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Having the same cardinality is an equivalence

Recall
|A| = |B| if there exists a bijection f : A→ B.

Lemma
Let U be a set (universe) of sets. Having the same cardinality is an
equivalence relation on U.

Proof.

I reflexive: Let A ∈ U. Then |A| = |A| by the identity map idA.

I symmetric: Let A,B ∈ U. If f : A→ B is a bijection (i.e.,
|A| = |B|), then f −1 : B → A is a bijection, so |B| = |A|.

I transitive: Let A,B,C ∈ U. If f : A→ B, g : B → C are
bijections, then g ◦ f : A→ C is a bijection, so |A| = |C |.

Example

N,Z,Q are equivalent (have the same cardinality),
(0, 1) and R are equivalent.



When is one set smaller than another?

Recall
For finite sets A,B there exists a injective map f : A→ B iff
|A| ≤ |B|.
This motivates the following general definition.

Definition
|A| ≤ |B| if there exists an injection f : A→ B.
|A| < |B| if there exists an injection f : A→ B but no bijection.

Example

|N| ≤ |R since N→ R, x 7→ x is injective.
|N| < |R| since there is no bijection N→ R.



Ordering cardinalities

Lemma
≤ on cardinalities is reflexive and transitive.

Proof.
For transitivity: If f : A→ B and g : B → C are injective, then
g ◦ f : A→ C is injective.

For a partial order relation we also need that ≤ is antisymmetric.

Question
If f : A→ B and g : B → A are injective, does there exist a
bijection A→ B?

Yes, for A,B finite.

Example

Can we find a bijection (−1, 1)→ [−1, 1] from these injections?

f : (−1, 1)→ [−1, 1], x 7→ x , g : [−1, 1]→ (−1, 1), x 7→ x
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Theorem (Schröder-Bernstein)

If there exist injections f : A→ B and g : B → A, then there exists
a bijection h : A→ B.

Proof sketch.
Diagrams taken from Hammack, Book of Proof, 2018.
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Figure 14.4. The injections f : A → B and g : B → A

Consider the chain of injections illustrated in Figure 14.5. On the left,
g puts a copy of B into A. Then f puts a copy of A (containing the copy of B)
into B. Next, g puts a copy of this B-containing-A-containing-B into A, and
so on, always alternating g and f .

g g g
f f f · · ·

Figure 14.5. An infinite chain of injections

Let’s analyze our infinite sequence B → A → B → A → B → A → · · ·
The first time A occurs in this sequence, it has a shaded region A− g(B).

In the second occurrence of A, the shaded region is (A−g(B))∪(g◦ f )(A−g(B)).
In the third occurrence of A, the shaded region is

(A− g(B)) ∪ (g ◦ f )(A− g(B)) ∪ (g ◦ f ◦ g ◦ f )(A− g(B)).

To tame the notation, let’s say (g ◦ f )2 = (g ◦ f ) ◦ (g ◦ f ), and (g ◦ f )3 =
(g ◦ f )◦ (g ◦ f )◦ (g ◦ f ), and so on. Let’s also agree that (g ◦ f )0 = ιA, that is, it
is the identity function on A. Then the shaded region of the nth occurrence
of A in the sequence is

n−1�
k=0

(g ◦ f )k�
A− g(B)

�
.

This process divides A into gray and white regions: the gray region is

G =
∞�

k=0
(g ◦ f )k�

A− g(B)
�
,

and the white region is A−G. (See Figure 14.6.)
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Folding up the previous chain of injections we get:
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Figure 14.6 suggests our desired bijection h : A → B. The injection f
sends the gray areas on the left bijectively to the gray areas on the right.
The injection g−1 : g(B)→ B sends the white areas on the left bijectively to
the white areas on the right. We can thus define h : A → B so that h(x)= f (x)
if x is a gray point, and h(x)= g−1(x) if x is a white point.

f

g−1

f

g−1

...

A B

Figure 14.6. The bijection h : A → B

This informal argument suggests that given injections f : A → B and
g : B → A, there is a bijection h : A → B. But it is not a proof. We now present
this as a theorem and tighten up our reasoning in a careful proof, with the
above diagrams and ideas as a guide.

Theorem 14.10 (The Cantor-Bernstein-Schröder Theorem)
If |A|≤ |B| and |B|≤ |A|, then |A| = |B|. In other words, if there are injections
f : A → B and g : B → A, then there is a bijection h : A → B.

Proof. (Direct) Suppose there are injections f : A → B and g : B → A. Then,
in particular, g : B → g(B) is a bijection from B onto the range of g, so it
has an inverse g−1 : g(B) → B. (Note that g : B → A itself has no inverse
g−1 : A → B unless g is surjective.) Consider the subset

G =
∞�

k=0
(g ◦ f )k�

A− g(B)
�⊆ A.
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Theorem (Schröder-Bernstein)

Let f : A→ B and g : B → A be injective. Then there exists a
bijection h : A→ B.

Proof

I The gray area on the left in Fig 14.6 is
G :=

⋃
k∈N0

(g ◦ f )k (A− g(B)).

I g : B → g(B) is bijective, in particular the inverse g−1 exists
on W := A− G .

Claim:

h : A→ B, x 7→

{
f (x) if x ∈ G ,

g−1(x) if x ∈W ,

is bijective.



G :=
⋃

k∈N0
(g ◦ f )k (A− g(B)) h : A→ B, x 7→

{
f (x) if x ∈ G ,

g−1(x) if x ∈W .

For injectivity, let x , y ∈ A such that h(x) = h(y).

I Case x , y ∈ G : Then f (x) = f (y) implies x = y since f is
injective.

I Case x , y ∈W : Then g−1(x) = g−1(y) implies x = y by
applying g on both sides.

I Case x ∈ G , y ∈W : Then f (x) = g−1(y) implies
y = (g ◦ f )(x) ∈ (g ◦ f )(G ) ⊆ G by the definition of G .
Contradiction.

Hence h is injective.



G :=
⋃

k∈N0
(g ◦ f )k (A− g(B)) h : A→ B, x 7→

{
f (x) if x ∈ G ,

g−1(x) if x ∈W .

For surjectivity, let y ∈ B and find x ∈ A such that h(x) = y .

I Case g(y) ∈W : Then h(g(y)︸︷︷︸
=x

) = g−1(g(y)) = y .

I Case g(y) ∈ G : From the definition of G , we have k ∈ N0

and z ∈ A− g(B) such that

g(y) = (g ◦ f )k(z).

I k > 0 because else g(y) = z ∈ A− g(B) is a contradiction.
I Then y = f ◦ (g ◦ f )k−1(z)︸ ︷︷ ︸

=x∈G

since g is injective.

I Hence h(x) = f (x) = y .

Thus h is surjective.


