CARTILAGE, BONE AND OSTEOGENESIS

Dr. Larry Johnson Texas A&M University

Objectives

- Histologically identify and functionally characterize each of the various forms of supporting connective tissue.
- Recognize the structure and characterize the function of cells, fibers and ground substance components of each of the supporting connective tissues examined.
- Describe the cellular mechanisms that provide for intramembranous and endochondrial bone development.
- Compare and contrast the structure and function of compact and sponge bone.

FUNCTIONS OF CARTILAGE

FLEXIBLE SUPPORT - RETURN TO ORIGINAL SHAPE (EARS, NOSE, AND RESPIRATORY)

FUNCTIONS OF CARTILAGE

SLIDES ACROSS EACH OTHER EASILY WHILE BEARING WEIGHT (JOINTS, ARTICULAR SURFACES OF BONES)

CUSHION - CARTILAGE HAS LIMITED COMPRESSIBILITY (JOINTS)

No nerves and, thus, no pain during compression of cartilage.

CONNECTIVE TISSUE

Connective tissue proper

Loose (areolar) Dense Regular Irregular

Connective tissue

Connective tissue with special properties

Supporting connective tissues

Adipose tissue (Chapter 6) Elastic tissue Hematopoietic (lymphatic and myeloid) tissue (Chapter 14) Mucous tissue

Cartilage (Chapter 7) Bone (Chapter 8)

CELLS OF CT

FIBROBLASTS MESENCHYMAL CELLS and RBC ADIPOSE CELLS MACROPHAGE PLASMA CELLS MAST CELLS and WBC

CHONDROBLASTS CHONDROCYTES

OSTEOBLASTS OSTEOCYTES OSTEOCLASTS

GENERAL ORGANIZATION OF CARTILAGE PERICHONDRIUM **CAPSULE-LIKE SHEATH OF DENSE IRREGULAR CONNECTIVE TISSUE THAT SURROUNDS CARTILAGE (EXCEPT ARTICULAR CARTILAGE) FORMS INTERFACE WITH** SUPPORTED TISSUE **HARBORS A VASCULAR SUPPLY**

MATRIX

TYPE II COLLAGEN (LACK OF OBVIOUS PERIODICITY)

MATRIX

TYPE II COLLAGEN (LACK OF OBVIOUS PERIODICITY)

SULFATED PROTEOGLYCANS (CHONDROITIN SULFATE AND KERATAN SULFATE) - STAIN BASOPHILIC

MATRIX

TYPE II COLLAGEN (LACK OF OBVIOUS PERIODICITY)

SULFATED PROTEOGLYCANS (CHONDROITIN SULFATE AND KERATAN SULFATE) - STAIN BASOPHILIC

CAPABLE OF HOLDING WATER / DIFFUSION OF NUTRIENTS AVASCULAR - GETS NUTRIENT/WASTE EXCHANGE FROM PERICHONDRIUM

CHONDROCYTES / CHONDROBLASTS

CHONDROCYTES / CHONDROBLASTS

CHONDROCYTES / CHONDROBLASTS

CHONDROCYTES / CHONDROBLASTS

Sugars

Proteoglycans

and collagen

Cartilage

Hyaline cartilage

 Glassy matrix (GAGs, proteoglycans, collagen II) devoid of blood vessels, surrounded by fibrous sheath perichondrium

Elastic cartilage

 Similar to hyaline except chondrocytes become trapped in their secretions (enmeshed within the matrix, lacunae), has elasticity thus maintains its shape

Fibrocartilage

 Course collagen I fibers form dense bundles to withstand physical stresses, strengthen hyaline cartilage

017

Developing Cartilage

<u>040</u>

Cartilage grows by both interstitial growth (mitotic division of preexisting chondroblasts) and by appositional growth (differentiation of new chondroblasts from the perichondrium).

perichondrium

Slide <u>40</u>: Trachea

Hyaline cartilage C-ring Isogenous group of chondrocytes in individual lacunae

Territorial matrix Inter-territorial matrix

Slide <u>40</u>: Trachea

Staining variations within the matrix reflect local differences in its molecular composition. Immediately surrounding each chondrocyte, the ECM is relatively rich in GAGs causing these areas of territorial matrix to stain differently from the intervening areas of interterritorial matrix.

Sugars sulfate Protein synthesis Amino acids

Inter-territorial matrix

Fold artifact

Elastic cartilage

Perichondrium

Elastic cartilage has obvious elastic fibers in an otherwise heterogenous matrix with more individual cells and fewer isogenous groups.

Slide 16: External auditory tube (Verhoff's stain for elastin)

FIBROCARTILAGE

INTERMEDIATE BETWEEN DENSE REGULAR CONNECTIVE TISSUE AND HYALINE CARTILAGE

NO PERICHONDRIUM

FIBROCARTILAGE

FOUND IN :

- INTERVERTEBRAL DISCS
- ATTACHMENT OF LIGAMENTS TO CARTILAGINEOUS SURFACE OF BONES

Slide 17: Vertebra

194 Fibrocartilage of Fetal elbow

Fibrocartilage

W Strate

Bed A bong

94 Fibrocartilage of Fetal elbow

Fetal finger – fibroblasts in tendon

Fetal finger – fibroblasts in tendon

()()

SUMMARY OF CARTILAGE

SUMMARY OF CARTILAGE

SKELETAL SUPPORT LAND ANIMALS

PROTECTIVE ENCLOSURE SKULL TO PROTECT BRAIN LONG BONE TO PROTECT HEMOPOIETIC CELLS

Where Red Blood Cells Are Formed

The bone marrow has been termed the "blood factory" of the body, especially for red blood cells and platelets. Athough all bone cavities contain marrow, it is only certain bones in adults that have active, blood-producing, red marrow. These include the spongy parts of long bones such as the femur, and the flat bones of the ribs, breastbone, vertebrae, and skull.

A bone shaft, in cross section (left), reveals the spongy internal structure of a bone. A closer look (above) shows blood vessels distributed within the bone.

About 3 million red blood cells are produced by an adult second. The intricate bone marrow structure shown in this micgraph is the site of blood production. It is here, too, that some of iron from wom-out red cells is recycled in new red-cell production.

CALCIUM REGULATION

Parathroid hormone (BONE RESORPTION)

Figure 8–6. Schematic drawing of the wall of a long bone diaphysis. Observe the 4 types of lamellar bone, havenuar system, outer and inner, circomferential lamellae, and interstitial vamellae. The protructing havenuar system on the left shows the orientation of collegen fibers in each lamella. At the right is a havenuar system showing lamellae, a centra blood capitary, and many collectives with their processes.

CALCIUM REGULATION

Parathroid hormone (BONE RESORPTION)

Calcitonin (PREVENTS RESORPTION)

These HORMONES are INVOLVED IN TIGHT REGULATION as

1/4 OF FREE CA⁺⁺ IN BLOOD IS EXCHANGED EACH MINUTE.

Figure 8-6. Schematic drawing of the wall of a long bone diaphysis. Observe the 4 types of lamellar bone, haveniar system, outer and inner cocumerential lamellae, and intensitial lamellae. The protructing haveniar system on the left shows the prientation of collagen tibers in each tamella. Alt the right is a havenian system showing lamellae, a centra blood capitary, and many obsecutes with their processes.

CALCIUM REGULATION

Parathroid hormone (BONE RESORPTION)

Calcitonin (PREVENTS RESORPTION)

These HORMONES are INVOLVED IN TIGHT REGULATION as

1/4 OF FREE CA⁺⁺ IN BLOOD IS EXCHANGED EACH MINUTE.

HEMOPOIESIS

Figure 8-6. Schematic drawing of the wall of a long bone diaphysis. Observe the 4 types of lamellar bone: haveniar system: outer and inner cocumerential lamellae, and intensitial lamellae. The protructing haveniar system on the left shows the prientation of collagen tibers in each tamella. Alt the right is a havenian system showing lamellae, a centra blood capitary, and many obsecutes with their processes.

CELLS OF BONE

OSTEOBLASTS - SECRETE OSTEOID - BONE

• EXPAND BONE BY APPOSITIONAL GROWTH

CELLS OF BONE

OSTEOBLASTS - SECRETE OSTEOID - BONE

• EXPAND BONE BY APPOSITIONAL GROWTH

OSTEOCYTE = OSTEOBLAST TRAPPED IN MATRIX OF BONE

CELLS OF BONE

OSTEOBLASTS

OSTEOCYTES – OSTEOBLASTS TRAPPED IN MATRIX OF BONE

CELLS OF BONE OSTEOCLASTS - MULTINUCLEATED PHAGOCYTIC

CELLS FROM MONO-CYTES

CELLS OF BONE OSTEOCLASTS - MULTINUCLEATED PHAGOCYTIC

CELLS FROM MONO-CYTES

Slide 17: Vertebra

Developing Bone

Methods of bone development

- Intramembranous: formation within fibrous/collagenous membranes formation fibroblast like precursor cells
- Endochondrial ossification: formation within cartilage model with distinct zones of development, formation by replacing cartilage cells and matrix

Copyright McGraw-Hill Companies

HISTOGENESIS OF BONE

INTRAMEMBRANOUS OSSIFICATION

DIRECT MINERALIZATION OF MATRIX SECRETED BY OSTEOBLAST WITHOUT A CARTILAGE MODEL

HISTOGENESIS OF BONE INTRAMEMBRANOUS OSSIFICATION

FLAT BONES OF SKULL

Slide <u>36</u>: Nasal septum (intramembranous osteogenesis)

HISTOGENESIS OF BONE

ENDOCHONDRAL OSSIFICATION

DEPOSITION OF BONE MATRIX ON A PREEXISTING CARTILAGE MATRIX

CHARACTERISTIC OF LONG BONE FORMATION

Slide <u>20</u>: Long bone (longitudinal section; epiephysial plate)

Epiphysial plate

EXTRACELLULAR MATRIX OF BONE

OSTEOID - MIXTURE OF TYPE I COLLAGEN AND COMPLEX MATRIX MATERIAL TO INCREASE THE AFFINITY AND SERVE AS NUCLEATION SITES FOR PARTICIPATION OF **CALCIUM PHOSPHATE** (HYDROXYAPATITE)

EXTRACELLULAR MATRIX OF BONE

SECRETED by POLARIZED OSTEOBLASTs

CALCIFICATION -ADDS FIRMNESS, BUT PREVENTS DIFFUSION THROUGH MATRIX MATERIAL

Newly formed

matrix

EXTRACELLULAR MATRIX OF BONE

FORMS LACUNAE AND CANALICULI -

EXTRACELLULAR MATRIX OF BONE

FORMS LACUNAE AND CANALICULI - CAUSES THE NEED FOR NUTRIENTS TO PAST THROUGH THE MANY GAP JUNCTIONS BETWEEN OSTEOCYTES VIA CANALICULI

COMPACT BONE - SHAFT AND OUTER SURFACE OF LONG BONES

COMPACT BONE-SHAFT AND OUTER SURFACE OF LONG BONES

- PERIOSTEUM FIBROBLAST create CIRCUMFERENTIAL LAMELLAE
 - APPOSITIONAL GROWTH

COMPACT BONE-SHAFT AND OUTER SURFACE OF LONG BONES

- PERIOSTEUM FIBROBLAST create CIRCUMFERENTIAL LAMELLAE
- APPOSITIONAL GROWTH (NOTE: BONE HAS NO INTERSITIAL GROWTH AS DOES CARTILAGE)

COMPACT BONE-SHAFT AND OUTER SURFACE OF LONG BONES

ENDOSTEUM -INSIDE COMPACT BONE, SURFACES OF SPONGY BONE, INSIDE HAVERSIAN SYSTEMS

COMPACT BONE

HAVERSIAN SYSTEMS -LAMELLAE OF BONE AROUND HAVERSIAN CANAL LINKED BY VOLKMANN'S CANAL

Slide 19: Compact bone (ground cross section)

Slide 19: Compact bone (ground cross

Volkmann's canal

Connecting adjacent osteons, perforating (Volkmann's) canals provide communication for osteons and another source of microvasculature for the central canals of osteons (nutrients, blood,

etc.).

Clinical Correlation

An elderly patient is diagnosed with osteoporosis.

Describe the cells involved that produce this imbalance in bone production and resorption.

Which of these cell types would be more active and which would be less active?

What is the difference between osteoporosis and osteomalacia? p143&151

Image adapted from www.webmd.com

CALCIUM REGULATION

Parathroid hormone (stimulates osteoclast production)

Figure 8-6. Schematic drawing of the wall of a long bone diaphysis. Observe the 4 system that a system on the left system outer and inner circumferential lameliae, and intentitial lameliae. The protructing haversian system on the left shows the intentiation of collagen fibers in each lamelia. At the right is a haversian system showing lameliae, a centra blood capitary, and many osteocytes with their processes.

CALCIUM REGULATION

Parathroid hormone (stimulates osteoclast production)

Calcitonin (removes osteoclast's ruffled boarder which PREVENTS RESORPTION

CALCIUM REGULATION

Parathroid hormone (stimulates osteoclast production)

Calcitonin (removes osteoclast's ruffled boarder which PREVENTS RESORPTION

Osteoporosis is an imbalance in skeletal turnover so that bone resorption exceeds bone formation. This leads to calcium loss for bones and reduced bone mineral density.

CALCIUM REGULATION

Parathroid hormone (stimulates osteoclast production)

Calcitonin (removes osteoclast's ruffled boarder which PREVENTS RESORPTION

Osteoporosis is an imbalance in skeletal turnover so that bone resorption exceeds bone formation. This leads to calcium loss for bones and reduced bone mineral density.

Osteomalacia is characterized by deficient calcification of recently formed bone and partial decalcification of already calcified matrix.

Many illustrations in these VIBS Histology YouTube videos were modified from the following books and sources: Many thanks to original sources!

- Bruce Alberts, et al. 1983. Molecular Biology of the Cell. Garland Publishing, Inc., New York, NY.
- Bruce Alberts, et al. 1994. Molecular Biology of the Cell. Garland Publishing, Inc., New York, NY.
- William J. Banks, 1981. Applied Veterinary Histology. Williams and Wilkins, Los Angeles, CA.
- Hans Elias, et al. 1978. Histology and Human Microanatomy. John Wiley and Sons, New York, NY.
- Don W. Fawcett. 1986. Bloom and Fawcett. A textbook of histology. W. B. Saunders Company, Philadelphia, PA.
- Don W. Fawcett. 1994. Bloom and Fawcett. A textbook of histology. Chapman and Hall, New York, NY.
- Arthur W. Ham and David H. Cormack. 1979. Histology. J. S. Lippincott Company, Philadelphia, PA.
- Luis C. Junqueira, et al. 1983. Basic Histology. Lange Medical Publications, Los Altos, CA.
- L. Carlos Junqueira, et al. 1995. Basic Histology. Appleton and Lange, Norwalk, CT.
- L.L. Langley, et al. 1974. Dynamic Anatomy and Physiology. McGraw-Hill Book Company, New York, NY.
- W.W. Tuttle and Byron A. Schottelius. 1969. Textbook of Physiology. The C. V. Mosby Company, St. Louis, MO.
- Leon Weiss. 1977. Histology Cell and Tissue Biology. Elsevier Biomedical, New York, NY.
- Leon Weiss and Roy O. Greep. 1977. Histology. McGraw-Hill Book Company, New York, NY.
- Nature (http://www.nature.com), Vol. 414:88,2001.
- A.L. Mescher 2013 Junqueira's Basis Histology text and atlas, 13th ed. McGraw
- Douglas P. Dohrman and TAMHSC Faculty 2012 Structure and Function of Human Organ Systems, Histology Laboratory Manual - Slide selections were largely based on this manual for first year medical students at TAMHSC