Cardinality of sets, 3

Peter Mayr

CU, Discrete Math, April 20, 2020

Having the same cardinality is an equivalence

Recall

$|A|=|B|$ if there exists a bijection $f: A \rightarrow B$.

Lemma

Let U be a set (universe) of sets. Having the same cardinality is an equivalence relation on U.

Proof.

- reflexive: Let $A \in U$. Then $|A|=|A|$ by the identity map id_{A}.
- symmetric: Let $A, B \in U$. If $f: A \rightarrow B$ is a bijection (i.e., $|A|=|B|)$, then $f^{-1}: B \rightarrow A$ is a bijection, so $|B|=|A|$.
- transitive: Let $A, B, C \in U$. If $f: A \rightarrow B, g: B \rightarrow C$ are bijections, then $g \circ f: A \rightarrow C$ is a bijection, so $|A|=|C|$.

Example
$\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are equivalent (have the same cardinality),
$(0,1)$ and \mathbb{R} are equivalent.

When is one set smaller than another?

Recall

For finite sets A, B there exists a injective map $f: A \rightarrow B$ iff $|A| \leq|B|$.
This motivates the following general definition.

Definition

$|A| \leq|B|$ if there exists an injection $f: A \rightarrow B$.
$|A|<|B|$ if there exists an injection $f: A \rightarrow B$ but no bijection.
Example
$|\mathbb{N}| \leq \mid \mathbb{R}$ since $\mathbb{N} \rightarrow \mathbb{R}, x \mapsto x$ is injective.
$|\mathbb{N}|<|\mathbb{R}|$ since there is no bijection $\mathbb{N} \rightarrow \mathbb{R}$.

Ordering cardinalities

Lemma

\leq on cardinalities is reflexive and transitive.
Proof.
For transitivity: If $f: A \rightarrow B$ and $g: B \rightarrow C$ are injective, then $g \circ f: A \rightarrow C$ is injective.
For a partial order relation we also need that \leq is antisymmetric.
Question
If $f: A \rightarrow B$ and $g: B \rightarrow A$ are injective, does there exist a bijection $A \rightarrow B$?
Yes, for A, B finite.
Example
Can we find a bijection $(-1,1) \rightarrow[-1,1]$ from these injections?

$$
f:(-1,1) \rightarrow[-1,1], x \mapsto x, \quad g:[-1,1] \rightarrow(-1,1), x \mapsto \frac{x}{2}
$$

Theorem (Schröder-Bernstein)

If there exist injections $f: A \rightarrow B$ and $g: B \rightarrow A$, then there exists a bijection $h: A \rightarrow B$.

Proof sketch.
Diagrams taken from Hammack, Book of Proof, 2018.
The Cantor-Bernstein-Schröder Theorem

Figure 14.4. The injections $f: A \rightarrow B$ and $g: B \rightarrow A$

Consider the chain of injections illustrated in Figure 14.5. On the left, g puts a copy of B into A. Then f puts a copy of A (containing the copy of B) into B. Next, g puts a copy of this B-containing- A-containing- B into A, and so on, always alternating g and f.

Folding up the previous chain of injections we get:

Figure 14.6 suggests our desired bijection $h: A \rightarrow B$. The injection f sends the gray areas on the left bijectively to the gray areas on the right. The injection $g^{-1}: g(B) \rightarrow B$ sends the white areas on the left bijectively to the white areas on the right. We can thus define $h: A \rightarrow B$ so that $h(x)=f(x)$ if x is a gray point, and $h(x)=g^{-1}(x)$ if x is a white point.

Figure 14.6. The bijection $h: A \rightarrow B$

Theorem (Schröder-Bernstein)

Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be injective. Then there exists a bijection $h: A \rightarrow B$.

Proof

- The gray area on the left in Fig 14.6 is

$$
G:=\bigcup_{k \in \mathbb{N}_{0}}(g \circ f)^{k}(A-g(B))
$$

- $g: B \rightarrow g(B)$ is bijective, in particular the inverse g^{-1} exists on $W:=A-G$.

Claim:

$$
h: A \rightarrow B, x \mapsto \begin{cases}f(x) & \text { if } x \in G \\ g^{-1}(x) & \text { if } x \in W\end{cases}
$$

is bijective.
$G:=\bigcup_{k \in \mathbb{N}_{0}}(g \circ f)^{k}(A-g(B)) \quad h: A \rightarrow B, x \mapsto \begin{cases}f(x) & \text { if } x \in G, \\ g^{-1}(x) & \text { if } x \in W .\end{cases}$

For injectivity, let $x, y \in A$ such that $h(x)=h(y)$.

- Case $x, y \in G$: Then $f(x)=f(y)$ implies $x=y$ since f is injective.
- Case $x, y \in W$: Then $g^{-1}(x)=g^{-1}(y)$ implies $x=y$ by applying g on both sides.
- Case $x \in G, y \in W$: Then $f(x)=g^{-1}(y)$ implies $y=(g \circ f)(x) \in(g \circ f)(G) \subseteq G$ by the definition of G. Contradiction.

Hence h is injective.
$G:=\bigcup_{k \in \mathbb{N}_{0}}(g \circ f)^{k}(A-g(B)) \quad h: A \rightarrow B, x \mapsto \begin{cases}f(x) & \text { if } x \in G, \\ g^{-1}(x) & \text { if } x \in W .\end{cases}$

For surjectivity, let $y \in B$ and find $x \in A$ such that $h(x)=y$.

- Case $g(y) \in W$: Then $h(\underbrace{g(y)}_{=x})=g^{-1}(g(y))=y$.
- Case $g(y) \in G:$ From the definition of G, we have $k \in \mathbb{N}_{0}$ and $z \in A-g(B)$ such that

$$
g(y)=(g \circ f)^{k}(z)
$$

- $k>0$ because else $g(y)=z \in A-g(B)$ is a contradiction.
- Then $y=f \circ \underbrace{(g \circ f)^{k-1}(z)}_{=x \in G}$ since g is injective.
- Hence $h(x)=f(x)=y$.

Thus h is surjective.

