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Carrier Properties

� Carrier Movement in Free Space 

� Carrier Movement Within the Crystal 

� Intrinsic Carrier Concentration 

� Extrinsic n-Type Semiconductor

� Extrinsic p-Type Semiconductor 



Electronic Materials

� Two-dimensional representation of an 
Individual Si atom.

Represents each valence electron
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Semiconductors

� When Si (or Ge & GaAs) atoms contact other 
Si atoms, they form a tetrahederal

� 2D representation of lattice structure:



Electronic Materials

Two dimensions               Three dimensions  



Carrier Movement in Free Space

Newton’s second law

dt
dv

mqEF 0=−=



Carrier Movement Within the Crystal

� Electrons moving inside a semiconductor crystal will collide with 
semiconductor atoms ==> behaves as a “wave” due to the quantum 
mechanical effects

� The electron “wavelength” is perturbed by the crystals periodic 
potential



Carrier Movement Within the Crystal

(electron effective mass)                (hole effective mass) 

Density of States Effective Masses at 300 K
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Intrinsic Carrier Concentration

� Contains an insignificant 
concentration of impurity atoms

� Under the equilibrium conditions, 
for every electron is created, a 
hole is created also

n = p = ni

� As temperature is increased, the 
number of broken bonds (carriers) 
increases

� As the temperature is decreased, 
electrons do not receive enough 
energy to break a bond and 
remain in the valence band.



Extrinsic n-Type Semiconductor

� Donors (Group V): The 5th in a 
five valence electrons is readily 
freed to wander about the 
lattice at room temperature

� There is no room in the valence 
band so the extra electron 
becomes a carrier in the 
conduction band

� Does NOT increase the number 
of hole concentration



Extrinsic p-Type Semiconductor

� Acceptors (Group III) : three 
valence electrons readily 
accept an electron from a 
nearby Si-Si bond

� Completing its own bonding 
creates a hole that can wander 
about the lattice

� Does NOT increase the number 
of electron concentration



State and Carrier Distribution

� How the allowed energy states are distributed in energy

� How many allowable states were to be found at any given 
energy in the conduction and valence bands?

� Essential component in determining carrier distributions and 
concentration

� Density of States

� Fermi Function

� Dopant States



Density of States:

� represents the number of 
conduction  band states         lying in 
the energy range between E and E + 
dE

� represents the number of 
valence band states          lying in the 
energy range between E and E + dE
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Fermi Function (I)

� How many of the states at the energy E will be filled 
with an electron

� f(E), under equilibrium conditions, the probability that an 
available state at an energy E will be occupied by an 
electron

� 1- f(E), under equilibrium conditions, the probability that 
an available state at an energy E will NOT be occupied 
by an electron
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Fermi Function (II)
� If

� If

� If

� At T=0K (above), No occupation of states 
above EF and complete occupation of 
states below EF

� At T>0K (below), occupation probability is 
reduced with increasing energy f(E=EF) = 
1/2 regardless of temperature.
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� At higher temperatures, higher energy states can be occupied, leaving 
more lower energy states unoccupied (1-f(E))



Fermi Function (III)



Dopant States

n-type: more
electrons than
Holes

Intrinsic:
Equal number
of electrons
and holes

p-type: more
holes than
electrons

Density of 
States

Occupancy 
factors

Carrier 
Distribution



Equilibrium Carrier Concentration

� Formulas for n and p

� Degenerate vs. Non-degenerate Semiconductor 

� Alternative Expressions for n and p

� ni and the np Product 

� Charge Neutrality Relationship 

� Carrier Concentration Calculations 

� Determination of EF



Formulas for n and p 
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Degenerate vs. Non-degenerate 
Semiconductor
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Alternative Expressions for n and p

When n=ni, EF = Ei, then
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ni and the np Product
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Charge Neutrality Relationship

� For uniformly doped semiconductor:
Charge must be balanced under equilibrium conditions otherwise 
charge would flow

Thermally generated +  assume ionization of 
dopant addition all dopant sites

0=+−− +−
DA qNqNqnqp



Carrier Concentration Calculations
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Relationship for        and +
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� The degeneracy factors account for the possibility of electrons
with different spin, occupying the same energy level (no electron 
with the same quantum numbers can occupy the same state)

� Most semiconductor gD=2 to account for the spin degeneracy at 
the donor sites 

� gA is 4 due to the above reason combined with the fact that
there are actually 2 valence bands in most semiconductors
Thus, 2 spins x 2 valance bands makes gA=4



Determination of EF (Intrinsic Material)
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Determination of EF (Extrinsic Material)
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Determination of EF (Extrinsic Material)

Fermi level positioning in Si at room temperature as a function of 
the doping concentration.  Solid EF lines were established using Eq. 
(previous page)



Carrier Concentration for the 
Quantum Well Devices

� Density of States 3D vs. 2D

� Carrier Concentration – 2D 

� Charge Neutrality



Density of States 3D vs. 2D
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Carrier Concentration – 2D
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Charge Neutrality
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Effective Mass of Holes - 3D
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