
Carlos: The Fire-Fighting Robot

Anne Neilsen, Justin Popek, Lyle Shearer

Computer Engineering Senior Design Project

University of Nebraska - Lincoln

5 May 2010

Abstract - For a senior design project, we created a
fire protection system made up of a fire-fighting robot
and ground control station. The key requirements for
this system were to create an effective and low cost sys-
tem that can be used in hazardous situations. The de-
veloped solution is a prototype that might be built upon
to create a production model and uses a combination
of open-source and Microsoft technologies. The mo-
tivation, solution (including design, implementation,
and testing), and analysis of the results and cost are
discussed in this paper.

Keywords: remote-control robot, fire-fighting, Arduino

Microcontroller

1 Introduction

A difficulty plaguing developing nations is the
lack of support infrastructure for handling common
problems. Our senior design team recognized that a
shortage of resources in these countries could create
dangerous situations for public servants. We narrowed
this broad problem down to target a specific customer
need to:

create an effective, low cost, and safe fire
protection robot and control system for areas

of the world with limited resources and
environments where it is too dangerous for

humans.

Current solutions that address this need are ei-
ther cost prohibitive or have a limited supply of avail-
able resources.

Driven by an Xbox controller that is connected
to a ground control station, the robot will use a fire-
extinguisher to put out a flame. A rapid response
emergency device, such as this, reinforced with stable
technologies, could immediately benefit low resource
communities across the globe.

This paper describes the fire protection robot and
control system solution developed by our team as part

of our senior design project and is organized as follows:
Section 2 discusses the high-level design and a high-
level description of the system integration. Detailed
descriptions of the required algorithms (3.1) and hard-
ware components (3.2) are found in Seciont 3. The
implementation is explained in two parts (4.1 Ground
Control Station and 4.2 Remote Control Vehicle) of
Section 4. The testing strategies are explained in Sec-
tion 5. Section 6 provices a comprehensive discussion
of the resulting solution and possible extensions. An
analysis of the cost in Section 7 estimates the hours of
work to be over 200 hours and the monetary cost to
create Carlos at $555. Some of the key difficulties en-
countered were getting the router to communicate with
the Arduino (8.1), the Arduino only supports one se-
rial connection when using the standard serial library
(8.2), Arduino pin problems (8.3), and integrating the
Xbox controller to Silverlight (8.4).

2 Design Concept

Initial idea discussions resulted in some primitive
sketches (see Figure 1) and a high-level understand-
ing of the requirements for a fire-fighting robot and
controls for such a robot. Some of the original ideas
included giving the robot artificial intelligence using
ultra-violent sensors to detect the fires and having var-
ious modes where at times the robot would search for
fires itself and other times it would be manually con-
trolled. While possible, these were not the best suited
solution to meet our requirements. The primary re-
quirements for this solution are:

• easy to use,

• minimal initial and maintenance hardware cost,

• minimal software maintenance cost,

• robot can run while being a significant distance
from people,

• robot can put out hazardous fires

Figure 2: High-Level Design of Robot and GCS

Figure 1: Sketch from an initial brainstorming session

Given our target market and requirements, keep-
ing the fire-protection system as simple as possible is
ideal, because it reduces the cost to make and main-
tain. Therefore, it was determined that the system
would have a remote controlled robot and Ground
Control Station (GCS) to manage the robot. Figure
2 shows the high-level design, which addresses the re-
quirements for this system. The robot contains several
components (discussed in greater detail in Section 3:
Analysis of Design Choices and Architecture), moves
according to directions from the GCS, and engages a
fire-extinguisher to put out fires. The GCS includes
a Mobile Web Server and Silverlight Web Application
that is used to in conjunction with the Xbox controller
for a simple user interface.

3 Analysis of Design Choices and Ar-
chitecture

The high-level design contains many pieces and
there are multiple ways to design and implement a
fire-fighting robot. Various decisions were made as to
what sort of algorithms and hardware to use. A further
discussion of these decisions follows. In Section 3.1,
we discuss the require algorithms and in Section 3.2,
we discuss the Hardware Components (3.2.1 Arduino
Microcontroller, 3.2.2 Arduino Shields, 3.2.3 Linksys
WRT54G Router, 3.2.4 Panasonic BL-C1A Network
WebCam, 3.2.5 Xbox controller).

3.1 Algorithms

With regards to the the required algorithms
needed, all communication between the robot and
GCS is straightforward. The primary interaction be-
tween the robot and GCS is handling and forwarding
events and data through the component level APIs.
As such, algorithm requirements are negligible.

3.2 Hardware

The key hardware components used are (add ref-
erences, websites, etc.):

• Arduino Microcontroller (ATmega 328)

• Arduino Shields

• Linksys WRT54G Router

• Panasonic BL-C1A Network WebCam

• Xbox Controller

These components have been researched and
found to be the most ideal to meet the requirements
of being part of a low-cost fire-fighting robot. Further
explanation for each component is included below.

3.2.1 Arduino Microcontroller

The Arduino is an open-source electronics microcon-
troller (see Figure 3) [1]. This controller has embedded
I/O support and a standard programming language
based on C/C++. Our team chose this microcon-
troller because we were already familiar with it and
found several example projects online. Compatibility
between the Arduino, sensors, router was verified early
in the project through unit testing. The Arduino con-
nects and controls the motor controller and GPS sen-
sor. These Arduino specific components are known as
shields.

Figure 3: Arduino Microcontroller

3.2.2 Arduino Shields

There are four shields used in conjunction with the
two Arduinos and a shield extender, which makes it
possible to use more than one shield with the same
Arduino at the same time. There are two motor con-
troller shields, GPS shield, and ethernet shield. One
motor controller shield is responsible for moving the
vehicle [6] and the other is for engaging/disengaging
the fire-extinguisher [7]. As expected the GPS shield
determines the location of the robot and forwards this
information to the GCS [8]. The ethernet shield con-
nects the Arduino to the Linksys WRT54G Router [2].

3.2.3 Linksys WRT54G Router

The WRT54G router [5] is one of the most versatile
routers in production (see Figure 4). Because of its
popularity and efficiency, a large open-source commu-
nity has supported embedded linux distributions as
alternatives to the proprietary Linksys operating sys-
tem. Installing OpenWRT or DD-WRT in conjunction
with an Arduino Ethernet shield allows our robot to
wirelessly communicate with the GCS [4] [3].

Figure 4: Linksys WRT54G Router

3.2.4 Panasonic BL-C1A Network WebCam

The Panasonic BL-C1A Network WebCam [11] (see
Figure 5) was selected as the means for video feed be-
cause of the available documentation and positive re-
views. This camera’s popularity stems from its qual-
ity, low cost, and being ”hacker-friendly,” which are all
key metrics for selecting a suitable WebCam for this
project.

Figure 5: Panasonic BL-C1A Network WebCam

3.2.5 Xbox Controller

The Silverlight [9] front end empowers the user to con-
trol the modes and motion of the robot. A feature of
using the Xbox controller [10] is the familiar controls
and button mapping for the user. The features of both
Silverlight and the Xbox 360 controller create a user
experience that is both efficient and easy to learn. Be-
cause both of these user interface technologies are Mi-
crosoft, there is a seamless integration and extensive
documentation available.

4 Implementation

There are several components and technologies
that have been used to implement this solution. For
clarity, the implementation will be discussed in two
sections relating to the two parts parts of the system
(Ground Control Station and robot).

4.1 Ground Control Station

The Ground Control Station (GCS) interfaces be-
tween the user and robot and contains a laptop, router,
and Xbox controller. As indicated by the project re-
quirements, the system must be easy to use, which is
primarily done through the GCS (Figure 6 is a screen
shot of the Silverlight user interface). The technolo-
gies selected for the user interface and communication
with the robot were Windows 7, .NET Framework 3.5,
C# web services, and XML messaging. The GCS user
interface gets user commands from an Xbox 360 con-
troller and provides feedback to the user through a
Silverlight application. The Xbox controller generates
commands based on user input through the joysticks
and a button. The joysticks of the controller are used
to drive the robot and by pushing/releasing a button
the user engages/disengages the fire-extinguisher. The
Silverlight web application shows the streamed video
that is overlaid with the most current telemetry data.
The signal strength and remaining battery life are in-
dicated by the icons in the upper-right corner. In the
upper-left corner, a globe icon can be pressed using
the laptop to get GPS information. The arrow icon
in the bottom-left corner high-lights the direction the
robot is being driven. In the Figure 6 screenshot, all
directions are gray, because the robot is sitting still.
However, if the robot was to drive forward, the arrow
pointing up would be highlighted green? to make it
clear to the user which direction the robot is being
told to travel. This sort of user feedback makes the
system intuitive to use and minimizes the amount of
training. The user interface is designed using a C#

Figure 6: User interface caption

web service and a modular design. As such, the inter-
face could be abstracted without changing the XML
service or GCS. This would be applicable if an appli-
cation was written to use a mobile devices to either
control the robot instead of the Xbox controller or to
provide the video feed or other feedback information
to other fire-fighters.

4.2 Robot

The robot is implemented using simple open-
source technologies. For communication, a modified
Linksys WRT54G wireless router is used. This router
receives the instruction from the GCS and forwards
the commands to the microcontroller (see Figure
7 for a state machine representation of how robot
recieves and processes requests). Once a command
is processed, the router sends XML responses and
telemetry data back to the GCS. The Linksys router
also enables the use of a network web-enabled
camera attached to the robot. This gives the user
a live video feed and enables intelligent remote control.

The heart of the robot is a programmable Ar-
duino microcontroller. Arduino is an open-source em-
bedded system that provides a low cost interface be-
tween high-level software and the robots hardware
[1]. The microcontroller provides a means of engaging
the fire extinguisher, controlling the movement of the
robot and providing communication between the var-
ious sensors and communication devices. The robot
is constructed from scratch using a plywood frame-
work and metal exterior (see Figure 8 to see the robot
without metal exterior). The chassis provides a means
of movement and a central location for attaching all

Figure 7: State Machine Representation of Robot Recieving and Processing Requests

Figure 8: Robot Without Metal Exterior

of the sensors and electronics. Using plywood for the
framework is desirable for its stability and strength.
The weight and size of the chassis can be leveraged
to help counteract the horizontal force of the extin-
guishing agent leaving the fire-extinguisher. The chas-
sis uses four metal and rubber wheels for movement
and steering. The robot turns by using skid steer-
ing, which is rated as one of the easiest way to im-
plement steering. This works particularly well with
the robots square-like shape. Skid steering is imple-
mented by making the tires on one side of the robot
move forward and the other side move backwards. The
motors are controlled by a motor controller, which is
attached to the Arduino. The robot is provided with
location data via GPS signals interpreted by the GPS
module that communicates with the microprocessor.
The location data provides the robot with the ability
to navigate to desired locations and report its location
to the base station which is particularly applicable in

the patrolling mode.
Two 12-volt DC batteries along with circuitry are used
to power all the parts of our robot. This allows proper
power distribution to different components. These
batteries are the same used on Power Wheels cars. To
protect the robots internals from conductive and radi-
ant heat, we outfitted the robot with a metal covering.
We bent and cut aluminum sheet metal to conceal the
components and then riveted the pieces together to
make a removable shell for facilitating maintenance.

5 Testing

We implemented several methods to test the me-
chanical design of the robot and the correctness and
performance of the software. The mechanical work-
ings of the robot are tested by manually controlling
and observing the resulting activity. We were specif-
ically interested in the robot driving in the expected
direction based on the provided user inputs. For pur-
poses of testing, we created a Java program that con-
verted keyboard inputs to commands that were sent to
the robot. This allows for mechanical testing without
having to use the Xbox controller. Additional testing
was done adding the Xbox controller to the mix. Sam-
ple test cases for the manual testing include cases such
as when a user pushes both joysticks up (or pushing
the up arrow key), it is expected that the robot will
drive forward. Similarly, when the user pushes one joy-
stick up and one down (or a left or right arrow key), it
would be expected that the robot will drive in a circle.
For these and other cases, our robot reacted as ex-
pected, thus passing all test cases. As previously men-
tioned, Arudinos use a language based of of C/C++.
To unit test the software running on the Arduino, we
created small test projects. A test project acted as
a test harness and could test a specific piece of func-

tionality such as the software controlling one of the
Arduino shields. In addition to testing the correctness
of the software running on the Arduino, we also tested
its performance, looking specifically for memory leaks.
We wanted to address efficiency concerns with all the
processing done by the Arduino. To test for a memory
leak in any given part of the system, we simply allowed
it to run long enough (at least 128,000 times) that any
leak would be detected. In our case, this translated to
allowing the software on the Arduino to run for around
half of an hour. Through this process, we found one
memory leak with a library (wstring) that we were
using. By using an alternative library, we were able
to provide the same functionality, but greatly improve
the performance. Testing the major components sep-
arately facilitated the debugging of the system. This
included testing the GCS’s Silverlight user interface
and C# backend code without needing to be connected
to the Arduino. We accomplished this by creating a
web service to mock the interaction of the GCS and
the Arduino. Using this web service, we conducted
manual unit and system tests. This also allowed us to
concurrently develop the GCS and Arduino code.

6 Results

Our project resulted in successfully creating a
robot that could operate a fire extinguisher and be
controlled remotely, via Wi-Fi communication. The
robot has ample steering control and maneuverability,
torque, and weight to navigate through non-ideal ter-
rain and carry a payload large enough to allow for fire-
fighting ability. The metal shielding makes the robot
resistant to conductive and radiant heat and helps pro-
tect the components inside. This implementation is,
however, not incredibly heat-proof. The rubber wheels
and Plexiglas camera window are prone to melting and
the components inside will also melt once the metal
shielding is heated enough.

The robot has experienced a battery life of around
3-6 hours of activity, as seen in Figure 9. A maximum
of about 13-14 hours can be achieved in an immo-
bile state. These values were obtained by measuring
the amperage drawn from the battery at each speed
and using the watt-hours of the battery to determine
the life of one charge. The watt-hours of the battery
were calculated from the batterys voltage and the amp-
hours, which were marked on the battery.

The plan for the Ground Control Station was to
use an Xbox 360 controller for controlling the robot.
However, after integrating the controller, we found it
to be slightly buggy and unreliable. Input from the
controller travelled through the ActiveX control, In-

Figure 9: Average Battery Life Based on Speed Robot
is Run

ternet Explorers JavaScript engine, the Silverlight con-
trol, the GCS web server and finally to the router and
Arduino on the robot itself. Through this chain of
handlers, the input sometimes was delayed and mis-
communicated. The Arduinos Ethernet shield could
also become overloaded by too many control requests.

One element of the original design that we did
not implement was the maps integration with the GPS
shield. We encountered difficulty in providing the
robots location on a satellite map. This was mainly
because the maps services we intended to use require
our ground control station or client machine to have
an external internet connection while connected to the
robots network.

7 Analysis of the Cost

Table 1 shows the breakdown of costs for the
project.With a total of $555, this robot is much more
cost-efficient than similar models that we found. A
similar Raytheon product costs upwards of $8,000.
This analysis does not include cost of labor; we put
an estimated 200+ man hours into the robot and con-
trol station (development, construction, debugging).

8 Difficulties Encountered

In the development of this project, we have had
to overcome several difficulties, including:

• Building a chassis

• Getting the router to communicate with the Ar-
duino

Component Price

Core
Arduino Microcontroller $30
Arduino Ethernet Shield $45

Arduino Motor Shield $20
Arduino GPS Shield $30

Pololu Trex Motor Controller $100
Subtotal $225
Chassis

4 x 12V Motors and Gear Assemblies $90
4 x Tires $20

Misc (bolts, washers, ...) $10
Subtotal $120

Fire Fighting
Fire Extinguisher $20

12V Gear Head Motor $14
2 x 6mm Shaft Clamp $12

Misc $7
Subtotal $53

Other
Linksys WRT54G Router $30

Linksys 160N Router $35
Panasonic BL-C1A Network $92

Subtotoal $157

Total $555

Table 1: Monetary Cost Analysis

• Arduino only supports one serial connection when
using the standard serial library

• Pin problems

• Integrating Xbox controller to Silverlight

8.1 Router Communication

When trying to get our router to work with the
Arduino, we encountered several hurdles. The serial
port that we connected to the router did not work; we
could not compile the OpenWRT SDK or run scripts
to set the correct baud-rate. To remedy this issue, we
opted to use an Ethernet shield to create the connec-
tion between the Arduino and router.

8.2 Serial Connection

Another issue regarding the serial connections
was that the Arduino standard serial library only sup-
ports one serial connection. This means that a sep-
arate Arduino would be required to run each shield.
After some research, an alternate open-source library
was found (NewSoftSerial) (ref). This library allowed
us to create the necessary multiple serial connections.

8.3 Pin Problems

Our decision to use the Ethernet shield resulted
in multiple shields trying to use the same pins. The
Ethernet shield and one of the motor controller shields
required the use of the same pins. One option was to
remove the overlapping pins from one of the shields
and wire them to different output pins on the Ar-
duino. Our team decided that this would be difficult
and would limit future extendability. Therefore, we
decided to use a second Arduino to run one of the mo-
tor controllers. This implementation was easier and
allows for future extendability.

8.4 Xbox Integration

Integrating the Xbox controller with the Sil-
verlight was more difficult than expected because we
were unable to find a standard ActiveX control on the
Internet that had this functionality. Our team was
able to gain access to Agile Sport’s existing code (an
ActiveX control and installer package), and we were
given permission to use and alter the code so we did
not have to start from scratch.

References

[1] Arduino. http://www.arduino.cc/en/Main,
2010.

[2] Arduino ethernet shield. http://www.arduino.

cc/en/Main/AruinoEthernetShield, 2010.

[3] Dd-wrt. http://www.dd-wrt.com/site/index,
2010.

[4] Openwrt: Wireless freedom. http://openwrt.

org/, 2010.

[5] Cisco. Linksys wrt54g: Wireless-g router. http:

//homestore.cisco.com/en-us/Routers/

Linksys-wrt54g2-wirelessg-broadband-router\

_stcVVproductId53779504VVcatId543809VVviewprod.

htm, 2010.

[6] Pololu Corporation. Motor controllers: Pololu
trex dual motor controller dmc01. http://www.

pololu.com/catalog/product/777, 2010.

[7] Limor. Motor shield: Servos, steppers and dc mo-
tors!

[8] Limor. Gps shield: Diy location and
data-logging. http://www.ladyada.net/make/

gpsshield/, April 2010.

[9] Microsoft. Microsoft silverlight. http://www.

silverlight.net/, 2010.

[10] Microsoft. Xbox 360 controller for win-
dows. http://www.microsoft.com/hardware/

gaming/ProductDetails.aspx?pid=091, 2010.

[11] Network Webcams. Panasonic bl-c1a - overview.
http://www.networkwebcams.com/product\

_info.php?-products_id=363, 2009.

