

Download the free Carson-Dellosa PEEK app to learn more about this great product!

Kelley Wingate Math Practice

Fifth Grade

Credits

Content Editor: Elise Craver
Copy Editor: Angela Triplett

Visit carsondellosa.com for correlations to Common Core, state, national, and Canadian provincial standards.

Carson-Dellosa Publishing, LLC
PO Box 35665
Greensboro, NC 27425 USA
carsondellosa.com
© 2014, Carson-Dellosa Publishing, LLC. The purchase of this material entitles the buyer to reproduce worksheets and activities for classroom use only-not for commercial resale. Reproduction of these materials for an entire school or district is prohibited. No part of this book may be reproduced (except as noted above), stored in a retrieval system, or transmitted in any form or by any means (mechanically, electronically, recording, etc.) without the prior written consent of Carson-Dellosa Publishing, LLC.

Table of Contents

IntroductionCommon Core Standards Alignment Chart 4Operations and Algebraic Thinking
Evaluating Numerical Expressions 5
Interpreting Numerical Expressions 8
Number and Operations in Base Ten
Powers of Ten11
Understanding Decimals 14
Rounding Decimals 17
Multiplying Multi-Digit Numbers 20
Division with One-Digit Divisors 23
Division with Two-Digit Divisors 26
Adding Decimals 29
Subtracting Decimals 32
Multiplying Decimals 35
Dividing Decimals 38
Number and Operations-Fractions
Adding Fractions with
Unlike Denominators. 41
Adding Mixed Numbers with
Unlike Denominators. 44
Subtracting Fractions with Unlike Denominators. 47
Subtracting Mixed Numbers with Unlike Denominators. 503 Understanding Fractions as Division53
Multiplying Fractions 56
Multiplying Whole Numbers and Fractions 59
Multiplying Mixed Numbers 62
Dividing Whole Numbers by Unit Fractions 65
Dividing Unit Fractions by Whole Numbers 68
Fraction Word Problems 71
Measurement and Data
Converting Measurements 74
Reading Line Plots 77
Exploring Volume 80
Using a Formula to Find Volume 83
Finding Volume 86
Additive Volume 89
Volume Word Problems 92
Geometry
Graphing Coordinates 95
Graphing Patterns 98
Understanding Attributes of
Two-Dimensional Figures 101
Answer Key 104

Introduction

Competency in basic math skills creates a foundation for the successful use of math principles in the real world. Practicing math skills-in the areas of operations, algebra, place value, fractions, measurement, and geometry-is the best way to improve at them.

This book was developed to help students practice and master basic mathematical concepts. The practice pages can be used first to assess proficiency and later as basic skill practice. The extra practice will help students advance to more challenging math work with confidence. Help students catch up, stay up, and move ahead.

Common Core State Standards (CCSS) Alignment

This book supports standards-based instruction and is aligned to the CCSS. The standards are listed at the top of each page for easy reference. To help you meet instructional, remediation, and individualization goals, consult the Common Core State Standards alignment chart on page 4.

Leveled Activities

Instructional levels in this book vary. Each area of the book offers multilevel math activities so that learning can progress naturally. There are three levels, signified by one, two, or three dots at the bottom of the page:

- Level I: These activities will offer the most support.
- Level II: Some supportive measures are built in.
- Level III: Students will understand the concepts and be able to work independently.

All children learn at their own rate. Use your own judgment for introducing concepts to children when developmentally appropriate.

Hands-On Learning

Review is an important part of learning. It helps to ensure that skills are not only covered but are internalized. The flash cards at the back of this book will offer endless opportunities for review. Use them for a basic math facts drill, or to play bingo or other fun games.

There is also a certificate template at the back of this book for use as students excel at daily assignments or when they finish a unit.

Common Core State Standards Alignment Chart

Common Core State Standards*		Practice Page(s)
Operations and Algebraic Thinking		
Write and interpret numerical expressions.	5.OA.I-5.OA. 2	5-10
Analyze patterns and relationships.	5.OA. 3	98-100
Number and Operations in Base Ten		
Understand the place value system.	5.NBT. I-5.NBT. 4	11-19
Perform operations with multi-digit whole numbers and with decimals to hundredths.	5.NBT.5-5.NBT. 7	20-40, 53-55
Number and Operations-Fractions		
Use equivalent fractions as a strategy to add and subtract fractions.	5.NF. I-5.NF. 2	$4 \mathrm{I}-52,71$
Apply and extend previous understandings of multiplication and division to multiply and divide fractions	5.NF.3-5.NF. 7	53-70, 72, 73
Measurement and Data		
Convert like measurement units within a given measurement system.	5.MD.I	74-76
Represent and interpret data.	5.MD. 2	77-79
Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.	5.MD.3-5.MD. 5	80-94
Geometry		
Graph points on the coordinate plane to solve real-world and mathematical problems.	5.G.I-5.G. 2	95-100
Classify two-dimensional figures into categories based on their properties.	5.G.3-5.G.4	101-103

[^0]
Evaluating Numerical Expressions

Use the following order to calculate and solve expressions:
I. Solve inside parentheses. $(36 \div 12) \times 2+3 \longrightarrow(3) \times 2+3$
2. Multiply and divide from left to right. $3 \times 2+3 \rightarrow 6+3$
3. Add and subtract from left to right. $6+3 \longrightarrow 9$

Solve each expression. Remember to follow the order of operations.
I. $(6 \times 2)+8=$ \qquad
2. $3+(8 \times 2)=$ \qquad
3. $14 \div 2+3=$ \qquad
4. $21 \div 7 \times 2=$
5. $(5 \times 2)+3=$ \qquad 6. $(10+10) \div 2=$ \qquad
7. $6 \times(3+3)=$ \qquad 8. $10 \times 10 \div 25=$ \qquad
9. $(17-7) \div 5=$ \qquad
10. $50 \div 5+3=$ \qquad

Evaluating Numerical Expressions

Solve each expression. Remember to follow the order of operations.

1. $8-2+9=$ \qquad
2. $(15 \div 3) \times 5=$ \qquad
3. $5+(21+4)=$ \qquad
4. $40 \div 5-7=$ \qquad
5. $(4 \times 4)+5=$ \qquad
6. $21 \div 7+3=$ \qquad
II. $\left(2^{2}-2\right) \times 3+8=$ \qquad
7. $(15 \times 2) \div 10+8=$ \qquad
8. $10-(14 \div 2)+3=$ \qquad
9. $2 \times 2 \div 2 \times 8=$ \qquad

Evaluating Numerical Expressions

Solve each expression.
I. $8 \times(8-2)+6^{2}=$ \qquad
3. $(2+2)^{2}+(14 \div 2)=$ \qquad
5. $(14-2)^{2}+(8 \div 4)=$ \qquad
7. $6 \times(13-4)+2^{2}=$ \qquad
9. $\left[5^{2}+\left(10 \div 2+2^{2}\right)\right]-5^{2}=$ \qquad 10. $\left[(9-2)^{2}+3\right]+5+3^{2}=$
8. $\left[4^{2}+\left(15 \div 5+5^{2}\right)\right]+4^{2}=$ \qquad
6. $\left(64-6^{2}\right) \div(9-2)=$ \qquad
4. $\left(12 \times 10-4^{2}\right)-5=$ \qquad
2. $\left(52-4^{2}\right) \div(8-4)=$ \qquad
10. $\left((9-2)^{2}+3\right]+5+3=$ \qquad
12. $6+\left[9+(9-3)^{2}\right]+7=$ \qquad
13. $(16 \div 8) 2+[(15-2) \times 32]=$ \qquad
14. $13+[7+(10-6) 2]-8=$ \qquad

Interpreting Numerical Expressions

Expressions can be written with numbers and symbols or in words.
4 more than the product of 6 and 7 add 10 and 12 , then divide in half

$$
4+(6 \times 7)
$$

$$
(10+12) \div 2
$$

Look for key words to help you decide which operations to use. Use parentheses to group the part of the expression that should happen first.

Write each expression with numbers.
I. 3 times the sum of 2 and 46 \qquad
2. 16 more than the product of 2 and 9 \qquad
3. subtract 4 from 29 , then double \qquad
4. 6 less than the quotient of 90 divided by 9 \qquad

Write each expression in words.
5. $9+(24 \div 6)$ \qquad
6. $(86-72)+6$ \qquad
7. $(22 \times 3) \div 2$ \qquad
8. $4 \times(5+83)$

Interpreting Numerical Expressions

Write each expression with numbers.
I. add 34 to itself, then divide in half \qquad
2. subtract 6 from 34 , then triple \qquad
3. 5 times the sum of 23 and 7 \qquad
4. the quotient of 100 and double 25 \qquad
5. 8 more than the product of 12 and 4 \qquad
6. 16 less than the quotient of 200 divided by 10 \qquad

Write each expression in words.
7. $(33+6) \div 3$ \qquad
8. $2 \times(15+67)$ \qquad
9. $(3 \times 13)+2$

$$
2
$$

\qquad
10. $(20-4)+100$ \qquad
II. $(100-45) \times 2$ \qquad
12. $70+(45 \div 9)$ \qquad

Interpreting Numerical Expressions

Write each expression with numbers.
I. half of the product of 42 and 3 \qquad
2. four times the sum of 53 and II \qquad
3. the product of 7 and the sum of 5 and 74 \qquad
4. 23 times 10 , divided by 5 \qquad
5. 18 more than the product of 2 and 42 \qquad
6. 14 less than the product of 16 and 10 \qquad
7. the sum of 45 and the product of 3 and 12

Write each expression in words.
8. $(13 \times 6) \div 2$ \qquad
9. $12+(30+7)$ \qquad
10. $(40 \div 8)-12$ \qquad
II. $(21+9) \div 3$ \qquad
12. $(10+2)-(45 \div 9)$ \qquad
\qquad
13. $80-(4 \times 4)$ \qquad
\qquad

Powers of Ten

Numbers can be abbreviated using exponential notation.
An exponent tells how many times a factor is multiplied by itself.

$$
10^{3}=10 \times 10 \times 10=1,000 \quad 10 \text { is multiplied by itself } 3 \text { times. }
$$

Look for patterns when a power of 10 is multiplied by another number between I and 9 .

$$
7,000,000=7 \times 10^{6}
$$

Hint: To know what power of 10 to use, simply match the power of 10 to the number of zeros in the number.

$$
4, \underline{000}=4 \times 10^{3} \quad \underline{900,000}=9 \times 10^{5}
$$

Write each number with an exponent.
I. IO to the fourth power \qquad 2. 10 to the third power \qquad 3. IO to the eighth power \qquad Solve.
4. $10^{3}=$ \qquad $10^{6}=$ \qquad $10^{4}=\square$
5. $10^{2}=$ \qquad $10^{10}=$ \qquad $10^{8}=$ \qquad
6. $10^{7}=$ \qquad $10^{5}=$ \qquad $10^{9}=$ \qquad

Rewrite each problem without the exponent. Then, solve.
7. $3 \times 10^{2}=$ \qquad $=\underline{ }$ $8 \times 10^{3}=$ \qquad $=$ \qquad
8. $6 \times 10^{4}=$ \qquad $=$ $4 \times 10^{5}=$ \qquad $=$ \qquad

Write each number as a number multiplied by a power of 10 .

$$
\text { 9. } 7,000=
$$

\qquad $5,000=$ \qquad $600,000=$ \qquad
10. $8,000,000=$ \qquad $40,000=$ \qquad
\qquad

Powers of Ten

Choose numbers to complete each problem. Solve. Look for patterns.
I. \qquad $\times 10=$
$\times 10=$
$\times 10=$
$\div 10=$
$\div 10=$
$\div 10=$
2. \qquad $\times 100=$ \qquad 3. \qquad $\times 1,000=$ \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\underline{-} \div 10=$

\qquad
\qquad
\qquad
\qquad
$\longrightarrow \div 10=$ \qquad
$\square \div 1,000=$
4. \qquad $\times 0.1=$
5. \qquad 6. \qquad $\longrightarrow \times 0.1=$ \qquad
$\ldots 0.001=$ \qquad
$\longrightarrow \times 0.1=$ \qquad
\qquad
$\longrightarrow \div 0.1=$ $\longrightarrow \div 0.01=$
$-\quad \div 0.001=$ \qquad
$\square \div 0.1=$ \qquad
\qquad
$\longrightarrow-$
$-\quad \div 0.01=$ \qquad
$\underline{ }$
$\div 0.001=$ \qquad
7. Write a rule for multiplying and dividing by powers of 10 .
\qquad
\qquad
\qquad

Powers of Ten

Use what you know about multiplying and dividing by powers of 10 to answer each problem without multiplying or dividing.

I. $6 \times 10,000=$	2. $8 \times 10,000=$
$6 \times 1,000=$	$8 \times 1,000=$
$6 \times 100=$	$8 \times 100=$
$6 \times 10=$	$8 \times 10=$
$6 \times 1=$	$8 \times 1=$
$6 \div 1=\square$	$8 \div 1=\square$
$6 \div 10=$	$8 \div 10=$
$6 \div 100=$	$8 \div 100=$
$6 \div 1,000=$	$8 \div 1,000=$
3. $24 \times 10,000=$	4. $13 \times 10,000=$
$24 \times 1,000=\square$	$13 \times 1,000=$
$24 \times 100=$	$13 \times 100=$
$24 \times 10=$	$13 \times 10=$
$24 \times 1=$	$13 \times 1=\square$
$24 \div 1=\square$	$13 \div 1=\square$
$24 \div 10=$	$13 \div 10=$
$24 \div 100=$	$13 \div 100=$
$24 \div 1,000=$	$13 \div 1,000=$

Understanding Decimals

What portion of this box is shaded? four-tenths of the box
2.4 (two and four-tenths)

This can be spoken, "two point four," or "two and four-tenths."
Note: When writing a decimal, if there are no whole numbers, place a zero left of the decimal point. Examples: seven-tenths $=0.7$, nine-tenths $=0.9$

Write each decimal.
I. three and five-tenths \qquad
3. eight-tenths \qquad
5. three-tenths \qquad
7. seven-tenths \qquad
9. four-tenths \qquad
Write each decimal in words.
II. 3.9
13. 12.8 \qquad
Use $<$,$\rangle , or =$ to compare the decimals.
15. 3.44.5
16. 6.01

2.06
14. 7.3 \qquad
2. six and one-tenth \qquad
4. eight and three-tenths \qquad
6. two and one-tenth \qquad
8. twenty and two-tenths \qquad
10. thirty-seven and two-tenths \qquad
12. 2.7 \qquad
17. 5.01

51.09
18. 3.022.03

Understanding Decimals

Write each decimal.
I. one-tenth \qquad
3. three-thousandths \qquad
5. forty-five hundredths \qquad
7. four hundred and one-tenth \qquad
9. six-tenths \qquad
10. one-hundredth \qquad
2. twenty-seven hundredths \qquad
4. seven-tenths \qquad
6. fifty-one thousandths \qquad
8. fifty-five and three-tenths \qquad

Write each decimal in words.
II. 0.04

[^0]: * © Copyright 2010. National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.

