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Idea of higher category theory

An ∞-category is a gadget equipped with

objects,
1-morphisms between objects,
2-morphisms between 1-morphisms,
3-morphisms between 2-morphisms,
etc.

An (∞, n)-category is one such that all k-morphisms are
“invertible”, for k > n.
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Goal of this talk

I want to discuss an approach to (∞, n)-categories, based on the following
ideas:

An (∞, 0)-category (= an ∞-groupoid) is a space.
(“Homotopy hypothesis”.)

An (∞, n)-category should be more-or-less the same thing as a
category enriched over (∞, n − 1)-categories.

The collection of (∞, n)-categories should have internal function
objects,
i.e., (∞, n)-categories should be Cartesian closed,
and thus be an example of some kind of (∞, n + 1)-category.

We should avoid interpreting the above ideas too strictly.
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Desired features of (∞, 1)-categories

Let Cat∞,1 = “category” of (∞, 1)-categories.

equivalences: class of morphisms in Cat∞,1

Cat∞,1 is Cartesian closed:
C ,D ∈ Cat∞,1 =⇒ {C ,D}, right adjoint to ×
Gpd∞ ⊂ Cat∞,1 full subcategory of ∞-groupoids
C gpd ⊆ C maximal sub-∞-groupoid of C

classifying space functor B : Gpd∞ → Sp:

{groupoids up to equivalence} ⇐⇒ {spaces up to weak equivalence}

Can we understand Cat∞,1 using spaces?
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Presheaf of spaces associated to an (∞, 1)-category

Given C ∈ Cat∞,1, let

F = FC : Catop∞,1 → Sp

A 7→ B({A,C}gpd) = Map(A,C )

(representable space valued presheaf on Cat∞,1)

Think of FC (•) = B(C gpd) as the “moduli space” of objects of C :

B(C gpd) ≈
∐
[X ]

iso. classes

BAut(X ).

(• = “freestanding object” category)

Think of FC (A) as the “moduli space” of functors A→ C

Cat∞,1 ⇐⇒ {representable presheaves in Psh(Cat∞,1,Sp)}
Yoneda lemma!
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Example: C = finite sets

C = category of finite sets

“Size” is a complete isomorphism invariant of finite sets
Aut({1, . . . , n}) = Σn symmetric group

FC (•) ≈
∐
[S]

BAut(S) ≈
∐
n≥0

BΣn

Charles Rezk (UIUC) Θn-spaces May 28, 2009 6 / 30



Example: C = finite sets, continued

Let [1] = (• → •)
{[1],C} = category of functors [1]→ C
Objects: morphisms f : S0 → S1 in C
Morphisms: commutative diagrams

S0
∼ //

��

T0

��

S1 ∼
// T1

C = finite sets
p(f ) = (p0, p1, p2, . . . ) where pk = # of fibers of f with size k

FC ([1]) ≈
∐

[S0
f−→S1]

BAut(S0
f−→ S1) ≈

∐
p

B

(∏
k

Σk o Σpk

)

If f is isomorphism, p(f ) = (0, n, 0, 0, . . . ), so BAut(f ) ≈ BΣn
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Properties of FC

General properties of FC

FC ([1])inv
def
= subspace of FC ([1]) of path components containing

invertible maps
FC (•)→ FC ([1]) factors through a weak equivalence

FC (•) ∼−→ FC ([1])inv ⊆ FC ([1]).

FC (A) can always be recovered as a homotopy limit from diagrams
involving the spaces FC (•) and FC ([1]).
For instance

FC (0→ 1→ 2) ≈ lim
(
FC (0→ 1)→ FC (1)← FC (1→ 2)

)
and similarly for FC (0→ 1→ · · · → n).
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Recovering C from F

∆ ⊂ Cat: full subcategory of categories of the form

[m] = (0→ 1→ 2→ · · · → m)

Can recover C , up to equivalence, from the restriction of FC to ∆:

π0FC ([0]) = isomorphism classes of objects of C

MapC (X ,Y ) ≈ hofiber(X ,Y )

[
FC ([1])→ FC ([0])×FC ([0])

]
composition is defined using

MapC (X ,Y )×MapC (Y ,Z ) ≈
hofiber(X ,Y ,Z)

[
FC ([2])→ FC ([0])×FC ([0])×FC ([0])

]
associativity of composition uses fibers of FC ([3])→ FC ([0])4
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Definition of complete Segal space

Complete Segal space: a functor X : ∆op → Sp satisfying the following.

Segal condition. For all k ≥ 2,

X ([k])
∼−→ lim

 X ([1])
&&LL

X ([1])
xxrr $$JJJ

· · ·
##FF

~~||
|

X ([1])
xxrr

X [0] · · · X [0]


Completeness condition.
The map X ([0])→ X ([1]) factors through a weak equivalence
X ([0])→ X ([1])inv ⊆ X ([1]).

(If X ∈ Psh(∆,Sp) satisfies the Segal condition,

X ([1])inv
def
= union of components of X ([1]) which contain elements

invertible in the “homotopy category” of X .)
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Complete Segal spaces and (∞, 1)-categories

A complete Segal space X has

“objects” ⇐⇒ points of X ([0])

“morphism spaces” for a, b ∈ X ([0])

MAPX (a, b)
def
= hofiber(a,b)

[
X ([1])→ X ([0])× X ([0])

]
.

a weakly defined “composition”

Theorem (Bergner)

{complete Segal spaces} ⇐⇒ {categories enriched over spaces}.

That is:

{complete Segal spaces} ⇐⇒ {categories enriched over (∞, 0)-categories}.

Also equivalent to: Segal categories (Bergner), quasicategories
(Joyal-Tierney).
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Presentations

Definition

A presentation (C , S) consists of

C = small category,
S = {s : S → S ′} = set of morphisms in Psh(C ,Sp).

An S-local presheaf is X ∈ Psh(C ,Sp) such that for all s ∈ S,

Map(s,X ) : Map(S ′,X )→ Map(S ,X )

is weak equivalence of spaces. (Map = derived mapping space.)

Psh(C ,Sp)S
def
= full subcategory of S-local presheaves in Psh(C ,Sp).

S
def
= class of maps:

f ∈ S iff Map(f ,X ) is a weak equivalence for all S-local X
(sometimes called S-local equivalences, or saturation of S.)

Note: hPsh(C ,Sp)S ≈ hPsh(C ,Sp)[S
−1

].
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The presentation of complete Segal spaces

Presentation of complete Segal spaces

Complete Segal spaces are presented by (∆, S), where S consists of

sek : G [k]→ F [k] (for k ≥ 2), cp : Z → F [0].

F [k] = presheaf represented by [k] ∈ ob∆

G [k] ⊂ F [k], e.g.: ⊂ , ⊂

Z = F [3]/∼ = colim(F [3]← F [1]q F [1]→ F [0]q F [0]).

Map(Z ,X ) ≈ X ([1])inv ⊆ X ([1]) if X satisfies Segal condition
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Constructing elements of S

An example of elements of S.

se2 //

�� ��

g
//

se3

66

k //

se2 ∈ S =⇒ g ∈ S

g , se3 ∈ S =⇒ k ∈ S
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Cartesian presentations

Psh(C ,Sp) is Cartesian closed: internal function object {X ,Y }.

X → {Y ,Z} ⇐⇒ X × Y → Z .

In what follows, {X ,Y } = the derived version of function object.

Definition

A presentation (C , S) is Cartesian if for all X ∈ Psh(C ,Sp),

Y ∈ Psh(C ,Sp)S =⇒ {X ,Y } ∈ Psh(C ,Sp)S.

(C , S) Cartesian =⇒
Psh(C ,Sp)S has a (derived) internal function object,
which is computed as the function object between the underlying
presheaves.
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Complete Segal spaces are cartesian

Theorem (R.)

The presentation (∆, S) defining complete Segal spaces is Cartesian.

To show that a presentation (C , S) is Cartesian, check:

(S
s−→ S ′) ∈ S =⇒ (S × Fc

s×id−−−→ S ′ × Fc) ∈ S

for all c ∈ obC
Fc = presheaf represented by c

To prove the Theorem, show that

G [k]× F [m]
sek×id−−−−→ F [k]× F [m], Z × F [m]

cp×id−−−→ F [0]× F [m]

are in S.
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Idea of the proof

Consider F [2]× F [1] ⊃ G [2]× F [1]

Want to show: X complete Segal space =⇒
Map(F [2]× F [1],X )→ Map(G [2]× F [1],X ) is a weak equivalence
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Idea of the proof, (continued)

F [2]× F [1] = = colim (F [3]← F [2]→ F [3]← F [2]→ F [3]) .

[[77 CC��
[[77 CC��

Map(Black&Blue,X )→ Map(Blue,X ) is a weak equivalence.
if X is a complete Segal space
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Presheaf of spaces associated to an (∞, n)-category

We want to base a definition of (∞, n)-categories on the following
principles (here C ,D ∈ Cat∞,n):

function objects {C ,D} ∈ Cat∞,n

maximal sub-∞-groupoid C gpd ⊆ C

∞-groupoids are spaces

these constructions invariant under equivalence

=⇒ functor

F = FC : Catop∞,n → Sp

A 7→ {A,C}gpd ≈ Map(A,C )

To make this concrete, need a suitable small subcategory of Cat∞,n
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The category Θn

Θn introduced by Joyal; related to Batanin’s “pasting diagrams”
Θn is to n-categories as ∆ = Θ1 is to 1-categories

Definition (Vague)

Θn is the full subcategory of strict n-categories consisting of objects which
“look like”

•
��

//
HH

��

��

•
����

?? KK

��

��

��

• // •
��

??��
•

The name of this object (of Θ2) is [4]([2], [3], [0], [1]).

k-cells in Θn for 0 ≤ k ≤ n. Notation:

O0 = (•), O1 = ( • // • ), O2 =

(
•

!!

==�� •
)

, . . .
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Idea of Θn-spaces

A Θn-space is a functor X : Θop
n → Sp satisfying

Segal conditions. X (θ) = homotopy limit of X (Ok)’s:

X

 • ��
//
II

��

��
•

!!

==�� •

 ≈ lim

X

 • ��
//
II

��

��
•

→ X (•)← X

(
•

!!

==�� •
)

≈ lim


X (O2)

�� &&MMM
MM

X (O1) // X (O0) X (O2)oo

X (O2)

OO 88qqqqq


Completeness conditions. X (Ok−1)→ X (Ok) factors through a
weak equivalence

X (Ok−1)
∼−→ X (Ok)inv ⊆ X (Ok)

for k = 1, . . . , n.
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Idea of Θn-spaces, continued

“Composition”:
Morphism in Θn

•
��

DD

��
• −→ •

��
//
II

��

��
•

!!

==�� •

induces map of spaces

X

(
•

!!

==�� •
)
←− X

 • ��
//
II

��

��
•

!!

==�� •


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The wreath category ΘC

C = small category =⇒ category ΘC = ∆ o C (C. Berger):

Objects of ΘC

Graphs like

0
c1 // 1

c2 // 2
c3 // 3

where ci ∈ obC (denoted [3](c1, c2, c3)).

Morphisms of ΘC

0
c1 //@

����
��

��
��

1
c2 //

_

��

2
c3 //@

����
��

��
��

3@

����
��

��
��

0
d1

//

f11

��
1

d2

//

f12

��
2

d3

//

f33

��
3

d4

// 4

consists of δ : [3]→ [4] ∈ ∆, fij : ci → dj ∈ C .

Think of [m](c1, . . . , cm) as a C -enriched category
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Definition of Θn

Definition of Θn

Θ0
def
= 1, Θn

def
= Θ(Θn−1)

inclusions Θ1 ⊂ Θ2 ⊂ · · · ⊂ Θn

“suspension” Θn−1 → Θn

θ 7→ [1](θ)

( • // • // • ) 7→

 • ��
//
II

��

��
•


Definition of MAPX (a, b)

X ∈ Psh(Θn,Sp), a, b ∈ X ([0]) =⇒ MAPX (a, b) ∈ Psh(Θn−1,Sp):

MAPX (a, b)(θ)
def
= hofiber(a,b)

[
X ([1](θ))→ X ([0])× X ([0])

]
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Definition of Θn-space

A Θn-space is a functor Θop
n → Sp satisfying the following.

Segal condition. For all k ≥ 2, θ1, . . . , θk ∈ obΘn−1,

X ([k](θ1, . . . , θk))
∼−→

lim

 X ([1](θ1))
((QQ

X ([1](θ2))
vvmm ((PP

· · ·
##GG

}}||
X ([1](θk))

vvll
X [0] · · · X [0]


Completeness condition. X |Θ1 is a complete Segal space

Recursive condition.
MAPX (a, b) is a Θn−1-space for all a, b ∈ X ([0])

A Θ0-space is a space.
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Θn-spaces as (∞, n)-categories

Idea: Θn-spaces model (∞, n)-categories.

Θn-spaces are local objects for a presentation (Θn,T).

Not the only model given by a presentation:
n-fold complete Segal spaces, given by a presentation (∆n,T′).
(Barwick, Lurie).

These two presentations are different,
but model the same underlying theory.
(Underlying model categories are Quillen equivalent.)

There are other models, not given by a presentation,
e.g., n-fold Segal categories (Hirschowitz–Simpson).
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Θn-spaces are cartesian

(Θn,T)
def
= presentation for Θn-spaces.

Theorem (R.)

(Θn,T) is a Cartesian presentation.
=⇒ if X ,Y ∈ Psh(Θn,Sp), and Y is a Θn-space, so is {X ,Y }.

The presentation (∆n,T′) for n-fold complete Segal spaces is not
Cartesian (though it comes close).

The n-fold Segal category model (Hirschowitz–Simpson) gives a
Cartesian model category, but isn’t given by a presentation.
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A more general construction

Let (C , S) be a Cartesian presentation. (Assume C has a terminal object.)
There exists a presentation (ΘC ,T), whose local objects X satisfy:

Segal condition. For all k ≥ 2, c1, . . . , ck ∈ obC ,

X ([k](c1, . . . , ck))
∼−→

lim

 X ([1](c1))
((QQ

X ([1](c2))
vvmm ''PP

· · ·
##GG

}}||
X ([1](ck))

vvmm
X [0] · · · X [0]


Completeness condition. X |Θ1 is a complete Segal space

Recursive condition.
MAPX (a, b) ∈ Psh(C ,Sp) is an S-model for all a, b ∈ X ([0])

Theorem

(ΘC ,T) is a Cartesian presentation if (C , S) is
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A more general construction, continued

If V = Psh(C ,Sp)S, then

V -ΘSp def
= Psh(ΘC ,Sp)T

should model “(V ,×)-enriched categories”

Theorem says: V Cartesian =⇒ V -ΘSp Cartesian.

Θn-spaces are obtained by iterating the V 7→ V -ΘSp construction,
starting with V = Sp
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The end
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