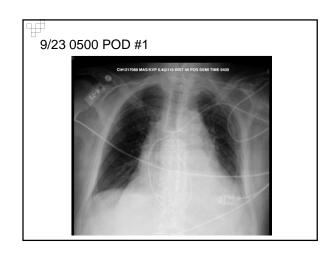

Keep blood on HOLD --- communicate with blood bank that you have a bleeder

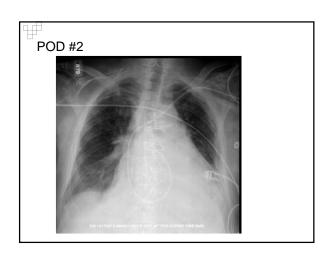


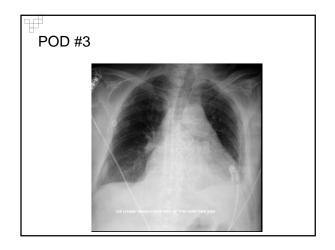
▼ May need to use type specific blood

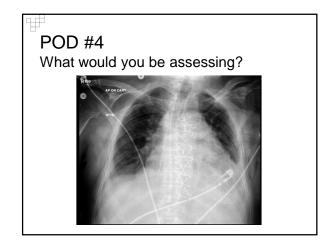



Ħ_						_			
Pos	stop r	ecov	ery g	going	well.	Ext	utate	d a	t 0015.
No	w wh	at?							
	Adm 2000	2100	2200	2300	2400	0100	0200		
Art B/P	142/52	148/57	106/38	151/45	161/51	142/47	138/48	1.	ANSWER
MAP	83	86	62	82	94	79	79	2.	Bleeding - ca
HR	68	64	83	74	85	81	86		surgeon
Temp	97.2	97.7	99	99.1	98.6	99.3	99.1		3
PAS/PA D	32/17	36/17	29/14	28/12	36/16	23/10	22/11		
CVP	14	16	13	12	12	8	8		
SVO ₂	69	72	64	71	71	70	66		
со	3.5	4.4	3.3	4.5	6.1	4.5	3.8		
CI	1.8	2.2	1.7	2.3	3.1	2.3	1.9		
SVR	1685	1308	1186	1234			1392		
SpO ₂	97	100	100	97	97	98	99		
UO	750	250	375	175	250	425	100		
CT	210	40	60	20	30	250	290		


It's 0500.	2400	0100	0200	0300	0400	0500
What are Art B/P	161/51	142/47	138/48	111/40	113/43	91/38
your MAP	94	79	79	64	71	58
priorities?	85	81	86	79	86	108
Temp	98.6	99.3	99.1	99.5	99.5	99.7
PAS/PAD	36/16	23/10	22/11	23/10	26/11	20/12
CVP	12	8	8	8	8	6
SVO ₂	71	70	66	63	62	59
со	6.1	4.5	3.8	3.5	4.2	3.6
CI	3.1	2.3	1.9	1.8	2.1	1.8
SVR			1392	1161		1006
SpO ₂	97	98	99	100	97	98
UO	250	425	100	115	185	
СТ	30	250	290	130	300	190
	200 cc IV fluid	288 cc PRBC			300cc PRBC 40 cc platelets	


It is 0700, calculat given Are you k				oducts				
Chest tube output	t 1660 ml							
0100: 250		2400	700					
0200: 290 Art B/P 145/44 91/38								
HR 82 108								
0300: 130	PAS/PAD	28/12	20/10					
0400: 300	CVP	12	6					
	SVO ₂	71	59 3.6					
0500: 190	CI	4.5 2.3	1.8					
0600: 200	SVR	1186	1006					
0700-000	Tomp 09.6 07							
0700: 300								
♥ F	Pt received :	3 units c	of pRBCs	;				


						to noop	from blee	umg. Dia		
-	0500	0600	0700	0800	0900	1000	1100	1200	1300	140
Art B/P	91/38	117/40	109/ 42	116/47	106/43	113/46	148/73	145/54	130/58	141/50
MAP	58	75	67	71	65	69	92	83	84	8
HR	108	92	101	92	90	88	83	85	101	9
Temp	99.7	99.3	99.5	99.3	99	99.1	98.8			
PAS/P AD	20/12	37/15	43/1 6	32/17	31/16	67/20	51/20	414/19	33/19	41/20
CVP	6	9	8	12	11	12	13	11	10	1
svo,	59	56	61	66	67	65	68	70		6
СО	3.6	4.9	4.2	3.6	3.8	3.5	3.7	3.8		3.
CI	1.8	2.5	2.1	1.8	1.9	1.8	1.9	1.9		1.
SVR	1006		1160	1265		1370				
SpO ₂	98	98	94	96	95	94	93	93	92	9
UO		75	75	105	475	375	200	425	325	15
СТ	190	200	300	70	50	250	150	50	50	5
		500 cc Hespan, 300 cc PRBC, 250 cc albumin		325 cc PRBC, 195 cc	325 cc PRCs, 299 cc	325 cc PRBC	325 cc PRBC			



2nd Case:

Based on these coag values, what blood products do you expect to be ordered?

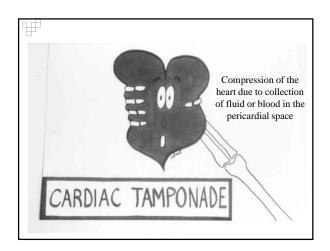
7.3 1. Packed cells Hbg 21.3 2. Packed cells, FFP **HCT Platelets** 186 3. Packed cells, FFP, Cryoprecipitate PT 21.7 **INR** 2.23 4. Packed cells, FFP, PTT 43.4 Cryoprecipitate. platelets Fibrinogen 108

Lactic Acid 3.1

2nd Case:

Based on these coag values, what blood products do you expect to be ordered?

Hbg 7.3 1. ANSWER


HCT 21.3 2.

Platelets 186 3. Packed cells, FFP, PT 21.7 Cryoprecipitate

INR 2.23 PTT 43.4 Fibrinogen 108 Lactic Acid 3.1

After 5 pRBCs, 1 platelet pheresis, 3 FFP, 10 cryo. Would you anticipate any further blood products?

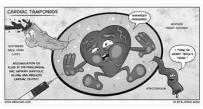
Hbg	7.3	9.8
HCT	21.3	28.1
Platelets	186	115
PT	21.7	18.7
INR	2.23	1.09
PTT	43.4	32.5
Fibrinogen	108	240
Lactic Acid	3.1	2.8

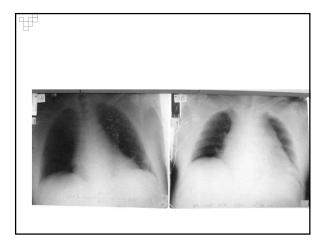
Cardiac Tamponade: Causes

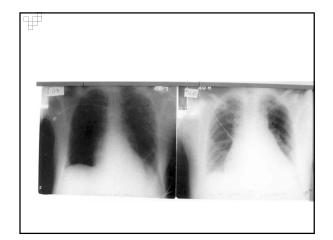
- ▼ Blood accumulated in the chest from:
 - · CTs clotted off and unable to drain excess blood
 - · Epicardial wire removal
- ▼ May occur quickly within minutes of hours or may occur slowly over days or weeks

Cardiac Tamponade: Signs & Symptoms

- ▼ Hypotension
- ▼ Low urine output
- ▼ Rising & equalization of CVP & PAD
- ▼ Falling SVO₂, CO/CI
- ▼ Sudden decrease in CT output
- Widening mediastinum on CXR
- ▼ Neck Vein Distention
- ▼ Tachycardia
- ▼ Pulses Paradox > 20 mmHG
- ▼ Diminished heart sounds

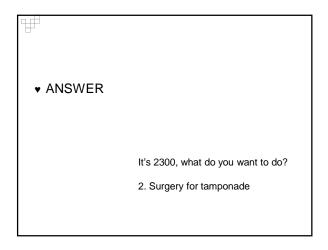

For tamponade that occurs slowly may also see these S/S:

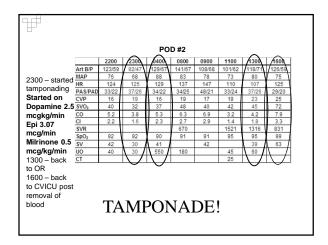

- ▼ Shortness of Breath
- ▼ Chest Pain
- ▼ Ischemic changes on EKG
- Nausea

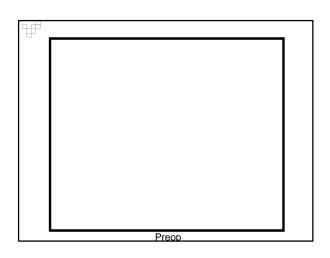

Cardiac Tamponade

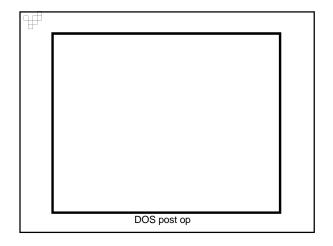
Beck's Triad

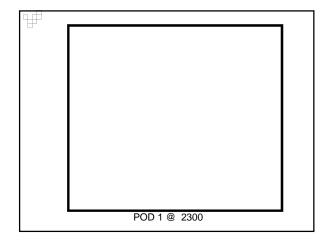
- Hypotension
- · Neck vein distention
- · Muffled heart sounds

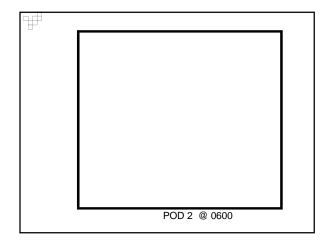


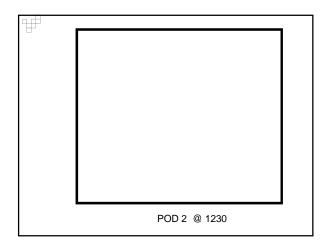


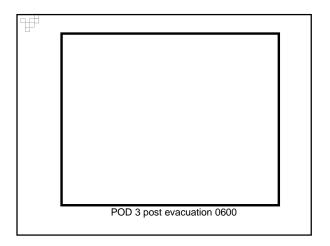


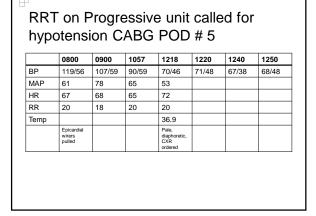

Cardiac Tamponade: Treatment

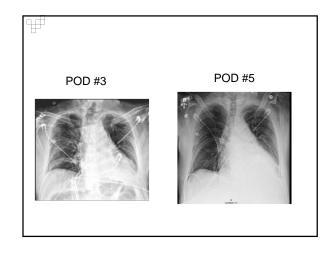

- ▼ Urgent surgical exploration to evacuate excess blood & correct cause of the tamponade
- ▼ Bedside echo may be used to make differential diagnosis between tamponade & LV failure
- ▼ Administer fluids & inotropes or Calcium Chloride until patient can be returned to OR
- Prepare for possible exploration of chest at bedside

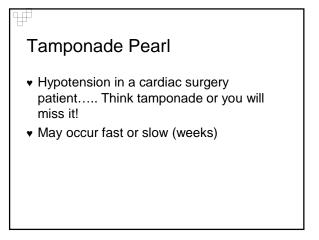


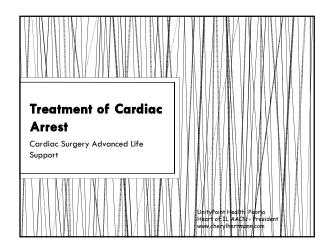


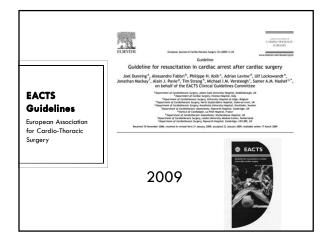


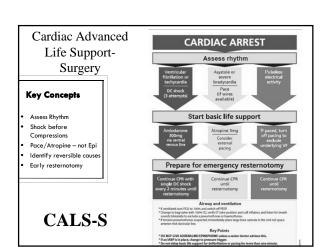












- typically related to reversible causes
- Tamponade
- Bleeding
- Ventricular arrhythmias
- Blocks associated with conduction problems
- Survival to discharge can be up to 79%
 - If treated promptly

Pulseless Electrical Activity (PEA)

- Cardiac surgery patients who arrest with PEA are typically experiencing treatable causes
 - Hypovolemia -- severe
 - Hypoxia
 - Tamponade
 - Tension pneumothorax
- Prompt treatment results in good outcomes
- To assess for causes of PEA/nonschockable rhythm
 - Consider the 4 "Hs" and 4 "Ts

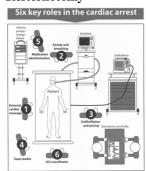
Assess for
Reversible
Causes

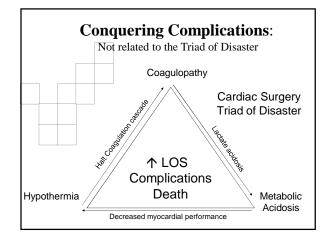
Four H S	Four Ts
Hypoxia *	Tamponade *
Hypovolemia*	Tension Pneumothorax
Hypokalemia/ Hyperkalemia	Thromboembolism
Hypothermia	Toxin
* = Most common causes of card	liac surgery arrests

Treatment of PEA causes Hypoxia Treat per airway management and assessment Hypovolemia and Tamponade Severe hypovolemia is typically due to bleeding Severe hypovolemia and tamponade both require emergent resternotomy to correct

Steps to Ensure Adequate Airway and Ventilation

- Check endotracheal tube (ET) position and end tidal carbon dioxide (EtCO₂) waveform and reading
- Listen for an ETT airleak and verify that is properly inflated
- Listen and look for bilateral breath sounds.
 - Consider removing the patient from the ventilator and give 100% oxygen via bag-mask-valve to more easily assess lung sounds and determine lung compliance
 - If bilateral lung sounds are present, reconnect the ETT to ventilator.


Steps to Ensure Adequate Airway and Ventilation (continued)


- Feel the trachea to verify it is midline.
- If a tension pneumothorax is suspected, insert a large bore needle into the 2nd intercostal space, midclavicular line.
- If unable to ventilate the patient with a bag-maskvalve, attempt to suction the ET tube.
 - If unable to pass the suction catheter, ETT occlusion or malposition should be suspected.
 - Remove the ETT and ventilate with a bag-mask-valve.

Prepare for Emergency Resternotomy

Six Key Roles

- External cardiac massage
- 2. Management of airway and breathing
- 3. Defibrillation
- 4. Team leader
- 5. Medication administration
- ICU nursing Coordinator

Cardiac Vasoplegic Syndrome post Cardiac Surgery

Sara Caruso, RN, BSN, CCRN-CSC

Ŧ

CABG x 3, on Insulin drip, Epinephrine drip, & precedex drip

PMH: $\frac{1}{2}$ ppd smoker x20 years, depression with use of SSRI's, EF = 30%, HF -- Coreg and Lisinopril

	Admission Vitals
MAP	60
CVP	3
CO/CI	4.5/2.5
SVR	1012

250ml of 5% albumin x 2 administered $\,$ with no change in SVR/CVP, Neosynephrine drip is started

CABGx3, on Insulin drip, Epinephrine drip, and precedex drip

PMH: % ppd smoker x20 years, depression with use of SSRI's, EF = 30%, HF -- Coreg and Lisinopril

	Admission Vitals	One Hour Later after albumin & Neosynephrine
MAP	60	40
CVP	3	1
CO/CI	4.5/2.5	4.2/2.1
SVR	1012	770

Ŧ

What is Cardiac Vasoplegic Syndrome? (Vasodilatory Shock)

- Arterial vasodilatory state resistant to the usual vasopressors post cardiac surgery
- ▼ Severe and persistent form of hypotension with:
 - · Normal or high cardiac output
 - Low CVP and PAOP
 - Decreased systemic vascular resistance (SVR) <800
- Low filling pressures that are poorly responsive or unresponsive to volume
- ▼ 5-8 % of all patients post cardiac surgery
- ▼ Increased morbidity and mortality

Why does this happen?

- Huge inflammatory response post cardiac surgery
 - -- large quantities of nitric oxide released
 - · Cardiopulmonary bypass
 - · Surgical trauma
 - Blood loss
 - Blood transfusions
 - · Hypothermia
 - · Neutralization of heparin with protamine
- Nitric Oxide produces profound vasodilation and vasoplegia

Result: Loss of vasomotor tone and vasodilation

At Risk population:

- ▼ Preoperative heart failure
 - EF < 35%
 - · End stage HF requiring assist device
- Numerous preop antihypertensive medications
 - ACE inhibitors, ARBs, Beta Blockers, Calcium Channel blockers
- Use of pre and post Amiodarone and Phosphodiasterase inhibitors (Milrinone)

Treatment for Cardiac Vasoplegic Syndrome

Methylene Blue (Tetramethylthionin chloride)

- Interferes with the nitric oxide pathway and inhibits the vasorelaxant effect on smooth muscle
- Can raise mean arterial pressures while minimizing the use of vasopressors
- Usually given pre-op or inter-op to prevent CVS
- Bolus dose of 1-2mg/kg over 10-20 min followed by an infusion of 0.25mg/kg/hr for 48-72 hours, do not exceed 2mg/kg

Ŧ

Treatment for Cardiac Vasoplegic Syndrome

Phenylephrine, Norepinephrine

or Vasopressin

- Treats refractory hypotension when used in conjunction with Methylene Blue
- ▼ Potent vasoconstrictor

Ħ

Nursing Role

- Early identification of Cardiac Vasoplegic Syndrome
- ▼ Notification to cardiac surgeon
- **▼** DO NOT KEEP GIVING VOLUME!

CABGx3, on Insulin drip, Epinephrine drip, and precedex drip PMH: $\frac{1}{2}$ ppd smoker x20 years, depression with use of SSRI's, EF = 30%, HF -- Coreg and Lisinopril Admission One Hour Vitals Later after albumin & Neosynephrine MAP 60 40 CVP CO/CI 4.5/2.5 4.2/2.1 SVR 1012 770 Needs Methylene Blue and

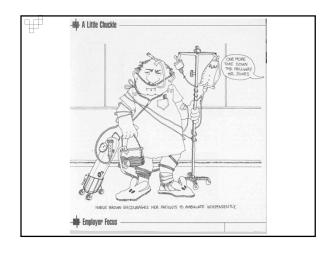
Vasopressin

Walk To Recovery

✓ Chairs for Meals

✓ Scheduled Walks

1st Walk: Between 06 – 08


2nd Walk: Before Lunch

3rd Walk: Before 1330

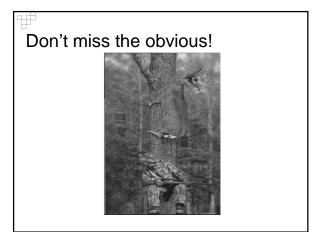
4th Walk: Before Dinner

5th Walk: After Dinner

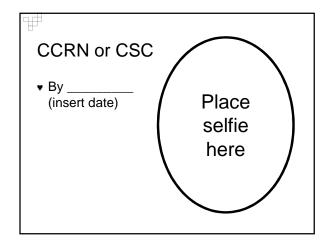
6th Walk: Before Bed

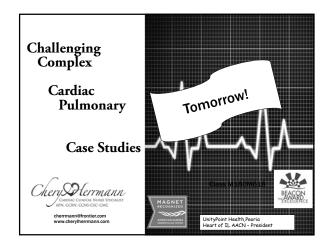
Warning Signs of Trouble

- ▼ Tachycardia
 - Persistent tachycardia is a compensatory mechanism
- ▼ Cool extremities
- ▼ Diminished peripheral pulses
- ▼ Changes in mentation
- ▼ Decreased urine output
- ▼ Hypotension



than by being BRILLIANT




Next Steps

- Make a study action plan
- Set the target test date
- Get a study partner

- ▼ Take out your cell phone
- ▼ Take a selfie

