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Preface

During the last few years one could have already noticed a significant growth
of the new calculation kinds that could, in general, be called the soft com-
puting. This type of computing differs from the traditional calculations in
its primary goal, i.e. the toleration of uncertainty and inaccuracy in order
to reach quick, robust and cheap results. Thus the soft computing is used
to find an approximate solution of an exactly formulated problem or, more
frequently and most typically, to find the solution of the problem that is
not formulated exactly itself. The new unconventional theories, methods,
techniques and technologies in computer and information science, systems
analysis, decision-making and control, expert systems, data modeling, en-
gineering, etc., using techniques of soft computing together with their basic
tools theory of fuzzy sets and fuzzy logic, are still investigated and developed.

Fuzzy set theory as well as fuzzy logic originated from ideas of L.A. Zadeh.
The concept of fuzzy set together with the basic principles of fuzzy set theory
was established in his seminal paper [119] published in 1965 and the basic
ideas of fuzzy logic were elaborated in [121–123]. Thanks to the fact that
fuzzy set theory and fuzzy logic could offer very strong tools for description
of an uncertainty in common human reasoning, an intensive development
took place in these areas. It was motivated not only by requirement to de-
velop these sciences themselves, but, of course, to be able to solve practical
problems. One of the topic of fuzzy logic that was and still is intensively
investigated is the theory of fuzzy (generalized) quantifications. Fuzzy quan-
tification is a construct that specifies the extend of validity of a predicate,
where the range of predicate validity is often expressed roughly i.e. fuzzy.
Fuzzy quantifiers are then elements of natural language which generate fuzzy
quantifications. Fuzzy quantifiers could be seen in mathematics, but mainly
in natural language. Everyone surely knows the expressions like “many happy
people”, “nearly all members”, “some animals”, “few single women”, “nearly
none mistake”, “about half of participants”, “about fifteen students” etc.
The main goal of this thesis is to propose a new approach to fuzzy quantifi-
cations. The presented approach was originally motivated by looking for the

ix



x Preface

suitable method of two time series comparing. After some critical remarks of
Sigfried Gottwald to my previous definition of fuzzy quantifiers, the concept
of fuzzy quantifiers in now based on the concept of equipollence of fuzzy sets.
An introduction of equipollence of fuzzy sets was the second goal of this the-
sis. Many approaches to fuzzy quantifiers are based on the concept of scalar
or fuzzy cardinalities. Therefore, it is interesting to investigate the relation-
ship between equipollences and cardinalities of fuzzy sets. In order to study
such relationships, it is necessary to generalize the concept of cardinality of
fuzzy sets that is the third goal of this thesis. Each of the mentioned terms
could be studied separately. Nevertheless, in this thesis we pay attention
to such of their aspects that just contribute to our new approach to fuzzy
quantifiers. The outline of this thesis is as follows.

Chapter 1 is a preliminary chapter devoted to the basic notions that are
used in this thesis.

In Chapter 2, there are introduced equipollences (θ-equipollence and θ-
equipollence) of fuzzy sets and shown some of their properties and represen-
tations (for the finite cases) with regard to needs of the following chapters.

Chapter 3 is devoted to cardinalities of finite fuzzy sets. There are intro-
duced two types of fuzzy cardinalities, namely θ-cardinality and θ-cardinality
with regard to the considered fuzzy sets (L-sets or Ld-sets). Some relation-
ships between cardinalities and equipollences are presented, too. The sec-
tion 3.1 and the subsections 3.2.1 and 3.2.1 could be read independently on
Chapter 2.

In Chapter 4, a concept of model of fuzzy quantifiers is introduced. The
models of fuzzy quantifiers actually represent the semantical meaning of fuzzy
quantifiers from a language of the first-ordered fuzzy logic with fuzzy quan-
tifiers. The syntax and semantics of the first-ordered fuzzy logic with fuzzy
quantifiers is also introduced and some tautologies of this logic are shown.
This chapter, except for the part “Using cardinalities of fuzzy set”, could be
read only with the knowledge of the basic notions and the notions from the
section 2.2.

Other properties and definitions of some notions from Chapter 1, which
could help to easier readability of this thesis, are summarized in Appendix.

Conclusion contains a brief summary of the achieved results with a dis-
cussion on a further progress.

References contain a list of items which mostly inspired the author. All
references are cited in the text.

List of symbols contains nearly all symbols that occur in the text to
simplify the reader’s orientation in them.

Index contains the most relevant terms.



Chapter 1

Preliminaries

The mathematical sciences particularly exhibit order, symmetry, and
limitation; and these are the greatest forms of the beautiful.

Aristotle (Metaphysica, 3-1078b, ca 330 BC)

This chapter is devoted to the mathematical background which is used in our
work. The first section gives a brief survey of values structures to model the
membership degrees of fuzzy sets and the truth values of logical formulas. For
our modeling we chose the complete residuated lattices as a basic structure,
because they seem to be suitable for general interpreting logical operations.
Further, we introduce a dual structure to the residuated lattice, called dually
residuated lattice. Using both types of residuated lattices we may establish
fuzzy sets cardinality in a more general framework. The cardinality of fuzzy
sets are then introduced in the chapter 3. A survey of fuzzy sets notions
is given in the second section. In the fourth section the fuzzy algebras are
introduced. They are used for modeling of fuzzy quantifiers in chapter 4.
The last section is devoted to the convexity of fuzzy sets. The classical
definition of fuzzy sets convexity is extended and also a convexity preservation
by mappings, defined using the Zadeh extension principle, is investigated
here.

1.1 Residuated and dually residuated lattices

In this thesis we suppose that the structure of truth values is a residuated
lattice, i.e. an algebra L = 〈L,∧,∨,→,⊗,⊥,>〉 with four binary opera-
tions and two constants such that 〈L,∧,∨,⊥,>〉 is a lattice, where ⊥ is the
least element and > is the greatest element of L, respectively, 〈L,⊗,>〉 is
a commutative monoid (i.e. ⊗ is associative, commutative and the identity
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2 Residuated and dually residuated lattices

a⊗> = a holds for any a ∈ L) and the adjointness property is satisfied, i.e.

a ≤ b → c iff a⊗ b ≤ c (1.1)

holds for each a, b, c ∈ L (≤ denotes the corresponding lattice ordering). The
operations ⊗ and → are called multiplication and residuum, respectively.
Note that the residuated lattices have been introduced by M. Ward and
R. P. Dilworth in [96]. Since the operations ∧ and ⊗ have a lot of common
properties, which may be used for various alternative constructions, in this
work we will denote them, in general, by the symbol θ. Thus, if we deal with
the operation θ, then we will consider either the operation ∧ or the operation
⊗, whereas none of them is specified. A residuated lattice is called complete
or linearly ordered , if 〈L,∧,∨,⊥,>〉 is a complete or linearly ordered lattice,
respectively. A residuated lattice L is divisible, if a⊗ (a → b) = a ∧ b holds
for arbitrary a, b ∈ L. Further, a residuated lattice satisfies the prelinearity
axiom (or also Algebraic Strong de Morgan Law), if (a → b) ∨ (b → a) = >
holds for arbitrary a, b ∈ L, and it keeps the law of double negation, if (a →
⊥) → ⊥ = a holds for any a ∈ L. A divisible residuated lattice satisfying
the axiom of prelinearity is called the BL-algebra, where ‘BL’ denotes “basic
logic”. This algebra has been introduced by P. Hájek as a basic structure
for many-valued logic (see e.g. [41]). A divisible residuated lattice satisfying
the low of double negation is called the MV-algebra, where ‘MV’ denotes
“many valued”. This algebra has been introduced by C.C. Chang in [10] as
an algebraic system corresponding to the ℵ0-valued propositional calculus.
For interested readers, we refer them to [11]. An overview of basic properties
of the (complete) residuated lattices may be found in [2,43,72,74] or also in
Appendix A.1.

Example 1.1.1. An algebra LB = 〈{⊥,>},∧,∨,→,⊥,>〉, where → is the
classical implication (the multiplication ⊗ = ∧), is the simplest residuated
lattice called the Boolean algebra for classical logic. In general, every Boolean
algebra is a residuated lattice, if we put a → b = a′ ∨ b, where a′ denotes the
complement of a.

Example 1.1.2. Let n ≥ 2 be a natural number and L = {0, 1
n
, 2

n
, . . . , n−1

n
, 1}.

Then Ln+1 = 〈L, min, max,⊗,→, 0, 1〉, where a⊗ b = max(a + b− 1, 0) and
a → b = min(1, 1− a + b), is the residuated lattice called the n + 1 elements
ÃLukasiewicz chain. Note that this algebra is a subalgebra of the ÃLukasiewicz
algebra on the unit interval, that will be defined later, and this is an example
of the finite MV -algebra.

A very important group of complete residuated lattices is the group of
residuated lattices on the unit interval which are determined by the left con-
tinuous t-norms. These residuated lattices will be denoted by LT , where T
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denotes the considered left continuous t-norm. Here we will mention just
three complete residuated lattices determined by well known left continu-
ous t-norms, namely by the minimum, product and ÃLukasiewicz conjunction.
Note that these residuated lattices are special cases of the BL-algebra. For
more information about the t-norms and complete residuated lattices, deter-
mined by the left continuous t-norms, we refer to Appendix A.3 or to some
specialized literature as e.g. [56].

Example 1.1.3. Let TM be the minimum and →M be defined as follows

a→Mb =

{
1, a ≤ b,
b, otherwise.

(1.2)

Then LM = 〈[0, 1],∧,∨,→M, 0, 1〉 is the complete residuated lattice called
the Gödel algebra. The Gödel algebra is a special case of the more general
algebra, called the Heyting algebra, used in the intuitionistic logic.

Example 1.1.4. Let TP be the product t-norm and →P be defined as follows

a→Pb =

{
1, a ≤ b,
b
a
, otherwise.

(1.3)

Then LP = 〈[0, 1],∧,∨, TP,→P, 0, 1〉 is the complete residuated lattice called
the Goguen algebra (or also the product algebra) and used in the product
logic (see e.g. [41]).

Example 1.1.5. Let TÃL be the ÃLukasiewics conjunction and →ÃL is defined as
follows

a→ÃLb = min(1− a + b, 1). (1.4)

Then LÃL〈[0, 1],∧,∨, TÃL,→ÃL, 0, 1〉 is the complete residuated lattice called
the ÃLukasiewicz algebra. The ÃLukasiewicz algebra is a special case of infinite
MV -algebra used in the ÃLukasiewicz logic (see e.g. [11,41,74]).

We may introduce additional operations of residuated lattices using the
basic ones. Here we restrict ourselves on the operation biresiduum, which
interprets the logical connection equivalence, and negation. The biresiduum
in L is a binary operation ↔ on L defined by

a ↔ b = (a → b) ∧ (b → a). (1.5)

The negation in L is a unary operation ¬ on L defined by ¬a = a → ⊥.
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Example 1.1.6. For the Gödel, Goguen and ÃLukasiewicz algebra the operation
of biresiduum is given by

a↔Mb = min(a, b), (1.6)

a↔Pb = min(
a

b
,
b

a
), (1.7)

a↔ÃLb = 1− |a− b|, (1.8)

respectively, where we establish a
0

= 1 for any a ∈ [0, 1].

Example 1.1.7. For the Gödel, Goguen and ÃLukasiewicz algebra the operation
of negation is given by

¬Ma = ¬Pa =

{
1, if a = 0,
0, otherwise,

(1.9)

¬ÃLa = 1− a, (1.10)

respectively. We can see that the ÃLukasiewicz negation, contrary to the
Gödel and Goguen ones, is very natural from the practical point of view and
therefore the ÃLukasiewicz algebra is useful and popular in applications.

The following theorem gives a basic list of the biresiduum properties,
which are often used in our work.

Theorem 1.1.1. (basic property of biresiduum) Let L be a residuated
lattice. Then the following items hold for arbitrary a, b, c, d ∈ L:

a ↔ a = >, (1.11)

a ↔ b = b ↔ a, (1.12)

(a ↔ b)⊗ (b ↔ c) ≤ a ↔ c, (1.13)

(a ↔ b)⊗ (c ↔ d) ≤ (a⊗ c) ↔ (b⊗ d), (1.14)

(a ↔ b)⊗ (c ↔ d) ≤ (a → c) ↔ (b → d), (1.15)

(a ↔ b) ∧ (c ↔ d) ≤ (a ∧ c) ↔ (b ∧ d), (1.16)

(a ↔ b) ∧ (c ↔ d) ≤ (a ∨ c) ↔ (b ∨ d). (1.17)

Moreover, let L be a complete residuated lattice. Then the following items
hold for arbitrary sets {ai | i ∈ I}, {bi | i ∈ I} of elements from L over an
arbitrary set of indices I:

∧
i∈I

(ai ↔ bi) ≤ (
∧
i∈I

ai) ↔ (
∧
i∈I

bi), (1.18)

∧
i∈I

(ai ↔ bi) ≤ (
∨
i∈I

ai) ↔ (
∨
i∈I

bi). (1.19)
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Proof. It could be found in e.g. [2, 74].

Obviously, the operation of multiplication may be extended also for an
arbitrary finite number of arguments (n ≥ 1) by

⊗n
i=1 ai = a1 ⊗ · · · ⊗ an. If

we put > as the result of multiplication for the case n = 0, then we will also
use the notation

⊗
i∈I ai for an arbitrary finite index set I1. In our work an

extension of this finite operation to the countable (i.e. finite or denumerable)
number of arguments is needed. This extension may be done by applying
infimum to the finite multiplication as follows. Let {ai | i ∈ I} be a set
of elements from L over a countable set of indices I, then the countable
multiplication is given by

⊗
i∈I

ai =
∧

I′∈Fin(I)

⊗

i∈I′
ai, (1.20)

where Fin(I) denotes the set of all finite subsets of the set of indices I. Some-
times, we will also write

⊗∞
i=1 ai for a sequence a1, a2, . . . of elements from the

support L. It is easy to see that we can write
⊗∞

i=1 ai =
∧∞

t=1

⊗t
k=1 ak. The

following theorem gives some properties of the denumerable multiplication.

Theorem 1.1.2. Let L be a complete residuated lattice. Then the follow-
ing items hold for arbitrary elements a1, a2, . . . and b1, b2, . . . from L and a
permutation π : N → N :

∞⊗
i=1

ai =
∞⊗
i=1

aπ(i), (1.21)

(
m⊗

i=1

ai)⊗ (
∞⊗

i=m+1

ai) ≤
∞⊗
i=1

ai, (1.22)

(
∞⊗
i=1

ai)⊗ (
∞⊗
i=1

bi) ≤
∞⊗
i=1

(ai ⊗ bi), (1.23)

∞⊗
i=1

(ai ↔ bi) ≤ (
∞⊗
i=1

ai) ↔ (
∞⊗
i=1

bi), (1.24)

Moreover, if L is an MV-algebra, then the inequalities in (1.22) and (1.23)
may be replaced by the equalities.

Proof. Let a1, a2, . . . and b1, b2, . . . be arbitrary elements from L and π : N →
N be a permutation. Put mn = maxk=1,...,n π(k) for every n ∈ N . Since
{aπ(k)}n

k=1 ⊆ {ak}mn
k=1 holds for every n ∈ N , then we have

⊗n
k=1 aπ(k) ≥

1In this work, the empty set is considered as a finite set.
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⊗mn

k=1 ak for every n ∈ N (due to monotony of ⊗) and hence we obtain⊗∞
i=1 aπ(i) =

∧∞
n=1

⊗n
k=1 aπ(k) ≥

∧∞
n=1

⊗mn

k=1 ak =
⊗∞

i=1 ai. Analogously,
we can put nm = maxk=1,...,m π−1(k) for every m ∈ N . Since {ak}m

k=1 ⊆
{aπ(k)}nm

k=1 holds for every m ∈ N , then we have
⊗m

k=1 ak ≥
⊗nm

k=1 aπ(k) for
every m ∈ N and hence we obtain

⊗∞
i=1 ai ≥

⊗∞
i=1 aπ(i). Thus, the equal-

ity (1.21) is proved. Due to (A.16), we have (
⊗m

i=1 ai) ⊗ (
⊗∞

i=m+1 ai) =

(a1⊗ · · ·⊗ am)⊗∧∞
t=m+1

⊗t
i=m+1 ai ≤

∧∞
t=m+1(a1⊗ · · ·⊗ am)⊗⊗t

i=m+1 ai =∧∞
t=1

⊗t
i=1 ai =

⊗∞
i=1 ai. Hence, the inequality (1.22) is proved. Analo-

gously, we have (
⊗∞

i=1 ai) ⊗ (
⊗∞

i=1 bi) = (
∧∞

s=1

⊗s
i=1 ai) ⊗ (

∧∞
r=1

⊗r
i=1 bi) ≤∧∞

s=1

∧∞
r=1(

⊗s
i=1 ai ⊗

⊗r
i=1 bi) =

∧∞
t=1

⊗t
i=1(ai ⊗ bi) =

⊗∞
i=1(ai ⊗ bi), where

the second equality follows from the fact that to each couple (r, s) there ex-
ists t such that

⊗s
i=1 ai ⊗

⊗r
i=1 bi ≥

⊗t
i=1(ai ⊗ bi) and hence we obtain the

inequality
∧∞

s=1

∧∞
r=1(

⊗s
i=1 ai ⊗

⊗r
i=1 bi) ≥

∧∞
t=1

⊗t
i=1(ai ⊗ bi). Similarly, to

each t there exists a couple (r, s) such that
⊗s

i=1 ai⊗
⊗r

i=1 bi ≤
⊗t

i=1(ai⊗bi)
and hence the opposite inequality is obtained. Thus, the inequality (1.23)
is also true. Finally, due to (1.15) and (1.18), we have

⊗∞
i=1(ai ↔ bi) =∧∞

t=1

⊗t
i=1(ai ↔ bi) ≤

∧∞
t=1

(
(
⊗t

i=1 ai) ↔ (
⊗t

i=1 bi)
) ≤ (

∧∞
t=1

⊗t
i=1 ai) ↔

(
∧∞

t=1

⊗t
i=1 bi) = (

⊗∞
i=1 ai) ↔ (

⊗∞
i=1 bi) and thus the inequality (1.24) is

also proved. The rest of the proof follows from the distributivity of ⊗ over
∧, which holds in each MV-algebra.

Remark 1.1.8. The equality (1.21) states that the countable multiplication
is commutative. Unfortunately, the inequalities (1.22) and (1.23) state that
the countable multiplication is not associative, in general. Particularly, the
associativity of countable multiplication is satisfied, if L is a complete MV-
algebra.

Remark 1.1.9. The inequalities (1.18) and (1.24) will be occasionally written
in more general form (i.e. θ ∈ {∧,⊗}) to simplify expressions as follows

Θ
i∈I

(ai ↔ bi) ≤ ( Θ
i∈I

ai) ↔ ( Θ
i∈I

bi), (1.25)

where countable sets {ai | i ∈ I} and {bi | i ∈ I} of elements from L are
supposed.

In order to introduce the cardinalities of fuzzy sets, a dual structure to
the residuated lattice is needed here. An algebra Ld = (L,∧,∨,⊕,ª,⊥,>)
is called the dually residuated lattice, if 〈L,∧,∨,⊥,>〉 is a lattice, where ⊥ is
the least element and > is the greatest element of L, respectively, 〈L,⊕,⊥〉
is a commutative monoid and the (dual) adjointness property is satisfied, i.e.

a ≤ b⊕ c iff aª b ≤ c (1.26)
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holds for each a, b, c ∈ L (≤ denotes the corresponding lattice ordering). A
dually residuated lattice is called complete, if 〈L,∧,∨,⊥,>〉 is a complete
lattice. The operations ⊕ and ª will be called addition and difference, re-
spectively. Note that we have not found references to the dually residuated
lattices in this form. The dually residuated lattices generalize the bounded
commutative dually residuated lattice ordered monoids (DRl-monoids for
short) that are a special case of the dually residuated lattice ordered semi-
group. For interested reader we refer to [18, 77–79, 88–90]. Analogously to
the denotation θ, the operations ∨ and ⊕ will be denoted, in general, by the
symbol θ and if we deal with θ, then we will consider either the operation ∨
or the operation ⊕, whereas none of them is specified further. Moreover, if
L1 and Ld

2 are a residuated and dually residuated lattices, respectively, then
the couple 〈∧1,∨2〉 or the couple 〈⊗1,⊕2〉 can be understood as a couple of
the “dual” operations2. Therefore, the couple of operations θ and θ will be
also considered as the couple of dual operations. For instance, if θ = ∧1 is
supposed, then we have θ = ∧1 = ∨2.

Example 1.1.10. The algebra Ld
B = 〈{0, 1},∧,∨,ª, 0, 1〉, where a ª b = 0 ∨

(a− b) (the addition ⊕ = ∨), is the simplest dually residuated lattice called
the dual Boolean algebra. It is the dual algebra to the Boolean algebra LB

from Ex. 1.1.1.

Example 1.1.11. The algebra R+
0 = 〈[0,∞],∧,∨,⊕,ª, 0,∞〉, where ∞ is the

symbol for infinity and for every a, b ∈ [0,∞] we have

a⊕ b =

{
a + b, a, b ∈ [0,∞),
∞, otherwise

and

aª b =





0 ∨ (a− b), a, b ∈ [0,∞),
0, b = ∞,
∞, otherwise,

is the complete dually residuated lattice of non-negative real numbers .

The following three complete dually residuated lattices are dual to the
residuated lattices from Ex. 1.1.3, 1.1.4 and 1.1.5. It is known that each
t-norm has the dual operation called t-conorm. Hence, an analogical con-
struction to the construction of complete residuated lattices, determined by
the left continuous t-norms, leads to the dually residuated lattices deter-
mined by the right continuous t-conorms. Again, more information about

2These dual relations between the mentioned operations could be well seen, if a homo-
morphism between residuated and dually residuated lattices is introduced (see p. 11).
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the mentioned problems could be found in Appendix C or in some special-
ized literature as e.g. [56].

Example 1.1.12. Let SM be the maximum and ªM be defined as follows

aªMb =

{
0, a ≤ b,
a, otherwise.

Then Ld
M = 〈[0, 1],∧,∨,ªM, 0, 1〉 is the complete dually residuated lattice,

which is dual to the Gödel algebra LM, and it will be called the dual Gödel
algebra.

Example 1.1.13. Let SP be the probabilistic sum and ªP be defined as follows

aªPb =

{
0, a ≤ b,
a−b
1−b

, otherwise.

Then Ld
P = 〈[0, 1],∧,∨, SP,ªP, 0, 1〉 is the complete dually residuated lattice,

which is dual to the Goguen algebra LP, and it will be called the dual Goguen
algebra.

Example 1.1.14. Let SÃL be the ÃLukasiewicz conjunction and ªÃL be defined
as follows

aªÃLb = max(a− b, 0).

Then Ld
ÃL = 〈[0, 1],∧,∨, SÃL,ªÃL, 0, 1〉 is the complete dually residuated lattice,

which is dual to the ÃLukasiewicz algebra LÃL, and it will be called the dual
ÃLukasiewicz algebra.

Analogously to the residuated lattices, an additional operations may be
introduced in the dually residuated lattices using the basic ones. Here, we
restrict ourselves to the operations of bidifference and negation. A bidiffer-
ence (or better absolute difference) in Ld is a binary operation | ª | on L
defined by

|aª b| = (aª b) ∨ (bª a). (1.27)

The (dual) negation in Ld is a unary operation ¬ on L defined by ¬a = >ªa.

Example 1.1.15. For the dual Gödel, Goguen and ÃLukasiewicz algebra the
operation of bidifference is given by, respectively:

|aªMb| = max(a, b), (1.28)

|aªPb| = |a− b|
1−min(a, b)

, (1.29)

|aªÃLb| = |a− b|, (1.30)

where we establish 0
0

= 0.
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The following theorem gives a list of the bidifference properties. It is
interesting to compare the properties of biresiduum and bidifference in order
to see some natural consequences of the dualism.

Theorem 1.1.3. (basic properties of bidifference) Let Ld be a dually
residuated lattice. Then the following items hold for arbitrary a, b, c, d ∈ L:

|aª a| = ⊥, (1.31)

|aª b| = |bª a|, (1.32)

|aª c| ≤ |aª b| ⊕ |bª c|, (1.33)

|(a⊕ b)ª (c⊕ d)| ≤ |aª c| ⊕ |bª d|, (1.34)

|(aª b)ª (cª d)| ≤ |aª c| ⊕ |bª d|, (1.35)

|(a ∧ b)ª (c ∧ d)| ≤ |aª c| ∨ |bª d|, (1.36)

|(a ∨ b)ª (c ∨ d)| ≤ |aª c| ∨ |bª d|. (1.37)

Let Ld be a complete residuated lattice. Then the following items hold for
arbitrary sets {ai | i ∈ I}, {bi | i ∈ I} of elements from L over an arbitrary
set of indices I:

|
∧
i∈I

ai ª
∧
i∈I

bi| ≤
∨
i∈I

|ai ª bi|, (1.38)

|
∨
i∈I

ai ª
∨
i∈I

bi| ≤
∨
i∈I

|ai ª bi|. (1.39)

Proof. We will prove only the equalities (1.36) and (1.37). The rest could
be done by analogy. In the first case, it is sufficient to prove the inequality
(a ∧ b) ≤ (|a ª c| ∨ |b ª d|) ⊕ (c ∧ d). The rest follows from adjointness
and symmetry of the formula. Obviously, (|a ª c| ∨ |b ª d|) ⊕ (c ∧ d) ≥
((aªc)∨ (bªd))⊕ (c∧d) = (((aªc)∨ (bªd))⊕c)∧ (((aªc)∨ (bªd))⊕d) ≥
((a ª c) ⊕ c) ∧ ((b ª d) ⊕ d) ≥ a ∧ b, where distributivity of ⊕ over ∧ and
(A.19) are used. In the second case, it is sufficient to prove the inequality
|a ª c| ⊕ |b ª d| ⊕ (c ª d) ≥ a ª b. Obviously, |a ª c| ⊕ |b ª d| ⊕ (c ª d) ≥
(a ª c) ⊕ (d ª b) ⊕ (c ª d) ≥ (a ª d) ⊕ (d ª b) ≥ (a ª b), where (A.26) is
applied twice.

Similarly to the previous part, we extend the operation of addition to a
countable number of arguments. This extension may be easily done by using
of supremum applied to the finite addition as follows. Let {ai | i ∈ I} be a
set of elements from L over a countable set of indices I, then the countable
addition is given by

⊕
i∈I

ai =
∨

I′∈Fin(I)

⊕

i∈I′
ai, (1.40)
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where we establish
⊕

i∈∅ ai = ⊥ and
⊕

i∈I ai =
⊕n

i=1 ai = a1⊕· · ·⊕an, when-
ever I = {1, . . . , n}. Sometimes, we will also write

⊕∞
i=1 ai for a sequence

a1, a2, . . . of elements from L. Again, we can write
⊕∞

i=1 ai =
∨∞

t=1

⊕t
k=1 ak.

Note that MV-algebras are examples of residuated lattices, where we may
define dually residuated lattices (on the same supports) using the operations
⊗, → and the least element ⊥ (see e.g. [2, 11,74]). Both structures are then
isomorphic.

Theorem 1.1.4. Let L be a complete dually residuated lattice. Then the
following items hold for arbitrary elements a1, a2, . . . and b1, b2, . . . from L
and a permutation π : N → N :

∞⊕
i=1

ai =
∞⊕
i=1

aπ(i), (1.41)

(
m⊕

i=1

ai)⊕ (
∞⊕

i=m+1

ai) ≥
∞⊕
i=1

ai, (1.42)

(
∞⊕
i=1

ai)⊕ (
∞⊕
i=1

bi) ≥
∞⊕
i=1

(ai ⊕ bi), (1.43)

⊕
i∈I

|ai ª bi| ≥ |
⊕
i∈I

ai ª
⊕
i∈I

bi|. (1.44)

Moreover, if L is an MV-algebra, then the inequalities (1.42) and (1.43) may
be replaced by the equalities.

Proof. It could be done by analogy to the proof of Theorem 1.1.2.

Remark 1.1.16. The equality (1.41) states that the countable addition is
commutative. Again, due to the inequalities (1.42) and (1.43), the countable
addition is not associative, in general. Particularly, the associativity of the
countable addition is satisfied, if L is a complete MV-algebra.

Remark 1.1.17. The inequalities (1.34)and (1.37) will be occasionally written
in a more general form to simplify expressions as follows

∣∣∣∣Θ
i∈I

ai ªΘ
i∈I

bi

∣∣∣∣ ≤Θ
i∈I

|ai ª bi|, (1.45)

where countable sets {ai | i ∈ I} and {bi | i ∈ I} of elements from L are
supposed.

Let L1, L2 be (complete) residuated lattices and Ld
1 , Ld

2 be (complete)
dually residuated lattices. A mapping h : L1 → L2 is a (complete) homo-
morphism h : L1 → L2 of the (complete) residuated lattices L1 and L2, if h
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preserves the structure, i.e. h(a ∧1 b) = h(a) ∧2 h(b) (h(
∧

1 bi) =
∧

2 h(bi)),
h(a ∨1 b) = h(a) ∨2 h(b) (h(

∨
1 bi) =

∨
2 h(bi)), h(a ⊗1 b) = h(a) ⊗2 h(b)

and h(a →1 b) = h(a) →2 h(b). Analogously, a (complete) homomorphism
h : Ld

1 → Ld
2 of the dually (complete) residuated lattices can be introduced.

Further, a mapping h : L1 → L2 is a homomorphism h : L1 → Ld
2 of the

(complete) residuated lattice L1 to the (complete) dual residuated lattice Ld
2,

if f preserves the operations of L1 to the corresponding dual operations of
Ld

2, i.e. h(a∧1 b) = h(a)∨2 h(b) (h(
∧

1 bi) =
∨

2 h(bi)), h(a∨1 b) = h(a)∧2 h(b)
(h(

∨
1 bi) =

∧
2 h(bi)), h(a⊗1 b) = h(a)⊕2 h(b) and h(a →1 b) = h(b)ª2 h(a).

Finally, a mapping h : L1 → L2 is a homomorphism h : Ld
1 → L2 of the (com-

plete) residuated lattice Ld
1 to the (complete) dual residuated lattice L2, if

h preserves the operations of Ld
1 to the corresponding dual operations of L2,

i.e. h(a ∧1 b) = h(a) ∨2 h(b) (h(
∧

1 bi) =
∨

2 h(bi)), h(a ∨1 b) = h(a) ∧2 h(b)
(h(

∨
1 bi) =

∧
2 h(bi)), h(a⊕1 b) = h(a)⊗2 h(b) and h(aª1 b) = h(b) →2 h(a).

Note that if some operation can be defined using other operations (e.g.
a → b =

∨{c ∈ L | a⊗c ≤ b} in a complete residuated lattice), then to verify
the homomorphism, it is sufficient to show that the mapping preserves the
other operations (i.e. the preserving ⊗ and

∨
in the previous case). A ho-

momorphism h is called the monomorphism, epimorphism and isomorphism,
if the mapping h is the injection, surjection and bijection, respectively.

An example of the isomorphism from L1 onto Ld
2 could be easily construct

on the unit interval [0, 1] as the following theorem shows. Recall that between
the t-norms and t-conorms there is very important relation showing that the
t-norms and t-conorms are the dual operations on [0, 1]. Precisely, if T is a
t-norm, then the corresponding t-conorm is given by

S(a, b) = 1− T (1− a, 1− b). (1.46)

Obviously, the dual operation to a dual operation is the original one.

Theorem 1.1.5. Let LT be a complete residuated lattice determined by a
left continuous t-norm, LS be a complete dually residuated lattice determined
by a right continuous t-conorm. If S is the t-conorm such that T and S
satisfy (1.46), then the mapping h : [0, 1] → [0, 1], given by h(a) = 1 − a, is
a complete isomorphism from LT onto LS.

Proof. Let {ai ∈ [0, 1] | i ∈ I} be a nonempty family. Then h(
∧

i∈I ai) =
1 − ∧

i∈I ai =
∨

i∈I(1 − ai) =
∨

i∈I h(a). Similarly, we obtain h(
∨

i∈I ai) =∧
i∈I h(ai). Further, we have h(T (a, b)) = 1 − T (a, b) = S(1 − a, 1 − b) =

S(h(a), h(b)). The rest of the properties of h follows from the fact that the
biresiduum →T is uniquely determined by T and ∨.
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1.2 Fuzzy sets

Let L and Ld be a complete residuated lattice and dually residuated lattice,
respectively, and X be a nonempty set. An L-set or dually an Ld-set in X is
a mapping A : X → L, where L is a support of L or Ld, respectively3. The
set X is called the universe of discovering and A(x) is called the membership
degree of x in the L-set or Ld-set A. In general, the L-sets and Ld-sets
will be called the fuzzy sets . The set of all L-sets and Ld-sets in X will
be denoted by FL(X) and FLd(X), respectively, or shortly F(X) for both
cases, if the considered lattices are known or their specifications are not
needed. Let A be a fuzzy set (i.e. an L-set or Ld-set) in X, then the set
Aa = {x ∈ X | A(x) ≥ a} is called the a-cut of fuzzy set A. Moreover,
the set Ad

a = {x ∈ X | A(x) ≤ a} is called the dual a-cut of fuzzy set A.
The set Supp(A) = {x ∈ X | A(x) > 0} is called the support of the fuzzy
set A. Obviously, it can be written Supp(A) = X \ Ad

⊥. The fuzzy set ∅
in X, defined by ∅(x) = ⊥, is called the empty fuzzy set. A fuzzy set A
in X, given by its characteristic mapping χA : X → {⊥,>}, is called the
crisp set and a fuzzy set A in X such that A(x) > ⊥ for some x ∈ X and
A(y) = ⊥ for all y ∈ X with y 6= x is called singleton. Recall that a set
whose members can be labeled by the natural numbers is called a countable
set. Countable sets are classified into finite or countable infinite (or also
denumerable). A set which is not countable is called uncountable. We use
also this terminology for classifying fuzzy sets (i.e. L-sets and Ld-sets). We
say that a fuzzy set A is countable (i.e. finite or denumerable), if the set
Supp(A) is countable (finite or denumerable). In the opposite case, we say
that the fuzzy set is uncountable. Note that countable fuzzy sets can be
also defined over uncountable universes. The set of all countable (finite)
L-sets or Ld-sets in a universe X will be denoted by FCL(X) or FCLd(X)
(FIN L(X) or FIN Ld(X)), respectively, and sometimes we will use shortly
FC(X) analogously as in the case F(X) (FIN (X)). Let A,B be arbitrary
fuzzy sets on X. We say, that A is less than or equal to B or B is greater
than or equal to A, if A(x) ≤ B(x) holds for every x ∈ X. It is easy to see
that this relation is a relation of partial ordering on the set F(X) and we
say that (F(X),≤) is a partial ordered set or shortly po-set of all fuzzy sets
over X.

Example 1.2.1. Let L and Ld be residuated and dually residuated lattice over
the unit interval, X = {x1, . . . , x5} be a universe and

A = {0.8/x1, 0.3/x2, 0.5/x3, 0/x4, 1/x5}
3The notion of L-sets (precisely L-fuzzy sets) was introduced by J.A. Goguen in [35].
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be a finite fuzzy set in X, i.e. an L-set or also Ld-set in X. Then, for
example, A0.5 = {x1, x3, x5} and Ad

0.5 = {x2, x3, x4} are the a-cut and dual
a-cut of the fuzzy set A, respectively. Moreover, obviously A0 = Ad

1 = X.

1.3 Fuzzy algebra

Let L be a complete residuated lattice and X be a nonempty universe. The
operations with common sets as union, intersection, complement of set etc.,
can be naturally extended to the appropriate operations with L-sets as follows

(A ∪B)(x) = A(x) ∨B(x), (1.47)

(A ∩B)(x) = A(x) ∧B(x), (1.48)

A(x) = A(x) → ⊥. (1.49)

Moreover, using the operations ⊗ and →, we can establish additional oper-
ations as follows

(A⊗B)(x) = A(x)⊗B(x), (1.50)

(A → B)(x) = A(x) → B(x). (1.51)

Obviously, we have A → ∅ = A. A subset A of FL(X) will be called the
fuzzy algebra over X, if the following conditions are satisfied

(i) ∅, X ∈ A,

(ii) if A ∈ A, then A ∈ A,

(iii) if A, B ∈ A, then A ∪B ∈ A.

Typical examples of fuzzy algebras are the set FL(X) and the power set of X,
i.e. P(X). For interested reader we refer to [82, 95], where many examples
and properties of fuzzy algebras could be found. Analogously, it could be
defined operations with Ld-sets and a fuzzy algebra for Ld-sets, but we will
not do it here.

1.4 Convex fuzzy sets

An important notion in fuzzy set theory is the notion of convex fuzzy set
which has been studied in greater detail by R. Lowen [65] and Y.M. Liu [62].
The convex fuzzy sets are often constructed on a Cartesian product of the set
of real numbers Rn and the definition is naturally derived from the convexity
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of a-cuts of fuzzy sets. In particular, a fuzzy set (precisely L-set) A over Rn

is convex, if each a-cut of A is a convex subset of Rn. It is easy to see that
an equivalent definition of convexity could be stated as follows. Let ≤ be
the partial ordering on Rn defined by (x1, . . . , xn) ≤ (y1, . . . , yn), if xi ≤ yi

for any i = 1, . . . , n. Then a fuzzy set A is convex, if A(x) ∧ A(z) ≤ A(y)
holds for arbitrary x, y, z ∈ Rn such that x ≤ y ≤ z. We can see that the
convexity of fuzzy sets is closely related to a partial ordered set and to a
suitable operation of the residuated lattice. A generalization of the notion of
convex L-set may be given as follows.

Let L be a complete residuated lattice, (X,≤) be a partial ordered set and
θ ∈ {∧,⊗}. We say that the L-set A over X is θ-convex, if A(x)θA(z) ≤ A(y)
holds for arbitrary x, y, z ∈ X such that x ≤ y ≤ z. The set of all θ-convex
L-sets over X is denoted by CVθ

L(X).

Example 1.4.1. Let LÃL be the ÃLukasiewicz algebra (see Example 1.1.5) and
(N−0

ω ,≤) be the linearly ordered set of all natural numbers without zero
extended by the first infinite cardinal, where ≤ is the common linear ordering
of natural numbers (n < ω for any n ∈ N). An example of the θ-convex LÃL-
set (called a generalized extended natural number) could be given by A(n) = 1

n

for any n 6∈ {0, ω} and A(ω) = 0. Let a, b ∈ [0, 1] be two numbers such that
a > b and 2a−1 < b (consider e.g. a = 0.7 and b = 0.5). Then an example of
TL-convex LÃL-set which is not ∧-convex could be easily given by the following
formula

A(n) =

{
a, n is even number,
b, n is odd number.

Obviously, the ⊗-convexity of L-sets does not correspond to the original idea
of convex a-cuts, in general. On the other hand, the ⊗-convexity has “nicer”
properties (due to distributivity ⊗ over ∨) than ∧-convexity, if we deal with
general residuated lattices.

Let f : X1 × · · · × Xn → Y be an arbitrary mapping. If we want to
extend this mapping to a mapping f̂ θ : FL(X1) × · · · × FL(Xn) → FL(Y )
assigning an L-set over Y to each n-tuple L-sets over X1, . . . , Xn, we can use
the Zadeh extension principle4 defined (in the more general form) as follows

f̂ θ(A1, . . . , An)(y) =
∨

(x1,...,xn)∈∏n
i=1

Xi
f(x1,...,xn)=y

A1(x1)θ · · · θAn(xn), (1.52)

4Note that Zadeh extension principle was introduced in [121]. It was and still is a very
powerful tool of the fuzzy set theory with many practical applications of fuzzy sets to
various areas of research.
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where (A1, . . . , An) ∈ FL(X1)×· · ·×FL(Xn). Note that if f(x1, . . . , xn) 6= y

holds for every xi ∈ Xi, i = 1, . . . , n, then f̂ θ(A1, . . . , An)(y) =
∨ ∅ = ⊥.

Now we may ask the question: When is the convexity of L-sets preserved by
the Zadeh extension principle? Formally speaking, when f̂ θ(A1, . . . , An) ∈
CVL(Y ) holds for any (A1, . . . , An) ∈ CVL(X1) × · · · × CVL(Xn). The fol-
lowing theorem states some necessary conditions for the preservation of the
convexity of L-sets by f̂ θ. Recall that a residuated lattice is divisible, if
a∧ b = a⊗ (a → b) is satisfied for any a, b ∈ L. In this case the distributivity
of ∧ over ∨ is fulfilled.

Theorem 1.4.1. Let (X1,≤1), . . . , (Xn,≤n) be arbitrary linearly ordered sets
and (Y,≤) be an arbitrary partial ordered set. Let f : X1 × · · · ×Xn → Y be
a surjective mapping such that for every (x1, . . . , xn), (z1, . . . , zn) ∈ ∏n

i=1 Xi

and for every y ∈ Y , where f(x1, . . . , xn) ≤ y ≤ f(z1, . . . , zn), there exists
(y1, . . . , yn) ∈ ∏n

i=1 Xi satisfying the following conditions

(i) f(y1, . . . , yn) = y,

(ii) xi ≤i yi ≤i zi or zi ≤i yi ≤i xi hold for every i = 1, . . . , n.

Then f̂⊗ preserves ⊗-convexity of L-sets. Moreover, if L is divisible, then
f̂∧ preserves ∧-convexity of L-sets.

Proof. Let f : X1 × · · · ×Xn → Y be a mapping satisfying the presumption
of the theorem. Further, let A1, . . . , An be arbitrary θ-convex L-sets over
X1, . . . , Xn and x ≤ y ≤ z be arbitrary elements from Y . Since f is the
surjective mapping, then there exist n-tuples (x1, . . . , xn) and (z1, . . . , zn)
from

∏n
i=1 Xi such that f(x1, . . . , xn) = x and f(z1, . . . , zn) = z. Moreover,

from the linearity of orderings ≤i we have xi ≤ zi or zi ≤ xi for every
i = 1, . . . , n. With regard to the presumption there exists (y1, . . . , yn) ∈∏n

i=1(Xi) satisfying the conditions (i) and (ii). Since A1, . . . , An are the θ-
convex L-sets, then we have Ai(xi)θAi(zi) ≤i Ai(yi) for every i = 1, . . . , n.
Hence, for θ = ⊗ we can write

f̂⊗(A1, . . . , An)(y) =
∨

(y′1,...,y′n)∈∏n
i=1

Xi

f(y′1,...,y′n)=y

n⊗
i=1

Ai(y
′
i) ≥

∨
(x1,...,xn)∈∏n

i=1
Xi

f(x1,...,xn)=x

n⊗
i=1

Ai(xi)⊗
∨

(z1,...,zn)∈∏n
i=1

Xi
f(z1,...,zn)=z

n⊗
i=1

Ai(zi) =

f̂⊗(A1, . . . , An)(x)⊗ f̂⊗(A1, . . . , An)(z).
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If L is divisible and thus the distributivity of ∧ over ∨ is held, then the proof
of the ∧-convexity preservation is analogical to the previous one, where it is
sufficient to consider ∧ instead of ⊗.

Example 1.4.2. Let + : N × N → N be the common addition + of natural
numbers. Then by Zadeh extension principle we can extend the addition of
natural numbers to the addition of θ-convex L-sets over N as follows

(A +θ B)(i) =
∨

i1+i2=i

A(i1)θA(i2). (1.53)

Later we will prove that this definition (in a more general form) is correct.
It means that the sum of two θ-convex L-sets is again a θ-convex L-set.

Now we introduce a dual notion to the θ-convex L-sets for the Ld-sets.
In order to establish this dual notion, we have to use the dual operations
to ∧ and ⊗. Let Ld be a complete dually residuated lattice, (X,≤) be an
ordered set and θ ∈ {∨,⊕}. We say that the Ld-set A over X is θ-convex, if
A(j) ≤ A(i)θA(k) holds for any i ≤ j ≤ k. The set of all θ-convex Ld-sets

over X is denoted by CVθ
Ld(X).

Let f : X1 × · · · ×Xn → Y be an arbitrary mapping and Ai ∈ FLd(Xi),
i = 1, . . . , n, be arbitrary Ld-sets. The dual Zadeh extension principle is
defined as follows

f̂ θ(A1, . . . , An)(y) =
∧

(x1,...,xn)∈∏n
i=1

Xi
f(x1,...,xn)=y

A1(x1)θ · · · θAn(xn). (1.54)

We say that a dually residuated lattice Ld is (dually) divisible, if a ∨ b =
a⊕ (bª a) holds for every a, b ∈ L.

Theorem 1.4.2. Let (X1,≤1), . . . , (Xn,≤n) be arbitrary linearly ordered sets
and (Y,≤) be an arbitrary partial ordered set. Let f : X1 × · · · ×Xn → Y be

a surjective mapping satisfying the presumption of Theorem 1.4.1. Then f̂⊕

preserves the ⊕-convexity of the Ld-sets. Moreover, if Ld is (dually) divisible,

then f̂∨ preserves the ∨-convexity of the Ld-sets.

Proof. It is analogical to the proof of Theorem 1.4.1.



Chapter 2

Equipollence of fuzzy sets

Can a surface (say a square that includes the boundary) be uniquely
referred to a line (say a straight line segment that includes the end points)
so that for every point on the surface there is a corresponding point of the
line and, conversely, for every point of the line there is a corresponding
point of the surface? I think that answering this question would be no
easy job, despite the fact that the answer seems so clearly to be ”no”
that proof appears almost unnecessary.

George Cantor (In a letter to Dedekind dated 5 January 1874)

In the classical set theory we say that two sets are equipollent (or also bi-
jective, equipotent, equinumerous etc.), if there exists a one-to-one corre-
spondence (a bijection) between them (see e.g. [69, 83, 87]). The notion of
equipollent sets is the important notion in the modern set theory. Using this
notion we can compare the size of sets. In particular, we say that two sets
X and Y have the same cardinality and write |X| = |Y |, if they are equipol-
lent. In this case the notion of cardinality of sets has only a functional role.
In order to express the cardinality of sets as a specified object itself, the
equivalence of being equipollent on the class of all sets is introduced. This
equivalence is called the equipollence (or also equipotence, equinumerosity
etc.). Then the cardinality of a set A may be defined as its equivalence
class under equipollence or as the suitable representant of this class1 which
is called the cardinal number.

In this chapter, we will attempt to introduce an analogical notion of
equipollent sets for fuzzy sets. The notion of equipollent fuzzy sets is not
new in fuzzy sets theory. Some classical-like approaches to the notion of

1Precisely, this representant is the least ordinal number, which is the element of the
equivalence class under equipollence.

17
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equipollence of fuzzy sets, which are based on various definitions of unique-
ness of “many-valued” mappings, are presented by Sigfried Gottwald [36,37]
or Dieter Klaua [55]. These approaches are, however, rather purely theo-
retical and thus no much usable in practice. In the first book of Maciej
Wygralak [104], that is a systematical treatise of the theory of cardinality of
vague defined objects, the notion of equipollence (precisely equipotence) of
fuzzy sets has been introduced using the a-cuts and the cardinality of sets in
such a way to obtain the equality of cardinality of equipollent vague defined
objects. Some modified definitions of equipollence of fuzzy sets may be also
found in e.g. [20,107–109].

In this work, we will define the notion of equipollent fuzzy sets (pre-
cisely L-sets and Ld-sets) using the classical bijections between their uni-
verses which are, however, evaluated by some degrees of their bijectivity.
Thus this approach proposes to introduce a degree of equipollence of two
fuzzy sets, that belongs to the support of the considered residuated lattice.
Note that the equipollence of fuzzy sets is not investigated intensively here,
but rather with regard to the further requirements. Therefore, there are var-
ious problems for solution that could be inspired by the classical set theory.
Our original goal was to find a suitable tool that enable us to define fuzzy
quantifiers models, introduced in Chapter 4, in a reasonable way. A relation
between equipollency of fuzzy sets and their cardinalities is investigated in the
next chapter. In the first part, we introduce different definitions of evaluated
mappings (injections, surjections and bijections) between L-sets and Ld-sets,
where each mapping is connected with a degree of the “existence” of this
mapping. Contrary to the classical set theory, where all bijections between
two sets, if there exist, have the same importance, the different bijections
between two fuzzy sets can have different degrees of bijectivity and thus a
different importance. If we want to define a degree of fuzzy sets equipollence,
it is natural to use “the best degree” of a corresponding bijection between
them. It motivates our definition of the notion of evaluated equipollence of
fuzzy sets, which is established in the second section for L-sets and in the
third section for Ld-sets. Moreover, a relation between equipollence of count-
able fuzzy sets and similarity of special fuzzy sets is described. A preservation
of degrees of equipollence by lattices homomorphisms is investigated in the
last section.

2.1 Evaluated mappings between fuzzy sets

In this and the following sections, we will suppose that all considered uni-
verses are non-empty. Let A ∈ FL(X) and B ∈ FL(Y ) be arbitrary L-sets.
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A mapping f : X → Y is called the a∧-mapping from A to B, if

a =
∧
x∈X

(A(x) → B(f(x))). (2.1)

The value a is called the ∧-degree of the mapping f between the L-sets A
and B. Obviously, if x belongs to A in a high membership degree and f(x)
belongs to B in a low membership degree, then the mapping f : X → Y can
not be the mapping between L-sets A and B in a high degree (compare with
the crisp sets). This fact is well expressed by the formula A(x) → B(f(x)).
In order to find the degree of the mapping f between A and B, we apply
the universal quantifier which is interpreted by infimum. Note that in the
literature fuzzy mappings between fuzzy sets are often introduced as the >∧-
mapping, which is equivalent to the following definition. A mapping f is a
fuzzy mapping from A to B, if A(x) ≤ B(f(x)) holds for every x ∈ X (see
e.g. [57, 72]). We use the denomination “a∧-mapping”, because it indicates
the way of calculation of the value a, which is useful to distinguish other
types of calculation of the value a being introduced below. It is easy to show
that if f is an a∧-mapping from A to B and g is a b∧- mapping from B to C,
then the ∧-degree of the mapping g ◦f , i.e. the composition of the mappings
f and g from A to C, is greater than or equal to the value a⊗ b. In fact, it
follows from

a⊗ b =
∧
x∈X

(A(x) → B(f(x))⊗
∧
y∈Y

(B(y) → C(g(y))) ≤
∧
x∈X

(
(A(x) → B(f(x))⊗ (B(f(x)) → C(g(f(x))))

) ≤
∧
x∈X

(A(x) →C(g ◦ f(x)).

In the definition of the a∧-mapping there are used the operations ∧ and
→ of the complete residuated lattices. In order to introduce a dual notion to
a∧-mapping for Ld-sets, it is natural to replace (in a corresponding way) the
mentioned operations by their dual operations. Thus, let C ∈ FLd(X) and
D ∈ FLd(Y ) be two Ld-sets. A mapping f : X → Y is called the a∨-mapping
from C to D, if

a =
∨
x∈X

(D(f(x))ª C(x)). (2.2)

The value a is called the ∨-degree of the mapping f between the Ld-sets
C and D. Obviously, if f is an a∨-mapping from C to D and g is a b∨-
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mapping from D to E, then similarly to the previous remark the ∨-degree of
the mapping g ◦ f from C to E is less than or equal to a⊕ b. The following
lemma shows how to simplify the calculation of the ∧- and ∨-degree of the
mapping f between fuzzy sets.

Lemma 2.1.1. Let A ∈ FL(X), B ∈ FL(Y ) and C ∈ FLd(X), D ∈ FLd(Y )
be fuzzy sets and f : X → Y be a mapping. Then the values

a =
∧

x∈Supp(A)

(A(x) → B(f(x))) and b =
∨

x∈f−1(Supp(B))

(D(f(x))ª C(x))

are the ∧- and ∨-degrees of the mapping f between fuzzy sets, respectively.

Proof. If x 6∈ Supp(A), then A(x) → B(f(x)) = ⊥ → B(f(x)) = > and
analogously if x 6∈ f−1(Supp(B)), then B(f(x)) ª A(x) = ⊥ ª A(x) = ⊥.
Hence, these elements have no effect on the appropriate degree a or b of the
mapping f and thus we can restrict the calculation on Supp(A) in the first
case and f−1(Supp(B)) in the second case.

Let 41 ∈ {L1,L
d
1} and 42 ∈ {L2,L

d
2}. For any universe X a ho-

momorphism h : L1 → L2 from 41 to 42 determines a mapping h→ :
F41(X) → F42(X) that is given by h→(A)(x) = h(A(x)). Now for instance,
if f : X → Y is an a∧-mapping between L1-sets A and B and h : L1 → Ld

2

is a homomorphism from L1 to Ld
2, then f is the h(a)∧-mapping between

Ld
2-sets h→(A) and h→(B).

Example 2.1.1. Let us suppose that the membership degrees of fuzzy sets are
interpreted in the ÃLukasiewicz algebra LÃL and the dual ÃLukasiewicz algebra
Ld

ÃL. Further, let us consider two universes X = {x1, . . . , x5}, Y = {y1, . . . , y5}
and the mapping f : X → Y given by f(xi) = yi. If we put

A = {0.3/x1, 0.8/x2, 0.4/x3, 0/x4, 0/x5},
B = {0/y1, 0.6/y2, 0.9/y3, 0/y4, 0.4/y5},

then f is the 0.7∧-mapping and 0.5∨-mapping between the fuzzy sets A and
B. According to Theorem 1.1.5 the mapping h : [0, 1] → [0, 1], given by
h(a) = 1 − a, is the homomorphism of the ÃLukasiewicz algebra LÃL and the
dual ÃLukasiewicz algebra Ld

ÃL. Then we have

h→(A) = {0.7/x1, 0.2/x2, 0.6/x3, 1/x4, 1/x5},
h→(B) = {1/y1, 0.4/y2, 0.1/y3, 1/y4, 0.6/y5}.

Thus, f is the 0.3∨-mapping between h→(A) and h→(B). The same result
could be obtained by using of h to the 0.7∧-mapping, i.e. h(0.7) = 0.3.



2. Equipollence of fuzzy sets 21

Let A ∈ FL(X), B ∈ FL(Y ) and C ∈ FLd(X), D ∈ FLd(Y ) be fuzzy
sets. A mapping f : X → Y is the a∧-injection or a∨-injection from A to
B or from C to D, if f is the injection and simultaneously the a∧-mapping
or a∨-mapping, respectively. A mapping f : X → Y is the a∧-surjection or
a∨-surjection from A onto B or from C onto D, if f is the surjection2 and
simultaneously

a =
∧
y∈Y

∧
x∈X

f(x)=y

(A(x) ↔ B(y)) or a =
∨
y∈Y

∨
x∈X

f(x)=y

|C(x)ªD(y)|, (2.3)

respectively. The value a is called the M-degree of the injection (surjection)
f or M-injectivity (surjectivity) degree of the mapping f , where M∈ {∧,∨}.
We have established the M-degree of injection as the M-degree of mapping,
because we suppose that the mapping is injective (between universes) and
in this case a natural definition of the injectivity degree coincides with the
definition of the mapping degree. In order to investigate consistently the
injectivity of mappings between fuzzy sets, we would need to know relations
(similarities) between the elements of universes. The sets enriched by a
similarity relation are intensively investigated from the categorical point of
view3. For the interested reader, we refer to e.g. [44,74,94]. In the case of the
M-degree of the surjection we have a different situation. For each x ∈ X we
have to consider two values, evaluating first the property that f assigns an
element y from B to x from A, and second the property of the surjectivity of
this assignment. The value A(x) → B(y) and dually B(y)ªA(x) well express
the first property which has been commented formerly. In the classical set
theory, the property of the surjectivity is connected with the existence of
at least one element from X to each element from Y with respect to the
mapping f . In our case, the existence degree of x from A to y from B such
that f(x) = y seems to be well described by B(y) → A(x) and dually A(x)ª
B(y). For instance, if A(x) = ⊥ and B(f(x)) = >, then it is reasonable to
expect the value ⊥ as a surjectivity degree for x, which can be obtained by
B(f(x)) → A(x) = ⊥. Clearly, the ∧-degree of a surjection is less than or
equal to the ∧-degree of the mapping and dually the ∨-degree of a surjection
is greater than or equal to the ∨-degree of a mapping.

In the classical set theory, a mapping f : X → Y is the bijection if and
only if f is injective and simultaneously surjective. Hence, we can introduce

2We could consider more general surjection, for example, the surjection between sup-
ports of fuzzy sets, but it is only the technical matter that could complicate following
definitions and proofs.

3Note that a notion of monomorphism is considered in the category theory and the
monomorphisms in the category of sets are precisely the injections.
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an equivalent notion for fuzzy sets. A mapping f : X → Y is the a∧-bijection
or a∨-bijection from A ∈ FL(X) onto B ∈ FL(Y ) or from C ∈ FLd(X) onto
D ∈ FLd(Y ), if f is the bijection and

a =
∧
x∈X

(A(x) ↔ B(f(x))) or a =
∨
x∈X

|C(x)ªD(f(x))|, (2.4)

respectively. Obviously, these formulas are derived from (2.3), where the
injectivity of f is assumed. The value a is called the M-degree of the bijection
f or the M-bijectivity degree of the mapping f , where M∈ {∧,∨}. Note that
in the set theory there is also the other definition of bijection, namely, we
say that f : X → Y is a bijection, if there exists a mapping g : Y → X
such that g ◦ f = idX , f ◦ g = idY , where idX and idY denote the identity
mappings on X and Y , respectively. Let M∈ {∧,∨}, then it is easy to show
that f is an aM-bijection if and only if there exists a mapping g : Y → X
such that f ◦ g = 1Y , g ◦ f = 1X and a = b M c, where b is the M-degree
of f and c is the M-degree of g. In fact, if we suppose, for example, that
M= ∧, then b ∧ c =

∧
x∈X(A(x) → B(f(x))) ∧ ∧

y∈Y (B(y) → A(g(y))) =∧
x∈X(A(x) → B(f(x))) ∧ ∧

x∈X(B(f(x)) → A(g(f(x)))) =
∧

x∈X(A(x) →
B(f(x))) ∧ (B(f(x)) → A(x)) = a.

Example 2.1.2. Let us consider the fuzzy sets A, B and the mapping f from
Ex. 2.1.1. Then f is the 0.5∧-bijection and the 0.5∨-bijection.

Again, in order to find the ∧- and ∨-degrees of a bijection between fuzzy
sets, we need not to deal, in general, with the whole universe as follows.

Lemma 2.1.2. Let A ∈ FL(X), B ∈ FL(Y ) and C ∈ FLd(X), D ∈ FLd(Y )
be fuzzy sets, f : X → Y be a bijection and H be a subset of X such that
Supp(A) ∪ f−1(Supp(B)) ⊆ H. Then the values

a =
∧
x∈H

(A(x) ↔ B(f(x))) and b =
∨
x∈H

|A(x)ªB(f(x))|,

are the ∧- and ∨-degrees of the bijection f between fuzzy sets, respectively.

Proof. If x 6∈ H, then due to the presumption about H, we have A(x) ↔
B(f(x)) = ⊥ ↔ ⊥ = > and analogously |A(x) ª B(f(x))| = |⊥ ª ⊥| = ⊥.
Hence, these elements have no effect on the appropriate degrees a and b of
the bijection f and thus we can restrict the calculation of a or b on H.

Now we introduce alternative notions to the notions of a∧-mapping and
a∨-mapping (injection, surjection and bijection), that may be used for the
countable fuzzy sets. Let A ∈ FCL(X), B ∈ FCL(Y ) and C ∈ FCLd(X),
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D ∈ FCLd(Y ) be countable fuzzy sets. A mapping f : X → Y is the a⊗-
mapping or a⊕-mapping between the fuzzy sets A and B or C and D, if

a =
∧

Z∈Fin(X)

⊗
x∈Z

(A(x) → B(f(x))) or (2.5)

a =
∨

Z∈Fin(X)

⊕
x∈Z

(D(f(x))ª C(x)), (2.6)

respectively, where Fin(X) denotes the set of all finite subsets in the universe
X. The value a is called the M-degree of the mapping f , where M∈ {⊗,⊕}.
Recall that⊗

i∈I

bi =
∧

I′∈Fin(I)

⊗

i∈I′
bi and

⊕
i∈I

bi =
∨

I′∈Fin(I)

⊕

i∈I′
bi

are defined for any countable set {bi | i ∈ I}.
Lemma 2.1.3. Let A ∈ FCL(X), B ∈ FCL(Y ) and C ∈ FCLd(X), D ∈
FCLd(Y ) be countable fuzzy sets and f : X → Y be a mapping. Then the
values

a =
⊗

x∈Supp(A)

(A(x) → B(f(x))) and b =
⊕

x∈f−1(Supp(A))

(B(f(x))ª A(x))

are the ⊗- and ⊕-degrees of the mapping f between fuzzy sets, respectively.

Proof. Here, we will prove just the first statement, the second one could be
done by analogy. Obviously, we have to prove that the following equality

∧

Z∈Fin(X)

⊗
x∈Z

(A(x) → B(f(x))) =
∧

Z∈Fin(Supp(A))

⊗
x∈Z

(A(x) → B(f(x)))

holds. Since A′ ∈ Fin(Supp(A)) implies A′ ∈ Fin(X), then the inequality
≤ is true. Further, let Z ∈ Fin(X) be a finite set, then Z ∩ Supp(A) ∈
Fin(Supp(A)). If x ∈ Z \Supp(A), then A(x) → B(f(x)) = ⊥ → B(f(x)) =
> and thus

⊗
x∈Z A(x) → B(f(x)) =

⊗
x∈Z∩Supp(A) A(x) → B(f(x)). Hence,

the inequality ≥ is also true and the proof is complete.

We say that f is the a⊗-injection or a⊕-injection, if f is the injection and
simultaneously the a⊗-mapping or a⊕-mapping, respectively. Further, the
mapping f is the a⊗-surjection or a⊕-surjection, if f is the surjection and
simultaneously

a =
∧

Z∈Fin(X)

⊗

y∈f(Z)

⊗
x∈Z

f(x)=y

(A(x) ↔ B(y)) or

a =
∨

Z∈Fin(X)

⊕

y∈f(Z)

⊕
x∈Z

f(x)=y

(C(x)ªD(y)),
(2.7)
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respectively. Finally, the mapping f is the a⊗-bijection or a⊕-bijection, if f
is the bijection and simultaneously

a =
∧

Z∈Fin(X)

⊗
x∈Z

(A(x) ↔ B(f(x))) or

a =
∨

Z∈Fin(X)

⊕
x∈Z

|C(x)ªD(f(x))|,
(2.8)

respectively. According to type of the mapping f , the value a is called
the M-degree of the injection (surjection, bijection) f or the M-injectivity
(surjectivity, bijectivity) degree of the mapping f , where M∈ {⊗,⊕}.
Example 2.1.3. Again, let us consider the fuzzy sets A, B and the mapping
f from Ex. 2.1.1. Then f is the 0⊗-bijection and 1⊕-bijection.

Lemma 2.1.4. Let A ∈ FCL(X), B ∈ FCL(Y ) and C ∈ FCLd(X), D ∈
FCLd(Y ) be countable fuzzy sets, f : X → Y be a bijection and H be a subset
of X such that Supp(A) ∪ f−1(Supp(B)) ⊆ H. Then the values

a =
⊗
x∈H

(A(x) ↔ B(f(x))) and b =
⊕
x∈H

|C(x)ªD(f(x))| (2.9)

are the ⊗- and ⊕-degrees of the bijection f between fuzzy sets, respectively.

Proof. Here, we will prove just the first statement, the second one could
be done analogously. The statement is true, if

∧
Z∈Fin(X)

⊗
x∈Z(A(x) ↔

B(f(x))) =
∧

Z∈Fin(H)

⊗
x∈Z(A(x) ↔ B(f(x))). Since Fin(H) ⊆ Fin(X),

then the inequality ≤ is fulfilled. For any Z ∈ Fin(X) we have Z ∩ H ∈
Fin(H). If x ∈ Z \H, then by the presumption about H we obtain A(x) ↔
B(f(x)) = ⊥ ↔ ⊥ = > and thus these values has no effect on the ∧-degree
of bijection f . Hence, we have

⊗
x∈Z A(x) ↔ B(f(x)) =

⊗
x∈Z∩H A(x) ↔

B(f(x)) and thus the inequality ≤ is true.

2.2 θ-equipollent L-sets

In the following parts, we will suppose that there exists a bijection between
the given universes. Let L be a complete residuated lattice and A ∈ FL(X),
B ∈ FL(Y ) be arbitrary L-sets. We say that A is a∧-equipollent with B (or
also A and B are a∧-equipollent), if

a =
∨
{b | ∃f : X → Y and f is a b∧-bijection between A and B}. (2.10)
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Further, let A ∈ FCL(X), B ∈ FCL(Y ) be arbitrary countable L-sets. We
say that A is a⊗-equipollent with B (or also A and B are a⊗-equipollent), if

a =
∨
{b | ∃f : X → Y and f is a b⊗-bijection between A and B}. (2.11)

The value a is called the θ-degree of (fuzzy) equipollence of the L-sets A
and B, respectively. Note that two L-sets may be aθ-equipollent, however,
there is not any aθ-bijection between them. This fact is a straightforward
consequence of the supremum. Hence, we can ask the following question.
Let us suppose an arbitrary complete residuated lattice L. Then are there
L-sets A and B, which are >θ-equipollent, but |Aa| 6= |Ba| for some a ∈ L?
The answer is an open problem. On the other hand, we can easy construct
infinite L-sets A and B such that |Aa| = |Ba| for any a ∈ L, but A and B
are not >θ-equipollent. Hence, we can assert that the equipollent fuzzy sets
in Wygralak’s approach4 are not >θ- equipollent in our approach, in general.

Let us suppose that X and Y are infinite universes. In this case, there
exists an infinite number of bijections between them and thus the practical
computation of the degree of equipollence becomes impossible even for finite
L-sets. Hence, it is desirable to show that the θ-degrees of equipollence for
the finite fuzzy sets may be found over a finite number of bijections. Let
A ∈ FIN L(X) and B ∈ FIN L(Y ) be finite L-sets. Denote AB and BA

subsets of X and Y , respectively, such that Supp(A) ⊆ AB, Supp(B) ⊆ BA

and |AB| = |BA| = max(|Supp(A)|, |Supp(B)|). Note that AB and BA are the
least equipollent sets (with respect to the inclusion relation) up to bijection
covering Supp(A) and Supp(B), which are of course finite. Finally, if X
and Y are equipollent sets, then we denote Bij(X,Y ) the set of all bijections
between the sets X and Y .

Theorem 2.2.1. Let A ∈ FIN L(X) and B ∈ FIN L(Y ) be finite L-sets
(X and Y are bijective), AB and BA be sets defined above. Then the value

a =
∨

f∈Bij(AB ,BA)
Θ
x∈AB

A(x) ↔ B(f(x)) (2.12)

is the θ-degree of equipollence of the L-sets A and B.

Proof. Let A ∈ FIN L(X) and B ∈ FIN L(Y ) be two arbitrary L-sets. If
A = ∅ or B = ∅, then clearly the statement is true. Let us suppose that

4Note that a basic definition of equipollence of fuzzy sets is given as follows. Fuzzy
sets A ∈ FL(X) and B ∈ FL(Y ) (X and Y are bijective) are equipollent, if

∧
|Aa|≤i a =∧

|Ba|≤i a and
∨
|Aa|≥i a =

∨
|Ba|≥i a hold for any cardinal number i.
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A 6= ∅ 6= B and consider a bijection f ∈ Bij(X, Y ). Put Hf = {x ∈ AB |
f(x) 6∈ BA}. If Hf = ∅ (i.e. f(x) ∈ BA for any x ∈ AB and thus f(x) 6∈ BA

for any x ∈ X \ AB), then we have for θ = ∧
∧
x∈X

(A(x) ↔ B(f(x))) =
∧

x∈AB

(A(x) ↔ B(f(x)))∧
∧

x∈X\AB

(⊥ ↔ ⊥) =
∧

x∈AB

(A(x) ↔ B(f(x))),

and for θ = ⊗
∧

Z∈Fin(X)

⊗
x∈Z

(A(x) ↔ B(f(x))) =
∧

Z∈Fin(X)

( ⊗
x∈Z∩AB

(A(x) ↔ B(f(x)))⊗
⊗

x∈Z\AB

(A(x) ↔ B(f(x)))
)

=
∧

Z∈Fin(X)

( ⊗
x∈Z∩AB

(A(x) ↔ B(f(x)))⊗
⊗

x∈Z\AB

(⊥ ↔ ⊥)
)

=
∧

Z∈Fin(AB)

⊗
x∈Z

(A(x) ↔ B(f(x))).

Now let us suppose that Hf 6= ∅ and put H = f−1(BA) \ AB. Since Hf is a
part of the finite set AB and f is a bijection, then necessarily there exists a
bijection5 h : Hf → H. Now let us establish a bijection g : X → Y as follows

g(x) =





f(x), x ∈ X \Hf ∪H,
f(h(x)), x ∈ Hf ,
f(h−1(x)), x ∈ H.

(2.13)

Obviously, g is a bijection such that g(Hf ) = f(H) and g(H) = f(Hf ).
Hence, we obtain that Hg = ∅. Furthermore, we have for θ = ∧

∧
x∈X

A(x) ↔ B(f(x)) =
∧

x∈X\Hf∪H

(A(x) ↔ B(f(x))) ∧
∧

x∈Hf

(A(x) ↔ ⊥)∧
∧
x∈H

(⊥ ↔ B(f(x))) =
∧

x∈X\Hf∪H

(A(x) ↔ B(f(x)))∧
∧

x∈Hf

(
(A(x) ↔ ⊥) ∧ (⊥ ↔ B(f(h(x))))

) ≤
∧

x∈X\Hf∪H

(A(x) ↔ B(g(x))∧
∧

x∈Hf

(A(x) ↔ B(g(x)) ∧
∧
x∈H

(⊥ ↔ ⊥) =
∧
x∈X

(A(x) ↔ B(g(x))

5Note that it is not true in the case, if infinite sets are used. In fact, if AB ⊂ X would
be an infinite set, then there exists a bijection f : X → Y such that AB \Hf ⊂ AB would
be bijective with AB and f(AB \Hf ) = BA. Hence, there is no bijection between Hf 6= ∅
and H = ∅. Recall that a set is infinite if and only if it is bijective with some of its proper
subset.
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where clearly A(x) ↔ B(g(x)) = ⊥ ↔ ⊥ = > holds for any x ∈ H. Since
Supp(A)∪f−1(Supp(B)) ⊆ AB∪H holds, then due to Lemma 2.1.4, we have

∧

Z∈Fin(X)

⊗
x∈Z

(A(x) ↔ B(f(x))) =
⊗

x∈AB∪H

(A(x) ↔ B(f(x))) =

⊗

x∈AB\Hf

(A(x) ↔ B(f(x)))⊗
⊗
x∈Hf

(A(x) ↔ ⊥)⊗
⊗
x∈H

(⊥ ↔ B(f(x))) =

⊗

x∈AB\Hf

(A(x) ↔ B(f(x)))⊗
⊗
x∈Hf

(
(A(x) ↔ ⊥)⊗ (⊥ ↔ B(f(h(x))))

) ≤
⊗

x∈AB\Hf

(A(x) ↔ B(f(x)))⊗
⊗
x∈Hf

(
(A(x) ↔ B(g(x)))⊗

⊗
x∈H

(⊥ ↔ ⊥) =

⊗
x∈AB∪H

(A(x) ↔ B(g(x))) =
∧

Z∈Fin(X)

( ⊗
x∈Z

A(x) ↔ B(g(x)).

Hence, to each bijection f ∈ Bij(X, Y ) there exists a bijection g ∈ Bij(X,Y )
such that

∧
x∈X(A(x) ↔ B(f(x))) ≤ ∧

x∈X(A(x) ↔ B(g(x))) or analogously∧
Z∈Fin(X)

⊗
x∈Z(A(x) ↔ B(f(x))) ≤ ∧

Z∈Fin(X)

⊗
x∈Z(A(x) ↔ B(g(x))) and

moreover Hg = ∅, i.e. g|AB
∈ Bij(AB, BA), where g|AB

denotes the restriction
of g on AB. Then, due to the previous equalities for the case Hg = ∅, we
obtain the desired statement and the proof is complete.

Example 2.2.1. Let us suppose that A = {0.8/x, 0.6/y, 0.4/z, 0/r, . . . } and
B = {0.9/a, 0.5/b, 0.7/c, 0/d, . . . } are L-sets over infinite universes, where the
membership degrees are interpreted in the Goguen algebra LP (see Ex. 1.1.4).
Recall that a ↔P b = min(a

b
, b

a
), where 0

0
= 1 and a

0
= ∞ for a 6= 0. Since

the supports of A and B are equipollent, then in order to find the θ-degree
of equipollence of A and B, it is sufficient to consider the bijections between
their supports (according to the previous theorem). Because the supports
have 3 elements, we have to construct 3! = 6 bijections. It is easy to verify
that the mapping f given by f(x) = a, f(y) = c and f(z) = b defines
the greatest θ-degree of bijection between A and B. Particularly, the L-sets
A and B are 0.8∧-equipollent and 0.61⊗-equipollent (a is rounded to two
decimals), where 0.8 = min(0.8

0.9
, 0.6

0.7
, 0,4

0.5
) and 0.61

.
= 0.8

0.9
· 0.6

0.7
· 0,4

0.5
.

The previous theorem shows that the equipollence of finite L-sets may
be studied over suitable finite sets. A theoretical question is, if the same
principle can be applied also for the denumerable sets. It means, if we can
restrict ourselves to a suitable denumerable sets. One could seem that if A
and B are denumerable, then it is sufficient to put AB = Supp(A) and BA =
Supp(B), which is in accordance with the previous idea for finite L-sets (AB

and BA are the least equipollent sets (with respect to the inclusion relation)
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covering Supp(A) and Supp(B), respectively). The following example shows
that it is not true.

Example 2.2.2. Let A, B be two LÃL-sets in the set of natural numbers N ,
which are given as follows. Put A(n) = 1, if n is even, A(n) = 0.1, otherwise,
and B(n) = 1, if n is even, B(n) = 0, otherwise. Let us suppose that
AB = Supp(A) and BA = Supp(B). Then we obtain that A and B are 0.1∧-
equipollent, if we use the same principle for denumerable L-sets as in the
previous theorem. However, if we consider the identity mapping on N , then
this mapping is 0.9-bijective. Hence, the ∧-degree of equipollence of LÃL-sets
A and B has to be greater than or equal to 0.9. Thus the previous theorem
can not be extended for denumerable sets, if we suppose that AB = Supp(A)
and BA = Supp(B).

It is easy to see that the previous theorem is also true, if instead of AB and
BA we consider arbitrary finite equipollent sets X ′ ⊆ X and Y ′ ⊆ Y covering
the supports of A and B, respectively. The following theorem shows that this
form of the previous theorem may be extended for arbitrary countable L-sets.

Theorem 2.2.2. Let A ∈ FCL(X) and B ∈ FCL(Y ) be two countable L-
sets. Then A is aθ-equipollent with B if and only if there exist countable
equipollent subsets X ′ ⊆ X and Y ′ ⊆ Y covering Supp(A) and Supp(B),
respectively, such that the θ-degree of equipollence of the L-sets A and B is
equal to

a =
∨

f∈Bij(X′,Y ′)
Θ
x∈X′

A(x) ↔ B(f(x)), (2.14)

where Bij(X ′, Y ′) denotes the set of all bijections between X ′ and Y ′.

Proof. Due to the Theorem 2.2.1, the statement is true for arbitrary finite
L-sets. Let A,B ∈ FCL(X) be arbitrary countable L-sets such that at least
one of them is denumerable. Obviously, if X is a denumerable universe or
A = ∅ or B = ∅, then again the statement is also true. Thus let us suppose
that X is an uncountable universe and A 6= ∅ 6= B. Let XA ⊂ X and
YB ⊂ Y be arbitrary denumerable sets such that XA ∩ Supp(A) = ∅ and
YB ∩ Supp(B) = ∅. First, we will prove that if a is the ∧-degree and b is the
⊗-degree of equipollence of the L-sets A and B, then we can write

a =
∨

f∈Bij(ZA,ZB)

∧
x∈ZA

A(x) ↔ B(f(x)), (2.15)

b =
∨

f∈Bij(ZA,ZB)

∧

Z∈Fin(ZA)

⊗
x∈Z

A(x) ↔ B(f(x)), (2.16)
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where ZA = X \XA and ZB = Y \YB. Obviously, the inequality ≥ is fulfilled
in both cases. In order to show the opposite inequality, it is sufficient to
prove, that to each f ∈ Bij(X,Y ) there exists g ∈ Bij(ZA, ZB) such that

∧
x∈X

A(x) ↔ B(f(x)) ≤
∧

x∈ZA

A(x) ↔ B(g(x)),

∧

Z∈Fin(X)

⊗
x∈Z

A(x) ↔ B(f(x)) ≤
∧

Z∈Fin(ZA)

⊗
x∈Z

A(x) ↔ B(g(x)).

Let f ∈ Bij(X, Y ) be a bijection. Put TA = {x ∈ ZA | f(x) ∈ YB} and
TB = {x ∈ ZB | f−1(x) ∈ XA}. Due to Cantor-Bernstein theorem, we obtain
that the sets XA \ f−1(TB) and YB \ f(TA) are equipollent. Now, we can
choose two countable sets UA ⊂ ZA and UB ⊂ ZB such that UA∩ (Supp(A)∪
f−1(Supp(B)) ∪ TA ∪ f−1(UB)) = ∅ and UB ∩ (f(Supp(A)) ∪ Supp(B) ∪
TB ∪ f(UA)) = ∅, respectively. Clearly, it is possible, because ZA and ZB

are the uncountable universes and all considered sets are just countable sets.
Recall that the union of a finite number of countable sets is again countable
set. Hence, there exist a bijection uB : Sf ∪ f−1(UB) → UB and a bijection
uA : UA → Tf ∪ f(UA). Moreover, we put a bijection h : XA → YB. Now, we
can establish a bijection g : X → Y as follows

g(x) =





uB(x), x ∈ TA ∪ f−1(UB),
uA(x), x ∈ UA,
h(x), x ∈ XA

f(x), otherwise.

(2.17)

Obviously, we can write A(x) ↔ B(f(x)) = A(x) ↔ ⊥ = A(x) ↔ B(g(x))
for every x ∈ TA∪ f−1(UB) and therefore

∧
x∈TA∪f−1(UB)(A(x) ↔ B(f(x))) =∧

x∈TA∪f−1(UB)(A(x) ↔ B(g(x))) and
⊗

x∈Z∩(TA∪f−1(UB)) A(x) ↔ B(f(x)) =⊗
x∈Z∩(TA∪f−1(UB)) A(x) ↔ B(g(x)) holds for any Z ∈ Fin(X). Further,

to each x ∈ f−1(TB) there exists a unique x′ ∈ UA, where clearly x′ =
u−1

A (f(x)), such that A(x) ↔ B(f(x)) = ⊥ ↔ B(f(x)) = A(x′) ↔ B(g(x′)).
Moreover, we have A(x) ↔ B(f(x)) = ⊥ ↔ ⊥ = A(x) ↔ B(g(x)) for each
x ∈ UA \ u−1

A (TB). Hence, we obtain
∧

x∈UA∪f−1(TB)(A(x) ↔ B(f(x))) =∧
x∈UA

(A(x) ↔ B(g(x))). Moreover, obviously to each Z ∈ Fin(X) we can
define Z ′ ∈ Fin(X) such that we have Z \ (UA ∪ f−1(TB)) = Z ′ \ UA and⊗

x∈Z∩(UA∪f−1(TB))(A(x) ↔ B(f(x))) =
⊗

x∈Z′∩UA
(A(x) ↔ B(g(x))). In

fact, it is sufficient to set

Z ′ = Z \ f−1(TB) ∪ {u−1
A (f(x)) | x ∈ f−1(TB)}. (2.18)

Finally, we have A(x) ↔ B(f(x)) = ⊥ ↔ ⊥ = A(x) ↔ B(g(x)) for every
x ∈ XA \ f−1(TB). Hence, we obtain

∧
x∈XA\f−1(TB)(A(x) ↔ B(f(x))) =
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∧
x∈XA

(A(x) ↔ B(g(x))) = > and
⊗

x∈Z∩XA\f−1(TB)(A(x) ↔ B(f(x))) =⊗
x∈Z∩XA

(A(x) ↔ B(g(x))) = >. Let us establish S = ZA \ (TA ∪ UA ∪
f−1(UB)). It is easy to see that f |S = g|S. Then we have for θ = ∧
∧
x∈X

(A(x) ↔ B(f(x))) =
∧
x∈S

(A(x) ↔ B(f(x))) ∧
∧

x∈TA∪f−1(UB)

(A(x) ↔ ⊥)∧
∧

x∈UA∪f−1(TB)

(⊥ ↔ B(f(x))) ∧
∧

x∈XA\f−1(TB)

> =
∧
x∈S

(A(x) ↔ B(g(x)))∧
∧

x∈TA∪f−1(UB)

(A(x) ↔ B(g(x))) ∧
∧

x∈UA

(A(x) ↔ B(g(x))) ∧
∧

x∈XA

> =

∧
x∈ZA

(A(x) ↔ B(g(x))) ∧
∧

x∈XA

(A(x) ↔ B(g(x))) =
∧

x∈ZA

(A(x) ↔ B(g(x)))

and thus (2.15) is true. Let ϕ : Fin(X) → Fin(X \ f−1(TB)) be a mapping
defined by ϕ(Z) = Z ′, where Z ′ is given by (2.18). Now we can write for
θ = ⊗

∧

Z∈Fin(X)

⊗
x∈Z

A(x) ↔ B(f(x))) =
∧

Z∈Fin(X)

( ⊗
x∈Z∩S

(A(x) ↔ B(f(x)))⊗
⊗

x∈Z∩(TA∪f−1(UB))

(A(x) ↔ B(f(x)))⊗
⊗

x∈Z∩(UA∪f−1(TB))

(A(x) ↔ B(f(x)))⊗
⊗

x∈Z∩XA\f−1(TB)

>)
=

∧

Z∈Fin(X)

( ⊗

x∈ϕ(Z)∩S

(A(x) ↔ B(g(x)))⊗
⊗

x∈ϕ(Z)∩(TA∪f−1(UB))

(A(x) ↔ B(g(x)))⊗
⊗

x∈ϕ(Z)∩UA

(A(x) ↔ B(g(x)))⊗
⊗

x∈ϕ(Z)∩XA

>)
=

∧

Z∈Fin(X)

( ⊗
x∈Z∩ZA

(A(x) ↔ B(g(x)))⊗
⊗

x∈Z∩XA

(A(x) ↔ B(g(x))) =
∧

Z∈Fin(ZA)

( ⊗
x∈Z∩ZA

(A(x) ↔ B(g|ZA
(x)))

where g|ZA
denotes the restriction g on ZA. With regard to the definition of

g we have gZA
∈ Bij(ZA, ZB) and (2.16) is also true. Now, let us establish

X ′ = Supp(A) ∪XA and Y ′ = Supp(B) ∪ YB. Obviously, X ′ and Y ′ satisfy
the presumptions of the theorem. Due to (2.15) and (2.16), we can restrict
ourselves to the bijections from Bij(ZA, ZB). Let f ∈ Bij(ZA, ZB) be an
arbitrary bijection, Hf = {x ∈ Supp(A) | f(x) 6∈ Supp(B)} and Hf−1 = {y ∈
Supp(B) | f−1(y) 6∈ Supp(A)}. If Hf = Hf−1 = ∅, then f is the bijection
between Supp(A) and Supp(B) according to the Cantor-Bernstein theorem.
Hence, we can easily construct a bijection g, where f |Supp(A) = g|Supp(A), from
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Bij(X ′, Y ′) such that
∧

x∈ZA
A(x) ↔ B(f(x)) =

∧
x∈X′ A(x) ↔ B(g(x)) and∧

Z∈Fin(ZA)

⊗
x∈Z A(x) ↔ B(f(x)) =

⊗
x∈X′ A(x) ↔ B(g(x)). Let Hf 6= ∅ or

Hf−1 6= ∅. Since Hf or Hf−1 are countable sets, then there exist SA ⊆ XA

being equipollent with f−1(Hf−1) and SB ⊆ YB being equipollent with f(H)
such that XA \ SA and YB \ SB are equipollent. Let j : SA → f−1(Hf−1),
i : f(Hf ) → SB and h : XA \ SA → YB \ SB be arbitrary bijections. If a
set is empty, then we can consider the empty mapping. Now we can define a
bijection g : X ′ → Y ′ as follows

g(x) =





f(x), x ∈ Supp(A) \Hf ,
i ◦ f(x), x ∈ Hf ,
f ◦ j(x), x ∈ SA,
h(x), x ∈ XA \ SA.

(2.19)

Then we have for θ = ∧
∧

x∈ZA

(A(x) ↔ B(f(x))) =
∧

x∈Supp(A)\Hf

(A(x) ↔ B(f(x))) ∧
∧

x∈Hf

(A(x) ↔ ⊥)∧
∧

x∈f−1(Hf−1 )

(⊥ ↔ B(f(x))) ∧
∧

x∈ZA\(Supp(A)∪f−1(Hf−1))

(⊥ ↔ ⊥) =

∧

x∈Supp(A)\Hf

(A(x) ↔ B(f(x))) ∧
∧

x∈Hf

(A(x) ↔ B(i(f(x))))∧
∧

x∈SA

(A(x) ↔ B(j(f(x)))) ∧
∧

x∈XA\SA

(⊥ ↔ ⊥) =
∧

x∈X′
(A(x) ↔ B(g(x)))

and analogously for θ = ⊗ we obtain
∧

Z∈Fin(ZA)

⊗
x∈Z

A(x) ↔ B(f(x))) =
∧

Z∈Fin(X′)

⊗
x∈Z

A(x) ↔ B(g(x))).

We have shown that for each f ∈ Bij(ZA, ZB) there exists g ∈ Bij(X ′, Y ′)
defined by (2.19) such that

∧
x∈ZA

A(x) ↔ B(f(x)) =
∧

x∈X′ A(x) ↔ B(g(x))
and

∧
Z∈Fin(ZA)

⊗
x∈Z A(x) ↔ B(f(x)) =

⊗
x∈X′ A(x) ↔ B(g(x)). Hence, we

have
∨

f∈Bij(ZA,ZB)

∧
x∈ZA

A(x) ↔ B(f(x)) =
∨

g∈Bij(X′,Y ′)

∧

x∈X′
A(x) ↔ B(g(x)),

∨

f∈Bij(ZA,ZB)

∧

Z∈Fin(ZA)

⊗
x∈Z

A(x) ↔ B(f(x)) =
∨

g∈Bij(X′,Y ′)

⊗

x∈X′
A(x) ↔ B(g(x)).

From (2.15) and (2.16) we immediately obtain the desired statement and the
proof is complete.
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The previous proof shows a possibility how to define the considered sets
X ′ and Y ′ for denumerable L-sets as follows.

Corollary 2.2.3. Let X be an uncountable universe, A ∈ FCL(X) and B ∈
FCL(Y ) be denumerable L-sets, XA ⊂ X \ Supp(A) and YB ⊂ Y \ Supp(B)
be arbitrary denumerable sets. If we put X ′ = Supp(A) ∪ XA and Y ′ =
Supp(B) ∪ YB, then the value

a =
∨

f∈Bij(X′,Y ′)
Θ
x∈X′

A(x) ↔ B(f(x)) (2.20)

is the θ-degree of equipollence of A and B.

As we have mentioned, in the classical set theory the equipollence of sets
is an equivalence relation on the class of all sets. Recall that the relation ≡
on the class of all sets X, defined by (X,Y ) ∈≡ (denoted better by X ≡ Y )
if and only if X and Y are equipollent, is an equivalence ≡ on the class X.
Now in a similar way we will show that the equipollence of L-sets is actually
a similarity relation on the class of all L-sets over a given universe, which is
a natural extension of the classical notion of equivalence. Before we show it,
let us recall the notion of similarity relation. Let L be a complete residuated
lattice and X be a non-empty universe. A mapping R : FL(X)×FL(X) → L
is called the fuzzy binary relation on FL(X) on FL(X). Further, a fuzzy
binary relation R on FL(X) is called the similarity relation or similarity for
short on FL(X), if it satisfies the following axioms

R(A,A) = 1, (reflexivity)

R(A,B) = R(B,A), (symmetry)

R(A,B)⊗R(B, C) ≤ R(A,C). (thansitivity)

In the literature (see e.g. [2, 5, 56, 57, 120]), we may find other names for the
similarity relation as e.g. the likeness, L-equivalence or ⊗-equivalence. Note
that the similarity relation is a very important notion in the fuzzy set theory.
A simple example of the similarity relation between two L-sets A and B in
X could be defined by

R(A,B) =
∧
x∈X

(A(x) ↔ B(x)), (2.21)

where the value R(A,B) shows how much A is similar to B. Obviously, this
similarity relation could be obtained by the special case of an a∧-bijection
between L-sets on X, where the identity mapping is considered. Thus, the
following theorems show how to define a similarity relation between L-sets
from the L-sets equipollence point of view.
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Theorem 2.2.4. Let X be a non-empty universe. Then a fuzzy binary re-
lation ≡∧ on the set FL(X), where A ≡∧ B = a if and only if A and B are
a∧-equipollent, is a similarity relation on FL(X).

Proof. We have to verify the axioms of similarity relation. It is easy to see
that the relation ≡∧ is reflexive and symmetric. Let us denote Perm(X) =
{f : X → X | f is a bijection}. Obviously, the formula (2.10) may be
rewritten as follows

A ≡∧ B =
∨

f∈Perm(X)

∧
x∈X

A(x) ↔ B(f(x)). (2.22)

Let A,B, C ∈ FL(X) be arbitrary L-sets. Then we have

(A ≡∧ B)⊗(B ≡∧ C) =
∨

f∈Perm(X)

∧
x∈X

(A(x) ↔ B(f(x)))⊗
∨

g∈Perm(X)

∧
y∈X

(B(y) ↔ C(g(y))) =

∨

f∈Perm(X)

∨

g∈Perm(X)

∧
x∈X

∧
y∈X

(
(A(x) ↔ B(f(x)))⊗ (B(y) ↔ C(g(y)))

) ≤
∨

f∈Perm(X)

∨

g∈Perm(X)

∧
x∈X

∧
y∈X

(
(A(x) ↔ B(f(x)))⊗ (B(y) ↔ C(g(y)))

) ≤
∨

f∈Perm(X)

∨

g∈Perm(X)

∧
x∈X

(A(x) ↔ C(g ◦ f(x))) =

∨

h∈Perm(X)

∧
x∈X

(A(x) ↔ C(h(x))) = A ≡∧ C

and thus the fuzzy relation ≡∧ is also transitive.

Theorem 2.2.5. Let X be a non-empty universe. Then a fuzzy binary rela-
tion ≡⊗ on the set FCL(X), where A ≡⊗ B = a if and only if A and B are
a⊗-equipollent, is a similarity relation on FCL(X).

Proof. Obviously, the fuzzy relation ≡⊗ is reflexive, symmetric and the for-
mula (2.11) may be rewritten as follows

A ≡⊗ B =
∨

f∈Perm(X)

∧

Z∈Fin(X)

⊗
x∈Z

(A(x) ↔ B(f(x))). (2.23)
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Let A,B, C ∈ FCL(X) be arbitrary countable L-sets. Then we have

(A ≡⊗ B)⊗ (B ≡⊗ C) =
∨

f∈Perm(X)

∧

Y ∈Fin(X)

⊗
y∈Y

(A(y) ↔ B(f(y)))⊗
∨

g∈Perm(X)

∧

Z∈Fin(X)

⊗
z∈Z

(B(z) ↔ C(g(z))) ≤
∨

f∈Perm(X)

∨

g∈Perm(X)

∧

Y ∈Fin(X)

∧

Z∈Fin(X)

⊗
y∈Y

(A(y) ↔ B(f(y)))⊗
⊗
z∈Z

(B(z) ↔ C(g(z))) ≤
∨

f,g∈Perm(X)

∧

Y ∈Fin(X)

⊗
y∈Y

(
A(y) ↔B(f(y))⊗B(f(y)) ↔ C(g ◦ f(y))

)
=

∨

h∈Perm(X)

∧

Y ∈Fin(X)

⊗
y∈Y

(A(y) ↔ C(h(y))) = A ≡⊗ C

and thus the fuzzy relation ≡⊗ is also transitive.

Remark 2.2.3. Let A, B ∈ FIN L(X) be two finite L-sets and Y be an arbi-
trary subset of X such that Supp(A)∪Supp(B) ⊆ Y . Due to Theorem 2.2.1,
we can write

A ≡θ B =
∨

f∈Perm(Y )
Θ
x∈Y

(A(x) ↔ B(f(x))). (2.24)

Due to Theorem 2.2.2, if A,B ∈ FCL(X) are countable L-sets, then there
exists Y ⊆ X such that Supp(A) ∪ Supp(B) ⊆ Y and (2.24) is satisfied.

Remark 2.2.4. If A,B ∈ FCL(X), then the ∧-degree is greater or equal to
the ⊗-degree of equipollence of A and B, i.e. A ≡∧ B ≥ A ≡⊗ B. In fact, it
follows from the inequality

∧
y∈Y A(y) ↔ B(f(y)) ≥ ⊗

y∈Y A(y) ↔ B(f(y)),
where Y is a suitable countable set covering Supp(A) ∪ Supp(B) and f ∈
Perm(Y ).

Remark 2.2.5. If X is a countable universe, then A ≡θ B ≥ A ≡θ B holds
for arbitrary A,B ∈ FCL(X), where A and B are the complements of L-
sets A and B, respectively. In fact, if f ∈ Perm(X), then Θx∈X(A(x) ↔
B(f(x))) = Θx∈X((A(x) → ⊥) ↔ (B(f(x)) → ⊥)) ≥ Θx∈X((A(x) ↔
B(f(x))) ⊗ (⊥ ↔ ⊥)) = Θx∈X((A(x) ↔ B(f(x))). Hence, we obtain
A ≡θ B =

∨
f∈Perm(X) Θx∈X(A(x) ↔ B(f(x))) ≥ ∨

f∈Perm(X) Θx∈X(A(x) ↔
B(f(x))) = A ≡θ B.
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In this part we introduce special mappings (L-sets over the set of natural
numbers extended by the first infinite cardinal) that will be needed in the
following chapter being devoted to the cardinalities of fuzzy sets. Note that
these mappings are used for the construction of fuzzy cardinality so-called
FGCount (see e.g. [8,20,81,104,108,109,125], or the introduction of the next
chapter). Further, we show that these mappings enable to give upper esti-
mations of the θ-degrees of equipollence of L-sets and using these mappings
we may even precisely calculate the ∧-degree of the finite L-sets equipollence
over complete linear residuated lattices. In general, it is easy to see that the
calculation of the θ-degrees of L-sets equipollence is often time-consuming,
even if quite small L-sets6 are supposed, therefore, the mentioned attempts
are very useful from the practical point of view.

Let X be a non-empty universe, A ∈ FCL(X). Let us denote Nω the
set of all natural numbers N extended by the first infinite cardinal ω (the
cardinality of the natural numbers set) and AX = {Y ⊆ X | Supp(A) ⊆ Y }.
We define a mapping pθ

A : Nω × AX → L as follows

pθ

A(i, Y ) =
∨
Z⊆Y
|Z|=i

Θ
z∈Z

A(z), (2.25)

where |Z| denotes the classical cardinality of the set Z. It is easy to see
that pθ

A(i, Y ) = pθ
A(i, Supp(A)) for arbitrary Y ∈ AX and i ∈ Nω. In fact,

if Y ∈ AX and y ∈ Y \ Supp(A), then Θx∈Y A(x) = ⊥. Hence, we have
the required equality7. Therefore, we put pθ

A(i, Supp(A)) = pθ
A(i) for short8.

Obviously, pθ
A(i) ≥ pθ

A(j), whenever i ≤ j, pθ
A(0) = Θz∈∅ A(z) = > and

pθ
A(1) =

∨{A(x) | x ∈ Supp(A)}. Moreover, if A is a finite L-set, then
pθ

A(i) =
∨ ∅ = ⊥ holds for every i > |Supp(A)|. Note that the value pθ

A(1) is
called the height of the fuzzy set A. If we restrict ourselves to linearly ordered
complete residuated lattices L and finite L-sets, then we can compute the
values p⊗A(i) using the values p∧A(i) as the following lemma shows.

Lemma 2.2.6. Let L be a complete linearly ordered residuated lattice. Then

p⊗A(i) =
i⊗

k=0

p∧A(k) (2.26)

6In this case we assume that the size of L-sets is only bound to the size (the cardinality)
of their supports.

7We chose this definition with respect to the compatibility with the definition of the
dual mapping pθ

A (see p. 43).
8Note that in the mentioned papers there is considered only the case p∧A(i) which is

denoted by [A]i.
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holds for any A ∈ FIN L(X) and i ∈ Nω.

Proof. Let us suppose that A is a finite L-set over X and Supp(A) =
{x1, . . . , xn}. Due to the linearity of L, to each 0 < i ≤ n there exists
xji

∈ Supp(A) such that p∧A(i) = A(xji
). Moreover, we have p∧A(0) = > and

p∧A(i) = ⊥ for any i > |Supp(A)|. Since A(xkj
) ≥ A(xkj+1

) holds for any
1 ≤ j < n− 1, we can write for any i ∈ Nω

p⊗A(i) =
∨

Z⊆Supp(A)
|Z|=i

⊗
z∈Z

A(z) =
i⊗

k=0

A(xjk
) =

i⊗

k=0

p∧A(k),

where clearly p⊗A(0) = p∧A(0), p⊗A(i) = (
⊗n

k=0 p∧A(k)) ⊗ ⊥ = ⊥ hold for any
|Supp(A)| < i < ω and p⊗A(ω) =

⊗∞
k=0 p∧A(k) =

∧∞
t=0

⊗t
k=0 p∧A(k) = ⊥.

There is an interesting question, if the value pθ
A(ω) can be obtained by in-

fimum of values pθ
A(i), it means that the sequence pθ

A(0), pθ
A(1), . . . converges

to pθ
A(ω). Before we give an answer in the following lemma, we establish

an important notion. Let L be a complete residuated lattice. We say that
the complete residuated lattice L is dense with regard to the corresponding
lattice ordering ≤, if for arbitrary a, b ∈ L such that a < b there exists c ∈ L
with a < c < b. Let us emphasize that the concept of a dense complete
residuated lattice does not depend on its residuation, neither on its com-
pleteness, but only on its order ≤ defined by the lattice structure (L,∧,∨).
For instance, the residuated lattices over [0, 1] determined by the left con-
tinuous t-norms are dense with respect to the ordering of real numbers (the
corresponding lattice ordering of the mentioned residuated lattices).

Lemma 2.2.7. Let L be a complete linearly ordered residuated lattice that is
dense with regard to ≤. Then p∧A(ω) =

∧∞
i=0 p∧A(i) holds for any A ∈ FCL(X).

Proof. If A is a finite L-set, then there exists i0 such that p∧A(i) = ⊥ for
every i > i0 and hence p∧A(ω) = ⊥ =

∧∞
i=0 p∧A(i). Let us suppose that A is a

denumerable L-set. Obviously, we have p∧A(ω) ≤ p∧A(i) for every i ∈ N and
thus p∧A(ω) ≤ ∧∞

i=0 p∧A(i) is true. Before we prove the opposite inequality,
we state the following claim. If a < p∧A(i) holds for every i ∈ N , then
a ≤ p∧A(ω). From the presumption of the claim and the linearity of L it
follows that for every i ∈ N there exists a suitable subset Yi ⊂ Supp(A)
such that a <

∧
y∈Yi

A(y). Further, we establish Y =
⋃

i∈N Yi. Obviously,
|Y | = ω. Hence, we have a ≤ ∧∞

i=1

∧
y∈Yi

A(y) =
∧

y∈Y A(y) ≤ p∧A(ω). Hence,
we obtain the desired claim. Now let us suppose that p∧A(ω) <

∧∞
i=0 p∧A(i)

holds. Since L is dense with regard to ≤, then there exists a ∈ L such
that p∧A(ω) < a <

∧∞
i=0 p∧A(i) and hence, due to the claim, we obtain a

contradiction. Thus, p∧A(ω) =
∧∞

i=0 p∧A(i) and the proof is complete.
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The following lemma shows a relation between the θ-degree of the equipol-
lence of L-sets A and B and the values of the mappings pθ

A(i) and pθ
B(i). In

particular, there is defined upper estimations of the θ-equipollence degrees.

Lemma 2.2.8. Let X be a non-empty universe. Then

A ≡θ B ≤ pθ

A(i) ↔ pθ

B(i), (2.27)

holds for arbitrary A,B ∈ FCL(X) and i ∈ Nω.

Proof. Let A,B ∈ FCL(X) be arbitrary L-sets. Let f ∈ Perm(X) be an
arbitrary bijection (permutation) on the universe X. Then we can write (in
the more general form) for any i ∈ Nω

pθ

A(i) ↔ pθ

B(i) = pθ

A(i,X) ↔ pθ

B(i,X) =

( ∨
Y⊆X
|Y |=i

Θ
y∈Y

A(y)
) ↔ ( ∨

Z⊆X
|Z|=i

Θ
z∈Z

B(z)
) ≥

∧
Y⊆X
|Y |=i

( Θ
y∈Y

A(y) ↔ Θ
z∈f(Y )

B(z)) ≥
∧

Y⊆X
|Y |=i

Θ
y∈Y

(A(y) ↔ B(f(y))).

First, we suppose that θ = ∧. Then we have

p∧A(i) ↔ p∧B(i) ≥
∨

f∈Perm(X)

∧
Y⊆X
|Y |=i

∧
y∈Y

(A(y) ↔ B(f(y))) ≥

∨

f∈Perm(X)

∧
y∈X

(A(y) ↔ B(f(y))) = A ≡∧ B.

Further, we suppose that θ = ⊗. Then, analogously, we can write

p⊗A(i) ↔ p⊗B(i) ≥
∨

f∈Perm(X)

∧
Y⊆X
|Y |=i

⊗
y∈Y

(A(y) ↔ B(f(y))) ≥

∨

f∈Perm(X)

∧

Y ∈Fin(X)

⊗
y∈Y

(A(y) ↔ B(f(y))) = A ≡⊗ B,

and the proof is complete.

Let us denote pθ
A, pθ

B the corresponding L-sets over Nω for countable L-
sets A,B ∈ FCL(X). Further, we put pθ

A ≈ pθ
B =

∧{pθ
A(i) ↔ pθ

B(i) | i ∈
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Nω}. It is easy to verify that ≈ is a similarity relation on the set of all pθ
A.

Now we can formulate a consequence of the previous lemma as follows

A ≡θ B ≤ pθ

A ≈ pθ

B. (2.28)

As we have mentioned, the previous inequality gives us, in the general case,
just an upper estimation of the θ-degrees of the equipollence of L-sets. The
following example shows that these estimations can be sometimes very poor.

Example 2.2.6. Let us suppose that LM is the Gödel algebra, defined in
Ex. 1.1.3, and A,B ∈ FCLM

(N) are LM-sets, defined by A(n) = 1 − 1
n

and
B(n) = 1 for every n ∈ N . Recall, that a↔Mb = min{a, b}. Then we have

A ≡∧ B =
∨

f∈Perm(N)

∞∧
n=1

A(n)↔MB(f(n)) =
∞∧

n=1

A(n) = A(1) = 0.

However, for an arbitrary i ∈ N we can state p∧B(i) = 1 and

p∧A(i) =
∨

M⊂N
|M|=i

∧
n∈M

A(n) =
∨

M⊂N
|M|=i

A(max(M)) = 1−
∧

M⊂N
|M|=i

1

max(M)
= 1.

Hence, we obtain that p∧A ≈ p∧B =
∧∞

i=1 p∧A(i) ↔ p∧B(i) = 1 holds and thus
A ≡∧ B < p∧A ≈ p∧B.

Obviously, the cause of a failure is in the application of supremum on the
countable L-set A (in the calculation of the value p∧A(i)). If we restrict to the
finite L-sets, then we can dispose of the mentioned failure for the case θ = ∧
as the following lemma shows.

Lemma 2.2.9. Let L be a complete linearly ordered residuated lattice and
X be a nonempty universe. Then we have

A ≡∧ B = p∧A ≈ p∧B (2.29)

for arbitrary A,B ∈ FIN L(X).

Proof. Due to Lemma 2.2.8, it is sufficient to prove that

A ≡∧ B ≥
∞∧
i=0

p∧A(i) ↔ p∧B(i).

Let us denote Z = Supp(A) ∪ Supp(B) and suppose |Z| = n. If n = 0
then clearly the equality is true. Let us suppose that n > 0. Then from the
linearity of L and the finiteness of A and B there exist two finite sequences
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{ui}n
i=1 and {vi}n

i=1 of the elements from Z such that A(ui) ≥ A(ui+1) and
B(vi) ≥ B(vi+1) hold for every i = 1, . . . , n − 1. It is easy to see that
p∧A(i) = A(ui) and p∧B(i) = B(vi). Moreover, clearly p∧A(k) = p∧B(k) = 0 holds
for every k > n. Now let us define a bijection g : X → X as follows

g(x) =

{
vi, x = ui

x, otherwise.
(2.30)

Then we have

A ≡∧ B =
∨

f∈Perm(X)

∧
x∈X

A(x) ↔ B(f(x)) ≥
∧
x∈X

A(x) ↔ B(g(x)) =

n∧
i=1

A(ui) ↔ B(vi) =
n∧

i=1

p∧A(i) ↔ p∧B(i) =
∞∧
i=0

p∧A(i) ↔ p∧B(i) = p∧A ≈ p∧B

and the proof is complete.

Example 2.2.7. Let us suppose that A = {0.3/x1, 0.8/x2, 0.4/x3, 0/x4, 0/x5}
and B = {0/x1, 0.6/x2, 0.9/x3, 0/x4, 0.7/x5}, where the membership degrees
are interpreted in the ÃLukasiewicz algebra. In order to find the ∧-degree
of bijectivity of fuzzy sets A and B, we introduce first the corresponding
mappings pA, pB : N → [0, 1]. It is easy to see, that p∧A, p∧B are the non-
increasing mappings, where pA(0) = pB(0) = 1, p∧A(1) and p∧B(1) are the
greatest membership degrees for fuzzy sets A and B, p∧A(2) and p∧B(2) are the
second greatest membership degrees for fuzzy set A and B etc., respectively.
Particulary, we may write the following sequences

pA = {1, 0.8, 0.4, 0.3, 0, 0, . . . },
pB = {1, 0.9, 0.7, 0.6, 0, 0, . . . }.

Using Lemma 2.2.9 we obtain A ≡∧ B = 0.7.

2.3 θ-equipollent Ld-sets

Let Ld be a complete dually residuated lattice and A ∈ FLd(X) and B ∈
FLd(Y ) be arbitrary Ld-sets (again we will suppose that there exists a bijec-
tion between X and Y ). We say that A is a∨-equipollent with B (or A and
B are a∨-equipollent), if

a =
∧
{b | ∃f : X → Y and f is a b∨-bijection between A and B}. (2.31)
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Further, let A ∈ FCLd(X), B ∈ FCLd(Y ) be arbitrary countable Ld-sets.
We say that A is a⊕-equipollent with B (or A and B are a⊕-equipollent), if

a =
∧
{b | ∃f : X → Y and f is a b⊕-bijection between A and B}. (2.32)

The value a is called the θ-degree of (fuzzy) equipollence of A and B. The
following theorems are dual to Theorems 2.2.1 and 2.2.2. Recall that AB

and BA are subsets of X and Y , respectively, such that Supp(A) ⊆ AB,
Supp(B) ⊆ BA and |AB| = |BA| = max(|Supp(A)|, |Supp(B)|).
Theorem 2.3.1. Let A ∈ FIN Ld(X) and B ∈ FIN Ld(Y ) be two finite
Ld-sets (X and Y are bijective). Then A is aθ-equipollent with B if and only
if the θ-degree of equipollency of the Ld-sets A and B is

a =
∧

f∈Bij(AB ,BA)
Θ
x∈AB

|A(x)ªB(f(x))|. (2.33)

Proof. Analogously to the proof of Theorem 2.2.1, we can establish the set
Hf = {x ∈ AB | f(x) 6∈ BA} for every f ∈ Bij(AB, BA). If Hf = ∅, then we
have for θ = ∨

∨
x∈X

|A(x)ªB(f(x))| =
∨

x∈AB

|A(x)ªB(f(x))|∨
∨

x∈X\AB

|⊥ ª ⊥| =
∨

x∈AB

|A(x)ªB(f(x))|

and for θ = ⊕ we obtain by analogy
∨

Z∈Fin(X)

⊕
x∈Z

|A(x)ªB(f(x))| =
∨

Z∈Fin(AB)

⊕
x∈Z

|A(x)ªB(f(x))|.

If Hf 6= ∅ and H = f−1(BA) \ AB, then we define g : X → Y by (2.13),
where g(Hf ) = f(H) and g(H) = f(Hf ). Hence, we obtain that Hg = ∅.
Finally, we have for θ = ∨
∨
x∈X

|A(x)ªB(f(x))| =
∨

x∈X\Hf∪H

|A(x)ªB(f(x))| ∨
∨

x∈Hf

|A(x)ª⊥|∨
∨
x∈H

|⊥ ª B(f(x))| =
∨

x∈X\Hf∪H

|A(x)ªB(f(x))|∨
∨

x∈Hf

(|A(x)ª⊥| ∨ |⊥ ª B(f(h(x)))|) ≥
∨

x∈X\Hf∪H

|A(x)ªB(f(x))|∨
∨

x∈Hf

|A(x)ªB(g(x))| ∨
∨
x∈H

|⊥ ª ⊥| =
∨
x∈X

|A(x)ªB(g(x))|,
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where |A(x)ªB(g(x))| = |⊥ª⊥| = ⊥ holds for any x ∈ H. By analogy, we
obtain for θ = ⊗

∨

Z∈Fin(X)

⊕
x∈Z

|A(x)ªB(f(x))| ≥
∨

Z∈Fin(X)

⊕
x∈Z

|A(x)ªB(g(x))|.

Hence, to each bijection f ∈ Bij(X, Y ) there exists a bijection g ∈ Bij(X,Y )
such that

∨
x∈X |A(x) ª B(f(x))| ≥ ∨

x∈X |A(x) ª B(g(x))| or analogously∨
z∈Fin(X)

⊕
x∈Z |A(x) ª B(f(x))| ≥ ∨

z∈Fin(X)

⊕
x∈Z |A(x) ª B(g(x))| and

moreover Hg = ∅, i.e. g|AB
∈ Bij(AB, BA). Then, due to the previous results

for Hg = ∅, we obtain the desired statement and the proof is complete.

Theorem 2.3.2. Let A ∈ FCLd(X) and B ∈ FCLd(Y ) be two at most
countable sets Ld-sets (X and Y are bijective). Then A is aθ-equipollent with
B if and only if there exist at most countable subsets X ′ ⊆ X and Y ′ ⊆ Y
covering Supp(A) and Supp(B) such that they are equipollent and

a =
∧

f∈Bij(X′,Y ′)
Θ
x∈X′

|A(x)ªB(f(x))|, (2.34)

where Bij(X ′, Y ′) denotes the set of all bijections between X ′ and Y ′.

Proof. It could be done by analogy to the proof of Theorem 2.2.2.

Contrary to the θ-equipollence of L-sets, which is closely connected with
a similarity relation on the class of all L-sets, an equipollence of Ld-sets
enables us to introduce a fuzzy pseudo-metric on the class of Ld-sets over a
given universe. Let Ld be a complete dual residuated lattice. A fuzzy binary
relation d on FLd(X) is called the fuzzy pseudo-metric (Ld-pseudo-metric or
⊕-pseudo-metric) on FLd(X), if it satisfies the following axioms

d(A,A) = 0, (reflexivity)

d(A,B) = d(B,A), (symmetry)

d(A,B)⊕ d(B, C) ≥ d(A,C). (tiangular inequality)

The following theorems show how to define a fuzzy pseudo metric on the
set of all Ld-subsets from the Ld-sets equipollence point of view.

Theorem 2.3.3. Let X be a nonempty universe. Then a fuzzy binary re-
lation ≡∨ on FLd(X), where A ≡∨ B = a if and only if A and B are a∨-
equipollent, is a fuzzy pseudo-metric on FLd(X).
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Proof. It is easy to see that the relation ≡∨ is reflexive and symmetric. Ob-
viously, the formula (2.31) may be rewritten as follows

A ≡∨ B =
∧

f∈Perm(X)

∨
x∈X

|A(x)ªB(f(x))|. (2.35)

Let A,B, C ∈ FLd(X) be arbitrary Ld-sets. Then we have

(A ≡∨B)⊕ (B ≡∨ C) =∧

f∈Perm(X)

∨
x∈X

|A(x)ªB(f(x))| ⊕
∧

g∈Perm(X)

∨
y∈X

|A(y)ªB(g(y))| ≥
∧

f∈Perm(X)

∧

g∈Perm(X)

∨
x∈X

∨
y∈X

|A(x)ªB(f(x))| ⊕ |B(y)ª C(g(y))| ≥
∧

f∈Perm(X)

∧

g∈Perm(X)

∨
x∈X

|A(x)ªB(f(x))| ⊕ |B(f(x))ª C(g(f(x)))| ≥
∧

f∈Perm(X)

∧

g∈Perm(X)

∨
x∈X

|A(x)ª C(g ◦ f(x))| =
∧

h∈Perm(X)

|A(x)ª C(h(x))| = A ≡∨ C

and thus the triangular inequality is also satisfied.

Theorem 2.3.4. Let X be a nonempty universe. Then a fuzzy binary re-
lation ≡⊕ on FCLd(X), where A ≡⊕ B = a if and only if A and B are
a⊕-equipollent, is a fuzzy pseudo-metric on FCLd(X).

Proof. It is analogical to the proof of the previous theorem and dual to the
proof of Theorem 2.2.5.

Again, the formula (2.32) may be rewritten as follows

A ≡⊕ B =
∧

f∈Perm(X)

∨

Z∈Fin(X)

⊕
x∈Z

|A(x)ªB(f(x))|. (2.36)

Remark 2.3.1. Let A,B ∈ FIN Ld(X) be two finite Ld-sets and Y be an arbi-
trary subset of X such that Supp(A)∪Supp(B) ⊆ Y . Due to Theorem 2.3.1,
we can write

A ≡θ B =
∨

f∈Perm(Y )
Θ
x∈Y

|A(x)ªB(f(x))|. (2.37)

Due to Theorem 2.3.2, if A,B ∈ FCLd(X) are countable Ld-sets, then there
exists Y ⊆ X such that Supp(A)∪Supp(B) ⊆ Y holds and (2.37) is satisfied.
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Remark 2.3.2. If A,B ∈ FCLd(X), then the ∨-degree is less or equal to
⊕-degree of equipollence of A and B, i.e. A ≡∨ B ≤ A ≡⊕ B.

Now we introduce dual mappings to the mappings p∧A and p⊕A. Let X be
a universe and A ∈ FCLd(X). Recall that AX = {Y ⊆ X | Supp(A) ⊆ Y }.
Let us define a mapping pθ

A : Nω × AX → L as follows

pθ

A(i, Y ) =
∧
Z⊆Y
|Z|=i

Θ
z∈Z

A(z). (2.38)

Contrary to the mapping pθ
A, we have pθ

A(i, Y ) 6= pθ
A(i, Y ′), in general. Ob-

viously, the equality is satisfied for such Ld-sets that have the universe as
their supports. Again, we put pθ

A(i, Supp(A)) = pθ
A(i). Further, we have

pθ
A(i, Y ) ≥ pθ

A(j, Y ), whenever i ≥ j, pθ
A(0, Y ) = ⊥ and pθ

A(1, Y ) =
∧{A(x) |

x ∈ Y }. Moreover, if the support of A is finite, then pθ
A(i, Y ) =

∧ ∅ = >
holds for every i > |Y |.

Lemma 2.3.5. Let Ld be a complete linearly ordered dually residuated lattice.
Then

p⊕A(i) =
i⊕

k=0

p∨A(k) (2.39)

holds for any A ∈ FIN Ld(X) and i ∈ Nω.

The following lemma is dual to Lemma 2.2.7.

Lemma 2.3.6. Let Ld be a complete linearly ordered dually residuated lattice
that is dense with regard to ≤. Then p∨A(ω) =

∨∞
i=0 p∨A(i) holds for any

A ∈ FCLd(X).

Let us denote Eqp(A,B) the set of all sets Y ⊆ X covering Supp(A) ∪
Supp(B) and satisfying (2.37). Obviously, we have Eqp(A,B) ⊆ AX ∩ BX .
The following lemma is a dual to Lemma 2.2.8 and using them we can obtain
a lower estimation of the θ-equipollence degree.

Lemma 2.3.7. Let X be a non-empty universe. Then

A ≡θ B ≥ |pθ

A(i, Y )ª pθ

B(i, Y )| (2.40)

holds for arbitrary A,B ∈ FCLd(X), i ∈ Nω and Y ∈ Eqp(A,B).
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Proof. Let A,B ∈ FCLd(X) be arbitrary Ld-sets, Y ∈ Eqp(A,B) and f ∈
Perm(Y ). Then we can write for any i ∈ Nω

|pθ

A(i, Y )ª pθ

A(i, Y )| = |
∧
Z⊆Y
|Z|=i

Θ
z∈Z

A(z)ª
∧

Z′⊆Y
|Z′|=i

Θ
z′∈Z′

A(z′)| ≤

∨
Z⊆Y
|Z|=i

|Θ
z∈Z

A(z)ª Θ
z′∈f(Z)

B(z′)| ≤
∨
Z⊆Y
|Z|=i

Θ
z∈Z

|A(z)ªB(f(z))|.

Since Y ∈ Eqp(A,B), then we have for θ = ∨ according to (2.37)

|p∨A(i, Y )ª p∨A(i, Y )| ≤
∧

f∈Perm(Z)

∨
Z⊆Y
|Z|=i

∨
z∈Z

|A(z)ªB(f(z))| ≤

∧

f∈Perm(Z)

∨
z∈Y

|A(z)ªB(f(z))| = A ≡∨ B.

Analogously, for θ = ⊕

|p⊕A(i, Y )ª p⊕A(i, Y )| ≤
∧

f∈Perm(Z)

∨
Z⊆Y
|Z|=i

⊕
z∈Z

|A(z)ªB(f(z))| ≤

∧

f∈Perm(Z)

∨

Z⊆Fin(Y )

⊕
z∈Z

|A(z)ªB(f(z))| = A ≡⊕ B

and the proof is complete.

Let us denote pθ
AY , pθ

BY the corresponding Ld-sets over N−0
ω for arbitrary

A,B ∈ FCLd(X) and Y ∈ Eqp(A,B). Further, we establish pθ
AY ≈d pθ

BY =∨{|pθ
A(i, Y ) ª pθ

B(i, Y )| | i ∈ Nω}. It is easy to verify that ≈d is a fuzzy
pseudo-metric on FLd(N−0

ω ). Now we may formulate a consequence of the
previous lemma as follows

A ≡θ B ≥ pθ

AY ≈d pθ

BY . (2.41)

Lemma 2.3.8. Let Ld be a complete linearly ordered dually residuated lattice
and X be a nonempty universe. Then we have

A ≡∨ B = p∨AY ≈d p∨BY (2.42)

for arbitrary A,B ∈ FIN Ld(X), where Y = Supp(A) ∪ Supp(B).

Proof. It is analogical to the proof of Lemma 2.2.9.
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2.4 Lattices homomorphisms and fuzzy sets

equipollence

In this section we investigate a relation between complete homomorphisms
of (dually) residuated lattice and θ- or θ-equipollence of fuzzy sets. The fol-
lowing lemmas are the properties consequences of homomorphisms between
various types of algebras. For an illustration we will prove just one part of
the second lemma. The rest could be done analogously.

Lemma 2.4.1. Let g : L1 → L2 and h : Ld
1 → Ld

2 be arbitrary complete
homomorphisms, X be a non-empty universe. Then

(i) g(A ≡θ1 B) = g→(A) ≡θ2 g→(B), whenever ≡θ1 makes sense9,

(ii) h(A ≡θ1 B) = h→(A) ≡θ2 h→(B), whenever ≡θ1 makes sense,

(iii) g(pθ1
A (i, Y )) = pθ2

g→(A)(i, Y ),

(iv) h(pθ1
A (i, Y )) = pθ2

h→(A)(i, Y )

hold for arbitrary A,B ∈ FL(X) and A ∈ FCL(X), Supp(A) ⊆ Y ⊆ X and
i ∈ Nω, respectively.

Recall that if g : L1 → Ld
2 is a homomorphism of the corresponding

algebras, then g(a ↔ b) = |g(a) ª g(b)| and dually, if h : Ld
1 → L2 is a

homomorphism of the corresponding algebras, then h(|aªb|) = h(a) ↔ h(b).

Lemma 2.4.2. Let g : L1 → Ld
2 and h : Ld

1 → L2 be arbitrary complete
homomorphisms, X be a non-empty universe. Then

(i) g(A ≡θ1 B) = g→(A) ≡θ2 g→(B), whenever ≡θ1 makes sense,

(ii) h(A ≡θ B) = h→(A) ≡θ h→(B), whenever ≡θ makes sense,

(iii) g(pθ
A(i, Y )) = pθ

g→(A)∩Y (i, Y ),

(iv) h(pθ
A(i, Y )) = pθ

h→(A)∩Y (i, Y )

hold for arbitrary A,B ∈ FL(X) and A ∈ FCL(X), Supp(A) ⊆ Y ⊆ X and
i ∈ Nω, respectively.

9For θ = ⊗ we must suppose that A and B are at most countable L-sets. In the
opposite case ≡⊗ has no sense.
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Proof. Here, we will prove just the statement (i) and (iii), the rest could
be proved analogously. First, let us suppose that θ = ∧. According to the
properties of the homomorphism g, we have

g(A ≡∧ B) = h
( ∨

f∈Perm(X)

∧
x∈X

(A(x) ↔ B(f(x)))
)

=

∧

f∈Perm(X)

∨
x∈X

g(A(x) ↔ B(f(x))) =
∧

f∈Perm(X)

∨
x∈X

|g(A(x))ª g(B(f(x)))| =
∧

f∈Perm(X)

∨
x∈X

|g→(A)(x)ª g→(B)(f(x))| = g→(A) ≡∨ g→(B).

Further, let us suppose that θ = ⊗ and A, B are at most countable L-sets.
Then we have

g(A ≡⊗ B) = h
( ∨

f∈Perm(X)

∧

Z∈Fin(X)

⊗
x∈Z

(A(x) ↔ B(f(x)))
)

=

∧

f∈Perm(X)

∨

Z∈Fin(X)

⊕
x∈Z

g(A(x) ↔ B(f(x))) =

∧

f∈Perm(X)

∨

Z∈Fin(X)

⊕
x∈Z

|g(A(x))ª g(B(f(x)))| =
∧

f∈Perm(X)

∨

Z∈Fin(X)

⊕
x∈Z

|g→(A)(x)ª g→(B)(f(x))| = g→(A) ≡⊕ g→(B)

and (i) is proved. Let A be at most countable L-set, Y ⊆ X such that
Supp(A) ⊆ Y and i ∈ N . If i > |Y |, then we have pθ

A(i, Y ) = ⊥ and
pg→(A)∩Y (i, Y ) = >. Hence, we obtain g(pθ

A(i, Y )) = pg→(A)∩Y (i, Y ). Let
i ≤ |Y | and i < ω, then we have

g(pθ

A(i, Y )) = g(
∨
Z⊆Y
|Z|=i

Θ
z∈Z

A(z)) =
∧
Z⊆Y
|Z|=i

Θ
z∈Z

g(A(z)) = pθ

g→(A)∩Y (i, Y ).

Furthermore, for i = ω we have

g(pθ

A(ω, Y )) = g(
∨
Z⊆Y
|Z|=ω

Θ
z∈Z

A(z)) =

g(
∨
Z⊆Y
|Z|=ω

∧

Z′∈Fin(Z)
Θ
z∈Z′

A(z)) =
∧
Z⊆Y
|Z|=ω

∨

Z′∈Fin(Z)
Θ
z∈Z′

g(A(z)) =

∧
Z⊆Y
|Z|=ω

Θ
z∈Z

g→(A)(z) = pθ

g→(A)∩Y (ω, Y ).
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Hence, the proof is complete.

Remark 2.4.1. If just finite fuzzy sets are considered, then the completeness
of homomorphism need not be assumed. It follows from Theorems 2.2.1 and
2.3.1.
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Chapter 3

Cardinalities of finite fuzzy sets

Cardinality seems to be one of the most fascinating and enigmatic math-
ematical aspects of fuzzy sets. As concerns applications, let us men-
tioned communication with data bases and information/intelligent sys-
tems, modeling the meaning of imprecise quantifiers in natural lan-
guage statements, computing with word, the computational theory of
perceptions, decision-making in fuzzy environment, probabilities of fuzzy
events, metrical analysis of grey images, etc.

Maciej Wygralak in [108]

In the previous chapter we have mentioned that the cardinality of a set
is expressed by a cardinal number describing the ”number of elements of
the set”. In the case of finite sets, the cardinal numbers are expressed by
the natural numbers. If we want to introduce the notion of cardinality for
finite fuzzy sets, we have to decide what are the suitable objects that could
characterize the size of these fuzzy sets. Obviously, the situation is, contrary
to the cardinality of sets, complicated by the graduation of membership of
elements of fuzzy sets. A classical-like approaches to the cardinality of fuzzy
sets are inspired by the cardinality of sets. The cardinality theories of fuzzy
sets are built using the equivalence classes of fuzzy sets under the various
types of equipollence of fuzzy sets (see e.g. [36, 37, 55]). These approaches,
however, did not fit the applicability of cardinal theory of fuzzy sets and
therefore they were not been studied more intensively. The main development
of cardinal theory for fuzzy sets proceeded in the following two directions.

The first one contains so-called scalar approaches (mainly for finite fuzzy
sets) which have a single ordinary cardinal number or a non-negative real
number as the object expressing the size of fuzzy sets. A basic definition of
the scalar cardinality, named the power of a finite fuzzy set, was proposed
by A. De Luca and S. Terminy [13]. This definition is very simple and the
power of a finite fuzzy set A is given by the sum of membership degrees of
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the fuzzy set A, i.e. |A| = ∑
x∈X A(x). Some authors refer to |A| as ΣCount

(sigma count). An extension of this definition to p-power of finite fuzzy sets
was proposed by A. Kaufman [52] and S. Gottwald [38]. Another definition
of scalar cardinality, based on FECount (see below), was introduced by D.
Ralescu [81] and properties of scalar cardinality of fuzzy sets could be found
in e.g. [16,17,38,102,125]. An axiomatic approach to the scalar cardinality of
fuzzy sets was suggested by M. Wygralak [106,107]. The relationship between
fuzzy mappings and scalar cardinality of fuzzy sets was stated in [9, 50, 85].
L.A. Zadeh in [125] has introduced a relative measure of scalar cardinality of
finite fuzzy sets by ΣCount(A|B) = ΣCount(A ∩ B)/ΣCount(B) to model
the truth values of formulas with fuzzy quantifiers.

In the second direction the objects expressing the size of fuzzy sets are
constructed as more-less special fuzzy sets over the set of natural numbers
N or universes containing a broader class of cardinal or ordinal numbers. A
dominant role is then plaid by the convex fuzzy sets over N or over a class
of common cardinals, which are called generalized natural numbers or gener-
alized cardinals (see e.g. [16, 102–105]), respectively, where the membership
degrees are constructed over [0, 1]. This type of cardinality of fuzzy sets is
usually called fuzzy cardinality. The first definition of fuzzy cardinality of
finite fuzzy sets, by means of functions from N to [0, 1], was done due to
Lotfi A. Zadeh [124] and it is based on the a-cuts of fuzzy sets. In particular,
the power of finite fuzzy set A is introduced by |A|F(i) =

∨{a | |Aa| = i}.
This definition seems to be reasonable, but one important property, which
is derived from the cardinality of sets, is failed. This property is defined
as |A| + |B| = |A ∩ B| + |A ∪ B| and it is called valuation property1. In
the Zadeh’s case of fuzzy cardinality, the operation of addition is defined by
his extension principle (see Section 1.4). It is easy to see that the Zadeh’s
fuzzy cardinality leads to the fuzzy sets, which are non-convex, in general.
This lack was removed by L.A. Zadeh in [125], where he introduced three
types of fuzzy cardinalities FGCount , FLCount and FECount (again the
mappings from N to [0, 1]) for modeling fuzzy quantifiers in natural lan-
guage. Note that the fuzzy cardinality FECount (but in a different nota-
tion) was also independently introduced by M. Wygralak in [101]. Keeping
Zadeh’s notation, FGCount(A)(k) =

∨{a | |Aa| ≥ n} expresses a degree to
which A contains at least k elements. The dual variant FLCount(A)(k) =
1 − FGCount(A)(k + 1) determines a degree to which A has at most k el-
ements. A degree to which A has exactly k elements is then expressed by
FECount(A)(k) = FGCount(A)(k) ∧ FLCount(A)(k). Other approaches

1Note that this property is also referred to additivity, but this denotation will be used
for a different property of fuzzy cardinality (see p. 79).
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to the definition of fuzzy cardinality for finite fuzzy sets could be found
in [15, 16, 81]. A generalization of FGCount , FLCount and FECount using
t-norms and t-conorms was proposed in [108, 109] and singular fuzzy sets
with regard to the triangular norm-based generalized cardinals were investi-
gated in [19,20]. An axiomatic approach to fuzzy cardinalities of finite fuzzy
sets, defined by means of the generalized natural numbers, was proposed by
J. Casasnovas and J. Torrens in [8]. Using the proposed system of axioms
an infinite class of fuzzy cardinalities could be obtained, which contains a
lot of the fuzzy cardinalities referred above. Further, a representation of ax-
iomatic introduced fuzzy cardinalities by the couples of mappings, where one
is a non-increasing mapping and the other one is a non-decreasing mapping,
could be given in a similar way as in the case of the axiomatic approach to
scalar cardinality. A definition of cardinality for (possibly infinite) fuzzy set,
which actually generalizes FGCount , is suggested by A.P. Šostak in [92,93].
Another extension of FGCount was proposed by P. Lubczonok in [66], where
the unit interval is replaced by a totally ordered lattice L. Cardinalities of
the resulting L-fuzzy sets are then defined as mappings from a class of car-
dinal numbers to the lattice L. As we have mentioned, the cardinalities of
fuzzy sets are mainly constructed as the convex fuzzy sets. An approach to
the non-convex cardinalities of fuzzy sets could be found in [14].

The approach to cardinalities of finite fuzzy sets (L-sets and Ld-sets),
presented in this chapter, is axiomatic. As objects, representing the cardi-
nalities of fuzzy sets, we chose convex fuzzy sets, which are an analogy to the
generalized natural numbers. The structures of such convex fuzzy sets are in-
troduced in the following section. In the second section we propose a system
of axioms for so-called θ-cardinalities of L-sets. This system was motivated
by the axiomatic system proposed by J. Casasnovas and J. Torrens in [8]
and it is suggested to satisfy requirements that results from dealing with
the L-sets. Actually, our proposed axiomatic system generalizes the original
one. In the third section we introduce an axiomatic system for so-called θ-
cardinalities of Ld-sets, which could be understood as a “dual” system to the
axiomatic system for θ-cardinalities. It is easy to see that the operations of
dually residuated lattices seem to be suitable for a generalization of ΣCount.
Hence, the original idea was to introduce a dual axiomatic system to the
previous one that enables to establish scalar cardinalities of fuzzy sets. The
final system of axioms, however, gives a possibility to establish a broader
class of cardinalities of fuzzy sets than only the scalar cardinalities. The
scalar cardinalities, of course, for Ld-sets could be comprehended as some
special θ-cardinalities having the form of singletons (see p. 83). Our inves-
tigation of cardinalities of finite L-sets and Ld-sets is largely restricted here
as regards their properties and our primary goal is to study the relationships
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between the concepts of evaluated equipollence (or bijection) and cardinali-
ties of fuzzy sets. In the first subsections of the mentioned sections we focus
our attention on the representation of θ- and θ-cardinalities of L-sets and
Ld-sets, respectively, and we show that both types of cardinalities may be
represented by couples of suitable homomorphisms between residuated and
dually residuated lattices in a similar way as in [8]. The second subsections
are then devoted to various relationships between evaluated equipollencies
or bijections and cardinalities of fuzzy sets and some further expressions of
cardinalities by the mappings pθ and pθ. These relationships can be used,
in some special cases, to establishing fuzzy quantifiers as will be shown in
Subsection 4.3.2.

3.1 Structures for fuzzy sets cardinalities

In order to introduce cardinalities or better the “power” of fuzzy sets mea-
sures, we have to choose objects (special fuzzy sets) being suitable to model
an analogy with cardinal numbers denoting the “size” of fuzzy sets. In the
classical set theory the cardinalities of finite sets are expressed by cardinal
(or equivalently ordinal) numbers, which are represented by natural numbers,
and the cardinality of finite sets may be formally described as a mapping
| | : Fin → N assigning to each finite set the cardinal number correspond-
ing to their numbers of elements. This mapping has the following properties.
First, for arbitrary A,B ∈ Fin such that A∩B = ∅ we have |A∪B| = |A|+|B|
and then |A| ≤ |B|, whenever there exists an injection from A to B. In order
to be able to deal with the mentioned properties, we have to assume not
only the set of natural numbers, but a richer structure of natural numbers.
In particular, it seems to be reasonable to suppose a linearly ordered com-
mutative monoid (or loc-monoid for short) of natural numbers denoted by
N = (N, +,≤, 0). Further, it is easy to see that the element 1 (characteriz-
ing the one element set) has a dominant role in N, precisely, each element
except of 0 may be uniquely determined by the finite repeated counting of
1. This element is the unit2 of N. Finally, if we extend the set N by the
first infinite cardinal, denoted by ω (or also ℵ0), to the set of extended natu-
ral numbers Nω, then we obtain the bounded loc-monoid of extended natural
numbers Nω = (Nω, +,≤, 0, ω), where the addition and ordering are natu-
rally extended by ω + a = a+ω = ω and a ≤ ω for any a ∈ Nω, respectively.

2The definition of the unit is not the same in different algebraical theories. Here we use
the terminology of ordered algebraical structures and the unit is defined as an element u
of the ordered algebraical structures G such that for each positive element g ∈ G+ there
is a natural n ∈ N with g ≤ nu (see e.g. [11]).
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Obviously, this structure could serve as a range of values for the cardinality
of countable sets3 and it is an example of the more general algebraic structure
as follows. An algebraical structure M = (M, +,≤, 0,m, u), where (M, +, 0)
is the commutative monoid (i.e. + is associative, commutative and the iden-
tity a + 0 = a holds for any a ∈ M), (M ≤) is the linearly ordered set with
0 as the least element and m as the greatest element (0 < m) and if a ≤ b,
then a + c ≤ b + c holds for any c ∈ M , u ∈ M such that

(i) for every a ∈ M , a 6= 0, there exists n ∈ N such that nu = a and

(ii)
∨∞

n=1 nu = m (or limn→∞ nu = m),

where 1u = u and nu = (n − 1)u + u holds for any n > 1, will be called
the bounded linearly ordered commutative monoid with the unit u or bounded
loc-monoid with the unit u for short. This algebraical structure is very sim-
ple, even all elements are determined by the unit u, nevertheless, it seems
to be suitable structure over which a more general construction of the rings
of cardinalities of finite fuzzy sets could be done. Before showing a simple
representation of bounded loc-monoids with units, let us give two examples
of them. The first one could be used in practice for modeling of the relative
measure of scalar cardinality for sets expressing how much a subset of a given
set is contained in this set (a special case of ΣCount(A/B) that was men-
tioned above). The second one will be used in the mentioned representation.

Example 3.1.1. Let n ∈ N , n > 0, be an arbitrary natural number. The
structure Mn = (Mn, SL,≤, 0, 1, 1

n
), where Mn = {0, 1

n
, 2

n
, . . . , 1} and SL

is the ÃLukasiewicz t-conorm, is the bounded loc-monoid with the unit 1
n
.

In particular, we have M1 = ({0, 1}, SL,≤, 0, 1, 1), where SL(0, 0) = 0,
SL(0, 1) = SL(1, 1) = 1 and 1 is the unit, will be called the trivial upper
bound loc-monoid with the unit 1.

Example 3.1.2. Let n ∈ Nω, n > 0, be an arbitrary natural number or
n = ω. Then we establish Nn = (Nn,¢,≤, 0, n, 1), where Nn = {0, . . . , n},
the relation ≤ is the common linear ordering of natural numbers from Nn

and a ¢ b = min(a + b, n) holds for each a, b ∈ Nn, where + denotes the
extended addition on Nω.

The following lemma shows the mentioned representation of bounded loc-
monoids with a unit u by the structures Nn.

3Note that axiomatic systems for cardinalities of countable fuzzy sets were also one
of the goals of this theses. Since their theory is not still finished, they are not presented
here. Nevertheless, a consequence of this effort is the consideration of such bounded
structure. Obviously, a generalization of this structure given below is also appropriate for
the investigation of cardinalities of finite fuzzy sets.
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Lemma 3.1.1. Let M be a bounded loc-monoid with a unit. Then there
exists a unique m ∈ Nω such that M and Nn are isomorphic, i.e. M ∼= Nn.

Proof. It is easy to verify that the mapping f : M → Nn, where we put
n = min{n′ | n′u = m}, if it is possible, otherwise n = ω, defined by f(a) = k
(a < m) if and only if a = ku and f(m) = n, is an ordered homomorphism
of the algebraic structures. The uniqueness of m follows from the fact that
there exists a bijective mapping between two finite sets if and only if these
sets have the same number of elements and two countable infinite sets are
always bijective.

According to this lemma, we can assume that each bounded loc-monoid
with a unit has the form Nn for a suitable n ∈ Nω. In the following part
we will introduce similar structures to the bounded loc-monoids with units,
which objects are suitable for expressing of finite fuzzy cardinals. In particu-
lar, we will extend the bounded loc-monoids with units using Zadeh extension
principle and show that the extended structures are the bounded partial or-
dered commutative monoids (without the units) or also bounded poc-monoids
for short. In spite of the fact that the bounded poc-monoids do not pos-
sess all properties of Nn, it seems to be acceptable for our investigation of
cardinalities of finite L-sets and Ld-sets.

Let L be a complete residuated lattice and Nn be a bounded loc-monoid
with the unit. Then we denote CVθ

L(Nn) the set of all θ-convex L-sets over
Nn, where θ ∈ {∧,⊗}. Using the Zadeh extension principle we can extend
the addition ¢ of Nn to the operation of addition +θ on CVθ

L(Nn). The
following theorem shows properties of the extended operation +θ. Let us set
E(k) = >, if k = 0, and E(k) = ⊥ otherwise. It is easy to see that E is the
θ-convex L-set and thus belongs to CVθ

L(Nn).

Theorem 3.1.2. Let L be a complete residuated lattice. Then the structure
(CV⊗L(Nn), +⊗) is a commutative monoid with the neutral element E. More-
over, if L is divisible, then the structure (CV∧L(Nn), +∧) is a commutative
monoid with the neutral element E.

Proof. In order to prove that +θ is defined correctly, i.e. A +θ B ∈ CVL(Nn)
for any A,B ∈ CVL(Nn) and n ∈ Nω, it is sufficient (due to Theorem 1.4.1) to
prove that for arbitrary i ≤ j ≤ k from Nn and for arbitrary i1, i2, k1, k2 ∈ Nn

such that i1 ¢ i2 = i and k1 ¢ k2 = k there exist j1, j2 ∈ Nn with j1 ¢ j2 = j
and it ≤ jt ≤ kt or kt ≤ jt ≤ it hold for t = 1, 2. Note that the addition is a
surjective mapping. Obviously, if a ≥ b and a 6= ω (it is necessary to suppose
it in the case of Nω), then we can put a ¯ b = c if and only if a = b ¢ c. It
establishes a partial subtraction on Nn. Now, let us suppose that i1 ≤ k1,
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i2 ≤ k2 and k1 6= ω 6= k2. If j ≤ i1 ¢ k2, then it is sufficient to put j1 = i1
and j2 = j ¯ i1. Obviously, i2 ≤ j2 ≤ k2, because i1 ¢ i2 ≤ j. If j > i1 ¢ k2,
then we put j2 = k2 and j1 = j ¯ k2. Again, we obtain i1 ≤ j1 ≤ k1, because
j ≤ k1 ¢ k2. Further, let us suppose (for Nω) that i1 ≤ k1, i2 ≤ k2 and
k1 = ω and k2 6= ω. If j = ω, then we put j1 = i1 and j2 = ω. If j 6= ω,
then we put j1 = i1 and j2 = j ¯ i1. The same results could be obtained for
k1 6= ω and k2 = ω or k1 6= ω and k2 6= ω. Finally, the cases k1 ≤ i1, i2 ≤ k2

and i1 ≤ k1, k2 ≤ i2 could be proved by analogy and thus the addition +⊗ is
closed on CV⊗L(Nn). If L is divisible, then also the addition +∧ is closed on
CV∧L(Nn). Since the operations ⊗ and ∧ are commutative, then +⊗ and +∧

are commutative, too. Let A be a θ-convex L-set. Then

(A +θ E)(i) =
∨

i1,i2∈Nn
i1¢i2=i

A(i1)θE(i2) = A(i)θE(0) = A(i)θ> = A(i).

holds for any i ∈ Nn. From the commutativity of +θ, we have A +θ E =
E +θ A = A and thus E is a neutral element in the groupoid (CVL(Nn), +θ).
Finally, for arbitrary A,B,C ∈ CVL(Nn) and i ∈ Nn, we have

((A +⊗ B) +⊗ C)(i) =
∨

j,k∈Nn
j¢k=i

(
∨

j1,j2∈Nn
j1¢j2=j

A(j1)⊗B(j2))⊗ C(k) =

∨
j,k∈Nn
j+k=i

∨
j1,j2∈M

j1¢j2=j

A(j1)⊗B(j2)⊗ C(k) =
∨

j1,j2,k∈Nn
j1¢j2¢k=i

A(j1)⊗B(j2)⊗ C(k) =

∨
j1,j∈Nn
j1¢j=i

A(j1)⊗ (
∨

j2,k∈Nn
j2¢k=j

B(j2)⊗ C(k)) = (A +⊗ (B+⊗C))(i)

and thus the operation +⊗ is associative. If L is divisible, the same result
could be obtained by analogy for +∧. Hence, (CVθ

L(Nn), +θ) is a commutative
monoid (for +∧ the divisibility of L has to be assumed) and the proof is
complete.

In the next part, for simplicity, if a commutative monoid (CVθ

L(Nn), +θ)
is considered in this general form, then for θ = ∧ the divisibility of the
complete residuated lattice L will always be assumed and therefore it will
not be mentioned further.

Let Ld be a complete dually residuated lattice and Nn be a bounded loc-
monoid with the unit. Then we denote CVθ

Ld(Nn) the set of all θ-convex
Ld-sets over Nn, where θ ∈ {∨,⊕}. Again, using the dual Zadeh extension
principle, we can extend the addition ¢ of Nn to the operation of addition
+θ on CVθ

Ld(Nn). Let us set E(k) = ⊥, if k = 0, and E(k) = > otherwise. It
is easy to see that E is the θ-convex Ld-set and thus belongs to CVθ

Ld(Nn).
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Theorem 3.1.3. Let Ld be a complete dually residuated lattice. Then the
structure (CV⊕

Ld(Nn), +⊕) is a commutative monoid with the neutral element
E. Moreover, if Ld is divisible, then the structure (CV∨Ld(Nn), +∨) is also a
commutative monoid with the neutral element E.

Proof. It could be done by analogy to the proof of Theorem 3.1.2.

Again, for simplicity, if a commutative monoid (CVθ

Ld(Nn), +θ) is consid-
ered in this general form, then for θ = ∨ the dual divisibility of the complete
dually residuated lattice Ld will always be assumed and therefore it will not
be mentioned further.

Let A,B be arbitrary fuzzy sets on X. Recall that A is less than or equal
to B or B is greater than or equal to A, if A(x) ≤ B(x) holds for every
x ∈ X. It is easy to see that this relation is a relation of partial ordering on
the set F(X) and we say that (F(X),≤) is a partial ordered set or shortly
po-set. Moreover, if we put 0(x) = ⊥ and 1(x) = > for every x ∈ X, then 0
is the least fuzzy set and 1 is the greatest fuzzy set in F(X). Let us define
an operator c : CVθ

L(Nn) → CVθ

L(Nn) by Ac(i) =
∨

j∈Nn,j≤i A(j). Obviously,
A ≤ Ac and Ac = Acc hold for every A ∈ CVθ

L(Nn). Hence, the operator c is
a closure operator on CVθ

L(Nn).

Lemma 3.1.4. Let (CVθ

L(Nn), +θ) be a commutative monoid and ≤ be the
ordering relation on CVθ

L(Nn) defined above. Then (CVθ

L(Nn),≤) is the po-
set, where 0 is the least element and 1 is the greatest element of CVθ

L(Nn).
Moreover, we have

(i) 0 +θ A = 0,

(ii) 1 +θ A = Ac,

(iii) if A ≤ B, then A +θ C ≤ B +θ C

for every A,B,C ∈ CVθ

L(Nn).

Proof. Evidently, the first part of this lemma is true, i.e. (CVθ

L(Nn),≤) is
the bounded po-set. Let A ∈ CVθ

L(Nn) be arbitrary L-set. Then

(0 +θ A)(i) =
∨

i1,i2∈Nn
i1+i2=i

0(i1)θA(i2) =
∨

i1,i2∈Nn
i1+i2=i

⊥θA(i2) = ⊥

holds for every i ∈ Nn. Further, we have

(1 +θ A)(i) =
∨

i1,i2∈Nn
i1+i2=i

1(i1)θA(i2) =
∨

i1,i2∈Nn
i1+i2=i

>θA(i2) =
∨

k∈Nn
k≤i

A(k) = Ac(i)
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for every i ∈ Nn. Finally, if A,B,C ∈ CVθ

L(Nn) be arbitrary L-sets such that
A ≤ b, then

(A +θ C)(i) =
∨

i1,i2∈Nn
i1+i2=i

A(i1)θC(i2) ≤
∨

i1,i2∈Nn
i1+i2=i

B(i1)θC(i2) = (B +θ C)(i)

holds for every i ∈ Nn, where we apply the inequality A(i1) ≤ B(i1).

Again, we can define a dual operator c : CVθ

Ld(Nn) → CVθ

Ld(Nn) by
Ac(i) =

∧
j∈Nn,j≤i A(j). Obviously, Ac ≤ A and Ac = Acc hold for every

A ∈ CVθ

Ld(Nn).

Lemma 3.1.5. Let (CVθ

Ld(Nn), +θ) be a commutative monoid and ≤ be the
ordering relation on CVθ

Ld(Nn) defined above. Then (CVθ

Ld(Nn),≤) is the
bounded po-set, where 0 is the least element and 1 is the greatest element of
CVθ

Ld(Nn). Moreover, we have

(i) 0 +θ A = Ac,

(ii) 1 +θ A = 1,

(iii) if A ≤ B, then A +θ C ≤ B +θ C

for every A,B,C ∈ CVθ

Ld(Nn).

Proof. It is analogical to the proof of the previous lemma.

The following theorem summarizes the previous properties and defines
the structures, which will be used for expressing the cardinalities of L-sets
and Ld-sets.

Theorem 3.1.6. Let L and Ld be complete residuated lattices. Then the
structures (CVθ

L(Nn), +θ,≤,0,1) and (CVθ

Ld(Nn), +θ,≤,0,1) are the bounded
poc-monoids, where for θ = ∧ and θ = ∨ the divisibility of L and Ld is
assumed, respectively.

Proof. It is a straightforward consequence of Theorems 3.1.2, 3.1.3 and Lem-
mas 3.1.4, 3.1.5.

In the following text we denote CVθ

L(Nn) = (CVθ

L(Nn), +θ,≤,0,1) and
CVθ

Ld(Nn) = (CVθ

Ld(Nn), +θ,≤,0,1). It is easy to see that these structures
have no units. On the other hand, it is not complicated to show that each
finite fuzzy set (L-set or Ld-set) could be determined as a sum of suitable
singletons (an analogy to the unit). Further, let us note that the structure
over the generalized natural numbers, which is often used to be expressed of
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cardinalities of finite fuzzy sets, is a substructure of CVT

LT
(Nω), where T is a

continuous t-norm (see e.g. [108,109]). Finally, let us stress that if a structure
CVθ

L(Nn) or CVθ

Ld(Nn) is considered in this general form, then for θ = ∧ or
θ = ∨ the divisibility of L or Ld will always be assumed, respectively.

3.2 θ-cardinalities of finite L-sets

As we have mentioned, the finite sets cardinality is the mapping | | : Fin → N ,
where N is the support of loc-monoid with the unit 1. It was a motivation to
construct the cardinality of finite L-sets as a mapping C : FIN L(X) → N̂ ,

where N̂ is the support of a structure of extended natural numbers. In our
case, we put N̂ = CVθ

L(Nn) and the θ-cardinality of finite L-sets is then an
arbitrary mapping C : FIN L(X) → CVθ

L(Nn) satisfying a suitable set of
axioms. The axioms are proposed in such a way to characterize properties
of the well-known fuzzy cardinalities. Our axiomatic system generalizes, as
we have mentioned, the system of axioms suggested by J. Casasnovas and
J. Torrens in [8]. The essential difference is that the axiom of monotonicity is
exchanged by the axioms of singleton independency and preservation of non-
existence and existence. The Casasnovas-Torrens axiomatic system could
be obtained, if we restrict ourselves to the residuated and dually residuated
lattices over the unit interval and put θ = ∧.

3.2.1 Definition and representation

Let Nn be a bounded loc-monoid with the unit 1 and i ∈ Nn. Then i · 1 is
defined by induction as follows 0 · 1 = 0 and i · 1 = (i − 1) · 1 ¢ 1 for any
i > 0. Now the θ-cardinalities of finite L-sets are defined as follows.

Definition 3.2.1. Let L and Ld be a complete residuated and dually resid-
uated lattice, respectively, with the same support and CVθ

L(Nn) be a bounded
poc-monoid. A θ-cardinality of finite L-sets on FIN L(X) is a mapping
C : FIN L(X) → CVθ

L(Nn) such that the following conditions are satisfied:

(i) For every A,B ∈ FIN L(X) such that A∩B = ∅, we have C(A∪B) =
C(A) +θ C(B).

(ii) For every A,B ∈ FIN L(X) and i, j ∈ Nn such that i > |Supp(A)|
and j > |Supp(B)|, we have C(A)(i) = C(B)(j).

(iii) If A ∈ FIN L(X) is a crisp set (A ⊆ X), then C(A)(i) ∈ {⊥,>}
holds for every i ∈ Nn and, moreover, if |A| = i, then C(A)(i·1) = >.
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(iv) Let a ∈ L, then C({a/x})(i) = C({a/y})(i) holds for every x, y ∈ X
and i ∈ Nn.

(v) Let a, b ∈ L, then

C({aθb/x})(0) = C({a/x})(0)θC({b/x})(0), (3.1)

C({aθb/x})(1) = C({a/x})(1)θC({b/x})(1). (3.2)

The mentioned axioms are called the additivity, variability, consistency,
singleton independency, preservation of non-existence and existence, respec-
tively. Note that the terms of additivity, variability and consistency are used
from [8]. Let us point out some motivation as well as the meaning for each
one of these axioms. The additivity of θ-cardinality is the assumed property
of the classical sets cardinality, where the θ-convex L-sets are considered as
values of θ-cardinality instead of the cardinal numbers, and it seems quite
natural. As regards the variability, the idea is that the element not belong-
ing to the support of a finite L-set has no effect on its θ-cardinality. Hence,
the θ-cardinality of any finite L-set as a θ-convex L-set must have the same
membership degrees for all numbers from Nn greater than the cardinality of
its support. The consistency requires that any θ-cardinality of a finite crisp
set must take the values ⊥ and >, because each crisp set is a mapping from a
universe to {⊥,>}, and the value > on the concrete cardinal number of this
set, if it belongs to Nn. Later we will show that if the cardinal number of a
crisp set is greater than n, then the membership degree of any θ-cardinality
in n is equal to >. A consequence of the consistency is, moreover, the fact
that the degree of the θ-cardinality of a finite L-set A in i actually expresses
a measure of the “truth” of the statement that the L-set A has i elements.
This is a different point of view to the cardinality of fuzzy sets than in the
case of the θ-cardinalities, which will be introduced later (see p. 79). The
singleton independency abstracts away from the concrete elements of a uni-
verse. If A is a L-sets and x ∈ X, then we may ask a question, whether the
element x rather does not exist or rather does exist in the L-set A. Clearly,
the non-existence of x in A will be more supported for A(x) close to ⊥ and
the existence of x in A vice versa. Thus, the axiom of non-existence and
existence preservations roughly says that the degree of non-existence of an
element from a universe in an L-set will be decreasing, if the membership
degree of this element in the L-set will be increasing4 and similarly for the
degree of existence. The following example generalizes the original definition
of FGCount for L-sets. Further examples may be found in the end of this
section or in e.g. [8].

4Recall that aθb ≥ a ∨ b and aθb ≤ a ∧ b.
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Example 3.2.1. A basic definition of the convex fuzzy sets cardinality called
FGCount (over the unit interval) has been introduced by L.A. Zadeh in [125]
(see the introduction to this chapter), where the a-cuts of fuzzy sets are used.
Let L be a complete divisible residuated lattice. Then a ∧-cardinality of finite
fuzzy sets C : FIN L(X) → CV∧L(Nn), constructed by the a-cuts of fuzzy sets,
may be defined as follows

C(A)(i) =
∨
{a | a ∈ L and |Aa| ≥ i}. (3.3)

Let us prove that C is the ∧-cardinality of finite L-sets. Obviously, C(A)(i) ≥
C(A)(j), whenever i ≤ j, holds for arbitrary i, j ∈ Nn and thus C(A) is the
∧-convex L-set for any A ∈ FIN L(X). If A ∩ B = ∅ are two finite L-sets,
then |(A ∪ B)a| = |Aa| + |Ba| ≥ min(|Aa| + |Ba|, n) = |Aa| ¢ |Ba|. Hence,
if |Aa| + |Ba| ≥ i, then also |Aa| ¢ |Ba| ≥ i, because i ≤ n according to the
definition. Moreover, we have |Aa| ≤ |Ab|, whenever b ≤ a. Hence, for any
i ∈ Nn we have

(C(A) +∧ C(B))(i) =
∨

k,l∈Nn
k¢l=i

(C(A)(k) ∧ C(B)(l)) =

∨
k,l∈Nn
k¢l=i

(
∨
a∈L
|Aa|≥k

a) ∧ (
∨
b∈L
|Bb|≥l

b) =
∨

k,l∈Nn
k¢l=i

∨
a∈L
|Aa|≥k

∨
b∈L
|Bb|≥l

(a ∧ b) ≤

∨
a,b∈L

|Aa∧b|¢|Ba∧b|≥i

(a ∧ b) =
∨
c∈L

|Ac|+|Bc|≥i

c =
∨
c∈L

|(A∪B)c|≥i

c = C(A ∪B)(i)

Let |(A ∪ B)c| ≥ i for some c ∈ L. Then clearly there exist kc, lc ∈ Nn such
that |Ac| ≥ kc, |Bc| ≥ lc and kc ¢ lc = i. Therefore, we have

(
∨
a∈L

|Aa|≥kc

a) ∧ (
∨
b∈L

|Bb|≥lc

b) ≥ c ∧ c = c.

Since to each c ∈ L with |(A ∪ B)c| ≥ i there exist kc, lc ∈ Nn with the
considered properties, then we can write

C(A ∪B)(i) =
∨
c∈L

|(A∪B)c|≥i

c ≤
∨

k,l∈Nn
k¢l=i

(
∨
a∈L
|Aa|≥k

a) ∧ (
∨
b∈L
|Bb|≥l

b) = (C(A) +∧ C(B))(i)

and thus the axiom of additivity is satisfied. Obviously, if i > |Supp(A)|,
then also i > |Aa| and thus C(A)(i) =

∨ ∅ = ⊥. Hence, the variability is
fulfilled. Let A ⊆ X be a crisp set. If i ≤ |A|, then evidently C(A)(i) = >
and C(A)(i · 1) = > for i = |A|. Moreover, from the previous part we have
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C(A)(i) = ⊥ for all i > |A|. Hence, the consistency is satisfied. It is easy
to see that the singleton independency is also satisfied. Finally, we have
C({c/x})(0) =

∨{a ∈ L | |{c/x}a| ≥ 0} = > for any c ∈ L, which implies
the validity of the axiom of non-existence preservation, and C({c/x})(1) =∨{a ∈ L | |{c/x}a| ≥ 1} = c for any any c ∈ L, which implies the validity
of the axiom of existence preservation. Thus, we have shown that C is really
the ∧-cardinality of finite L-sets. In particular, if we deal with the L-sets
interpreted in some complete residuated lattice over [0, 1] and we put n = ω,
then the ∧-cardinality of A, where

A = {0/x1, 1/x2, 0.9/x3, 0/x4, 0.6/x5, 0.3/x6, 0.2/x7, 0.1/x8, 0/x9, 0/x10, . . . },

is the L-set from CVθ

L(Nω) as follows

C(A) = {1/0, 1/1, 0.9/2, 0.7/3, 0.6/4, 0.3/5, 0.2/6, 0.1/7, 0/8, . . . , 0/ω}.

Note that C(∅)(0) = 1 and C(∅)(k) = 0 for every k > 0.

In the previous example a special shape of the ∧-cardinality for the empty
set was shown. Shapes of θ-cardinality for ∅ are investigated in the following
lemma. Recall that E denotes the neutral element and 1 denotes the greatest
element of CVθ

L(Nn).

Lemma 3.2.1. Let C : FIN L(X) → CVθ

L(Nn) be a θ-cardinality of finite
L-sets. Then C(∅) = E or C(∅) = 1. Moreover, if C(∅) = 1, then C(A) is
a closed L-set5 for any A ∈ FIN L(X) and thus C(A) is a non-decreasing
mapping, i.e. C(A)(i) ≤ C(A)(j), whenever i ≤ j.

Proof. Due to the consistency, we have C(∅)(0) = > and C(∅)(i) ∈ {⊥,>}
for every i > 0 and from the variability we have then C(∅)(i) = C(∅)(j) for
every i, j > 0. Hence, we obtain either C(∅)(i) = ⊥ for any i > 0 and thus
C(∅) = E, or C(∅)(i) = > for any i > 0 and thus C(∅) = 1. Due to (ii) from
Lemma 3.1.4, we have C(A) = C(A ∪ ∅) = C(A) +θ 1 = C(A)c and hence
C(A) is a closed L-set. The rest of the proof is a straightforward consequence
of the definition of the closed L-sets.

Remark 3.2.2. According to the previous lemma, the L-set C(∅) serves as a
neutral element on the set C(FIN L(X)) of all images with regard to the
mapping C. In other words, the identity C(∅) +θ A = A holds for any
A ∈ C(FIN L(X)).

The following lemma shows how to find the θ-cardinality of finite L-sets.

5It means that C(A) = C(A)c, where c is the closure operator defined on p. 56



62 θ-cardinalities of finite L-sets

Lemma 3.2.2. Let C : FIN L(X) → CVθ

L(Nn) be a θ-cardinality of finite
L-sets and A ∈ FIN L(X) such that Supp(A) ⊆ {x1, . . . , xm}. Then we have

C(A)(i) =
∨

i1,...,im∈Nn
i1¢···¢im=i

m

Θ
k=1

C({A(xk)/xk})(ik) (3.4)

for every i ∈ Nn.

Proof. Let A ∈ FIN L(X) be a finite L-set with Supp(A) ⊆ {x1, . . . , xm}.
Due to the additivity, we obtain

C(A)(i) =C({A(x1)/x1} ∪ · · · ∪ {A(xm)/xm})(i) =

(C({A(x1)/x1}) +θ · · ·+θ C({A(xm)/xm}))(i).

for every i ∈ Nn. Applying the definition of +θ, we obtain the desired
statement.

It is easy to see that there exist a lot of combinations of elements i1, . . . , im
from Nn satisfying the equality i1 ¢ · · · ¢ im = i, even if we want to find θ-
cardinality of “small” finite L-sets. A solution of this failure is given in the
following theorem.

Theorem 3.2.3. Let C : FIN L(X) → CVθ

L(Nn) be a θ-cardinality of finite
L-sets and A ∈ FIN L(X) such that Supp(A) ⊆ {x1, . . . , xm} ⊆ X. Then
we have

C(A)(i) =
∨

i1,...,im∈{0,1}
i1¢···¢im=i

m

Θ
k=1

C({A(xk)/xk})(ik) (3.5)

for every i ∈ Nn, where i ≤ m. Moreover, if m < n, then C(A)(i) = ⊥ or
C(A)(i) = > holds for every m < i ≤ n, respectively.

Proof. Let A ∈ FIN L(X) be a finite L-set with Supp(A) ⊆ {x1, . . . , xm}.
First, we will suppose that m < n. Evidently, the statement is true, if
i ≤ 1. Further, let 1 < i ≤ m and i1, . . . , im ∈ Nn be a finite sequence such
that i1 ¢ · · · ¢ im = i. Put I = {ik | ik ∈ Nn, ik 6∈ {0, 1}}. Obviously,
the statement is true, if I = ∅. Let ik ∈ I be an element and ik = r.
Then there exist at least r − 1 elements from {i1, . . . , im} that are equal
to 0. In fact, if there exist s < r − 1 elements that are equal to 0, then
also there exist (m − 1) − s elements greater than 0 and different from ik.
Hence, we have i1 ¢ · · · ¢ im = i1 + · · · + im ≥ r + ((m − 1) − s) > r +
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((m − 1) − (r − 1)) = m ≥ i, a contradiction. Thus, we can choose the
elements ik1 = · · · = ikr−1 = 0. Due to the variability and consistency we
can write C({A(xk)/xk})(ik) = C({A(xk)/xk})(2) = C({A(xl)/xl})(2) =
C({⊥/xk})(2) = C(∅)(2) ∈ {⊥,>}, where l ∈ {k1, . . . , kr−1}. Applying the
θ-convexity, the preservation of existence and the fact that C({⊥/xk})(0) =
> we obtain

C({A(xk)/xk})(ik)θC({A(xl)/xl})(0) =

C({A(xl)/xl})(2)θC({A(xl)/xl})(0) ≤ C({A(xl)/xl})(1)

for every l ∈ {k1, . . . , kr−1} and

C({A(xk)/xk})(ik) = C({⊥/xk})(2)θ> = C({⊥/xk})(2)θC({⊥/xk})(0) ≤
C({⊥/xk})(1) = C({⊥θA(xk)/xk})(1) =

C({⊥/xk})(1)θC({A(xx)/xk})(1) ≤ C({A(xx)/xk})(1).

Since C({A(xk)/xk})(ik) ∈ {⊥,>} and ⊥, > are idempotent elements of L
with respect to θ, then using the previous inequalities we can write

C({A(xk)/xk})(ik)θC({A(xk1)/xk1})(0)θ · · · θC({A(xkr−1)/xkr−1})(0) =

C({A(xk)/xk})(ik)θC({A(xk)/xk})(ik)θC({A(xk1)/xk1})(0)θ · · · θ
C({A(xk)/xk})(ik)θC({A(xkr−1)/xkr−1})(0) ≤

C({A(xx)/xk})(1)θC({A(xk1)/xk1})(1)θ · · · θC({A(xkr−1)/xkr−1})(1).

Hence, we can create a new sequence of elements i′1, · · · , i′m ∈ Nn such that
i′1 ¢ · · ·¢ i′m = i, I ′ = {i′k | i′k ∈ Nn, i′k 6∈ {0, 1}} = I \ {ik} and

m

Θ
k=1

C({A(xk)/xk})(ik) ≤
m

Θ
k=1

C({A(xk)/xk})(i′k).

As we can repeat the mentioned procedure as long as we remove all elements
from I, the desired statement is true for 1 < i ≤ m. Further, we will suppose
that m ≥ n. If i < n, then we can apply the same procedure as in the previous
case to obtain the desired statement. Let i = n and i1 ¢ · · · ¢ im = n. If
ik1 , . . . , ikr be all elements from i1, . . . , im that are equaled to 0 and ik > 1,
then we have (see above)

C({A(xk)/xk})(ik)θC({A(xk1)/xk1})(0)θ · · · θC({A(xkr−1)/xkr})(0) ≤
C({A(xx)/xk})(1)θC({A(xk1)/xk1})(1)θ · · · θC({A(xkr)/xkr})(1).
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Moreover, the inequality C({A(xk)/xk})(ik) ≤ C({A(xk)/xk})(1) holds for
any ik ≥ 1 and thus we obtain

m

Θ
k=1

C({A(xk)/xk})(ik) ≤
m

Θ
k=1

C({A(xk)/xk})(1).

Hence, the first part of the theorem is proved. Let m < n. Then, due
to the variability and Lemma 3.2.1, we have C(A)(i) = C(∅)(i) = ⊥ or
C(A)(i) = C(∅)(i) = > for any i ∈ Nn such that |Supp(A)| ≤ m < i ≤ n,
respectively, and the second part of the theorem is proved, too.

Remark 3.2.3. Obviously, if Supp(A) = {x1, . . . , xm}, then we have

C(A)(i) =
∨

i1,...,im∈{0,1}
i1¢···¢im=i

m

Θ
k=1

C({A(xk)/xk})(ik) (3.6)

for every i ∈ Nn, where i ≤ m. Moreover, if m < n, then C(A)(i) = ⊥ or
C(A)(i) = > holds for every m < i ≤ n, respectively, and

C(A)(n) =
m

Θ
k=1

C({A(xk)/xk})(1), (3.7)

whenever n ≤ m. In particular, if A is a crisp set and n ≤ |A|, then
C(A)(n) = >, as we have mentioned formerly.

In [8] there is shown a representation of fuzzy cardinalities of finite fuzzy
sets using two mappings f, g : [0, 1] → [0, 1], where first one is non-decreasing,
the second one is non-increasing and further f(0), g(1) ∈ {0, 1}, f(1) = 1
and g(0) = 0. Before we introduce an analogical representation of the θ-
cardinalities of finite L-sets, we establish several notions and prove a lemma.
Let L1, L2 be (complete) residuated lattices and h : L1 → L2 be a mapping.
We say that h is the (complete) θ-homomorphism from L1 to L2, if h is a
(complete) homomorphism from the substructure (L1, θ1,>1) of the resid-
uated lattice L1 to the substructure (L2, θ2,>2) of the residuated lattices
L2, i.e. h(aθ1b) = h(a)θ2h(b) and h(>1) = >2. Obviously, each (complete)
homomorphism between complete residuated lattices is also a (complete)
θ-homomorphism. Further, let Ld

1 and L2 be (complete) dually residuated
lattice and residuated lattice, respectively, and h : L1 → L2 be a map-
ping. We say that h is the (complete) θd-homomorphism, if h is a (complete)
homomorphism from the substructure (L1, θ1,⊥1) of the dually residuated
lattice Ld

1 to the substructure (L2, θ2,>2) of the residuated lattice L2, i.e.
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h(aθ1b) = h(a)θh(b) and h(⊥1) = >2. Again, each (complete) homomor-
phism from a complete dually residuated lattice to a complete residuated
lattice is also a (complete) θ-homomorphism.

Lemma 3.2.4. Let f, g : L → L be a θ- and θd-homomorphism from L to L
and from Ld to L, respectively, such that f(⊥) ∈ {⊥,>} and g(>) ∈ {⊥,>}.
Further, let Cf,g : FIN L(X) → CVθ

L(Nn) be a mapping defined by induction
as follows

Cf,g({a/x})(0) = g(a), Cf,g({a/x})(1) = f(a) and

Cf,g({a/x})(k) = f(⊥), k > 1

hold for every singleton {a/x} ∈ FIN L(X) and

Cf,g(A) = Cf,g({A(x1)/x1}) +θ · · ·+θ Cf,g({A(xm)/xm})
holds for every A ∈ FIN L(X), where Supp(A) = {x1, . . . , xm}. Then the
mapping Cf,g is a θ-cardinality of finite L-sets generated by the θ- and θd-
homomorphisms f and g, respectively.

Proof. First, we will prove that the definition of the mapping Cf,g is correct.
Let {a/x} be a singleton from FIN L(X). If n = 1, then Cf,g({a/x}) is
clearly a θ-convex L-set. Let n > 1. Since f(⊥) = f(⊥θa) = f(⊥)θf(a) ≤
f(a) holds for any a ∈ L, then we have

Cf,g({a/x})(0)θCf,g({a/x})(2) = g(a)θf(⊥) ≤ f(a) = Cf,g({a/x})(1).

Furthermore, this inequality is trivially fulfilled for each triplet 0 < i ≤
j ≤ k from Nn. Hence, the mapping Cf,g assigns a θ-convex L-sets to each
singletons from FIN L(X). Since the sum of θ-convex of L-sets is a θ-
convex L-set (according to Theorem 3.1.2), we obtain that the definition of
Cf,g is correct. Further, let A,B ∈ FIN L(X) be arbitrary disjoint L-sets,
where Supp(A) = {x1, . . . , xr} and Supp(B) = {y1, . . . , ys}. Due to the
associativity of the operation +θ and the definition of Cf,g, we have

Cf,g(A ∪B) =

Cf,g({A(x1)/x1}) +θ · · ·+θ Cf,g({A(xr)/xr}) +θ Cf,g({B(y1)/y1}) +θ · · ·
+θ Cf,g({B(ys)/ys}) =

(
Cf,g({A(x1)/x1}) +θ · · ·+θ Cf,g({A(xr)/xr})

)
+θ

(
Cf,g({B(y1/y1}) +θ · · ·+θ Cf,g({B(ys)/ys})

)
= Cf,g(A) +θ Cf,g(B).

Hence, the mapping Cf,g satisfies the additivity. Let A ∈ FIN L(X) be an
L-set with Supp(A) = {x1, . . . , xr}. From the additivity of Cf,g we obtain

Cf,g(A)(i) =
∨

i1,...,ir∈Nn
i1+···+ir=i

C({A(x1)/x1)(i1)θ · · · θC({A(xr)/xr)(ir). (3.8)
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Let us denote i ∈ N r
n an r-dimensional vector of elements from Nn, i.e.

i = (i1, . . . , ir), such that i1 ¢ · · · ¢ ir = i. The set of all such vectors will
be denoted by I. Further, let us denote Ki = {k | ik = 0}, Li = {l |
il = 1} and Mi = {m | im > 1}. Clearly, Ki ∪ Li ∪ Mi = {1, . . . , r} and
they are mutually disjoint. Finally, let us establish aKi

= Θk∈Ki
g(A(xk)),

aLi
= Θl∈Li

f(A(xl)), aMi
= Θm∈Mi

f(⊥). Recall that Θa∈∅ a = > (see
p. 5). Then the formula (3.8) can be rewritten as follows

Cf,g(A)(i) =
∨

i∈I
aKi

θaLi
θaMi

. (3.9)

Now let us suppose that i > r, then necessarily Mi 6= ∅ for every i ∈ I.
Since aKi

θaLi
θaMi

≤ aMi
= f(⊥) holds for every i ∈ I, then Cf,g(A)(i) =∨

i∈I aKi
θaLi

θaMi
≤ ∨

i∈I f(⊥) = f(⊥). On the other hand, there exists
i ∈ I such that Ki = ∅. Since f(a) ≥ f(⊥) holds for every a ∈ L, we have
aKi

θaLi
θaMi

= >θaLi
θf(⊥) ≥ f(⊥) and thus Cf,g(A)(i) ≥ f(⊥). Hence,

Cf,g satisfies the axiom of variability. The axiom of consistency is a simple
consequence of the previous consideration. In fact, let us suppose that A ⊆ X
is a crisp set. If i > |A|, then Cf,g(A)(i) = f(⊥) ∈ {⊥,>} with regard to the
presumption about the values of f(⊥). If i ≤ |A|, then for every i ∈ I we have
aKi

θaLi
θaMi

∈ {⊥,>}, because aKi
, aLi

, aMi
∈ {⊥,>}, where for instance

aKi
= g(>θ · · · θ>) = g(>) ∈ {⊥,>}, if Ki 6= ∅, and aKi

= >, if Ki = ∅.
Hence, C(A)(i) =

∨
i∈I aKi

θaLi
θaMi

∈ {⊥,>}. Moreover, if we suppose
|A| = r ≤ n, then obviously there exists Li such that Ki = Mi = ∅. Hence, we
have C(A)(r) = C(A)(r·1) ≥ aKi

θaLi
θaMi

= aLi
= f(>θ · · · θ>) = f(>) = >

and therefore C(A)(r) = >. Further, if |A| = r > n, then n = r · 1 and
analogously we obtain C(A)(n) = C(r · 1) = aLi

= >, where again Li is such
set that Ki = Mi = ∅. The conditions of singleton independency and non-
existence and existence preservations follow immediately from the definition
of mappings f and g. Thus, we have shown that Cf,g is a θ-cardinality of
finite L-sets.

The denotations Ki, Li, Mi for the sets and aKi
, aLi

, aMi
for the values,

established in the proof of the previous lemma, will be often used in the
following text. For simplicity, their definitions will not eb mentioned further.
Now we can proceed to the representation of the θ-cardinalities.

Theorem 3.2.5. (representation of θ-cardinalities) Let L and Ld be a
complete residuated lattice and a complete dually residuated lattice, respec-
tively, and CVθ

L(Nn) be a bounded poc-monoid. Further, let C : FIN L(X) →
CVθ

L(Nn) be a mapping which satisfies the axiom of additivity. Then the fol-
lowing statements are equivalent:
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(i) C is a θ-cardinality of finite L-sets,

(ii) there exist a θ-homomorphism f : L → L and a θd-homomorphism
g : L → L, such that f(⊥) ∈ {⊥,>}, g(>) ∈ {⊥,>} and

C({a/x})(0) = g(a), C({a/x})(1) = f(a), C({a/x})(k) = f(⊥)

hold for arbitrary a ∈ L, x ∈ X and k > 1.

Proof. First, we will show that (i) implies (ii). Let C be a θ-cardinality of
finite L-sets. Let us define two mappings f, g : L → L as follows

f(a) = C({a/x})(1), (3.10)

g(a) = C({a/x})(0). (3.11)

Due to the axioms of existence and non-existence preservations by C, we
have

f(aθb) = C({aθb/x})(1) = C({a/x})(1)θC({b/x})(1) = f(a)θf(b),

g(aθb) = C({aθb/x})(0) = C({a/x})(0)θC({b/x})(0) = g(a)θg(b).

According to the consistency, we have f(>) = C({>/x})(1) = >, g(⊥) =
C({⊥/x}(0) = >. Hence, we obtain that f is a θ-homomorphism and g is a
θd-homomorphism of the relevant algebraic structures. Moreover, the values
f(⊥) = C({⊥/x})(1) and g(>) = C({>/x})(0) belong to {⊥,>} from the
condition of consistency. Finally, due to the variability, we have f(⊥) =
C({⊥/x})(1) = C({a/x})(k) for every k > 1. Second, we will show that (ii)
implies (i). Let Cf,g be the θ-cardinality of finite L-sets generated by the θ-
and θd-homomorphisms f and g, respectively, defined in the previous lemma.
Since Cf,g({a/x}) = C({a/x}) holds for any singleton from FIN L(X) and
C satisfies the axiom of additivity, then also Cf,g(A) = C(A) holds for any
A ∈ FIN L(X) and thus C is a θ-cardinality of finite L-sets.

According to the previous theorem, each θ-cardinality C of finite L-sets
is generated by a θ-homomorphism f and θd-homomorphism g satisfying
the conditions of (ii), i.e. C = Cf,g. This representation enables us to
investigate the θ-cardinalities from the perspective of various types of θ- and
θ-homomorphisms.

In the set theory the cardinality of finite sets as | | : FIN → N pre-
serves the partial ordering of the set FIN , determined by the inclusion
relation, to the partial ordering of natural numbers, i.e. A ⊆ B implies
|A| ≤ |B|. The last part of this subsection is now devoted to the question, if
the θ-cardinalities of finite L-sets fulfil this property. We will show that the
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preservation of the partial ordering is satisfied only for special types of the
mentioned homomorphisms. First, let us introduce special types of the θ- and
θd-homomorphisms. We say that a mapping h : L1 → L2 is the (complete)
θ-po-homomorphism from L1 to L2, if h is a (complete) θ-homomorphism
preserving the partial ordering of the considered lattices, i.e h(a) ≤ h(b),
whenever a ≤ b. Further, h : L1 → L2 is the (complete) θd-po-homomorphism
from Ld

1 to L2, if h is a (complete) θd-homomorphism reversing the partial
ordering of the considered lattices, i.e h(a) ≤ h(b), whenever a ≥ b. It is easy
to see that a θ-po- or θ-po-homomorphism are, in some cases, already deter-
mined by the θ- or θ-homomorphism, respectively. For instance, if θ = ∧,
then a ≤1 b implies f(a) = f(a ∧1 b) = f(a) ∧2 f(b) and thus f(a) ≤2 f(b).
Analogously, for θ = ∨.

Example 3.2.4. Let f : L → L be a mapping defined by h(a) = an, where
n ≥ 1. Then h is the ⊗-po-homomorphism. In fact, we have h(a ⊗ b) =
(a ⊗ b)n = an ⊗ bn = h(a) ⊗ h(b) and if a ≤ b, then by monotony of ⊗
we obtain f(a) = an ≤ bn = f(b). Further, let us suppose that L is a
complete residuated lattice such that the law of double negation is satisfied,
i.e. ¬¬a = (a → 0) → 0 = a holds for any a ∈ L. In this case it could
be shown that there exists a complete dually residuated lattice, where the
operation of the addition is given by a⊕ b = ¬(¬a⊗¬b) and the operation of
difference is given by aª b = a⊕¬b. Then a θ-po-homomorphism h : L → L
could be defined by h(a) = (¬a)n. In fact, we have h(a ⊕ b) = ¬(a ⊕ b) =
¬¬(¬a⊗ ¬b) = ¬a⊗ ¬b = h(a)⊗ h(b) and if a ≤ b, then it could be shown
that ¬b ≤ ¬a and thus h(b) ≤ h(a).

Example 3.2.5. Let us put f(a) = >2 for every a ∈ L, then we obtain
another example of θ-po-homomorphism called trivial θ-po-homomorphism
from Ld

1 to L2. In fact, we have f(aθ1b) = >2 = >2θ2>2 = f(a)θ2f(b).
Analogously, we can define a trivial θ-po-homomorphism putting g(a) = >2

for every a ∈ L1. In these special cases, where a θ-cardinality of finite L-sets
is generated just by a θ-homomorphism f (g is trivial and thus it has no
effect) or a θd-homomorphism g (f is trivial and thus it has no effect), we
will denote this θ-cardinality by Cf or Cg, respectively.

The following theorem shows, when the θ-cardinality preserves or reverses
partial ordering of L-sets.

Theorem 3.2.6. Let Cf,g : FIN L(X) → CVθ

L(Nn) be a θ-cardinality of
finite fuzzy sets generated by θ-po- and θ-po-homomorphisms f and g, re-
spectively. Then

(i) Cf,g preserves the partial ordering of L-sets if and only if g is the
trivial θd-po-homomorphism.
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(ii) Cf,g reverses the partial ordering of L-sets if and only if f is the trivial
θ-po-homomorphism.

Proof. Here, we will prove just the first statement, the second one could
be done by analogy. First, let us suppose that Cf,g preserves the par-
tial ordering of L-sets and g is a non-trivial θd-po-homomorphism. Since
g is the non-trivial θd-po-homomorphism, then necessarily there exists a ∈
L \ {⊥} such that g(a) < >. Then we have {⊥/x} < {a/x} for any
x ∈ X and thus Cf,g({⊥/x})(0) = g(⊥) > g(a) = Cf,g({a/x})(0), a con-
tradiction. Hence, the implication ⇒ is true. Contrary, let f be a θ-po-
homomorphism, g be the trivial θd-po-homomorphism, A,B ∈ FIN L(X)
be arbitrary L-sets and i ∈ Nn. If A ≤ B, then Cf,g({A(x)/x})(0) =
g(A(x)) = > = g(B(x)) = Cf,g({B(x)/x})(0) and Cf,g({A(x)/x})(1) =
f(A(x)) ≤ f(B(x)) = Cf,g({B(x)/x})(1) hold for arbitrary x ∈ X. More-
over, Cf,g({A(x)/x})(i) = Cf,g({B(x)/x})(i) holds for any i > 1 and thus
Cf,g({A(x)/x}) ≤ Cf,g({B(x)/x}) holds for any x ∈ Supp(B). The inequal-
ity Cf,g(A) ≤ Cf,g(B) is an immediate consequence of the additivity axiom
and the statement (iii) from Lemma 3.1.4. Hence, the implication ⇐ is true
and the proof is complete.

Remark 3.2.6. In the introduction we have mentioned the valuation property
of the cardinality of sets. Let us define the generalized θ-intersection of fuzzy
sets by (A∩θ B)(x) = A(x)θB(x) and the generalized θ-union of fuzzy sets by
(A∪θ B)(x) = A(x)θB(x). Then it is easy to see that the valuation property
in the following more general form

C(A ∩θ B) +θ C(A ∪θ B) = C(A) +θ C(B) (3.12)

is not satisfied, if arbitrary complete residuated and dually residuated lattices
are supposed. In fact, from the verification of the valuation property for
i = 0, i.e. (C(A∩θ B)+θC(A∪θ B))(0) = (C(A)+θC(B))(0), we obtain (due
to the axiom of non-existence preservation) the equality (aθb)θ(aθb) = aθb,
which is not evidently satisfied in arbitrary residuated and dually residuated
lattices with the same support. On the other hand, this equality is true for
θ = ∧ and θ = ∨, for example, and it is not complicated to prove that the
valuation property is satisfied by a θ-cardinality, if the considered complete
residuated and dually residuated lattices are linearly ordered and θ = ∧ and
θ = ∨. An open problem is, if this property is valid also for other types of
operations.
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3.2.2 θ-cardinality and equipollence of L-sets

In the classical set theory the cardinality of sets is primarily connected with
the equipollence of sets. Recall that two finite sets have the same cardinal
number if and only if they are equipollent, that is, there exists a bijection
between them. In order to investigate an analogy of the previous relationship
for θ-cardinalities of finite L-sets, we have to establish a similarity relation
on the set of all θ-convex L-sets over Nn. Let us define a relation on CVθ

L(Nn)
as follows

K ≈ L =
∧

i∈Nn

K(i) ↔ L(i). (3.13)

It is easy to verify that the relation ≈ is a similarity relation on CVθ
L(Nn).

First, let us show a relation between the θ-cardinalities of finite L-sets and
bijections of L-sets.

Theorem 3.2.7. Let Cf,g : FIN L(X) → CVL(Nn) be a θ-cardinality of
finite L-sets generated by θ- and θd-homomorphisms f and g, respectively,
A,B ∈ FIN L(X) and h ∈ Perm(X). Then

aθ

ghθa
θ

fh ≤ Cf,g(A) ≈ Cf,g(B), (3.14)

where aθ
gh or aθ

fh is the θ-degree of the bijection h between g→(A) and g→(B)
or f→(A) and f→(B), respectively.

Proof. Let A,B ∈ FIN L(X) be arbitrary finite L-sets, where Supp(A) =
{x1, . . . , xr} and Supp(B) = {y1, . . . , ys}, i ∈ Nn and h ∈ Perm(X). Put
{x1, . . . , xm} = Supp(A) ∪ h−1(Supp(B)) and {y1, . . . , ym} = h(Supp(A)) ∪
Supp(B) such that h(xk) = yk for any xk ∈ {x1, . . . , xm}. If i > m, then we
obtain Cf,g(A)(i) = Cf,g(B)(i) and hence we have

Cf,g(A)(i) ↔ Cf,g(B)(i) = > ≥ aθ

ghθa
θ

fh.

Let us suppose that i ≤ m and establish i ∈ O if and only if i ∈ I and simul-
taneously Mi = ∅ (clearly O ⊂ I). Then due to Theorem 3.2.3, Lemma 2.1.2
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and Lemma 2.1.4, we have

Cf,g(A)(i) ↔ Cf,g(B)(i) =
( ∨

i∈O
aKi

θaLi

) ↔ ( ∨

i∈O
bKi

θbLi

) ≥
∧

i∈O
((aKi

θaLi
) ↔ (bKi

θbLi
)) ≥

∧

i∈O
((aKi

↔ bKi
)θ(aLi

↔ bLi
)) ≥

∧

i∈O

(
Θ
k∈Ki

g(A(xk)) ↔ Θ
k∈Ki

g(B(yk))
)
θ
(
Θ
l∈Li

f(A(xl)) ↔ Θ
l∈Li

f(B(yl))
) ≥

∧

i∈O

(
Θ
k∈Ki

(g(A(xk)) ↔ g(B(yk)))
)
θ
(
Θ
l∈Li

(f(A(xl)) ↔ f(B(yl)))
) ≥

m

Θ
k=1

(
g(A(xk)) ↔ g(B(h(xk)))

)
θ
(
f(A(xk)) ↔ f(B(h(xk)))

)
= aθ

ghθa
θ

fh,

where aKi
, aLi

are defined on the page 66 and bKi
, bLi

are established analo-
gously. Applying the infimum to the inequalities for i > m and the inequal-
ities for i ≤ m, we obtain (3.14).

Remark 3.2.7. Obviously, the inequality (g→(A) ≡θ g→(B))θ(f→(A) ≡θ

f→(B)) ≤ Cf,g(A) ≈ Cf,g(B) can not be proved, because
∨

i∈I(aiθbi) ≤
(
∨

i∈I ai)θ(
∨

i∈I bi) holds, in general. Nevertheless, if there is a bijection h
such that g→(A)(x) = g→(B)(h(x)) and f→(A)(x) = f→(B)(h(x)), then
aθ

gh = > and aθ
fh = > and hence we obtain Cf,g(A) = Cf,g(B).

The failure mentioned in the previous remark can be eliminated, if we
assume that one of θ- and θd-homomorphisms is trivial, as it is stated in the
following corollary.

Corollary 3.2.8. Let f : L → L be a θ-homomorphism and g : L → L be a
θd-homomorphism. Then

(i) f→(A) ≡θ f→(B) ≤ Cf (A) ≈ Cf (B) and

(ii) g→(A) ≡θ g→(B) ≤ Cg(A) ≈ Cg(B)

hold for arbitrary A,B ∈ FIN L(X).

Proof. Let g be the trivial θ-homomorphism, i.e. g(a) = > holds for any
a ∈ L, A,B ∈ FIN L(X) and h ∈ Perm(X) be an arbitrary mapping. Then
obviously h is the >θ-bijection between g→(A) and g→(B). Hence, we have
Cf,g(A) ≈ Cf,g(B) ≥ ∨

h∈Perm(X) aθ
ghθa

θ
fh =

∨
h∈Perm(X)>θaθ

fh = f→(A) ≡θ

f→(B) and the first statement is proved. Analogously, we could obtain the
second statement and the proof is complete.
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Additional properties of θ- and θd-homomorphisms are supposed in the
following two corollaries.

Corollary 3.2.9. Let Cf,g : FIN L(X) → CVL(Nn) be a θ-cardinality of
finite L-sets generated by θ- and θd-homomorphisms f and g, respectively,
such that f(a ↔ b) ≤ f(a) ↔ f(b) and g(|aª b|) ≤ g(a) ↔ g(b) hold for any
a, b ∈ L. Further, let A,B ∈ FIN L(X) and h ∈ Perm(X). Then we have

g(ah)θf(bh) ≤ Cf,g(A) ≈ Cf,g(B), (3.15)

where ah and bh are the θ- and θ-degrees of the bijection h between A and B,
respectively.

Proof. Let A,B ∈ FIN L(X) be arbitrary finite L-sets, h ∈ Perm(X) and
H = Supp(A) ∪ h−1(Supp(B)). Since the mapping g and f are the θ- and
θd-homomorphisms, then we can write (due to Theorem 3.2.7)

Cf,g(A) ≈ Cf,g(B) ≥

Θ
x∈H

(g→(A)(x) ↔ g→(B)(h(x)))θ Θ
x∈H

(f→(A)(x) ↔ f→(B)(h(x))) ≥

Θ
x∈H

g(|A(x)ªB(h(x))|)θ Θ
x∈H

f(A(x) ↔ B(h(x))) = g(ah)θf(bh)

and the proof is complete.

Corollary 3.2.10. Let f : L → L and g : Ld → L be arbitrary homomor-
phisms. Then

(i) f(A ≡θ B) ≤ Cf (A) ≈ Cf (B) and

(ii) g(A ≡θ B) ≤ Cg(A) ≈ Cg(B)

hold for arbitrary A,B ∈ FIN L(X).

Proof. It is a straightforward consequence of Lemmas 2.4.1 and 2.4.2 and
Corollary 3.2.8.

Let L be a complete residuated lattice and h : L → L be an arbitrary
mapping. We say that the mapping h is k-θ-compatible with the biresiduum
↔ of L, if (a ↔ b)k = (a ↔ b)θ · · · θ(a ↔ b) ≤ h(a) ↔ h(b) holds for
arbitrary a, b ∈ L. Obviously, the kth power has a sense just for θ = ⊗,
because for θ = ∧ the definition of the k-∧-compatibility with the biresiduum
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coincides with a ↔ b ≤ h(a) ↔ h(b). The θ-po-homomorphism and θd-po-
homomorphism introduced on p. 68 are the examples of mappings being
k-compatible with the biresiduum. For instance, if we consider the mapping
h : L → L given by h(a) = (¬a)k, then we have (a ↔ b)k = (¬a ↔ ¬b)k ≤
(¬a)k ↔ (¬b)k = h(a) ↔ h(b) and thus h is the mapping which is k-⊗-
compatible with ↔ of L.

Corollary 3.2.11. Let Cf,g : FIN L(X) → CVL(Nn) be a θ-cardinality of
finite L-sets generated by θ- and θd-homomorphisms f and g, which are k-θ-
and l-θ-compatible with ↔, respectively. Further, let A,B ∈ FIN L(X) and
h ∈ Perm(X). Then we have

ak+l
h ≤ Cf,g(A) ≈ Cf,g(B), (3.16)

where ah is the θ-degree of the bijection h between A and B. Furthermore,
we have

(A ≡θ B)l ≤ Cf,g(A) ≈ Cf,g(B) or (A ≡θ B)k ≤ Cf,g(A) ≈ Cf,g(B),

whenever f or g is the trivial θ- or θd-homomorphism, respectively.

Proof. It is a straightforward consequence of the k-θ- and l-θ-compatibility
of f and g with the biresiduum, Theorem 3.2.7 and Corollary 3.2.8.

In the previous chapter we have established mappings pθ
A, pθ

A : Nω×AX →
L, where L is a support of residuated or dually residuated lattice, respectively.
In some special cases, these mappings may be used to establish θ-cardinalities
of L-sets. In the proof of Theorem 3.1.2 we have introduced the operation of
partial subtraction on Nn. In particular, if k, l ∈ Nn are arbitrary elements
such that k ≤ l and l 6= ω (supposing for n = ω), then l ¯ k = m if and only
if k ¢ m = l. Since this operation coincides with the classical subtraction,
we will write only − instead of ¯ in the following parts.

Theorem 3.2.12. Let Cf,g : FIN L(X) → CVL(Nn) be a θ-cardinality of
finite L-sets generated by homomorphisms f, g and A ∈ FIN L(X) with
Supp(A) ⊆ {x1, . . . , xm} = Y . Then

Cf,g(A)(i) ≤ g(pθ

A(m− i, Y ))θf(pθ

A(i, Y )) (3.17)

holds for any i ∈ Nn, where i ≤ m.

Proof. Let A ∈ FIN L(X) be an arbitrary finite L-set with Supp(A) ⊆
{x1, . . . , xm} = Y and i ∈ Nn such that i ≤ m. Recall that i ∈ O if and only
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if i ∈ I and simultaneously Mi = ∅. Since g and f are the homomorphisms,
then we have (due to Theorem 3.2.3)

C(A)(i) =
∨

i1,...,im∈{0,1}
i1¢···¢im=i

m

Θ
k=1

C({A(xx)/xk})(ik) =
∨
i∈O

( Θ
k∈Ki

g(A(xk))θ

Θ
l∈Li

f(A(xl))) =
∨
i∈O

g(Θ
k∈Ki

A(xk))θf( Θ
l∈Li

f(A(xl))) ≤
∨
i∈O

g(Θ
k∈Ki

A(xk))θ

∨
i∈O

f( Θ
l∈Li

A(xl)) = g(
∧
i∈O

Θ
k∈Ki

A(xk))θf(
∨
i∈O

Θ
l∈Li

A(xl)) =

g(
∧
Z⊆Y

|Z|=m−i

Θ
z∈Z

A(z))θf(
∨
Z⊆Y
|Z|=i

Θ
z∈Z

f(A(z))) = g(pθ

A(m− i, Y ))θf(pθ

A(i, Y )),

where clearly |Ki| = m− i and |Li| = i hold for any i ∈ O.

The following theorem shows a simple method how to compute a θ-
cardinality of finite L-sets generated by homomorphisms, if a linearly ordered
residuated lattice is considered. Note that the θ-cardinalities defined below
are a generalization of FECount .

Theorem 3.2.13. Let L be a complete linearly ordered residuated lattice and
Cf,g : FIN L(X) → CVL(Nn) be a θ-cardinality of finite L-sets generated by
homomorphisms f, g and A ∈ FIN L(X) with Supp(A) ⊆ {x1, . . . , xm} = Y .
Then

Cf,g(A)(i) = g(pθ
A(m− i, Y ))θf(pθ

A(i, Y )) (3.18)

holds for any i ∈ Nn, where i ≤ m.

Proof. Let A ∈ FIN (X) be an arbitrary finite L-set with Supp(A) ⊆
{x1, . . . , xm} = Y and i ∈ Nn, where i ≤ m. Due to Theorem 3.2.12, it
is sufficient to show that C(A)(i) ≥ g(pθ

A(m− i, Y ))θf(pθ
A(i, Y )), i.e.

∨
i∈O

Θ
k∈Ki

g(A(xk))θ Θ
l∈Li

f(A(xl)) ≥
∨
i∈O

Θ
k∈Ki

g(A(xk))θ
∨
i∈O

Θ
l∈Li

f(A(xl))

holds (see the proof of Theorem 3.2.12). Let us establish

ag =
∨

i∈O
Θ
k∈Ki

g(A(xk)) =
∨

i∈O
aKi

and af =
∨

i∈O
Θ
l∈Li

f(A(xl)) =
∨

i∈O
aLi

.
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Obviously, the mentioned inequality is satisfied, if there exists i ∈ I such that
aKi

= ag and aLi
= af . Since the linearly ordered lattice is supposed and O is

just a finite set, then there exist K = {p1, . . . , pm−i} and L = {q1, . . . , qi} such
that ag = g(A(xp1))θ · · · θg(A(xpm−i

)) and af = f(A(xq1))θ · · · θf(A(xqi
)),

respectively. Let us denote the set of all such couples 〈K, L〉 by T . Now
the mentioned requirement can be stated as there exists i ∈ O such that
〈Ki, Li〉 ∈ T or also there exists 〈K, L〉 ∈ T such that K ∩ L = ∅. Let us
suppose that there is no couple with the required condition. Let 〈K0, L0〉 ∈ T
be a couple such that t = |K0 ∩ L0| ≤ |K ∩ L| for any 〈K, L〉 ∈ T . Let
K0 = {p10, . . . , p

0
m−i} and L0 = {q10, . . . , q

0
i } and r ∈ K0 ∩ L0. Since we

suppose that t > 0, then necessary |K0 ∪ L0| < m. Hence, there is an index
s ∈ {1, . . . , m} such that s 6∈ K0 ∪ L0. Because of L is a linearly ordered
lattice, we have A(xs) ≥ A(xr) or A(xs) ≤ A(xr). In the first case, we have
f(A(xs)) ≥ f(A(xr)) and thus,

f(A(xq10))θ · · · θf(A(xs))θ · · · θf(A(xq0
i
)) ≥ f(A(xq10))θ · · · θf(A(xq0

i
)),

where f(A(xr)) is replaced by f(A(xs)) on the left side of the inequality. If we
establish L = {s} ∪ L0/{r}, then we obtain 〈K0, L〉 ∈ T and simultaneously
|K0 ∩ L| < t, a contradiction. In the second case, we have g(A(xs)) ≥
g(A(xr)) and thus,

g(A(xp10))θ · · · θg(A(xs))θ · · · θg(A(xp0
m−i

)) ≥ g(A(xp10))θ · · · θg(A(xp0
m−i

)),

where again g(A(xr)) is replaced by g(A(xs)) on the left side of the inequal-
ity. If we establish K = {s} ∪ K0/{r}, then we obtain 〈K, L0〉 ∈ T and
simultaneously |K ∩ L0| < t, a contradiction. Thus, we have shown that
there exists i ∈ O such that 〈Ki, Li〉 ∈ T and the proof is complete.

Corollary 3.2.14. Let L be a complete linearly ordered residuated lattice and
Cf,g : FIN L(X) → CVL(Nn) be a θ-cardinality of finite L-sets generated by
homomorphisms f , g and A ∈ FIN L(X) with Supp(A) ⊆ {x1, . . . , xm} = Y .
Then

C(A)(i) = pθ
g→(A)∩Y (m− i, Y )θpθ

f→(A)(i, Y ) (3.19)

holds for any i ∈ Nn, where i ≤ m.

Proof. It is a straightforward consequence of Lemmas 2.4.1, 2.4.2 and Theo-
rem 3.2.13.

Corollary 3.2.15. Let L be a complete linearly ordered residuated lattice and
Cf,g : FIN L(X) → CVL(Nn) be a θ-cardinality of finite L-sets generated by
homomorphisms f, g and A ∈ FIN L(X) with |Supp(A)| = m. Then

C(A)(i) = g(p∧A(i + 1))θf(p∧A(i)) (3.20)

holds for any i ∈ Nn, where i ≤ m.



76 θ-cardinalities of finite L-sets

Proof. It is sufficient to prove that p∨A(m − i) = p∧A(i + 1) holds for any
i ≤ Nn, where i ≤ m = |Supp(A)|. If i = m, then p∨A(0) = ⊥ = p∧A(m + 1).
Let us suppose that i < m and x1, . . . , xm is a sequence of the elements
from Supp(A) such that A(xi) ≥ A(xi+1). Since L is linearly ordered, then
clearly we have p∧A(i + 1) = A(xi+1) = A(xm−i) = p∨A(m− i) and the proof is
complete.

In the following example we use Theorem 3.2.13 to construct three types
of θ-cardinalities, namely for the minimum, product and ÃLukasiewicz t-
norms.

Example 3.2.8. Let us suppose that the membership degrees of L-sets are
interpreted in the Goguen algebra LP or ÃLukasiewicz algebra LÃL (see Ex.
1.1.4 and 1.1.5), X is a non-empty universe for L-sets, N8 = {0, . . . , 8} is a
universe for the values of θ-cardinalities and

A = {0.5/x1, 0.2/x2, 0.9/x3, 1/x4, 0.8/x5, 0.9/x6, 1/x7, 0, 6/x8}

is a finite L-set over X. Further, let us define f, g : [0, 1] → [0, 1] by f(a) = a
(the identity mapping) and g(a) = 1 − a for any a ∈ [0, 1]. Obviously, both
mappings are homomorphisms of the corresponding structures, where the
dual Goguen and ÃLukasiewicz algebras are assumed as the dual structures
to LP and LÃL (see Theorem 1.1.5). Putting θ = TM, θ = TP and θ = TÃL,
we can generate three types of the θ-cardinalities of finite L-sets which shall
be denoted by CTM

, CTP
and CTÃL

, respectively. In particular, if T is one of
the mentioned t-norms, then the T -cardinality of finite L-sets generated by
f and g can be expressed (due to Theorem 3.2.13) as follows

CT (A)(i) = T (1− pS
A(8− i), pT

A(i)), (3.21)

where S is the corresponding t-conorm to T and i ∈ N8. Moreover, due to
Lemmas 2.2.6 and 2.3.5, we can determined the mappings pT

A and pS
A as the

following sequences

pT
A = {pTM

A (0), T (pTM
A (0), pTM

A (1)), . . . , T (pTM
A (0), . . . , pTM

A (8))},
pS

A = {pSM
A (0), S(pSM

A (0), pSM
A (1)), . . . , S(pSM

A (0), . . . , pSM
A (8))},

where clearly we have

pTM
A = {1, 1, 1, 0.9, 0.9, 0.8, 0.6, 0.5, 0.2},

pSM
A = {0, 0.2, 0.5, 0.6, 0.8, 0.9, 0.9, 1, 1}.
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The following three L-sets6 are the values (fuzzy cardinals) of the appropriate
T -cardinalities

CTM
(A) ={0/0, 0/1, 0.1/2, 0.1/3, 0.2/4, 0.4/5, 0.5/6, 0.5/7, 0.2/8},

CTP
(A) ={0/0, 0/1, 0.00032/2, 0.00288/3, 0.02592/4, 0.10368/5,

0.15552/6, 0.15552/7, 0.03888/8},
CTÃL

(A) ={0/0, 0/1, 0/2, 0/3, 0/4, 0/5, 0/6, 0/7, 0/8}.
Note that the L-set A is an example of the singular L-set with regard to the
TÃL-cardinality, i.e. CTÃL

(A) = ∅. The singular fuzzy set with regard to the
norm-based cardinals are investigated in e.g. [19, 20].

Up till now all relationships between the evaluated equipollence and simi-
larity of θ-cardinalities of L-sets have been in the form of the inequality. The
following lemma shows that the equality can arise only in a very special case.

Corollary 3.2.16. Let L be a complete linearly ordered residuated lattice and
Cf,g : FIN L(X) → CVL(Nn) be a θ-cardinality of finite L-sets generated by
homomorphisms f, g. Then

(i) (g→(A) ≡θ g→(B))θ(f→(A) ≡θ f→(B)) ≤ Cf,g(A) ≈ Cf,g(B),

(ii) g→(A) ≡∧ g→(B) = Cg(A) ≈ Cg(B),

(iii) f→(A) ≡∧ f→(B) = Cf (A) ≈ Cf (B)

hold for arbitrary A,B ∈ FIN L(X).

Proof. Let A,B ∈ FIN L(X) be arbitrary L-sets, Y = {x1, . . . , xm} =
Supp(A) ∪ Supp(B) and i ∈ Nn. If i > m, then Cf,g(A)(i) = Cf,g(B)(i)
according to the axiom of variability and thus Cf,g(A)(i) ↔ Cf,g(B)(i) = >.
Further, let us suppose that i ≤ m. Due to the properties of the homomor-
phisms g and f , Theorem 3.2.13 and Lemmas 2.2.8, 2.3.7, 2.4.1, 2.4.2, we
have

Cf,g(A)(i) ↔ Cf,g(B)(i) =

(g(pθ

A(m− i, Y ))θf(pθ

A(i, Y ))) ↔ (g(pθ

B(m− i, Y ))θf(pθ

B(i, Y ))) ≥
(g(pθ

A(m− i, Y )) ↔ g(pθ

B(m− i, Y )))θ(f(pθ

A(i, Y )) ↔ f(pθ

A(i, Y ))) =

g(|pθ

A(m− i, Y )ª pθ

B(m− i, Y )|)θf(pθ

A(i, Y ) ↔ pθ

B(i, Y )) ≥
g(A ≡θ B)θf(A ≡θ B) = (g→(A) ≡θ g→(B))θ(f→(A) ≡θ f→(B)).

6Precisely, the first L-set is the LP-set and simultaneously the LÃL-set, the second one
is the LP-set and the third one is the LÃL-set.



78 θ-cardinality of finite Ld- sets

Hence, we obtain the statement (i). If f is the trivial homomorphism, then
clearly we have Cf,g(A)(i) ↔ Cf,g(B)(i) = > = g(p∨A(i, Y )) ↔ g(p∨B(i, Y )) =
g(>) ↔ g(>) for any i ∈ Nn, where i > m. Hence, due to the properties of
the homomorphism g, Theorem 3.2.13 and Lemmas 2.3.8 and 2.4.2, we can
write

Cg(A) ≈ Cg(B) =
n∧

i=0

(Cg(A)(i) ↔ Cg(B)(i)) =

m∧
i=0

(Cg(A)(i) ↔ Cg(B)(i)) ∧
n∧

i=m+1

(Cg(A)(i) ↔ Cg(B)(i)) =

m∧
i=0

(g(p∨A(m− i, Y )) ↔ g(p∨B(m− i, Y )))∧
n∧

i=m+1

(g(p∨A(i, Y ) ↔ g(p∨B(i, Y ))) = g(
n∨

i=0

|p∨A(i, Y ))ª p∨B(i, Y )|) =

g(pAY ≈d pBY ) = g(A ≡∨ B) = g→(A) ≡∧ g→(B)

and (ii) is proved. Analogously, it could be done (iii) and the proof is com-
plete.

3.3 θ-cardinality of finite Ld- sets

In this section we attempt to define an axiomatic system for cardinalities
of Ld-sets, which is, in a certain sense, dual to the previous system for the
θ-cardinalities of L-sets. These cardinalities are then called θ-cardinalities.
As we have mentioned in the introduction to this chapter, the θ-cardinalities
were originally proposed as a way to generalize the scalar cardinalities of
fuzzy sets. The idea was based on the fact that the operation addition, used
in computing of scalar cardinalities, may be described as an addition in dually
residuated lattices (cf. Ex. 1.1.11 and ΣCount). Nevertheless, the axiomatic
system presented below contains a broader class of θ-cardinalities of Ld-sets
and the scalar cardinalities could be understood as elements of a subclass
of the class of θ-cardinalities, which values ranges comprise just singletons.
The following subsections keep the same outline as the previous one’s and
the statements have the “dual” forms. Therefore, some of the comments and
proofs (primarily in the second subsection) are omitted.
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3.3.1 Definition and representation

Recall that, for simplicity, the divisibility (and thus the distributivity of ∨
over ∧ is held) of Ld in the case CV∨Ld(Nn) is always assumed and it will not
be mentioned in the following text. Now the θ-cardinality of finite Ld-sets is
defined as follows.

Definition 3.3.1. Let L and Ld be a complete residuated and dually residu-
ated lattice, respectively, with the same supports and CVθ

Ld(Nn) be a bounded
poc-monoid. A θ-fuzzy cardinality of finite Ld-sets on FIN Ld(X) is a map-
ping C : FIN Ld(X) → CVθ

Ld(Nn) such that the following condition are
satisfied:

(i) For every A,B ∈ FIN Ld(X) with A ∩ B = ∅, we have C(A ∪ B) =
C(A) +θ C(B).

(ii) For every A,B ∈ FIN Ld(X) and i, j ∈ Nn such that i > |Supp(A)|
and j > |Supp(B)|, we have C(A)(i) = C(B)(j),

(iii) If A ∈ FIN Ld(X) is a crisp set, then C(A)(i) ∈ {⊥,>} holds for
every i ∈ Nn and, moreover, if |A| = i, then C(A)(i · 1) = ⊥.

(iv) Let a ∈ L, then C({a/x})(i) = C({a/y})(i) holds for every x, y ∈ X
and i ∈ Nn.

(v) Let a, b ∈ L, then

C({aθb/x})(1) = C({a/x})(1)θC({b/x})(1), (3.22)

C({aθb/x})(0) = C({a/x})(0)θC({b/x})(0). (3.23)

The mentioned axioms are again called the additivity, variability, consis-
tency, singleton independency, preservation of non-existence and existence,
respectively. The first two axioms have the same meaning as the axioms of
additivity and variability for the θ-cardinalities. The axiom of consistency
also states that the values of θ-cardinalities must belong to {⊥,>} for the
crisp sets. However, if A ⊆ X is a crisp set with |A| = i, then we have
C(A)(i · 1) = ⊥, contrary to C(A)(i · 1) = > for the θ-cardinalities. This
value could be interpreted as a truth value7 of the assertion that the crisp
set A has not the cardinality which is equal to i. For instance, the cardinal-
ity of the empty set is equal to 0 and therefore C(∅)(0) = ⊥ holds for any
θ-cardinality. A consequence of the mentioned consideration is the fact that

7The term of the truth value could be contentious for the values of general dually
residuated lattices. In this case, we use them in the common meaning.
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the membership degree of the θ-cardinality of a finite Ld-set A in the value
i expresses an extent of “truth” of the statement that the Ld-set A has not i
elements. In other words, the value C(A)(i) describes the degree of “truth”
of the statement that A has either more or less (but not equal) elements
than i. Further, the axiom of singleton independency has the same meaning
as in the case of the θ-cardinalities. The last two axioms are proposed to
be dual to the corresponding axioms of preservation of non-existence and
existence for the θ-cardinalities. Moreover, these axioms support our inter-
pretation of the θ-cardinalities values. In fact, let us suppose that a ≤ b are
elements of a linearly ordered dually residuated lattice and θ = ∨. From
a ≤ b we can say that the Ld-set B = {b/x} has more elements than the
Ld-set A = {a/x}8. Hence, it is natural to expect that the degree of truth of
the statement, that the Ld-set has no element, must be greater for B than
A and thus C(A)(0) ≤ C(B)(0). It is easy to see that this inequality is,
however, a simple consequence of the axiom of existence preservation. Anal-
ogously, the degree of truth of the statement, that the L-set has not just
one element, must be greater for A than B and thus C(A)(1) ≥ C(B)(1).
Again, this inequality is a simple consequence of the axiom of non-existence
preservation.

The following example of the ∨-cardinality of finite Ld-sets could be un-
derstood as dual to the ∧-cardinality (constructed using the a-cuts of fuzzy
sets) defined in Ex. 3.2.1 on p. 60.

Example 3.3.1. Let L be a complete residuated lattice and Ld be a divisible
complete dually residuated lattice with the same support L. Recall that Ad

a

denotes a dual a-cut of fuzzy set A (see p. 12). Then a ∨-cardinality of finite
Ld-sets C : FIN Ld(X) → CV∨Ld(Nn) can be defined as follows

C(A)(i) =

{ ∧{a | a ∈ L and |X \ Ad
a| ≤ i}, i 6= n

⊥, i = n.
(3.24)

Note that for n = ∞ we have C(A)(n) =
∧{a | a ∈ L and |X \Ad

a| ≤ n} = ⊥
and thus the definition could be simplified. Let us show that C is really the ∨-
cardinality of finite Ld-sets. Obviously, C(A)(i) ≤ C(A)(j), whenever i ≤ j,
holds for arbitrary i, j ∈ Nn and thus C(A) is the ∨-convex Ld-set for every
A ∈ FIN Ld(X). Let A,B ∈ FIN Ld(X) be arbitrary pairwise disjoint finite
Ld-sets. If i = n, then we have

(C(A) +θ C(B))(n) =
∧

k,l∈Nn
k¢l=n

(C(A)(k) ∨ C(B)(l)) = C(A)(n) ∨ C(B)(n) = ⊥.

8It is a consequence of the fact that the element x belongs to B with the greater
membership degree than to A.
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Hence, we obtain (C(A) +θ C(B))(n) = C(A ∪ B)(n) for every disjoint Ld-
sets A,B ∈ FIN Ld(X). Let us suppose that i < n. It is easy to see
that |X \ (A ∪B)d

c | = |X \ Ad
c | + |X \ Bd

c | holds for every disjoint Ld-sets
A,B ∈ FIN Ld(X) and X \Ad

a ⊆ X \Ad
b , whenever a ≥ b. Furthermore, we

have i = k ¢ l = k + l for i < n. Hence, we have

(C(A) +∨ C(B))(i) =
∧

k,l∈Nn
k¢l=i

(C(A)(k) ∨ C(B)(l)) =

∧
k,l∈Nn
k¢l=i

(
∧
a∈L

|X\Ad
a|≤k

a ∨
∧
b∈L

|X\Bd
b
|≤l

b) =
∧

k,l∈Nn
k¢l=i

∧
a∈L

|X\Ad
a|≤k

∧
b∈L

|X\Bd
b
|≤l

(a ∨ b) ≥

∧
a,b∈L

|X\Ad
a∨b

|¢|X\Bd
a∨b

|≤i

(a ∨ b) =
∧
c∈L

|X\Ad
c |¢|X\Bd

c |≤i

c =
∧
c∈L

|X\(A∪B)dc |≤i

c = C(A ∪B)(i).

Conversely, let |X \ (A ∪B)d
c | ≤ i for some c ∈ L. Then obviously there exist

kc, lc ∈ Nn such that |X \ Ad
c | ≤ kc, |X \ Bd

c | ≤ lc and kc ¢ lc = kc + lc = i.
Hence, we obtain the following inequality

∧
a∈L

|X\Ad
a|≤kc

a ∨
∧
b∈L

|X\Bd
b
|≤lc

b ≤ c ∨ c = c.

Since to each c ∈ L with |X \ (A ∪B)d
c | ≤ i there exist kc, lc ∈ Nn with the

considered properties, then we can write

C(A ∪B)(i) =
∧
c∈L

|X\(A∪B)dc |≤i

c ≥

∧
k,l∈Nn
k¢l=i

(
∧
a∈L

|X\Ad
a|≤k

a ∨
∧
b∈L

|X\Bd
b
|≤l

b) = (C(A) +∨ C(B))(i)

and thus the additivity of C is satisfied. Further, if i > |Supp(A)| then
|X \ Ad

0| ≤ i and thus C(A)(i) = ⊥. Hence, the variability is fulfilled. Let
A ⊆ X be a crisp set. If i < |A|, then we have C(A)(i) =

∧{a ∈ L | |X \
Ad

a| ≤ i} = > ∈ {⊥,>}. Moreover, if |A| = i < n, then |X \Ad
0| = i ≤ i and

C(A)(i · 1) = C(A)(i) = ⊥. If |A| = i ≥ n, then C(A)(i · 1) = C(A)(n) = ⊥.
Hence, the axiom of consistency is also satisfied. The singleton independency
is clearly fulfilled. Finally, we have C({a/x})(0) = a, because |X \ Ad

a| = 0
and a is the least element with the desired property, and from the consistency
we have C({a/x})(1) = ⊥. Hence, the preservation of non-existence and the
preservation of existence are also fulfilled.
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Example 3.3.2. Let LÃL and Ld
ÃL be the complete residuated and dually resid-

uated lattices determined by the ÃLukasiewicz t-norm and t-conorm and X
is a non-empty universe. An SÃL-cardinality CSÃL

: FIN Ld
ÃL
(X) → CVSÃL

Ld
ÃL
(N1)

could be defined as follows

CSÃL
(A)(i) =

{
min(

∑m
k=1 A(xk), 1), i = 0,

0, i = 1,
(3.25)

where Supp(A) = {x1, . . . , xm}9. Let us prove that the definition is cor-
rect. Obviously, CSÃL

(A) is trivially the SÃL-convex Ld
ÃL-set for every A ∈

FIN Ld
ÃL
(X). Let A,B ∈ FIN Ld

ÃL
(X) be arbitrary disjoint Ld-sets. Then we

have

(CSÃL
(A) +SÃL CSÃL

(B))(0) =
∧

i1,i2∈{0,1}
i1¢i2=0

min(CSÃL
(A)(i1) + CSÃL

(B)(i2), 1) =

min(CSÃL
(A)(0) + CSÃL

(B)(0), 1) = min(
∑

k∈Supp(A)

A(xk) +
∑

l∈Supp(B)

B(xl), 1) =

min(
∑

r∈Supp(A∪B)

(A ∪B)(xr), 1) = CSÃL
(A ∪B)(0)

and

(CSÃL
(A) +SÃL CSÃL

(B))(1) =
∧

i1,i2∈{0,1}
i1¢i2=1

min(CSÃL
(A)(i1)+CSÃL

(B)(i2), 1) =

min(C(A)(1) + C(B)(1), 1) = 0 =CSÃL
(A ∪B)(1)

and hence the axiom of additivity is satisfied. Obviously, i > |Supp(A)| and
simultaneously j > |Supp(B)| hold just for A = B = ∅. Hence, we have
C(A)(i) = C(B)(j) = 0 and thus the variability is verified. If A ⊆ X is
a crisp set, then C(A)(0) and C(A)(1) clearly belong to {0, 1}. Moreover,
CSÃL

(∅)(0·1) = CSÃL
(∅)(0) = 0 and if |A| = i > 0, then C(A)(i·1) = C(A)(1) =

0. Hence, the consistency is satisfied. Finally, we have CSÃL
({a/x})(0) = a

and CSÃL
({a/x})(1) = 0 for any x ∈ X. Hence, the singleton independency is

fulfilled. Furthermore, we have

CSÃL
({SÃL(a, b)/x})(0) = CSÃL

({min(a + b, 1)/x})(0) = min(a + b, 1) =

min(CSÃL
({a/x})(0) + CSÃL

({b/x})(0), 1) = SÃL(CSÃL
({a/x})(0),CSÃL

({b/x})(0))

and C({TÃL(a, b)/x})(1) = 0 = SÃL(C({a/x})(1),C({b/x})(1)). Hence, the
axiom of preservation of existence and non-existence is also satisfied and

9Recall that if Supp(A) = ∅, i.e. A = ∅, then min(
∑

x∈∅A(x), 1) = 0. See also p. 10.



3. Cardinalities of finite fuzzy sets 83

CSÃL
is really the SÃL-cardinality of finite Ld-sets. We can see that this SÃL-

cardinality is independent on the choice of the left continuous t-norm, because
the axiom of non-existence preservation is trivially satisfied.

Obviously, in the second example the range of SÃL-cardinality CSÃL
contains

just the singletons with the same supports containing the element 0. In this
case the SÃL-cardinality of an Ld-set A is uniquely determined by the height of
CSÃL

(A) or equivalently by the value CSÃL
(A)(0). It may be used for a natural

construction of the scalar cardinalities as follows. Let C : FIN Ld(X) →
CVθ

Ld(Nn) be a θ-cardinality of finite Ld-sets such that its range contains just
singletons with the same supports. Further, let us denote hg : CVθ

Ld(Nn) →
L, where L is the support of Ld, the mapping assigning to each Ld-set its
height. Then the mapping Csc : FIN Ld(X) → L, given by the composition
Csc = hg◦C, is called the θ-scalar cardinality of finite Ld-sets . Note that not
all scalar cardinalities, introduced by Wygralak’s axiomatic system in [107],
may be also established as a little modification of the θ-scalar cardinalities
(for Ld = R+

0 ). The reason is that the θ-scalar cardinalities have to satisfied
the axioms of non-existence and existence preservations, which are much
stronger than the Wygralak’s axiom of singleton monotonicity (cf. [107,109]).
On the other hand, using the presented modality we can define other forms
of the scalar cardinalities than has been done up to now. However, in the
following parts the θ-scalar cardinalities will not be the focus of our attention
and we will deal only with the θ-cardinalities of finite Ld-sets, in general.
The following lemma is dual to Lemma 3.2.1. Recall that E denotes the
neutral element and 0 denotes the least element of the bounded poc-monoid
CVθ

Ld(Nn).

Lemma 3.3.1. Let C : FIN L(X) → CVθ

Ld(Nn) be a θ-cardinality of finite
Ld-sets. Then C(∅) = E or C(∅) = 0. Moreover, if C(∅) = 0, then C(A) is
closed Ld-set10 for any A ∈ FIN Ld(X) and thus C(A) is a non-increasing
mapping, i.e. C(A)(i) ≤ C(j), whenever i ≥ j.

Proof. The first statement is straightforward consequence of the axioms of
variability and consistency. If C(∅) = 0, then from (i) of Lemma 3.1.5 we
have C(A) = C(A ∪ ∅) = C(A) +θ C(∅) = C(A) +θ 0 = C(A)c. Hence, we
obtain that C(A) is the closed Ld-set. The rest of the proof follows from the
definition of the closed Ld-sets.

Lemma 3.3.2. Let C : FIN Ld(X) → CVθ

Ld(Nn) be a θ-cardinality of finite
Ld-sets and A ∈ FIN Ld(X) such that Supp(A) ⊆ {x1, . . . , xm}. Then we

10It means that C(A) = C(A)c, where c is the dual closure operator defined on p. 57.
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have

C(A)(i) =
∧

i1,...,im∈Nn
i1¢···¢im=i

m

Θ
k=1

C({A(xk)/xk})(ik), (3.26)

for every i ∈ Nn.

Proof. Let A ∈ FIN Ld(X) be a finite Ld-set with Supp(A) ⊆ {x1, . . . , xm}.
Due to the additivity, we obtain

C(A)(i) =C({A(x1)/x1} ∪ · · · ∪ {A(xm)/xm})(i) =

(C({A(x1)/x1}) +θ · · ·+θ C({A(xm)/xm}))(i).
for every i ∈ Nn. Applying the definition of +θ, we obtain the desired
statement.

A stronger result showing how to compute θ-fuzzy cardinalities is given
in the following theorem. It is dual to Theorem 3.2.3.

Theorem 3.3.3. Let C : FIN Ld(X) → CVθ

Ld(Nn) be a θ-cardinality of finite
Ld-sets and A ∈ FIN Ld(X) with Supp(A) ⊆ {x1, . . . , xm}. Then we have

C(A)(i) =
∧

i1,...,im∈{0,1}
i1¢···¢in=i

m

Θ
k=1

C({A(xk)/xk})(ik) (3.27)

for every i ∈ Nn, where i ≤ m. Moreover, if m < n, then C(A)(i) = ⊥ or
C(A) = > holds for every m < i ≤ n, respectively.

Proof. Let A ∈ FIN Ld(X) be a finite Ld-set with Supp(A) ⊆ {x1, . . . , xm}.
First, we will suppose that m < n. The statement is evidently true for
i ≤ 1. Further, let 1 < i ≤ m and i1, . . . , im ∈ Nn be a finite sequence
such that i1 ¢ · · · ¢ im = i. Put I = {ik | ik ∈ Nn, ik 6∈ {0, 1}}. The
statement is true, if I = ∅. Let ik ∈ I be an element and ik = r. Then
there exist at least r − 1 elements from {i1, . . . , im} that are equal to 0 (see
the proof of Theorem 3.2.3 on p. 62). Thus we can choose the elements
ik1 = · · · = ikr−1 = 0. Due to the variability, consistency and Lemma 3.3.1,
we can write C({A(xk)/xk})(ik) = C({A(xk)/xk})(2) = C({A(xl)/xl})(2) =
C({⊥/xk})(2) = C(∅)(2) ∈ {⊥,>}, where l ∈ {k1, . . . , kr−1}. Hence, we
obtain C({>2/x})(0) = ⊥2. Now applying the θ-convexity of Ld-sets, the
existence preservation and the fact that C({⊥/xk})(0) = ⊥, we obtain

C({A(xk)/xk})(ik)θC({A(xl)/xl})(0) =

C({A(xl)/xl})(2)θC({A(xl)/xl})(0) ≥ C({A(xl)/xl})(1)
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for every l ∈ {k1, . . . , kr−1} and

C({A(xk)/xk})(ik) = C({⊥/xk})(2)θ⊥ =

C({⊥/xk})(2)θC({⊥/xk})(0) ≥
C({⊥/xk})(1) = C({⊥θA(xk)/xk})(1) =

C({⊥/xk})(1)θC({A(xx)/xk})(1) ≥ C({A(xk)/xk})(1).

Since C({A(xk)/xk})(ik) ∈ {⊥,>} and ⊥, > are the idempotent elements of
Ld with respect to θ, then using the previous inequalities we can write

C({A(xk)/xk})(ik)θC({A(xk1)/xk1})(0)θ · · · θC({A(xkr−1)/xkr−1})(0) =

C({A(xk)/xk})(ik)θC({A(xk)/xk})(ik)θC({A(xk1)/xk1})(0)θ · · · θ
C({A(xk)/xk})(ik)θC({A(xkr−1)/xkr−1})(0) ≥

C({A(xk)/xk})(1)θC({A(xk1)/xk1})(1)θ · · · θC({A(xkr−1)/xkr−1})(1).

Hence, we can create a new sequence of elements i′1, · · · , i′m ∈ Nn such that
i′1 ¢ · · ·¢ i′m = i, I ′ = {i′k | i′k ∈ Nn, i′k 6∈ {0, 1}} = I \ {ik} and

m

Θ
k=1

C({A(xk)/xk})(ik) ≥
m

Θ
k=1

C({A(xk)/xk})(i′k). (3.28)

Obviously, the mentioned procedure can be repeated as long as all elements
from I are removed. As to each sum i1 ¢ · · · ¢ im = i there exists a sum
i′1¢· · ·¢i′m = i such that i′k ∈ {0, 1} and the inequality (3.28) is satisfied, the
desired equality (3.27) is true for any 1 < i ≤ m. Further, we will suppose
that m ≥ n. If i < n, then we can apply the same procedure as in the previous
case to obtain the desired statement. Let i = n and i1¢ · · ·¢im = n. Finally,
if ik1 , . . . , ikr are all elements from i1, . . . , im that are equal to 0 and ik > 1,
then we have

C({A(xk)/xk})(ik)θC({A(xk1)/xk1})(0)θ · · · θC({A(xkr−1)/xkr})(0) ≥
C({A(xx)/xk})(1)θC({A(xk1)/xk1})(1)θ · · · θC({A(xkr)/xkr})(1).

Since C({A(xk)/xk})(ik) ≥ C({A(xk)/xk})(1) holds for any ik ≥ 1, then we
have

m

Θ
k=1

C({A(xk)/xk})(ik) ≥
m

Θ
k=1

C({A(xk)/xk})(1).
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Hence, the first part of the theorem is proved. Further, let us suppose
that m < n. Due to the variability and Lemma 3.3.1, we have C(A)(i) =
C(∅)(i) = ⊥ or C(A)(i) = C(∅)(i) = > for any i ∈ Nn such that m < i ≤ n,
respectively, and the second part of this theorem is proved, too.

Before we introduce an analogical representation of the θ-cardinalities of
finite Ld-sets, we will establish two types of homomorphisms. Let Ld

1 and
Ld

2 be (complete) dually residuated lattices and h : L1 → L2 be a mapping.
We say that h is the (complete) θ-homomorphism from Ld

1 to Ld
2, if h is a

(complete) homomorphism from the substructure (L1, θ1,⊥1) of the dually
residuated lattice Ld

1 to the substructure (L2, θ2,⊥2) of the dually residuated
lattices Ld

2, i.e. h(aθ1b) = h(a)θ2h(b) and h(⊥1) = ⊥2. Further, let L1 and
Ld

2 be (complete) residuated and dually residuated lattices, respectively, h :
L1 → L2 be a mapping. We say that h is the (complete) θd-homomorphism,
if h is a (complete) homomorphism from the substructure (L1, θ1,>1) of the
residuated lattice L1 to the substructure (L2, θ,⊥2) of the dually residuated
lattice L2, i.e. h(aθ1b) = h(a)θh(b) and h(>1) = ⊥2.

Lemma 3.3.4. Let f, g : L → L be a θ- and θd-homomorphism from Ld

to Ld and from L to Ld, respectively, such that f(>) ∈ {⊥,>} and g(⊥) ∈
{⊥,>}. Further, let Cf,g : FIN Ld(X) → CVθ

Ld(Nn) be a mapping defined by
induction as follows

Cf,g({a/x})(0) = f(a), Cf,g({a/x})(1) = g(a) and

Cf,g({a/x})(k) = g(⊥), k > 1

hold for every singleton {a/x} ∈ FIN L(X) and

Cf,g(A) = Cf,g({A(x1)/x1}) +θ · · ·+θ Cf,g({A(xm)/xm})

holds for every A ∈ FIN Ld(X), where Supp(A) = {x1, . . . , xm}. Then the
mapping Cf,g is a θ-cardinality of finite Ld-sets generated by the θ- and
θd-homomorphisms f and g, respectively.

Proof. First, we will prove that the definition of the mapping Cf,g is correct.
Let {a/x} be a singleton from FIN Ld(X). If n = 1, then Cf,g({a/x}) is
clearly a θ-convex Ld-set. Let n > 1. Since g(⊥) = g(⊥θa) = g(⊥)θg(a) ≥
g(a) holds for any a ∈ L, then we have

Cf,g({a/x})(0)θCf,g({a/x})(2) = f(a)θg(⊥) ≥ g(a) = Cf,g({a/x})(1).

Furthermore, this inequality is trivially fulfilled for each triplet 0 < i ≤ j ≤
k from Nn. Hence, the mapping Cf,g assigns a θ-convex Ld-sets to each
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singletons from FIN Ld(X). Since the sum of θ-convex of Ld-sets is again a
θ-convex Ld-set (according to Theorem 3.1.3), we obtain that the definition
of Cf,g is correct. Further, let A,B ∈ FIN Ld(X) be arbitrary disjoint Ld-
sets, where Supp(A) = {x1, . . . , xr} and Supp(B) = {y1, . . . , ys}. Due to the
associativity of the operation +θ and the definition of Cf,g, we have

Cf,g(A ∪B) =

Cf,g({A(x1)/x1}) +θ · · ·+θ Cf,g({A(xr)/xr}) +θ Cf,g({B(y1)/y1}) +θ · · ·
+θ Cf,g({B(ys)/ys}) =

(
Cf,g({A(x1)/x1}) +θ · · ·+θ Cf,g({A(xr)/xr})

)
+θ

(
Cf,g({B(y1/y1}) +θ · · ·+θ Cf,g({B(ys)/ys})

)
= Cf,g(A) +θ Cf,g(B).

Hence, the mapping Cf,g satisfies the additivity. Let A ∈ FIN Ld(X) be an
Ld-set with Supp(A) = {x1, . . . , xr}. From the additivity of Cf,g we obtain

C(A)(i) =
∧

i1,...,ir∈Nn
i1¢···¢ir=i

C({A(x1)/x1)(i1)θ · · · θC({A(xr)/xr)(ir). (3.29)

Let us denote i ∈ N r
n an r-dimensional vector of elements from Nn, i.e.

i = (i1, . . . , ir), such that i1 ¢ · · · ¢ ir = i. The set of all such vectors will
be denoted by I. Further, let us denote Ki = {k | ik = 0}, Li = {l | il = 1}
and Mi = {m | im > 1}. Clearly, Ki ∪ Li ∪ Mi = {1, . . . , r} and they

are pairwise disjoint. Finally, let us establish aKi
= Θk∈Ki

f(A(xk)), aLi
=

Θl∈Li
g(A(xl)), aMi

= Θm∈Mi
g(⊥). Recall that Θa∈∅ a = ⊥ (see p. 10).

Then (3.29) can be rewrite as follows

C(A)(i) =
∧

i∈I
aKi

θaLi
θaMi

. (3.30)

Now, let us suppose that i > r, then necessary Mi 6= ∅ for every i ∈ I.
Since aKi

θaLi
θaMi

≥ aMi
= g(⊥) holds for every i ∈ I, then Cf,g(A)(i) =∧

i∈I aKi
θaLi

θaMi
≥ ∧

i∈I g(⊥) = g(⊥). On the other hand, there exists
i ∈ I such that Ki = ∅. Since g(⊥) ≥ g(a) holds for every a ∈ L, we have
aKi

θaLi
θaMi

= ⊥θaLi
θg(⊥) ≤ g(⊥) and thus Cf,g(A)(i) ≤ g(⊥). Hence,

Cf,g satisfies the axiom of variability. The axiom of consistency is a simple
consequence of the previous consideration. In fact, let us suppose that A ⊆ X
is a crisp set. If i > |A|, then C(A)(i) = g(⊥) ∈ {⊥,>} with regard to the
presumption of the values of g(⊥). If i ≤ |A|, then for every i ∈ I we have
aKi

θaLi
θaMi

∈ {⊥,>}, because aKi
, aLi

, aMi
∈ {⊥,>}, where for instance

aKi
= f(>θ · · · θ>) = f(>) ∈ {⊥,>}, if Ki 6= ∅, and aKi

= ⊥, if Ki = ∅.
Hence, C(A)(i) =

∧
i∈I aKi

θaLi
θaMi

∈ {⊥,>}. Moreover, if we suppose |A| =
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r ≤ n, then, obviously, there exists Li such that Ki = Mi = ∅. Hence, we
have C(A)(r) = C(A)(r ·1) ≤ aKi

θaLi
θaMi

= aLi
= g(>θ · · · θ>) = g(>) = ⊥

and therefore C(A)(r) = ⊥. Further, if |A| = r > n, then n = r · 1 and,
analogously, we obtain C(A)(n) = C(r · 1) = aLi

= ⊥, where again Li is
such set that Ki = Mi = ∅. The conditions of independency and preserving
structure follow immediately from the definition of mappings f and g. Thus,
we have shown that Cf,g is the θ-cardinality of finite Ld-sets.

Theorem 3.3.5. (representation of θ-cardinalities) Let L and Ld be a
complete residuated and dually residuated lattice, respectively, and CVθ

L(Nn)

be a bounded poc-monoid. Further, let C : FIN Ld(X) → CVθ
Ld(Nn) be a

mapping satisfying the axiom of additivity. Then the following statements
are equivalent:

(i) C is a θ-cardinality of finite Ld-sets,

(ii) there exist a θ-homomorphism f : L → L and a θd-homomorphism
g : L → L, such that f(>) ∈ {⊥,>}, g(⊥) ∈ {⊥,>} and

C({a/x})(0) = f(a), C({a/x})(1) = g(a), C({a/x})(k) = g(⊥)

hold for arbitrary a ∈ L, x ∈ X and k > 1.

Proof. First, we will show that (i) implies (ii). Let C be a θ-cardinality of
finite Ld-sets. Let us define the mappings f, g : L → L as follows

f(a) = C({a/x})(0), (3.31)

g(a) = C({a/x})(1). (3.32)

Due to the axioms of the existence and non-existence preservations by C, we
have

= f(aθb) = C({aθb/x})(0) = C({a/x})(0)θC({b/x})(0) = f(a)θf(b),

g(aθb) = C({aθb/x})(1) = C({a/x})(1)θC({b/x})(1) = g(a)θg(b).

According to the consistence, we have f(⊥) = C({⊥/x})(0) = ⊥ and g(>) =
C({>/x}(1) = ⊥. Hence, we obtain that f is a θ-homomorphism and g
is a θd-homomorphism of the relevant algebraic structures. Moreover, the
values f(>) = C({>/x})(0) and g(⊥) = C({⊥/x})(1) belong to {⊥,>} with
respect to the axiom of consistency. Finally, due to the variability, we have
g(⊥) = C({⊥/x})(1) = C({a/x})(k) for every k > 1. Second, we will show
that (ii) implies (i). Let Cf,g be the θ-cardinality of finite Ld-sets generated
by the homomorphisms f and g being defined in the previous lemma. Since
Cf,g({a/x}) = C({a/x}) holds for any singleton from FIN Ld(X) and C
satisfies the axiom of additivity, then also Cf,g(A) = C(A) holds for any
A ∈ FIN Ld(X) and thus C is the θ-cardinality of finite Ld-sets.
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Analogously to the θ-cardinalities, each θ-cardinality C of finite Ld-set
is generated by a θ-homomorphism f and θd-homomorphism g satisfying
the conditions of (ii), i.e. C = Cf,g. Now we will look at the preservation
of the partial ordering of Ld-sets by the θ-cardinalities. Again we have to
establish special types of the θ- and θd-homomorphisms. We say that a
mapping h : L1 → L2 is the (complete) θ-po-homomorphism from Ld

1 to Ld
2,

if h is a (complete) θ-homomorphism preserving the partial ordering of the
considered lattices, i.e. h(a) ≤ h(b), whenever a ≤ b. Further, h : L1 → L2

is the (complete) θd-po-homomorphism from L1 to Ld
2, if h is a (complete)

θd-homomorphism reversing the partial ordering of the considered lattices,
i.e. h(a) ≤ h(b), whenever a ≥ b. Let us establish f(a) = ⊥2 for every
a ∈ L1, then we obtain an example of θ-po-homomorphism from Ld

1 to Ld
2

which will be called the trivial θ-po-homomorphism. Analogously, putting
g(a) = ⊥2 we obtain the trivial θd-po-homomorphism from L1 to Ld

2. Further
examples could be defined in a similar way as in the case of θ-po- and θd-
po-homomorphisms (see p. 68). In these special cases, where a θ-cardinality
of finite fuzzy sets is just generated by a non-trivial θ- or θd-homomorphism
f (g is trivial and thus it has no effect) or g (f is trivial and thus it has
no effect), we will denote this θ-cardinality by Cf or Cg, respectively. The
following theorem is a dual to Theorem 3.2.6

Theorem 3.3.6. Let Cf,g : FIN Ld(X) → CVθ

Ld(Nn) be a θ-cardinality of
finite fuzzy sets generated by θ-po- and θd-po-homomorphisms f and g, re-
spectively. Then

(i) Cf,g preserves the partial ordering of Ld-sets if and only if g is the
trivial θd-po-homomorphism.

(ii) Cf,g reverses the partial ordering of Ld-sets if and only if f is the
trivial θ-po-homomorphism.

Proof. We will prove just the first statement, the second one could be done
by analogy. First, let us suppose that Cf,g preserves ordering and g is a
non-trivial θd-po-homomorphism. Since g is the non-trivial mapping, then
necessarily there exists a ∈ L such that g(a) > g(>) = ⊥. If we put {>/x} >
{a/x}, where x ∈ X is an arbitrary element from X, then Cf,g({>/x})(1) =
g(>) ≥ g(a) = Cf,g({a/x})(1) holds with regard to the preservation of the
partial ordering by Cf,g, a contradiction. Hence, ⇒ is true. Let f be a θ-po-
homomorphism, g be the trivial θd-po-homomorphism, A,B ∈ FIN Ld(X)
be arbitrary fuzzy sets and i ∈ Nn. If A ≤ B, then Cf,g({A(x)/x})(1) =
g(A(x)) = ⊥ = g(B(x)) = Cf,g({B(x)/x})(1) and Cf,g({A(x)/x})(0) =
f(A(x)) ≤ f(B(x)) = Cf,g({B(x)/x})(0) hold for arbitrary x ∈ X. More-
over, Cf,g({A(x)/x})(i) = Cf,g({B(x)/x})(i) holds for any i > 1 and thus
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Cf,g({A(x)/x}) ≤ Cf,g({B(x)/x}) holds for any x ∈ Supp(B). The inequal-
ity Cf,g(A) ≤ Cf,g(B) is an immediate consequence of the additivity axiom
and the statement (iii) from Lemma 3.1.5. Hence, ⇐ is also true and the
proof is complete.

3.3.2 θ-cardinality and equipollence of Ld-sets

In the previous section we have investigated a relation between the similarity
of θ-cardinality and equipollency of L-sets. To be able to study an analogy of
such relation, we have to replace the similarity relation by the fuzzy pseudo-
metric, because we deal with the Ld-sets. Let us define a fuzzy relation on
CVθ

Ld(Nn) as follows

K ≈d L =
∨

i∈Nn

|K(i)ª L(i)|. (3.33)

Obviously, the fuzzy relation ≈d is a fuzzy pseudo-metric on CVθ

Ld(Nn).

Theorem 3.3.7. Let Cf,g : FIN Ld(X) → CVθ

Ld(Nn) be a θ-cardinality of
finite Ld-sets generated by θ- and θd-homomorphisms f and g, respectively,
A,B ∈ FIN Ld(X) and h ∈ Perm(X). Then

Cf,g(A) ≈d Cf,g(B) ≤ aθ

ghθa
θ

fh, (3.34)

where aθ
gh or aθ

fh is the θ-degree of the bijection h between g→(A) and g→(B)
or f→(A) and f→(B), respectively.

Proof. Let A,B ∈ FIN Ld(X) be arbitrary finite Ld-sets and i ∈ Nn and
h ∈ Perm(X). Further, let us suppose that Supp(A) = {x1, . . . , xr} and
Supp(B) = {y1, . . . , ys}. Put {x1, . . . , xm} = Supp(A) ∪ h−1(Supp(B)) and
{y1, . . . , ym} = h(Supp(A)) ∪ Supp(B) such that h(xk) = yk for any xk ∈
{x1, . . . , xm}. If i > m, then we obtain Cf,g(A)(i) = Cf,g(B)(i) and hence
we have

|Cf,g(A)(i)ª Cf,g(B)(i)| = ⊥ ≤ aθ

ghθa
θ

fh.

Let us suppose that i ≤ m and establish i ∈ O if and only if i ∈ I and simul-
taneously Mi = ∅ (clearly O ⊂ I). Then due to Theorem 3.3.3, Lemma 2.1.2
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and 2.1.4, we have

|Cf,g(A)(i)ª Cf,g(B)(i)| = |(
∧

i∈O
aKi

θaLi

)ª ( ∧

i∈O
bKi

θbLi

)| ≤
∨

i∈O
|(aKi

θaLi
)ª (bKi

θbLi
)| ≤

∨

i∈O
|aKi

ª bKi
|θ|aLi

ª bLi
)| ≤

∨

i∈O

∣∣ Θ
k∈Ki

f(A(xk))ªΘ
k∈Ki

f(B(yk))
∣∣ θ

∣∣Θ
l∈Li

g(A(xl))ªΘ
l∈Li

g(B(yl))
∣∣ ≤

∨

i∈O
Θ
k∈Ki

|f(A(xk))ª f(B(yk))| θ Θ
l∈Li

|g(A(xl))ª g(B(yl))| ≤
m

Θ
k=1

|f(A(xk))ª f(B(h(xk)))|θ|g(A(xk))ª g(B(h(xk)))| = aθ

ghθa
θ

fh,

where aKi
, aLi

and analogously bKi
, bLi

were introduced on p. 87. Applying
the infimum to the inequalities for i > m and i ≤ m, we obtain the desired
inequality (3.34).

Corollary 3.3.8. Let f : L → L be a θ-homomorphism and g : L → L be a
θd-homomorphism. Then

(i) Cf (A) ≈d Cf (B) ≤ f→(A) ≡θ f→(B) and

(ii) Cg(A) ≈d Cg(B) ≤ g→(A) ≡θ g→(B)

hold for arbitrary A,B ∈ FIN Ld(X).

Proof. Let g be the trivial θd-homomorphism, i.e. g(a) = ⊥ holds for any
a ∈ L, A, B ∈ FIN Ld(X) and h ∈ Perm(X) be an arbitrary bijection. Then
obviously h is the ⊥θ-bijection between g→(A) and g→(B). Hence, we have
Cf,g(A) ≈d Cf,g(B) ≤ ∧

h∈Perm(X) aθ
ghθa

θ
fh =

∧
h∈Perm(X)⊥θaθ

fh = f→(A) ≡θ

f→(B) and the first statement is proved. Analogously we could obtain the
second statement and the proof is complete.

Corollary 3.3.9. Let Cf,g : FIN Ld(X) → CVLd(Nn) be a θ-cardinality of
finite Ld-sets generated by θ- and θd-homomorphisms f and g, respectively,
such that f(|aª b|) ≥ |f(a)ª f(b)| and g(a ↔ b) ≥ |g(a)ª g(b)| hold for any
a, b ∈ L. Further, let A,B ∈ FIN Ld(X) and h ∈ Perm(X). Then we have

Cf,g(A) ≈d Cf,g(B) ≤ f(ah)θg(bh), (3.35)

where ah and bh are the θ- and θd-degrees of the bijection h between A and
B, respectively.
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Proof. Let A,B ∈ FIN Ld(X) be arbitrary finite Ld-sets, h ∈ Perm(X) and
H = Supp(A) ∪ h−1(Supp(B)). Since the mappings g and f are the θ- and
θd-homomorphisms of the appropriate algebras, then we can write (due to
Theorem 3.3.7)

Cf,g(A) ≈d Cf,g(B) ≤

Θ
x∈H

|f→(A)(x)ª f→(B)(h(x))| θ Θ
x∈H

|g→(A)(x)ª g→(B)(h(x))| ≤

Θ
x∈H

f(|A(x)ªB(h(x))|) θ Θ
x∈H

g(A(x) ↔ B(h(x))) = f(ah)θg(bh)

and the proof is complete.

Corollary 3.3.10. Let f : Ld → Ld and g : L → Ld be arbitrary homomor-
phisms. Then

(i) Cf (A) ≈d Cf (B) ≤ f(A ≡θ B) and

(ii) Cg(A) ≈d Cg(B) ≤ g(A ≡θ B)

hold for arbitrary A,B ∈ FIN Ld(X).

Proof. It is a straightforward consequence of Lemmas 2.4.1 and 2.4.2 and
Corollary 3.3.8.

Let Ld be a complete residuated lattice and h : L → L be an arbitrary
mapping. We say that the mapping h is k-θ-compatible with the bidifference
| ⊕ | of Ld, if k|aª b| = |aª b|θ · · · θ|aª b| ≥ |h(a)ª h(b)| holds for arbitrary
a, b ∈ L. Obviously, for θ = ∨ the definition of the k-θ-compatibility with
the bidifference coincides with |aª b| ≥ |h(a)ª h(b)|.
Corollary 3.3.11. Let Cf,g : FIN Ld(X) → CVLd(Nn) be a θ-cardinality
of finite fuzzy sets generated by θ- and θd-homomorphisms f and g that are
k-θ- and l-θ-compatible with | ⊕ |, respectively, A,B ∈ FIN Ld(X) and h ∈
Perm(X). Then

Cf,g(A) ≈d Cf,g(B) ≤ (k + l)ah, (3.36)

where ah is the θ-degree of the bijection h between A and B. Furthermore,
we have

Cf,g(A) ≈d Cf,g(B) ≤ l(A ≡θ B) or Cf,g(A) ≈d Cf,g(B) ≤ k(A ≡θ B)

whenever f or g is the trivial θ- or θd-homomorphism, respectively.
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Proof. It is a straightforward consequence of the k-θ- and l-θ-compatibility
of f and g with the bidifference, Theorem 3.3.7 and Corollary 3.3.8.

Theorem 3.3.12. Let Cf,g : FIN Ld(X) → CVLd(Nn) be a θ-cardinality of
finite Ld-sets generated by homomorphisms f, g and A ∈ FIN Ld(X) with
Supp(A) ⊆ {x1, . . . , xm} = Y . Then

f(pθ

A(m− i, Y ))θg(pθ

A(i, Y )) ≤ C(A)(i) (3.37)

holds for any i ∈ Nn, where i ≤ m.

Proof. It is analogical to the proof of Theorem 3.2.12.

Theorem 3.3.13. Let Ld be a complete linearly ordered dually residuated
lattice and Cf,g : FIN Ld(X) → CVLd(Nn) be a θ-cardinality of finite Ld-
sets generated by homomorphisms f, g and A ∈ FIN Ld(X) with Supp(A) ⊆
{x1, . . . , xm} = Y . Then

C(A)(i) = f(pθ
A(m− i, Y ))θg(pθ

A(i, Y )) (3.38)

holds for any i ∈ Nn, where i ≤ m.

Proof. It is analogical to the proof of Theorem 3.2.13.

Corollary 3.3.14. Let Ld be a complete linearly ordered residuated lattice
and Cf,g : FIN Ld(X) → CVLd(Nn) be a θ-cardinality of finite Ld-sets
generated by homomorphisms f, g and A ∈ FIN Ld(X) with Supp(A) ⊆
{x1, . . . , xm} = Y . Then

C(A)(i) = pθ
f→(A)∩Y (m− i, Y )θpθ

g→(A)(i, Y ) (3.39)

holds for any i ∈ Nn, where i ≤ m.

Proof. It is a straightforward consequence of Lemmas 2.4.1, 2.4.2 and Theo-
rem 3.3.13.

Corollary 3.3.15. Let Ld be a complete linearly ordered residuated lattice
and Cf,g : FIN Ld(X) → CVLd(Nn) be a θ-cardinality of finite Ld-sets gen-
erated by homomorphisms f, g and A ∈ FIN Ld(X) with |Supp(A)| = m.
Then

C(A)(i) = f(p∨A(m− i))θg(p∨A(m− i + 1)) (3.40)

holds for any i ∈ Nn, where i ≤ m.
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Proof. In the proof of Corollary 3.3.15 we have shown that p∨A(m − i) =
p∧A(i + 1) holds for any i ≤ Nn, where i ≤ m = |Supp(A)|. Hence, we
immediately obtain that p∧A(i) = p∨A(m − i + 1) holds for any i ≤ m, where
clearly p∧(0) = > = p∨A(m + 1). The rest follows from Theorem 3.3.13.

Corollary 3.3.16. Let Ld be a complete linearly ordered residuated lattice
and Cf,g : FIN Ld(X) → CVLd(Nn) be a θ-cardinality of finite Ld-sets gen-
erated by homomorphisms f and g. Then

(i) (g→(A) ≡θ g→(B))θ(f→(A) ≡θ f→(B)) ≥ Cf,g(A) ≈d Cf,g(B),

(ii) g→(A) ≡∨ g→(B) = Cg(A) ≈d Cg(B),

(iii) f→(A) ≡∨ f→(B) = Cf (A) ≈d Cf (B)

hold for arbitrary A,B ∈ FIN L(X).

Proof. It is analogical to the proof of Corollary 3.2.16.



Chapter 4

Fuzzy quantifiers

Most of our discussion centers around the problem whether it is possi-
ble to set up a formal calculus which would enable us to prove all true
propositions involving the new quantifiers. Although this problem is not
solved in its full generality, yet it is clear from the partial results (. . . )
that the answer to the problem is essentially negative. In spite of this
negative result we believe that some at least of the generalized quantifiers
deserve a closer study and some deserve to be included into systematic
expositions of symbolic logic. This belief is based on the conviction that
the construction of formal calculi is not the unique and even not the
most important goal of symbolic logic.

Andrzej Mostowski in [70]

. . . the concept of a fuzzy quantifiers is related in an essential way to the
concept of cardinality - or, more generally, the concept of measure - of
fuzzy sets. More specifically, a fuzzy quantifier may be viewed as a fuzzy
characterization of the absolute or relative cardinality of a collection of
fuzzy sets.

Lotfi A. Zadeh in [127]

In natural language as well as formal language of mathematics, logic and
computer science, quantification is a construct that specifies the extent of
validity of a predicate, that is the extent to which a predicate holds over
a range of things. A language element which generates a quantification is
called a quantifier [100]. There is no doubt that natural language quantifiers
like “all”, “many”, “few”, ”between five and ten”, “much more than twenty”,
”at least fifty”, etc. play a very important role in natural language, because
they enable us to talk about properties of collections. These constructs, from
the technical point of view we can speak about “second-order” constructs,
describing properties of collections rather than individuals extend the ex-
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pressive power of natural language far beyond that of propositional logic.
The first real analysis of quantification originates, due to Aristotle, from the
ancient Greece. This famous philosopher and scientist founded formal prin-
ciples of reasoning and created the particular type of logic, which is called
Aristotelian logic1. His treatises on logic are collectively called Organon
(Greek word for Instrument). The basic unit of reasoning in Aristotelian
logic is the syllogism2. Syllogisms consist of three parts: a major premiss, a
minor premiss and a conclusion, each of which have a form of the following
quantified sentences :

(A) universal affirmative: All S are P ,

(E) universal negative: No S is P ,

(I) particular affirmative: Some S is P ,

(O) particular negative: Some S is not P ,

where the letters in the parentheses denote the types of sentences. Each of
quantified sentences (propositions) contains a subject (an individual entity,
for instance “Socrates”, or a class of entities, for instance “all men”) and a
predicate (a property or attribute or mode of existence which a given subject
may or may not possess, for instance “mortal”), which create so-called terms.
An example of the syllogism of the type AAA is as follows

All men are mortal (Major premiss)

All Greeks are men (Minor premiss)

Therefore, all Greeks are mortal (Conclusion).

Aristotle recognized logical relationships between various types of quanti-
fied sentences (for instance, the contradictory propositions have the opposite
truth value) and described them. Later the collection of these relationships
was embodied in a square diagram, which is called the Aristotelian square of
opposition, see Fig. 4.1.

As could be shown a utilization of individual subjects (e.g. “Socrates”,
“Plato” etc.) in the quantified sentences seems to be rather awkward as e.g.
All Socrates are men. This fact, clearly, explains why Aristotle excluded
the individual subjects from his logic. However, the inability to deal with
individual subjects is considered to be one of the greatest flaws of Aristotelian
logic [60]. Another factor that slowed down the progress of semantics for
universal and existential quantification was understanding the quantifiers
(all, some and no) as not logical abstractions in their own right, but only

1It later developed into what became known as traditional logic or term logic [99].
2Therefore, the Aristotelian logic is also referred to the syllogistic logic [97].
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as structural elements of quantified sentences. Nevertheless, logicians fell
under the influence of Aristotelian principles for more than 2,000 years. For
interested readers we refer to e.g. [4,84] or also to [60,75,76,86,97,98], where
other references may be found.

All S are P Contraries No S is P
HHHHHHHHHH

Contradictories
HHHHHHHHHH©©©©©©©©©©

Contradictories
©©©©©©©©©©

Some S is P

Subalterns

Subcontraries Some S is not P

Subalterns

Figure 4.1: Aristotelian square of opposition.

As the first, who realized the undesirable effect of dividing of quantified
propositions into subjects and predicates, which limited usability of Aris-
totelian logic, was German logician Gottlob Frege. In order to eliminate the
outlined obstacles, he replaced subjects and predicates by functions and ar-
guments and this analysis permitted him to found the modern discipline of
logic. In his Begriffsschrift (Concept Script) (see [22]), which could be taken
as the most significant publication since Aristotle, and later in Grundgesetze
der Arithmetik I. and II. (see [23, 24]) he developed a formal logical system,
where universal and existential quantifiers are its individual elements, which
grounds the modern predicate calculus. G. Frege regarded the quantifiers as
functions (notions) of second-level and therefore his logical calculus was the
second-order.

A first attempt to formalize some simpler parts of natural language is due
to Bertrand Russell (see e.g. [84]). In his theory the statements of natural
language are analyzed as suitable combinations of formulas with classical log-
ical quantifiers. Although, his theory enables to describe some special cases
of more general natural language quantifiers, there is no apparent general-
ization Russell‘s approach to a broader class of natural language quantifiers.

On spite of the fact that the predicate logic became a powerful tool in
mathematics, philosophy, linguistics etc., its expressive ability, nevertheless,
was limited. The account consisted in a simplicity (triviality) of the classical
quantifiers. A pioneering work on generalized quantifiers was published in
the fifties of the last century by Andrzej Mostowski [70]. In this paper he
introduced operators, which represent natural generalization of the classical
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logical quantifiers. Let us give a sketch of his original definition. A mapping
F :

∏
i∈N M → {⊥,>} is called propositional function on a set M , if there

is a finite set of natural numbers K ⊂ N such that x = (x1, x2, . . . ),y =
(y1, y2, . . . ) ∈

∏
i∈N M and xi = yi for any i ∈ K, then F (x) = F (y). The

smallest set K with the previous property is called support of F . If the
support of F has only one element, then F is a function of one argument.
Let π be a bijection from M onto M ′. If x = (x1, x2, . . . ) ∈

∏
i∈N M , then we

denote by π(x) the sequence (π(x1), π(x2), . . . ), and if F is a propositional
function on M , then we denote by Fπ the propositional function on M ′ such
that Fπ(π(x)) = F (x). Let FM be a set of all propositional functions of one
argument on a set M . A (generalized) quantifier limited to M is a mapping
QM : FM → {⊥,>} such that the invariance property QM(F ) = QM(Fπ)
holds for any F ∈ FM and permutation π on M . It is easy to see that this
definition of generalized quantifiers is actually based on the cardinality. In
fact, if we put m = |F−1(>)| and n = |F−1(⊥)| (clearly m + n = |M |), then
the quantifier QM can be defined as

QM(F ) = ξ(|F−1(>)|, |F−1(⊥)|), (4.1)

where ξ is a suitable mapping from the set of all pairs of (finite or transfinite)
cardinal numbers (m,n) with m+n = |M | to the set of truth values {⊥,>}.
This definition is correct with regard to the invariance property of general-
ized quantifiers. A (generalized) unlimited quantifier is then introduced as
a mapping which assigns a quantifier QM limited to M to each set M and
which satisfies the equation QM(F ) = QM ′(Fπ) for each propositional func-
tion F on M with one argument and for each bijection π : M → M ′. For
example, the existential quantifier as a quantifier limited on M is defined by

ξ∃(m,n) =

{ >, m 6= ∅,
⊥, otherwise,

(4.2)

and analogously, the universal quantifier as a quantifier limited on M is
defined by

ξ∀(m,n) =

{ >, m = |M |,
⊥, otherwise,

(4.3)

for any cardinal numbers m,n such that m + n = |M |. Other examples can
be introduced by laying down various conditions on the cardinal numbers m
and n. For instance, replacing m = |M | in (4.3) by m = m0, we obtain the
quantifier “there is exactly m0”, or by m < ω, we obtain the quantifier “for
at most finitely many”. Clearly, new quantifiers limited on M (and similarly
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for unlimited) may be obtained by applying the Boolean operations to other
quantifiers limited on M (or unlimited). For instance, if Q1M , Q2M are quan-
tifiers limited on M , then we again obtain a quantifier QM limited on M by
putting QM(F ) = Q1M(F ) ∧ Q2M(F ) for each propositional function F on
M . Further, Mostowski introduced a language with generalized quantifiers
in the same way as the language of the first-ordered logic, only instead of
the symbols of classical quantifies new symbols Q1, . . . , Qn for generalized
quantifiers are assumed. The rules of building formulas by means of the
symbols ∃,∀ are replaced by the rule: if ϕ is a formula and x is a variable,
then (Qkx)ϕ is a formula (k = 1, . . . , s). For introducing the truth values
of formulas with generalized quantifiers in accordance with Mostowski’s con-
cept, we will use some notions whose precise definitions may be found in
the following section. Let M be a structure for a given language (extended
by the mappings Q1M , . . . , QnM) with the domain M , v be an M-evaluation
(v(x) ∈ M for any variable x of a given language) and ϕ be a formula. Let
us denote ||ϕ||M,v the truth value of the formula ϕ under v and ||ϕ||M,v(x/m)

the truth value of the formula ϕ under v(x/m), where v(x/m) denotes an
M-evaluation v′ such that v′(x) = m and v′(y) = v(y) for any y 6= x. Fi-
nally, let ϕ be a formula with a free variable x and v be an M-evaluation.
Then a propositional function of one argument FM,v,x :

∏
i∈N M → {⊥,>},

which corresponds to the formula ϕ, the M-evaluation v and the variable
x, may be defined as follows FM,v,x(m1, . . . , m, . . . ) = ||ϕ||M,v(x/m) for any
(m1, . . . , m, . . . ) ∈ ∏

i∈N M . Now the truth value of a formula (Qix)ϕ under
an M-evaluation v is defined as follows

||(Qix)ϕ||M,v = QMi(FM,v,x), (4.4)

where QMi is the corresponding quantifier to Qi in the structure M and
FM,v,x is the propositional function corresponding to the formula ϕ, the M-
evaluation v and the variable x. Note that not all generalized quantifiers
have a positive solution of completeness problem for them as Mostowski also
demonstrated in [70]. Nevertheless, the completeness problem for various
types of generalized quantifiers is still not closed3.

Mostowski’s approach to generalized quantifiers significantly influenced
further development of a theory of generalized quantifiers. The notion of
generalized quantifier was first considerably generalized by Per Lindström
in [61]. It is easy to see that Mostowskian generalized quantifiers can be also
formulated as unary second-ordered predicates. In fact, let P(M) denote
the set of all subsets of M . Then a generalized quantifier limited on M is a
mapping QM : P(M) → {⊥,>} such that QM(X) = QM(Y ) holds for any

3And also for various types of fuzzy quantifiers.
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equipollent sets X and Y from P(M), or equivalently a subset QM ⊆ P(M)
such that if X ∈ QM and Y ∈ P(M) is equipollent with X, then Y ∈ QM

(the invariance property). Hence, an immediate generalization may be given
in such a way that unary predicates are replaced by n-ary predicates, in
general. Thus, Lindström defined a generalized quantifier limited to M of
the type 〈k1, . . . , kn〉 as a mapping4

QM : P(Mk1)× · · · × P(Mkn) → {⊥,>}, (4.5)

where Mki denotes the ki-ary Cartesian product over M (0-ary relations
are identified with the truth value ⊥ or >), such that QM(R1, . . . , Rn) =
QM(S1, . . . , Sn) holds for any isomorphic relation structure (M, R1, . . . , Rn)
and (M, S1, . . . , Sn). Obviously, Mostovkian quantifiers are of the type 〈1〉.

The study of generalized quantifiers in connection with natural language
has been set in motion by Richard Montague [68]. Montague grammars
made significant contributions to the formal semantics of quantifiers in nat-
ural language. His approach, however, is not explicitly connected with the
definitions of generalized quantifiers. The first systematic study of natural
language quantifiers in Mostowski and Lindström’s conceptions is due to Jon
Barwise and Robin Cooper [1]. Other early publications belong to James
Higginbotham and Robert May [45] and Edward L. Keenan and Jonathan
Stavi [53]. Natural language quantifiers are often modeled as quantifiers of
the type 〈1, 1〉 limited to M as e.g.

allM(X, Y ) = > iff X ⊆ Y,

someM(X, Y ) = > iff X ∩ Y 6= ∅,
noM(X, Y ) = > iff X ∩ Y = ∅,

mostM(X, Y ) = > iff 2 · |X ∩ Y | > |X|,
at least tenM(X, Y ) = > iff |X ∩ Y | ≥ 10,

all except fiveM(X, Y ) = > iff |X \ Y | ≤ 5,

where X, Y ⊆ M . For instance, if we have a proposition: Most students
attended the party, then X expresses the set of all students from a universe M
and Y expresses the set of students attended the party (cf. (4.7)). A survey
of work on generalized quantifiers in natural language with a substantial list
of references may be found in e.g. [54, 58].

The modeling of natural language quantifiers as fuzzy quantifiers was
first pointed out by Lotfi A. Zadeh in [125]. In this paper he developed a
method for dealing with fuzzy quantifiers which later led to a theory of “com-
monsense knowledge” and computational theory of “dispositions” [126–128].

4This is an alternative definition of the original one, see [21].
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According to Zadeh, quantifications like e.g. “many happy people”, “nearly
all members”, “some animals”, “few single women”, “nearly none mistake”,
“about half of participants”, “about fifteen students” etc., are fuzzily de-
fined in nature. Noticing the relation between quantifiers and cardinalities,
he proposed to treat fuzzy quantifiers, which are closely related to fuzzy
cardinalities, as fuzzy numbers5. Zadeh distinguish two kinds of fuzzy quan-
tifiers. Fuzzy quantifiers of the first kind (or also absolute quantifiers) are
defined on [0,∞) and characterize linguistic terms such as about 10, much
more than 100, at least about 5 etc. Fuzzy quantifiers of the second kind (or
also relative quantifiers) are defined on [0, 1] and characterize linguistic terms
such as for nearly all, almost all, about half, most etc. Note that some lin-
guistic terms such as e.g many and few can be characterized in either sense,
depending on the context.

Fuzzy quantifiers of the first kind relate to propositions of the canonical
form

p1 : There are QA′s, (4.6)

where Q is a fuzzy number on [0,∞) and A is a fuzzy set, say A : M →
[0, 1], that describes how elements from a universe M possess a considered
property6. For instance, if we have a proposition: There are about 10 students
in a given class whose fluency in English is high, then Q is a fuzzy number
expressing the linguistic term about ten and A is a fuzzy set from the set of
all students in a given class (individuals) to [0, 1] expressing how individuals
possess the property high-fluency in English. Fuzzy quantifiers of the second
kind relate to propositions of the canonical form

p2 : QA′s are B’s, (4.7)

where Q is a fuzzy number on [0, 1] and analogously, A and B are fuzzy sets,
say A,B : M → [0, 1], express how individuals possess considered properties.
For instance, if we have a proposition: Almost all young students in a given
class are students whose fluency in English is high, then Q is a fuzzy number
on [0, 1] expressing the linguistic term almost all, A and B are fuzzy sets
from the set of all students in a given class (individuals) to [0, 1], whereas A
expresses how individuals possess the property young and B expresses how
individuals possess the property high-fluency in English. There are several

5A fuzzy number over R is a fuzzy set A : R → [0, 1], which is normal (i.e. the height
of A is 1), Aa must be closed interval for any a ∈ (0, 1] and the support of A must be
bounded (see e.g. [57, 71,72]).

6In other words, A is a fuzzy set that represents a fuzzy predicate as tall, expensive,
young, clever etc.
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approaches how to find the degrees τ(p1), τ(p2) to which propositions p1, p2

are true. The first one was proposed by Zadeh in [125] and it is based on the
identification of those propositions with the following propositions

p1 : ΣCount(A) is Q, (4.8)

p2 : ΣCount(B/A) is Q, (4.9)

where ΣCount(A) and ΣCount(B/A) are the scalar cardinality and relative
measure of scalar cardinality7, respectively. The truth values of the proposi-
tions p1, p2 are then defined as

τ(p1) = Q(ΣCount(A)), (4.10)

τ(p2) = Q(ΣCount(B/A)), (4.11)

respectively. The second approach is based on the fuzzy cardinality FGCount
and it was again introduced by Zadeh in [125]. In this case the truth values of
p1 and p2 are found in the same way as was described above, where the fuzzy
cardinality FGCount is transformed to the scalar cardinality ΣCount using
the formula ΣCount(A) =

∑∞
i=1 FGCount(A)(i). However, a more funda-

mental approach based on FGCount , which is restricted to non-decreasing
fuzzy quantifiers, was proposed by Ronald R. Yager in [111, 116]. For in-
stance, the truth value of p1 is found by the formula

τ(p1) =
∨

i=0,...,|M |
(Q(i) ∧ FGCount(A)(i)). (4.12)

The third approach, which tries to overcome the restriction to non-decreasing
quantifiers, was established by Anca L. Ralescu in [80] and it is based on the
fuzzy cardinality FECount . This approach concentrates to the propositions
with fuzzy quantifiers of the first type and the truth value of a proposition p1

is found by the same formula as (4.12), where the fuzzy cardinality FGCount
is replaced by the fuzzy cardinality FECount . The final approach, which is
together with the previous approaches very popular in practice, was proposed
by Yager in [115,116] and it is based on so-called ordered weighted averaging
(OWA) operators (see also [117, 118]). An interesting relationships between
the FGCount approach and the Sugeno integral and also the OWA approach
and the Choquet integral may be found in [6, 7].

Recall that Mostowkian generalized quantifiers limited to M can be de-
fined as mappings Q : P(M) → {⊥,>}. A fuzzy extension of this idea was
proposed by Helmut Thiele in [91], where he introduced the notion of general

7For definitions, see the introduction to Chapter 3 on p. 50.
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fuzzy quantifier (limited to M) as a mapping Q : F(M) → [0, 1]. Since this
definition is too wide, he established several restrictions to it and obtained
various types of general fuzzy quantifiers as e.g. the cardinal or extensional
quantifiers. The former fuzzy quantifier is closely related to the isomorphism
of fuzzy sets. In particular, fuzzy sets A,B on M are isomorphic (A ≡iso B) if
and only if there exists a bijection f on X such that F (x) = G(f(m)) for any
m ∈ M . Then Q is a cardinal quantifier, if A ≡iso B implies Q(A) = Q(B).
It is well known that the modeling of classical quantifiers on the unit interval
[0, 1] is connected with the operations min and max, which are special exam-
ples of T -norms and S-conorms. Consequently, Radko Mesiar and Helmut
Thiele in [67] proposed the concepts of T -quantifiers and S-quantifiers as a
generalization of the classical quantifiers from the T -norms and S-conorms
perspective. An investigation of expressions as Usually ϕ, ϕ is probable, For
many x, ϕ etc., from the logical point of view, was studied by Petr Hájek
in [41] and the quantifier Many in [42]. Hájek treats the expressions as
formulas with generalized quantifiers and also as formulas with modalities.
The second approach seems to be not unnatural, because general modalities
may be considered as hidden quantifiers (see [41]). He also introduces sev-
eral logics with some generalized quantifiers and shows their completeness.
Generalized quantifiers as regular generalized operations on the residuated
lattice L, i.e. Q : P(L) → L satisfying reasonable properties derived from∨

and
∧

, was defined by Vilém Novák in [72]. In [73] Novák investigates
linguistic quantifiers in fuzzy logic. A general theory of fuzzy quantifiers in
natural language was proposed and intensively developed by Ingo Glöckner
in [25–34]. Glöckner’s approach is based on a generalization of the Linström’s
definition of generalized quantifiers. In particular, he introduces two types of
generalized quantifiers, namely semi-fuzzy quantifiers and fuzzy quantifiers
on a base M 6= ∅, which are defined as mappings Q : P(M)n → [0, 1] and
Q : F(M)n → [0, 1], respectively, where n denotes the arity of Q. Glöckner
also proposed an axiomatic system, which is called determined fuzzification
schemes (DSF) and ensured a correctness of extensions of semi-fuzzy quan-
tifiers to fuzzy quantifiers. Various plausible models of fuzzy quantifiers are
then a result of DSF. Moreover, a correctness of familiar approaches may
be verified from the DSF point of view. An overview of (not only) fuzzy
quantifiers with other references may be found in [31,33,41,63,64,73].

The aim of this chapter is to introduce a general model of fuzzy quanti-
fier that can be used for the modeling of the large scale of generalized logical
quantifiers as well as linguistic quantifiers, and to show how to introduce the
syntax and semantics of the first-ordered logic with fuzzy quantifiers. Our
approach to the modeling of fuzzy quantifiers is motivated by Thiele’s ap-
proach that is, of course, a generalization of Mostowski’s approach. Similarly
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to Thiele’s fuzzy quantifiers, we will only deal with fuzzy quantifiers of the
type 〈1〉. Contrary to Thiele’s definition, our model of a fuzzy quantifier8

Q over M is a mapping ]Q : M → L, where M is a non-empty fuzzy al-
gebra over M and L is a support of complete residuated lattices L. The
main difference between our and Thiele’s approach is that the relation ≡iso

on FL(X) (actually classical equivalence on FL(X)), representing an “ob-
jectivity” of fuzzy quantifier (originally proposed by Mostowski), is replaced
by the similarity relation ≡θ on FL(X) defined in Section 2.2. In general,
the similarity relation ≡θ is more sensitive than the equivalence ≡iso and
therefore, it seems to be more convenient for an expression of the presump-
tion of an “objectivity” of fuzzy quantifiers. For instance, the fuzzy sets
A = {1/x} and B = {0.99/x} are not equivalent according to Thiele’s def-
inition (i.e. (A ≡iso B) = 0) and thus Q(A) may be substantially different
from Q(B). However, this is a contradiction with our perception of fuzzy
quantifiers, the fuzzy sets A and B are intuitively very close9. After the
preliminary and motivation sections, in the third section we will introduce
a general Lθ

k-model of fuzzy quantifiers, based on the similarity relation ≡θ,
and show several examples. Since the similarity relation ≡θ is closely related
to some special cases of θ-cardinalities, Lθ

k-models of fuzzy quantifiers may
be also constructed using θ-cardinalities (in the second part of the third sec-
tion). The fourth section is devoted to constructions of new fuzzy quantifiers
and their corresponding models using the logical connectives. It is an anal-
ogy to Mostowki’s constructions mentioned above. It seems to be reasonable
to distinguish fuzzy quantifiers into several types as it is done in the fifth
section. In the next section we will introduce structures of fuzzy quanti-
fiers. The fuzzy quantifiers from these structures are then implemented to
first-ordered fuzzy logic. The syntax and semantics of fuzzy logic with fuzzy
quantifiers (from the mentioned structure) are built in the seventh section.
The truth values of formulas with fuzzy quantifiers are determined according
to the types of fuzzy quantifiers. From the practical point of view, however,
the computing of the truth values according to the definition may be rather
complicated. A solution of this computing problem for special types of fuzzy
quantifiers is presented in the last section. In this chapter we will not present
some examples of fuzzy quantifiers applications. Several applications in the
decision making (in Economics) may be found in [46–49]. Moreover, in [47,48]
there is proved a relation between the Sugeno integral and the truth values
of formulas with the special fuzzy quantifiers.

8We use the term “model of a fuzzy quantifier”, because it interprets a meaning of fuzzy
quantifier of a language for the first-ordered logic in a given structure for this language.

9A different situation is, when we model fuzzy quantifiers over crisp sets. In this case,
our and Thiele’s concept of fuzzy quantifiers are identical.
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4.1 Fuzzy logic: syntax and semantics

In this section the syntax and semantics of a first-ordered fuzzy logic (many-
valued predicate logic) will be introduced. Since the aim of this chapter is
to investigate fuzzy quantifiers and mainly their models, we will not mention
the notions as syntactical consequence (provability), theory etc. and the
interested readers are referred to the special literature as e.g. [41, 74].

A language J of the first-ordered fuzzy logic consists of a non-empty set of
predicate symbols P,R, . . . , each with a positive natural number as its arity,
a (possible empty) set of functional symbols F,G, . . . , again each with its
arity, and a (possibly empty) set of object constants a, b, . . . . Logical symbols
are object variables x, y, . . . , logical connectives &, ∧, ∨ and ⇒ (strong
conjunction, conjunction, disjunction and implication), truth constants ⊥
and > (false and true and possibly other truth constants) and quantifiers ∀
and ∃ (universal and existential). Finally, the auxiliary symbols as (, ) and ′

are considered. Note that we use two types of conjunctions & and ∧, where
the former is interpreted by ⊗ and the later by ∧ (see [41, 74]).

Atomic terms are object variables and constants. If F is an n-ary func-
tional symbol and t1, . . . , tn terms, then the expression F (t1, . . . , tn) is a term.
Atomic formulas have the form P (t1, . . . , tn), where P is an n-ary predicate
symbol and t1, . . . , tn are terms. If ϕ, ψ are formulas and x is an object
variable, then ϕ&ψ, ϕ∧ψ, ϕ∨ψ, ϕ ⇒ ψ, (∀x)ϕ, (∃x)ϕ, ⊥, > are formulas.
It means that each formula results from atomic formulas by iterated use of
this rule. From the mentioned logical connectives we can define other one’s.
In particular, we establish ϕ ⇔ ψ = (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ) (equivalence) and
¬ϕ = ϕ ⇒ ⊥ (negation).

Let (∀x)ϕ and (∃x)ϕ be formulas. The scope of the quantifiers (∀x) and
(∃x) is the formula ϕ. If the variable x is in the scope of (∀x) or (∃x), then
it is bound ϕ. If x is not in the scope of (∀x) or (∃x), then it is free in
ϕ. For example, we have (∀x)(∃y)(x ≤ y) ⇒ (∃y)(x ≤ y). Here, if we put
ϕ = ψ = (x ≤ y), then the scope of (∀x) is ϕ and the scope of (∃y) is ϕ and
simultaneously ψ. Hence, y is bound and not free, but x is both free (in ψ)
and bound (in ϕ).

Let ϕ be a formula with a variable x and t be a term. By ϕ(x/t) we denote
a formula in which all the free occurrences of the variable x are replaced by
the term t. The term t is substitutable for the variable x of the formula ϕ, if
there is no variable y of the term t such that x is in the scope of (∀y) or (∃y)
in ϕ. For example, we have ϕ = (∀x)(x ≤ y) and t = x + x is a term. Then
t is not substitutable for y. In fact, x is the variable of t and simultaneously
y is in the scope of (∀x) in ϕ. On the other hand, if we put t = z + a, then
t is substitutable for x and y, and thus we can write ϕ(x/t) = (∀x)(x ≤ y)
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(no change, because x is not free in ϕ) and ϕ(y/t) = (∀x)(x ≤ z + a) (y is
free in ϕ).

Let J be a language and let L be a complete residuated lattice. An L-
structure M = 〈M, (rP )P , (fF )F , (ma)a〉 for J has a non-empty domain M ,
an n-ary fuzzy relation rP : Mn → L is given for each predicate symbol P ,
where L is the support of L, an n-ary function fF : Mn → M is given (it
is not fuzzy) for each functional symbol F and ma is an element from M
for each object constant a. Let M and M′ be two L-structures for J . We
say that M′ is an L-substructure of M, if M ′ ⊆ M , r′P is the restriction of
rP on M ′n for each n-ary predicate symbol P of J , and f ′F : M ′n → M ′ is
the restriction of fF on M ′n for each n-ary functional symbol F of J and
(ma)a = (ma′)a′ , i.e. if ma is given for a in M and ma′ is given for a′ in M′,
then ma = ma′ .

Let J be a language and M be an L-structure for J . An M-evaluation of
object variables is a mapping v assigning to each object variable x an element
v(x) ∈ M , i.e. v : OV → M , where OV is the set of all object variables. The
set of all M-evaluations is denoted by VM. Let v, v′ be two M-evaluations,
then v ≡x v′ means that v(y) = v′(y) for each variable y distinct from x. If
v is an L-evaluation, then the set of all M-evaluations v′, which are v ≡x v′,
is denoted by VM(x, v). Let M′ be a L-substructure of M. Then clearly any
M′-evaluation v is also an M-evaluation.

The value of an atomic term under an M-evaluation v is defined by
||x||M,v = v(x), ||a||M,v = ma. If t = F (t1, . . . , tn) is a term, then the value
of t under an M-evaluation is defined by ||t||M,v = fF (||t1||M,v, . . . , ||tn||M,v).
Let L = 〈L,∧,∨,⊗,→,⊥,>〉 be a complete residuated lattice. A truth value
||ϕ||LM,v of ϕ under an M-evaluation v is defined as follows:

||P (t1, . . . , tn)||LM,v = rP (||t1||M,v, . . . , ||tn||M,v),

||⊥||LM,v = ⊥, ||>||LM,v = >,

||ϕ&ψ||LM,v = ||ϕ||LM,v ⊗ ||ϕ||LM,v,

||ϕ ∧ ψ||LM,v = ||ϕ||LM,v ∧ ||ϕ||LM,v,

||ϕ ∨ ψ||LM,v = ||ϕ||LM,v ∨ ||ϕ||LM,v,

||ϕ ⇒ ψ||LM,v = ||ϕ||LM,v → ||ϕ||LM,v,

||(∀x)ϕ||LM,v =
∧
{||ϕ||LM,v′ | v′ ∈ VM(x, v)},

||(∃x)ϕ||LM,v =
∨
{||ϕ||LM,v′ | v′ ∈ VM(x, v)}.

Let M′ be a L-substructure of M and v be an M′-evaluation. Then we have
||ϕ||LM′,v = ||ϕ||LM,v. Let L be a complete residuated lattice, ϕ be a formula
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of a language J and M be an L-structure for J . The truth value of ϕ in M
is

||ϕ||LM =
∧
{||ϕ||LM,v | v ∈ VM}. (4.13)

A formula ϕ of a language J is an L-tautology, if ||ϕ||LM = > for each
L-structure M.

4.2 Motivation

As was mentioned, the first-ordered fuzzy logic deals with the classical quan-
tifiers for all and there is, which are interpreted in some L-structure by the
corresponding lattice operations ∧ and ∨, respectively. Before we introduce a
generalization of the classical quantifiers which leads to the fuzzy quantifiers,
we will motivate our approach. Let us start with an example illustrating the
practical application of fuzzy logic and mainly the universal quantifier in a
decision-making.

Example 4.2.1. Let us consider objects O1, . . . , Om and criteria C1, . . . , Cn

and suppose that our goal is to find “the best” object, it means, the object
satisfying all criteria in high level of their satisfactions. In order to model
this decision problem using the first-ordered fuzzy logic notions, we have to
extent the set of criteria by m “abstract” criteria, which are totally satisfied
for all objects (i.e. in the degree >) and thus they have no effect on our
decision-making. Now our language J has one binary predicate symbol P , no
functional symbols and n object constants o1, . . . , on (symbolized the objects
O1, . . . , On). Let L be a complete linearly ordered residuated lattice, our
L-structure M = 〈M, rP , (mok

)ok
〉 for J has M = {1, . . . , m + n}, the fuzzy

relation rP : M ×M → L which is given by the following matrix

rP 1 · · · m m + 1 · · · m + n
1 > · · · > a1,m+1 · · · a1,m+n
...

...
...

...
...

m > · · · > am,m+1 · · · am,m+n

m + 1 > · · · > > · · · >
...

...
...

...
...

m + n > · · · > > · · · >,

where we establish

rP (k, l) = ak,l iff “Ok satisfies Cl−m in the degree ak,l”
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for each k = 1, . . . , m and l = m+1, . . . , m+n, and mok
= k for k = 1 . . . , m.

The value representing the (global) satisfaction of all criteria by an object
Ok can be defined as the truth value of a suitable formula with the general
quantifier in our L-structure M as follows. If v is an M-evaluation, then the
truth value ||(∀x)P (ok, x)||LM,v is given by

||(∀x)P (ok, x)||LM,v =
∧

v′∈VM(x,v)

rP (k, v′(x)) =
m+n∧

l=m+1

rP (k, l). (4.14)

Because P (ok, x) contains just one variable x, the truth value of (∀x)P (ok, x)
is independent of v. Hence, we have ||(∀x)P (ok, x)||LM,v = ||(∀x)P (ok, x)||LM
and thus the global satisfaction of all criteria by an object Ok in the L-
structure M is really given by the formula (4.14). Thus the best object is
that with the greatest truth value of the formula (∀x)P (ok, x) in M. Note
that there exist more sophisticated methods for solving our decision problem
in practice.

It is easy to see that our solution of the mentioned decision problem
has a drawback. In particular, just one wrong satisfaction of some criterion
influences a wrong global satisfaction of all criteria. Obviously, the obtained
decision-making could be understood as correct, i.e. in accordance with our
comprehension of the good decision-making, if the same or similar (a little
better) result is obtained, when one or two wrong truth values of the formula
ϕ = S(o, x) are removed. In the opposite case, the obtained decision-making
seems to be failed (not correct). Let us suppose that the elimination of
just one value from the domain M of an L-structure M (we assume an L-
substructure M′ of M having one value less than M)10 results in a much
better truth value of the formula (∀x)ϕ in M′ than M. In this case we
should decide for the purpose of the decision-making correctness, whether we
want to keep the original result or to accept new much better result, when
the only one value is removed! Obviously, our toleration of the considered
formula truth value is influenced by the selected L-substructures M′ of M
as well as by a nature of the considered quantifier. For example, in the case
of the quantifier for all there is clearly tolerated just the original L-structure
M and for the quantifier there is then clearly all L-substructures of M are
respected (suppose that they exist). Analogously, for a fuzzy quantifier for
nearly all, which could be applied instead of the classical one for all in our
example, there is tolerated the L-structure M and also the L-substructures

10Obviously, each value of M can not be removed from M to obtain an L-substructure
of the L-structure M, in general. For instance, the value 1 can not be and m + n can be
removed in the example 4.2.1.
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being closed to M (e.g. they have the similar cardinal numbers of their
domains) or for a fuzzy quantifier for nearly none a toleration could be modeled
in such a way that either the small L-substructures are just preferred (i.e.
the considered formula with the quantifier for nearly none is true only in an
L-substructure with a small number of values) or this formula is not true for
any M-evaluation.

The previous reasoning immediately leads to investigation of toleration
of the L-substructures of the original L-structure M with regard to the con-
sidered quantifier. If we make an effort to model a tolerance under all L-
substructures of M, some difficulties could arise. First, for some languages
J and their L-structures the sets of all L-substructures are often very poor
(even it can have just one element M) and thus modeling of the tolerance
is practically impossible. Further, it seems to be reasonable also to suppose
(for some types of quantifiers as e.g. for not all) the L-substructure with the
empty domain, which is not respected. Finally, for introducing an “internal”
negation of quantifiers11, we need a complementary L-substructure M′′ to
each L-substructure M′ of M (it means the L-substructure M′′ of M with
the domain M ′′ = M \M ′). This is the reason why we just restrict ourselves
to a structure of subsets (or more general fuzzy subsets) of the domain of M
in spite of the fact that for some subsets of M there are no L-substructures of
M. To achieve our aim we choose a fuzzy algebra over the domain of M (see
p. 13) and over that fuzzy algebra a tolerance with regard to a considered
fuzzy quantifier will be defined. One could be surprised why “fuzzy”. In
practice, we often work in a fuzzy environment as e.g. not all criteria have
the same weight or not all data have the same reliability. Consequently, we
should take into account this fuzzy environment and thus the toleration of
subsets should also respect the “importance” of their elements in this fuzzy
environment12.

Thus, it is natural to establish the measure of tolerance with respect to
a fuzzy quantifier for an L-structure as a mapping from a fuzzy algebra to
the support of L. What properties should have this mapping? Of course,
it depends on the nature of fuzzy quantifier. However, one property plays a
major role for us. It is an “objectivity” of the tolerance, where the objectivity
is expressed by a preservation of a fuzzy sets similarity. It means, if two
fuzzy sets are similar in someway, then also our toleration should be similar
for these fuzzy sets. The similarity of two sets or fuzzy sets can be defined,
for example, using similarity of the (fuzzy) cardinals or by the equipollence

11For example, using this type of negation together with so-called “external” negation
we may defined the existential quantifier from the general one and vice-versa.

12Note that a fuzzy environment is interpreted in an L-structure for J as not fuzzy.
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of (fuzzy) sets (see e.g. [67,91]). For our modeling of tolerance we choose the
θ-equipollence of fuzzy sets (precisely L-set), because it seems to be more
universal than a similarity of fuzzy cardinals. Moreover, using similarity of
fuzzy cardinals we would be (more-less) restricted to dealing with the finite
fuzzy sets and thus with the finite L-structures.

4.3 Lθ
k-models of fuzzy quantifiers

In the first part of this section we are going to introduce a general model
of fuzzy quantifiers and to show several examples. The second part is then
devoted to the constructions of fuzzy quantifiers models by the equipollence
and cardinalities of fuzzy sets.

4.3.1 Definition and several examples

In order to define a general model of fuzzy quantifiers, we have to make
some preparations. The fuzzy quantifiers will be denoted by the symbols
Q,Q1, Q2, . . . In the specific cases the mentioned (general) symbols for fuzzy
quantifiers may be replaced by specific one’s as ∀,∃, ∀fin,∃≤k, Q≈m, Qfna etc.
or by adequate linguistic expressions as for all, there exists, for at most finitely
many, there exist at most k, about m, for nearly all etc., giving a more informa-
tion capability for the fuzzy quantifiers. Note that for the practical building
of a fuzzy logic with fuzzy quantifiers, of course, just the specific cases of
fuzzy quantifiers play the important role.

As we have mentioned, if M is an L-structure, then the meaning of a fuzzy
quantifier will be interpreted in M using a suitable mapping from a fuzzy
algebra over the domain of M to the support of L, where our toleration of
the elements of the given fuzzy algebra is expressed with regard to the nature
of the considered fuzzy quantifier. Obviously, each fuzzy quantifier model is
dependent on the considered L-structure M and the fuzzy algebra M over
the domain of M. However, to introduce the model of a fuzzy quantifier an
L-structure M is not needed to be assumed and it is sufficient to suppose just
a fuzzy algebra M over M , where we can imagine that M is the domain of
a potential L-structure. For simplicity, therefore, we omit the presumption
of an L-structure and suppose just a fuzzy algebra M over a set M in the
following parts.

Finally, let us recall that the equipollence ≡∧ is a similarity relation
which could be established in each fuzzy algebra, but ≡⊗ only in the fuzzy
algebras over the countable (finite or denumerable) universes. Moreover,
ak =

⊗k
i=1 ai, where ai = a for all i = 1, . . . , k, and a0 = > for any a ∈ L.
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Definition 4.3.1. (Lθ
k-model of fuzzy quantifier) Let L be a complete

residuated lattice, k be a natural number (possibly zero), M be a fuzzy algebra
on a non-empty universe M , where for θ = ⊗ the fuzzy algebra M is over the
countable set M , and Q be a fuzzy quantifier. Then a mapping ]Q : M→ L
is called the Lθ

k-model of the fuzzy quantifier Q over M, if

(A ≡θ B)k ≤ ]Q(A) ↔ ]Q(B) (4.15)

holds for arbitrary A,B ∈M.

Let us make several remarks on our definition of Lθ
k-model of fuzzy quan-

tifier. Obviously, if the θ-degree of equipollence of fuzzy sets A and B is
high, then the values of the mapping ]Q in A and B have to be also close,
which corresponds with the mentioned objectivity of the tolerance for the
fuzzy quantifier Q. The closeness may be weakened by the parameter k, but
this parameter is important, when we create new L⊗

k -models. Further, in the
definition of fuzzy quantifiers models we also admit the case k = 0. This
case clearly leads to the constant models of fuzzy quantifiers, that is, if ]Q
is an Lθ

0-model of fuzzy quantifier Q over M, then ]Q(A) = a holds for any
A ∈ M. A fuzzy quantifier Q having the Lθ

0-models, which are given by
]Q(A) = a and A ∈ M for an arbitrary fuzzy algebra M, will be denoted
by the specific symbol a and called the constant fuzzy quantifier. Note that
the constant fuzzy quantifiers are not especially interesting in practice, but
we suppose them here mainly from the theoretical point of view. An exam-
ple of the useful constant fuzzy quantifier is ⊥ that may be used (in some
cases) to introduce a negation of the fuzzy quantifiers. Obviously, the set
of all fuzzy quantifiers over the fuzzy algebra can be understood as the set
of all k-extensional fuzzy sets over M with regard to the similarity relation
≡θ. Recall that a fuzzy set A over X is called k-extensional with respect
to a similarity relation R over X, if A(x) ⊗ Rk(x, y) ≤ A(y) holds for every
x, y ∈ X. For the case k = 1, we say, that fuzzy set A is extensional with
respect to the similarity relation R.

If the fuzzy algebra M, over that an Lθ
k-model of fuzzy quantifier is

defined, is known, then we will write that ]Q is an Lθ
k-model of a fuzzy

quantifier Q (over M is omitted). Moreover, if we deal with the general
operation θ, then we will not mention that the supposed fuzzy algebra M
is defined over a non-empty countable universe M . Before we show several
examples of Lθ

k-models of fuzzy quantifiers, we state three useful lemmas.

Lemma 4.3.1. Let L be a complete residuated lattice, k ≤ l and M be a
fuzzy algebra over a non-empty universe M . If a mapping ]Q : M → L is
the Lθ

k-model of a fuzzy quantifier Q, then also ]Q is an Lθ
l -model of the fuzzy

quantifier Q.
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Proof. Let ]Q be an Lθ
k-model of a fuzzy quantifier Q. Obviously, if the

inequality (4.15) is satisfied for k, then we have (A ≡θ B)l ≤ (A ≡θ B)k ≤
]Q(A) ↔ ]Q(B). Therefore, ]Q is an Lθ

l -model of the fuzzy quantifier Q.

Lemma 4.3.2. Let L be a complete residuated lattice, k ≤ l and M be a
fuzzy algebra over a non-empty universe M . If a mapping ]Q : M → L is
the L∧-model of a fuzzy quantifier Q, then ]Q is also an L⊗k -model of the
fuzzy quantifier Q.

Proof. Due to Remark 2.2.4 on p. 34, we have A ≡∧ B ≥ A ≡⊗ B. The rest
follows from the inequality A ≡⊗ B ≥ (A ≡⊗ B)k.

Lemma 4.3.3. Let L be a complete residuated lattice, M ⊆ P(M) be a
subalgebra over a non-empty universe M and ]Q : M→ L be a mapping. If
]Q(A) = ]Q(B) holds for arbitrary equipollent sets A,B ∈M, then ]Q is an
Lθ

k-model of a fuzzy quantifier Q.

Proof. Let ]Q : M → L be a mapping such that ]Q(A) = ]Q(B) holds,
whenever there exists a bijection f : A → B. Let A,B ∈M be arbitrary sets.
Obviously, the inequality (4.15) is true, if there exists a bijection between sets
A and B. Let us suppose that there is no bijection between A and B. We
have to prove that the mentioned inequality is also satisfied. According to
the definition of bijection, for every bijection π : M → M there is a couple
(xπ, yπ) ∈ M ×M such that π(xπ) = yπ and A(xπ) 6= B(yπ). In the opposite
case, we can construct a bijection between A and B and this is a contradiction
with the presumption. Then we have

A ≡θ B =
∨

π∈Perm(M)

∧
x∈M

A(x) ↔ B(π(x)) ≤
∨

π∈Perm(M)

A(xπ) ↔ B(yπ) = ⊥,

since A,B are the crisp sets and ⊥ ↔ > = ⊥. Hence, the inequality (4.15)
is trivially true and ]Q is an Lθ

k-model of the fuzzy quantifier Q.

Lemma 4.3.4. Let L be a residuated lattice, M ⊆ P(M) be a subalgebra
over a non-empty finite universe M and ]Q : M→ L be a mapping. Then
]Q(A) = ]Q(B) holds for arbitrary equipollent sets A,B ∈M, if and only if
]Q is an Lθ

k-model of a fuzzy quantifier Q.

Proof. According to Lemma 4.3.3, it is sufficient to prove the necessary con-
dition of this lemma. Let ]Q be an Lθ

k-model of a fuzzy quantifier Q. If
f : A → B is a bijection between finite sets A and B, then obviously this
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bijection can be extended to a bijection f ∗ : M → M , where f ∗|A(a) = f(a)
holds for any a ∈ A. Moreover, clearly A(x) = B(f ∗(x)) holds for any x ∈ M .
Hence, we have

A ≡θ B =
∨

π∈Perm(M)

∧
x∈M

A(x) ↔ B(π(x)) ≥
∧

x∈M

A(x) ↔ B(f ∗(x)) = >

and thus (A ≡θ B)k = >, which implies ]Q(A) ↔ ]Q(B) ≥ > or equivalently
]Q(A) = ]Q(B).

In the following three examples of Lθ
k-models of fuzzy quantifiers, we

will suppose that L is a complete residuated lattice and M = P(M) is the
common Boolean algebra of all subsets of M 6= ∅.
Example 4.3.1. The mappings from M to L, given by

∀A ∈M : ]∃(A) =

{ ⊥, if A = ∅,
>, otherwise,

(4.16)

∀A ∈M : ]∀(A) =

{ >, if A = M,
⊥, otherwise,

(4.17)

define the Lθ
k-models of the classical quantifiers there exists and for all. Later

we will show that using these models the classical quantifiers may be in-
terpreted in an L-structure. To verify that these mappings are really Lθ

k-
models of fuzzy quantifiers, it is sufficient to prove (due to Lemma 4.3.3)
that ]Q(A) = ]Q(B) holds for arbitrary A,B ∈ M such that |A| = |B|, i.e.
they have the same cardinality. But this is, however, an immediate conse-
quence of the definitions of mappings ]∃ and ]∀. We can ask, whether we
are able to display graphically the mentioned models of quantifiers. In order
to achieve it, we restrict ourselves to complete residuated lattices on [0, 1]
and finite universes. Let us define a mapping g : M → [0, 1], where M is

the power set of a finite set M , by g(A) = |A|
|M | for all A ∈ M (the relative

cardinality of the subsets of M) and mappings te, fa : [0, 1] → [0, 1] as follows

∀x ∈ [0, 1] : te(x) =

{
0, x = 0,
1, otherwise,

(4.18)

∀x ∈ [0, 1] : fa(x) =

{
1, x = 1,
0, otherwise.

(4.19)

These mappings are displayed on Fig. 4.2. Now it is easy to see that ]∃ = te◦g
and ]∀ = fa◦g define the Lθ

k-models of the quantifiers ∃ and ∀. Obviously, we
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Figure 4.2: Mappings describing the Lθ
k-models of ∃ and ∀

can use the mappings te, fa to define the Lθ
k-models of ∃ and ∀ even in more

general way (of course, the finite universes have to be supposed), because
the relative cardinality g can be established for the different finite algebras
of subsets. Hence, it seems to be reasonable to consider the mappings te,
fa as (more universal) Lθ

k-models of the quantifiers ∃ and ∀. Note that this
technique, where first a suitable mapping g : M → [0, 1] (e.g. the relative
cardinality of subsets or fuzzy subsets) is established and then a model of
fuzzy quantifier Q in the form of a mapping hQ : [0, 1] → [0, 1] is used, is very
convenient for the practical computation of the Lθ

k-models of fuzzy quantifiers
Q values. Analogously, the truth value of a formula p : QA′s are B′s,
where Q is a fuzzy quantifier of the second type, is found in Zadeh approach
(cf. (4.11)).

Example 4.3.2. The negation of the classical quantifiers there exists and for
all are quantifiers that could be called there exists none and not for all. Their
Lθ

k-models are then defined as follows

∀A ∈M(X) : ]∃not(A) =

{ >, if A = ∅,
⊥, otherwise,

(4.20)

∀A ∈M(X) : ]∀not(A) =

{ ⊥, if A = M,
>, otherwise.

(4.21)

Obviously, the Lθ
k-models of the quantifiers there exists none and not for all

can be obtained by some negation of the classical one’s. In particular, we
can write ]∃not(A) = ]∃(A) → ⊥ and ]∀not(A) = ]∀(A) → ⊥ for any A ∈M.
Again, we can use the mappings nte and nfa, which are displayed on Fig. 4.3,
to define these negations of the classical quantifiers in the composition with
the mapping g established in the previous example.
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Figure 4.3: Mappings describing the Lθ
k-models of ∃not and ∀not

Example 4.3.3. Let us denote Fin(M) = {A ⊆ M | A is a finite set}. Then
the mappings

∀A ∈M : ]∀infin(A) =

{ ⊥, if A ∈ Fin(M),
>, otherwise,

(4.22)

∀A ∈M : ]∀fin(A) =

{ >, if A ∈ Fin(M),
⊥, otherwise

(4.23)

define Lθ
k-models of “fuzzy” quantifiers called for all except a finite number

and for at most finitely many. Again, it is easy to see that if there exists a
bijection between two sets from M, then the values of these sets are identical
in the mappings ∀infin and ∀fin . Note that there is no bijection between a
finite set and an infinite set. Obviously, the quantifier for at most finitely
many is a negation of the quantifier for all except a finite number. Particulary,
we can write for these models ∀fin(A) = ∀infin(A) → ⊥ for any A ∈ M.
Obviously, these quantifiers can not be reasonably displayed on a figure.

As could be seen, all the mentioned examples have been introduced by
two classes of subsets of X and two truth values ⊥ and >. From this point
of view these quantifiers are rather generalizations of the classical quantifiers
than the literally fuzzy quantifiers. The following examples demonstrate
fuzzy quantifiers, where Lθ

k-models of fuzzy quantifiers are constructed using
the θ- and θ-cardinalities of finite fuzzy sets.

Example 4.3.4. Let us suppose that M = {x1, . . . , xn}, LÃL and Ld
ÃL are the

ÃLukasiewicz and dual ÃLukasiewicz algebra, M = [0, 1]M is the common fuzzy
algebra of all fuzzy subsets of M and CSÃL

is the SÃL-cardinality of finite fuzzy
sets defined in Ex 3.3.2. Let us denote A

n
the fuzzy set over M , given by
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A
n
(xi) = A(xi)

n
, where A ∈ FLÃL

(M). Now the following mappings

∀A ∈M : ]Qfna(A) = CSÃL
(A

n
)(0) =

1

n

∑
xi∈M

A(xi), (4.24)

∀A ∈M : ]Qfnn(A) = CSÃL
(A

n
)(0) =

1

n

∑
xi∈M

(1− A(xi)), (4.25)

where A(x) = 1−A(x), define LÃL
θ
k-models of the fuzzy quantifiers, that will

be called for nearly all and for nearly none, respectively. Let P be a property
for the object from X. Then the fuzzy quantifier for nearly all specifies a great
amount (including M) of the objects from M possessing the property P and
the fuzzy quantifier for nearly none specifies a small amount (including ∅) of
objects from M possessing the property P . Let us show that the definitions
of LÃL

θ
1-models of the fuzzy quantifiers for nearly all and for nearly none are

correct. Due to Lemma 2.2.9 on p. 38, we have for θ = ∧

]Qfna(A) ↔ ]Qfna(B) =

1−
∣∣CSÃL

(A
n
)− CSÃL

(B
n
)
∣∣ = 1−

∣∣∣∣∣
n∑

i=1

A(xi)

n
−

n∑
j=1

B(xj)

n

∣∣∣∣∣ =

1− 1

n

∣∣∣∣∣
n∑

i=1

p∧A(i)−
n∑

i=1

p∧B(i)

∣∣∣∣∣ = 1− 1

n

∣∣∣∣∣
n∑

i=1

(p∧A(i)− p∧B(i))

∣∣∣∣∣ ≥

1− 1

n

n∑
i=1

|p∧A(i)− p∧B(i)| ≥ 1−
∞∨
i=0

|p∧A(i)− p∧B(i)| =
∞∧
i=0

1− |p∧A(i)− p∧B(i)| =
∞∧
i=0

p∧A(i) ↔ p∧B(i) = A ≡∧ B,

where p∧A and p∧B are mappings defined on p. 35. Hence, the mapping ]Qfna

is an LÃL
∧
1 -model of the fuzzy quantifier for nearly all. Due to Lemmas 4.3.1

and 4.3.2, we obtain that ]Qfna is also an LÃL
θ
k-model of fuzzy quantifier for

nearly all. Analogously, it could be shown that ]Qfnn is an LÃL
θ
k-model of the

fuzzy quantifier for nearly none. Later we will show that it is a consequence
of internal negation of fuzzy quantifiers (see Theorem 4.4.3 on p. 129). It
can be seen that the mappings, displayed in Fig. 4.4, in the composition

with the mapping g, given by g(A) =
∑n

i=1 A(xi)

n
, define the LÃL

θ
k-models of

these fuzzy quantifiers. As we have said, this approach is very convenient for
the practical computation and moreover, it gives a possibility to graphically
display the fuzzy quantifiers models. Another advantage of this approach is
that new models of fuzzy quantifiers may be obtained using some suitable,
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Figure 4.4: Mappings describing the Lθ
k-models of Qfna and Qfnn

often simple modification of the (displayed) mappings. For example, let us
suppose that ]Q(A) = h ◦ g(A), where g : M→ [0, 1] and h : [0, 1] → [0, 1].
Putting hn(x) = h(x)⊗ · · · ⊗ h(x) = (h(x))n, we again obtain an Lθ

k-model,
given by hn◦g, of a fuzzy quantifier. On Fig. 4.5 there are displayed modified
models of fuzzy quantifier Qfna for k = 3, 4.
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Figure 4.5: Mappings describing the modified Lθ
k-models of Qfna

Example 4.3.5. Again, let us suppose that M = {x1, . . . , xn}, LÃL and Ld
ÃL are

the ÃLukasiewicz and dual ÃLukasiewicz algebra, M = [0, 1]M is the common
fuzzy algebra of all fuzzy subsets of M . Then the mappings

∀A ∈M : ]Qm.(A) = p⊗A(m) =
∨

Y⊆M
|Y |=m

⊗
y∈Y

A(y), (4.26)

∀A ∈M : ]Q.m(A) = 1− p⊕A(n−m) = 1−
∧

Y⊆M
|Y |=m

⊕
y∈Y

A(y), (4.27)

where 1 ≤ m ≤ n, ⊗ = TÃL and ⊕ = SÃL, define Lθ
k-models of fuzzy quantifiers

that could be called for about or more than m and for about or less m, respec-
tively. Let A ∈ M be a crisp set and suppose that |A| ≥ m. Then there
is Y ⊆ A such that |Y | = m and thus ]Qm.(A) = 1. Further, we obtain
]Qm.(A) = 0 for |A| < m, because for each |Y | = m there is y ∈ Y such
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that A(y) = 0. Hence, it seems that the model of fuzzy quantifier for about
or more than m is reasonably introduced . Analogously, we could show that
]Q.m(A) = 1 for |A| ≤ m and ]Q.m(A) = 0 for |A| > m. Later we will show
that these definitions are correct (see Ex. 4.3.8 on p. 121).

4.3.2 Constructions of fuzzy quantifiers models

In the previous examples the Lθ
k-models of fuzzy quantifiers were constructed

using the cardinality or equivalently (in some cases) equipollence of fuzzy
sets. Here we will show how to establish Lθ

k-models of fuzzy quantifiers
using equipollence and cardinality of fuzzy sets, in general. Of course, these
approaches are not the only one’s how to establish the Lθ

k-models of fuzzy
quantifiers.

Using equipollence of fuzzy sets

As we have already mentioned, the set of all fuzzy quantifiers is equal to the
set of all k-extensional fuzzy sets with respect to the similarity relation ≡θ.
One technique, how to introduce extensional fuzzy sets for a given similarity
relation R, is to establish Ax(y) = R(x, y) for all x ∈ X. The fuzzy set Ax

over X is then the extensional fuzzy set with respect to the similarity relation
R. In fact, from R(x, y) ⊗ R(y, z) ≤ R(x, z) we obtain R(y, z) ≤ Ax(y) →
Ax(z) and, analogously, from R(x, z)⊗R(z, y) ≤ R(x, y) we obtain R(y, z) ≤
Ax(z) → Ax(y) (by adjointness) and thus R(y, z) ≤ Ax(y) ↔ Ax(z). Hence,
we can immediately define a class of Lθ

1-models fuzzy quantifiers as follows.

Theorem 4.3.5. Let L be a complete residuated lattice, M be a fuzzy algebra
over a non-empty universe M and K ∈ M. Then ]QK(A) = (A ≡θ K)k

defines an Lθ
k-model of a fuzzy quantifier generated by the equipollence of

fuzzy sets and the fuzzy set K.

Proof. First, let us suppose that k = 1. Due to Theorems 2.2.4, 2.2.5 and
the adjointness property, we have A ≡θ B ≤ QK(A) → QK(B) and similarly
A ≡θ B ≤ QK(B) → QK(A). Hence, we obtain A ≡θ B ≤ QK(A) ↔ QK(B)
for arbitrary A,B ∈M and thus ]QK is an Lθ

1-model of a fuzzy quantifier QK .
Further, let k > 0 be an arbitrary natural number and ]QK(A) = (A ≡θ K)k

be defined for any A ∈ M. According to the previous part of the proof, we
have A ≡θ B ≤ (A ≡θ K) ↔ (B ≡θ K). Hence, we can write (A ≡θ B)k ≤
((A ≡θ B) ↔ (B ≡θ K))k ≤ (A ≡θ B)k ↔ (B ≡θ K)k = QK(A) ↔ QK(B)
and the proof is complete.

Remark 4.3.6. If we deal with a complete linearly ordered residuated lattice
and a finite non-empty universe is assumed, then using Lemma 2.2.9 we may
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construct Lθ
k-models of fuzzy quantifiers. In particular, if K ∈ FIN L(X) is

a fuzzy set, then ]QK(A) = pθ
A ≈ pθ

K .

Example 4.3.7. Let us suppose that M = {x1, . . . , xn}, L is the ÃLukasiewicz
algebra, M = [0, 1]X is the common fuzzy algebra of fuzzy subsets over the
unit interval and K ∈M. Then

]QK(A) =
n∧

i=1

1− |pA(i)− pK(i)| (4.28)

is the L∧-model of a fuzzy quantifier QK , where pA = (A(xi1), . . . , A(xin))
is an ordered vector of membership degrees of the fuzzy set A such that
A(xij) ≥ A(xik), whenever j < k, and analogically for the vector pK .

In every fuzzy algebra we can use the operation ∪ to established the
corresponding partial ordering ≤. Particularly, we put A ⊆ B if and only
if A ∪ B = B. Obviously, this definition is equivalent to A ⊆ B if and
only if A(x) ≤ B(x) holds for any x ∈ M . An algebra with the mentioned
partial ordering will be denoted by (M,⊆). Because of ]Q : M → L is a
mapping from a fuzzy algebra M to the support of a residuated lattice, we
can ask a question, if there exist Lθ

k-models of fuzzy quantifiers that preserve
or reverse partial ordering between structures (M,⊆) and (L,≤), where ≤
is the corresponding lattice ordering. Moreover, it seems to be natural that
such models do exist. If we want, for example, to model the fuzzy quantifier
for nearly all, then the fuzzy sets near to a given universe would have greater
values in a model of this fuzzy quantifier than are the values of fuzzy sets
being dissimilar to the universe. The following theorem shows two natural
examples of such models.

Theorem 4.3.6. Let ]QK : M → L be an Lθ
k-model of a fuzzy quantifier

generated by the equipollence of fuzzy sets and a fuzzy sets K. Then

(i) if K = M , then ]QK preserves the partial ordering and

(ii) if K = ∅, then ]QK reverses the partial ordering.

Proof. First, let K = M and A ⊆ B be fuzzy sets from M. Since M(x) = >
for any x ∈ M and a ↔ > = a for any a ∈ L, then we have

]QM(A) = (M ≡θ A) =
∨

f∈Perm(M)

∧
x∈M

M(x) ↔ A(f(x))) =
∧

x∈M

A(x) ≤
∧

y∈M

B(y) =
∨

g∈Perm(M)

∧
y∈M

M(y) ↔ B(g(y)) = ]QM(B).
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Second, let K = ∅ and A ⊆ B be fuzzy sets of M. Since ∅(x) = ⊥ and
A(x) → ⊥ ≥ B(x) → ⊥ hold for any x ∈ M , then we have

]Q∅(A) = (A ≡θ ∅) =
∨

f∈Perm(M)

∧
x∈M

K(x) ↔ A(f(x)) =
∧

x∈M

(A(x) → ⊥) ≥
∧

x∈M

(B(x) → ⊥) =
∨

f∈Perm(M)

∧
x∈M

∅(x) ↔ B(f(x)) = (B ≡θ ∅) = ]Q∅(B)

and the proof is complete.

Using cardinalities of fuzzy set

In the previous chapter we have investigated the relation between cardinal-
ities of finite fuzzy sets and equipollence of fuzzy sets. The results may
be used to establish Lθ

k-models of fuzzy quantifiers. A relation between θ-
cardinalities (or θ-cardinalities) and θ-equipollence (or θ-equipollence) of L-
sets (or Ld-sets) is conditioned by the presumption of homomorphisms that
are compatible with biresiduum (see p. 72) and bidifference (see p. 92). The
following theorem shows a possibility to define Lθ

k-models of fuzzy quantifiers
using special classes of θ-cardinalities of finite fuzzy set.

Theorem 4.3.7. Let L and Ld be complete residuated and dually residuated
lattices, respectively, with the same support, M be a fuzzy algebra over a finite
non-empty universe M and K ∈M. Let Cf,g : FIN L(M) → CVθ

L(Nn) be a
θ-cardinality of finite fuzzy sets generated by θ- and θd-homomorphisms f and
g which are k-θ- and l-θ-compatible with biresiduum of L, respectively, and
i ∈ Nn. Then the mapping ]QK : M→ L, given by ]QK(A) = Cg,f (A)(i) ↔
Cg,f (K)(i) or ]QK(A) = Cg,f (A) ≈ Cg,f (K), is

(i) an Lθ
l -model of a fuzzy quantifier generated by the θ-cardinality Cf,g

and fuzzy set K, if f is the trivial θ-homomorphism,

(ii) an Lθ
k-model of a fuzzy quantifier generated by the θ-cardinality Cf,g

and fuzzy set K, if g is the trivial θd-homomorphism.

Proof. Here, we will prove just the statement (i), the statement (ii) could
be done by analogy. Let K ∈ M be an arbitrary fuzzy set and g be a θ-
homomorphism being l-θ-compatible with ↔. Due to Corollary 3.2.11, we
have Cg(A)(i) ↔ Cg(B)(i) ≥ Cg(A) ≈ Cg(B) ≥ (A ≡θ B)l. Hence, it is
sufficient to show that ]QK(A) ↔ ]QK(B) ≥ Cg(A)(i) ↔ Cg(B)(i) in the
first case or ]QK(A) ↔ ]QK(B) ≥ Cg(A) ≈ Cg(B) in the second case. Let
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A,B ∈M be arbitrary fuzzy sets. Then we have in the first case

]QK(A) ↔ ]QK(B) =

(Cg(A)(i) ↔ Cg(K)(i)) ↔ (Cg(B)(i) ↔ Cg(K)(i)) =

((Cg(A)(i) → Cg(K)(i)) ∧ (Cg(K)(i) → Cg(A))) ↔
((Cg(B)(i) → Cg(K)(i)) ∧ (Cg(K)(i) → Cg(B)(i))) ≥
((Cg(A)(i) → Cg(K)(i)) ↔ (Cg(B)(i) → Cg(K)(i)))∧
((Cg(K)(i) → Cg(A)(i)) ↔ (Cg(K)(i) → Cg(B)(i))) ≥
((Cg(A)(i) ↔ Cg(B)(i))⊗ (Cg(K)(i) ↔ Cg(K)(i)))∧
((Cg(K)(i) ↔ Cg(K)(i))⊗ (Cg(A)(i) ↔ Cg(B)(i))) =

(Cg(A)(i) ↔ Cg(B)(i))⊗> = Cg(A)(i) ↔ Cg(B)(i)

and in the second case

]QK(A) ↔ ]QK(B) =

(Cg(A) ≈ Cg(K)) ↔ (Cg(B) ≈ Cg(K)) =

( ∧
i∈Nn

(Cg(A)(i) ↔ Cg(K)(i))
) ↔ ( ∧

i∈Nn

(Cg(B)(i) ↔ Cg(K)(i))
) ≥

∧
i∈Nn

(
(Cg(A)(i) ↔ Cg(K)(i)) ↔ (Cg(B)(i) ↔ Cg(K)(i))

) ≥
∧

i∈Nn

(Cg(A)(i) ↔ Cg(B)(i)) = Cg(A) ≈ Cg(B).

Hence, the proof is complete.

Example 4.3.8. Let us suppose that L and Ld are complete linearly or-
dered residuated and dually residuated lattices with the same support L,
M = {x1, . . . , xn} and M = FL(M). Further, let us suppose that Cf ,Cg :
FL(M) → CVθ

L(Nn) are θ-cardinalities of finite fuzzy sets generated by homo-
morphisms f : L → L and g : Ld → L being k-θ-compatible with biresiduum
of L. Then the mappings

∀A ∈M : ]Q
m.
M (A) = Cf (A)(m), (4.29)

∀A ∈M : ]Q
.m

∅ (A) = Cg(A)(n−m), (4.30)

where 1 ≤ m ≤ n, are other Lθ
k-models of the fuzzy quantifiers that have

been called for about or more than m and for about or less m, respectively. It
is easy to show that Cf (M)(m) = f(pθ

M(m,M)) = > and Cg(∅)(n −m) =

g(pθ
∅(n−m,M)) = > hold for any m ∈ {1, . . . , n}. Since all presumptions of
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the previous theorem are fulfilled, then Q
m.
M (A) = Cf (A)(m) ↔ Cf (A)(m) =

Cf (M)(m) and Q
.m

∅ (A) = Cg(A)(n − m) ↔ Cg(∅)(n − m) = Cg(A)(n −
m). Hence, the definitions of Lθ

k-models of fuzzy quantifiers Q
m.
M and Q

.m

∅
are correct. If we suppose that L and Ld are the ÃLukasiewicz and dual
ÃLukasiewicz algebra, f(x) = x and g(x) = 1 − x (both mappings are 1-TÃL-
compatible with ↔ÃL), then we obtain the Lθ

k-models of fuzzy quantifiers for
about or more than m and for about or less m from Ex. 4.3.5.

Since we suppose that the truth values structure for fuzzy logic is a com-
plete residuated lattice, it is natural to define fuzzy quantifiers model by θ-
cardinalities of fuzzy sets what we have been done just now. However, we can
ask, whether fuzzy quantifier models can be established using θ-cardinalities
of fuzzy sets, too. An answer is given in the following theorem.

Theorem 4.3.8. Let L and Ld be complete residuated and dually residuated
lattices, respectively, with the same support, M be a fuzzy algebra over a finite
non-empty universe M and K ∈ M. Let Cf,g : FIN Ld(M) → CVθ

Ld(Nn)
be a θ-cardinality of finite fuzzy sets generated by θ- and θd-homomorphisms
f and g which are k-θ- and l-θ-compatible with the bidifference of Ld, re-
spectively, h : Ld → L be a homomorphism which is >-θ-compatible with the
biresiduum of L and i ∈ Nn. Then the mapping ]Qh

K : M → L, given by
]Qh

K(A) = h(|Cg,f (A)(i)ªCg,f (K)(i)|) or ]Qh
K(A) = h(Cg,f (A) ≈d Cg,f (K)),

is

(i) an Lθ
l -model of a fuzzy quantifier generated by the θ-cardinality Cf,g,

fuzzy set K and h, if f is the trivial θ-homomorphism,

(ii) an Lθ
k-model of a fuzzy quantifier generated by the θ-cardinality Cf,g,

fuzzy set K and h, if g is the trivial θd-homomorphism.

Proof. It is analogical to the proof of Theorem 4.3.7, where Corollary 3.3.11
is used.

Example 4.3.9. Let us suppose that CSÃL
is the SÃL-cardinality of finite fuzzy

sets defined in Ex 3.3.2. This SÃL-cardinality of finite fuzzy sets is generated
by the identity SÃL-homomorphism 1[0,1] : Ld

ÃL → Ld
ÃL (i.e. 1[0,1](a) = a for any

a ∈ [0, 1]) and the trivial TÃLd-homomorphism g : LÃL → Ld
ÃL (i.e. g(a) = 0

for any a ∈ [0, 1]) which are evidently 1-SÃL-compatible with the bidifference.
Further, let h : [0, 1] → [0, 1] be given by h(a) = 1− a. Then h(a) ↔ h(b) =
1 − |h(a) − h(b)| = 1 − |(1 − a) − (1 − b)| = 1 − |a − b| = a ↔ b and thus
h : Ld

ÃL → LÃL is the homomorphism being 1-TÃL-compatible with biresiduum.
Let M be a fuzzy algebra over LÃL and non-empty set M . Then according to
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Theorem 4.3.8, the mapping ]Qh
K : M→ [0, 1], given by

]Qh
K(A) = 1− (CSÃL

(A) ≈d CSÃL
(K)), (4.31)

is the LSÃL
ÃL1-model of a fuzzy quantifier generated by the SÃL-cardinality CSÃL

(or also C1[0,1]
), fuzzy set K and the homomorphism h. Let us suppose

that K = M . Then we can write ]Qh
M(A) = 1 − (CSÃL

(A) ≈d CSÃL
(M)) =

1− (|CSÃL
(A)(0)− 1| ∨ |0− 0|) = CSÃL

(A)(0). Comparing this definition of a
fuzzy quantifier model with the Lθ

k-models of fuzzy quantifiers introduced in
Ex. 4.3.4, we obtain modified models of Qfna and Qfnn as follows

∀A ∈M : ]Qfna∗(A) = CSÃL
(A)(0), (4.32)

∀A ∈M : ]Qfnn∗(A) = CSÃL
(A)(0). (4.33)

Obviously, we have ]Qfna(A) = ]Qfna∗(A∗) and ]Qfnn(A) = ]Qfnn∗(A∗),
where A∗ = A

n
. Since A ≡SÃL B ≥ A∗ ≡SÃL B∗ holds for any A,B ∈ M

and ]Qfna∗,]Qfnn∗ are LÃL
SÃL
1 -models of fuzzy quantifiers, we easily obtain

that ]Qfna, ]Qfnn are also LSÃL
ÃL1-models of fuzzy quantifiers. Obviously, this

technique may be used for constructing and verifying the fuzzy quantifiers
models.

In the previous part, we have shown how to define monotone Lθ
k-models

of fuzzy quantifiers generated by equipollence of fuzzy sets and a fuzzy set.
Analogously, we can define monotone fuzzy quantifiers models using cardinal-
ities of fuzzy sets as follows. Recall that f : L → L is a θ-po-homomorphism,
if f is a θ-homomorphism preserving partial ordering of the lattices and anal-
ogously g : Ld → L is a θd-po-homomorphism, if g is a θd-homomorphism
reversing partial ordering of the lattices.

Theorem 4.3.9. Let ]QK : M → L be an Lθ
k-model of a fuzzy quantifier

generated by a θ-cardinality Cf or Cg and a fuzzy set K, where f is a θ-po-
homomorphism and g is a θd-po-homomorphism which are compatible with
biresiduum of L. Then we have

(i) if K = M , then ]QK preserves the partial ordering and

(ii) if K = ∅, then ]QK reverses the partial ordering.

Proof. Let f be θ-po-homomorphism and g be a θd-po-homomorphism which
are compatible with biresiduum. Due to Theorem 3.2.6, we have that the
θ-cardinality Cf preserves and Cg reverses the partial ordering. Here we
will suppose ]QK = Cf,g(A) ≈ Cf,g(K) as the definition of fuzzy quantifiers
models. The proof for the second definition of fuzzy quantifiers models is
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analogical. First, let us suppose that K = M = {x1, . . . , xn} and A,B ∈M
be two fuzzy sets such that A ⊆ B. Then for Cf : FL(M) → CVθ

L(Nn) we
have Cf (A) ≤ Cf (B) ≤ Cf (M) and hence

]QM(A) = Cf (A) ≈ Cf (M) =
∧

i∈Nn

(Cf (A)(i) ↔ Cf (M)(i)) =

∧
i∈Nn

(Cf (M)(i) → Cf (A)(i)) ≤
∧

i∈Nn

(Cf (M)(i) → Cf (B)(i)) =

∧
i∈Nn

(Cf (B)(i) → Cf (M)(i)) = Cf (B) ≈ Cf (M) = ]QM(B),

where the monotony of biresiduum is applied (see e.g. Theorem A.1.2). The
proof for Cg could be done by analogy. Second, let us suppose that K = ∅
and A, B ∈ M such that A ⊆ B. Then similarly to the previous part we
have for Cf (Cf (∅) ≤ Cf (A))

]Q∅(A) = Cf (A) ≈ Cf (∅) =
∧

i∈Nn

(Cf (A)(i) ↔ Cf (∅)(i)) =

∧
i∈Nn

(Cf (A)(i) → Cf (∅)(i)) ≥
∧

i∈Nn

(Cf (B)(i) → Cf (∅)(i)) =

∧
i∈Nn

(Cf (B)(i) → Cf (∅)(i)) = Cf (B) ≈ Cf (∅) = ]Q∅(B).

Again, the proof for Cg could be done by analogy.

Theorem 4.3.10. Let ]Qh
K : M → L be an Lθ

k-model of a fuzzy quantifier
generated by a θ-cardinality Cf or Cg, a fuzzy set K and a homomorphism h :
Ld → L being compatible with biresiduum, where f is a θ-po-homomorphism
and g is a θd-po-homomorphism which are compatible with bidifference of Ld.
Then we have

(i) if K = M , then ]Qh
K preserves the partial ordering and

(ii) if K = ∅, then ]Qh
K reverses the partial ordering.

Proof. It is analogical to the proof of the previous theorem, where Theo-
rem 3.3.6 and the monotony of bidifference (see e.g. Theorem A.2.2) are
applied.

4.4 Logical connections for fuzzy quantifiers

One could see that the constructions and verifications of new fuzzy quanti-
fiers models are often laborious. Therefore, it would be useful to have some
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tools using them the building of fuzzy quantifiers models becomes more ef-
fective. A natural way, how to introduce new and often more complex fuzzy
quantifiers and mainly their models, could be based on an approach, where
new fuzzy quantifiers and their models are defined using already known and
often simpler fuzzy quantifiers and their models. This approach to the fuzzy
quantifiers building from other one’s often occurs in natural language, too.
For example, the fuzzy quantifier at least five and at most ten13 comprises two
fuzzy quantifiers, namely at least five and at most ten, which are connected
by the logical connection and. Thus we can formally write

at least five and at most ten = (at least five) and (at most ten). (4.34)

Further example could be done by using of a negation, say not, of the fuzzy
quantifier at least five as follows

not (at least five) = at most four. (4.35)

Note that we said “a negation”, because we will define two different types
of fuzzy quantifiers negations, namely “external” and “internal” negation,
respectively. It seems to be reasonable to use an analogical approach to
defining the formulas in a (fuzzy) logic, when more complex formulas of the
logic are derived from the atomic one’s using the logical connectives, truth
constants and quantifiers (by iterated use of the known rule). In the following
part we will first propose four binary logical connectives for fuzzy quantifiers,
that are analogical to the binary logical connectives for formulas, and then
two unary logical connectives, using them we will construct the negations of
fuzzy quantifiers.

Let &, ∧, ∨ and ⇒ be the symbols of binary logical connectives for
fuzzy quantifiers which have the same forms and meanings as in the case
of formulas. In our work we will suppose only one form of these logical
connectives, because the meaning of the considered connectives will always
be unmistakable. Moreover, we will deal with the first-ordered logic extended
by fuzzy quantifiers and thus the connections for fuzzy quantifiers will have
just a specific character (contrary to the logical connections of the second-
order). Let Q1 and Q2 be two fuzzy quantifiers. Then Q1&Q2, Q1 ∧ Q2,
Q1 ∨Q2 and Q1 ⇒ Q2 are again the fuzzy quantifiers. In order to be able to
deal with such derived fuzzy quantifiers, we have to introduce their models.
Again, we can use an analogy with the logical connectives interpretations in
residuated lattices. Let ]Q1 and ]Q2 be an Lθ

k1
-model and an Lθ

k2
-model of

13Note that the connective “and” may be replaced by the connective “but”.
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fuzzy quantifiers Q1 and Q2, respectively. Then

](Q1&Q2) = ]Q1 ⊗ ]Q2, ](Q1 ∧ Q2) = ]Q1 ∧ ]Q2,

](Q1 ∨ Q2) = ]Q1 ∨ ]Q2, ](Q1 ⇒ Q2) = ]Q1 → ]Q2,

where the operations ⊗,∧,∨,→ are the extended operations between fuzzy
sets (see Section 1.3 on p. 13), define Lθ

k-models of the corresponding fuzzy
quantifiers. An example of the Lθ

k-models of the fuzzy quantifier for about
half and modified fuzzy quantifier for nearly all could be seen on Fig. 4.6. The
former is the conjunction of the fuzzy quantifiers, say, for about and more forty
percents and for about and less sixty percents. The later is the square of the
fuzzy quantifier for nearly all, where the strong conjunction is applied.14. The
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Figure 4.6: Mappings describing Lθ
k-models of Qah and Qfna&Qfna

following theorem shows the correctness of our definition of the preceding
Lθ

k-models which were derived using the corresponding operations with fuzzy
sets.

Theorem 4.4.1. Let L be a complete residuated lattice, M be a fuzzy algebra
over a non-empty universe M and ]Qi : M → L be Lθ

ki
-models of fuzzy

quantifiers Qi, where i = 1, 2. Then

(i) ](Q1 ∧ Q2) and ](Q1 ∨ Q2) are the Lθ
k1∨k2

-models of fuzzy quantifiers
Q1 ∧ Q2 and Q1 ∨ Q2, respectively, and

(ii) ](Q1&Q2) and ](Q1 ⇒ Q2) are the Lθ
k1+k2

-models of fuzzy quantifiers
Q1&Q2 and Q1 ⇒ Q2, respectively.

Proof. Here, we will prove the cases ](Q1 ∧ Q2) and ](Q1 ⇒ Q2). The
rest could be done by analogy. Let A,B ∈ M. Since ]Qi, i = 1, 2, is the

14Note that an analogical construction is used in fuzzy syllogisms with fuzzy quantifiers
(see e.g. [127–130])
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Lθ
ki

-models of fuzzy quantifiers Qi , then we have

(A ≡θ B)k1 ≤ ]Q1(A) ↔ ]Q1(B),

(A ≡θ B)k2 ≤ ]Q2(A) ↔ ]Q2(B).

Hence, applying the operation of meet, we obtain

(A ≡θ B)k1∨k2 =(A ≡θ B)k1 ∧ (A ≡θ B)k2 ≤
(]Q1(A) ↔ ]Q1(B)) ∧ (]Q2(A) ↔ ]Q2(B)) ≤
(]Q1(A) ∧ ]Q2(A)) ↔ (]Q1(B) ∧ ]Q2(B)) =

](Q1 ∧ Q2)(A) ↔ ](Q1 ∧ Q2)(B)

and thus the mapping ](Q1 ∩Q2) is the Lθ
k1∨k2

-model of the fuzzy quantifier
Q1 ∧ Q2. Analogously, applying the operation of multiplication, we obtain

(A ≡θ B)k1+k2 =(A ≡θ B)k1 ⊗ (A ≡θ B)k2 ≤
(]Q1(A) ↔ ]Q1(B))⊗ (]Q2(A) ↔ ]Q2(B)) ≤
(]Q1(A) → ]Q2(A)) ↔ (]Q1(B) → ]Q2(B)) =

](Q1 ⇒ Q2)(A) ↔ ](Q1 ⇒ Q2)(B)

and thus the mapping ](Q1 ⇒ Q2) is the Lθ
k1+k2

-model of the fuzzy quantifier
Q1 ⇒ Q2.

If one of the fuzzy quantifiers connected by a logical connective is a con-
stant fuzzy quantifier, then we can state a simple consequence of the previous
theorem.

Corollary 4.4.2. Let L be a complete residuated lattice, M be a fuzzy algebra
over a non-empty M , ]Q be an Lθ

k-model of a fuzzy quantifier and a be the
constant fuzzy quantifier. Then ](Q ∧ a), ](Q ∨ a), ](Q&a), ](Q ⇒ a) and
](a ⇒ Q) define the Lθ

k-models of the corresponding fuzzy quantifiers.

Now we will introduce negations of fuzzy quantifiers. Let us suppose that
we want to find a relation between the models of the classical quantifiers for
all and there exists. Then it is easy to see that just one type of negation of a
quantifier is not sufficient to express it. It motivates us to define two types of
fuzzy quantifiers negations, which allow us to introduce the relevant relations
between fuzzy quantifiers, and using their interpretations to make natural
transformations between fuzzy quantifiers models. Note that negations of
fuzzy quantifiers are more natural and practically useful in the residuated
lattices, where the law of double negation is fulfilled.



128 Logical connections for fuzzy quantifiers

The external negation, denoted by the symbol ∼, of a fuzzy quantifier
Q is the fuzzy quantifier ∼Q. If ]Q is the Lθ

k-model of a fuzzy quantifier
Q, then ]∼Q(A) = ]Q(A) → ⊥ defines the Lθ

k-model of the fuzzy quantifier
∼Q. In fact, due to the previous corollary, the mapping ](Q ⇒ ⊥), where ⊥
is the constant fuzzy quantifier, defines the Lθ

k-model of the fuzzy quantifier
Q ⇒ ⊥. Since ](Q ⇒ ⊥)(A) = ]Q(A) → ⊥, then also ]∼Q is an Lθ

k-model
of the fuzzy quantifier ∼Q and thus our definition of the Lθ

k-model of a fuzzy
quantifier with the external negation is correct. One could be surprised, why
the external negation of a fuzzy quantifier Q is not defined by∼Q := Q ⇒ ⊥.
The reason is that the constant fuzzy quantifier ⊥ is not supposed, in general,
in a language for fuzzy quantifiers (see the next section). In the opposite case,
that is, if ⊥ belongs to the set of so-called atomic fuzzy quantifiers of the
given language, then the mentioned definition is possible, because both Lθ

k-
models are identical. An example of the LÃL

θ
k-models of a fuzzy quantifier

and its external negation could be seen on Fig. 4.7. In particular, assuming
that the mapping h defines an LÃL

θ
k-model of a fuzzy quantifier Q, then the

mapping enh is the LÃL
θ
k-model of its external negation.
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Figure 4.7: Mappings describing LÃL
θ
k-models of Q and ∼Q

Example 4.4.1. As we have mentioned in Ex. 4.3.2, 4.3.3 and Ex. 4.3.4, we
have ]∃not = ]∼∃, ]∀not = ]∼∀, ]∀infin = ]∼∀fin and ]Qfnn = ]∼Qfna for
the Lθ

k-models of the fuzzy quantifiers of ∃not, ∀not, ∀infin and Qfnn. Hence,
the fuzzy quantifiers ∃not, ∀not, ∀infin and Qfnn could be defined using the
external negation of the fuzzy quantifiers ∃, ∀, ∀fin and Qfna as follows
∃not := ∼∃, ∀not := ∼∀, ∀infin := ∼∀fin and Qfnn := ∼Qfna.

The internal negation, denoted by the symbol C, of a fuzzy quantifier
Q is the fuzzy quantifier CQ. If ]Q is an Lθ

k-model of the fuzzy quantifier
Q, then ]CQ(A) = ]Q(A), where A denotes the complementary fuzzy set
to A, defines the Lθ

k-model of the fuzzy quantifier CQ. Note that every
fuzzy algebra has a complement to each element (see p. 13). The following
theorem shows that our definition of the Lθ

k-model of a fuzzy quantifier with
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the internal negation is correct, i.e. if ]Q is an Lθ
k-model of a fuzzy quantifier

Q, then also the mapping ]CQ is an Lθ
k-model of the fuzzy quantifier CQ.

Theorem 4.4.3. Let L be a complete residuated lattice, M be a fuzzy algebra
over a non-empty universe M and ]Q : M → L be an Lθ

k-model of a fuzzy
quantifier Q. Then ]CQ is an Lθ

k-model of the fuzzy quantifier CQ.

Proof. Let ]Q be an Lθ
k-model of a fuzzy quantifier Q and A,B ∈ M be

arbitrary fuzzy sets. Suppose that if the operation θ = ⊗ is considered, then
we deal with a countable universe X. First, we put k = 1. Then we have

A ≡θ B =
∨

f∈Perm(X)
Θ
x∈X

A(x) ↔ B(f(x)) =

∨

π∈Perm(X)
Θ
x∈X

(A(x) ↔ B(f(x)))θ(⊥ ↔ ⊥) ≤

∨

f∈Perm(X)
Θ
x∈X

(A(x) → ⊥) ↔ (B(f(x)) → ⊥) =

A ≡θ B ≤ ]Q(A) ↔ ]Q(B) = ]CQ(A) ↔ ]CQ(B).

If k > 1, then analogously we obtain

(A ≡θ B)k ≤ (A ≡θ B)k ≤ ]Q(A) ↔ ]Q(B) ≤ ]CQ(A) ↔ ]CQ(B)

and the proof is complete.

As could be shown, the Lθ
k-model of a fuzzy quantifier with the internal

negation is established by some internal transformation of Lθ
k-models of the

original one. This is the difference from the external negation that results
from the “external” operation residuum applying to the values of Lθ

k-models.
An example of the LÃL

θ
k-models of a fuzzy quantifier (the mapping h) and its

internal negation (the mapping inh) could be seen on Fig.4.8. Compare the
mappings enh from Fig. 4.7 and inh.

Example 4.4.2. It is easy to see that ]∀not = ]C∃, ]∃not = ]C∀, ]Qfnn =
]CQfna hold for the Lθ

k-models of the fuzzy quantifiers ∀not, ∃not, Qfnn and
vice-versa. Hence, the fuzzy quantifiers ∀not, ∃not, Qfnn could be defined
as follows ∀not := C∃, ∃not := C∀, Qfnn := ]CQfna. Furthermore, it is
interesting to notice that the fuzzy quantifier for nearly none could be derived
from the fuzzy quantifier for nearly all applying the external as well as internal
negation, i.e. Qfnn := ∼Qfna and simultaneously Qfnn := CQfna.
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Figure 4.8: Mappings describing LÃL
θ
k-models of Q and CQ

In the following part we will give several statements about the models of
complex fuzzy quantifiers. If negations are applied more than once to a fuzzy
quantifier, then we will often write the resulting fuzzy quantifier without the
parentheses, e.g. we will write ∼C∼CQ instead of ∼(C(∼(CQ))). The
parentheses, however, have to be respected to find the Lθ

k-model of a fuzzy
quantifier with the negations, e.g. ]∼C∼CQ(A) = ]∼(C(∼(CQ)))(A) =

(]Q(A) → ⊥) → ⊥ holds for any A ∈M. An immediate consequence of the
definitions of the external and internal negations may be stated as follows.

Corollary 4.4.4. Let L be a complete residuated lattice, M be a fuzzy algebra
over a non-empty universe M and ]Q be an Lθ

k-model of a fuzzy quantifier
Q. Then ]C∼Q = ]∼CQ is the Lθ

k-model of the fuzzy quantifier C∼Q or
equivalently of the fuzzy quantifier ∼CQ.

An example of the simultaneous application of both negation types could
be done by the classical quantifiers, i.e. ∀ := C∼∃ and vice-versa. If an LÃL

θ
k-

model of a fuzzy quantifier Q is introduced using the mapping h, displayed
on Fig. 4.9, then the LÃL

θ
k-model of the fuzzy quantifier ∼CQ is introduced

by the mapping einh.
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Figure 4.9: Mappings describing Lθ
k-models of Q and C∼Q

The relationships between external and internal negations and their com-
bination may be described in a square of opposition that is an analogy to
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the Aristotelian square displayed on Fig. 4.1. Our square of opposition has a
modern form (see also e.g. [31,33]) and it is displayed on Fig. 4.10. Examples
of these negations derived from the classical quantifier for all are illustrated
in parentheses.

Q (for all) internal negation CQ (there exists none)
HHHHHHHHHH

Contradictories
HHHHHHHHHH©©©©©©©©©©

Contradictories
©©©©©©©©©©

∼Q (not for all)

external negation

internal negation ∼CQ (there exists)

external negation

Figure 4.10: Modern square of opposition

The following theorem shows how the ordering of Lθ
k-models is changed,

when the negations C and ∼ are applied. Recall that ]Q is a fuzzy set over
M and thus ]Q ≥ ]Q′, if ]Q(A) ≥ ]Q′(A) holds for any A ∈M.

Theorem 4.4.5. Let L be a complete residuated lattice, M be a fuzzy algebra
over a non-empty universe M and ]Q, ]Q′ : M → L be Lθ

k, Lθ
k′-models of

fuzzy quantifiers Q,Q′, respectively, such that ]Q ≥ ]Q′. Then we have

(i) ]CQ ≤ ]CQ′ and ]∼Q ≤ ]∼Q′,

(ii) ]Q ≤ ]CCQ and ]Q ≤ ]∼∼Q,

(iii) ]CQ = ]CCCQ and ]∼Q = ]∼∼∼Q.

Proof. It is a straightforward consequence of the monotony of residuum (see
e.g. Theorem A.1.2).

The following theorem shows an influence of the external and internal
negations to fuzzy quantifiers derived by the binary logical connections.

Theorem 4.4.6. Let L be a complete residuated lattice, M be a fuzzy algebra
over a non-empty universe M and ]Q1, ]Q2 : M→ L be Lθ

k1
, Lθ

k2
-models of

fuzzy quantifiers Q1, Q2, respectively. Then we have

(i) ]∼(Q1&Q2) = ](Q1 ⇒ ∼Q2),

(ii) ]∼(Q1 ∧ Q2) ≥ ](∼Q1 ∨∼Q2),
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(iii) ]∼(Q1 ∨ Q2) = ](∼Q1 ∧∼Q2),

(iv) ]∼(Q1 ⇒ Q2) ≥ ](Q1&∼Q2).

(v) ]C(Q1&Q2) = ](CQ1&CQ2),

(vi) ]C(Q1 ∧ Q2) = ](CQ1 ∧ CQ2),

(vii) ]C(Q1 ∨ Q2) = ](CQ1 ∨ CQ2),

(viii) ]C(Q1 ⇒ Q2) = ](CQ1 ⇒ CQ2).

Moreover, if L is an MV-algebra, then the inequalities in (ii) and (iv) may
be replaced by the equalities.

Proof. Let ]Q1, ]Q2 be Lθ
k-models of fuzzy quantifiers Q1, Q2, respectively,

and A ∈ M. Then we have ]∼(Q1&Q2)(A) = ](Q1&Q2)(A) → ⊥ =
]Q1(A)⊗ ]Q2(A) → ⊥ = ]Q1(A) → (]Q2(A) → ⊥) = ]Q1(A) → ]∼Q2(A) =
](Q1 ⇒ ∼Q2)(A). Hence, the first statement is true. Further, we have
]∼(Q1 ∧ Q2)(A) = ](Q1 ∧ Q2)(A) → ⊥ = (]Q1(A) ∧ ]Q2(A)) → ⊥ ≥
(]Q1(A) → ⊥)∨ (]Q2(A) → ⊥) = ]∼Q1(A)∨ ]∼Q2(A) = ](∼Q1 ∨∼Q2)(A).
Hence, the second statement is true. Because the proofs of the third and forth
statements are analogical, we omit them. Further, we have ]C(Q1&Q2)(A) =
]Q1&Q2(A) = ]Q1(A) ⊗ ]Q2(A) = ]CQ1(A) ⊗ ]CQ2(A) = ]CQ1&CQ2(A).
Hence, the fifth statement is true. The remaining statements could be proved
by analogy. Moreover, if L is an MV-algebra, then the statements follow from
the equalities (a∧b) → c = (a → c)∨(b → c) and a⊗(b → ⊥) = (a → b) → ⊥
that hold in each MV-algebra15.

4.5 Fuzzy quantifiers types

In the previous sections we did not require any special properties from the
fuzzy quantifiers. In order to establish the semantics of fuzzy logic with fuzzy
quantifiers, we need to suppose that the structures of fuzzy quantifiers contain
just fuzzy quantifiers with some property of their models. This requirement
seems to be very natural also from the practical point of view, because each
“reasonable” fuzzy quantifier is interpreted in an L-structure either by just
one model (as e.g. ∀, ∃), ∀fin etc. or by a class of models having, however, a
common property (as e.g. Qfna or Qfnn, which models are under the influence

15Note that the equalities are a consequence of the law of double negation (see p. 2).
For instance, we have a ⊗ (b → ⊥) = ((a ⊗ (b → ⊥)) → ⊥) → ⊥ = (a → ((b → ⊥) →
⊥)) → ⊥ = (a → b) → ⊥.
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of a subjective understanding of the fuzzy quantifier meanings). Therefore,
we introduce a notion of the fuzzy quantifier type that will characterize a
general property of Lθ

k-models of this fuzzy quantifier.

An Lθ
k-model ]Q of a fuzzy quantifier Q is monotonous, if ]Q preserves

or reverses the partial ordering between the ordering structures (M,⊆) and
(L,≤). We say that a fuzzy quantifier is of the type at least or also al for
short, if each of its Lθ

k-models preserves the partial ordering. It means that
if a fuzzy quantifier of the type al is supposed, then each of its Lθ

k-models
will preserve the partial ordering. Further, we say that a fuzzy quantifier is
of the type at most or also am for short, if each of its Lθ

k-models reverses
the partial ordering. Again, it means that if a fuzzy quantifier of the type
am is supposed, then each of its Lθ

k-models will reverse the partial ordering.
Finally, a fuzzy quantifier is of the type general or also g for short, if none
of its Lθ

k-models is monotonous, that is, if none of its Lθ
k-models preserves or

reverses the partial ordering. Thus, we do not admit such fuzzy quantifiers
that some of their models preserve and some of their models reverse the
partial ordering or some of their models preserve the partial ordering and
some of their models are not monotonic etc. An exception is made by the
fuzzy quantifiers having the constant models and thus they are of the type al
and simultaneously am16. An example of such fuzzy quantifiers is given by
the constant fuzzy quantifiers (see p. 111).

Let us denote by T the set of the mentioned types, i.e. T = {al, am, g}.
The fact that a fuzzy quantifier Q is of the type ι ∈ T will be denoted
by the couple (Q, ι). The fuzzy quantifiers (Q, ι), where ι ∈ T \ {g}, will
be called the basic fuzzy quantifiers. The fuzzy quantifiers (Q, g) will be
occasionally called the non-basic fuzzy quantifiers. Several examples of the
basic fuzzy quantifiers could be given using Theorems 4.3.6, 4.3.9 and 4.3.10.
In particular, a fuzzy quantifier QK is of the type al, if K = M , and of the
type am, if K = ∅.

In the subsection 4.4 we have shown that new fuzzy quantifiers can be
established using the logical connectives for fuzzy quantifiers. Now we can
ask, what types of the fuzzy quantifiers are obtained after applying the log-
ical connectives. In other words, is it possible to uniquely determine the
types of the complex fuzzy quantifiers from the types of the atomic one’s?
Unfortunately, the influence of the logical connectives on types preservation
is not uniquely determined, in general. In fact, if (Q1, g) and (Q2, al), then
it is not difficult to find the Lθ

k-models of Q1 and Q2 (of course, respecting

16Note that the truth values of formulas with fuzzy quantifiers of different types are
derived by different rules. Therefore, we will have to prove a correctness of those rules for
formulas with the fuzzy quantifiers having the type al and am at the same time.
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the types of Q1 and Q2) such that the resulting type of the fuzzy quantifier
Q1 ∨ Q2 is g and then to find other Lθ

k-models of Q1 and Q2 such that the
resulting type of the fuzzy quantifier Q1 ∨ Q2 is al. On the other hand, for
the basic fuzzy quantifiers we can state the following lemmas and corollary.

Lemma 4.5.1. Let Q1, Q2 be fuzzy quantifiers. If Q1, Q2 are of the type
al or am, then Q1&Q2, Q1 ∧ Q2 and Q1 ∨ Q2 are of the type al or am,
respectively. Moreover, if Q1 is of the type al and Q2 is of the type am, then
Q1 ⇒ Q2 is of the type am and Q2 ⇒ Q1 is of the type al.

Proof. It is a straightforward consequence of the monotony of the operations
⊗,∧,∨ and →.

Lemma 4.5.2. Let Q be a fuzzy quantifier. If Q is of the type al, then CQ
and ∼Q is of the type am and conversely. Moreover, if Q possesses one of
these types, then ∼CQ is of the same type.

Proof. Let us suppose that ]Q is an Lθ
k-model of a fuzzy quantifier Q of the

type al, i.e. ]Q(A) ≤ ]Q(B), whenever A ⊆ B. Obviously, if A ⊆ B, then
B ⊆ A. Hence, we obtain ]CQ(A) = ]Q(A) ≥ ]Q(B) = ]CQ(B), whenever
A ⊆ B. Moreover, ]∼Q(A) = ]Q(A) → ⊥ ≥ ]Q(B) → ⊥ = ]∼Q(B) and
thus the first statement is proved. Further, we have ]∼CQ(A) = ]∼Q(A) =
]Q(A) → ⊥ ≤ ]Q(B) → ⊥ = ]∼Q(A) = ]∼CQ(B) and hence the second
statement is true for the model of the type al. The analogical proof could be
done, if an Lθ

k-model of a fuzzy quantifier of the type am is considered.

Corollary 4.5.3. Let Q be a fuzzy quantifier. If Q is of the type al, then
CCQ and ∼∼Q is of the type al and, analogously, for the type am.

Proof. It is a straightforward consequence of the previous lemma.

4.6 Structures of fuzzy quantifiers

In the previous sections we established the logical connectives for fuzzy quan-
tifiers and then the types of fuzzy quantifiers, namely at least, at most and
general. In this part we will introduce a structure of fuzzy quantifiers on the
basis of which the fuzzy quantifiers can be implemented into the language of
the first-ordered fuzzy logic. As we have mentioned, not all fuzzy quantifiers
are suitable for the interpretation in L-structures. Therefore, we have to
restrict ourselves to a class of the basic fuzzy quantifiers and the fuzzy quan-
tifiers which are derived from the basic one’s using the logical connectives.
First, we will define a class of fuzzy quantifiers which are derived from the
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fuzzy quantifiers of a given set Q. The elements of the set Q play a role
of “atoms”. For example, the classical quantifiers could be understood as
the atoms and then we could define a class of all fuzzy quantifiers over the
set Q = {∀, ∃}. Obviously, this class is very abstract and nearly all of their
(fuzzy) quantifiers are useless. Therefore, the fuzzy quantifiers structure will
be defined as a special subset of the class of fuzzy quantifiers over Q, where,
moreover, each fuzzy quantifier is connected with some fuzzy quantifier type.
In our example, a fuzzy quantifiers structure over the Q could be the set
{(∀, al), (∃, al)}, where to the classical quantifiers the type at least is assigned
(cf. Ex. 4.3.1). Note that the formal assignment (fuzzy quantifier, its type) is
very important to uniquely determine the evaluation rules, which are applied
to formulas with the fuzzy quantifiers from this structure. In other words,
we can not find the truth value of a formula with the fuzzy quantifiers, when
the type of the used fuzzy quantifier is not specified17.

Let Q be a non-empty finite set of fuzzy quantifiers. Then we can in-
troduce the fuzzy quantifiers over Q using the following inductive definition.
Atomic fuzzy quantifiers over Q are all fuzzy quantifiers from Q. If Q1, Q2

and Q are fuzzy quantifiers over Q, then also Q1&Q2, Q1 ∧ Q2, Q1 ∨ Q2,
Q1 ⇒ Q2 and ∼Q, BQ are fuzzy quantifiers over Q. The set of all fuzzy
quantifiers over Q will be denoted by FQ. If Q ∈ FQ and the set Q is known,
then we will say, for simplicity, that Q is a fuzzy quantifier instead of Q is a
fuzzy quantifier over Q. Let Q ∈ FQ be a fuzzy quantifier, then Aq(Q) ⊆ FQ
is the subset of all atomic fuzzy quantifiers from FQ included in Q. This
assignment defines a mapping Aq : FQ → 2Q.

Example 4.6.1. Let us suppose that Qm- and Q-m are fuzzy quantifiers for
about or more than m and for about or less than m, respectively, belonging to
FQ. Then for the (non-atomic) fuzzy quantifier Q := Qm- ∧ Q-m, which is
derived from Qm- and Q-m using the logical connective ∧, we have Aq(Q) =
{Qm-, Q-m}.

Let Q ∈ FQ be a fuzzy quantifier. Then obviously there exists a finite
sequence Q1, Q2, . . . , Qn, where Q := Qn, of fuzzy quantifiers from FQ such
that for each i ≤ n the fuzzy quantifier Qi is atomic (i.e. Qi ∈ Q), or there
exist k, l < i and a binary logical connective for fuzzy quantifiers such that
Qi is derived by the considered binary logical connective applied on Qk and
Ql, or there exist k < i and a unary logical connective for fuzzy quantifier
such that Qi is derived by the considered unary logical connective applied

17Note that for some complex fuzzy quantifiers there could be a problem to uniquely
determine their (natural) types and therefore, we have to establish them. On other hand,
if the type of a fuzzy quantifier is known, then it will be used.
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on Qk. The finite sequence Q1, Q2, . . . , Qn, where Q := Qn, defined above is
called the formation sequence of the fuzzy quantifier Q.

Example 4.6.2. Let Q := ∼((Q1 ∧ Q2) ⇒ (Q3 ∨ Q4)), then the formation
sequence of Q can be given as follows Q1 := Q1, Q2 := Q2, Q3 := Q1 ∧ Q2,
Q4 := Q3, Q5 := Q4, Q6 := Q3 ∨Q4, Q7 := Q3 ⇒ Q6 and Q8 := ∼Q7, where
clearly Q := Q8. It is easy to see that there is more than one formation
sequence, in general, but for each two formation sequences there exists a
unique correspondence. In particular, if Q1, . . . , Qn and Q′

1, . . . , Q
′
m are two

formation sequences of Q, then n = m and there exists a permutation f on
{1, . . . , n} such that Qi := Q′

f(i) holds for any i = 1, . . . , n. The proof could
be done by induction on the complexity of the fuzzy quantifier Q.

Let Q be a non-empty set of fuzzy quantifiers. A subset SQ ⊆ FQ × T is
the structure of fuzzy quantifiers over Q, if

(i) for every (Q, ι1), (Q, ι2) ∈ SQ we have ι1 = ι2,

(ii) for every (Q, ι) ∈ SQ such that Q ∈ Q we have ι ∈ {al, am} and

(iii) for every (Q, ι) ∈ SQ there exist (Q1, ι1), . . . , (Qn, ιn) ∈ SQ such that
Q1, . . . , Qn is a formation sequence of Q.

A structure of fuzzy quantifiers SQ is called atomic, if each fuzzy quantifier
of SQ is the atomic fuzzy quantifier, i.e. Q ∈ Q for all (Q, ι) ∈ SQ. Moreover,
a structure of fuzzy quantifiers SQ is called basic, if each fuzzy quantifier of
SQ is the basic fuzzy quantifier, i.e. ι ∈ {al, am} for all (Q, ι) ∈ SQ. Clearly,
each atomic structure is also the basic one.

Example 4.6.3. Let us suppose that ∀,∃, Qm-, Q-m ∈ Q. Then SQ1 =
{(∀, al), (∃, al)} is an atomic structure and

SQ2 = {(Qm-, al), (Q-m, am), (Qm- ∧Q-m, g), (∼(Qm- ∧Q-m), g)}

is a (non-atomic) structure of fuzzy quantifiers. On the other hand, the set
SQ3 = {(∀, al), (∼(C∀), al)} is not a structure of fuzzy quantifiers, because
(iii) is not satisfied, i.e. (C∀, ι) 6∈ SQ3 for any ι ∈ T.

One could notice that in spite of ∃ := ∼(C∀) the set SQ3 is not a struc-
ture of fuzzy quantifiers over Q. Let us make a short explanation of this
strangeness. In each fuzzy quantifier structure we have to strictly distin-
guish, whether the fuzzy quantifier is the atomic or non-atomic fuzzy quan-
tifier, because this fact will have an immediate impact on the interpretation
of fuzzy quantifiers meanings in an L-structure. In particular, each atomic
fuzzy quantifier of SQ will be interpreted by an atomic Lθ

k-model, i.e. its
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model is not derived from the others. On the other hand, each Lθ
k-model of

non-atomic fuzzy quantifiers of SQ will be derived (by induction) from the
Lθ

k-models of the corresponding atomic fuzzy quantifiers and thus they are
dependent on some atomic models. Thus, if we return to the mentioned case,
then the model of (∃, al) is introduced directly (∃ is atomic), but the model of
(∼C∀, al) has to be introduced by induction (∼C∀ is non-atomic). However,
it is impossible, because the model of (∼C∀, al) is derived from a model of
(C∀, ι) for a suitable ι ∈ T, which is not supposed (C∀ 6∈ SQ3).

4.7 Fuzzy logic with fuzzy quantifiers: syntax

and semantics

In this section the syntax and semantics of the first-ordered fuzzy logic will
be extended by fuzzy quantifiers, namely, the classical quantifiers ∀ and ∃
will be replaced by fuzzy quantifiers from a structure for fuzzy quantifiers.

4.7.1 Syntax

Let us suppose that SQ = {(∀, al), (∃, al)} is the structure of (fuzzy) quanti-
fiers over Q = {∀,∃}. Then a language of the first-ordered fuzzy logic J can
be expressed as a system J (SQ) of the same predicate symbols, functional
symbols etc. as in the language J , where the quantifiers symbols ∀ and ∃
are replaced by two new symbols Q1, Q2, each one for a fuzzy quantifier of
SQ, e.g. Q1 for (∀, al) and Q2 for (∃, al). Now we can deal with the modified
language J (SQ) of the first-ordered fuzzy logic with the fuzzy quantifiers
of SQ instead of the original language J . Obviously, both languages are
equivalent. In the following part this approach will be generalized.

Let SQ be a structure of fuzzy quantifiers over a non-empty finite set Q
and J be a language of the first-ordered fuzzy logic (with the classical quan-
tifiers). Then the language J (SQ) of the first-ordered fuzzy logic with the
fuzzy quantifiers of SQ over J consists of the same predicate symbols, func-
tional symbols, object constants, object variables, logical connectives, truth
constants and auxiliary symbols as in the language J , but the quantifiers
symbols ∀ and ∃ are replaced by new symbols Q1,Q2, . . . each for just one
fuzzy quantifier from SQ.

If Q is assigned to the couple (Q, ι), then we will write Q := (Q, ι).
Further, if Q1 := (Q1, ι1), Q2 := (Q2, ι2) and Q := (Q1 ~ Q2, ι), where ~ is
one of the binary logical connectives for fuzzy quantifiers, then we will also
write Q := Q1 ~ Q2 and analogously for Q := (Q, ι) and Q′ := (nQ, ι′),
where n is one of the fuzzy quantifier negations, we will write Q′ := nQ.
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The terms and atomic formulas are defined in the same way as in the case
of the first-ordered fuzzy logic with the classical fuzzy quantifiers. If ϕ, ψ are
formulas and x is an object variable, then ϕ&ψ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ ⇒ ψ, ⊥,
> and (Qx)ϕ are formulas for all fuzzy quantifiers of the language J (SQ).
If (Qx)ϕ be a formula, then the scope of the fuzzy quantifier (Qx) is the
formula ϕ. The definitions of free and bound variables of a formula and the
substitutability of a term for a variable in a formula are again the same as
in the case of the first-ordered fuzzy logic with the classical fuzzy quantifiers
(see p. 105).

4.7.2 Semantics

In this part we are going to introduce the semantics of the first-ordered fuzzy
logic with fuzzy quantifiers. In particular, each L-structure M for a language
J will be extended by the Lθ

k-models for all fuzzy quantifiers of a language
J (SQ). Moreover, we have to add also a fuzzy algebra M. It seems to
be reasonable to suppose that all Lθ

k-models will be defined over the same
operation θ. In order to indicate this fact, we will write the Lθ-structure.

We say that a mapping ]Q : M→ L is an Lθ
k-model of a fuzzy quantifier

Q := (Q, ι) over M, if the mapping ]Q is an Lθ
k-model of the fuzzy quantifier

Q over M respecting the type ι.
Let J (SQ) be a language and L be a complete residuated lattice. Then

an Lθ-structure M = 〈M,M, (rP )P , (fF )F , (ma)a, (]Q)Q〉 for J (SQ) has a
non-empty domain M , a fuzzy algebra M over the domain M , an n-ary
fuzzy relation rP : Mn → L for each predicate symbol P , where L is the
support of L, an n-ary function fF : Mn → M (it is not fuzzy) for each
functional symbol F , an element ma from M for each object constant a and
an Lθ

k-model of the fuzzy quantifier Q over M for each fuzzy quantifier Q.
Moreover, the Lθ

k-model of each fuzzy quantifier Q results from the iterated
use the following rule (put ~ ∈ {&,∧,∨,⇒} and n ∈ {∼, C}):

(i) if Q := (Q, ι) and Q is atomic, then ]Q is the Lθ
k-model of the fuzzy

quantifier Q,

(ii) if Q := (Q1 ~ Q2, ι) and the mapping ]Q1 ~ ]Q2 respects the type ι,
then ]Q1 ~ ]Q2 is the Lθ

k-model of the fuzzy quantifier Q,

(iii) if Q := (nQ, ι) and the mapping ]nQ respects the type ι, then ]nQ
is the Lθ

k-model of the fuzzy quantifier Q.

Obviously, the Lθ
ki

-models of atomic fuzzy quantifiers from SQ play the major
role in the Lθ-structure for the language J (SQ), because they are defined in
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such a way that the Lθ
k-models of the non-atomic fuzzy quantifiers (derived

from them) respect their types. It is easy to show that not all Lθ
ki

-models
of the atomic fuzzy quantifiers define an Lθ-structure for J (SQ), in general,
even there are languages J (SQ) without any L-structure for J (SQ). In
fact, it is sufficient to suppose that SQ = {(Q, al), (∼Q, g)}. Then, due to
Lemma 4.5.2, the fuzzy quantifier ∼Q is of the type am, but we suppose that
∼Q is of the type g, a contradiction, and thus J (SQ) has no L-structure.
We say that a language J (SQ) is regular, if there is an L-structure for it. In
the following parts we will suppose that each language J (SQ) is regular.

As the M-evaluations of object variables, the values of terms and the truth
values of formulas without quantifiers under M-evaluation are defined in the
same way as in the case of the first-ordered fuzzy logic, we will introduce
only the truth values of formulas with the regular fuzzy quantifiers. First of
all, we make a short comment to our approach.

Contrary to the formulas with the basic fuzzy quantifiers, where we
are able to establish the rules for deriving their truth values under an M-
evaluation (in a natural way), there is no unique natural evaluation rule using
that we could find the truth values of formulas with fuzzy quantifiers of the
type general. In other words, formulas with different fuzzy quantifiers, how-
ever, of the type g, may have many different evaluation rules, i.e. different
ways how to find their truth values under an M-evaluation. Nevertheless, it
seems to be reasonable to use the truth values of the formulas with the basic
fuzzy quantifiers to determine the truth values of the problematic formulas,
because as we know each fuzzy quantifier of the type g is derived from them.
Hence, if we have a formula (Q1~Q2x)ϕ with a fuzzy quantifier of the type g,
then we could split this formula to the formulas (Q1x)ϕ and (Q2x)ϕ and the
same logical connective ~ (but for formulas), which is considered between
them, i.e. we put (Q1 ~Q2x)ϕ = (Q1x)ϕ~ (Q2x)ϕ. Thus, the truth value of
the formula (Q1 ~ Q2)ϕ under an M-evaluation could be found as the truth
value of the formula (Q1x)ϕ ~ (Q2x)ϕ under this M-evaluation.

Example 4.7.1. Let us consider the fuzzy quantifier at least five and at most
ten being clearly of the type g, the basic fuzzy quantifiers at least five, at
most ten and a formula ϕ :=“x passes the exam from the Statistics” with
the free variable x for students. Due to the previous consideration, we put
(according to (4.34))

(at least five and at most ten x)ϕ = (at least five x)ϕ ∧ (at most ten x)ϕ.

Hence, if a and b are the truth values of the formulas (at least five x)ϕ and
(at most ten x)ϕ under an M-evaluation v, respectively, then the truth value
of the formula (at least five but at most ten x)ϕ under this M-evaluation v is
found as a ∧ b.
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The other question is how to proceed in the cases of the external and
internal negations. Here the answer is more complicated than in the previous
case, because both negations have absolutely different effect on the formulas
with such fuzzy quantifiers. Recall that a negation of a basic fuzzy quantifier
is again basic fuzzy quantifier (due to Lemma 4.5.2), therefore, it is sufficient
to be interested in the formulas (n(Q1 ~ Q2)x)ϕ that are of the type g. In
order to define the truth values of formulas with such fuzzy quantifiers, we
use the results of Theorem 4.4.6. In particular, from the equality of the
complex fuzzy quantifiers models we will suppose that these complex fuzzy
quantifiers are equivalent, e.g. ∼(Q1&Q2) ≡ (Q1 ⇒ ∼Q2) or C(Q1&Q2) ≡
(CQ1&CQ2). To find the truth value of formulas with such quantifiers we
use the formulas with the equivalent forms of the fuzzy quantifier, e.g. we
use ((Q1 ⇒ ∼Q2)x)ϕ instead of (∼(Q1&Q2)x)ϕ . In the cases of the fuzzy
quantifiers, where we have just the inequalities between their models, i.e.
]∼(Q1 ∧Q2) ≥ ](∼Q1 ∨∼Q2) and ]∼(Q1 ⇒ Q2) ≥ ](Q1&∼Q2), we have to
establish the equivalence of these complex fuzzy quantifiers by the method
“ad-hoc”. Otherwise, there are missing the reasonable rules how to derive the
truth value of formulas with such fuzzy quantifiers (recall that they are of the
type g). As we have mentioned, a natural meaning of the fuzzy quantifiers
negations is given mainly in the residuated lattice, where the law of double
negation is satisfied as e.g. in MV-algebras. This is a positive argument
for the mentioned “ad-hoc” equivalences, because then these equivalences
are established correctly (with regard to the previous consideration) just in
MV-algebras.

Let J (SQ) be a language and M be an Lθ-structure for J (SQ). Then
the truth value ||(Qx)ϕ||LM,v of a formula (Qx)ϕ with a fuzzy quantifier Q

under an M-evaluation v is defined by iterated use of the following steps (put
~ ∈ {&,∧, ∨,⇒}):

(i) if Q := (Q, al), then

||(Qx)ϕ||LM,v =
∨

Y ∈M\{∅}

∧
v∈VM(x,v)

v(x)∈Supp(Y )

(]Q(Y )⊗ ||ϕ||LM,v) ∨ ]Q(∅),

(ii) if Q := (Q, am), then

||(Qx)ϕ||LM,v =
∧

Y ∈M\{∅}

∨
v∈VM(x,v)

v(x)∈Supp(Y )

(||ϕ||LM,v → ]Q(Y )) ∧ ]Q(∅),

(iii) if Q := (Q, g) and Q := Q1 ~ Q2, then we have

||((Q1 ~ Q2)x)ϕ||LM,v = ||(Q1x)ϕ ~ (Q2x)ϕ||LM,v,
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(iv) if Q := (Q, g) and Q :=C (Q1 ~ Q2), then we have

||(C(Q1 ~ Ql)x)ϕ||LM,v = ||((CQ1 ~ CQ2)x)ϕ||LM,v,

(v) if Q := (Q, g) and Q := ∼(Q1 ~ Q2), then we have

||(∼(Q1&Q2)x)ϕ||LM,v = ||((Q1 ⇒ ∼Q2)x)ϕ||LM,v,

||(∼(Q1 ∧ Q2)x)ϕ||LM,v = ||((∼Q1 ∨∼Q2)x)ϕ||LM,v,

||(∼(Q1 ∨ Q2)x)ϕ||LM,v = ||((∼Q1 ∧∼Q2)x)ϕ||LM,v,

||(∼(Q1 ⇒ Q2)x)ϕ||LM,v = ||((∼Q1&∼Q2)x)ϕ||LM,v.

As can be shown, the rules for deriving the truth values of formulas with
the non-basic fuzzy quantifiers are a little complicated, but they reflect our
proceed consideration. Now, for instance, if we suppose a non-basic fuzzy
quantifier Q := (∼(Q1&Q2), g), where we have Q1 := (Q1, al) and Q2 :=
(Q2, am), then the truth value of the formula (Qx)ϕ over an M-evaluation v
is given by

||(∼(Q1&Q2)x)ϕ||LM,v = ||((Q1 ⇒ ∼Q2)x)ϕ||LM,v =

||(Q1x)ϕ ⇒ (∼Qlx)ϕ||LM,v = ||(Q1x)ϕ||LM,v → ||(∼Q2x)ϕ||LM,v,

where the truth value of the formula (Q1x)ϕ is derived by (i) and the truth
value of the formula (Q2x)ϕ by (ii).

In Ex. 4.3.1 on p. 113 we have proposed some Lθ
k-models of the classical

quantifiers ∀ and ∃, where models were defined over the power set P(M).
In the following example we will show that using these Lθ

k-models and in-
troduced rules for the basic fuzzy quantifiers we obtain the standard rules
for deriving the truth values of formulas with the classical quantifiers of the
first-ordered predicate fuzzy logic.

Example 4.7.2. Let (∀, al), (∃, al) ∈ SQ, M be an Lθ-structure for J (SQ)
such that M = P(M), ϕ be a formula with the free variable x and v be an
M-evaluation. Now, according to the rule for al, we have for ∃ := (∃, al)

||(∃x)ϕ||LM,v =
∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(]∃(Y )⊗ ||ϕ||LM,v′) ∨ ]∃(∅) =

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(>⊗ ||ϕ||LM,v′) ∨ ⊥ =

∨
Y ∈M\{∅}
|Y |=1

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(>⊗ ||ϕ||LM,v′) =
∨

v′∈VM(x,v)

||ϕ||LM,v′ ,
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which is the standard rule for the truth values of formulas with the existential
quantifier. Further, we have for ∀ := (∀, al)

||(∀x)ϕ||LM,v =
∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v′ → ]∀(Y )) ∧ ]∀(∅) =

∨

Y ∈M\{∅,M}

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(⊥⊗ ||ϕ||LM,v′) ∨
∧

v′∈VM(x,v)

v′(x)∈M

(>⊗ ||ϕ||LM,v′) ∨ ⊥ =

= ⊥ ∨
∧

v′∈VM(x,v)

||ϕ||LM,v′ =
∧

v′∈VM(x,v)

||ϕ||LM,v′ ,

which gives the standard rule for truth values of formulas with the universal
quantifier.

Remark 4.7.3. It is easy to see that the existential quantifier can not be cor-
rectly established for any fuzzy algebra (contrary to the general quantifier).
Indeed, let us suppose an Lθ-structure M, where the fuzzy algebra M has
the support {∅,M} and |M | > 1. Then M can not be an Lθ-structure for
a language J (SQ) containing ∃, because there is no Lθ

k-model ]∃ : M→ L
expressing the existential quantifier. For instance, if ]∃ : M→ L is defined
analogously as in Ex. 4.3.1, then we obtain

||(∃x)ϕ||LM,v =
∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′∈Supp(Y )

(>⊗ ||ϕ||LM,v) ∨ ⊥ =
∧

v′∈VM(x,v)

||ϕ||LM,v,

which is not possible to accept. Therefore, if we deal with a language J (SQ)
containing some fuzzy quantifiers, which are dependent on the form of used
fuzzy algebras, then the language J (SQ) has the Lθ-structures with the suit-
able fuzzy algebra to the Lθ

k-models of the fuzzy quantifiers from J (SQ) be
correctly established. For example, if ∃ ∈ J (SQ), then we can suppose only
such Lθ-structures, whose fuzzy algebras have the following form. To each
element m ∈ M there exists A ∈M such that Supp(A) = {m}.

Example 4.7.4. Let (∀, al), (∃, al), (∀not, am), (∃not, am) ∈ SQ, M be an Lθ-
structure for J (SQ), whereM = F(M), ϕ be a formula with the free variable
x and v be an M-evaluation. Suppose that all quantifiers are interpreted in
the Lθ-structure M analogously as in Ex. 4.3.1 and 4.3.2. Then we have
||(∃notx)ϕ||LM,v = ||(∀x)¬ϕ||LM,v and ||(∀notx)ϕ||LM,v = ||(∃x)¬ϕ||LM,v. In fact,
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we can write

||(∃notx)ϕ||LM,v =
∧

Y ∈M

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v → ]∃not(Y )) ∧ ]∃not(∅) =

∧
Y ∈M

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v → ⊥) ∧ > =
∧

v′∈VM(x,v)

v′(x)∈M

||¬ϕ||LM,v = ||(∀x)¬ϕ||LM,v.

Analogously, the second equality could be done. Note that ||¬((Qx)ϕ)||LM,v =
||(∼Qx)ϕ||LM,v holds in every MV-algebra (see Theorem 4.7.9). Since we can

establish ∃not := ∼∃ and ∀not := ∼∀ (see Ex. 4.4.1), we obtain

||(∃x)ϕ||LM,v = ||¬((∀x)¬ϕ)||LM,v, (4.36)

||(∀x)ϕ||LM,v = ||¬((∃x)¬ϕ)||LM,v (4.37)

in MV-algebras.

As we have mentioned there are the fuzzy quantifiers being of the types
al and simultaneously am. In order to our definition of evaluation rules (i)
and (ii) be correct, we have to show that it does not depend on the choice
of the evaluation rule for the mentioned fuzzy quantifiers.

Lemma 4.7.1. Let M be an Lθ-structure for J (SQ), (a, al), (b, am) ∈ SQ
be constant fuzzy quantifiers, ϕ be a formula with the free variable x and
v be an M-evaluation. Putting Qa := (a, al) and Qb := (b, am), we have
||(Qax)ϕ||LM,v = a and ||(Qbx)ϕ||LM,v = b.

Proof. Let us suppose that ϕ is a formula with the free variable x and v is
an M-evaluation. Then we have for Qa := (a, al)

||(Qax)ϕ||LM,v =
∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(a⊗ ||ϕ||LM,v′) ∨ a = a.

and for Qb := (b, am)

||(Qbx)ϕ||LM,v =
∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v′ → b) ∧ b = b,

because b = > → b ≤ ||ϕ||LM,v′ → b for any M-evaluation v′.

Theorem 4.7.2. Let Q be a fuzzy quantifier from J (SQ) such that it is of
the type al and simultaneously am. If ϕ is a formula with the free variable
x, then it does not depend on the choice of the evaluation rule (i.e. for al or
am) to derive the truth value of the formula (Qx)ϕ.
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Proof. It is a straightforward consequence of the previous lemma.

Let Q, ∃,∀ ∈ J (SQ), where Q := (Q, al) is an arbitrary fuzzy quantifier
such that ]Q(∅) = ⊥ holds in every Lθ-structure for J (SQ). Further, let M
be an Lθ-structure for J (SQ), where the Lθ

k-models of ∀ and ∃ are defined
analogously as above18, ϕ be a formula with the free variable x and v be an
M-evaluation. Then obviously we can write

||(∀x)ϕ||LM,v ≤ ||(Qx)ϕ||LM,v ≤ ||(∃x)ϕ||LM,v. (4.38)

Now let us suppose that also Q′,∃not,∀not ∈ J (SQ), where Q′ := (Q′, am) is
an arbitrary fuzzy quantifier such that ]Q(∅) = > holds in every Lθ-structure
for J (SQ), ∃not := (∃not, am) and ∀not := (∀not, am). If the Lθ

k-models of ∀not

and ∃not are defined analogously as in Ex. 4.3.2, then we can write

||(∃notx)ϕ||LM,v ≤ ||(Q′x)ϕ||LM,v ≤ ||(∀notx)ϕ||LM,v. (4.39)

This fact can be extended to the cases, where one model of a basic fuzzy
quantifier Q is greater than or equal to another model of a basic fuzzy quan-
tifier Q′ with the same type.

Theorem 4.7.3. Let M be an arbitrary Lθ-structure for a language J (SQ),
(Q, ι), (Q′, ι) ∈ SQ be basic fuzzy quantifiers with the same type ι such that
]Q ≥ ]Q′ in M, ϕ be a formula with the free variable x and v be an M-
evaluation. Putting Q := (Q, ι) and Q′ := (Q′, ι), we have

||(Qx)ϕ||LM,v ≥ ||(Q′x)ϕ||LM,v. (4.40)

Proof. Let ϕ be a formula with the free variable x and v be an M-evaluation.
First, we assume that Q := (Q, al),Q′ := (Q′, al) and ]Q ≥ ]Q′ in M. Since
]Q(A) ≥ ]Q′(A) holds for any A ∈M, then we have

||(Qx)ϕ||LM,v =
∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(]Q(Y )⊗ ||ϕ||LM,v′) ∨ ]Q(∅) ≥

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(]Q′(Y )⊗ ||ϕ||LM,v′) ∨ ]Q′(∅) = ||(Q′x)ϕ||LM,v,

where the inequality follows from the isotonicity of ⊗. Analogical result could
be obtained, when the fuzzy quantifiers of the type am are supposed. Again,
it follows from the isotonicity of the residuum in the second argument.

18It means that the fuzzy algebra of M has the form introduced in Remark 4.7.3 and
the mappings ]∃ and ]∀ are defined over that analogously as in Ex. 4.3.1. Moreover, for
the fuzzy quantifier Q we do not suppose a special Lθ

k-model.
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Let M = 〈M,M, (rP )P , (fF )F , (ma)a, (]Q)Q〉 be an Lθ-structure for a
language J (SQ). An L-substructure MY = 〈Y, (rP,Y )P , (fF,Y )F , (ma)a〉 of
M, where Y ⊆ M , rP,Y and fF,Y are the corresponding restrictions of rP ,
fF on Y , respectively, and ma ∈ Y for each object constant from J , is an
L-structure for J . Obviously, MY can not be established for each Y , in
general. For example, J has to possess no logical constant. In the case,
that MY may be established for every Y ∈ M, we can state a theorem
which demonstrates our idea of fuzzy quantifiers introduction mentioned in
the section Motivation. Recall that if a formula has just one free variable x,
then we obtain ||(Qx)ϕ||LM = ||(Qx)ϕ||LM,v for an arbitrary M-evaluation v.
Note that this theorem is not true, if we suppose formulas with more than
one free variable.

Theorem 4.7.4. Let L be an MV-algebra, M be an Lθ-structure for J (SQ)
such that MY is the L-structure for the language J for any non-empty subset
Y ⊆ M and ϕ be a formula with just one free variable x. If Q := (Q, al) is
a fuzzy quantifier from J (SQ), then we have

||(Qx)ϕ||LM =
∨

Y ∈M\{∅}
(||(∀x)ϕ||LMY

⊗ ]Q(Y )) ∨ ]Q(∅). (4.41)

If Q := (Q, am) is a fuzzy quantifier from J (SQ), then we have

||(Qx)ϕ||LM =
∧

Y ∈M\{∅}
(||(∃x)ϕ||LMY

→ ]Q(Y )) ∧ ]Q(∅). (4.42)

Proof. Here we will show only the first statement, the second one could be
done by analogy. Let Q ∈ J (SQ), where Q := (Q, al), be a fuzzy quantifier,
ϕ be a formula with just one free variable x and v be an M-evaluation. Since∧

i∈I(a⊗ bi) = a⊗∧
i∈I bi holds in each MV-algebra, then we have

||(Qx)ϕ||LM = ||(Qx)ϕ||LM,v =

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(]Q(Y )⊗ ||ϕ||LM,v′) ∨ ]Q(∅) =

∨

Y ∈M\{∅}
(]Q(Y )⊗

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

||ϕ||LM,v′) ∨ ]Q(∅) =

∨

Y ∈M\{∅}
(]Q(Y )⊗

∧

v′′∈VMY
(x,v′)

||ϕ||LM,v′′) ∨ ]Q(∅) =

∨

Y ∈M\{∅}
(||(∀x)ϕ||LM ⊗ ]Q(Y )) ∨ ]Q(∅),

where v′ : OV → Y is an arbitrary MY -evaluation.
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The last part of this section is devoted to L-tautologies of the first-ordered
fuzzy logic with fuzzy quantifiers. The choice of formulas, which are the L-
tautologies, was motivated by the L-tautologies with the classical quantifiers
(see e.g. [41]). Further, we restricted ourselves to the basic fuzzy quantifies
of an arbitrary fuzzy quantifiers structure over Q. Since the classical quan-
tifiers are of the type al, a similarity to the standard L-tautologies could
be observed in the cases of L-tautologies with fuzzy quantifiers of the type
al. The L-tautologies whit fuzzy quantifiers am result from the considered
L-tautologies with the previous type. Recall that we suppose only regular
languages J (SQ), i.e. the languages having at least one Lθ-structure19.

Theorem 4.7.5. Let L be a complete residuated lattice, Q,∼Q,∼∼Q be
basic fuzzy quantifiers from J (SQ), ϕ be a formula with the free variable x.
Then we have

|= (Qx)ϕ ⇒ (∼∼Qx)ϕ, (4.43)

|= (∼Qx)ϕ ⇒ ¬((Qx)ϕ), (4.44)

|= (∼∼Qx)ϕ ⇒ ¬¬((Qx)ϕ). (4.45)

Proof. Obviously, the statement (4.43) follows from Theorems 4.4.5 and
4.7.3. Further, let us suppose that Q := (Q, al). Since J (SQ) is regular,
then we have ∼Q := (∼Q, am), which follows from Lemma 4.5.2. If ϕ is a
formula with the free variable x, M is an Lθ-structure and v is M-evaluation,
then we have

||¬((Qx)ϕ)||LM,v =
( ∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(]Q(Y )⊗ ||ϕ||LM,v′) ∨ ]Q(∅)) → ⊥ =

( ∧

Y ∈M\{∅}

( ∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(]Q(Y )⊗ ||ϕ||LM,v′)
) → ⊥) ∧ (]Q(∅) → ⊥) ≥

∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

((]Q(Y )⊗ ||ϕ(x)||LM,v′) → ⊥) ∧ ]∼Q(∅) =

∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v′ → (]Q(Y ) → ⊥)) ∧ ]∼Q(∅) =

∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v′ → ]∼Q(Y )) ∧ ]∼Q(∅) = ||(∼Qx)ϕ||LM,v.

19In the opposite case, it has no sense to investigate some tautologies.
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Hence, we obtain > = ||(∼Qx)ϕ||LM,v → ||¬((Qx)ϕ)||LM,v = ||(∼Qx)ϕ ⇒
¬((Qx)ϕ)||LM,v for any Lθ-structure M and M-evaluation v and thus the
statement is true for Q := (Q, al). Now let us suppose that Q := (Q, am).
Again, due to the regularity of J (SQ) and Lemma 4.5.2, we have ∼Q :=
(∼Q, al) and thus, analogously to the previous case we can write

||¬((Qx)ϕ)||LM,v =
( ∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v′ → ]Q(Y )) ∧ ]Q(∅)) → ⊥ ≥

( ∨

Y ∈M\{∅}

( ∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

||ϕ||LM,v′ → ]Q(Y )
) → ⊥) ∨ (]Q(∅) → ⊥) =

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(
(||ϕ||LM,v′ → ]Q(Y )) → ⊥) ∨ ]∼Q(∅) ≥

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(
(]Q(Y ) → ⊥)⊗ ||ϕ||LM,v′

) ∨ ]Q(∅) =

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(]∼Q(Y )⊗ ||ϕ||LM,v′) ∨ ]Q(∅) = ||(∼Qx)ϕ||LM,v,

where we use a ⊗ (b → c) ≤ (a → b) → c. This inequality follows from
a ⊗ (a → b) ⊗ (b → c) ≤ a ⊗ c ≤ c, where (A.7) of Theorem A.1.1 is used,
and adjointness. Thus, we have > = ||(∼Qx)ϕ ⇒ ¬((Qx)ϕ)||LM,v for any Lθ-
structure M and M-evaluation v and the statement is true for Q := (Q, am).
The last statement is an immediate consequence of (4.44).

Theorem 4.7.6. Let L be a complete residuated lattice, Q,∼Q be fuzzy
quantifiers from J (SQ) such that Q be of the type al, ϕ be a formula with
the free variable x and ν be a formula, where x is not free. Then we have

|= (Qx)(ν ⇒ ϕ) ⇒ (ν ⇒ (Qx)ϕ), (4.46)

|= (ν&(Qx)ϕ) ⇒ (Qx)(ν&ϕ), (4.47)

|= (Qx)(¬ϕ ⇒ ν) ⇒ ((∼Qx)ϕ ⇒ ν). (4.48)

Proof. Let Q := (Q, al) be a fuzzy quantifier of J (SQ), ϕ be a formula with
the free variable x and ν be a formula, where x is not free in ν. Further, let
M be an arbitrary Lθ-structure for J (SQ) and v be an M-evaluation. Since
x is not free in ν, then ||ν||LM,v = ||ν||LM,v′ holds for any v′ ∈ VM(x, v). Hence,
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we can put ||ν||LM,v = a. Now we have

||ν ⇒ (Qx)ϕ||LM,v = a → ( ∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(]Q(Y )⊗ ||ϕ||LM,v) ∨ ]Q(∅)) ≥

(a →
∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(]Q(Y )⊗ ||ϕ||LM,v)) ∨ (a → ]Q(∅)) ≥

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(]Q(Y )⊗ (a → ||ϕ||LM,v)) ∨ ]Q(∅) = ||(Qx)(ν ⇒ ϕ)||LM,v,

where the inequalities b⊗ (a → c) ≤ a → (b⊗ c) and b ≤ a → b are applied.
Hence, we obtain ||(Qx)(ν ⇒ ϕ) ⇒ (ν ⇒ (Qx)ϕ)||LM,v = > for any Lθ-
structure M for J (SQ) and M-evaluation v and thus the first statement is
proved. Further, we have

||(Qx)(ϕ&ν)||LM,v =
∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(]Q(Y )⊗ (||ϕ||LM,v ⊗ a)) ∨ ]Q(∅) ≥

(
a⊗

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(]Q(Y )⊗ ||ϕ||LM,v)
) ∨ (

a⊗ ]Q(∅)) =

a⊗ ( ∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(]Q(Y )⊗ ||ϕ||LM,v) ∨ ]Q(∅)) = ||ν&(Qx)ϕ||LM,v.

Hence, we obtain ||(ν&(Qx)ϕ) ⇒ ((Qx)ν&ϕ)||LM,v = > for any Lθ-structure
M for J (SQ) and M-evaluation v and the second statement is true. Since
J (SQ) is regular, then we have ∼Q := (∼Q, am). Now we can write

||(Qx)(¬ϕ ⇒ ν)||LM,v =∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(]Q(Y )⊗ (||¬ϕ||LM,v′ → a)) ∨ ]Q(∅) ≤

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

((]Q(Y ) → ||¬ϕ||LM,v′) → a) ∨ ((]Q(∅) → ⊥) → ⊥) ≤

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

((||ϕ||LM,v′ → ]∼Q(Y )) → a) ∨ (]∼Q(∅) → a) ≤

(
∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Y

(||ϕ||LM,v′ → ]∼Q(Y )) ∧ ]∼Q(∅)) → a =

||(∼Qx)ϕ ⇒ ν||LM,v,
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where a⊗ (b → c) ≤ (a → b) → and a → (b → c) = b → (a → c) are applied.
Hence, we obtain ||(Qx)(¬ϕ ⇒ ν) ⇒ ((∼Qx)ϕ ⇒ ν)||LM,v = > for any

Lθ-structure M for J (SQ) and M-evaluation v and thus the last statement
is proved.

Theorem 4.7.7. Let L be a complete residuated lattice, Q,∼Q be fuzzy
quantifiers from J (SQ) such that Q be of the type am, ϕ be a formula with
the free variable x and ν be a formula, where x is not free. Then we have

|= (ν&(Qx)ϕ) ⇒ (Qx)(ν ⇒ ϕ), (4.49)

|= (Qx)(ν&ϕ) ⇒ (ν ⇒ (Qx)ϕ), (4.50)

|= (∼Qx)(¬ϕ ⇒ ν) ⇒ ((Qx)ϕ ⇒ ν). (4.51)

Proof. Let Q := (Q, am) be a fuzzy quantifier of J (SQ), ϕ be a formula with
the free variable x and ν be a formula, where x is not free in ν. Further,
let M be an arbitrary Lθ-structure for J (SQ) and v be an M-evaluation.
Analogously to the proof of the previous theorem, we can put ||ν||LM,v = a.
Then we have

||(Qx)(ν ⇒ ϕ)||LM,v =∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

((a → ||ϕ||LM,v) → ]Q(Y )) ∧ ]Q(∅) ≥

∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(a⊗ (||ϕ||LM,v → ]Q(Y ))) ∧ ]Q(∅) ≥

a⊗ ( ∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v → ]Q(Y ))
) ∧ (a⊗ ]Q(∅)) ≥

a⊗ ( ∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v → ]Q(Y )) ∧ ]Q(∅)) =

||ν||LM,v ⊗ ||(Qx)ϕ||LM,v = ||ν&(Qx)ϕ||LM,v,

where a ⊗ (b → c) ≤ (a → b) → c and a ⊗ b ≤ b are applied. Hence, we
obtain ||(ν&(Qx)ϕ) ⇒ (Qx)(ν ⇒ ϕ)||LM,v = > for any Lθ-structure M for
J (SQ) and M-evaluation v and the first statement is proved. Further, we
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have

||(Qx)(ν&ϕ)||LM,v =∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(
(a⊗ ||ϕ||LM,v) → ]Q(Y )

) ∧ ]Q(∅) =

∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(
a → (||ϕ||LM,v → ]Q(Y ))

) ∧ ]Q(∅) ≤

(
a →

∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v → ]Q(Y ))
) ∧ (a → ]Q(∅)) =

a → ( ∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v → ]Q(Y )) ∧ ]Q(∅)) =

||ν||LM,v → ||(Qx)ϕ||LM,v = ||ν ⇒ (Qx)ϕ||LM,v,

where (a ⊗ b) → c = a → (b → c) and b ≤ a → b are applied. Hence, we
obtain ||(Qx)(ν&ϕ) ⇒ (ν ⇒ (Qx)ϕ)||LM,v = > for any Lθ-structure M for
J (SQ) and M-evaluation v and the second statement is also proved. Since
J (SQ) is regular, then we have ∼Q := (∼Q, al). Now we can write

||(Qx)ϕ ⇒ ν||LM,v =
( ∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v → ]Q(Y )) ∧ ]Q(∅)) → a ≥

(
(

∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v → ]Q(Y ))) → a
) ∨ (]Q(∅) → a) ≥

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(
(]∼Q(Y ) → ||¬ϕ||LM,v) → a

) ∨ ]∼Q(∅) ≥

∨

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(]∼Q(Y )⊗ (||¬ϕ||LM,v → a)) ∨ ]∼Q(∅) =

||(∼Qx)(¬ϕ ⇒ ν)||LM,v,

where (a → b) → c ≥ ((b → ⊥) → (a → ⊥)) → c and then a ⊗ (b → c) ≤
(a → b) → c are applied. Hence, we obtain ||(∼Qx)(¬ϕ ⇒ ν) ⇒ ((Qx)ϕ ⇒
ν)||LM,v = > for any Lθ-structure M for J (SQ) and M-evaluation v and the
last statement is proved.

Theorem 4.7.8. Let L be a complete residuated lattice, Q be a basic fuzzy
quantifier from J (SQ), ϕ be a formula with the free variable x and ν be a
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formula, where x is not free. If Q := (Q, al) and ]Q(∅) = ⊥ holds in each
L-structure M for J (SQ), then

|= (Qx)(ν ∧ ϕ) ⇒ (ν ∧ (Qx)ϕ). (4.52)

If Q := (Q, am) and ]Q(∅) = > holds in each Lθ-structure M for J (SQ),
then

|= (ν ∨ (Qx)ϕ) ⇒ (Qx)(¬ν ∧ ϕ). (4.53)

Proof. Let Q be a basic fuzzy quantifier of J (SQ), ϕ be a formula with the
free variable x and ν be a formula, where x is not free in ν. Further, let
M be an arbitrary L-structure for J (SQ) and v be an M-evaluation. Put
||ν||LM,v = a. If Q := (Q, al) such that ]Q(∅) = ⊥ in every Lθ-structure for
J (SQ), then we have

||(Qx)(ϕ ∧ ν)||LM,v =∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(]Q(Y )⊗ (||ϕ||LM,v ∧ a)) ∨ ⊥ ≤

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

((]Q(Y )⊗ ||ϕ||LM,v) ∧ (]Q⊗ a)) ≤

a ∧ ( ∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(]Q(Y )⊗ ||ϕ||LM,v) ∨ ⊥
)

= ||ν ∧ (Qx)ϕ||LM,v.

Hence, we obtain ||(Qx)(ν∧ϕ) ⇒ (ν∧(Qx)ϕ)||LM,v = > for any Lθ-structure
M and M-evaluation v and thus the first statement is proved. Now let us
suppose Q := (Q, am) such that ]Q(∅) = > in every Lθ-structure for J (SQ).
Then we have

||ν ∨ (Qx)ϕ||LM,v = a ∨ ( ∧
Y ∈M

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v → ]Q(Y )) ∧ >) ≤

∧
Y ∈M

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(
a ∨ (||ϕ||LM,v → ]Q(Y ))

) ≤

∧
Y ∈M

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(
(a → ⊥) → ⊥) ∨ (||ϕ||LM,v → ]Q(Y ))

) ≤

∧
Y ∈M

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(
((a → ⊥) ∧ ||ϕ||LM,v) → ]Q(Y )

)
= ||(Qx)(¬ν ∧ ϕ)||LM,v.



152 Fuzzy logic with fuzzy quantifiers: syntax and semantics

Hence, we obtain ||(ν∨(Qx)ϕ) ⇒ (Qx)(¬ν∧ϕ)||LM,v = > for any L-structure
M for J (SQ) and M-evaluation v and the second statement is proved.

Theorem 4.7.9. Let L be a complete MV-algebra, Q, ∼Q be basic fuzzy
quantifiers of J (SQ), ϕ be a formula with the free variable x. Then we have

|= ¬((Qx)ϕ) ⇔ (∼Qx)ϕ. (4.54)

Proof. First, let us recall that
∨

i∈I(ai → b) = (
∧

i∈I ai) → b holds in every
MV-algebra. Let us suppose that Q := (Q, al) and thus ∼Q := (∼Q, am). If
ϕ is a formula with the free variable x, M is an L-structure for J (SQ) and
v is an M-evaluation, then we have

||(∼Qx)ϕ||LM,v =∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v′ → ]∼Q(Y )) ∧ ]∼Q(∅) =

∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v′ → (]Q(Y ) → ⊥)) ∧ (]Q(∅) → ⊥) =

(( ∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v′ ⊗ ]Q(Y ))
) → ⊥) ∧ (]Q(∅) → ⊥) =

( ∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v′ ⊗ ]Q(Y )) ∧ ]Q(∅)) → ⊥ = ||¬((Qx)ϕ)||LM,v.

Hence, we obtain ||¬((Qx)ϕ) ⇔ (∼Qx)ϕ||LM,v = > for any Lθ-structure M
for J (SQ) and M-evaluation v and thus the statement is true for Q := (Q, al).
The proof for Q := (Q, am) could be done by analogy, where the inequality
(a → b) → ⊥ = a⊗ (b → ⊥) is applied.

Theorem 4.7.10. Let L be a complete MV-algebra, Q be a basic fuzzy quan-
tifier from J (SQ), ϕ be a formula with the free variable x and ν be a formula,
where x is not free. If Q := (Q, al), then we have

|= (Qx)(ν ∨ ϕ) ⇒ (ν ∨ (Qx)ϕ). (4.55)

If Q := (Q, am), then we have

|= (Qx)(ν ∨ ϕ) ⇒ (ν ∧ (Qx)ϕ). (4.56)
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Proof. Let ϕ be a formula with the free variable x and ν be a formula, where
x is not free in ν. Further, let M be an arbitrary Lθ-structure for J (SQ) and
v be an M-evaluation. Put ||ν||LM,v = a. Now, if Q := (Q, al), then we have

||(Qx)(ν ∨ ϕ)||LM,v =
∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(]Q(Y )⊗ (a ∨ ||ϕ||LM,v′)) ∨ ]Q(∅) ≤

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(a ∨ (]Q(Y )⊗ ||ϕ||LM,v′)) ∨ ]Q(∅) =

a ∨ ( ∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(]Q(Y )⊗ ||ϕ||LM,v′) ∨ ]Q(∅)) = ||ν ∨ (Qx)ϕ||LM,v,

where the distributivity of ∨ over ∧ is used. Hence, we obtain ||(Qx)(ν ∨
ϕ) ⇒ (ν ∨ (Qx)ϕ)||LM,v for any Lθ-structure M for J (SQ) and M-evaluation
v and thus the first statement is proved. Let us suppose that Q := (Q, am).
Then we have

||(Qx)(ν ∨ ϕ)||LM,v =
∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Y

((a ∨ ||ϕ||LM,v) → ]Q(Y )) ∧ ]Q(∅) =

∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Y

(
(a → ]Q(Y )) ∧ (||ϕ||LM,v → ]Q(Y ))

) ∧ ]Q(∅) ≤

∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Y

(a ∧ (||ϕ||LM,v → ]Q(Y ))
) ∧ ]Q(∅) =

a ∧ ( ∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Y

(||ϕ||LM,v → ]Q(Y )) ∧ ]Q(∅)) = ||ν ∧ (Qx)ϕ||LM,v,

where the distributivity of ∧ over ∨ is used. Hence, we obtain ||(Qx)(ν ∨
ϕ) ⇒ (ν ∧ (Qx)ϕ)||LM,v = > for any Lθ-structure M for J (SQ) and M-
evaluation v and the second statement is also proved.

Remark 4.7.5. The statement (4.56) is also true, if we suppose only complete
divisible residuated lattices.

Theorem 4.7.11. Let L be a complete MV-algebra, Q be a basic fuzzy quan-
tifier from J (SQ), ϕ be a formula with the free variable x and ν be a formula,
where x is not free in ν. If Q := (Q, al) such that ]Q(∅) = ⊥ in each Lθ-
structure for J (SQ), then we have

|= (ν&(Qx)ϕ) ⇔ (Qx)(ν&ϕ). (4.57)
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If Q := (Q, am) such that ]Q(∅) = > in each Lθ-structure for J (SQ), then
we have

|= (Qx)(ν&ϕ) ⇔ (ν ⇒ (Qx)ϕ). (4.58)

Proof. The proof of (4.57) is analogical to the proof of (4.47), where
∨

i∈I(a⊗
bi) = a ⊗ (

∨
i∈I bi) is applied. Similarly, the proof of (4.58) is analogical to

the proof of (4.50), where
∨

i∈I(a → bi) = a → ∧
i∈I bi is applied.

Theorem 4.7.12. Let L be a complete residuated lattice, ∀,∃,Q,∼Q be
fuzzy quantifiers from J (SQ) such that Q be of the type al and ]Q(∅) = ⊥
holds in every Lθ-structure for J (SQ), ϕ and ν be formulas with the free
variable x. Then we have

|= (∀x)ϕ ⇒ (Qx)ϕ, (4.59)

|= (Qx)ϕ ⇒ (∃x)ϕ, (4.60)

|= (Qx)(ϕ ⇒ ν) ⇒ ((∀x)ϕ ⇒ (Qx)ν), (4.61)

|= (Qx)(¬ϕ ⇒ ν) ⇒ ((∼Qx)ϕ ⇒ (∃x)ν). (4.62)

Proof. Let Q := (Q, al) be a fuzzy quantifier from J (SQ) such that ]Q(∅) =
⊥ in every Lθ-structure for J (SQ). Then, clearly, we have ∼Q := (∼Q, am)
with ]∼Q(∅) = > in every Lθ-structure for J (SQ). Further, let ϕ and ν be
formulas with the free variable x, M be an arbitrary Lθ-structure for J (SQ)
and v be an arbitrary M-evaluation. The first two statements are immediate
consequences of Theorem 4.7.3 (see also the inequality (4.38)). Further, we
have

||(Qx)(ϕ ⇒ ν)||LM,v =∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(]Q(Y )⊗ (||ϕ||LM,v′ → ||ν||LM,v′)) ∨ ]Q(∅) ≤

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(||ϕ||LM,v′ → (]Q(Y )⊗ ||ν||LM,v′)) ≤

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

((
∧

v′∈VM(x,v)

v′(x)∈M

||ϕ||LM,v′) → (]Q(Y )⊗ ||ν||LM,v′)) ≤

(
∧

v′∈VM(x,v)

v′(x)∈M

||ϕ||LM,v′) → (
∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(]Q(Y )⊗ ||ν||LM,v′)) =

||(∀x)ϕ||LM,v → ||(Qx)ν||LM,v = ||(∀x)ϕ ⇒ (Qx)ν||LM,v.
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Hence, we obtain ||(∼Qx)(ϕ ⇒ ν) ⇒ ((∀x)ϕ ⇒ (∼Qx)ν)||LM,v = > for any

Lθ-structure M for J (SQ) and M-evaluation v and the third statement is
proved. Finally, we have

||(Qx)(¬ϕ ⇒ ν||LM,v =∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(]Q(Y )⊗ (||¬ϕ||LM,v′ → ||ν||LM,v′)) ≤

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(
(||ϕ||LM,v′ → ]∼Q(Y )) →

∨

v′∈VM(x,v

||ν||LM,v′
) ≤

( ∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Y

(||ϕ||LM,v′ → ]∼Q(Y ))
) → ( ∨

v′∈VM(x,v

||ν||LM,v′
)

=

||(∼Qx)ϕ||LM,v → ||(∃x)ν||LM,v = ||(∼Qx)ϕ ⇒ (∃x)ν||LM,v.

Hence, we obtain ||(Qx)(¬ϕ ⇒ ν) ⇒ ((∼Qx)ϕ ⇒ (∃x)ν)||LM,v = > for

any Lθ-structure M for J (SQ) and M-evaluation v and the last statement
is proved.

Theorem 4.7.13. Let L be a complete residuated lattice, ∀not,∃not,Q,∼Q be
fuzzy quantifiers from J (SQ) such that Q be of the type am and ]Q(∅) = >
holds in every Lθ-structure for J (SQ), ϕ and ν be formulas with the free
variable x. Then we have

|= (∃notx)ϕ ⇒ (Qx)ϕ, (4.63)

|= (Qx)ϕ ⇒ (∀notx)ϕ, (4.64)

|= ((∃notx)ϕ&(Qx)ν) ⇒ (Qx)(¬ϕ ⇒ ν), (4.65)

|= (∼Qx)(¬ϕ ⇒ ¬ν) ⇒ ((Qx)ϕ ⇒ (∀notx)ν). (4.66)

Proof. Let Q := (Q, am) be a fuzzy quantifier from J (SQ) such that ]Q(∅) =
> in every Lθ-structure for J (SQ). Obviously, we have ∼Q := (∼Q, al) with
]∼Q(∅) = ⊥ in every Lθ-structure for J (SQ). Further, let ϕ and ν be
formulas with the free variable x, M be an arbitrary Lθ-structure for J (SQ)
and v be an arbitrary M-evaluation. Again, the first two statements are
immediate consequences of Theorem 4.7.3 (see also the inequality (4.39)).
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Since ||((∃notx)ϕ||LM,v =
∧

v′∈VM(x,v)(||ϕ||LM,v → ⊥), then we have

||(Qx)(¬ϕ ⇒ ν)||LM,v =∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(
((||ϕ||LM,v′ → ⊥) → ||ν||LM,v′) → ]Q(Y )

) ≥

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(
(||ϕ||LM,v′ → ⊥)⊗ (||ν||LM,v′ → ]Q(Y ))

) ≥

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(
(

∧
v′∈VM(x,v)

v′∈M

(||ϕ||LM,v′ → ⊥))⊗ (||ν||LM,v′ → ]Q(Y ))
) ≥

∧

v′∈VM(x,v)

(||ϕ||LM,v′ → ⊥)⊗
∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(||ν||LM,v′ → ]Q(Y )) =

||(∃notx)ϕ||LM,v ⊗ ||(Qx)ν||LM,v = ||(∃notx)ϕ&(Qx)ν||LM,v.

Hence, we obtain ||(∃notx)ϕ&(Qx)ν ⇒ (Qx)(¬ϕ ⇒ ν)||LM,v = > for any

Lθ-structure M for J (SQ) and M-evaluation v and thus the third statement
is also proved. Since ||((∀notx)¬ν||LM,v =

∨
v′∈VM(x,v)(||¬ϕ||LM,v → ⊥), then

we have

||∼Qx)(¬ϕ ⇒ ν)||LM,v =∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(]∼Q(Y )⊗ (||¬ϕ||LM,v → ||ν||LM,v)) ≤

∨

Y ∈M\{∅}

∧
v′∈VM(x,v)

v′(x)∈Y

(
(]∼Q(Y ) → ||¬ϕ||LM,v′) →

∨

v∈VM(x,v)

(||¬ν||LM,v′ → ⊥)
) ≤

( ∧

Y ∈M\{∅}

∨
v′∈VM(x,v)

v′(x)∈Y

(]Q(Y ) → ||ϕ||LM,v′)
) → ( ∨

v∈VM(x,v)

(||¬ν||LM,v′ → ⊥)
)

=

||(Qx)ϕ||LM,v → ||(∀notx)¬ν||LM,v = ||(Qx)ϕ ⇒ (∀notx)¬ν||LM,v.

Hence, we obtain || |= (∼Qx)(¬ϕ ⇒ ¬ν) ⇒ ((Qx)ϕ ⇒ (∀notx)ν)||LM,v = >
for any Lθ-structure M for J (SQ) and M-evaluation v and thus the last
statement is also proved.
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4.8 Calculation of truth values of formulas

with basic fuzzy quantifiers

In this section we will deal with finite L-structures, i.e. their domains are
finite, where L is a complete linearly ordered residuated lattice. In order
to compute the truth value of a formula with a basic fuzzy quantifier, we
have to use a procedure that generates either all or many fuzzy subsets of
a domain M . Note that the set of all supports of fuzzy sets from M is
usually equal to the power set of M . Obviously, for greater cardinalities of
L-structures domains we will face a problem of the “real time”. A solution
that gives a possibility to compute the mentioned truth values of formulas
with basic fuzzy quantifiers, if we restrict ourselves to fuzzy quantifiers over
special fuzzy algebras, will be given in Theorem 4.8.2. In the other cases,
we may apply Lemma 4.8.1 to find lower and upper limits between which
the truth value can be expected. Before we state the mentioned lemma and
theorem we will introduce several notions.

Let L be a complete linearly residuated lattice, M be a L-structure for
J (SQ) with the domain M = {m1, . . . , mn} and ]Q : M → L be an Lθ

k-
model of a basic fuzzy quantifier Q from J (SQ). If ϕ is a formula with a
free variable x and v is an M-evaluation, then we establish

ϕv = (||ϕ||LM,v1
, ||ϕ||LM,v2

, . . . , ||ϕ||LM,vn
), vi ∈ VM(x, v), (4.67)

where ||ϕ||LM,vi
≥ ||ϕ||LM,vj

, whenever i ≤ j. Further, we put for the fuzzy
quantifier Q := (Q, al)

qal
min = (q1, . . . , qn), qi =

{ ∧
A∈M\{∅}
|Supp(A)|=i

]Q(A), if there is |Supp(A)| = i;

⊥, otherwise.

qal
max = (q1, . . . , qn), qi =

{ ∨
B∈M\{∅}
|Supp(B)|=i

]Q(B), if there is |Supp(B)| = i;

⊥, otherwise.

If qal
min = qal

max, then we will write qal for short. Analogously, we put for the
fuzzy quantifier Q := (Q, am)

qam
min = (q1, . . . , qn), qi =

{ ∧
A∈M\{∅}
|Supp(A)|=i

]Q(A), if there is |Supp(A)| = i;

>, otherwise.

qam
max = (q1, . . . , qn), qi =

{ ∨
B∈M\{∅}
|Supp(B)|=i

]Q(B), if there is |Supp(B)| = i;

>, otherwise.
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Again, if qam
min = qam

max, then we will write qam for short. If for any i = 1, . . . , n
there is A ∈ M such that |Supp(A)| = i, then clearly we have qal

min = qam
min

and qal
max = qam

max.

Let x, y be vectors of Ln. Then the product of vectors x and y is defined
as follows

x⊗ y =
∨
{xi ⊗ yi | i = 1, . . . , n}. (4.68)

Analogously, the residuum of vectors x and y is defined by

x → y =
∧
{xi → yi | i = 1, . . . , n}. (4.69)

Now we can state the mentioned lemma that shows us how to construct
the boundaries of an interval, where the truth value of a formula with basic
fuzzy quantifier lies. Recall that consequences of the linearity of residuated
lattices are the equality

∧n
i=1(ai ⊗ b) = (

∧n
i=1 ai) ⊗ b and

∨n
i=1(ai → b) =

(
∧n

i=1 ai) → b.

Lemma 4.8.1. Let L be a complete linearly ordered residuated lattice, Q be
a basic fuzzy quantifier from J (SQ), M be an L-structure for J (SQ) with
the finite domain M , ϕ be a formula with the free variable x and v be an
M-evaluation. If Q := (Q, al), then we have

(qal
min ⊗ϕv) ∨ ]Q(∅) ≤ ||(Qx)ϕ||LM,v ≤ (qal

max ⊗ϕv) ∨ ]Q(∅). (4.70)

If Q := (Q, am), then we have

(ϕv → qam
min) ∧ ]Q(∅) ≤ ||(Qx)ϕ||LM,v ≤ (ϕv → qam

max) ∧ ]Q(∅). (4.71)

Proof. Let us suppose that M = {m1, . . . , mn} is the domain of the L-
structure M, Q is a basic fuzzy quantifier from J (SQ), ϕ is a formula with
the free variable x and v be an M-evaluation. Put I ⊆ {1, . . . , n} such that
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i ∈ I, if there is A ∈M with |Supp(A)| = i. If Q := (Q, al), then we have

||(Qx)ϕ||LM,v =
∨
i∈I

∨
Y ∈M\{∅}
|Supp(Y )|=i

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

(]Q(Y )⊗ ||ϕ||LM,v′) ∨ ]Q(∅) ≥

∨
i∈I

∨
Y ∈M\{∅}
|Supp(Y )|=i

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

((
∧

Y ∈M\{∅}
|Supp(Y )|=i

]Q(Y ))⊗ ||ϕ||LM,v′) ∨ ]Q(∅) =

∨
i∈I

(
∧

Y ∈M\{∅}
|Supp(Y )|=i

]Q(Y )⊗
∨

Y ∈M\{∅}
|Supp(Y )|=i

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

||ϕ||LM,v′) ∨ ]Q(∅) =

∨
i∈I

(qi ⊗ ||ϕ||LM,vi
) ∨ ]Q(∅) =

n∨
i=1

(qi ⊗ ||ϕ||LM,vi
) ∨ ]Q(∅) =

(qal
min ⊗ϕv) ∨ ]Q(∅),

where clearly

∨
Y ∈M\{∅}
|Supp(Y )|=i

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

||ϕ||LM,v′ = min(||ϕ||LM,v1
, . . . , ||ϕ||LM,vi

) = ||ϕ||LM,vi
.

Analogously, the second inequality could be shown and thus the first state-
ment is proved. If Q := (Q, am), then we have

||(Qx)ϕ||LM,v =
∧
i∈I

∧
Y ∈M\{∅}
|Supp(Y )|=i

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v′ → ]Q(Y )) ∧ ]Q(∅) ≥

∧
i∈I

∧
Y ∈M\{∅}
|Supp(Y )|=i

∨
v′∈VM(x,v)

v′(x)∈Supp(Y )

(||ϕ||LM,v′ → (
∧

Y ∈M\{∅}
|Supp(Y )|=i

]Q(Y ))
) ∧ ]Q(∅) =

∧
i∈I

(
(

∨
Y ∈M\{∅}
|Supp(Y )|=i

∧
v′∈VM(x,v)

v′(x)∈Supp(Y )

||ϕ||LM,v) → (
∧

Y ∈M\{∅}
|Supp(Y )|=i

]Q(Y ))
) ∧ ]Q(∅) =

∧
i∈I

(||ϕ(x)||M,vi
→ qi) ∧ ]Q(∅) =

n∧
i=1

(||ϕ(x)||M,vi
→ qi) ∧ ]Q(∅) =

(ϕv → qam
min) ∧ ]Q(∅).

Analogously, the second inequality could be shown and thus the second state-
ment is proved.

Theorem 4.8.2. Let L be a complete linearly ordered residuated lattice, Q

be a basic fuzzy quantifier from J (SQ), M be an L-structure for J (SQ) with
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the finite domain M such that M ⊆ P(M), ϕ be a formula with the free
variable x and v be an M-evaluation. If Q := (Q, al), then we have

||(Qx)ϕ||LM,v = (qal ⊗ϕv) ∨ ]Q(∅). (4.72)

If Q := (Q, am), then we have

||(Qx)ϕ||LM,v = (ϕv → qam) ∧ ]Q(∅). (4.73)

Proof. Due to Lemma 4.8.1, it is sufficient to prove that qal
min = qal

max and
qam

min = qam
max. However, it follows from Lemma 4.3.3 and the presumption

that M ⊆ P(M). Indeed, if M ⊆ P(M), then ]Q(Y1) = ]Q(Y2) holds,
whenever |Y1| = |Y2|, Recall that Supp(Y ) = Y for any crisp set. Hence, we
have

qi =
∧

Y ∈M\{∅}
|Y |=i

]Q(Y ) =
∨

Y ∈M\{∅}
|Y |=i

]Q(Y )

for any i ∈ I (I was defined in the proof of the previous lemma) and thus we
obtain qal

min = qal
max and qam

min = qam
max.

Example 4.8.1. Let us consider the following finite sequences

x := {2.7, 3.8, 5.1, 2.7, 6.9},
y := {2.1, 2.3, 5.5, 3.2, 6.3}.

and suppose that our goal is to find a better sequence, where “better se-
quence” is that having nearly all values greater than the other sequence. For
this purpose it seems to be suitable to use the fuzzy quantifier for nearly all
which is of the type al. Recall that we consider fuzzy quantifiers being of the
type 〈1〉, it means unary fuzzy quantifier, but this decision making would
rather require a binary fuzzy quantifier. Therefore, we will suppose that the
domain of our structure is a set of corresponding pairs from the vectors x and
y, i.e. we put M = {(xi, yi) | xi ∈ x and yi ∈ y}. Hence, our language J has
one unary predicate symbol P , one symbol for the fuzzy quantifier for nearly
all, say Qfna , no functional symbols and no constants. Let LP be the Goguen
algebra (TP = ·). Our LP-structure is the couple M = 〈M,M, rP , ]Qfna〉,
where M = P , rP : M → [0, 1] is defined as follows

rP (m) =

{
1, x > y,
2.5−|x−y|, otherwise,

(4.74)
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for any m = (x, y) ∈ M , and the Lθ
Pk-model of ∀fna := (Qfna , al) is established

as follows

∀A ∈M : ]Qfna(A) =
|A|
|M | . (4.75)

According to Lemma 4.3.3, this definition is correct. Note that rP is defined
as the restriction of a fuzzy ordering relation20 on the set of real numbers to
M . Let v be an M-evaluation, then truth value of the formula (Qfnax)P (x)
is given by

||(Qfnax)P (x)||LP
M,v =

∨

Y ∈M\{∅}

∧
v∈VM(x,v)

v(x)∈Supp(Y )

]Qfna(Y ) · ||P (x)||LP
M,v. (4.76)

Since the presumptions of Theorem 4.8.2 are satisfied, we can use (4.72)
instead of (4.76) to find the truth value ||(Qfnax)P (x)||LP

M,v. Let us suppose
that vi(x) = mi and an LP-evaluation v is given. Then we have the vector

(||P (x)||LP
M,v1

, . . . , ||P (x)||LP
M,v5

) = (1, 1, 0.76, 0.71, 1).

Thus, we can establish the following vectors

ϕv := (1, 1, 1, 0.69, 0.57),

qal := (1/5, 2/5, 3/5, 4/5, 1)

and the truth value of the formula (Qfnax)P (x) under the M-evaluation v is
then given by

||(Qfnax)P (x)||LP
M,v = ϕv · qal = max(0.2, 0.4, 0.6, 0.55, 0.57) = 0.6.

20We use Bodenhofer’s definition of fuzzy ordering, which is called T -E-ordering, see
e.g. [56].
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Chapter 5

Conclusion

In this thesis we set out three goals, to establish a notion of equipollence
of fuzzy sets, to propose axiomatic systems for cardinalities of fuzzy sets
and to introduce syntax and semantics of first-ordered fuzzy logic with fuzzy
quantifiers. We can say that all goals were more-less fulfilled and they are
a contribution to the relevant theories. Let us summarize the results of this
thesis and give some comments to them, which could show their further
progress.

For needs of the goals of this thesis we used the notion of fuzzy sets
together for L-sets, whose membership degrees are interpreted in complete
residuated lattices, and Ld-sets, whose membership degrees are interpreted in
complete residuated lattices. A more general convexity of fuzzy sets was in-
troduced and some necessary conditions for (classical) mappings were stated
in order to the corresponding fuzzy mappings, obtained by more general
Zadeh extension principle, preserve the convexity. These and other notions
are introduced in Chapter 1.

In Chapter 2 we defined evaluated mappings (injections, surjections, bi-
jections) between L-sets and then Ld-sets. The evaluated bijections were
used for introducing the notions of equipollent L-sets and Ld-sets. Further,
we proved that θ-equipollence of L-sets is a similarity relation on the set
of all L-sets and θ-equipollence of Ld-sets is then a fuzzy pseudo-metrics.
Finally, we showed some relationships between equipollences of countable
L-sets or Ld-sets and similarity relation or fuzzy pseudo-metrics of special
L-sets or Ld-sets defined on the set of all natural numbers extended by the
first infinite cardinal ω, respectively. The equipollences of fuzzy sets did not
be systematically investigated, we restricted our choice of their properties to
the needs of the following chapters. Therefore, there is an open field for a
further research as e.g. to describe, if there exists, a relationship between
equipollence of fuzzy sets and equipollence of their a-cuts.
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Two axiomatic systems for cardinalities of finite fuzzy sets were intro-
duced in Chapter 3. In particular, the first one generalized the axiomatic
systems proposed by J. Casasnovas and J. Torrens in [8]. The second ax-
iomatic system was then defined as a “dual” system to the first one, which
could give a possibility to describe also some class of scalar cardinalities. We
proved that cardinalities of both axiomatic systems may be represented by
homomorphisms between substructures of residuated and dually residuated
lattices and further, we showed some relationships between cardinalities and
evaluated bijections, and also equipollences of fuzzy sets. Building of car-
dinality theory based on the proposed axiomatic systems could be a topic
for further research. Since cardinalities of fuzzy sets are dependent on ho-
momorphisms, the study of such homomorphisms could be a topic of rather
algebraic research.

Based on the θ-equipollence of L-sets a definition of Lθ
k-model of fuzzy

quantifiers was introduced in Chapter 4. Further, some constructions of fuzzy
quantifiers models were established using θ-equipollence of L-sets and some
special cardinalities of finite fuzzy sets. Constructions of new fuzzy quanti-
fiers and their corresponding models using the logical connectives were also
proposed. Structure of fuzzy quantifiers, containing only fuzzy quantifiers
of special types, was defined and fuzzy quantifiers from such structure were
implemented into language of the first-ordered fuzzy logic with fuzzy quanti-
fiers (of this structure). Syntax and semantics of the first-ordered fuzzy logic
with fuzzy quantifiers were suggested and several examples of L-tautologies
were proved. Finally, a method how to practically compute or at least to
estimate truth values of formulas with fuzzy quantifiers (for the finite cases)
was proposed. The presented results could be a base for another investiga-
tion on the field of fuzzy quantifiers in fuzzy logic. For instance, Hajek’s
results presented in [41] could be an inspiration for it. Further, relationships
between fuzzy quantifiers and fuzzy integrals seem to be interesting. Finally,
our approach to fuzzy quantification offers the new possibilities of the fuzzy
logic application in decision making, image processing, etc. New applications
could be also a topic for research.



Appendix A

Selected subjects

A survey of properties of (complete) residuated and dually residuated lattices,
which are chosen with regard to the requirements of this thesis, is given in
the first two sections. The proofs are omitted and the interested readers are
referred to the special literature mentioned in the first chapter. The third
section is devoted to the t-norms and t-conorms.

A.1 Some properties of residuated lattices

Theorem A.1.1. (basic properties)
Let L be residuated lattice. Then the following items hold for every a, b, c ∈ L:

a⊗ (a → b) ≤ b, a ≤ a → (a⊗ b), a ≤ (a → b) → b, (A.1)

a ≤ b iff a → b = > (A.2)

a → a = >, a → > = >, ⊥ → a = >, (A.3)

a⊗⊥ = ⊥, > → a = a, (A.4)

a⊗ b ≤ a ∧ b, (A.5)

(a⊗ b) → c = a → (b → c), (A.6)

(a → b)⊗ (b → c) ≤ a → c, (A.7)

a → b is the greatest element of {c | a⊗ c ≤ b}, (A.8)

a⊗ b is the least element of {c | a ≤ b → c}. (A.9)

Theorem A.1.2. (monotony of ⊗ and →)
Let L be residuated lattice. Then the following items hold for every a, b, c ∈ L:

a ≤ b implies a⊗ c ≤ b⊗ c, (A.10)

a ≤ b implies c → a ≤ c → b, (A.11)

a ≤ b implies b → c ≤ a → c. (A.12)
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Theorem A.1.3. (distributivity of ⊗, → over ∧, ∨)
Let L be a complete residuated lattice. Then the following items hold for
every a ∈ L and every set {bi | i ∈ I} of elements from L over an arbitrary
set of indices I:

a⊗ (
∨
i∈I

bi) =
∨
i∈I

(a⊗ bi), (A.13)

a → (
∧
i∈I

bi) =
∧
i∈I

(a → bi), (A.14)

(
∨
i∈I

bi) → a =
∧
i∈I

(bi → a), (A.15)

a⊗ (
∧
i∈I

bi) ≤
∧
i∈I

(a⊗ bi), (A.16)

∨
i∈I

(a → bi) ≤ a → (
∨
i∈I

bi), (A.17)

∨
i∈I

(bi → a) ≤ (
∧
i∈I

bi) → a. (A.18)

A.2 Some properties of dually residuated lat-

tices

Theorem A.2.1. (basic properties)
Let Ld be a dually residuated lattice. Then the following identities hold for
every a, b, c ∈ L:

a ≤ (aª b)⊕ b, (a⊕ b)ª a ≤ b, (a⊕ b)ª b ≤ a, (A.19)

a ≤ b iff aª b = ⊥, (A.20)

aª a = ⊥, aª> = ⊥, ⊥ª a = ⊥, (A.21)

>⊕ a = >, aª⊥ = a, (A.22)

a ∨ b ≤ a⊕ b, (A.23)

aª (b⊕ c) = (aª b)ª c, (A.24)

aª c ≤ (aª b)⊕ (bª c), (A.25)

aª b is the least element of {c | a ≤ b⊕ c}, (A.26)

a⊕ b is the greatest element of {c | cª a ≤ b}. (A.27)

Theorem A.2.2. (monotony of ⊕ and ª)
Let Ld be a dually residuated lattice. Then the following identities hold for
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every a, b, c ∈ L:

a ≤ b implies a⊕ c ≤ a⊕ b, (A.28)

a ≤ b implies aª c ≤ bª c, (A.29)

a ≤ b implies cª b ≤ cª a. (A.30)

Theorem A.2.3. (distributivity of ⊕, ª over ∧, ∨)
Let Ld be a complete dually residuated lattice. Then the following identities
hold for every a, b ∈ L and sets {ai | i ∈ I}, {bi | i ∈ I} of elements from L
over arbitrary set of indices I:

a⊕
∧
i∈I

bi =
∧
i∈I

(a⊕ bi), (A.31)

(
∨
i∈I

bi)ª a =
∨
i∈I

(bi ª a), (A.32)

aª
∧
i∈I

bi =
∨
i∈I

(aª bi), (A.33)

aª
∨
i∈I

bi ≤
∨
i∈I

(aª bi), (A.34)

∨
i∈I

(a⊕ bi) ≤ a⊕
∨
i∈I

bi, (A.35)

(
∧
i∈I

bi)ª a ≤
∧
i∈I

(bi ª a). (A.36)

A.3 t-norms and t-conorms

A binary operation T : [0, 1]× [0, 1] → [0, 1] is called t-norm, if

T (a, b) = T (b, a), (A.37)

T (a, T (b, c)) = T (T (a, b), c), (A.38)

T (a, b) ≤ T (a, c), whenever b ≤ c, (A.39)

T (a, 1) = a (A.40)

is fulfilled for any a, b, c ∈ [0, 1]. Moreover, a t-norm T is left continuous, if

∨
i∈I

T (ai, b) = T (
∨
i∈I

ai, b) (A.41)

holds for any index set I. The following theorem is very useful for a con-
struction of complete residuated lattices on [0, 1], if left continuous t-norms
are considered. The proof could be found in e.g. [2, 56].
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Theorem A.3.1. If T is a left continuous t-norm then letting

a →T b =
∨
{c ∈ [0, 1] | T (a, c) ≤ b}, (A.42)

a structure L = 〈[0, 1], min, max, T,→T , 0, 1〉 is a complete residuated lattice.
Conversely, if L = 〈[0, 1], min, max, T,→, 0, 1〉 is a residuated lattice then T
is a left continuous t-norm.

Example A.3.1. The following are the three basic left continuous t-norms TM,
TP and TL given by, respectively:

TM(a, b) = min(a, b) (minimum)

TP(a, b) = a · b (product)

TL(a, b) = max(a + b− 1, 0) (ÃLukasiewicz t-norm)

A binary operation S : [0, 1]× [0, 1] → [0, 1] is called t-conorm, if

S(a, b) = S(b, a), (A.43)

S(a, S(b, c)) = S(S(a, b), c), (A.44)

S(a, b) ≤ S(a, c), whenever b ≤ c, (A.45)

S(a, 0) = a (A.46)

is fulfilled for any a, b, c ∈ [0, 1]. Moreover, a t-conorm S is right continuous,
if ∧

i∈I

S(ai, b) = S(
∧
i∈I

ai, b) (A.47)

holds for any index set I. The following theorem is very useful for a con-
struction of complete dually residuated lattices on [0, 1], if right continuous
t-conorms are considered. The proof could be done by analogy to the proof
of Theorem A.3.1.

Theorem A.3.2. If S is a right continuous t-conorm then letting

aªT b =
∧
{c ∈ [0, 1] | S(a, b) ≥ c}, (A.48)

a structure L = 〈[0, 1], min, max, S,ªS, 0, 1〉 is a complete dual residuated
lattice. Conversely, if L = 〈[0, 1], min, max, S,ª, 0, 1〉 is a dual residuated
lattice then S is a right continuous t-conorm.

Example A.3.2. The following are the three basic right continuous t-norms
SM, SP and SL given by, respectively:

SM(a, b) = max(a, b) (maximum)

SP(a, b) = a + b− a · b (probabilistic sum)

SL(a, b) = min(a + b, 1) (ÃLukasiewicz t-conorm)
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Klement, editors, Non-Classical Logics and Their Applications to Fuzzy
Subsets: A Handbook of the Mathematical Foundations of Fuzzy Set
Theory, volume 32 of Theory and Decision Library B, pages 53–106,
Dordrecht, 1995. Kluwer Academic Publisher.
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[93] A.P. Šostak. On cardinal functions of fuzzy sets in fuzzy topological
spaces I. Radovi Matematički, 6:249–263, 1990.
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ªM,ªP,ªÃL Gödel, Goguen, ÃLukasiewicz difference, page 8

≡∨,≡⊕,≡θ fuzzy pseudo-metric on FLd(X) for ∨ and fuzzy pseudo-
metrics on FCLd(X) for ⊕, θ, page 41

∅ empty set or empty fuzzy set (L-set, Ld-set), page 12

≡x equivalence on the set of all M-evaluations, page 106

≡iso equivalence relation on F(X), page 103

FCLd(X) set of all countable Ld-sets over X, page 12

FCL(X) set of all countable L-sets over X, page 12

FC(X) set of all countable fuzzy sets over X, page 12

FIN Ld(X) set of all finite Ld-sets over X, page 12

FIN L(X) set of all finite L-sets over X, page 12

FIN (X) set of all finite fuzzy sets over X, page 12

Fin(X) set of all finite subset of X, page 5

FL(X),FLd(X) set of all L-sets, Ld-sets over X, page 12

∀, ∃ universal, existential quantifier (for all, there exists), page 105

∀infin , ∀fin generalized quantifiers (for all except a finite number, for at
most finitely many), page 115

∀not,∃not generalized quantifiers (not for all, there exists none), page 114



List of Symbols 181

FQ set of all fuzzy quantifiers over Q, page 135

F(X) set of all fuzzy sets over X, page 12

||x||M,v, ||a||M,v values of atomic terms under an M-evaluation v, page 106
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Ln+1 n + 1 elements ÃLukasiewicz chain, page 2
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page 50
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, . . . , 1} with the
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, page 53
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ª difference, page 6
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K model of fuzzy quantifier generated by θ-cardinality, fuzzy
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SQ structure of fuzzy quantifiers over Q, page 136

Supp(A) support of a fuzzy set A, page 12

θ common symbol for ∧ and ⊗, page 2

≈ similarity relation on the set of all pθ
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L(Nn)),
page 38

X,Y ,. . . universes of discovering, page 12

VM set of all M-evaluations, page 106

VM(x, v) set of all M-evaluation v′ such that v ≡c v′, page 106

ϕ, ψ, . . . formulas, page 105

∨∨
supremum (join) in lattice, page 1

∧∧
infimum (meet) in lattice, page 1

f̂ θ, f̂⊕, f̂∨ mapping established using Zadeh extension principle which
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f̂ θ, f̂⊗, f̂∧ mapping established using Zadeh extension principle (for
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⊥ the smallest element of a lattice, page 1

A(x) membership degree of x in a fuzzy set (L-set, Ld-set) A,
page 12

A,B,C, . . . fuzzy sets (L-sets, Ld-sets), page 12

A⊗B, A → B multiplication, residuum of L-sets A and B, page 13

Ac closure of θ-(or θ)-convex L-(or Ld)-set A over Nn, page 56

Aa a-cut of fuzzy set A, page 12

Ad
a dual a-cut of fuzzy set A, page 12

AX set of all subsets of a set X containing the support of a fuzzy
set A, page 35

Aq(Q) set of all atomic fuzzy quantifiers from FQ included in Q,
page 135

d fuzzy pseudo-metric on FLd(X), page 41

E neutral element of (CVθ

L(Nn), +θ) and (CVθ

Ld(Nn), +θ), page 54

F,G, . . . functional symbols, page 105

f, g, h, . . . mappings, page 10

g ◦ f composition of mappings f and g, page 19

h→ mapping from 41 ∈ {L1,L
d
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d
2} determined

by a mapping h : L1 → L2, page 20

I set of indices, page 4
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Mi = {m | im > 1}, page 66

L support of L or Ld, page 1

N set of all natural numbers, page 5

N−0
ω set of all natural numbers without zero extended by the first

infinite cardinal, page 14

P,R, . . . predicate symbols, page 105
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A mapping Nω×AX → L defined by pθ
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Z ⊆ Y, |Z| = i}, page 43

pθ
A mapping Nω×AX → L defined by pθ

A(i, Y ) =
∨{Θz∈Z A(z) |

Z ⊆ Y, |Z| = i}, page 35

Rn Cartesian product of the set of real numbers, page 13

v M-evaluation, page 106

x, y, . . . object variables, page 105

X \ Y relative complement of Y in X, page 23

∼Q external negation of a fuzzy quantifier Q, page 127

CQ internal negation of a fuzzy quantifier Q, page 128

|X| (classical) cardinality of a set X, page 17
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page 8
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