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 Cascade radical cyclizations have been employed in the synthesis of several novel 

analogs of camptothecin and luotonin A. The mild conditions of the cyclization allowed for the 

synthesis of a wide variety of analogs with high functional group tolerance in a modular fashion. 

 The asymmetric synthesis of a pyridone lactone, a key intermediate in Lavergne and 

Bigg’s synthesis of (R)-hCPT, is described. The synthesis furnished the product in good 

enantiopurity (96% ee) in eleven synthetic steps starting from commercially available 2-

methoxypyridine. The key reactions in this synthesis are Sharpless asymmetric epoxidation and 

Corey-Stille coupling.  

Attempts towards a more efficient synthesis of the DE-fragment of (R)-hCPT which were 

not successful, but led to the synthesis of novel non-lactone analogs of camptothecin are 

discussed. These non-lactone analogs contain either a cyclic ether or an α,β-unsaturated lactone 

in place of the α-hydroxy-δ-lactone as the E-ring of camptothecin. Despite possessing interesting 

structural features, these analogs were shown to be biologically inactive in the topo I inhibition 

assays as well as cell growth inhibition studies. 

 The semi-synthesis and biological evaluation of E-ring open form analogs of 

camptothecin was developed. This analog synthesis evolved from an interesting report by 

Stewart and coworkers of the X-ray crystal structure of topo I-DNA-topotecan ternary complex. 

Amongst the six open form analogs synthesized, the hydrazides showed activity comparable to 

 iv



that of camptothecin in the DNA cleavage assays. This activity may be due to the reclosure to 

camptothecin under the assay conditions.  

 20-Fluorocamptothecin was accidentally discovered upon fluorination of the tertiary 

alcohol of CPT with DAST at −78 °C. This discovery led to the stereoselective total synthesis of 

racemic, 20R- and 20S-fluorocamptothecin. It was concluded from the biological data that the 

fluorination occurred with inversion of configuration. 

 The total synthesis of luotonin A, a recently isolated topo I poison, and its analogs using 

the radical cascade cyclization strategy, was accomplished. A concise, modular approach was 

undertaken for the synthesis of all the analogs of luotonin A. This exercise would provide more 

insight into the structure-activity relationships of this new drug candidate. 

 The development of camptothecin analogs with interesting biological properties and 

differing mainly in the D, E rings was the central theme of the research work described in this 

thesis. Knowledge acquired from this research can be used for future discovery and development 

of potential drug candidates. 
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1. BACKGROUND 

 

1.1. Camptothecin 

One of the primary causes for deaths in many parts of the world is cancer.1 “Cancer” is a 

general name for a condition in which abnormal cells grow in an uncontrolled manner. Cancer 

can invade and destroy healthy tissues and spread via the bloodstream and lymphatic system to 

other parts of the body. One of the efficient ways to treat cancer is by chemotherapy in which 

anti-cancer drugs are used to treat cancerous cells. Chemotherapy either kills or arrests the 

growth of cancerous cells by targeting specific parts of the cell growth cycle. A wide variety of 

compounds possessing chemotherapeutic properties have been isolated from natural substances 

like plants, fungi etc. Taxol is an excellent example of a plant-derived anticancer drug that has 

achieved tremendous success in cancer chemotherapy. Another important family of plant-derived 

anticancer drugs that has been the subject of considerable attention is that of the camptothecins 

(Figure 1.1). 
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Figure 1.1 Structure of (S)-Camptothecin 

 
Camptothecin (CPT) was isolated by Monroe Wall and Mansukh Wani in 1966 from the 

extracts of the Chinese tree Xi Shu (Camptotheca acuminata of the Nyssaceae family) and its 
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chemical structure was established.2 Camptothecin exhibited promising antitumor activity 

against a wide range of solid tumors and this led to widespread attention.3 Camptothecin soon 

entered into clinical trials (Phase I and partially Phase II) in the late ‘60s. However, the clinical 

development of CPT was halted because of certain severe and unpredictable side effects such as 

haemmorhagic cystitis and myelosuppression.4 It was later learned that CPT failed because it 

was administered as the water-soluble sodium carboxylate form rather than the water-insoluble 

camptothecin itself. Unfortunately, this ring-opened carboxylate form of CPT is biologically 

inactive5 (Scheme 1.1). 
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Scheme 1.1 Hydrolysis of camptothecin at physiological pH 

 
In 1985, the molecular target of CPT, human DNA topoisomerase I, was identified.6 This 

result, coupled with the understanding of the failure of clinical trials of CPT, led to a dramatic 

increase in research efforts aimed at development of various analogues of CPT which would 

possess improved water solubility yet retain CPT’s unique mechanism of action. 
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1.2. Mechanism of Action 

Topoisomerase I (topo I) is an enzyme that catalyzes the various topoisomerization 

reactions of DNA (e.g., relaxation/supercoiling, catenation/decatenation) by transient enzyme-

linked single-strand breaks.7 The primary function of topo I is believed to be the removal of 

excessive supercoils generated during processes like transcription, replication etc. 

DNA relaxation reaction by topo I occurs in three steps. First, a nucleophilic attack by the 

tyrosine hydroxyl group (#723 of human DNA topo I) on the 3′-phosphate of the phosphodiester 

linkage gives rise to an enzyme-linked single-strand break. Second, the phosphodiester linkage 

opposite to the transient break is believed to turn around to undergo the religation reaction. 

Third, the 5′-hydroxyl group nucleophilically attacks the tyrosyl phosphate to release the tyrosine 

residue from the phosphate. This constitutes the religation reaction. 

Biochemical studies have shown that CPT binds at the interface between the DNA and 

topo I and inhibits specifically the religation step in the cleavage/religation reaction. It has been 

learned that CPT binds neither the DNA nor the topo I alone,6 but rather interacts with the DNA-

topo I complex to form a reversible ternary complex termed as the “cleavable complex”. Based 

on the studies in a cell-free SV40 replication system by Hsiang and Liu, a replication fork 

collision model8 was proposed for the cytotoxicity of CPT as shown in Scheme 1.2. 
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Scheme 1.2 Mechanism of Action of Camptothecin (adapted from ref. 8) 

 
The reversible topo I-DNA-CPT ternary complexes are not lethal by themselves.  

However, collision occuring between this complex and the advancing replication fork leads to 

apoptosis.  Three biochemical events have been identified as occuring soon after the collision 

occurs. These are (a) formation of a double-strand break, (b) irreversible arrest of the replication 

fork, and (c) formation of topo-I linked DNA break at the site of collision. 

It has also been shown that this collision is potentially lethal only if the cleavable 

complex is formed on the strand complementary to the leading strand of DNA synthesis.9
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1.3. Structure-Activity Relationships 

While efforts to elucidate the mechanism of action of CPT and its binding in the 

cleavable complex are important to understand its cytotoxicity, it is equally crucial to acquire 

knowledge about the various structure-activity relationships associated with CPT. CPT itself is 

not used as a drug for chemotherapy due to its poor blood stability and solubility resulting in loss 

of activity. Hence it was of considerable importance to determine if substitutions by various 

hydrophilic and lipophilic groups at different positions on the CPT structure would lead to 

suitable drug candidates.   

Considerable efforts of various research groups around the world have thrown light on 

the structure-activity relationships in CPT. It is now known that: 

• Only the 20S enantiomer is active.5a,6b,6d 

• The lactone form of E-ring in the CPT structure is crucial for activity. The open hydroxy-

carboxylate form of CPT is inactive (see Scheme 1.1). 

• Changes in the E-ring, for example, replacing lactone by lactam, removal of the 20-

hydroxy group, substituting a lactol for the lactone etc., resulted in inactivity with respect 

to topo I inhibition.5b 

Analogs bearing substituents at positions 7, 9, 10 and to some extent 11 either retained the 

activity of or showed enhanced activity than the parent CPT. Figure 1.2 proposed by Sawada and 

coworkers summarizes the overall understanding of structure-activity relationships of CPT.10
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Figure 1.2 Structure-Activity Relationships of various CPT derivatives (adapted from ref. 10) 

 
Two analogs of CPT, topotecan (Hycamptin®, Smithkline Beecham) and irinotecan 

(Camptosar®, Pharmacia-Upjohn), have been approved by the Food and Drug Administration 

(FDA) for clinical use in the United States. Topotecan is used for the treatment of cisplatin-

refractory ovarian carcinoma and for second-line therapy in small-cell lung cancer (SCLC) and 

irinotecan is used for the treatment of colorectal cancer.11

Recently, Stewart and co-workers reported the X-ray crystal structure of human 

topoisomerase I covalently joined to double-stranded DNA and bound to topotecan, a clinically 

approved analog of camptothecin (Figure 1.3).12 This crystal structure explains a number of 

structure-activity relationships of the camptothecin family of anticancer drugs. The ternary 

complex demonstrated that topotecan intercalates at the site of DNA cleavage and is stabilized 

by base-stacking interactions with both the upstream and the downstream base pairs. The 
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topotecan, in effect, mimics a DNA base pair and occupies the same space as a base pair in the 

structure without the drug bound. 

   

   

Figure 1.3 Topotecan Binding as the (A) Closed Lactone and (B) Open Carboxylate (reproduced from ref. 12) 

   

The high functional group tolerance demonstrated at positions 7, 9 and 10 positions of 

CPT could also be explained because these positions face into the major groove of the DNA and 

modifications that improve solubility, stability etc. would not sterically interfere with the binding 

of the drug. Also, only one direct hydrogen bonding (20S hydroxyl hydrogen bonds to Asp 533) 

between the enzyme and topotecan was predicted by the structure model. The SAR studies have 
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also concluded that 20R enantiomer was biologically inactive in vitro. This is because, according 

to the model, the 20R-hydroxyl would not be able to contact Asp 533 to participate in the 

hydrogen bonding and the 20R-ethyl group would create a steric hindrance with Asp 533 and 

Lys 532. 

The substitution of hydroxyl group with hydrogen atom (20-deoxy analog) would 

eliminate hydrogen bonding thus making the analog biologically inactive. Chloro or bromo 

substitution at the C20 position only partially eliminates the biological activity unlike the case of 

20-deoxy analog. This is because the E-ring opening to the carboxylate form is still allowed in 

the halocamptothecins and therefore water-bridged contacts of the 22-hydroxyl to Asn-722 and 

21-carboxylate oxygen to the P-Tyr-723 in the carboxylate model are still allowed. The lactam 

modification is also inactive due to the change in the hydrogen bond acceptor (OH) to a 

hydrogen bond donor (NH). Homocamptothecins are potent topo I poisons because the model 

reveals that there is sufficient space within the binding pocket to accommodate the slightly larger 

E-ring and the 20S-hydroxyl and the hCPT could maintain the critical Asp 533:20S hydroxyl 

hydrogen bonding. 

Several novel analogs of CPT have promising activity and are presently undergoing 

preclinical development. Some of them include exatecan (DX-8951f), rubitecan (9-NC), 9-

aminoCPT, lurtotecan (Figure 1.4).11,3e,h,i,j
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Figure 1.4 Various clinically relevant CPT analogs 

 

1.4. Various Total Syntheses of CPT 

Owing to the promising antitumor activity of CPT, many synthetic strategies have 

evolved over the last 3 decades aimed at preparing camptothecin.3i The total syntheses published 

thus far have focussed mainly on the synthesis of camptothecin itself, in both racemic and 

enantiopure forms. While several research groups have contributed to the synthesis of racemic 

CPT,13 the first synthesis of (S)-CPT was reported by Corey in 1975.14 This was followed by a 

host of total syntheses of (S)-CPT by Vollhardt, Wani and Wall, Tagawa, Comins and Ciufolini 

involving either a resolution strategy or an asymmetric synthesis.15 In 1996, Fortunak reported a 

novel intramolecular [4+2] cycloaddition strategy for the synthesis of (S)-CPT.15f More recently, 

Snieckus and coworkers reported a convergent synthesis of the ABCD ring system of 

camptothecin using a combination of directed ortho metalation and Negishi cross-coupling 

reactions.15g
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Most of these syntheses are not amenable to the preparation of a wide variety of known 

and new CPT analogs. The radical cascade cyclization strategy in the synthesis of CPT 

developed in the Curran group16 (Scheme 1.3) stands as an elegant example in overcoming this 

problem. This strategy, in addition to being modular in nature, is tolerant to a variety of 

functional groups present in the molecule. 
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Scheme 1.3 [4+1] Radical Cascade Cyclization Strategy 

 
The key [4+1] radical annulation step is interesting because the pentacyclic skeleton in 

CPT is assembled in this step by the coupling of DE fragment (iodopyridone) 1 and the A-ring 

(isonitrile) 4 in one single reaction by a tandem radical cyclization. The accepted mechanism of 

this [4+1] radical annulation/cyclization reaction is shown below (Scheme 1.4). 
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Scheme 1.4 Mechanism of the cascade radical cyclization 

 
Pyridonyl radical 3 is formed upon irradiation of 1 in the presence of hexamethylditin 2. 

Addition of 3 to the isonitrile 4 gives the corresponding iminoyl radical 5. This iminoyl radical 

undergoes a 5-exo radical cyclization to give the vinyl radical 6. Radical 6 adds on to the 

aromatic ring to give the cyclohexadienyl radical 7, which oxidatively rearomatizes to give the 

CPT skeleton. The synthesis of several analogs by this radical cascade cyclization approach is a 

testimony to the mildness and generality of the strategy. 

Shibasaki and coworkers have shown that the key iodopyridone intermediate in the 

Curran synthetic strategy of CPT could be obtained via an enantioselective cyanosilylation of a 

suitable ketone.17 More recently, Hecht and coworkers reported water-soluble camptothecin 

derivatives, 20-O-phosphate and phosphonates, that have inhibited topo I in an enzyme-

dependent fashion.18 Husson and coworkers synthesized racemic 17-methylcamptothecins by a 

partial synthesis starting from ajmalicine via a sequential oxidation steps and E-ring 

functionalization.19
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1.5. Silatecans 

Originally, camptothecins were administered in vitro necessitating the water solubility of 

the drug. However, Knight and coworkers have shown that certain drugs delivered to the 

respiratory tract in a liposome formulation may have significant advantages over other modes of 

administration.6f Also, Burke and coworkers found out that increased lipophilicity of the analogs 

reduces the in vivo hydrolysis of the lactone form of CPT, leading to its improved blood stability 

without any loss in activity.6e This is thought to be due to a rapid intracellular drug accumulation 

and tissue distribution that favors lactone stabilization. Hence, in search of better drug 

candidates, it might prove to be beneficial to test for lipophilic analogs of CPT. 

 To test the effect of lipophilic analogs, a project aimed at developing various lipophilic 

analogs of CPT was undertaken in the Curran group in mid 1990s. During the course of these 

collaborative investigations with the late Prof. T. G. Burke and coworkers (University of 

Kentucky), it was found that silyl substitution at the 7-position of CPT increased the lactone 

concentration in the blood.20 This family of camptothecin analogs is now commonly referred to 

as silatecans. 
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Figure 1.5 Structure of DB-67 
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Amongst all the silatecans synthesized, DB-67 showed the most promise. DB-67 (Figure 

1.5) displayed superior human blood stability when compared to topotecan, irinotecan and many 

other clinically relevant CPT analogues. DB-67 showed 25-fold increase in lipophilicity 

compared to CPT and is incorporated quite readily as the lactone form into cellular and 

liposomal bilayers. Accordingly it was found to possess comparable potency relative to CPT, 

topotecan and irinotecan. 

 More recently, work by Merlini and Zunino shows that lipophilicity is the main 

parameter correlated to cytotoxicity in the QSAR analysis of novel 7-oximinomethyl substituted 

camptothecins.21

1.6. Homocamptothecin and Homosilatecans 

The α-hydroxy-δ-lactone functionality in the E-ring was thought to be crucial for the 

activity of camptothecins. However, the discovery of homocamptothecin by Lavergne and Bigg 

in early 1997 (Figure 1.6) showed that alteration of the E-ring is possible while still maintaining 

the biological activity.22
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Figure 1.6 Structure of Homocamptothecin 

 
Homocamptothecin (hCPT) is an E-ring expanded analog of CPT. Structurally, this is the 

result of homologation of the α-hydroxy-δ-lactone of CPT by one methylene group thereby 

13 



 

converting it into a β-hydroxy-δ-lactone. The advantage of hCPT over CPT is that the lactone is 

much less reactive (although not completely unreactive) due to the methylene spacer and hence 

less prone to any nucleophilic attack that might lead to the formation of the inactive open 

carboxylate form. 

 Homocamptothecin was synthesized by Lavergne and Bigg by a semi-synthetic approach 

(Scheme 1.5).22 Commercially available (S)-CPT was reduced with NaBH4 to the corresponding 

hydroxy lactol followed by an oxidative cleavage of the 1,2-diol with NaIO4 to give achiral 

ketone 8. This was subjected to a Reformatsky reaction with tert-butyl bromoacetate to give 

racemic 9 after an aqueous workup. Finally, 9 was converted to racemic hCPT (BN 80245) by 

treatment with TFA at room temperature. 

During the biological evaluation, hCPT was found to inhibit topo I mediated DNA 

relaxation with an activity comparable to that of CPT and, in addition, proved to be considerably 

more active (IC50 = 16.2 nM) in cell growth inhibition than both CPT (IC50 = 126 nM) and 

topotecan (IC50 = 601 nM) in the MTT assay.
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Scheme 1.5 Lavergne and Bigg’s semisynthetic approach to racemic hCPT 
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Hence, on the one hand, CPT analogues with more lipophilic character (the silatecans, 

e.g., DB-67) help increase its potency and, on the other hand, homologation of the E-ring in CPT 

also leads to a more potent system than the parent CPT itself. It could be surmised that 

incorporation of both these features in an analog could lead to greater activity. This led to the 

development of 7-silylhomocamptothecins or homosilatecans. 

 Indeed, the homosilatecans have displayed markedly enhanced human blood stabilities 

relative to clinically relevant CPT analogs and are the most blood stable camptothecins to date.20 

The homosilatecans showed greater than 80% lactone levels following three hours of incubation 

in the human blood which is much greater than those exhibited by CPT (~5%) under the same 

conditions. Also the IC50 cytotoxicity values of the homosilatecans against MDA-MB-435 

tumorigenic metastatic human breast cancer cells were in the range of 20-100 nM.23

 Recent work in the Curran group focused on the development of new non-lactone analogs 

of CPT that might potentially be active and better drug candidates. As part of this work, a novel 

α-hydroxy keto-ether E-ring analog of CPT and hCPT, Du1441, was synthesized and 

biologically evaluated (Figure 1.7).24

 

    

N
N

O

O

O

HO

Du1441  

Figure 1.7 Structure of Du1441 

 
This analog combines the α-hydroxy carbonyl moiety of CPT with the seven-membered 

E-ring of hCPT. Despite these similarities, Du1441 was inactive in the preliminary biological 
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studies. However, the search for non-lactone analogs continues because it has been suggested by 

current biological and computational studies that the lactone moiety is not opened during the 

binding of CPT to the topo-I-DNA complex leading to loss of any activity. 

 Homocamptothecin can be prepared by semi-synthetic approaches starting from 

commercially available (S)-CPT. However, these approaches are limited to the synthesis of the 

parent hCPT and a limited set of analogs. In contrast, a total synthesis broadens the scope in 

preparing a wider variety of analogs. A total synthesis of racemic hCPT was accomplished in late 

1990s by Lavergne and Bigg and coworkers.25 An asymmetric total synthesis of (R)-hCPT was 

developed recently in the Curran group which provided access to many of its analogs. In an 

effort to develop an asymmetric strategy to the synthesis of the key DE-fragment in the 

Lavergne-Bigg synthesis of hCPT, the Curran asymmetric strategy of synthesis of (R)-hCPT was 

employed successfully. The following chapter describes this synthesis after an introduction to the 

Lavergne-Bigg synthesis of racemic hCPT. 
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2. ASYMMETRIC SYNTHESIS OF LAVERGNE-BIGG DE FRAGMENT OF (R)-
hCPT 

 

2.1. Introduction 

Homosilatecans have showed markedly enhanced human blood stabilities and cell growth 

and topo I inhibitory activity compared to CPT, topotecan and irinotecan. This biological activity 

is exhibited by only one enantiomer of hCPT. The absolute configuration of this enantiomer was 

initially postulated to be R on the presumption that CPT and hCPT have the same spatial 

arrangement of atoms at the stereocenter based on the stereospecific Topo I inhibition and 

positive rotation of polarized sodium D light. This postulate was later confirmed by the X-ray 

crystal structure analysis of the quinidium salt of (R)-23 (see Scheme 2.4).27 The biologically 

active counterpart of (S)-CPT is therefore (R)-hCPT, because homologation of the lactone 

changes the substituent priority according to the CIP nomenclature. 

Lavergne and Bigg achieved a concise semi-synthesis of racemic hCPT from CPT (see 

Scheme 1.5, Chapter 1). Following this, they disclosed the total synthesis of racemic hCPT in 

1998.20 The construction of the hCPT skeleton in this synthesis was based on Comins’ strategy 

of CPT synthesis:11e N-alkylation of 11 with bromide 10 with tBuOK/DME and subsequently 

closing the C ring in 12 by a Heck coupling reaction to give camptothecin (Scheme 2.1). 

Comins’ strategy was attractive because of the convergent nature of the synthesis and the ready 

access to various substituted quinolines.26

 

 

 

 

17 



 

N Br

Br
HN O

O

O
HO

+
t-BuOK

DME

N O

O

O
HO

N Br

10 11 12

N
N

O

O

O
HO

Pd(OAc)2

KOAc, DMF

CPT  

Scheme 2.1 Comins’ strategy of synthesis of the CPT skeleton 

 
The Lavergne-Bigg synthesis of the DE-fragment 19 in the synthesis of hCPT is shown in 

Scheme 2.2. Protection of the pyridine ketone 13 as a ketal (not shown) followed by treatment 

with NaOMe in acetonitrile under reflux conditions gave substitution product 14. 

Methoxypyridine 14 was formylated by treatment with mesityllithium, followed by trapping of 

the resultant anion with DMF. The resulting aldehyde (not shown) was subsequently reduced by 

NaBH4 to the primary alcohol 15. This was then protected as the benzyl ether and the ketone was 

deprotected with TFA to afford 16. Reformatsky reaction of ketone 16 with t-butylbromoacetate 

under reflux conditions gave 17, which was debenzylated by catalytic hydrogenolysis and the 

resulting primary alcohol was subsequently lactonized by treatment with TFA to afford 18. The 

pyridine lactone 18 was finally demethylated in HCl under reflux conditions to give the desired 

DE pyridone-lactone 19 in 13% overall yield. 

 

 

 

 

18 



 

N

O

Cl
1.  HO(CH2)3OH , pTSA (cat.)
       toluene, reflux

2.  MeONa , MeCN, reflux

N OMe

O

O

1.  MesLi , THF , -78oC to rt 
         then DMF -78oC to rt

2.  NaBH4 , MeOH , rt

81% 62%

N OMe

O

O

OH
1.  NaH , BnBr , THF, rt

2.  TFA , 100oC

70%

N OMe

OBn

O

Zn, BrCH2COOtBu, THF, reflux

95%

N OMe

OBn

HO

O O

1.  H2 (1 atm), Pd/C
            EtOH , rt

2.  TFA, rt

N OMe

O

O

HO

1N  HCl , reflux

H
N O

O

O

HO

82%
49%

13 14

15 16

17 18
19

 

Scheme 2.2 Lavergne-Bigg synthesis of DE fragment of racemic hCPT22 

 
To make hCPT AB-ring analogs, various substituted quinolines were prepared by the 

Meth-Cohn protocol (Scheme 2.3).21 Acetanilides 20 were subjected to Vilsmeier conditions to 

give the intermediate 2-chloro-3-quinolinecarboxaldehydes (not shown). These aldehydes were 

reduced with NaBH4 to give AB quinolines 21. DE fragment 19 and the AB quinolines 21 were 

coupled together by a Mitsunobu reaction to give 22. Finally an intramolecular Heck reaction of 

22 afforded the pentacyclic racemic homocamptothecins. 
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Scheme 2.3 Final steps in the Lavergne-Bigg synthesis of racemic hCPT 

 
Lavergne and Bigg subsequently reported a total synthesis of (R)-hCPT by using a 

chemical resolution strategy (see Scheme 2.4).27 The Reformatsky adduct 17 was converted to 

the acid 23 by treatment with TFA (not shown). β-Hydroxy acid 23 was resolved with quinidine 

to give the desired (R)-enantiomer (R)-23 in 70% ee. This was subsequently converted to the 

pyridone (R)-19 in two steps (Scheme 2.4). Recrystallization of (R)-19 increased the ee to >99% 

which in 4 steps gave (R)-hCPT. 
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Scheme 2.4 Resolution strategy in Lavergne-Bigg synthesis of (R)-hCPT 
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A major drawback of a resolution strategy in the preparation of enantiomerically pure 

compounds is that the maximum chemical yield cannot exceed 50%. This is unattractive from a 

practical standpoint especially when large quantities of the compound are required for biological 

evaluation. An efficient asymmetric total synthesis could surpass the limitations posed by both 

the semi-synthetic as well as the resolution strategies. 

Recently, the first asymmetric synthesis of (R)-hCPT developed in the Curran group by 

Dr. A. E. Gabarda provided access to a number of its analogs in >90% ee (see Schemes 2.7 & 

2.9: b series).28 The key bond constructing steps involved Corey modified Stille coupling 

reaction29 and Sharpless asymmetric epoxidation.30 Thus iodopyridine 30b was treated with vinyl 

stannane 31 in the presence of LiCl, CuCl and Pd(PPh3)4 in DMSO and the reaction mixture 

heated to 60oC to afford the Stille product 32b in 80% yield. The α,β-unsaturated ester 32b was 

readily reduced to the allylic alcohol 33b by treatment with LAH. Stoichiometric Sharpless 

asymmetric epoxidation on 33b gave the epoxide 34b in 79% yield and 90% ee. No reaction was 

observed when catalytic amounts of Ti(OiPr)4 and diethyltartrate were used. Epoxide 34b was 

then converted to lactone (R)-39 in 6 steps. 

 We set out to apply the asymmetric approach to the preparation of the key DE-fragment 

of the Lavergne-Bigg synthesis of (R)-hCPT in a highly enantiopure form. 

 

2.2. Asymmetric Synthesis of the Lavergne-Bigg DE Fragment 

In accordance with Dr. Gabarda’s strategy, the asymmetric synthesis of the Lavergne-

Bigg DE fragment commenced with the iodoformylation of 2-methoxypyridine 24a (Scheme 

2.5). Iodoformylation was performed following Comins’ ortho-directed metallation protocol.11e 

For this, pyridine 24b was ortho-lithiated by t-BuLi. Then addition of the formamide 26 followed 
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by addition of n-BuLi and subsequently I2 gave aldehyde 28b. However, this procedure cannot 

be used with pyridine 24a because of the likelihood of competitive lithiation with butyllithium at 

the 6-position of the pyridine ring.31 This was not a concern with pyridine 24b because of the 

blocking provided by the TMS group at the 6-position. 
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Scheme 2.5 Initial iodoformylation reactions with 24a and 24b 

 
Quéguiner and coworkers have reported the selective ortho lithiation of 2-

methoxypyridine at the 3-position by using methyllithium in the presence of catalytic amounts of 

diisopropylamine.32 Scheme 2.6 shows the proposed roles of LDA and methyllithium in this 

reaction.. 
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Scheme 2.6 Quéguiner’s strategy of selective ortholithiation of 2-methoxypyridine 

 
Reaction of 2-methoxypyridine 24a with 1.8 equiv of MeLi in the presence of catalytic 

amounts of diisopropylamine results in a fast overall deprotonation to give 25a. The small 

amount of diisopropylamine generated reacts irreversibly with MeLi allowing constant 

regeneration of a small concentration of LDA, which shifts the equilibrium in favor of the lithio 

derivative 25a. This leads to an accumulation in the concentration of 25a before the electrophile 

is added.  

Based on this literature precedent, we treated 2-methoxypyridine 24a with methyllithium 

in the presence of 5 mol% of diisopropylamine. The resultant 3-lithio derivative was quenched 

with the formamide 26 to afford only the 3-formyl derivative (not shown). We then attempted the 

one-pot iodoformylation via this strategy as shown in Scheme 2.5.  

Treatment of 2-methoxypyridine 24a with methyllithium in the presence of 5 mol% of 

diisopropylamine was followed by addition of formamide 26. nBuLi was then added to this 

followed by addition of I2 to afford iodo aldehyde 28a. On a 1 mmol scale, 28a was obtained in 

73% yield after purification by column chromatography. The yield suffered, however, when the 

scale was raised to 19 mmol when only 40% product was isolated. Trapping of the initial lithio 

derivative 25a with the formamide 26 gave the α-amino alkoxide in situ (not shown). This, on 

addition of n-BuLi, resulted in the dianion 27a which on reaction with I2 gave the iodo aldehyde 

28a. Aldehyde 28a was reduced by NaBH4 to the corresponding alcohol 29a in 97% yield 
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(Scheme 2.7). This was subsequently protected as a MOM ether using the standard protocol33 to 

afford 30a in quantitative yield. Intermediates 29a and 30a were used crude in the subsequent 

reactions. 
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Scheme 2.7 Preparation of the Sharpless asymmetric epoxidation precursor 

 
The necessary (E)-vinylstannane 31 for the Stille coupling was prepared by the procedure 

previously published by Piers and coworkers34 (Scheme 2.8). Reaction of the 

lithium(tributylstannyl)cyanocuprate (formed from treatment of Bu6Sn2 with n-BuLi  followed 

by addition of CuCN) with commercially available ethyl 2-pentynoate at –78 oC in THF gave the 

vinylstannane 31 in 85% yield after distillation at 140 oC under a pressure of 0.06 mm Hg. 
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Scheme 2.8 Preparation of ethyl (E)-3-(tributylstannyl)-2-pentenoate 
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Stille coupling was achieved by first degassing the reaction vessel containing the mixture 

of LiCl, Pd(PPh3)4 and CuCl under high vacuum followed by an Ar purge (Scheme 2.7). Then 

DMSO, iodopyridine 30a and the vinylstannane 31 were added and the resulting mixture was 

degassed by the freeze-thaw process. The mixture was stirred at room temperature for 1 h and 

then at 60oC for 17 h to afford the Stille product 32a in 82% yield after column chromatography. 

The α,β-unsaturated ester 32a was readily reduced to the allylic alcohol 33a in 81% yield by 

treatment with LAH. 

 Sharpless asymmetric epoxidation (SAE) was successfully carried out on the allylic 

alcohol 33a (Scheme 2.9). Keeping in mind the poor results with catalytic SAE during the 

epoxidation studies in the preparation of (R)-hCPT and the subsequent success with the 

stoichiometric version, only the stoichiometric SAE was attempted.  

Thus, tBuOOH was added to a mixture of the allylic alcohol 33a, 4Å molecular sieves, 

diethyl-L(+)-tartrate and Ti(OiPr)4 at –20 oC in CH2Cl2. After 24 h at room temperature, the 

reaction was worked up, giving the epoxide 34a in 84% crude yield. The racemic epoxide was 

simultaneously prepared from reaction of the allylic alcohol 33a with mCPBA (not shown). 

Chiral HPLC analysis (using Chiralcel-OD column) of the epoxide 34a, with the racemate as the 

standard, showed the enantiomeric excess to be 96%. 
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Scheme 2.9 Completion of the asymmetric synthesis of (R)-19 and (R)-39 

 
Epoxide 34a was then converted the β-hydroxy carboxylic acid 37a in three steps with no 

purification of the intermediates. Reaction of epoxide 34a with LAH resulted in the 

regioselective opening of the epoxide to give 35a in 76% yield. Diol 35a was then oxidized to 

the aldehyde 36a with Dess-Martin periodinane.35 The resultant aldehyde was further oxidized to 

the β-hydroxy carboxylic acid 37a using NaClO2 in t-BuOH, buffered with an aqueous solution 

of NaH2PO4 in the presence of 2-methyl-2-butene in 75% crude yield (for 2 steps). 

 Treatment of this crude acid with TFA at room temperature resulted in an in situ 

deprotection of the MOM group followed by lactonization to give the pyridine lactone (R)-18 in 

80% yield. The crude product was used for the subsequent reaction. 
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 Completion of the synthesis was effected by the demethylation of the pyridine lactone 

(R)-18 by TMSI generated in situ, by the reaction of TMSCl and NaI in acetonitrile, at 65oC. The 

product, pyridone lactone (R)-19, was obtained in a low yield of 16%. No attempts of improving 

the reaction yield were made.  

 The enantiomeric excess of the lactone (R)-19 was presumed to be 96% since no 

synthetic steps affecting the stereocenter at C20 were involved after the Sharpless asymmetric 

epoxidation step. 

 

2.3. Summary 

The asymmetric synthesis of the pyridone lactone (R)-19, a key intermediate in Lavergne 

and Bigg synthesis of (R)-hCPT, was described. The synthesis furnished the product in an 

overall yield of 2.9% and with 96% ee in 11 steps starting from 2-methoxypyridine 24a. 

Sharpless asymmetric epoxidation and Corey-Stille coupling reactions, developed during the 

synthesis of (R)-hCPT, were utilized here for key bond constructions. The chemistry described in 

this chapter provides an easy access to the DE fragment thus establishing a direct route to the 

desired R enantiomer without having to resort to resolution strategies. 
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3. NEW ASYMMETRIC APPROACHES TO THE DE-FRAGMENT OF (R)-hCPT 
AND SYNTHESIS OF NON-LACTONE E-RING ANALOGS OF CPT 

 

3.1. Introduction 

The first asymmetric synthesis of (R)-hCPT developed in the Curran group has been used 

to produce several analogs in highly enantioenriched form (ee > 90%).23 However, the synthesis 

employs stoichiometric quantities of the tartrate and Ti(OiPr)4 for the Sharpless asymmetric 

epoxidation to establish the requisite stereocenter. This might be a drawback for large scale 

preparation of the epoxide. Furthermore, sixteen steps are required to synthesize (R)-hCPT and 

its analogs starting from 2,6-dibromopyridine and the overall yield is about 0.6%. Realizing the 

need for improvement, we decided to look for a practical alternative route to the synthesis of (R)-

hCPT. 

An attractive approach to synthesize the DE-fragment of (R)-hCPT (R)-39 is to install the 

β-hydroxy carboxylic group via an asymmetric nucleophilic addition to the ketone 40 (Scheme 

3.1). This approach is more direct and addresses the problems raised by the current synthesis. 

The synthesis of enantioenriched tertiary alcohols by the addition of an organometallic 

reagent to prochiral ketones in the presence of a chiral catalyst is a formidable challenge. Several 

examples of preparing chiral tertiary alcohols in an indirect fashion (opening of an epoxide, C-H 

insertion into a secondary alcohol, etc.) are known.36 Diastereo- and enantioselective 

nucleophilic additions to ketones and pyruvate esters to generate chiral tertiary alcohols have 

been reported.37
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Scheme 3.1 Asymmetric Nucleophilic Addition Approach to Ketones Towards the DE-fragment of (R)-hCPT 

 
We initially attempted two strategies to access 43: (a) asymmetric allylation route, or (b) 

asymmetric enolate addition via the Reformatsky routes. Unfortunately, after considerable 

experimentation (Scheme 3.1) with the above methods following literature precedents, we failed 

to achieve satisfactory results.38 This chapter deals with the variety of alternatives we attempted 

to achieve a more efficient synthesis of the DE fragment of (R)-hCPT and the unexpected results 

leading to the synthesis of a small assortment of non-lactone analogs of CPT. 

 

3.2. Homologation Approaches to the Synthesis of the DE-Fragment of (R)-hCPT 

Asymmetric cyanosilylation reactions of ketones to give TMS-protected cyanohydrins 

have been studied by many research groups with Belokon, Deng, Hoveyda and Snapper making 

important contributions in this field.39 Shibasaki and coworkers had recently reported an 

asymmetric cyanosilylation of ketones in the presence of catalytic amounts of the bifunctional 

catalyst 44 and Ti(OiPr)4.40 The reaction is general and affords TMS-protected cyanohydrins in 
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good enantioselectivities. An example of this reaction using Shibasaki’s conditions is shown in 

Scheme 3.2.  
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Scheme 3.2 Shibasaki's catalytic enantioselective cyanosilylation of ketones 

 
Following this work, Shibasaki and coworkers, in collaboration with Prof. Curran and Dr. 

Du, published the enantioselective synthesis of (S)-camptothecin with a modified version of the 

enantioselective cyanosilylation strategy13 (Scheme 3.3). 
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45 98%, 84% ee, 46  

Scheme 3.3 Shibasaki's Enantioselective Eyanosilylation of Ketone 45 

 
Ketone 45 was reacted with TMSCN in the presence of the ligand 44 (9 mol%, see 

Scheme 3.2) and Sm(OiPr)3 (5 mol%) in propionitrile. The nitrile 46 was obtained in 98% yield 

and 84% ee.  

In considering ways to synthesize the DE-fragment of (R)-hCPT, we realized that nitrile 

46 could be used as an important intermediate. We envisioned a synthetic sequence in which 46 
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or a derivative could be homologated by one carbon to the compound with the desired oxidation 

state 47, which could then be carried forward to make the DE lactone of (R)-hCPT (Scheme 3.4). 
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Scheme 3.4 Envisioned Synthesis of (R)-38 from Nitrile 46 

 
A few methods have been reported to homologate niriles to esters or other carboxylic 

acid derivatives (see Section 3.2.1.). Aldehyde 49 (Scheme 3.5) was determined to be best suited 

for the one-carbon homologation studies. We screened some of these known methods for 

reaction with the aldehyde 49. 

 

3.2.1. Synthesis of the Substrate 49 for Homologation Studies 
 

The synthesis of the homologation precursor 49 was accomplished according to some of 

the methods developed in the Curran group. Reduction of aldehyde 28b (Scheme 3.5, see also 

Scheme 2.7, Chapter 2) by NaBH4 gave the alcohol 29b in 89% yield. Protection of the crude 

alcohol 29b as a TBS ether with Corey’s procedure29 gave 48 in quantitative yield. Iodopyridine 

48 was then converted to the corresponding cuprate by treatment with iPrMgCl followed by 

addition of LiCl and CuCN.41 The cuprate was quenched with propionyl chloride to provide the 

TBS-ketone 45 in 71% yield after purification by column chromatography. 
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Scheme 3.5 Synthesis of the Homologation Substrate 49 

 
This TBS-ketone was transformed to the corresponding TMS-protected cyanohydrin rac-46 

in 87% yield with TMSCN in the presence of KCN and 18-crown-6. Reduction of the nitrile rac-

46 to the aldehyde 49 took place upon reaction with DIBAL at −30 °C to afford 49 in 55% yield. 

Aldehyde 49 was used as the substrate for all the subsequent homologation studies. 

 

3.2.2. Attempted Homologation of 49 with 1,3-Dithiane derived Phosphonate 
 

In the late 1970s, Jacobine and coworkers reported a procedure for one-carbon 

homologation of benzaldehyde by a modified Wittig reaction.42 Phosphonate esters were 

prepared by treatment of active methylene compounds with a suitable base and diethyl 

phosphorochloridate to form the corresponding olefins. We envisioned the use of 1,3-dithiane as 

the active methylene compound to afford our desired olefin 52 (Scheme 3.6), which upon acid 

treatment could be transformed to lactone 38 (see Scheme 3.4). 
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Scheme 3.6 Proposed Homologation of 49 with 1, 3-Dithiane Derived Phosphonate 51 

 
Accordingly, 1,3-dithiane 50 was treated with 2 equiv of LDA at −78 °C. The resulting 

anion was treated with diethyl phosphorochloridate at the same temperature to presumably afford 

the phosphonate anion 51. It was determined that 2 equiv of LDA was necessary since the 

product phosphonate is more acidic than the starting material 50. The phosphonate anion 51 was 

then trapped with aldehyde 49 at −40 °C. Unfortunately, the Wittig olefination product 52 was 

not observed as indicated by 1H NMR analysis; instead, ketone 45 was formed. The structure of 

the product 45 was confirmed by spectroscopic techniques. A plausible mechanism for the 

formation of the ketone 45 is shown in Scheme 3.7. 
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Scheme 3.7 Proposed Mechanism for the Generation of 45 in the Homologation of 49 with 51 

  

The addition of phosphonate anion 51 (see Scheme 3.6) to the aldehyde 49 results, 

presumably, in the formation of adduct 53. This is expected to undergo a regular Wittig 

olefination by extruding the corresponding phosphate to give 52. However, 53 undergoes a 1,4-
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silyl shift to form the tertiary oxyanion 54. This can now undergo a sequence of steps, as shown 

by the movement of arrows, to liberate ketone 45 and β-phosphato acetaldehyde (not shown).  

Unfortunately, attempts to use a different base (e.g. nBuLi) or conduct the aldehyde 

addition at different temperatures (e.g. −40 °C, −15 °C) resulted in the formation of 45 and not 

52. We therefore decided to abandon this strategy in favor of a new one. 

 

3.2.3. Attempted Homologation using α-Aminoacetonitriles 
 

Takahashi and coworkers reported an interesting procedure for homologation of 

aldehydes to carboxylic acids in the early 1980s43 employing α-(N-methylanilino)acetonitrile 55. 

We expected that the reaction of 49 with 55 under Takahashi’s reaction conditions would 

produce 56 (Scheme 3.8). 

 

NTMS O

OTBS

TMSO H

10% HCl
NTMS O

OHO

O

38

NTMS O

OTBS

49

TMSO

O

H
KH, rt

NNC
Ph

N CN

heat

55

56  

Scheme 3.8 Proposed Homologation of 49 with an Aminoacetonitrile 55 

 
Potassium hydride was added to a mixture of the aldehyde 49 and the α-aminoacetonitrile 

5544 in THF at room temperature. However, no reaction occurred even after stirring overnight for 

14 h as indicated by TLC. In this case, both the starting materials remained unaffected (Table 

3.1). In an attempt to promote the addition, the reaction mixture was heated to 40 °C. This 

resulted in decomposition as indicated by TLC and 1H NMR analysis.  
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Similar results were obtained when LDA or KHMDS in the presence of 18-crown-6 (1 

equiv or 2 equiv) was used as the base at room temperature. When nitrile 55 was treated with 

LDA and the resulting anion was quenched with D2O, a clean incorporation of deuterium in the 

alpha position of the nitrile was observed by 1H NMR spectrum. This indicates that the anion 

addition of 55 to the aldehyde 49 is the problematic step. 

 

3.2.4. Attempted Homologation using Tosylmethyl Isocyanide (TosMIC) 
 

The chemistry of tosylmethyl isocyanide (TosMIC) is well documented in the synthesis 

of heterocycles.45 In 1977, van Leusen and coworkers used TosMIC as a homologating agent 

from carbonyl compounds to nitriles.46

 

O
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TosMIC
CN

93%
57 58  

Scheme 3.9 Reaction of Adamantanone with TosMIC 

 
For example, adamantanone 57 was reacted with 1.3 equiv of TosMIC in the presence of 

a strong base such as tBuOK to yield cyanoadamantane 58 in 93% yield. The proposed 

mechanism of the homologation of an aldehyde 59 with TosMIC is shown in Scheme 3.10. The 

key step of this reductive cyanation mechanism is the formation of the oxazoline anion 60 

following by the opening of the rearranged oxazoline 61 to 62. Formation of 63 from 62 is 

accompanied by the precipitation TosK. Hydrolysis of 63 with an alcohol leads to the cyano 

anion 64 along with the loss of formate ester and the resulting anion 64 is protonated to give the 

homologated nitrile 65. 
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Scheme 3.10 Proposed Mechanism of Reaction of TosMIC with an Aldehyde 

 
The proposed homologation procedure is shown in Scheme 3.11. Aldehyde 49 was added 

to the anion of TosMIC, generated by the treatment of TosMIC with a strong base such as 

tBuOK (1M solution in THF), and the reaction mixture was stirred at room temperature. 
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Scheme 3.11 Proposed Homologation of Aldehyde 49 with TosMIC 

 
However, no conversion of the starting material 49 was observed as shown by TLC 

(entry 1, Table 3.2). Instead, some unidentifiable material was observed in the 1H NMR 

spectrum. Suspecting the purity of tBuOK solution, we employed solid tBuOK under the same 

reaction conditions (entry 2). However, the result was identical to the previous case in that the 

same unidentifiable material was obtained. 
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Table 3.1 Homologation of Aldehyde 49 with TosMIC - Reaction Conditions 

 

  

 

 

  

 

   

 
 
 
 
 
 
 

*
 a) These reactions were done using recrystallized TosMIC. 

S. No. Reagents Solvent Temp. Comments 

1. 

2. 

3. 

4. 

 

5. 

6.a) 

7. a) 

8. a) 

tBuOK (liq) 

tBuOK (solid) 

tBuOK (solid) 

tBuOK (solid) 

+ H2O 

NaOEt 

tBuOK (solid) 

tBuOK (solid) 

tBuOK (solid) 

DMSO 

DMSO 

DME 

DME 

 

DME 

DME 

DME 

DME 

rt 

rt 

rt 

rt 

 

rt 

rt 

0oC 

-20oC 

Unidentified material 

Unidentified material 

45 (<10%) + unidentified mat. 

No intermediate trapped 

 

Multiple spots on TLC 

45 

45 

45 

 

We next decided to explore the solvent conditions. van Leusen and coworkers used 

DMSO, DME and HMPT in the reaction. Using DME as the solvent (entry 3), we were surprised 

to observe ketone 45 by 1H NMR, albeit in small amounts (<10%), along with a majority of 

unidentifiable material. In an effort to determine whether any intermediate compounds could be 

trapped, the reaction was repeated under the same conditions but quenched with H2O (entry 4) 

which could, in principle, trap the oxazoline or any one of the intermediates formed. 

Unfortunately, the 1H NMR spectrum of the crude product indicated the formation of multiple 

products and was not very informative. Changing the base to NaOEt (entry 5) resulted only in 

multiple products as indicated by TLC.  
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Suspecting the quality of TosMIC, we recrystallized it from MeOH. The recrystallized 

TosMIC was had a sharp melting point at 112oC (lit. 116o-117oC).45 The purity of TosMIC was 

also confirmed by reacting cycloheptanone with TosMIC in the presence of tBuOK to afford 

cyanocycloheptane in 80% yield as reported.46

The initial reaction of TosMIC with 49 in the presence of tBuOK was repeated with the 

purified TosMIC at room temperature, 0 °C and −20 °C (entries 6, 7 and 8). In all the three cases, 

ketone 45 was the sole product of the reaction.  

The mechanism of the formation of 45 is presumed to be akin to that of the side reaction 

observed for the reaction of the 1,3-dithiane derived phosphonate 51 (see Schemes 3.6 & 3.7) 

with the aldehyde 49. This proposed mechanism is shown below in Scheme 3.12. 
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Scheme 3.12 Proposed Mechanism of Formation of 45 by Reaction of TosMIC with 49 

 
After the addition of the anion of TosMIC to the aldehyde 49, adduct 67 is presumably 

formed (Scheme 3.12). This adduct undergoes a TMS exchange reaction (as shown in Scheme 

3.10) to form the tertiary oxy anion 68 instead of forming the usual oxazoline. This can now 

undergo a sequence of steps, as shown by the movement of arrows, with the elimination of the 

tosyl group to liberate ketone 45 and α-isocyanoaldehyde (not shown).  

We suspected that this fragmentation behavior was exhibited often by aldehydes with an 

α-quaternary center bearing a TMS-protected tertiary alcohol, such as 49. To confirm this, 
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aldehyde 70 was synthesized by treatment of tetralone 69 with TMSCN in presence of KCN and 

18-crown-6 followed by reduction of the resulting nitrile with DIBAL in an overall yield of 60% 

for two steps (Scheme 3.13). This aldehyde was then subjected to the TosMIC reaction 

conditions. As expected, the sole product of the reaction was α-tetralone 69, isolated in 

quantitative yield. 
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Scheme 3.13 Reaction of TosMIC on Test Substrate 70 

 
Other strategies such as the Wittig olefination of the aldehyde 49 have also yielded 

results similar to previously discussed examples and hence not discussed. However, one general 

observation was that the aldehyde 49 was too hindered and prone to undesirable side reactions 

which arose from the TMS group migration as discussed in Schemes 3.7 & 3.12. These 

discouraging results prompted us to abandon the homologation strategy in favor of an entirely 

new approach towards making the DE fragment of (R)-hCPT. 

 

3.3. Epoxidation/Dihydroxylation Approaches to the Synthesis of the DE Fragment of 
(R)-hCPT 

Synthesis of tertiary alcohols in good to excellent enantioselectivities, by Sharpless 

asymmetric epoxidation (SAE) or Sharpless asymmetric dihydroxylation (SAD) of olefins, is 

well documented.47 Accordingly, we decided to explore these Sharpless protocols to set the 

tertiary alcohol stereocenter (Scheme 3.14). 
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Scheme 3.14 Proposed Synthetic Routes to (R)-38 via Asymmetric Epoxidation or Dihydroxylation of 71 

 
Thus, enelactone 71 could be envisioned to undergo an SAE with a suitable chiral ligand 

to provide the epoxylactone 72 and the epoxide could be opened by SmI2 to afford the β-

hydroxylactone (R)-38. Alternatively, 71 could be enantioselectively dihydroxylated to give diol 

73, which could be deoxygenated using a literature protocol48 to give (R)-38. 

Previous research efforts in the Curran group directed towards the study of Sharpless 

asymmetric dihydroxylation of the enelactone 71 with commercially available AD-Mix reagents 

indicated modest yields and enantioselectivities.49 For example when 71 was subjected standard 

Sharpless conditions using DHQD-PYR as the chiral ligand, diol 73 was obtained in 48% yield 

and 67% ee as indicated by analysis by HPLC. On the other hand, the asymmetric epoxidation 

route was never previously attempted with 71. 
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3.3.1. Synthesis of the Enelactone 71 
 

Enelactone 71 was previously prepared44 by the dehydration of racemic 38 with Burgess 

reagent (not shown). However, this procedure involves the synthesis of the racemic lactone first 

in several steps. To quickly access 71, we explored a metathesis approach, radical addition to an 

alkyne, Heck cyclization onto an alkene and Ni(II)/Zn catalyzed cyclization chemistry. We 

finally successfully utilized the Stille coupling in synthesizing 71.  

 

3.3.1.1. Attempted Synthesis of 71 by Metathesis Approach 
 

Olefin metathesis has evolved into a versatile and an important tool in synthetic organic 

chemistry.50 In particular, metathesis of enones to access α,β-unsaturated lactones was first 

reported by Fürstner and coworkers in 2000.51 They reported the synthesis of enelactones of ring 

sizes 5, 6 and 7 in good to excellent yields. 

Attempts to synthesize the trisubstituted olefin 71 by a metathesis of the corresponding 

acrylate and 1,1-disubstituted olefin 76 is shown in Scheme 3.15. The suitable substrate for the 

Grubbs metathesis, 76, was easily synthesized from the known ketone 45 by first methylenation 

with the commercially available Tebbe reagent to give the 1,1-disubstituted olefin 74 in 65% 

yield. Deprotection of the TBS group reveals the benzyl alcohol 75 in 60% yield. The alcohol 75 

was treated with acryloyl chloride in the presence of DMAP to obtain 76 in 68% yield. The other 

two metathesis substrates, 77 and 78, were also synthesized in a similar fashion using the 

appropriate acylating agent in 40% and 30% yields, respectively. 
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Scheme 3.15 Attempted Synthesis of 71 by Metathesis Approach 

 
We first conducted a control reaction to verify the purity and efficacy of the catalyst. 

Thus, 4-pentenyl ester of acrylic acid was treated with the Grubbs catalyst 79 under the standard 

metathesis reaction conditions (not shown). The product olefin was obtained in 44% yield with 

no other product derived from the starting ester validating the reagent purity. 

Acrylate 76 was treated with the 2nd generation Grubbs catalyst 79 in refluxing toluene 

(0.04 M) to effect an intramolecular metathesis reaction. However a TLC analysis showed 

predominantly the starting acrylate. No desired enelactone was detected either by TLC or 1H 

NMR spectroscopy. A number of reaction conditions, by varying the concentration and the 

temperature, were tested with 76, 77 and 78 to effect this transformation. 

Following the initial failure, we attempted the same metathesis conditions for the 

substrates 77 and 78. In both the cases, the substrates remained unreactive under these conditions 

presumably due to the increase in substitution on the olefins. Increasing the amount of the 

catalyst used with 78 resulted only in the recovery of the starting acrylates. 

42 



 

We hypothesized that the presence of basic nitrogen in the pyridine ring inhibits the 

reaction to proceed. It is documented that free amines are incompatible with metathesis reactions 

owing to the inhibition of the catalyst by basic nitrogen.52 In order to circumvent a similar 

problem in their synthesis of halichlorine, Wright and coworkers conducted their metathesis 

reactions in the presence of p-toluenesulfonic acid to protonate the basic nitrogen in situ and 

allow the reaction to proceed. When olefin 76 was reacted with catalyst 79 in the presence of 

pTsOH, the reaction was messy with the starting material, an unidentified compound and a new 

compound (which was later identified as 80) as the major products. Since the catalyst was not 

inactivated in this reaction, we concluded that our initial hypothesis of catalyst inhibition by the 

pyridine nitrogen was false. 

We next changed the concentration of the reaction. Increasing the concentration of the 

reaction of 76 to 0.2 M with 20 mol% of the Grubbs catalyst in toluene at room temperature 

resulted in a new product. However, 1H NMR analysis revealed that this product was not the 

desired enelactone 71. Instead, we obtained the cinnamate ester 80, which is the metathesis 

product of the starting enone 76 and styrene, in 28% yield. Presumably, the catalyst 79, after 

forming the carbene with the α,β-unsaturated olefin, undergoes metathesis with the styrene that 

was released in the initial carbene formation (not shown) to form the cinnamate ester. The low 

yields of the cinnamate ester could be explained by the use of only 20 mol% of the catalyst. 

Increasing the concentration of the reaction mixture to 0.5 M, however, resulted in the same 

undesired product 80 in similar yields as above.  

Changing reaction conditions in the reaction with the Grubbs catalyst did not yield any 

desired olefin 71. We next employed the Schrock catalyst with our substrate 76. Although no 

reports of Schrock catalyst used for the metathesis of electron-deficient olefins have been 
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documented, we decided to apply to our system. Accordingly, substrate 76 was reacted with 

Schrock catalyst (30 mol%) at 0.04 M concentration in toluene (entry 8). However, only the 

starting material remained completely unreactive to these conditions. Increasing the 

concentration to 0.1 M under identical conditions did not improve the reaction outcome either 

(entry 9). 

After these unsuccessful attempts to install the olefin by using the metathesis approach, 

we decided to abandon this strategy and investigate alternative methods for the preparation of the 

desired enelactone.  

 

3.3.1.2. Synthesis of 71 by Ni (II)/Zn Catalyzed Cyclization 
 

During the course of this work, Cheng and Rayabarapu described a one pot synthesis of 

7-membered α,β-unsaturated lactones by a Ni/Zn catalyzed regioselective cyclization of 2-

iodobenzyl alcohols with alkyl propiolates.53 The authors reported several examples of 

trisubstituted olefin products although no heteroaromatic substrates have been examined. 

We first checked the quality of our nickel catalyst in a control reaction of 2-iodobenzyl 

alcohol 81 and methyl 2-octynoate 82 with Ni(dppe)Cl2 complex in the presence of zinc powder 

at 80 °C. The product enelactone 83 was isolated in 82% yield (reptd. 81%) after 

chromatography. 

Iodoalcohol 29b and ethyl 2-pentynoate are the suitable substrates to access to 71 

(Scheme 3.16). Accordingly, 29b and ethyl 2-pentynoate were treated with Ni(dppe)Cl2 complex 

in the presence of zinc powder and the reaction mixture was heated in acetonitrile at 80 °C. The 

reaction mixture showed multiple products as observed by TLC. The desired compound 71 was 

isolated in a yield of 10% after a difficult column chromatography.   
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Scheme 3.16 Ni(II)/Zn Catalyzed Regioselective Cyclization of 29b 

 
The reaction parameters that were varied included the solvent, temperature and 

equivalents of the nickel catalyst. Since acetonitrile was the optimum solvent, we decided to 

change the solvent to propionitrile which can be used to conduct the reaction at higher 

temperatures as well. The temperature was varied between 80 °C and 110 °C. The catalyst 

equivalents were varied between 5 mol% and 1 equiv. Unfortunately, in all the cases, we 

observed multiple products as indicated by TLC. The 1H NMR spectra of the crude reaction 

mixtures (after workup) were identical to each other as well.  
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Scheme 3.17 Intramolecular Ni(II)/Zn Catalyzed Cyclization of 84 

 
An alternative to the above reaction conditions is the intramolecular variant shown in 

Scheme 3.17. We reasoned that predisposition of the second substrate would favor the product 
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formation. Hence alkynyl ester 84 was subjected to the standard reaction conditions. The 

reaction mixture showed multiple products, as indicated by TLC, none of which was the desired 

product. Increasing the amount of the nickel catalyst added did not affect the outcome of the 

reaction.  

Failing Cheng’s cyclization protocol, we attempted other intramolecular strategies that 

can allow access to 71 such as intramolecular radical addition to 84 under Bu3SnH/AIBN 

conditions, Pd(0) promoted intramolecular Heck reaction conditions of the olefin variant of 84 

(not shown) etc. Unfortunately, none of these methods provided us the desired olefin 71 in any 

reasonable quantities.  

 

3.3.1.3. Synthesis of 71 using Stille Coupling 
 

Faced with multiple failures to synthesize 71, we decided to explore the Stille reaction. 

We had earlier made use of the Stille reaction in the total synthesis of (R)-hCPT (see Chapter 2). 

Iodopyridine 30b (Scheme 3.19, see also Scheme 2.7) was subjected to the Stille conditions in 

the presence of the vinyl stannane 31 as the coupling partner. A similar type of coupling can be 

envisioned en route to synthesize 71, albeit with the Z-variant of 31. 

The requisite vinyl stannane 85 was synthesized by the procedure that was previously 

published by Piers and coworkers (Scheme 3.18).34 The lithium(tributylstannyl)cyanocuprate, 

prepared from treatment of Bu6Sn2 with BuLi followed by the addition of CuCN, was reacted 

with commercially available ethyl 2-pentynoate at -78 °C in THF. The vinyl stannane 85 was 

obtained in 61% yield after distillation at 95-100 °C under a pressure of 0.7 mm of Hg. 
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Scheme 3.18 Preparation of Ethyl (Z)-3-(Tributylstannyl)-2-pentenoate 

 
The Stille coupling was conducted with iodopyridine 30b in moisture- and oxygen-free 

conditions. The reaction vessel was degassed under high vacuum followed by Ar purge after all 

the solid reagents (Pd(PPh3)4, LiCl and CuCl) were added and by the freeze-thaw process after 

the liquid reagents, DMSO and (Z)-vinylstannane 85, were added. The reaction mixture was 

heated to 60 °C under these Corey-modified conditions of reaction with 1,1-disubstituted 

vinylstannanes.29 The Stille product 86 was obtained in 90% yield after column chromatography. 
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Scheme 3.19 Synthesis of 71 by Stille Coupling 

 
With the α,β-unsaturated ester 86 in hand, the next step was lactonization with 

concomitant deprotection of MOM group to give the enelactone 71. Based on previous 

experience, our first choice of reagent for this transformation was TFA. Hence, an 0.4 M solution 

of ester 86 was treated with TFA and stirred at room temperature. This resulted in multiple 

products as detected by TLC. The desired enelactone 71 could be fished out of the crude reaction 

mixture in 15% yield after a difficult chromatography. Two other reactions of 86 with TFA were 

attempted in a similar fashion in higher and lower concentrations compared to the first reaction. 

Whilst the concentration variation did have an effect, it resulted only in poor yields of 71.  
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We next conducted the reaction in the presence of camphor sulfonic acid. Unfortunately, 

only the starting material was recovered. When the ester 86 was reacted with Bu2BOTf, TLC 

indicated the presence of multiple products. Gratifyingly, however, when 86 was stirred for 30 

min with 1.5 equiv of pTsOH•H2O, the product enelactone 71 was obtained in a 63% yield after 

purification by flash column chromatography.  

We noticed that if the reaction time exceeds 30 min, we observed progressive decrease of 

reaction yields with time and also contamination of the reaction mixture with methyl 

toluenesulfonate (TsOMe). The by-product TsOMe was found to co-elute with the enelactone 71 

in many solvent combinations. The presence of TsOMe was confirmed by 1H NMR analysis 

combined with GC-MS analysis which clearly showed m/z peak corresponding to TsOMe. If the 

acid catalyzed cyclization is carried out for a period of 12 h or more, the reaction led to complete 

decomposition of the starting material and no desired product could be detected. 

 

3.3.1.4. Modeling and Variable Temperature NMR Studies of 71 
 

Spectroscopic analysis of the enelactone 71 revealed some interesting dynamic behavior. 

The two methylene protons on the lactone ring appeared as a broad peak at room temperature 

centered at 5.14 ppm in the 1H NMR spectrum. This indicated that the methylene protons are 

positioned in different chemical environments compared to one another giving rise to two 

individual resonances at low temperature and at room temperature, the methylene protons 

resonances average out and coalesce to form one broad peak. This behavior can also be observed 

with enelactone 83 from the supporting information of the report by Cheng and Rayabarapu53 

(see Scheme 3.16). We then decided to study this interesting behavior of 71 by modeling and 

variable temperature NMR studies.  
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B 
Figure 3.1 MOE Images of the Predicted Lowest Energy Conformer of 71 (A) Front view (B) Side view 

 
To construct a model of 71, an in vacuo conformational search using the MMFF94x force 

field within the molecular mechanics package MOE54 was carried out. Two images of the 

predicted lowest energy conformer from this study are shown in Figure 3.1. The conformational 

search revealed a cluster of six lowest energy conformations (representing the different 

positioning of the groups TMS, ethyl and methoxy in space) all separated from the next highest 

energy cluster by a gap of 0.8 kcal.mol. This low energy conformation showed that the lactone 

portion of 71 is puckered (see Figure 3.1B). As a consequence, the two methylene protons are 

diastereotopic if the interconversion is slow on the NMR time scale. 

In order to quantitate this dynamic NMR behavior, we conducted variable temperature 

NMR studies on 71. Accordingly 1H spectra of a CDCl3 solution of 71 were recorded at 

temperatures ranging from −40 °C to 50 °C in increments of 10°. The spectra are shown in 

Figure 3.2. 
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Figure 3.2 Variable Temperature Proton NMR Studies of 71 

 
We observed that as the temperature was raised to 50 °C from room temperature, the 

broad peak corresponding to the methylene protons at 25 °C gradually sharpened to a singlet at 

5.13 ppm. Similarly when the temperature was decreased to −40 °C, the broad peak separates 

into two doublets at -10 °C (which are coupling partners with J = 12.4 Hz) at 5.51 and 4.78 ppm 

respectively.  
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The coalescence temperature is the temperature at which the two doublets merge to 

become a broad singlet and this was estimated by inspection to be 15 °C. The rate of site 

exchange between the two conformations, kcoal, can be determined by the following equation,55

kcoal = ½ π √2 √(ν1 – ν2)2 + 6J2 

where J is the coupling constant of the two methylene protons with chemical shifts ν1 and ν2 

recorded in the units of Hz. Inserting the values of the variables in the equation above with the 

average coupling constant J = 12.4 Hz, the rate constant kcoal was determined to be 491 s-1 at the 

coalescence temperature of 15 °C. From this information, the free energy of activation for this 

exchange was calculated from the Eyring equation shown below,  

∆G‡ = RTc ln (hkcoal/kBTc) 

where Tc is the coalescence temperature, h is Planck’s constant and kB is Boltzmann’s constant. 

Plugging in the appropriate values into the above equation, the free energy of activation, ∆G‡, 

was determined to be −13.3 kcal mol-1. Thus the enelactone 71 was found to display the 

interesting behavior of conformational equilibrium with averaging of the two conformers at room 

temperature. 

With the desired enelactone 71 in hand, we next proceeded to explore the dihydroxylation 

and the epoxidation approaches to make the DE fragment (R)-38 (see Scheme 3.14). 

 

3.3.2. Dihydroxylations and Epoxidations of Olefin 71 
 

Investigations in the Curran group in the past have shown that the catalytic Sharpless 

asymmetric dihydroxylations of endocyclic α,β-unsaturated lactones were marred either with 

poor reactivity of the olefin or with good conversion but low enantioselectivities. In contrast, 

Sharpless dihydroxylations of exocyclic electron-deficient olefins have shown better selectivities 
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and good conversions and yields. With this as the background, we first decided to investigate the 

reactivity with dihydroxylation of racemic 71. 

 

3.3.2.1. Dihydroxylation Studies of Olefin 71 
 

Several protocols were attempted to synthesize the racemic diol 73 with different Os 

sources, bases, oxidants etc. including OsO4/pyridine, KMnO4, OsO4/NMO etc. But in our 

hands, none of these well established reaction conditions were successful. We observed either 

the starting material or traces of the desired diol product 73. We then attempted conditions that 

mimic those of Sharpless asymmetric dihydroxylation reaction using the combination 

K2OsO2(OH)4/DABCO instead of the chiral ligand. This reaction showed traces of product rac-

73 along with large amounts of the starting material. 
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Scheme 3.20 Racemic and Asymmetric Dihydroxylation of 71 

 
Sharpless and coworkers reported in late ‘70s a dihydroxylation procedure that works 

even for trisubstituted and hindered olefins.47a Accordingly, 71 was reacted with OsO4 in the 

presence of Et4NOAc and t-butyl hydroperoxide at room temperature to afford the corresponding 
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diol rac-73 in 75% yield after the usual workup followed by filtration through a pad of celite 

(Scheme 3.20). 

We then investigated the asymmetric dihydroxylation reaction of 71. Under standard 

Sharpless conditions along with different commercially available chiral ligands (DHQD)2-

PHAL, (DHQD)2-AQN gave unreacted starting material back (Scheme 3.20). Reaction with the 

ligand (DHQD)2-PYR gave a 16% yield of (S,S)-73 after 48 hours along with large amounts of 

starting material left unconsumed as indicated by the TLC. Increase in the amounts of the ligands 

or the Os source or using different Os sources did not improve the result. In conclusion, 

dihydroxylation strategy failed to provide a practical means to access lactone (R)-38. 

 

3.3.2.2. Epoxidation Studies of Olefin 71 
 

We decided to first investigate the reactivity pattern of our olefin 71 by studying the 

racemic epoxidation of this substrate. Olefin 71 was accordingly reacted with 30% H2O2 in the 

presence of 6N NaOH (Scheme 3.21). TLC analysis indicated the complete consumption of the 

starting olefin and the appearance of an intense polar product observed under a UV lamp. 

Unfortunately, none of the desired epoxide rac-72 was observed in the product mixture as 

analyzed by 1H NMR. Instead, the polar spot proved to be the rearranged acid 87 which was 

isolated in 88% yield after acidification of the crude reaction mixture with 1N HCl followed by a 

standard aqueous workup. The structure of 87 was confirmed by NMR and MS techniques. 
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Scheme 3.21 Racemic Epoxidation of 71 

 
We also observed that the same product 87 was obtained even in the absence of 30% 

H2O2 in otherwise identical reaction conditions. These two observations led us to propose the 

plausible mechanism for this unexpected rearrangement involving the hydroxide (Scheme 3.22). 
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Scheme 3.22 Plausible Mechanism of the Unexpected Rearrangement during Epoxidation of 71 

 
Thus, under the basic conditions the lactone is converted to the tetrahedral intermediate 

71a, which breaks down to give rise to the alkoxide 71b. This alkoxide undergoes a conjugate 

addition to the α,β-unsaturated acid and the resulting carboxylate dianion, after workup, gives 

the rearranged product 87. Other known procedures of epoxidation of electron-deficient olefins 

involving the use of NaOCl/neutral Al2O3, tBuOOH/DBU did not proceed well in our hands. In 
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these cases either the unreacted starting material was obtained or the crude reaction mixture 

displayed an indiscernible 1H NMR spectrum.  

Knowing that the structure of 71 is puckered and that the olefin is slightly out-of-

conjugation with the lactone carbonyl moiety, we reasoned that 71 might behave more like a 

simple, unconjugated olefin. Hence we attempted reaction with mCPBA, DMDO to effect the 

epoxidation. However, in both the cases, only the starting olefin remained unreacted and none of 

the desired epoxide rac-72 was observed.  

In spite of the failure with the epoxidation strategy, we identified an interesting 

rearrangement occurring with the olefin 71. Capitalizing upon this unexpected result, we turned 

our attention to developing compounds such as 87 into novel non-lactone analogs of 

camptothecin. 

 

3.3.3. Novel Non-Lactone Analogs of Camptothecin – Synthesis 
 

Our interest in the development of non-lactone analogs of camptothecin arises from the 

recent interest shown in the area of E-ring modified camptothecin analogs. Lavielle and 

coworkers reported the synthesis and pharmacological evaluation of the first biologically active 

non-lactone analogs of camptothecin (Figure 3.3).56
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Figure 3.3 Novel Non-Lactone Analogs Reported by Lavielle 

 
They described a series of two different kinds of E-ring ketone derivatives 88 and 89 as 

shown in Figure 3.3. The topoisomerase inhibitory assay (with CPT and SN-38 as standards) and 

the cell-growth inhibitory assay (with L1210 leukemia cells) both indicated that the compounds 

showed reasonable activity (0.06-1.0 µM). In particular, the methylenedioxy derivative (R1, R2 = 

OCH2O) showed activity that was comparable to topotecan. 

With reference to non-lactone E-ring analogs, the Curran group had also reported the 

synthesis and biological evaluation of the keto-ether Du1441.24 Unfortunately, Du1441 did not 

show promise as a topo I poison. We carried through 87 into E-ring modified cyclic ether CPT 

derivatives (Figure 3.4). 
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Figure 3.4 Development of Cyclic Ether Analogs to Camptothecin Derivatives 
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We planned to synthesize four non-lactone analogs with modifications on the 7 and 10 

positions of the A & B rings of the final derivatives. Our choices of substitution at the 7-position 

were H and TBS and at the 10-position were H and F. This selection for the initial set of 

compounds was based on previous knowledge in the Curran group in this area. Silyl substitution 

on the 7-position has been shown to increase blood stability of the derivatives and result in an 

enhanced activity.57 In particular, 7-TBS substitution has been very beneficial. Similarly 10-F 

substitution allows to study effect a hydrogen-bond acceptor while still retaining the size of the 

group at that position compared to the parent 10-H substituted compound. The synthesis of these 

analogs is shown in Scheme 3.23. 

The synthesis commences with the esterification of the carboxylic acid 87 upon treatment 

with TMSCHN2 at room temperature to afford the corresponding methyl ester58 (not shown). 

This protection as the ester ensures that no complications arise due to the free carboxylic acid. 

This ester is then iododesilylated under standard ICl conditions. The iodine atom in this 

iodopyridine acts as the radical precursor. Next, the reaction of this methoxy pyridine with in situ 

generated TMSI affords the demethylated iodopyridone 90 in a combined three-step yield of 

25%. 

Compound 90 was divided into two portions and propargylated with the two propargyl 

bromides in the presence of NaH and LiBr to give the corresponding N-propargylated pyridones 

91a and 91b in 54% and 45% yield, respectively. Each of these propargylated pyridones was 

further divided into two portions and reacted with two p-substituted isonitriles under 

photoirradiation conditions to afford the four camptothecin analogs 92a-d in 30-71% yield after 

purification by flash column chromatography. The structures of 92a-d were confirmed by NMR 

and MS analysis. 
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Scheme 3.23 Synthesis of Four Cyclic Ether Analogs of CPT 

 
We realized that E-ring modified analogs without a stereocenter would also be interesting 

to understand the significance of the tertiary alcohol in CPT and hCPT. To access such type of 

analogs, we identified the enelactone 71 as a good starting point and decided to develop analogs 

with the E-ring containing an olefin in the place of the tertiary stereocenter. The synthesis, which 

closely follows the synthesis of the cyclic ether analogs, is described in Scheme 3.24. 

Four analogs with identical substitution patterns to those of the cyclic ethers were 

synthesized. Thus, enelactone 71 was iododesilylated with ICl and following that it was 

demethylated with in situ generated TMSI to afford iodopyridone 93 in 12% for the two steps. 

Compound 93 was divided into two portions for the propargylation reaction and then the N-

propargylated iodopyridones 94a and 94b, obtained in 37% and 43% yield respectively, were 

further divided into two portions each to be reacted with two isonitriles under photoirradiation 

conditions to give the final enelactone derivatives 95a-d in about 34-55% yields after 

purification by column chromatography. The structures of the four enelactones were confirmed 

by NMR and MS techniques. 
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Scheme 3.24 Synthesis of Four Enelactone Analogs of CPT 

 
 

3.3.4. Novel Non-Lactone Analogs of Camptothecin – Biological Evaluation 
 

Eight E-ring modified CPT analogs, four cyclic ethers and four enelactones, were tested 

by Drs. Y. Pommier, B. Anderson and their coworkers for biological activity in two assays: 

topoisomerase inhibitory assay and cell growth inhibitory assay. The results from the 

electrophoresis experiments in the topoisomerase inhibitory assay are shown in Figure 3.5. 

The first two lanes in the gel display show the controls DNA and topo I in the absence of 

CPT or hCPT. As expected, no cleavage products were observed. The third lane shows CPT 

control and cleavage products are clearly observed. The next two sets of lanes show the hCPT 

controls, the first set indicates hCPT synthesized by French researchers and the second set hCPT 

synthesized by our group. Each set is divided into four lanes, represented by concentrations 0.1 

µM, 1 µM, 10 µM and 100 µM respectively. The final two sets of lanes show the assay results of 

analogs 95a and 95b. The DNA cleavage products are indicated by arrows in Figure 3.5. 
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Figure 3.5 Topoisomerase Inhibitory DNA Cleavage Assay Results for Non-lactone Analogs 95a,b 

 
For topo I cleavage assays, labeled DNA (~50 fmole/reaction) was incubated with 5 ng of 

recombinant topo I with or without the drug at 25 °C in 10µL reaction buffer (10 mM Tris-Cl pH 

7.5, 50 mM KCl, 5 mM MgCl2, 0.1 mM EDTA, 15 µg/mL BSA, final concentrations) for 20 

min. Reactions were stopped with SDS (0.5 %). Samples were denatured by the addition of 3.3 

volumes of Maxam Gilbert loading buffer (80% formamide, 10 mM sodium hydroxide, 1 mM 

sodium EDTA, 0.1% xylene cyanol and 0.1% bromophenol blue, pH 8.0). Aliquots were 

separated in 16% denaturing polyacrylamide gels (7M urea) in 1 X TBE (45 mM Tris, 45 mM 

60 



 

Boric acid, 1 mM EDTA) for 2 h at 40 V/cm at 50 °C. Imaging and quantitation were performed 

using a Phosphorimager. 

The electrophoresis experiments have led to the following results. First, the cyclic ether 

analogs 92a-d have shown no activity compared to the standard samples of hCPT. Second, the 

enelactones 95a-d showed that the 20-OH group is not absolutely required for topoisomerase I 

poisoning. However, in the absence of the 20-OH group, the drug activity was reduced by abolut 

100-fold. And third, due the low activity of the parent enelactone 95a, effects of the substitution 

could not be assessed accurately. 

 

3.4. Summary 

This chapter described our initial efforts to investigate new approaches towards the 

efficient synthesis of the DE-fragment of (R)-hCPT. Our efforts in using different homologation 

approach to achieve this goal were described. When many of the tested homologation protocols 

either failed to succeed or furnished unsatisfactory results, we turned our attention to the 

epoxidation and dihydroxylation procedures in accessing the desired DE-fragment. These 

procedures have not afforded the desired results. However, an unexpected rearrangement in an 

epoxidation protocol led us to the synthesis of novel non-lactone analogs of camptothecin which 

can be classified into two categories – cyclic ether analogs and enelactone analogs. Despite the 

interesting synthetic sequence, these analogs have not showed much promise in the biological 

activity studies. The development of non-lactone analogs with promising biological activity 

continues to be of interest in our group and other research laboratories. Further studies in this 

area may reveal such analogs possessing interesting modifications in the E-ring without 

compromising the biological activity. 
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4. E-RING OPEN-FORM ANALOGS OF CAMPTOTHECIN  

 

4.1. Introduction 

Recently, Stewart and co-workers reported the X-ray crystal structure of human 

topoisomerase I covalently joined to double-stranded DNA and bound to topotecan, a clinically 

approved analog of camptothecin.12 This crystal structure sheds light on the mechanism of 

topoisomerase I poisoning by the CPT derivatives. Prior to the disclosure of this report, it had 

been difficult to study the mechanism of action of CPT because the drug acts as an 

uncompetitive inhibitor at the binding site and binds only the transient covalent enzyme-substrate 

complex.59

It was reported that topotecan mimics a DNA base pair and binds at the site of DNA 

cleavage by intercalating between the upstream and downstream base pairs. One of the most 

striking findings of this report was that the electron density allowed the positioning of both the 

closed lactone and the open carboxylate conformers of topotecan. An unrestrained full matrix 

refinement of occupancy factors for both these conformers converged to an occupancy of 37% 

open carboxylate and 63% closed lactone forms. Fluorescence spectrophotometric measurements 

of topotecan as a function of pH revealed a similar ratio between the closed (75%) and open 

(25%) forms. The observed ternary crystal structure also demonstrates that both the closed 

lactone and the open carboxylate conformers can bind within the same intercalation pocket and 

presumably prevent the religation reaction. These findings are surprising because they contradict 

conventional wisdom that the ring-opened carboxylate is detrimental to the drug’s biological 

activity (see Scheme 1.1, Chapter 1). 
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The binding interactions of topotecan within the intercalation pocket (Figure 1.3, Chapter 

1) in both the closed and the open forms explain the results of various E-ring modifications 

reported in literature. The crystal structure model shows that in the closed lactone there is only 

one direct hydrogen bond between the enzyme and topotecan: the 20(S)-hydroxy group hydrogen 

bonds to Asp533. This stabilizing hydrogen bond interaction is intact in the open carboxylate 

form arguing against the belief that the open form inactivates the drug. In addition, the open form 

enjoys two other stabilizing interactions: the water-bridged contacts of the free primary hydroxyl 

group to Asn722 and the carboxylate oxygen to the P-Tyr723. 

This report of the crystal structure opens up new avenues in the field of camptothecin 

analog synthesis: E-ring open form analogs. Based on the conclusions described above, we 

initiated a project aimed at the synthesis and biological evaluation of derivatives which resemble 

the open carboxylate form of camptothecin. 

 

4.2. Synthesis of the E-ring Open Form Analogs of CPT 

The two points of modification in the synthesis of open form analogs that we made are 

shown in Figure 4.1. One of the key features of the open form is the extent to which it can 

participate in hydrogen bonding. Excluding the tertiary alcohol which is involved in a key 

stabilizing interaction, we varied the primary hydroxyl group and the carboxylate such that the 

resulting modifications may enhance or diminish the hydrogen bond interactions. 
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Figure 4.1 Structural Modifications in Synthesis of E-ring Open Form Analogs 

 
The first type of modification we made was to substitute the acid for a hydrazide (X = 

NHNH2). The hydrazide can retain the hydrogen bond donor capacity while remaining in the 

same oxidation state as the parent carboxylate. Secondly, the acid was substituted by the 

Weinreb amide that will remove the hydrogen bonding interactions due to the lack of donors. 

This change will help us understand the significance of the hydrogen bonding interactions of the 

carboxylate. 

The synthesis of these analogs is shown in Scheme 4.1. Camptothecin (CPT) was treated 

with an excess of hydrazine monohydrate in methanol at room temperature60 to effect the 

opening of the lactone and form hydrazide 96 in quantitative yield. DB-67 was subjected to 

identical reaction conditions affording hydrazide 97, also in near quantitative yield. Both the 

hydrazides did not require further purification after the workup. The structures of 96 and 97 were 

confirmed by NMR and MS techniques. 
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Scheme 4.1 Synthesis of the Hydrazides 96, 97 and Weinreb Amide 99 

 
For the synthesis of the Weinreb amide 98, CPT was added to a mixture of Me3Al and 

N,O-dimethylhydroxylamine hydrochloride at room temperature to afford 98 in 77% yield.61 

Weinreb amide 98 was quite unstable on standing at room temperature (displayed multiple 

products as indicated by TLC). However, when the free alcohol in 98 was protected as the TBS 

ether on treatment with TBSCl and imidazole, the product 99 (obtained in 92% yield) was found 

to be stable on the bench top as indicated by TLC. 

The second point of modification was at the primary alcohol position. We synthesized 

two derivatives lacking a hydrogen bond donor group i.e., a 17-deshydroxy derivative (Y = H in 

Figure 4.1) as shown in Scheme 4.2. 
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Scheme 4.2 Synthesis of 17-Deshydroxy Open-form Analogs 

 
We were particularly interested in the 17-deshydroxy substrate 101 because it combines 

the structural features of camptothecin and the related mappicine 100.62 A report by the 

researchers at the Smithkline Beecham Corporation63 describes a semi-synthetic route to 101. 

However, no information regarding the biological activity was reported. Employing this 

procedure, camptothecin (CPT) was subjected to hydrogenolysis reaction using palladium on 

carbon in the presence of Et3N and DMF to afford the acid 101 in 40% yield after purification by 

semi-preparative HPLC using a reverse phase C18 column. DB67 was also submitted to identical 

reaction conditions but substituting the solvent DMF with MeOH because of better solubility and 

ease of workup. The product 102 was isolated in a 83% yield after column chromatography. The 

presence of a carboxylic acid moiety in 101 was confirmed by esterification with trimethylsilyl 

diazomethane to the corresponding methyl ester 103 in 76% yield. 
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4.3. Biological Evaluation of the E-ring Open Form Analogs of CPT 

All the open-form derivatives of CPT were sent for a preliminary evaluation for any 

biological activity as shown by the topoisomerase inhibitory assay. The assay conditions were 

identical to those described in Chapter 3. Figure 4.2 shows an electrophoresis gel display of CPT, 

the hydrazides 96 and 97 and the acids 101 and 102. The first two lanes in the gel display show 

the controls DNA and topo I in the absence of CPT. As expected, no cleavage products were 

observed. The third set of four lanes shows CPT control and the cleavage products are clearly 

observed. Each of these four lanes refers to the concentrations 0.1 µM, 1 µM, 10 µM and 100 

µM respectively. The next four sets of lanes show the assay results of 101, 96, 97 and 102 

respectively. The DNA cleavage products are indicated by arrows in Figure 3.5. 

The topo I assay shows that the hydrazides 96 and 97 display promising activity that is 

comparable to that of camptothecin (CPT). One can also note that the hydrazide 97 shows 

slightly better activity as indicated by the intensity of the cleavage products in the electrophoresis 

gel display. Unfortunately, the acids 101 and 102 showed no activity at all as indicated by the 

empty lanes 2 and 5 (Figure 4.3). Weinreb amide 99 also exhibited no activity. 
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Figure 4.2 Results of Topo I Inhibitory Assay of Derivatives 96, 97, 101 & 102 

  

We next studied the stability of the hydrazides at room temperature. Two portions (of 

arbitrary amounts) of hydrazide 96, one as a solution in DMSO and the other as a solid sample, 

were allowed to stand at room temperature. It was learned that 96, as a solution of DMSO, closes 

to the lactone generating camptothecin. However, it is quite stable on the bench top as a solid 

sample as indicated by 1H NMR spectrum. When the 1H NMR spectrum of 96 was recorded after 

it was present as a solution in DMSO for 20 days, the spectrum showed a complete conversion of 

the hydrazide to camptothecin. The hydrazide 96 is, however, stable as a solid at room 
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temperature for at least six months with no traces of camptothecin formed as indicated by 1H 

NMR. 

The hydrazide samples were checked for conversion to CPT after they had been tested for 

topo I inhibitory activity. The 1H NMR spectrum showed a ratio of 2:1 of CPT/hydrazide 96. It is 

still unclear if the activity displayed by the hydrazides originates from the in situ generated CPT 

in DMSO. More experimentation is required to confirm unambiguously the nature of the species 

in the assay contributing to the biological activity. If CPT is determined responsible for the 

observed activity, then these hydrazides can serve as prodrug analogs that can potentially 

undergo reconversion to CPT in vivo. 

The open form analogs of CPT were also studied in a cell growth inhibition assay. The 

plot of the percentage of cells remaining (y-axis) versus the concentration of the CPT analog (x-

axis) is shown in Figure 4.3. The first two entries are the CPT (blue) and DB67 (pink, see Figure 

1.5, Chapter 1) controls. The other four entries are 101 (green), 96 (cyan), 97 (purple) and 102 

(brown). The SRB assay, done in the cell growth inhibition studies, measures the amount of 

protein attached to a well. This amount is proportional to the number of cells still attached to the 

well. The cells used, MDA-MB-435S+ are no longer viable if they lose their attachment after 

exposure to CPT or its analogs. 

The cells were plated onto 24 well plates 24 h before they were exposed to CPT analogs. 

After the CPT derivative was added, cells were allowed to grow for 72 h (full cell cycle arrest 

was observed around 48 h after exposure to CPT analog). Thus the cells grew for 96 h, with CPT 

analog present for 72 h. The cells were then gently washed with PBS buffer and fixed with 

trichloracetic acid. The plates were dried and stained with sulforhodamine blue (SRB) and excess 
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dye was washed off with 1% acetic acid. Plates were dried again. SRB dye was then mobilized 

with 10 mM tris base and measured with a spectrophotometer set at 490 nm. 
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Figure 4.3 Results of the Cell Growth Inhibition SRB Assay of Derivatives 96, 97, 101 and 102 

 
The results of the SRB assay were in agreement with those of the topo I inhibitory assay 

(see Figure 4.2). Hydrazides 96 and 97 inhibited the growth of cells with an approximate GI50 = 

20 nM and 100 nM respectively. These values are comparable to those of CPT and DB67 which 

are in the 10 nM range. Acids 101 and 102, on the other hand, showed no growth inhibition of 

cells. 
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4.4. Summary 

This chapter described the synthesis of a small assortment of E-ring open form analogs of 

camptothecin. This analog synthesis evolved from an interesting report of the X-ray crystal 

structure of the topo I-DNA-topotecan ternary complex by Stewart and co-workers which 

revealed that the open carboxylate form of CPT contributed to its biological activity. The analogs 

were synthesized using semi-synthetic approaches commencing from CPT and DB67, a well-

studied CPT analog. The different substitution patterns of the analogs were designed based on 

the findings of the report. All the analogs synthesized were biologically tested and the hydrazides 

showed good activity in the topoisomerase inhibitory assay. Additional experimentation is 

needed to confirm that these hydrazides remain in the open form under the assay conditions. 

Further development in this nascent field of open form CPT analogs is necessary to understand 

the implications of this report. 
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5. 20-FLUOROCAMPTOTHECINS: AN ACCIDENTAL DISCOVERY 

 

5.1. Introduction 

During the course of our studies of E-ring open form derivatives of CPT, we became 

interested in studying open form analogs which have fluorine incorporated such as 104 (Scheme 

5.1). We envisioned that such primary fluorides could be synthesized in a semi-synthetic fashion 

starting from CPT or its analog using diethylamine sulfurtrifluoride (DAST). Based on a related 

literature precedent by Kirihara and coworkers,64 we envisioned a plausible mechanism for the 

desired transformation as shown in Scheme 5.1.  
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Scheme 5.1 Proposed Synthesis of 104 from CPT 

 
Thus, CPT could react with DAST via the nucleophilic displacement of the fluorine on 

sulfur by the oxygen of the 3° alcohol in CPT to afford 105. Intermediate 105 could then 

displace a second fluoride in an intramolecular fashion to give the oxonium ion intermediate 106. 
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Attack of fluoride ion at the benzylic position in 106 could afford the desired fluorinated 

derivative 104. 

When CPT was treated with DAST at −78 °C and the reaction mixture was stirred 

overnight followed by an aqueous workup, a clean monofluorinated product was isolated in 54% 

yield after purification by flash column chromatography (99.0:0.5:0.5 

dichloromethane/methanol/acetonitrile). Based on a detailed spectroscopic analysis, we 

concluded that the product was not the fluorinated derivative 104 but rather 20-

fluorocamptothecin 107 (Scheme 5.2). The best precedent for this fluorination was reported by 

Takeuchi and coworkers65 where ethyl 2-hydroxy-2-phenylpropionate was reacted with DAST to 

the corresponding fluorinated derivative (boxed in Scheme 5.2). 
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Scheme 5.2 Reaction of CPT with DAST 
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The 1H NMR spectrum of 107 showed a doublet of quartets (J = 7.4 Hz, 22.2 Hz) for the 

C19 methylene protons of the ethyl chain. The large 22 Hz coupling constant for the doublet 

indicated that the methylene protons were coupled to a fluorine atom consistent with a 

CH3CH2CFR2 fragment. The product shows a triplet at −163 ppm (J = 22.6 Hz) in 19F NMR 

spectrum, which is consistent with a fluorine atom with no geminal protons rather than the 

expected primary fluoride 104 with two geminal protons. An HMBC (1H – 13C correlation, 

greater than one bond coupling) spectrum of the product displayed crosspeaks between the C19 

methylene protons and the carbon bearing the fluorine atom. In addition, no crosspeaks between 

the benzyl protons (protons geminal to F in 104 in Scheme 5.1) and F were observed. The 13C 

NMR spectrum showed a doublet at 89.5 ppm with a coupling constant of 193.7 Hz consistent 

with a C-F one bond coupling. MS analysis showed an m/z value of 350 also consistent with a 

monofluorinated product. All these data support structure 107. 

The proposed mechanism of the formation of 20-fluroocamptothecin 107 is shown in 

Scheme 5.2. The formation of the intermediate 105 is followed a nucleophilic substitution of the 

oxygen leaving group by a fluoride ion to give a tertiary fluoride 107. 20-Chloro and 20-

bromocamptothecins have been reported66 to stabilize the covalent topo I-DNA binary complex 

fully despite lacking hydrogen bond donors. Interestingly, 20-fluorocamptothecin contains a 

hydrogen bond acceptor (a fluorine atom) in place of a hydrogen bond donor (a hydroxy moiety) 

at the C20 position. Also from the standpoint of the importance of fluorine functionality in 

medicinal chemistry,67 we decided to test the viability of 107 and its analogs as drug candidates. 

During the preparation of this thesis, Toru and co-workers reported the synthesis of 20-

fluorocamptothecin starting from 20-deoxyCPT68 by the electrophilic fluorination of 20-

deoxycamptothecin using selectfluor (not shown). 

74 



 

5.2. Synthesis and Biological Evaluation of Analogs of 20-Fluorocamptothecin 

Beginning with the known propargylated pyridone 108 (see Scheme 1.3, Chapter 1, R7 = 

H), we synthesized a few analogs of 107 (Scheme 5.3). Thus, 108 was treated with DAST at −78 

°C to afford fluoropyridone 109 in 96% yield. Pyridone 109 was reacted with p-fluoro (110a) 

and 3,4-methylenedioxy isonitriles (110b) under the standard radical cyclization conditions to 

afford the corresponding camptothecins 111a-c in moderate yields. The reaction with isonitrile 

110b produces a separable mixture of the 9,10- (111b) and the 10,11-substituted (111c) 

fluorocamptothecins in the ratio of 1:2.5 respectively. The assignment of the isomers was made 

based on the splitting pattern in the aromatic region of the 1H NMR spectrum. 
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Scheme 5.3 Synthesis of Analogs of 20F-CPT 

 
20F-DB67 112 was synthesized in a semi-synthetic fashion from DB67 upon treatment 

with DAST at −78 °C in a 61% yield (Scheme 5.4). Fortunately, the TBS group at the C7 
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position remained unaffected under these conditions. The structure of 112 was confirmed by 

NMR and MS techniques. 
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Scheme 5.4 Reaction of DAST with DB67 

 
Fluorocamptothecins 107, 111a-c and 112 were sent for biological tests in the 

topoisomerase inhibitory assay. The assay conditions were identical to those described in 

previous chapters. The results of the assay showed that compounds 111a-c were not active at 

concentrations ranging from 0.1 µM to 100 µM. However, compounds 107 and 112 showed only 

traces of activity at 100 µM. We hypothesized that the lack of activity was due to the “R” 

stereochemistry of the C20 stereocenter. If the fluorination reaction proceeded with inversion of 

configuration at C20, then the resulting (20R)-fluorocamptothecin would be inactive. A total 

synthesis of both the enantiomers and the racemate of 107 was undertaken to confirm the 

hypothesis.  

 

5.3. Stereoselective Total Synthesis of 20S and 20R-Fluorocamptothecin 

The synthesis of (20R)- and (20S)-fluorocamptothecins commences with the previously 

introduced aldehyde 28b (see Scheme 2.7, Chapter 2) as shown in Scheme 5.5. A reductive 

etherification reaction69 of 28b with crotyl alcohol, Et3SiH and TFA provided the crotyl ether 

113 in 63% yield. Iodide 113 was subjected to an intramolecular Heck reaction in the presence of 
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Pd(OAc)2, K2CO3 and Bu4NBr to afford the enol ether 114. After an aqueous workup, the crude 

enol ether 114 was subjected to dihydroxylation under Sharpless’ conditions but with DABCO in 

place of the chiral ligand70 to afford the corresponding racemic diol (not shown). 
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Scheme 5.5 Synthesis of 20-Fluorocamptothecin 107 

 
After purification by column chromatography, this diol was oxidized to the lactone 115 

on treatment with I2 and CaCO3 in an overall yield of 20% for the three steps. To access both the 

enantiomers of 115, racemic alcohol 115 was separated into its constituent enantiomers (S)-115 

and (R)-115 in 100% ee as determined by semi-preparative HPLC using (S,S) WHELK O 1 

chiral column under isocratic elution (95:5 hexanes/isopropanol) conditions. The retention time 

of (S)-115 under these conditions at the rate of 1 mL/min was 7.5 min and that of (R)-115 was 
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10.5 min. When 68 mg of the racemic alcohol 115 was loaded on the HPLC with semi-

preparative column in three injections, 21 mg each of the R and S enantiomers could be isolated.  

The key fluorination reactions of (S)-115 and (R)-115 with DAST were carried out at −78 

°C to afford the fluoropyridines (R)-116 and (S)-116 respectively in 86% and 76% yields with 

good chiral transfer in 91% and 93% ee respectively as shown by HPLC analysis using (S,S) 

WHELK O 1 chiral column under isocratic elution (95:5 hexanes/isopropanol) conditions. The 

retention time of (S)-116 under these conditions at the rate of 1 mL/min was 10.6 min and that of 

(R)-116 was 18.0 min. The stereochemical assignment of fluoropyridines 116 will be described 

later. Pyridine lactone 115 was identified as a suitable intermediate for performing the 

fluorination reaction after it provided the best yield and cleaner reaction in comparison to other 

intermediates in the synthesis.71 In a comparison study between DAST and the other well-known 

fluorinating agent Deoxofluor [(CH3OCH2CH2)2NSF3],72 in which the temperature, time of the 

reaction and the equivalents of the fluorinating agent were varied, we discovered that the 

reactions with DAST afforded cleaner products, better yields and conversions and were 

completed in shorter times (Table 5.1). 
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Table 5.1 Comparison of DAST and Deoxofluor for the Fluorination of 108 
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NI O

OHO

O

108

Fluorinating agent

temperature

 
  

Fluorinating Agent 
Entry Temperature Rxn. time 

DAST (pdt. yield) Deoxofluor (pdt. yield) 

1. 

2. 

3. 

Room temp. 

−40 °C 

−78 °C 

30 min 

1.5 h 

5 h 

109 (25%) 

109 (67%) 

109 (96%) 

109 (23%) 

109 (60%) 

109/108 (3:2, 25%) 

   

Pyridine lactones 116 were converted to the pyridones 109 in three steps. First, an 

iododesilylation reaction using ICl afforded the corresponding enantiomeric iodides. Second, a 

demethylation reaction of these iodides with in situ generated TMSI gave the corresponding 

pyridones. Third, the pyridones were alkylated with propargyl bromide in the presence of NaH 

and LiBr to give both enantiomers of 109 in overall yields of 33% and 25% for three steps. We 

were pleased to observe good yields with the iododesilylation reaction of 116 (59% and 65%) 

which, with most other similar substrates, was a low-yielding step. 

The key radical cyclization was carried out with the propargylated pyridones 109 and 

phenyl isonitrile in the presence of (Me3Sn)2 under photo-irradiation conditions to give both the 

enantiomers of 20-fluorocamptothecin (R)-107 and (S)-107 in 11% and 14% yields after 

purification by flash column chromatography. The purity of fluorocamptothecins 107 was 
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confirmed by NMR and MS techniques. Also, the 1H and 13C NMR spectra of these samples 

matched with that of 107 made via the semisynthesis route (see Scheme 5.2). Racemic 107 was 

synthesized following the reaction sequences described in Scheme 5.3 starting from racemic 108. 

The three samples, (R)-107, (S)-107 and (±)107, were sent for the preliminary biological 

evaluation and the results from this are shown in Figure 5.1. 

  

  

Figure 5.1 Results of the Topo I Inhibitory DNA Cleavage Assay of Derivatives (S)-107, (R)-107 and rac-107 
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The first two lanes in the gel display show the controls DNA and topo I in the absence of 

CPT. As expected, no cleavage products were observed. The next set of four lanes shows CPT 

control and the cleavage products are clearly observed. Each of these four lanes refers to the 

concentrations 0.1 µM, 1 µM, 10 µM and 100 µM respectively. The next three sets of lanes show 

the assay results of (S)-107, (R)-107 and (±)107 in that order. The DNA cleavage products are 

indicated by the arrow in Figure 5.1. 

The electrophoresis experiments showed that both the enantiomers of 107 showed 

activity at a concentration of 10 µM. We assigned the compound with the highest intensity to be 

(S)-107 and the less intense one (R)-107 based on the known premise that only (S)-

camptothecins are biologically active (see Section 1.3, Chapter 1). Tracing backwards in the 

reaction sequence, we determined that (S)-107 was obtained from (S)-116 which in turn was 

obtained from the fluorination of (R)-115. Thus, the reaction with DAST had occurred with an 

inversion of configuration. Racemic 107 also showed some weak activity at 10 µM 

concentration. The small selection of analogs presented in Section 5.2 had, therefore, been 

synthesized in the “wrong” configuration. Resynthesis and biological reevaluation of these 

analogs is currently in progress in our laboratories to confirm the configuration of the 

biologically active enantiomer of 107. 

The fluorocamptothecins can also be envisioned as good substrates for the determination 

of the function of the lactone moiety in DNA/Topo I interactions by using high-field 19F NMR 

spectroscopy. This allows the study of the dynamics of the ternary complex possible without 

isotopic labeling the protein. Studies using this technique in combination with computational 

modeling are currently in progress. 
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5.4. Summary 

This chapter described the accidental discovery of the 20-fluorocamptothecins (20F-

CPTs) that were synthesized from their alcohol counterparts upon reaction with DAST. A small 

assortment of analogs of 20F-CPT was synthesized. However, these compounds showed no 

activity in the topoisomerase inhibitory assay. The two enantiomers of 107 have also been 

synthesized and submitted for biological testing. It was found that (S)-107 displayed activity at 

10 µM concentration while the R enantiomer showed no activity. Further research in the 

synthesis and biological studies of additional analogs of 20F-CPT with S configuration at the 

C20 position is underway. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

82 



 

6. TOTAL SYNTHESIS OF LUOTONIN A AND ITS ANALOGS USING CASCADE 
RADICAL CYCLIZATION 

 

6.1. Introduction 

In 1997, Nomura and coworkers reported the isolation of a pyrroloquinazolinoquinoline 

alkaloid, luotonin A, extracted from the Chinese medicinal plant Peganum nigellastrum.73 The 

structure of luotonin A bears striking similarities to the well-studied topo I poison, camptothecin 

(Figure 6.1). 
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Figure 6.1 Structures of Luotonin A and Camptothecin 

 
The structural similarities are in the rings A-C which are identical in luotonin A and CPT. 

The differences are in the D-ring in which pyrimidone moiety replaces the pyridone in CPT and 

the E-ring in which the lactone moiety, thought to be crucial for the biological activity of CPT, is 

absent in luotonin A. The lack of any functionality in the E-ring of luotonin A is interesting in 

light of several reports that modifications in the E-ring resulted in either diminishing or 

destroying CPT’s activity (see Section 1.3, Chapter 1).  

Furthermore, recently Hecht and coworkers reported that luotonin A mediates 

topoisomerase I-dependent cytotoxicity much like CPT. It was demonstrated that despite the lack 

of lactone moiety and the tertiary alcohol stereocenter in the E-ring, luotonin A stabilizes the 
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human DNA- topo I covalent binary complex forming a ternary complex. Luotonin A was found 

to be cytotoxic towards the murine leukemia P-388 cell line with an IC50 of 1.8 µg/mL. It was 

also observed that luotonin A displays identical sequence selectivity of DNA cleavage by topo I 

to that of CPT in the electrophoresis experiments. With its similarities in structure and function 

to CPT, luotonin A was an attractive synthetic target to many research groups.   

 

6.2. Synthetic Approaches to Luotonin A 

A brief summary of the five distinct synthetic approaches to luotonin A reported thus far 

is shown in Scheme 6.1. Ihara reported a synthesis employing an intramolecular hetero Diels-

Alder reaction74 with a suitable aza-diene and cyano group as the dienophile. Harayama used an 

alkylation followed by an intramolecular Pd-assisted biaryl coupling in the presence of 

tricyclohexylphosphine as the ligand and KOAc as the base to afford the desired luotonin A.75   

The classical Friedlander condensation of the dihydropyrroloquinolinone with 2-

aminobenzoate was the method of choice of Hecht.76 Several other research groups employed the 

Friedlander condensation in their synthesis of luotonin A.77 The key difference in these syntheses 

is the choice of the aniline derivative for the condensation. Nomura reported the reaction of the 

pyrroloquinazoline derivative with N-(2-aminobenzylidene)-p-toluidine in the presence of 

pTsOH.68
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Scheme 6.1 Synthetic Approaches to Luotonin A 

 
While many of these syntheses are elegant, they are not sufficiently flexible to allow the 

ready functionalization of the parent luotonin A. Our approach (shown in the box in Scheme 

6.1), on the other hand, is modular in nature and facilitates quick access to several derivatives of 

luotonin A, particularly the A,B-ring analogs. In addition, the mild conditions of the radical 

reaction make it possible to tolerate a wide variety of functional groups.  

 

6.3. Total Synthesis of Luotonin A 

The synthesis of luotonin A commenced with the synthesis of dibromoquinazoline 117 as 

shown in Scheme 6.2. Commercially available benzoylene urea was treated with POBr3 and N,N-

dimethylaniline under solvent-free conditions at 105 °C to afford the quinazoline 117 in 52% 

yield. This use of solvents (such as CH2Cl2, CH3CN) in the dibromination reaction led to either 
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poor yields of the desired product or recovery of starting material. Diiodoquinazoline 118 is a 

better substrate in this synthetic scheme that could be carried over to luotonin A since iodides are 

better radical precursors than bromides. Despite several attempts at the synthesis of 118, we were 

unsuccessful starting either from benzoylene urea (using PPh3, I2, Et3N) or from the dichloride 

119 (Bu4NI/THF; NaI/CH3CN; aq. HI) or any of its derivatives due to either the formation of 

multiple products or unreactive starting material.  

 

NH

H
N O

O

POBr3
PhNMe2 N

N Br

Br52%

NH

N Br

O

THF
quant.

Br

NaH, DMF N

N Br

O66%

NC

(Me3Sn)2, hν N
N

N

O

47%

NaOH

121 122 Luotonin A

117

117

120

N

N I

I

118

N

N Cl

Cl

119Benzoylene urea

 

Scheme 6.2 Total Synthesis of Luotonin A 

 
Dibromoquinazoline 117 was then subjected to monohydrolysis on treatment with 1N 

NaOH to afford the bromoquinazolinone 120 as the sole product in quantitative yield as 

indicated by 1H NMR, 13C NMR and MS analysis. A short reaction time (~ 2 h) is essential to 

avoid nonselective hydrolysis resulting in a complex mixture. Quinazolinone 120 was next 

treated with propargyl bromide in the presence of NaH to effect N-alkylation affording 

propargylated quinazolinone 121 in 66% yield. Under these reaction conditions, no O-alkylation 

product was observed as indicated by 1H and 13C NMR analysis. Bromide 121 was then 

converted to luotonin A 122 under photoirradition conditions upon treatment with phenyl 
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isonitrile in the presence of (Me3Sn)2 in 47% yield after purification by flash column 

chromatography. The structure of 122 was confirmed by NMR and MS techniques and the data 

matched that reported in the literature.68

 

6.4. Synthesis of Analogs of Luotonin A 

Although luotonin A has been the subject of many syntheses, there is very limited 

knowledge about the effect of different substitution patterns in terms of the biological activity. 

Recently, Hecht reported a series of E-ring derivatives of luotonin A and evaluated them for topo 

I inhibitory activity (Figure 6.2). E-ring analogs 124, 125 and 127 have shown good DNA-topo I 

stabilization. Among luotonins 123, 17-chloroluotonin A (R1 = R3 = H, R2 = Cl) displayed good 

biological activity. 
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Figure 6.2 Hecht's E-ring Analogs of Luotonin A 

 
The modular nature of our synthesis, in addition to its conciseness, presents a good 

opportunity to synthesize several analogs in a quick manner. In a complementary fashion to 

Hecht’s synthesis of E-ring derivatives, our strategy could be used to synthesize a library of A, 
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B-ring derivatives thus building a more complete SAR profile of luotonin A. The planned 

synthesis of the 4 x 8 library of luotonins is shown in Scheme 6.3. 
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Scheme 6.3 Synthesis of Library of Luotonin A Analogs 

 
Prior to undertaking the library synthesis, 1.4 g of the key bromoquinazolinone 

intermediate 120 was synthesized according to the chemistry described in Scheme 6.2. All the 

reactions leading to the final luotonins were performed using standard laboratory techniques in a 

serial fashion. The requisite building blocks for the library synthesis are shown in Table 6.1. 

Four propargyl bromides 128{a-d}, that were chosen based on previous experience in our 

laboratories, were synthesized according to literature procedures.52

The isonitriles were chosen based on their electron-withdrawing character (110{2} and 

110{3}), electron-donating character (110{4}, 110{5} and 110{8}) and hydrogen bond donor 

capacity (110{6} and 110{7}). All the isonitriles were synthesized following previously reported 

procedures.44
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Table 6.1 Building Blocks for the Luotonin Library 

 

R8
Br R10

R11 NC

R9

128 110  
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R8 Entry  R9 R10 R11 Entry 

H 

TBS 

Et 

CH2CH2TMS 

128{a} 

128{b} 

128{c} 

128{d} 
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Quinazolinone 120 was reacted with four propargyl bromides 128{a-d} to afford four 

propargylated quinazolinones 129{a-d} in 54-66% yields. Each of the four bromides 129{a-d} 

was subjected to the radical cascade cyclization with eight isonitriles 110{1-8} under 

photoirradiation conditions in the presence of (Me3Sn)2 to afford 32 products 130{a-d, 1-8} in 

moderate to good yields (see Table 6.2). For the final radical cyclizations, groups of four 

reactions were irradiated simultaneously and each crude product was purified by a quick column 

chromatography to separate the excess tin and isonitrile derivatives from the desired product. In 

the case of the reaction of 129 with 3,4-ethylenedioxy isonitrile 110{8}, two regioisomeric 

products, 9,10-ethylenedioxy luotonin and the 10,11-ethylenedioxy luotonin,65 were obtained 
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and could be separated only by a semi-preparative HPLC, the details of which are discussed later 

in this chapter.  

The compounds obtained after purification by column chromatography were analyzed by 

1H NMR spectroscopy and the structures of some of the compounds were confirmed. This 1H 

NMR analysis, however, revealed an unexpected problem with some of the products of the 

radical cyclization. Compounds 130{b,1-6} and 130{b,8}, expected to be luotonins, displayed 

fewer than expected aromatic resonances. The proton signals of the substituent R10 (see Scheme 

6.3) were completely absent in all the 1H NMR spectra. Also, an additional singlet proton 

resonance was observed at 9.79 ppm in addition to only four aromatic resonances (two doublets 

and two triplets). Based on this analysis by 1H NMR and MS techniques, it was concluded that 

the products 130{b,1-6} and 130{b,8} were all the same compound 131{b} obtained by the direct 

reduction of the bromide 129{b} under the reaction conditions (Scheme 6.4). The additional 

proton signal at 9.79 ppm is explained by the newly formed pyrimidinyl proton. 7-TBS-10-

NHBoc luotonin, 130{b,7} was the only luotonin recovered among 130{b,1-8}. The same 

reduction behavior was also observed with a few products formed from 129{d} (not shown). The 

reason for this premature reduction of the bromides 129{b} is still unclear especially because all 

the 32 radical cyclizations were conducted at the same concentration. 
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Scheme 6.4 Unexpected Side Reaction of 129{b} 
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Table 6.2 Luotonin Library - Compound Numbers and Isolated Yields from Column Chromatography 

 
R8 

R10 
H TBS Et CH2CH2TMS

 

H 

 

F 

 

CF3 

 

Me 

 

OMe 

 

OAc 

 

NHBoc 

 

OCH2CH2O 

(9,10 & 10,11) 

 

 

130{a,1} 

47% 

130{a,2} 

65% 

130{a,3} 

71% 

130{a,4} 

57% 

130{a,5} 

63% 

130{a,6} 

62% 

130{a,7} 

52% 

130{a,8} 

Uidf 

 

 

130{b,1} 

Red 

130{b,2} 

Red 

130{b,3} 

Uidf 

130{b,4} 

Red 

130{b,5} 

Red 

130{b,6} 

Red 

130{b,7} 

31% 

130{b,8} 

Red 

 

 

130{c,1} 

68% 

130{c,2} 

75% 

130{c,3} 

62% 

130{c,4} 

33% 

130{c,5} 

86% 

130{c,6} 

39% 

130{c,7} 

94% 

130{c,8} 

86% 

 

 

130{d,1} 

Uidf 

130{d,2} 

Red 

130{d,3} 

Uidf 

130{d,4} 

Uidf 

130{d,5} 

74% 

130{d,6} 

Red 

130{d,7} 

37% 

130{d,8} 

94% 

 

 

• Red - Reduced product (e.g., 131{b}, see Scheme 6.4) 

• Uidf - Unidentifiable product from 1H NMR analysis 

 

Studies in the field of camptothecins and homocamptothecins have shown that hydrogen 

bond donor substitution at the C10 (i.e., R10) has been beneficial to their biological activity. 

Owing to the similarities of luotonin A to CPT in its function as a topo I poison, we decided to 
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synthesize luotonin derivatives (possessing OH and NH2 functionalities) that would address the 

effects of hydrogen bonding on the drug’s biological activity.  

To synthesize 10-hydroxy and 10-amino luotonins (130, R10 = OH and NH2 respectively, 

Scheme 6.3), deprotections of the previously synthesized 10-acetoxy and 10-Boc protected 

aminoluotonins were undertaken (Scheme 6.5). 
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Scheme 6.5 Synthesis of 10-hydroxy and 10-aminoluotonins 

 
Four Boc-protected amines 130 {a-d,7} were treated with TFA in CH2Cl2 (1:2 v/v) at 

room temperature for 12 h allowing for the cleavage of the Boc group. The two acetates 

130{a,c,6} were also cleaved upon treatment with 4 equiv of K2CO3 in a 1:1 MeOH/H2O at room 

temperature for about 5 h. Unfortunately only one carbamate, 130{d,7}, could be successfully 

deprotected to afford amine 132{d} in 85% yield after purification by flash column 

chromatography. None of the other carbamates 130{a-c,7} or the acetates 130{a,c,6} the 

corresponding amines and alcohols as indicated by TLC. 1H NMR analysis showed only traces 

of the desired amines and alcohols. 

92 



 

Ultimately, 22 luotonins were analyzed by HPLC with an analytical Novapak silica 

column employing isocratic elution with EtOAc/CH2Cl2 (2:98, 5:95, 8:92 or 15:85 depending 

upon the polarity of the luotonin). Nineteen compounds displayed good to excellent purities 

ranging from 75% to 95%. However, to guarantee high purity of the luotonins for biological 

testing, the products isolated from column chromatography were further purified by semi-

preparative HPLC using a Novapak silica column under solvent elution conditions employed for 

the analytical HPLC study. Following the purification by HPLC, all the luotonins were 

characterized by LC-MS using XTerra C18 reverse phase column for LC and EI detection for 

MS. Fourteen luotonins showed high purities ranging from 90-100% and the remaining five 

displayed purities ranging from 75%-85%. They also displayed the expected molecular ions (M+) 

along with higher peaks (i.e. M + H, M + Na).  

While the structures and purities of all the luotonins were confirmed by 1H NMR and LC-

MS, complete characterization of four of the luotonins, 130{a,1}, 130{c,8}, 130{a,3} and 

130{a,4}, was also carried out and is described in the experimental section. A table of the 

structures, amounts and purities of the final fourteen luotonins is shown in Figure 6.3. These 

luotonins are currently in the course of being tested for topoisomerase I inhibitory activity. 
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6.5. Summary 

This chapter described the synthesis of a recently isolated topo I poison, luotonin A and 

its analogs. The striking similarities in structure and biological function of luotonin A to those of 

CPT made luotonin A an attractive target in the synthetic community. A concise, modular and a 

rapid synthesis of several analogs of luotonin A was also described. Biological evaluation of 

these analogs, currently underway, will provide more insight into the structure-activity 

relationships of luotonin A that could lead to a promising chemotherapeutic drug. 
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7. SUMMARY AND CONCLUSIONS 

 

The central theme of the research presented in this thesis revolved around the synthesis of 

analogs of camptothecin differing mainly in the D and E rings of the pentacyclic skeleton. 

Accordingly, homocamptothecin, cyclic ether and enelactone derivatives, open-form analogs, 

fluorocamptothecins and luotonins were synthesized. Within each of these five modifications, 

the analogs differed in their A, B-ring substitution patterns. 

The biological activity of all these analogs was tested in two assays: topoisomerase I 

inhibitory DNA cleavage assay and the cell growth inhibition SRB assay. The topo I inhibitory 

assays revealed that non-lactone analogs (cyclic ethers) were not biologically active and 

enelactones 95a and 95b showed cleavage products only at a concentration of about 100 µM. 

The fluorocamptothecins, on the other hand, were weakly active. Among the parent 

fluorocamptothecin enantiomers, (S)-107 and (R)-107 showed cleavage products at 10 µM and 

100 µM concentrations and thus were weakly active. The racemate (±)-107 showed some weak 

activity. Luotonins are currently being biologically evaluated. 

With regards to the biological activity, the most interesting analogs in this research have 

been the E-ring open form analogs. Hydrazides 96 and 97 have shown DNA cleavage profiles 

comparable to that of camptothecin. Also, the cell growth inhibition studies indicated that the 

GI50 values of 96 and 97 were about 20 nM and 100 nM respectively. These values are 

comparable to those of CPT and DB67 which are about 10 nM. These compounds show promise 

and further development of these analogs is needed to understand the implications of open form 

analogs in the broad picture of analog development of camptothecin. The following is a tabular 

summary of all the biological results. 
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Table 7.1 Summary of the Biological Results 

Entry Structure of the Analog Compd.no. 
GI50

(nM) 

DNA clvg. assay 
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Entry Structure of the Analog Compd.no. 
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assay activity 
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Entry Structure of the Analog Compd.no. 
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(nM) 
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8. EXPERIMENTAL 

 

General Procedures 

All reactions were performed under argon atmosphere unless otherwise noted. Air and 

moisture sensitive chemicals were handled by using standard syringe techniques. THF and 

diethyl ether were either distilled from sodium/benzophenone under argon or were dried by 

activated alumina according to literature procedure.78 Dichloromethane was distilled from 

calcium hydride under argon or dried by activated alumina according to the above reference. 

DMSO and acetonitrile were used from a Sure/SealTM bottle purchased from Aldrich. 

Diisopropylamine was distilled from NaOH under argon immediately prior to use. LiCl was 

predried under vacuum at 120 °C for 24 h before use. 4Å molecular sieves were predried under 

vacuum at 150 °C for 24 h before use. All other chemicals and solvents were purchased from 

chemical companies and used without purification unless otherwise stated.  

Experimental procedures and spectroscopic data for new compounds other than the 

library members are reported in this experimental section. All library compounds have been 

characterized by 1H NMR and MS or LCMS. 1H, 19F and 13C spectra were recorded on Bruker 

models Avance DPX 300 (300 MHz), Avance DRX 500 (500 MHz) NMR spectrometers. 19F 

spectra were recorded with CFCl3 as the reference solvent. Chemical shifts (δ) are reported in 

ppm. In reporting data, the following abbreviations were used: s = singlet, br s = broad singlet, d 

= doublet, t = triplet, q = quartet, dd = doublet of doublet, ddd = doublet of doublet of doublet, dt 

= doublet of triplet, dq = doublet of quartet, tq = triplet of quartet, tt = triplet of triplet and m = 

multiplet. Coupling constants (J) are reported in Hertz (Hz). IR spectra were recorded as thin 

films on NaCl plates (unless otherwise noted) on an ATI Mattson Genesis Series FTIR 

spectrometer. The peaks are reported in wavenumbers (cm-1). Low resolution mass spectra were 
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obtained on a Fisions Autospec in EI mode at 70 eV and are reported in m/z units. High 

resolution mass spectra were taken on a VG-Autospec double focusing spectrometer. Optical 

rotations were measured on a Perkin-Elmer 241 polarimeter at the Na D-line (λ = 589 nm) using 

a 1 dm cell. Analytical chiral HPLC analyses were conducted using either a Chiralcel-OD 

column (Daicel Chemical Industries) or an (S,S)-WHELK O 1 (Regis Technologies Inc.) column 

with a Waters model 440 UV detector at wavelengths 254 and 210 nm.  

Thin layer chromatography (TLC) was performed on silica gel 60 F254 glass backed 

plates with a layer thickness of 0.25 mm manufactured by E. Merck. TLC visualization was 

performed by illumination with a 254 nm UV lamp or by staining with phosphomolybdic acid or 

permanganate solution and subsequent heating. Flash chromatography was performed on silica 

gel (230 – 400 mesh ASTM) purchased from Sorbtech or Bodman. 

Caution: Camptothecin and its derivatives can be toxic. All experiments must be done in 

a well-ventilated hood. Gloves and goggles must be worn at all times. 

 

Chapter 2 

4-Iodo-2-methoxypyridine-3-carbaldehyde (28a): 

     

N O

O

H

I  

Methyllithium in diethyl ether (1.4 M, 24 mL, 33 mmol) was added to a solution of 2-

methoxypyridine (1.9 mL, 18 mmol) in THF (120 mL) at –40 oC. Diisopropylamine (0.13 mL, 

0.90 mmol) was added and the color changed from colorless to yellow-orange.  After warming to 

0 oC and stirring for 3 h, the mixture was cooled to –78 oC and N,N,N′-trimethyl-N′-

formylethylenediamine (2.6 g, 20 mmol) was added slowly.  The reaction was allowed to warm 
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to –40 oC immediately. nBuLi in hexanes (1.6 M, 23 mL, 37 mmol) was added dropwise through 

a syringe and the mixture was stirred for 3 h at –30 oC.  A solution of I2 (11 g, 44 mmol) in THF 

(70 mL) kept at 0 oC in a jacketed dropping funnel was then added dropwise at –78 oC with 

vigorous stirring. After 30 min, the resulting mixture was allowed to warm slowly to 0 oC (1 h), 

poured into 5% Na2SO3 (250 mL) and extracted with Et2O (3 x 150 mL). The residue obtained 

after removal of the solvents was purified by flash column chromatography (95:5 hexanes/ethyl 

acetate) to provide 28a as a yellow oil (1.9 g, 40%): 1H NMR (300 MHz, CDCl3) δ  4.06 (s, 3H), 

7.54 (d, J = 5.3 Hz, 1H), 7.86 (d, J = 5.3 Hz, 1H), 10.21 (s, 1H); 13C NMR (75 MHz, CDCl3) δ  

54.6, 108.7, 119.4, 130.5, 151.0, 164.4, 190.4; IR (CH2Cl2, NaCl, cm-1) 1703, 1551, 1462, 1368, 

1298, 1265, 1017, 847, 736; HRMS (EI) m/z calcd for C7H6INO2 (M+)  262.9443, found 

262.9431; LRMS (EI) m/z  263 (M+, 100), 234 (80), 205 (30), 127 (30), 93 (28), 78 (72). 

 

(4-Iodo-2-methoxypyridin-3-yl)methanol (29a): 

     

N O

OH

I  

A solution of NaBH4 (0.14 g, 3.6 mmol) in EtOH (20 mL) was added slowly to a solution of 28a 

(1.9 g, 7.1 mmol) in EtOH (20 mL) at 0 oC. After stirring for 4 h at 0 oC, the reaction mixture 

was carefully quenched with an ice-cold brine solution and extracted with Et2O (3 x 30 mL). The 

combined organic extracts were dried over MgSO4 and solvents were removed under reduced 

pressure to afford 29a as a pale yellow oil (1.8 g, 97%). The crude product was used crude for 

the subsequent reaction:  1H NMR (300 MHz, CDCl3) δ  2.43 (t, J = 7.0 Hz, 1H), 3.99 (s, 3H), 

4.82 (d, J = 7.0 Hz, 2H), 7.35 (d, J = 5.4 Hz, 1H), 7.70 (d, J = 5.4 Hz, 1H); 13C NMR (75 MHz, 

CDCl3) δ  54.3, 64.9, 112.1, 126.5, 128.1, 146.6, 161.7; IR (CH2Cl2, NaCl, cm-1) 3391, 2946, 

102 



 

1561, 1459, 1380, 1019, 805; HRMS (EI) m/z calcd for C7H8NO2I (M+) 264.9600, found 

264.9598; LRMS (EI) m/z  265 (M+, 53), 250 (84), 138 (30), 84 (100), 78 (30). 

 

4-Iodo-2-methoxy-3-methoxymethoxymethylpyridine (30a): 

     

N O

O

I

O

 

Chloromethylmethyl ether (1.5 mL, 20 mmol) was added dropwise through a syringe to a 

solution of 29a (1.8 g, 6.7 mmol) and iPr2EtN (3.5 mL, 20 mmol) in dry CH2Cl2 (40 mL) kept in 

an ice-bath at 0 oC. The resulting mixture was allowed to warm to room temperature and stirred 

for 22 h at room temperature. The reaction was then quenched with 5% NaHCO3 solution and 

extracted with CH2Cl2 (3 x 30 mL). The combined organic extracts were washed with brine, 

dried over MgSO4 and concentrated under reduced pressure to afford 30a as an orange-yellow oil 

(2.1 g, 100%).  The crude product was used for the subsequent reaction: 1H NMR (300 MHz, 

CDCl3) δ  3.45 (s, 3H), 3.96 (s, 3H), 4.72 (s, 2H), 4.75 (s, 2H), 7.35 (d, J = 5.4 Hz, 1H), 7.71 (d, 

J = 5.4 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ  54.3, 55.8, 67.9, 96.7, 114.2, 124.0, 128.1, 

147.1, 162.4; IR (CH2Cl2, NaCl, cm-1) 2949, 1561, 1459, 1380, 1265, 1039, 741;HRMS (EI) m/z 

calcd for C9H12NO3I (M+) 308.9862, found 308.9860; LRMS (EI) m/z  309 (M+,19), 277 (20), 

264 (45), 248 (100), 218 (68), 152 (39), 92 (50), 79 (35). 
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(E)-3-(2-Methoxy-3-methoxymethoxymethylpyridin-4-yl)-pent-2-enoic acid ethyl ester 

(32a):  

     

N O

O O

COOEt  

A round bottomed flask was charged with LiCl (0.82 g, 19 mmol) and dried with a heatgun 

under vacuum. After cooling to room temperature, CuCl (1.6 g, 16 mmol) and Pd(PPh3)4 (0.19 g, 

0.16 mmol) were added. The reaction vessel was then degassed (4 times) under vacuum with an 

argon purge. Dry DMSO (35 mL) was added with concomitant stirring, followed by addition of 

30a (1.0 g, 3.2 mmol) and ethyl (E)-3-(tributylstannyl)-2-pentenoate 31 (1.6 g, 3.9 mmol). The 

resulting mixture was degassed (3 times) by a freeze-thaw process. The reaction mixture was 

stirred at room temperature for 1 h and then at 60 oC for 17 h. This was then cooled to room 

temperature, diluted with Et2O (200 mL) and washed with a mixture of brine (265 mL) and 5% 

NH4OH (55 mL). The aqueous layer was further extracted with Et2O (2 x 100 mL). The 

combined organic layers were washed with water (2 x 250 mL) and then with brine (2 x 250 

mL), dried over MgSO4 and concentrated under reduced pressure. The crude product was 

purified by flash chromatography (95:5 hexanes/ethyl acetate) to afford 32a as a yellow oil (0.82 

g, 82%): 1H NMR (300 MHz, CDCl3) δ  0.99 (t, J = 7.6 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H), 2.99 

(q, J = 7.6 Hz, 2H), 3.43 (s, 3H), 4.01 (s, 3H), 4.21 (q, J = 7.0 Hz, 2H), 4.49 (s, 2H), 4.73 (s, 2H), 

5.81 (s, 1H), 6.69 (d, J = 5.0 Hz, 1H), 8.11 (d, J = 5.0 Hz, 1H);  13C NMR (75 MHz, CDCl3) δ  

12.5, 14.4, 26.6, 54.0, 55.6, 60.3, 62.0, 97.0, 116.3, 116.8, 120.0, 146.4, 153.3, 159.4, 163.4, 

165.9; IR (CH2Cl2, NaCl, cm-1) 2982, 1713, 1640, 1593, 1560, 1453, 1392, 1266, 1186, 1040, 
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743; HRMS (EI) m/z calcd for C16H23NO5 (M+) 309.1576, found 309.1587; LRMS (EI) m/z  309 

(M+,32), 277 (42), 236 (100), 190 (84), 174 (73), 160 (22), 77 (10). 

 

(E)-3-(2-Methoxy-3-methoxymethoxymethylpyridin-4-yl)-pent-2-en-1-ol (33a): 

     

N O

O O

OH  

LAH in diethyl ether (1 M, 9.7 mL, 9.7 mmol) was slowly added to a solution of 32a (1.2 g, 3.9 

mmol) in Et2O (35 mL) kept in a dry ice-acetone bath at –78 oC. The resulting mixture was 

allowed to warm to 0 oC (~2 h) and quenched by adding an ice-cold solution of satd. aqueous 

sodium potassium tartrate. The aqueous layer was extracted with Et2O (3 x 25 mL). The 

combined organic extracts were washed with water (20 mL) and brine (20 mL), dried over 

MgSO4 and concentrated under reduced pressure to afford 33a as a pale yellow oil (0.84 g, 

81%). The crude product was used for the subsequent reaction: 1H NMR (300 MHz, CDCl3) δ  

0.92 (t, J = 7.6 Hz, 3H), 2.44 (q, J = 7.6 Hz, 2H), 3.44 (s, 3H), 4.00 (s, 3H), 4.33 (dd, J = 5.6 Hz, 

6.7 Hz, 2H), 4.55 (s, 2H), 4.70 (s, 2H), 5.63 (t, J = 6.8 Hz, 1H), 6.68 (d, J = 5.2 Hz, 1H), 8.07 (d, 

J = 5.2 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 13.2, 15.5, 25.4, 54.0, 55.6, 59.0, 61.8, 96.2, 

117.3, 129.4, 142.0, 146.1, 154.6, 163.6; IR (CH2Cl2, NaCl, cm-1) 3383, 2945, 1594, 1555, 1452, 

1391, 1320, 1268, 1148, 1038, 739, 541; HRMS (EI) m/z  calcd for C13H18NO3  236.1287, found 

236.1292; LRMS (EI) m/z  268 (M + H, 38), 249 (31), 236 (62), 190 (48), 176 (100), 160 (35), 

91 (16), 77 (15). Copies of spectral data can be found in the appendix section. 
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(2S,3S)-(+)-[3-Ethyl-3-(2-methoxy-3-methoxymethoxymethylpyridin-4-yl)-oxiranyl] 

methanol (34a): 

     

N O

O O

OH

O

 

(L)-(+)-Diethyltartrate (0.1 mL, 0.6 mmol) and Ti(OiPr)4 (0.14 mL, 0.48 mmol) were added to a 

suspension of 33a (0.16 g, 0.60 mmol) and 4Å molecular sieves (48 mg) in dry CH2Cl2 (5.0 mL) 

kept in a dry ice-acetone bath at –20 oC and the mixture was stirred for 1 h. Then tBuOOH, pre-

dried over 4Å molecular sieves for 1 h (0.19 mL, 5.0-6.0 M in decane), was added and stirred at 

–20 oC for 24 h. The resulting mixture was then diluted with Et2O (1.0 mL) and quenched with 

satd.Na2SO4 solution (0.5 mL). The resulting heterogenous mixture was stirred until it warmed to 

room temperature (2 h). This was then filtered through a celite pad washing with hot ethyl 

acetate several times. The combined filtrates were concentrated under vacuum. The residue was 

dissolved in Et2O (2.5 mL) at 0 oC and a 1 N NaOH solution saturated with NaCl (1.6 mL) was 

added. The two-phase mixture was vigorously stirred at 0 oC for 1 h and then transferred to a 

separatory funnel. The aqueous layer was separated and extracted with EtOAc (3 x 5 mL). The 

combined organic extracts were dried over MgSO4 and concentrated under reduced pressure to 

afford 34a as a yellow oil (0.14 g, 84%) with 96% ee. The crude product was used for the 

subsequent reaction.  However, for HPLC analysis, the crude product was filtered over a silica 

plug to remove solvent front and baseline impurities. Epoxide 34a was then analyzed for 

enantiomeric purity using a Chiralcel OD column with 98:2 hexane/iPrOH as the eluent using the 

racemate as the standard. The desired (2S,3S) enantiomer elutes first, (Rt = 23.1 min): 1H NMR 

(300 MHz, CDCl3) δ  0.92 (t, J = 7.6 Hz, 3H), 1.81 (dq, J = 7.4 Hz, 14.8 Hz, 1H), 2.01 (dq, J = 
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7.6 Hz, 15.0 Hz, 1H), 3.24 (t, J = 5.8 Hz, 1H), 3.46 (s, 3 H), 3.90 (m, 2H), 3.99 (s, 3H), 4.71 (s, 

2H), 4.73 (s, 2H), 6.93 (d, J = 5.2 Hz, 1H), 8.12 (d, J = 5.2 Hz, 1H) (-OH proton resonance not 

detected); 13C NMR (75 MHz, CDCl3) δ  9.4, 25.7, 26.0, 54.1, 55.8, 60.8, 61.3, 63.7, 64.7, 96.7, 

116.5, 116.8, 146.6, 151.0, 163.1; IR (CH2Cl2, NaCl, cm-1) 3408, 2980, 1765, 1607, 1457, 1410, 

1393, 1266, 1040, 742, 546; HRMS (EI) m/z calcd for C14H22NO5 (M+H) 284.1498, found 

284.1507; LRMS (EI) m/z 284 (M + H, 58), 190 (100), 178 (73), 162 (27), 148 (27), 77 (13); 

[α]D
23 = +65.6 (c = 0.25, CH2Cl2). 

 

(R)-(+)-3-(2-Methoxy-3-methoxymethoxymethylpyridin-4-yl)-pentane-1,3-diol (35a): 

     

N O

O O

OH
HO

 

LAH in diethyl ether (1 M, 2.5 mL, 2.5 mmol) was added to a solution of 34a (0.71 g, 2.5 mmol) 

in Et2O (50 mL) kept in an ice bath at 0 oC and allowed to warm to room temperature and stirred 

for 24 h. The reaction was quenched with a chilled solution of sodium potassium tartrate at 0 oC 

and the aqueous layer was extracted with Et2O (3 x 40 mL). The combined organic extracts were 

washed with water (2 x 25 mL) and brine (2 x 25 mL), dried over MgSO4 and concentrated 

under reduced pressure to afford 35a as a colorless oil (0.54 g, 76%).  The crude product was 

sufficiently pure for the subsequent reaction: 1H NMR (300 MHz, CDCl3) δ  0.79 (t, J = 7.3 Hz, 

3H), 1.91 (q, J = 7.3 Hz, 2H), 2.15 (m, 2H), 3.42 (s, 3H), 3.60 (m, 1H), 3.74 (m, 1H), 3.98 (s, 

3H), 4.71 (s, 2H), 4.89 (d, J = 10.7 Hz, 1H), 5.10 (d, J = 10.7 Hz, 1H), 6.77 (d, J = 5.5 Hz, 1H), 

8.05 (d, J = 5.5 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ  7.8, 36.6, 43.8, 54.1, 55.9, 60.2, 61.1, 

80.9, 96.5, 116.3, 117.9, 146.2, 156.4, 163.8; IR (CH2Cl2, NaCl, cm-1) 3391, 3056, 2984, 1593, 
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1446, 1382, 1265, 1037, 743, 546; HRMS (EI) m/z calcd for C14H24NO5 (M+H) 286.1654, found 

286.1658; LRMS (EI) m/z  286 (M + H,39), 235 (23), 222 (86), 205 (52), 194 (74), 178 (100), 

150 (49), 92 (30), 77 (15); [α]D
23 = +0.185 (c = 1.08, CH2Cl2). 

 

(R)-(−)-3-Hydroxy-3-(2-methoxy-3-methoxymethoxymethylpyridin-4-yl)pentanal (36a): 

     

N O

O O

CHO
HO

 

Dess-Martin periodinane (1.2 g, 2.9 mmol) was added to a solution of 35a (0.50 g, 1.8 mmol) in 

CH2Cl2 (20 mL). The mixture was stirred at room temperature for 3 h and then poured into a 

well-stirred mixture of satd. Na2S2O3 (10 mL) and satd. NaHCO3 (10 mL). After 30 min, the 

layers were separated and the aqueous layer was extracted with diethyl ether (3 x 15 mL).  The 

combined organic extracts were washed with satd. NaHCO3 and brine, dried over MgSO4, and 

concentrated under vacuum to give the crude aldehyde 36a (0.47 g, 89%) as pale yellow oil. The 

crude product was used for the subsequent reaction: 1H NMR (300 MHz, CDCl3) δ  0.82 (t, J = 

7.4 Hz, 3H), 1.91 (2 overlapping dqs, 2H), 2.85 (dd, J = 2.1 Hz, 16.4 Hz, 1H), 3.10 (dd, J = 2.2 

Hz, 16.3 Hz, 1H), 3.41 (s, 3H), 3.96 (s, 3H), 4.74 (s, 2H), 4.98 (q, J = 10.9 Hz, 2H), 6.74 (d, J = 

5.5 Hz, 1H), 8.06 (d, J = 5.5 Hz, 1H), 9.73 (t, J = 2 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ  7.9, 

36.4, 54.2, 55.3, 56.0, 60.9, 77.9, 96.4, 115.8, 117.4, 146.5, 155.6, 163.8, 202.2; IR (CH2Cl2, 

NaCl, cm-1) 3380, 3057, 2982, 1763, 1655, 1596, 1422, 1264, 895, 735, 547; HRMS (EI) m/z 

calcd for C14H22NO5 (M+H) 284.1498, found 284.1498; LRMS (EI) m/z 284 (M + H, 15), 265 

(25), 192 (20), 178 (72), 148 (24), 84 (100), 57 (26); [α]D
23 = −11.5 (c = 0.125, CH2Cl2). 
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(R)-(+)-5-Ethyl-5-hydroxy-1-methoxy-5,6-dihydro-9H-8-oxa-2-aza-benzocyclohepten-7-one 

[(R)-18]: 

     

N O

O

O

HO

 

2-methyl-2-butene (2.1 mL) was added to a solution of the aldehyde 36a (0.13 g, 0.46 mmol) in 

tert-butyl alcohol (7.1 mL). A solution of sodium chlorite (0.37 g, 4.1 mmol) and sodium 

dihydrogen phosphate (0.44 g, 3.2 mmol) in H2O (3.8 mL) was added dropwise to this mixture 

through a syringe. The resulting mixture was stirred at room temperature for 36 h. Then the 

crude mixture was extracted with ethyl acetate (2 x 10 mL). The aqueous layer was then 

acidified (pH ~ 3.5) by dropwise addition of 5% HCl and subsequently washed with ethyl acetate 

(2 x 10 mL). If a yellow coloration was observed, the mixture was washed with 5% sodium 

sulfite solution prior to this ethyl acetate extraction. The combined organic extracts were washed 

with brine, dried over sodium sulfate and concentrated under vacuum to give the crude product 

37a (0.12 g, 84%) as a light green oil which was used immediately after the workup. 

 TFA (8.0 mL) was added to 37a (0.11 g, 0.38 mmol) at room temperature via a syringe. 

After stirring for 24 h, the mixture was neutralized with satd. NaHCO3 (pH ~ 8) and extracted 

with diethyl ether (3 x 6 mL). The combined organic extracts were dried over MgSO4 and 

concentrated under reduced pressure to afford (R)-18 as a yellow-brown oil (72 mg, 80%) which 

was used crude for the subsequent reaction. When necessary, the crude product was purified by 

column chromatography (75:25 hexanes/ethyl acetate): 1H NMR (300 MHz, CD3OD) δ  0.84 (t, 

J = 7.4 Hz, 3H), 1.85 (q, J = 7.4 Hz, 2H), 3.01 (d, J = 13.9 Hz, 1H), 3.41 (d, J = 13.9 Hz, 1H), 

3.94 (s, 3H), 5.29 (d, J = 15.2 Hz, 1H), 5.44 (d, J = 15.2 Hz, 1H), 7.15 (d, J = 5.5 Hz, 1H), 8.13 
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(d, J = 5.5 Hz, 1H); 13C NMR (75 MHz, CD3OD) δ  9.0, 38.5, 43.8, 55.0, 61.4, 62.7, 74.7, 117.1, 

147.8, 156.0, 161.9, 173.1; IR (MeOH, NaCl, cm-1) 3390, 2958, 1725, 1683, 1596, 1377, 1204, 

1140, 1041; HRMS (EI) m/z calcd for C12H15NO4 (M+) 237.1001, found 237.0996; LRMS (EI) 

m/z  237 (M+, 75), 208 (22), 166 (100), 136 (25), 106 (7), 77 (7); [α]D
23 = +3.0 (c = 0.1, MeOH). 

 

(R)-(+)-5-Ethyl-5-hydroxy-2,5,6,9-tetrahydro-8-oxa-2-aza-benzocycloheptene-1,7-dione 

[(R)-19]: 

     

H
N O

O

O

HO

 

Sodium iodide (0.070 g, 0.49 mmol) was added to a solution of lactone (R)-18 (0.070 g, 0.30 

mmol) in dry acetonitrile (1.0 mL) followed by chlorotrimethylsilane (0.060 mL, 0.49 mmol).  

The resulting mixture was stirred at room temperature for 15 min. Then H2O (2.7 µL, 0.15 

mmol) was added and the reaction mixture was heated to 60 oC for 7 h.  The mixture was then 

poured into a 1:1 solution of 5% sodium sulfite/brine (7.0 mL) and then quickly extracted with 

ethyl acetate (4 x 5 mL).  The organic layer was dried over MgSO4 and concentrated under 

reduced pressure. The crude product was subjected to flash chromatography (5:95 

MeOH/CH2Cl2) to afford pure (R)-19 as pale yellow oil (10 mg, 16%): 1H NMR (300 MHz, 

CD3OD) δ  0.91 (t, J = 7.5 Hz, 3H), 1.82 (m, 2H), 3.10 (d, J = 13.8 Hz, 1H), 3.40 (d, J = 13.8 

Hz, 1H), 5.30 (d, J = 15.2 Hz, 1H), 5.46 (d, J = 15.2 Hz, 1H), 6.57 (d, J = 7.0 Hz, 1H), 7.35 (d, J 

= 7.0 Hz, 1H); 13C NMR (75 MHz, CDCl3/CD3OD) δ  6.8, 35.2, 41.5, 61.0, 72.4, 105.9, 122.4, 

132.8, 156.3, 161.6, 172.6; IR (MeOH, NaCl, cm-1) 3370(br), 1655, 1049, 1025, 823, 768; 

HRMS (EI) m/z calcd for C11H13NO4 (M+) 223.0845, found 223.0851; LRMS (EI) m/z 224 (M + 
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H, 32), 195 (21), 163 (43), 153 (100), 91 (40), 77 (19), 55 (24); [α]D
23 = +35.0 (c = 0.08, 

MeOH). Copies of spectral data can be found in the appendix section. 

 

Chapter 3 

(1-Ethyl-4-methoxy-6-trimethylsilanyl-1,3-dihydro-furo[3,4-c]pyridin-1-yl)acetic acid (87): 

     

N

O

COOH

TMS O

 

H2O2 (30% w/w, 1.8 mL, 16 mmol) was added to a solution of 71 (0.30 g, 1.0 mmol) in MeOH 

(10.5 mL) kept at 0 °C in an ice bath. A solution of NaOH (6 N, 0.55 mL, 3.3 mmol) was added 

dropwise to this mixture via a syringe at 0 °C. After the addition was complete (5 min), the 

reaction mixture was warmed to room temperature and stirred for 6 h. Water (15 mL) was added, 

the layers were separated and the aqueous layer washed with CH2Cl2 (2 x 15 mL). The aqueous 

layer was then acidified (pH ~ 3) by dropwise addition of 1 N HCl via a Pasteur pipet and 

subsequently washed with CH2Cl2 (2 x 10 mL). The combined organic extracts were dried over 

MgSO4 and concentrated under reduced pressure to afford 87 as a colorless oil (0.28 g, 88%). 

The crude product was sufficiently pure for the subsequent reaction: 1H NMR (300 MHz, 

CDCl3) δ 0.29 (s, 9H), 0.77 (t, J = 7.3 Hz, 3H), 1.87 (dq, J = 14.7 Hz, 7.4 Hz, 1H), 2.01 (dq, J = 

7.4 Hz, 14.6 Hz, 1H), 2.79 (d, J = 15.2 Hz, 1H), 2.81 (d, J = 15.2 Hz, 1H), 4.00 (s, 3H), 5.10 (d, 

J = 12.7 Hz, 1H), 5.12 (d, J = 12.8 Hz, 1H), 6.88 (s, 1H); 13C NMR (75 MHz, CDCl3) δ −1.8, 

7.9, 32.2, 44.4, 52.9, 71.1, 89.6, 115.1, 120.1, 151.8, 158.2, 165.6, 173.9; IR (CH2Cl2, NaCl, cm-

1) 2950, 2858, 1705, 1582, 1449, 1352, 1239, 1029; HRMS (EI) m/z calcd for C15H23NO4Si (M+) 

111 



 

309.1396, found 309.1382; LRMS (EI) m/z 309 (M+, 17), 294 (27), 280 (62), 249 (65), 208 (20), 

162 (9), 117 (10), 89 (37), 73 (100). 

 

(1-Ethyl-4-methoxy-6-trimethylsilanyl-1,3-dihydrofuro[3,4-c]pyridin-1-yl)acetic acid 

methyl ester: 

     

N

O

COOMe

TMS O

 

TMSCHN2 (2 M solution in hexanes, 0.55 mL, 1.09 mmol) was added to a solution of 87 (0.26 

g, 0.84 mmol) in a mixture of methanol (1.5 mL) and benzene (5.3 mL) at room temperature. 

After stirring for 30 min at room temperature, the reaction mixture was concentrated under 

reduced pressure to afford the ester as a yellow oil (0.26 g, 98%). The crude product was 

sufficiently pure for the subsequent reaction: 1H NMR (300 MHz, CDCl3) δ 0.29 (s, 9H), 0.76 (t, 

J = 7.3 Hz, 3H), 1.88 (dq, J = 7.4 Hz, 14.8 Hz, 1H), 2.01 (dq, J = 7.4 Hz, 14.7 Hz, 1H), 2.78 (d, J 

= 14.4 Hz, 1H), 2.80 (d, J = 14.4 Hz, 1H), 3.59 (s, 3H), 4.00 (s, 3H), 5.03 (d, J = 12.7 Hz, 1H), 

5.05 (d, J = 12.7 Hz, 1H), 6.89 (s, 1H); 13C NMR (75 MHz, CDCl3) δ −1.8, 7.8, 32.5, 44.5, 51.4, 

52.8, 70.9, 89.7, 115.5, 120.8, 152.4, 158.2, 165.0, 170.2; IR (CH2Cl2, NaCl, cm-1) 2955, 2858, 

1777, 1741, 1593, 1460, 1362, 1034; HRMS (EI) m/z calcd for C16H25NO4Si (M+) 323.1553, 

found 323.1563; LRMS (EI) m/z 323 (M+, 43), 308 (40), 294 (65), 250 (100), 234 (42), 208 (46), 

84 (82). Copies of spectral data can be found in the appendix section. 
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(1-Ethyl-6-iodo-4-methoxy-1,3-dihydrofuro[3,4-c]pyridin-1-yl)acetic acid methyl ester: 

     

N

O

COOMe

I O

 

A solution of ICl (0.42 g, 2.6 mmol) in CCl4 (1.82 mL) was added to a solution of the above 

ester (0.21 g, 0.65 mmol) in CH2Cl2 (2.6 mL) kept at 0 °C in an ice bath and allowed to warm to 

room temperature. After stirring for 14 h, the reaction mixture was poured into a chilled solution 

of 5% Na2SO3/brine (1:1, 40 mL) and extracted the mixture with ethyl acetate (3 x 30 mL). The 

combined organic extracts were dried over MgSO4 and concentrated under reduced pressure. The 

crude product was purified by flash chromatography (5:95 ethyl acetate/hexanes) to afford the 

iodide as a pale yellow oil (0.1 g, 41%): 1H NMR (300 MHz, CDCl3) δ 0.60 (t, J = 7.2 Hz, 3H), 

1.73 (m, 2H), 2.60 (d, J = 15.0 Hz, 1H), 2.62 (d, J = 15.0 Hz, 1H), 3.44 (s, 3H), 3.79 (s, 3H), 

4.80 (d, J = 12.9 Hz, 1H), 4.82 (d, J = 12.9 Hz, 1H), 7.00 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 

7.6, 32.6, 51.5, 54.1, 70.5, 89.0, 111.3, 121.1, 121.4, 156.2, 157.5, 169.8; IR (CH2Cl2, NaCl, cm-

1) 2950, 2853, 2356, 2330, 1741, 1593, 1460, 1362, 1035, 850; HRMS (EI) m/z calcd for 

C13H16INO4 (M+) 377.0124, found 377.0129; LRMS (EI) m/z 377 (M+, 32), 348 (35), 303 (100), 

288 (23), 162 (28), 77 (20). 
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(1-Ethyl-6-iodo-4-oxo-1,3,4,5-tetrahydro-furo[3,4-c]pyridin-1-yl)acetic acid methyl ester 

(90): 

     

H
N

O

COOMe

I O

 

Sodium iodide (29 mg, 0.20 mmol) was added to a solution of the above iodide (46 mg, 0.12 

mmol) in dry acetonitrile (1.2 mL) at room temperature. Chlorotrimethylsilane (25 µL, 0.20 

mmol) was then added and the reaction mixture was stirred for 15 min at room temperature. H2O 

(1.0 µL, 0.061 mmol) was added and the reaction mixture was heated at 60 °C for 22 h. The 

mixture was then poured into a solution of 5% Na2SO3/brine (1:1, 7.8 mL) and quickly extracted 

with ethyl acetate (4 x 10 mL). The combined organic extracts were dried over MgSO4 and 

concentrated under reduced pressure. The crude product was purified by flash chromatography 

(2:3 ethyl acetate/hexanes) to afford 90 as a pale yellow solid (30 mg, 68%): 1H NMR (300 

MHz, CDCl3) δ 0.80 (t, J = 7.2 Hz, 3H), 1.86 (m, 2H), 2.75 (q, J = 14.8 Hz, 2H), 3.61 (s, 3H), 

5.01 (s, 2H), 6.66 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 7.7, 32.2, 43.8, 51.7, 71.8, 90.2, 94.0, 

113.2, 127.4, 155.8, 161.0, 169.8; IR (CH2Cl2, NaCl, cm-1); HRMS (EI) m/z calcd for 

C12H14INO4 (M+) 362.9968, found 362.9961; LRMS (EI) m/z 363 (M+, 22), 334 (31), 289 (100), 

274 (15), 163 (23), 78 (21). 
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(1-Ethyl-6-iodo-4-oxo-5-prop-2-ynyl-1,3,4,5-tetrahydrofuro[3,4-c]pyridin-1-yl)acetic acid 

methyl ester (91a): 

     

N

O

COOMe

I O

 

NaH in mineral oil (60%, 1.5 mg, 0.036 mmol) was added to a solution of 90 (12 mg, 0.033 

mmol) in a mixture of DME (0.25 mL) and DMF (0.10 mL) at 0 °C under argon. After stirring 

this mixture for 10 min at 0 °C, LiBr (5.8 mg, 0.066 mmol) was added. The reaction mixture was 

allowed to warm to room temperature and stirred for 15 min. Propargyl bromide (80% w/w in 

toluene, 15 µL, 0.13 mmol) was then added via a syringe and the reaction mixture was heated in 

the dark at 65 °C for 7 h. The final solution was poured into brine (5 mL) and extracted with 

ethyl acetate (3 x 5 mL). The combined organic extracts were dried over MgSO4 and 

concentrated under reduced pressure. The crude product was purified by flash chromatography 

(2:3 ethyl acetate/hexanes) to give 91a as a pale yellow foam (7.0 mg, 54%): 1H NMR (300 

MHz, CDCl3) δ 0.82 (t, J = 7.4 Hz, 3H), 1.78 (dq, J = 7.4 Hz, 14.7 Hz, 1H), 1.92 (dq, J = 7.4 Hz, 

14.7 Hz, 1H), 2.45 (t, J = 2.4 Hz, 1H), 2.75 (q, J = 14.8 Hz, 2H), 3.63 (s, 3H), 4.97 (s, 2H), 5.11 

(dd, J = 2.4 Hz, 17.2 Hz, 1H), 5.13 (dd, J = 2.5 Hz, 17.1 Hz, 1H), 6.77 (s, 1H); 13C NMR (75 

MHz, CDCl3) δ 7.8, 32.0, 43.4, 43.7, 51.8, 71.9, 73.2, 90.2, 98.8, 114.6, 128.4, 153.8, 157.4, 

170.0; IR (CH2Cl2, NaCl, cm-1) 3288, 2970, 2852, 2356, 2335, 1736, 1649, 1521, 1198, 1024; 

HRMS (EI) m/z calcd for C15H16INO4 (M+) 401.0124, found 401.0135; LRMS (EI) m/z 401 (M+, 

31), 372 (24), 345 (13), 327 (100), 245 (18), 206 (20), 162 (36), 77 (17). Copies of spectral data 

can be found in the appendix section. 
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(5-[3-{tert-Butyldimethylsilanyl}prop-2-ynyl]-1-ethyl-6-iodo-4-oxo-1,3,4,5-

tetrahydrofuro[3,4-c]pyridin-1-yl)acetic acid methyl ester (91b): 

     

N

O

COOMe

I O

TBS

 

Following the above procedure, 90 (19 mg, 0.051 mmol) was alkylated with 3-tert-

butyldimethylsilyl propargyl bromide (24 mg, 0.10 mmol) in the presence of NaH in mineral oil 

(60%, 2.3 mg, 0.056 mmol) and LiBr (8.9 mg, 0.10 mmol) in a mixture of DME (0.39 mL) and 

DMF (0.15 mL). The crude product was purified by flash chromatography (1:4 ethyl 

acetate/hexanes) to afford 91b as a colorless oil (12 mg, 45%): 1H NMR (300 MHz, CDCl3) δ 

0.10 (s, 6H), 0.82 (t, J = 7.4 Hz, 3H), 0.93 (s, 9H), 1.78 (dq, J = 7.4 Hz, 14.7 Hz, 1H), 1.92 (dq, J 

= 7.3 Hz, 14.7 Hz, 1H), 2.75 (q, J = 14.7 Hz, 2H), 3.62 (s, 3H), 4.98 (s, 2H), 5.12 (d, J = 17.3 

Hz, 1H), 5.15 (d, J = 17.3 Hz, 1H), 6.76 (s, 1H); 13C NMR (75 MHz, CDCl3) δ −4.9, 7.7, 16.6, 

26.0, 32.1, 43.8, 51.7, 72.0, 89.0, 90.2, 98.8, 99.3, 114.5, 128.2, 153.5, 157.3, 170.0; IR (CH2Cl2, 

NaCl, cm-1) 2950, 2924, 2852, 2356, 2330, 1736, 1654, 1526, 1198, 1034; HRMS (EI) m/z calcd 

for C21H30INO4Si (M+) 515.0989, found 515.0999; LRMS (EI) m/z 515 (M+, 25), 458 (100), 441 

(58), 420 (22), 384 (54), 356 (17), 258 (11), 162 (12), 96 (58), 73(57). Copies of spectral data 

can be found in the appendix section. 
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5-Ethyl-3-iodo-1-methoxy-9H-8-oxa-2-azabenzocyclohepten-7-one: 

     

N

O

I O

O  

ICl (1 M in dichloromethane, 10 mL, 10 mmol) was added to a solution of 71 (0.73 g, 2.5 mmol) 

in CH2Cl2 (12 mL) kept at 0 °C in an ice bath and then allowed to warm to room temperature. 

After stirring for 16 h, the reaction mixture was poured into a chilled solution of 5% 

Na2SO3/brine (1:1, 150 mL) and extracted the mixture with ethyl acetate (3 x 120 mL). The 

combined organic extracts were dried over MgSO4 and concentrated under reduced pressure. The 

crude product was purified by flash chromatography (5:95 ethyl acetate/hexanes) to afford the 

iodide as a pale yellow oil (0.32 g, 38%): 1H NMR (300 MHz, CDCl3) δ 1.17 (t, J = 7.3 Hz, 3H), 

2.62 (dq, J = 1.3 Hz, 7.4 Hz, 2H), 4.02 (s, 3H), 5.06 (br s, 2H), 6.38 (s, 1H), 7.38 (s, 1H); 13C 

NMR (75 MHz, CDCl3) δ 12.4, 28.9, 54.9, 60.2, 114.6, 116.4, 122.5, 124.4, 148.2, 149.4, 160.3, 

167.3; IR (CH2Cl2, NaCl, cm-1) 2955, 2924, 2847, 1736, 1618, 1454, 1362, 1045; HRMS (EI) 

m/z calcd for C12H12INO3 (M+) 344.9862, found 344.9868; LRMS (EI) m/z 345 (M+, 100), 316 

(58), 302 (74), 288 (54), 218 (22), 188 (35), 159 (43), 130 (55), 77 (36). 

 

5-Ethyl-3-iodo-2,9-dihydro-8-oxa-2-azabenzocycloheptene-1,7-dione (93): 

     

H
N

O

I O

O  

Sodium iodide (0.15 g, 1.0 mmol) was added to a solution of the above iodide (0.12 g, 0.33 

mmol) in dry acetonitrile (3.3 mL) at room temperature. Chlorotrimethylsilane (0.13 mL, 1.0 
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mmol) was then added and the reaction mixture was stirred for 15 min at room temperature. H2O 

(3.0 µL, 0.17 mmol) was next added and the reaction mixture was heated to 60 °C and stirred at 

that temperature for 21 h. The mixture was then poured into a solution of 5% Na2SO3/brine (1:1, 

20 mL) and quickly extracted with ethyl acetate (4 x 20 mL). The combined organic extracts 

were dried over MgSO4 and concentrated under reduced pressure. The crude product was 

purified by flash chromatography (1:4 acetone/dichloromethane) to afford 93 as a pale yellow 

solid (36 mg, 33%): 1H NMR (300 MHz, CDCl3) δ 1.13 (t, J = 7.4 Hz, 3H), 2.60 (q, J = 7.2 Hz, 

2H), 4.99 (br s, 2H), 6.32 (s, 1H), 7.04 (s, 1H), 12.27 (br s, 1H); 13C NMR (75 MHz, CDCl3) δ 

12.0, 28.0, 29.0, 60.0, 122.2, 148.2, 149.3, 161.0, 166.7; IR (CH2Cl2, NaCl, cm-1) 3344, 2955, 

2837, 1710, 1629, 1583, 1444, 1014; HRMS (EI) m/z calcd for C11H10INO3 (M+) 330.9705, 

found 330.9717; LRMS (EI) m/z 331 (M+, 100), 302 (82), 288 (92), 274 (65), 174 (17), 160 (26), 

146 (18). 

 

5-Ethyl-3-iodo-2-prop-2-ynyl-2,9-dihydro-8-oxa-2-azabenzocycloheptene-1,7-dione (94a): 

     

N

O

I O

O  

NaH in mineral oil (60%, 7.2 mg, 0.18 mmol) was added to a solution of 93 (30 mg, 0.091 

mmol) in a mixture of DME (0.70 mL) and DMF (0.30 mL) at 0 °C under argon. After stirring 

this mixture for 10 min at 0 °C, LiBr (32 mg, 0.36 mmol) was added. The reaction mixture was 

allowed to warm to room temperature and stirred for 15 min. Propargyl bromide (80% w/w in 

toluene, 80 µL, 0.72 mmol) was then added via a syringe and the reaction mixture was heated in 
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the dark at 65 °C for 14 h. The final solution was poured into brine (10 mL) and extracted with 

ethyl acetate (3 x 10 mL). The combined organic extracts were dried over MgSO4 and 

concentrated under reduced pressure. The crude product was purified by flash chromatography 

(3:7 ethyl acetate/hexanes) to give 94a as a pale yellow oil (12 mg, 37%): 1H NMR (300 MHz, 

CDCl3) δ 1.17 (t, J = 7.3 Hz, 3H), 2.39 (t, J = 2.5 Hz, 1H), 2.55 (q, J = 7.4 Hz, 2H), 5.11 (s, 2H), 

6.41 (s, 1H), 6.88 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 12.4, 28.4, 44.7, 61.1, 73.5, 101.1, 

116.8, 123.8, 125.0, 148.0, 149.2, 159.8, 167.3; IR (CH2Cl2, NaCl, cm-1) 2909, 2842, 2361, 

2330, 1710, 1644, 1506, 1454, 1045; HRMS (EI) m/z calcd for C14H12INO3 (M+) 368.9862, 

found 368.9866; LRMS (EI) m/z 369 (M+, 37), 340 (35), 326 (12), 256 (12), 149 (30), 129 (30), 

73 (66), 57 (100). Copies of spectral data can be found in the appendix section. 

 

2-[3-(tert-Butyldimethylsilanyl)prop-2-ynyl]-5-ethyl-3-iodo-2,9-dihydro-8-oxa-2-

azabenzocycloheptene-1,7-dione (94b): 

     

N

O

I O

TBS

O  

Following the above procedure, 93 (32 mg, 0.097 mmol) was alkylated with 3-tert-

butyldimethylsilyl propargyl bromide (0.18 g, 0.77 mmol) in the presence of NaH in mineral oil 

(60%, 7.7 mg, 0.19 mmol) and LiBr (34 mg, 0.39 mmol) in a mixture of DME (0.75 mL) and 

DMF (0.31 mL). The crude product was purified by flash chromatography (1:4 ethyl 

acetate/hexanes) to afford 94b as a colorless oil (20 mg, 43%): 1H NMR (300 MHz, CDCl3) δ 

0.10 (s, 6H), 0.91 (s, 9H), 1.17 (t, J = 7.4 Hz, 3H), 2.55 (q, J = 7.6 Hz, 2H), 5.13 (s, 2H), 6.41 (s, 

119 



 

1H), 6.88 (s, 1H); 13C NMR (75 MHz, CDCl3) δ −4.9, 12.4, 16.6, 26.1, 28.4, 45.1, 61.3, 89.5, 

98.5, 101.2, 116.7, 123.6, 124.9, 147.9, 149.4, 159.8, 167.4; IR (CH2Cl2, NaCl, cm-1) 2955, 

2847, 2248, 2176, 1726, 1649, 1511, 1265, 1035; HRMS (EI) m/z calcd for C16H17INO3Si (M − 

tBu) 426.0022, found 426.0023; LRMS (EI) m/z 426 (M−tBu, 25), 398 (19), 382 (22), 223 (10), 

127 (56), 96 (100), 75 (91). Copies of spectral data can be found in the appendix section. 

 

General procedure 3A: Radical Cascade Cyclization towards the Synthesis of Non-lactone 

Analogs 92a-d, 95a-d. 

A solution of iodopyridone (~ 6-11 mg) in benzene was taken up in a 15 x 45 mm 

cylindrical screw-cap glass vial and kept at room temperature. A solution of isonitrile (1 M in 

benzene) and then hexamethylditin were added at room temperature. The vial was capped and 

the reaction mixture was irradiated with a 275W GE sunlamp for 4 h. The solvent was then 

evaporated and the residue was purified by preparative thin layer chromatography (1:9 

acetone/dichloromethane). 

 

Methyl(3-ethyl-13-oxo-11,13-dihydro-1H,3H-furo[3′,4′:6,7]indolizino[1,2-b]quinolin-3-

yl)acetate (92a): 

    

N
N

O

COOMe

O

 

Following general procedure 3A, iodopyridone 91a (7.6 mg, 0.019 mmol) was reacted with 

phenyl isonitrile (1 M, 76 µL, 0.076 mmol) and hexamethylditin (11 µL, 0.028 mmol) in 

benzene (0.32 mL) to afford 92a, after purification, as a yellow solid (2.1 mg, 30%): 1H NMR 
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(500 MHz, CDCl3) δ 0.86 (t, J = 7.3 Hz, 3H), 1.94 (dq, J = 7.2 Hz, 14.5 Hz, 1H), 2.05 (dq, J = 

7.5 Hz, 14.7 Hz, 1H), 2.89 (d, J = 14.7 Hz, 1H), 2.90 (d, J = 14.8 Hz, 1H), 3.63 (s, 3H), 5.17 (d, 

J = 13.5 Hz, 1H), 5.18 (d, J = 13.4 Hz, 1H), 5.30 (s, 2H), 7.21 (s, 1H), 7.66 (t, J = 7.2 Hz, 1H), 

7.83 (t, J = 7.1 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 8.21 (d, J = 8.4 Hz, 1H), 8.39 (s, 1H); 13C 

NMR (151 MHz, CDCl3) δ 7.9, 32.9, 44.4, 49.7, 51.8, 72.5, 90.8, 95.4, 127.8, 128.2, 128.3, 

129.1, 129.2, 129.7, 130.6, 131.1, 147.2, 148.9, 152.9, 154.3, 157.1, 170.1; IR (CH2Cl2, NaCl, 

cm-1) 2919, 2842, 2356, 2325, 1731, 1654, 1603, 1439, 1224, 1024; HRMS (EI) m/z calcd for 

C22H20N2O4 (M+) 376 1423, found 376.1417; LRMS (EI) m/z 376 (M+, 6), 347 (6), 302 (39), 261 

(5), 137 (13), 97 (18), 81 (45), 69 (100). Copies of spectral data can be found in the appendix 

section. 

 

Methyl(3-ethyl-8-fluoro-13-oxo-11,13-dihydro-1H,3H-furo[3′,4′:6,7]indolizino[1,2-

b]quinolin-3-yl)acetate (92b): 

    

N
N

O

COOMe

OF

 

Following general procedure 3A, iodopyridone 91a (6.5 mg, 0.016 mmol) was reacted with p-

fluorophenyl isonitrile (1 M, 65 µL, 0.065 mmol) and hexamethylditin (9.0 µL, 0.024 mmol) in 

benzene (0.27 mL) to afford 92b, after purification, as a yellow solid (3.5 mg, 55%): 1H NMR 

(300 MHz, CDCl3) δ 0.86 (t, J = 7.3 Hz, 3H), 1.94 (dq, J = 7.5 Hz, 14.6 Hz, 1H), 2.05 (dq, J = 

7.8 Hz, 15.1 Hz, 1H), 2.89 (d, J = 14.7 Hz, 1H), 2.91 (d, J = 14.7 Hz, 1H), 3.63 (s, 3H), 5.17 (s, 

2H), 5.30 (s, 2H), 7.17 (s, 1H), 7.54-7.64 (m, 2H), 8.21 (dd, J = 5.3 Hz, 9.2 Hz, 1H), 8.33 (s, 
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1H); 13C NMR (75 MHz, CDCl3) δ 7.8, 32.8, 44.3, 49.5, 51.8, 72.4, 90.7, 95.2, 111.3 (d, JCF = 

20.0 Hz), 121.0, 128.8 (d, JCF = 11.3 Hz), 129.1, 130.2 (d, JCF = 46.3 Hz), 132.0 (d, JCF = 7.5 

Hz), 145.9, 146.8, 152.4, 154.3, 157.0, 170.1; IR (CH2Cl2, NaCl, cm-1) 2909, 2847, 2351, 2340, 

1721, 1654, 1593, 1501, 1449, 1234, 1024; HRMS (EI) m/z calcd for C22H19FN2O4 (M+) 

394.1329, found 394.1326; LRMS (EI) m/z 394 (M+, 18), 365 (15), 337 (10), 320 (100), 293 

(14), 171 (20), 105 (30), 83 (33), 69 (52). 

 

Methyl{10-[tert-butyl(dimethyl)silyl]-3-ethyl-13-oxo-11,13-dihydro-1H,3H-

furo[3′,4′:6,7]indolizino[1,2-b]quinolin-3-yl)acetate (92c): 

    

N
N

O

COOMe

O

TBS

 

Following general procedure 3A, iodopyridone 91b (8.3 mg, 0.016 mmol) was reacted with 

phenyl isonitrile (1 M, 64 µL, 0.064 mmol) and hexamethylditin (9.0 µL, 0.024 mmol) in 

benzene (0.27 mL) to afford 92c, after purification, as a yellow solid (5.6 mg, 71%): 1H NMR 

(500 MHz, CDCl3) δ 0.71 (s, 6H), 0.86 (t, J = 7.3 Hz, 3H), 1.01 (s, 9H), 1.94 (dq, J = 7.3 Hz, 

14.6 Hz, 1H), 2.05 (dq, J = 7.3 Hz, 14.7 Hz, 1H), 2.89 (d, J = 14.7 Hz, 1H), 2.90 (d, J = 14.7 Hz, 

1H), 3.63 (s, 3H), 5.16 (d, J = 13.4 Hz, 1H), 5.18 (d, J = 13.4 Hz, 1H), 5.32 (s, 2H), 7.19 (s, 1H), 

7.61 (t, J = 7.3 Hz, 1H), 7.78 (t, J = 7.3 Hz, 1H), 8.20 (d, J = 8.2 Hz, 1H), 8.24 (d, J = 8.5 Hz, 

1H); 13C NMR (75 MHz, CDCl3) δ −0.5, 7.7, 19.2, 27.1, 32.7, 44.3, 51.7, 52.0, 72.5, 90.6, 94.7, 

126.7, 128.5, 129.5, 130.5, 132.7, 136.6, 143.0, 147.0, 148.0, 151.0, 154.1, 155.2, 156.8, 170.0; 

IR (CH2Cl2, NaCl, cm-1) 2960, 2852, 2361, 2340, 1741, 1659, 1598, 1557, 1214, 1024; HRMS 
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(EI) m/z calcd for C28H34N2O4Si (M+) 490.2288, found 490.2293; LRMS (EI) m/z 490 (M+, 27), 

461 (15), 434 (10), 416 (100), 359 (14), 331 (7), 73 (8). 

 

Methyl{10-[tert-butyl(dimethyl)silyl]-3-ethyl-8-fluoro-13-oxo-11,13-dihydro-1H,3H-

furo[3′,4′:6,7]indolizino[1,2-b]quinolin-3-yl)acetate (92d): 

    

N
N

O

COOMe

O

TBS
F

 

Following general procedure 3A, iodopyridone 91b (7.7 mg, 0.015 mmol) was reacted with p-

fluorophenyl isonitrile (1 M, 60 µL, 0.060 mmol) and hexamethylditin (9.0 µL, 0.022 mmol) in 

benzene (0.25 mL) to afford 92d, after purification, as a yellow solid (5.0 mg, 66%): 1H NMR 

(300 MHz, CDCl3) δ 0.71 (s, 6H), 0.85 (t, J = 7.3 Hz, 3H), 1.01 (s, 9H), 1.94 (dq, J = 7.2 Hz, 

14.4 Hz, 1H), 2.05 (dq, J = 7.5 Hz, 14.9 Hz, 1H), 2.89 (d, J = 14.7 Hz, 1H), 2.90 (d, J = 14.7 Hz, 

1H), 3.63 (s, 3H), 5.16 (s, 2H), 5.31 (s, 2H), 7.16 (s, 1H), 7.56 (ddd, J = 2.7 Hz, 7.6 Hz, 10.1 Hz, 

1H), 7.87 (dd, J = 2.7 Hz, 11.1 Hz, 1H), 8.20 (dd, J = 6.0 Hz, 9.2 Hz, 1H); 13C NMR (75 MHz, 

CDCl3) δ −0.7, 7.8, 19.2, 27.1, 32.8, 44.3, 51.8, 52.0, 72.5, 90.7, 94.8, 113.5 (d, JCF = 24.0 Hz), 

120.0 (d, JCF = 25.0 Hz), 128.6, 133.2 (d, JCF = 96.2 Hz), 137.5, 142.2, 145.1, 146.8, 150.7, 

154.2, 156.8, 170.1; IR (CH2Cl2, NaCl, cm-1) 2955, 2929, 2852, 2366, 2335, 1736, 1664, 1593, 

1501, 1219; HRMS (EI) m/z calcd for C28H33FN2O4Si (M+) 508.2194, found 508.2199; LRMS 

(EI) m/z 508 (M+, 22), 479 (14), 452 (10), 434 (100), 393 (13), 349 (6), 73 (5). Copies of spectral 

data can be found in the appendix section. 
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5-Ethyl-1,13-dihydro-3H,15H-oxepino[3′,4′:6,7]indolizino[1,2-b]quinoline-3,15-dione (95a): 

    

N
N

O

O

O
 

Following general procedure 3A, iodopyridone 94a (7.2 mg, 0.020 mmol) was reacted with 

phenyl isonitrile (1 M, 78 µL, 0.078 mmol) and hexamethylditin (11 µL, 0.029 mmol) in 

benzene (0.33 mL) to afford 95a, after purification, as a yellow solid (2.0 mg, 41%): 1H NMR 

(300 MHz, CDCl3) δ 1.25 (t, J = 7.3 Hz, 3H), 2.81 (q, J = 7.3 Hz, 2H), 5.36 (s, 4H), 6.51 (t, J = 

1.4 Hz, 1H), 7.49 (s, 1H), 7.71 (t, J = 7.4 Hz, 1H), 7.88 (t, J = 6.9 Hz, 1H), 7.98 (d, J = 8.2 Hz, 

1H), 8.30 (d, J = 8.7 Hz, 1H), 8.47 (s, 1H); 13C NMR (151 MHz, CDCl3) δ 12.8, 29.3, 50.5, 61.0, 

123.1, 125.8, 128.3, 128.4, 128.9, 130.9, 149.0, 151.3, 159.6, 167.8; IR (CH2Cl2, NaCl, cm-1) 

2914, 2847, 2361, 2335, 1710, 1644, 1598, 1444, 1035; HRMS (EI) m/z calcd for C21H16N2O3 

(M+) 344.1161, found 344.1161; LRMS (EI) m/z 344 (M+, 55), 315 (70), 301 (45), 285 (35), 271 

(20), 242 (32), 129 (17), 91 (46), 55 (100). Copies of spectral data can be found in the appendix 

section. 

 

5-Ethyl-10-fluoro-1,13-dihydro-3H,15H-oxepino[3′,4′:6,7]indolizino[1,2-b]quinoline-3,15-

dione (95b): 

    

N
N

O

O

O

F
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Following general procedure 3A, iodopyridone 94a (7.8 mg, 0.021 mmol) was reacted with p-

fluorophenyl isonitrile (1 M, 85 µL, 0.085 mmol) and hexamethylditin (12 µL, 0.032 mmol) in 

benzene (0.35 mL) to afford 95b, after purification, as a yellow solid (3.5 mg, 55%): 1H NMR 

(300 MHz, CDCl3) δ 1.25 (t, J = 7.3 Hz, 3H), 2.80 (q, J = 7.3 Hz, 2H), 5.34 (s, 4H), 6.51 (s, 1H), 

7.35 (s, 1H), 7.58 (dd, J = 2.5 Hz, 8.6 Hz, 1H), 7.61-7.65 (m, 1H), 8.24 (dd, J = 5.3 Hz, 9.2 Hz, 

1H), 8.38 (s, 1H); 13C NMR (125 MHz, CDCl3) δ 12.7, 29.1, 50.3, 60.8, 97.8, 111.3 (d, JCF = 

22.5 Hz), 121.2 (d, JCF = 25.0 Hz), 123.1, 125.7, 129.0 (d, JCF = 10.0 Hz), 129.6, 130.5, 132.3, 

146.0, 146.3, 149.0, 151.1, 152.0, 159.5, 160.3, 162.3, 167.7; IR (CH2Cl2, NaCl, cm-1) 2914, 

2852, 2356, 2340, 1695, 1654, 1588, 1454, 1188, 1034; HRMS (EI) m/z calcd for C21H15FN2O3 

(M+) 362.1067, found 362.1068; LRMS (EI) m/z 362 (M+, 22), 333 (30), 319 (19), 289 (7), 236 

(7), 199 (12), 111 (25), 97 (46), 69 (75), 55 (100). 

 

12-[tert-Butyl(dimethyl)silyl]-5-ethyl-1,13-dihydro-3H,15H-oxepino[3′,4′:6,7]indolizino[1,2-

b]quinoline-3,15-dione (95c): 

    

N
N

O

O

O

TBS

 

Following general procedure 3A, iodopyridone 94b (11 mg, 0.023 mmol) was reacted with 

phenyl isonitrile (1 M, 91 µL, 0.091 mmol) and hexamethylditin (13 µL, 0.034 mmol) in 

benzene (0.38 mL) to afford 95c, after purification, as a yellow solid (4.0 mg, 39%): 1H NMR 

(300 MHz, CDCl3) δ 0.72 (s, 6H), 1.01 (s, 9H), 1.25 (t, J = 7.4 Hz, 3H), 2.81 (dq, J = 1.3 Hz, 7.4 

Hz, 2H), 5.36 (s, 4H), 6.50 (t, J = 1.4 Hz, 1H), 7.37 (s, 1H), 7.64 (ddd, J = 1.5 Hz, 6.8 Hz,  8.4 
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Hz, 1H), 7.80 (ddd, J = 1.3 Hz, 6.8 Hz,  8.2 Hz, 1H), 8.24 (t, J = 8.6 Hz, 2H); 13C NMR (75 

MHz, CDCl3) δ −0.5, 12.7, 19.3, 27.2, 29.2, 52.8, 61.0, 97.5, 122.9, 125.1, 127.1, 129.6, 129.8, 

130.7, 133.0, 136.3, 143.4, 146.7, 148.1, 149.0, 150.6, 151.4, 159.4, 167.9; IR (CH2Cl2, NaCl, 

cm-1) 2914, 2842, 2351, 2335, 1726, 1649, 1598, 1465, 1045; HRMS (EI) m/z calcd for 

C27H30N2O3Si (M+) 458.2026, found 458.2028; LRMS (EI) m/z 458 (M+, 100), 429 (58), 401 

(47), 373 (63), 357 (46), 343 (16), 299 (7), 255 (7), 91 (8), 73 (15). 

 

12-[tert-Butyl(dimethyl)silyl]-5-ethyl-10-fluoro-1,13-dihydro-3H,15H-

oxepino[3′,4′:6,7]indolizino[1,2-b]quinoline-3,15-dione (95d): 

    

N
N

O

O

O

TBS
F

 

Following general procedure 3A, iodopyridone 94b (9.0 mg, 0.019 mmol) was reacted with p-

fluorophenyl isonitrile (1 M, 75 µL, 0.075 mmol) and hexamethylditin (11 µL, 0.028 mmol) in 

benzene (0.31 mL) to afford 95d, after purification, as a yellow solid (3.0 mg, 34%): 1H NMR 

(300 MHz, CDCl3) δ 0.72 (s, 6H), 1.01 (s, 9H), 1.25 (t, J = 7.4 Hz, 3H), 2.81 (dq, J = 1.3 Hz, 7.4 

Hz, 2H), 5.35 (s, 4H), 6.50 (t, J = 1.4 Hz, 1H), 7.34 (s, 1H), 7.59 (ddd, J = 2.7 Hz, 7.5 Hz,  9.3 

Hz, 1H), 7.89 (dd, J = 2.6 Hz, 11.0 Hz, 1H), 8.23 (dd, J = 6.0 Hz, 9.3 Hz, 1H); 13C NMR (125 

MHz, CDCl3) δ −0.7, 12.7, 19.2, 27.1, 29.2, 52.8, 60.9, 97.4, 113.2 (d, JCF = 23.8 Hz), 120.0 (d, 

JCF = 25.0 Hz), 123.0, 125.2, 133.0 (d, JCF = 102.5 Hz), 137.0, 142.5, 145.2, 146.4, 149.0, 150.3, 

151.2, 159.3, 159.7 (d, JCF = 26.2 Hz), 161.6, 167.8; IR (CH2Cl2, NaCl, cm-1) 2955, 2914, 2842, 

2361, 2330, 1716, 1659, 1593, 1214, 1040; HRMS (EI) m/z calcd for C27H29FN2O3Si (M+) 
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476.1932, found 476.1929; LRMS (EI) m/z 476 (M+, 100), 447 (66), 433 (36), 419 (40), 391 

(57), 375 (42), 361 (15), 273 (7), 98 (10), 73 (18). Copies of spectral data can be found in the 

appendix section. 

 

Chapter 4 

(S)-2-Hydroxy-2-[8-(hydroxymethyl)-9-oxo-9,11-dihydroindolizino[1,2-b]quinolin-7-

yl]butanohydrazide (96): 

    

N
N

O

O

NHNH2
HO

OH

 

Hydrazine monohydrate (45 µL, 0.93 mmol) was added to a suspension of camptothecin (54 mg, 

0.15 mmol) in MeOH (0.62 mL) at room temperature. After stirring at the same temperature for 

8 h, the reaction mixture was concentrated under reduced pressure to afford 96 as a pale yellow 

solid (59 mg, 100%) which was sufficiently pure for further analysis: 1H NMR (300 MHz, 

CD3SOCD3) δ 0.85 (t, J = 7.0 Hz, 3H), 2.17 (d, J = 6.8 Hz, 2H), 4.29 (br s, 2H), 4.75 (dd, J = 5.7 

Hz, 11.5 Hz, 1H), 4.77 (dd, J = 5.5 Hz, 11.6 Hz, 1H), 5.00 (t, J = 5.6Hz, 1H), 5.23 (s, 2H), 6.40 

(br s, 1H), 7.46 (s, 1H), 7.69 (t, J = 7.4 Hz, 1H), 7.84 (t, J = 7.1 Hz, 1H), 8.10 (d, J = 8.1 Hz, 

1H), 8.17 (d, J = 8.5 Hz, 1H), 8.65 (s, 1H), 9.25 (br s, 1H); 13C NMR (75 MHz, CD3SOCD3) δ 

7.8, 31.8, 50.1, 55.3, 79.3, 99.3, 127.4, 127.7, 128.4, 128.8, 128.9, 129.7, 130.2, 131.3, 142.6, 

147.9, 152.8, 152.9, 160.9, 171.7; HRMS (EI) m/z calcd for C20H16N2O4 (M – N2H4) 348.1110, 

found 348.1100; LRMS (EI) m/z 378 (M+ − 2, 31), 348 (100), 319 (30), 289 (22), 248 (38), 219 

(34), 140 (15). Copies of spectral data can be found in the appendix section. 
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(S)-2-[12-[tert-Butyl(dimethyl)silyl]-2-hydroxy-8-(hydroxymethyl)-9-oxo-9,11-

dihydroindolizino[1,2-b]quinolin-7-yl]-2-hydroxybutanohydrazide (97): 

    

N
N

O
OH

TBS
HO

O

NHNH2
HO

 

Following the above procedure, 7-tert-butyldimethylsilyl-10-hydroxycamptothecin (24 mg, 

0.050 mmol) was reacted with hydrazine monohydrate (24 µL, 0.50 mmol) in MeOH (0.20 mL) 

to afford 97 as a yellow solid (25 mg, 99%) which was sufficiently pure for subsequent analysis: 

1H NMR (300 MHz, CD3SOCD3) δ 0.64 (s, 6H), 0.84 (t, J = 6.8 Hz, 1H), 0.93 (s, 9H), 2.15 (d, J 

= 6.9 Hz, 1H), 4.27 (br s, 2H), 4.67 (d, J = 11.6 Hz, 1H), 4.81 (d, J = 11.7 Hz, 1H), 5.16 (s, 2H), 

7.35-7.38 (m, 2H), 7.54 (d, J = 2.2 Hz, 1H), 8.02 (d, J = 9.1 Hz, 1H); 13C NMR (75 MHz, 

CD3SOCD3) δ −1.1, 7.9, 18.8, 27.1, 31.8, 48.6, 52.3, 79.3, 98.1, 110.8, 122.4, 127.5, 131.3, 

133.9, 137.1, 138.2, 142.1, 143.1, 147.8, 153.2, 156.9, 160.7, 171.9; HRMS (EI) m/z calcd for 

C26H30N2O5Si (M+ – N2H4) 478.1924, found 478.1906; LRMS (EI) m/z 478 (M+ − N2H4, 22), 

434 (59). 421 (23), 377 (100), 320 (11), 291 (13), 235 (6), 73 (17). 

 

(S)-2-[8-({[tert-Butyl(dimethyl)silyl]oxy}methyl)-9-oxo-9,11-dihydroindolizino[1,2-

b]quinolin-7-yl]-2-hydroxy-N-methoxy-N-methylbutanamide (99): 

    

N
N

O
OTBS

O

N
HO

O
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Trimethylaluminum (2 M in heptane, 0.52 mL, 1.0 mmol) was added dropwise via a syringe over 

3 - 4 min to a suspension of N,O-dimethylhydroxylamine hydrochloride (0.10 g, 1.0 mmol) in 

CH2Cl2 (5.4 mL) at −10 °C accompanied by the evolution of gas. The resulting colorless solution 

was stirred at room temperature for 30 min and recooled to 0 °C. A suspension of camptothecin 

(0.12 g, 0.34 mmol) in CH2Cl2 (1.5 mL) was then added and the resulting clear brown solution 

was stirred at room temperature for 22 h. NaHSO4 (1 M, 1.2 mL) was carefully added and the 

resulting mixture was extracted with CH2Cl2 (3 x 10 mL). The combined organic extracts were 

washed with brine (10 mL), dried over MgSO4 and concentrated under reduced pressure to 

afford 98 as a yellow solid (96 mg, 68%). The crude product was used in the subsequent reaction 

immediately after the workup. 

 Alcohol 98 (95 mg, 0.23 mmol) was added to a solution of tert-butylchlorodimethylsilane 

(53 mg, 0.35 mmol) and imidazole (44 mg, 0.64 mmol) in DMF (0.19 mL). The reaction mixture 

was heated to 35 °C and stirred for 24 h. The reaction mixture was diluted with water (5 mL) and 

then extracted with ethyl acetate (3 x 5 mL). The combined organic extracts were washed with 

brine, dried over MgSO4 and concentrated under reduced pressure to afford the Weinreb amide 

99 as a pale yellow solid (0.11 g, 92%). The crude product was sufficiently pure for subsequent 

analysis. However, an analytical sample of 99 was prepared by purification of the crude product 

by flash column chromatography (step gradient elution 1:49, 1:19, 1:9 acetone/dichloromethane): 

1H NMR (300 MHz, CDCl3) δ 0.19 (s, 3H), 0.22 (s, 3H), 0.96 (s, 9H), 0.97 (t, J = 7.3 Hz, 3H), 

2.18 (dq, J = 7.4 Hz, 14.1 Hz, 1H), 2.44 (dq, J = 7.3 Hz, 13.9 Hz, 1H), 3.22 (s, 3H), 3.24 (s, 3H), 

5.01 (d, J = 10.6 Hz, 1H), 5.02 (d, J = 10.7 Hz, 1H), 5.26 (d, J = 19.0 Hz, 1H), 5.30 (d, J = 19.0 

Hz, 1H), 5.41 (br s, 1H), 7.37 (s, 1H), 7.65 (ddd, J = 1.1 Hz, 6.9 Hz, 8.1 Hz, 1H), 7.82 (ddd, J = 

1.4 Hz, 6.9 Hz, 8.4 Hz, 1H), 7.92 (d, J = 8.1 Hz, 1H), 8.22 (d, J = 8.5 Hz, 1H), 8.37 (s, 1H); 13C 
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NMR (75 MHz, CDCl3) δ −5.4, −5.2, 7.6, 18.5, 26.0, 31.4, 33.3, 50.1, 56.5, 59.9, 80.0, 99.4, 

127.5, 127.7, 128.0, 128.1, 128.8, 129.6, 130.4, 130.9, 143.8, 148.8, 152.9, 154.4, 161.3, 172.9; 

IR (CH2Cl2, NaCl, cm-1) 3370, 2929, 2847, 1659, 1603, 1465, 1398, 1250, 1055; HRMS (EI) m/z 

calcd for C28H37N3O5Si (M+) 523.2502, found 523.2477; LRMS (EI) m/z 523 (M+, 18), 508 (28), 

466 (100), 377 (98), 363 (28), 303 (60), 275 (15), 191 (7), 75(72). Copies of spectral data can be 

found in the appendix section. 

 

(S)-2-Hydroxy-2-(8-methyl-9-oxo-9,11-dihydroindolizino[1,2-b]quinolin-7-yl)butanoic acid 

methyl ester (103): 

    

N
N

O

COOMeHO
 

Triethylamine (0.17 mL, 1.2 mmol) was added to a solution of camptothecin (27 mg, 0.078 

mmol) in DMF (1.7 mL) under argon. Dry 10% palladium on activated carbon (5 mg) was 

carefully added to the reaction mixture and the dissolved oxygen was removed under vacuum. 

Then a balloon of hydrogen was mounted and the mixture was stirred vigorously for 24 h. The 

catalyst was removed by filtration of the reaction mixture through a pad of Celite. The filtrate 

was concentrated under reduced pressure to remove solvents and excess reagents. The crude 

product was purified by semipreparative HPLC using Symmetry C18 column under isocratic 

elution conditions (30:70 MeOH/H2O + 0.1% HCOOH) to afford acid 101 as a yellow solid (11 

mg, 40%). This was used immediately in the subsequent reaction. 

TMSCHN2 (2 M solution in hexanes, 20 µL, 0.041 mmol) was added to a solution of 101 

(11 mg, 0.031 mmol) in a mixture of methanol (0.10 mL) and benzene (0.21 mL) at room 
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temperature. After 30 min, the reaction mixture was concentrated under reduced pressure. The 

crude product was purified by flash column chromatography (gradient elution 1:4 to 7:3 

acetone/dichloromethane) to afford the ester 103 as a pale yellow solid (8.6 mg, 76%): 1H NMR 

(300 MHz, CDCl3) δ 1.05 (t, J = 7.3 Hz, 3H), 2.31 (s, 3H), 2.37 (q, J = 7.5 Hz, 2H), 3.79 (s, 3H), 

5.24 (s, 2H), 7.57 (s, 1H), 7.58 (t, J = 7.4 Hz, 1H), 7.78 (t, J = 8.4 Hz, 1H), 7.82 (d, J = 8.2 Hz, 

1H), 8.17 (d, J = 8.5 Hz, 1H), 8.27 (s, 1H); HRMS (EI) m/z calcd for C21H20N2O4 (M+) 

364.1423, found 364.1406; LRMS (EI) m/z 364 (M+, 67), 346 (19), 305 (100), 276 (65), 248 

(35), 219 (45), 140 (13), 75 (15). 

 

(S)-2-{12-[tert-Butyl(dimethyl)silyl]-2-hydroxy-8-methyl-9-oxo-9,11-dihydroindolizino[1,2-

b]quinolin-7-yl}-2-hydroxybutanoic acid (102): 

    

N
N

O

COOHHO

HO
TBS

 

Triethylamine (98 µL, 0.70 mmol) was added to a solution of 7-tert-butyldimethylsilyl-10-

hydroxy camptothecin (21 mg, 0.044 mmol) in MeOH (0.98 mL) under argon. Dry 10% 

palladium on activated carbon (4 mg) was carefully added to the reaction mixture and the 

dissolved oxygen was removed under vacuum. Then a balloon of hydrogen was mounted and the 

mixture was stirred vigorously for 14 h. The catalyst was removed by filtration of the reaction 

mixture through a pad of Celite. The filtrate was concentrated under reduced pressure to remove 

solvents and excess reagents. The crude product was purified by preparative TLC under isocratic 

elution conditions (95:5:5 dichloromethane/methanol/water) to afford 102 as a yellow solid (17 
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mg, 83%): 1H NMR (300 MHz, CD3SOCD3) δ 0.68 (s, 6H), 0.88 (t, J = 6.8 Hz, 3H), 0.98 (s, 

9H), 1.88-2.09 (m, 2H), 2.24 (s, 3H), 5.10 (s, 2H), 7.33 (dd, J = 2.4 Hz, 9.0 Hz, 1H), 7.45 (s, 

1H), 7.53 (d, J = 2.4 Hz, 1H), 7.99 (d, J = 9.1 Hz, 1H); 13C NMR (75 MHz, CD3SOCD3) δ −1.1, 

8.9, 13.9, 18.9, 27.1, 31.1, 52.1, 78.7, 99.1, 110.9, 121.8, 125.9, 131.3, 133.5, 137.0, 138.4, 

140.6, 142.3, 148.9, 153.7, 155.9, 161.1, 175.4. Copies of spectral data can be found in the 

appendix section. 

 

Chapter 5 

(R)-(−)-4-Ethyl-4-hydroxy-8-methoxy-6-(trimethylsilyl)-1,4-dihydro-3H-pyrano[3,4-

c]pyridine-3-one [(R)-115]: 

N

O

O

OTMS

HO

 

Enol ether 114 (1.1 g, 4.0 mmol) was added to a vigorously stirred solution of K3Fe(CN)6 (4.0 g, 

12 mmol), K2CO3 (1.7 g, 12 mmol), CH3SO2NH2 (74 mg, 7.8 mmol), (DHQ)2-PYR (89 mg, 0.20 

mmol) and OsO4 (0.25 mL of a 2.5w% in tBuOH, 0.5 mol%) in a 1:1 mixture of tBuOH/H2O (40 

mL) at 0 °C. After stirring at room temperature for 18 h, Na2SO3 (4.0 g) was slowely added and 

the resulting suspension stirred for a further 30 min. CH2Cl2 (50 mL) and H2O (50 mL) were 

added and the aqueous layer was further extracted with CH2Cl2 (3 x 25 mL). The combined 

organic extracts were dried over Na2SO4 and concentrated under reduced pressure. The crude 

product was purified by flash chromatography (5:1 dichloromethane/ethyl acetate) to afford the 

α-hydroxylactol as a white solid (0.96 g, 85%). 
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N-Iodosuccinimde (3.3 g, 15 mmol) and tetrabutylammonium iodide (1.1 g, 3.0 mmol) 

were added to a solution of the α-hydroxylactol (0.88 g, 3.0 mmol) in CH2Cl2 (6.0 mL). The 

reaction mixture was stirred at room temperature in the dark for 3 h, 5% Na2SO4 (50 mL) was 

added and the biphasic solution further diluted with CH2Cl2 (50 mL). The organic phase was 

washed with H2O (3 x 30 mL), dried over Na2SO4 and concentrated under reduced pressure. The 

crude product was purified by flash chromatography (1:4 ethyl acetate/hexanes) to afford the 

lactone (R)-115 as a clear oil (0.79 g, 90%, 96% ee); [α]D
23 = −83.0 (c = 0.5, CHCl3). For this 

lactone, all spectral data matched that previously reported for the corresponding (S)-lactone.65 

 

(R)-(−)- and (S)-(+)-4-Ethyl-4-fluoro-8-methoxy-6-trimethylsilyl-1,4-dihydro-3H-

pyrano[3,4-c]pyridin-3-one (116): 

     

N

O

O

TMS O

F

 

Diethylamino sulfurtrifluoride (15 µL, 0.11 mmol) was added dropwise via a syringe to a 

solution of (R)-115 (31 mg, 0.10 mmol) in CH2Cl2 (0.27 mL) at −78 °C. After stirring for 2 h at 

−78 °C, the reaction mixture was quenched with water (1.0 mL) and warmed to room 

temperature. The resulting suspension was extracted with CH2Cl2 (3 x 5 mL). The combined 

organic extracts were dried over MgSO4 and concentrated under reduced pressure to afford (S)-

116 as a yellow solid (22 mg, 76%). The crude product was sufficiently pure for subsequent 

reaction. Pyridine lactone (S)-116 was analyzed for enantiomeric purity using (S,S) WHELK O 1 

chiral column under isocratic elution with 5% isopropanol in hexanes. The enantiomeric excess 

(ee) was determined to be 93%. Following the same procedure, (S)-115 (36 mg, 0.12 mmol) was 
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reacted with diethylamino sulfurtrifluoride (18 µL, 0.13 mmol) in CH2Cl2 (0.31 mL) to afford 

the product (R)-116 as a yellow solid (31 mg, 86%, 91% ee): 1H NMR (300 MHz, CDCl3) δ 0.31 

(s, 9H), 1.03 (t, J = 7.4 Hz, 3H), 2.01 (m, 2H), 4.01 (s, 3H), 5.21 (d, J = 15.9 Hz, 1H), 5.54 (d, J 

= 15.9 Hz, 1H), 7.25 (s, 1H); 19F NMR (282 MHz, CDCl3) δ −164.3 (t, J = 22.6 Hz); 13C NMR 

(75 MHz, CDCl3) δ −2.0, 7.2 (d, J = 4.2 Hz), 30.3 (d, J = 27.0 Hz), 53.5, 65.5, 90.1 (d, J = 191 

Hz), 110.8 (d, J = 5.5 Hz), 116.9 (d, J = 5.3 Hz), 142.8 (d, J = 24.0 Hz), 157.9, 167.0, 167.9 (d, J 

= 22.0 Hz); IR (CHCl3, NaCl, cm-1) 2950, 2893, 1767, 1577, 1449, 1357, 1244, 1096; HRMS 

(EI) m/z calcd for C14H20FNO3Si (M+) 297.1197, found 297.1202; LRMS (EI) m/z 297 (M+, 32), 

282 (100), 269 (30), 254 (32), 238 (32), 213 (27), 162 (10), 84 (27), 77 (38); For “R” [α]D
23 = 

−57.2 (c = 0.50, CH2Cl2), for “S” [α]D
23 = +59.5 (c = 0.64, CH2Cl2). Copies of spectral data 

including the HMBC spectrum can be found in the appendix section. 

 

(R)-(−)- and (S)-(+)-4-Ethyl-4-fluoro-6-iodo-8-methoxy-1,4-dihydro-3H-pyrano[3,4-

c]pyridin-3-one: 

     

N

O

O

I O

F

 

ICl (1 M in dichloromethane, 1.2 mL, 1.2 mmol) was added to a solution of (S)-116 (92 mg, 0.31 

mmol) in CH2Cl2 (1.5 mL) at 0 °C in an ice bath and then allowed to warm to room temperature. 

After stirring for 16 h, the reaction mixture was poured into a chilled solution of 5% 

Na2SO3/brine (1:1, 24 mL) and extracted the mixture with ethyl acetate (3 x 30 mL). The 

combined organic extracts were dried over MgSO4 and concentrated under reduced pressure. The 

crude product was purified by flash chromatography (step gradient elution 1:9 to 1:4 ethyl 
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acetate/hexanes) to afford the corresponding (S)-iodide as a pale yellow oil (63 mg, 59%). 

Following the same procedure, (R)-116 (0.10 g, 0.35 mmol) was reacted with ICl (1.4 mL, 1.4 

mmol) in CH2Cl2 (1.8 mL) to afford the corresponding (R)-iodide as a pale yellow oil (80 mg, 

65%): 1H NMR (300 MHz, CDCl3) δ 1.02 (t, J = 7.3 Hz, 3H), 1.99 (m, 2H), 3.99 (s, 3H), 5.13 

(d, J = 15.8 Hz, 1H), 5.46 (d, J = 15.9 Hz, 1H), 7.50 (s, 1H); 19F NMR (282 MHz, CDCl3) δ 

−164.3 (t, J = 22.6 Hz); 13C NMR (75 MHz, CDCl3) δ 7.2, 30.1 (d, J = 26.3 Hz), 54.8, 64.8, 89.4 

(d, J = 192.9 Hz), 111.0 (d, J = 5.6 Hz), 113.3, 122.7 (d, J = 6.6 Hz), 146.0 (d, J = 23.6 Hz), 

157.7, 167.0 (d, J = 21.6 Hz); IR (CHCl3, NaCl, cm-1) 2980, 2950, 1772, 1582, 1460, 1362, 

1096; HRMS (EI) m/z calcd for C11H11FINO3 (M+) 350.9768, found 350.9769; LRMS (EI) m/z 

351 (M+, 100), 323 (6), 307 (55), 292 (44), 224 (27), 180 (45), 137 (24), 109 (19), 77 (13); For 

“R” [α]D
23 = −39.3 (c = 0.70, CH2Cl2), for “S” [α]D

23 = +38.9 (c = 2.80, CH2Cl2). 

 

(R)-(−)- and (S)-(+)-4-Ethyl-4-fluoro-6-iodo-1H-pyrano[3,4-c]pyridine-3,8(4H,7H)-dione: 

     

H
N

O

O

I O

F

 

Sodium iodide (81 mg, 0.54 mmol) was added to a solution of the above (S)-iodide (63 mg, 0.18 

mmol) in dry acetonitrile (2.4 mL) at room temperature. Chlorotrimethylsilane (68 µL, 0.54 

mmol) was then added and the reaction mixture was stirred for 15 min at room temperature. H2O 

(2.0 µL, 0.090 mmol) was next added and the reaction mixture was heated to 60 °C and stirred at 

that temperature for 14 h. The mixture was then poured into a solution of 5% Na2SO3/brine (1:1, 

17 mL) and quickly extracted with ethyl acetate (3 x 20 mL). The combined organic extracts 

were dried over MgSO4 and concentrated under reduced pressure. The crude product was 
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purified by flash chromatography (1:4 ethyl acetate/hexanes) to afford the corresponding (S)-

iodopyridone as a pale yellow solid (43 mg, 71%). Following the same procedure, (R)-iodide (80 

mg, 0.23 mmol) was reacted with sodium iodide (0.10 g, 0.68 mmol), chlorotrimethylsilane (87 

µL, 0.68 mmol) and H2O (2.0 µL, 0.11 mmol) in dry acetonitrile (3.0 mL) to afford the 

corresponding (R)-iodopyridone as a pale yellow solid (58 mg, 76%): 1H NMR (300 MHz, 

CDCl3) δ 1.06 (t, J = 7.2 Hz, 3H), 2.02 (dq, J = 7.2 Hz, 21.4 Hz, 2H), 5.11 (d, J = 16.2 Hz, 1H), 

5.54 (d, J = 16.3 Hz, 1H), 6.95 (s, 1H); 19F NMR (282 MHz, CDCl3) δ −164.2 (t, J = 22.6 Hz); 

13C NMR (75 MHz, CDCl3) δ 7.3, 30.0 (d, J = 26.2 Hz), 65.3, 89.0 (d, J = 193.2 Hz), 95.4, 114.1 

(d, J = 5.3 Hz), 118.5, 147.2 (d, J = 23.4 Hz), 161.2, 166.5 (d, J = 21.8 Hz); IR (CHCl3, NaCl, 

cm-1) 3431, 3098, 2919, 2842, 1762, 1649, 1547, 1454, 1152; HRMS (EI) m/z calcd for 

C10H9FINO3 (M+) 336.9611, found 336.9613; LRMS (EI) m/z 337 (M+, 100), 309 (7), 293 (94), 

278 (56), 266 (23), 166 (38), 138 (28), 91 (35); For “R” [α]D
23 = −45.2 (c = 0.21, CH2Cl2), for 

“S” [α]D
23 = +46.7 (c = 0.15, CH2Cl2). 

 

(R)-(−)- and (S)-(+)-4-Ethyl-4-fluoro-6-iodo-7-prop-2-ynyl-1H-pyrano[3,4-c]pyridine-

3,8(4H,7H)-dione (109): 

     

N

O

OI

F

O  

NaH in mineral oil (95%, 3.5 mg, 0.14 mmol) was added to a solution of the above (S)-

iodopyridone (43 mg, 0.13 mmol) in a mixture of DME (0.40 mL) and DMF (0.13 mL) at 0 °C 

under argon. After stirring this mixture for 10 min at 0 °C, LiBr (22 mg, 0.25 mmol) was added. 
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The reaction mixture was allowed to warm to room temperature and stirred for 15 min. Propargyl 

bromide (80% w/w in toluene, 42 µL, 0.38 mmol) was then added via a syringe and the reaction 

mixture was heated in the dark at 65 °C for 6 h. The final solution was poured into brine (5 mL) 

and extracted with ethyl acetate (3 x 5 mL). The combined organic extracts were dried over 

MgSO4 and concentrated under reduced pressure. The crude product was purified by flash 

chromatography (1:9 ethyl acetate/dichloromethane) to give (S)-109 as a white solid (28 mg, 

60%). Following the same procedure, (R)-iodopyridone (58 mg, 0.17 mmol) was alkylated with 

propargyl bromide (58 µL, 0.52 mmol) in the presence of NaH (4.8 mg, 0.19 mmol) and LiBr 

(30 mg, 0.34 mmol) in a mixture of DME (0.54 mL) and DMF (0.18 mL) to afford (R)-109 as a 

white solid (42 mg, 66%): 1H NMR (300 MHz, CDCl3) δ 1.05 (t, J = 7.5 Hz, 3H), 2.00 (m, 2H), 

2.40 (t, J = 2.5 Hz, 1H), 5.08 (dd, J = 1.4 Hz, 14.3 Hz, 1H), 5.11 (s, 2H), 5.48 (dd, J = 1.2 Hz, 

16.9 Hz, 1H), 7.06 (s, 1H); 19F NMR (282 MHz, CDCl3) δ −164.4 (t, J = 22.6 Hz); 13C NMR (75 

MHz, CDCl3) δ 7.3, 30.0 (d, J = 26.5 Hz), 44.1, 65.9, 73.7, 88.6 (d, J = 192.7 Hz), 100.5, 115.1 

(d, J = 7.8 Hz), 119.3, 145.2 (d, J = 23.6 Hz), 157.5, 166.4 (d, J = 21.8 Hz); IR (CHCl3, NaCl, 

cm-1) 3257, 3083, 2909, 2115, 1762, 1654, 1419, 1526, 1132; HRMS (EI) m/z calcd for 

C13H11FINO3 (M+) 374.9768, found 374.9771; LRMS (EI) m/z 375 (M+, 100), 346 (8), 331 (20), 

248 (5), 122 (8), 75 (13); For “R” [α]D
23 = −29.6 (c = 0.50, CH2Cl2), for “S” [α]D

23 = +32.0 (c = 

0.35, CH2Cl2). Copies of spectral data can be found in the appendix section. 

 

General procedure 5A: Radical Cascade Cyclization towards the Synthesis of 20-

Fluorocamptothecins. 

A solution of iodopyridone 109 in benzene was taken up in a 15 x 45 mm cylindrical 

screw-cap glass vial and kept at room temperature. A solution of isonitrile and then 
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hexamethylditin were added at room temperature. The vial was capped and the reaction mixture 

was irradiated with a 275W GE sunlamp for 5 h. The solvent was then evaporated and the 

residue was purified by flash column chromatography (1:9 acetone/dichloromethane). 

 

(R)-(−)- and (S)-(+)-20-Fluoro camptothecin (107): 

    

N
N

O

O

O
F

 

Following general procedure 5A, iodopyridone (S)-109 (10 mg, 0.027 mmol) was reacted with 

phenyl isonitrile (1 M in benzene, 0.13 mL, 0.13 mmol) and hexamethylditin (15 µL, 0.040 

mmol) in benzene (0.44 mL) to afford (S)-107, after purification, as a yellow solid (1.0 mg, 

11%). Following the same procedure, iodopyridone (R)-109 (12 mg, 0.033 mmol) was reacted 

with phenyl isonitrile (1 M in benzene, 0.17 mL, 0.17 mmol) and hexamethylditin (19 µL, 0.050 

mmol) in benzene (0.55 mL) to afford (R)-107, after purification, as a yellow solid (1.6 mg, 

14%): 1H NMR (300 MHz, CDCl3) δ 1.12 (t, J = 7.4 Hz, 3H), 2.14 (dq, J = 7.4 Hz, 22.2 Hz, 2H), 

5.28 (dd, J = 1.4 Hz, 15.3 Hz, 1H), 5.32 (s, 2H), 5.72 (dd, J = 1.2 Hz, 16.7 Hz, 1H), 7.54 (s, 1H) 

7.69 (ddd, J = 1.2 Hz, 6.9 Hz, 8.1 Hz, 1H), 7.86 (ddd, J = 1.5 Hz, 6.9 Hz, 8.4 Hz, 1H), 7.95 (d, J 

= 8.2 Hz, 1H), 8.24 (d, J = 8.3 Hz, 1H), 8.42 (s, 1H); 19F NMR (282 MHz, CDCl3) δ −163.2 (t, J 

= 22.6 Hz); 13C NMR (75 MHz, CDCl3) δ 7.4, 30.1 (d, J = 14.7 Hz), 50.2, 66.1, 89.5 (d, J = 

193.7 Hz), 96.6 (d, J = 3.7 Hz), 119.5, 128.2, 128.4, 129.8, 130.8, 131.2, 146.4 (d, J = 14.3 Hz), 

146.9, 149.0, 152.1, 157.3, 167.3 (d, J = 11.3 Hz); IR (CHCl3, NaCl, cm-1) 2914, 2842, 2356, 

2335, 1767, 1649, 1603, 1454, 1157; HRMS (EI) m/z calcd for C20H15FN2O3 (M+) 350.1067, 

found 350.1055; LRMS (EI) m/z 350 (M+, 45), 307 (10), 291 (25), 266 (10), 129 (17), 97 (40), 
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83 (50), 69 (69), 57 (100); For “R” [α]D
23 = −76.2 (c = 0.08, CH2Cl2), for “S” [α]D

23 = +74.4 (c = 

0.10, CH2Cl2). Copies of spectral data can be found in the appendix section. 

 

(R)-(−)-10,20-Difluorocamptothecin (111a): 

    

N
N

O

O

O
F

F

 

Following the general procedure 5A, iodopyridone (R)-109 (9.0 mg, 0.024 mmol) was reacted 

with p-fluorophenyl isonitrile (1 M in benzene, 0.12 mL, 0.12 mmol) and hexamethylditin (14 

µL, 0.036 mmol) in benzene (0.40 mL) to afford (R)-111a, after purification, as a pale yellow 

solid (2.0 mg, 23%): 1H NMR (300 MHz, CDCl3) δ 1.13 (t, J = 7.4 Hz, 3H), 2.14 (dq, J = 7.6 

Hz, 22.0 Hz, 2H), 5.28 (d, J = 17.3 Hz, 1H), 5.33 (s, 2H), 5.73 (d, J = 16.7 Hz, 1H), 7.53 (s, 1H), 

7.56-7.67 (m, 2H), 8.26 (dd, J = 5.4 Hz, 9.3 Hz, 1H), 8.38 (s, 1H); 19F NMR (282 MHz, CDCl3) 

δ −108.7 (dd, J = 8.5 Hz, 14.1 Hz), −161.6 (t, J = 22.6 Hz); IR (CH2Cl2, NaCl, cm-1) 3354, 2924, 

2858, 1762, 1664, 1603, 1495, 1465, 1229, 1060; HRMS (EI) m/z calcd for C20H14F2N2O3 (M+) 

368.0972, found 368.0973; LRMS (EI) m/z 368 (M+, 100), 340 (16), 325 (35), 309 (67), 297 

(72), 261 (19), 158 (19), 131 (17), 75 (20); [α]D
23 = −10.0 (c = 0.005, CH2Cl2). 

 

(R)-(−)-20-Fluoro-9,10-methylenedioxy camptothecin (111b) and 20-Fluoro-10,11-

methylenedioxycamptothecin (111c): 

Following the general procedure 5A, iodopyridone (R)-109 (25 mg, 0.024 mmol) was reacted 

with 3,4-methylenedioxyphenyl isonitrile (49 mg, 0.33 mmol) and hexamethylditin (39 µL, 0.10 

mmol) in benzene (1.1 mL) to afford a separable 1:2.5 mixture of 9,10- and 10,11-
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methylenedioxy isomers (R)-111b and (R)-111c, after purification, as a pale yellow solids (2.0 

and 5.0 mg respectively, 26%):  

    

N
N

O

O

O
F

O
O

 

1H NMR (300 MHz, CDCl3) δ 1.12 (t, J = 7.4 Hz, 3H), 2.13 (dq, J = 7.4 Hz, 21.6 Hz, 2H), 5.27 

(d, J = 16.5 Hz, 1H), 5.30 (s, 2H), 5.73 (d, J = 16.6 Hz, 1H), 6.29 (s, 2H), 7.49 (s, 1H), 7.53 (d, J 

= 8.8 Hz, 1H), 7.86 (d, J = 9.0 Hz, 1H), 8.38 (s, 1H); 19F NMR (282 MHz, CDCl3) δ −163.5 (t, J 

= 22.0 Hz); IR (CH2Cl2, NaCl, cm-1) 3354, 2919, 2852, 2345, 2325, 1659, 1629, 1460, 1050; 

HRMS (EI) m/z calcd for C21H15FN2O5 (M+) 394.0965, found 394.0954; LRMS (EI) m/z 394 

(M+, 100), 365 (13), 323 (36), 310 (17), 153 (5); [α]D
23 = −14.2 (c = 0.06, CH2Cl2). 

 

    

N
N

O

O

O
F

O

O

 

1H NMR (300 MHz, CDCl3) δ 1.12 (t, J = 7.4 Hz, 3H), 2.13 (m, 2H), 5.25 (s, 2H), 5.27 (d, J = 

16.4 Hz, 1H), 5.73 (d, J = 16.4 Hz, 1H), 6.21 (s, 2H), 7.17 (s, 1H), 7.45 (s, 1H), 7.50 (s, 1H), 

8.21 (s, 1H); 19F NMR (282 MHz, CDCl3) δ −163.6 (t, J = 22.0 Hz); IR (CH2Cl2, NaCl, cm-1) 

2919, 2842, 1654, 1465, 1255, 1157, 1111; HRMS (EI) m/z calcd for C21H15FN2O5 (M+) 

394.0965, found 394.0964; LRMS (EI) m/z 394 (M+, 100), 365 (13), 351 (17), 335 (60), 323 

(54), 310 (25), 207 (10), 105 (19), 64 (42); [α]D
23 = −8.3 (c = 0.17, CH2Cl2). Copies of spectral 

data of both isomers can be found in the appendix section. 
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(R)-(−)-7-tert-Butyldimethylsilyl-20-fluoro-10-hydroxy camptothecin (112): 

    

N
N

O

O

O
F

HO
TBS

 

Diethylamino sulfurtrifluoride (9.0 µL, 0.070 mmol) was added dropwise via a syringe to a 

solution of DB67 (31 mg, 0.064 mmol) in CH2Cl2 (0.21 mL) at −78 °C. After stirring for 2 h at 

−78 °C, the reaction mixture was quenched with water (1.0 mL) and warmed to room 

temperature. The resulting suspension was extracted with CH2Cl2 (3 x 5 mL). The combined 

organic extracts were dried over MgSO4 and concentrated under reduced pressure to afford 112 

as a yellow solid (19 mg, 61%). The crude product was sufficiently pure for subsequent analysis: 

1H NMR (300 MHz, CD3SOCD3) δ 0.64 (s, 6H), 0.94 (s, 9H), 0.96 (t, J = 7.5 Hz, 3H), 2.07-2.22 

(m, 2H), 5.22 (s, 2H), 5.47 (d, J = 16.7 Hz, 1H), 5.50 (d, J = 16.4 Hz, 1H), 7.10 (s, 1H), 7.38 (dd, 

J = 2.4 Hz, 9.1 Hz, 1H), 7.56 (d, J = 2.5 Hz, 1H), 8.03 (d, J = 9.1 Hz, 1H); 19F NMR (282 MHz, 

CDCl3) δ −163.5; 13C NMR (150 MHz, CD3OD) δ −0.8, 7.7, 19.8, 27.6, 30.2 (d, J = 25.6 Hz), 

53.8, 66.7, 91.2 (d, J = 191.0 Hz), 95.7 (d, J = 8.4 Hz), 112.0, 119.2 (d, J = 4.5 Hz), 123.3, 

132.4, 135.6, 138.1, 140.9, 143.8, 147.3 (d, J = 24.0 Hz), 148.4 (d, J = 36.0 Hz), 157.6, 158.2, 

168.5 (d, J = 21.0 Hz); IR (CH2Cl2, NaCl, cm-1) 3380, 3242, 2929, 2858, 1767, 1659, 1588, 

1552, 1413, 1301, 1106; HRMS (EI) m/z calcd for C26H29FN2O4Si (M+) 480.1881, found 

480.1876; LRMS (EI) m/z 480 (M+, 31), 423 (40), 379 (20), 264 (43), 199 (12), 136 (13), 91 

(100), 73 (52); [α]D
23 = −15.0 (c = 0.08, CH2Cl2). 
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Chapter 6 

2,4-Dibromoquinazoline (117): 

     

N

N B

Br

r

 

A two-necked round bottomed flask charged with benzoylene urea (1.9 g, 12 mmol) was fitted 

with an overhead mechanical stirrer. Addition of phosphorus oxybromide (23 g, 80 mmol) was 

followed by a dropwise addition of N,N-dimethylaniline (0.75 mL, 5.9 mmol) via a syringe at 

room temperature. This mixture was heated to 105 °C in an oil bath and vigorously stirred for 4 

h. At this temperature, the reaction mixture forms a pale yellow slurry which, after the reaction is 

done, turns bright yellow. The reaction was then cooled to 0 °C in an ice bath and carefully 

quenched with chilled water. The resulting mixture was extracted with CH2Cl2 (3 x 100 mL). 

The combined organic extracts were dried over MgSO4 and concentrated under reduced pressure. 

The crude product was immediately purified by column chromatography using basic alumina as 

the immobile phase (gradient elution 15:85 to 3:2 ethyl acetate/hexanes) to afford 117 as a white 

solid (1.8 g, 52%): 1H NMR (300 MHz, CD3OD) δ 7.78 (ddd, J = 1.2 Hz, 7.0 Hz, 8.3 Hz, 1H), 

7.89 (dd, J = 0.5 Hz, 8.4 Hz, 1H), 8.01 (ddd, J = 1.4 Hz, 6.9 Hz, 8.4 Hz, 1H), 8.19 (dd, J = 1.3 

Hz, 8.4 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 124.8, 128.0, 128.3, 129.5, 136.0, 145.7, 151.8, 

157.6; HRMS (EI) m/z calcd for C8H4
79Br2N2 (M+ − 2) 285.8741, found 285.8750; LRMS (EI) 

m/z 286 (M+ − 2, 55), 288 (M+, 85), 290 (M+ + 2, 54), 207 (100), 209 (100), 128 (75), 102 (75), 

75 (50). 
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2-Bromoquinazolin-4(3H)-one (120): 

     

NH

N B

O

r

 

Aqueous NaOH (1 N, 37 mL, 37 mmol) was added to a solution of 117 (1.8 g, 6.1 mmol) in THF 

(12 mL) at room temperature and the reaction mixture was stirred for 2 h. The reaction mixture 

was then acidified (pH ~ 5) with glacial acetic acid and extracted with CH2Cl2 (3 x 40 mL). The 

combined organic extracts were concentrated under reduced pressure. Small amounts of water 

were azeotropically removed by coevaporation with MeOH to afford 120 as a tan solid (1.4 g, 

100%): 1H NMR (300 MHz, CD3OD) δ 7.46 (ddd, J = 1.1 Hz, 7.2 Hz, 8.1 Hz, 1H), 7.54 (d, J = 

8.1 Hz, 1H), 7.73 (ddd, J = 1.5 Hz, 7.1 Hz, 8.5 Hz, 1H), 8.13 (dd, J = 1.5 Hz, 8.0 Hz, 1H); 13C 

NMR (75 MHz, CD3SOCD3) δ 114.4, 115.5, 122.5, 127.0, 135.1, 141.0, 150.4, 163.0; IR 

(CH2Cl2, NaCl, cm-1) 3385, 2909, 2847, 1700, 1669, 1593, 1449, 1296; HRMS (EI) m/z calcd for 

C8H5
79BrN2O (M+ − 2) 223.9585, found 223.9582; LRMS (EI) m/z 224 (M+ − 2, 27), 226 (M+, 

27), 203 (37), 183 (10), 145 (60), 91 (47), 71 (100). Copies of spectral data can be found in the 

appendix section. 

 

General Procedure 6A: N-Propargylation of Quinazolinone 120. 

 NaH (95% in mineral oil) was added to a solution of 120 in DMF at 0 °C under argon. 

After stirring this mixture for 10 min at 0 °C, propargyl bromide (80% w/w in toluene) was then 

added via a syringe and the reaction mixture was stirred at room temperature for 6.5 h. The final 

solution was poured into brine (10 mL) and extracted with ethyl acetate (3 x 10 mL). The 

combined organic extracts were dried over MgSO4 and concentrated under reduced pressure. The 
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crude product was purified by flash chromatography (1:4 ethyl acetate/hexanes) to give N-

propargylated quinazolinones in good yields. 

 

2-Bromo-3-prop-2-ynylquinazolin-4(3H)-one (121): 

     

N

N B

O

r

 

Following general procedure 6A, 120 (0.11 g, 0.47 mmol) was reacted with propargyl bromide 

(62 µL, 0.56 mmol) in the presence of NaH (13 mg, 0.51 mmol) in DMF (2.3 mL) to give 121 as 

a pale yellow solid (81 mg, 66%): 1H NMR (300 MHz, CDCl3) δ 2.35 (t, J = 2.5 Hz, 1H), 5.08 

(d, J = 2.5 Hz, 2H), 7.50 (ddd, J = 1.2 Hz, 7.4 Hz, 8.1 Hz, 1H), 7.62 (dd, J = 0.6 Hz, 8.2 Hz, 1H), 

7.75 (ddd, J = 1.6 Hz, 7.2 Hz, 8.3 Hz, 1H), 8.24 (dd, J = 1.2 Hz, 8.0 Hz, 1H); 13C NMR (75 

MHz, CDCl3) δ 38.2, 72.9, 76.8, 120.3, 126.9, 127.4, 127.7, 134.6, 135.1, 147.0, 160.5; IR 

(CH2Cl2, NaCl, cm-1) 3267, 2980, 2361, 2125, 1690, 1577, 1557, 1332, 1152; HRMS (EI) m/z 

calcd for C11H7BrN2O (M+ − 1) 261.9742, found 261.9747; LRMS (EI) m/z 262 (M+ − 1, 46), 

262 (M+ + 1, 46), 183 (100), 155 (20), 129 (31), 102 (19), 63 (14). Copies of spectral data can be 

found in the appendix section. 

 

2-Bromo-3-{3-[tert-butyl(dimethyl)silyl]prop-2-ynyl}quinazolin-4(3H)-one (129{b}): 

     

N

N

O

TBS

Br
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Following general procedure 6A, 120 (0.31 g, 1.4 mmol) was reacted with 3-tert-

butyldimethylsilyl propargyl bromide (0.38 g, 1.6 mmol) in the presence of NaH (38 mg, 1.5 

mmol) in DMF (6.8 mL) to give 129{b} as a tan solid (0.29 g, 56%): 1H NMR (300 MHz, 

CDCl3) δ 0.1 (s, 6H), 0.93 (s, 9H), 5.12 (s, 2H), 7.53 (ddd, J = 1.3 Hz, 7.1 Hz, 8.3 Hz, 1H), 7.65-

7.69 (m, 1H), 7.78 (ddd, J = 1.6 Hz, 7.1 Hz, 8.6 Hz, 1H), 8.27 (ddd, J = 0.6 Hz, 1.5 Hz, 8.0 Hz, 

1H); 13C NMR (75 MHz, CDCl3 + CD3SOCD3) δ −5.6, 15.5, 25.1, 29.7, 84.0, 100.0, 113.1, 

114.6, 121.7, 126.9, 134.1, 138.6, 149.1, 160.8; IR (CH2Cl2, NaCl, cm-1) 2924, 2852, 1721, 

1669, 1449, 1244, 1019. Copies of spectral data can be found in the appendix section. 

 

2-Bromo-3-pent-2-ynylquinazolin-4(3H)-one (129{c}): 

     

N

N

O

Br

 

Following general procedure 6A, 120 (0.32 g, 1.4 mmol) was reacted with 1-bromopent-2-yne 

(0.18 mL, 1.7 mmol) in the presence of NaH (39 mg, 1.6 mmol) in DMF (7.1 mL) to give 129{c} 

as a tan solid (0.23 g, 56%): 1H NMR (300 MHz, CDCl3) δ 1.11 (t, J = 7.5 Hz, 3H), 2.18 (tq, J = 

2.2 Hz, 7.5 Hz, 2H), 5.03 (t, J = 2.5 Hz, 2H), 7.49 (ddd, J = 1.2 Hz, 7.2 Hz, 8.1 Hz, 1H), 7.61 (d, 

J = 7.8 Hz, 1H), 7.74 (ddd, J = 1.5 Hz, 7.2 Hz, 8.4 Hz, 1H), 8.23 (dd, J = 1.3 Hz, 8.0 Hz, 1H); 

13C NMR (75 MHz, CDCl3 + CD3SOCD3) δ 11.7, 13.3, 29.6, 74.0, 83.0, 113.5, 115.1, 122.1, 

127.2, 134.5, 139.1, 149.4, 161.1; IR (CH2Cl2, NaCl, cm-1) 3042, 2899, 1721, 1659, 1629, 1454, 

1342, 1142; HRMS (EI) m/z calcd for C13H11
79BrN2O (M – 1) 290.0055, found 290.0065; LRMS 

(EI) m/z 290 (M+ − 1, 12), 290 (M+ + 1, 12), 277 (M+ − 1, 46), 277 (M+ + 1, 46), 213 (100), 146 

(47), 119 (25). Copies of spectral data can be found in the appendix section. 
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2-Bromo-3-[5-(trimethylsilyl)pent-2-ynyl]quinazolin-4(3H)-one (129{d}): 

     

N

N

O

Br

TMS  

Following general procedure 6A, 120 (0.12 g, 0.54 mmol) was reacted with 5-trimethylsilyl 

propargyl bromide (0.14 g, 0.65 mmol) in the presence of NaH (15 mg, 0.60 mmol) in DMF (2.7 

mL) to give 129{d} as a pale yellow solid (0.10 g, 54%): 1H NMR (300 MHz, CDCl3) δ −0.02 (s, 

9H), 0.77 (t, J = 8.1 Hz, 2H), 2.21 (tt, J = 2.2 Hz, 7.9 Hz, 2H), 5.05 (t, J = 2.1 Hz, 2H), 7.50 (dt, 

J = 1.0 Hz, 8.0 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.75 (dt, J = 1.5 Hz, 8.3 Hz, 1H), 8.26 (dd, J = 

1.4 Hz, 8.0 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ −1.8, 13.3, 15.8, 30.7, 73.5, 85.1, 114.6, 

115.2, 123.5, 128.5, 135.1, 138.4, 151.4, 161.6; IR (CH2Cl2, NaCl, cm-1) 3057, 2950, 2909, 

1726, 1664, 1618, 1449, 1270, 1239. Copies of spectral data can be found in the appendix 

section. 

 

General procedure 6B: Radical Cascade Cyclization towards the Synthesis of Luotonins. 

A solution of N-propargylated quinazolinone in benzene was taken up in a 15 x 45 mm 

cylindrical screw-cap glass vial and kept at room temperature. The appropriate isonitrile 

followed by hexamethylditin were added at room temperature. The vial was capped and the 

reaction mixture was irradiated with a 275W GE sunlamp for 8 h. The solvent was then 

evaporated and the residue was purified by column chromatography (1:9 

acetone/dichloromethane or 1:9 ethyl acetate/dichloromethane) to give luotonins as pale yellow 

to tan solids. 
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LC-MS analysis: All the luotonins were analyzed by LCMS using XTerra C18 analytical 

column at the wavelength of 254 nm under the following conditions: 5 µL injection in CH2Cl2, 

gradient CH3CN/H2O (25:75) to CH3CN/H2O (100:0) for 30 min, then isocratic CH3CN (100%) 

for 10 min at the rate of 0.4 mL/min. The peaks were detected by ESI-MS for the corresponding 

m/z ratios. 

 

Luotonin A (122): 

    

N
N

N

O

 

Following general procedure 6B, quinazolinone 121 (35 mg, 0.13 mmol) was reacted with 

phenyl isonitrile (1 M in benzene, 0.66 mL, 0.66 mmol) and hexamethylditin (77 µL, 0.20 mmol) 

in benzene (2.2 mL) to afford 122 (18 mg, 47%): 1H NMR (300 MHz, CDCl3) δ 5.37 (s, 2H), 

7.60 (dt, J = 1.1 Hz, 8.0 Hz, 1H), 7.71 (ddd, J = 1.1 Hz, 7.0 Hz, 8.1 Hz, 1H), 7.87 (dt, J = 1.3 Hz, 

7.1 Hz, 2H), 7.98 (d, J = 7.7 Hz, 1H), 8.14 (d, J = 8.1 Hz, 1H), 8.47 (t, J = 8.0 Hz, 2H), 8.48 (s, 

1H); 13C NMR (75 MHz, CDCl3) δ 47.3, 121.3, 126.4, 127.4, 128.0, 128.5, 128.8, 129.4, 130.7, 

131.6, 134.6, 149.3, 149.4, 151.1, 152.5, 160.7; IR (CH2Cl2, NaCl, cm-1) 2919, 2842, 2351, 

2335, 1669, 1623, 1454; HRMS (EI) m/z calcd for C18H11N3O (M+) 285.0902, found 285.0900; 

LRMS (EI) m/z 285 (M+, 50), 218 (47), 200 (100), 184 (20), 146 (69), 119 (45), 92 (43); LCMS 

[Rt = 13.5 min; 286 (M + H)]. Copies of 1H NMR spectrum and LCMS data can be found in the 

appendix section. 
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8-Ethylluotonin A (130{c, 1}): 

    

N
N

N

O

 

Following general procedure 6B, quinazolinone 129{c} (13 mg, 0.043 mmol) was reacted with 

phenyl isonitrile (1 M in benzene, 0.26 mL, 0.26 mmol) and hexamethylditin (25 µL, 0.064 

mmol) in benzene (0.72 mL) to afford 130{c, 1} (9.2 mg, 68%): 1H NMR (300 MHz, CDCl3) δ 

1.47 (t, J = 7.7 Hz, 3H), 3.28 (q, J = 7.7 Hz, 2H), 5.34 (s, 2H), 7.60 (t, J = 7.1 Hz, 1H), 7.74 (dd, 

J = 5.5 Hz, 7.1 Hz, 1H), 7.83-7.90 (m, 2H), 8.13 (t, J = 8.3 Hz, 1H), 8.19 (d, J = 8.0 Hz, 1H), 

8.46 (dd, J = 1.9 Hz, 8.1 Hz, 1H), 8.51 (d, J = 8.6 Hz, 1H); LCMS [Rt = 16.8 min; 314 (M + H)]. 

 

10-Fluoroluotonin A (130{a, 2}): 

    

N
N

N

OF

 

Following general procedure 6B, quinazolinone 121 (12 mg, 0.046 mmol) was reacted with p-

fluorophenyl isonitrile (1 M in benzene, 0.23 mL, 0.23 mmol) and hexamethylditin (26 µL, 

0.068 mmol) in benzene (0.76 mL) to afford 130{a, 2} (9.0 mg, 65%): 1H NMR (300 MHz, 

CDCl3) δ 5.37 (s, 2H), 7.57-7.66 (m, 3H), 7.88 (ddd, J = 1.6 Hz, 7.2 Hz, 8.6 Hz, 1H), 8.13 (d, J 

= 8.3 Hz, 1H), 8.43-8.53 (m, 3H); LCMS [Rt = 14.6 min; 304 (M + H)]. 

 

 

 

148 



 

8-Ethyl-10-fluoroluotonin A (130{c, 2}): 

    

N
N

N

OF

 

Following general procedure 6B, quinazolinone 129{c} (15 mg, 0.050 mmol) was reacted with p-

fluorophenyl isonitrile (1 M in benzene, 0.25 mL, 0.25 mmol) and hexamethylditin (29 µL, 

0.075 mmol) in benzene (0.84 mL) to afford 130{c, 2} (13 mg, 75%): 1H NMR (300 MHz, 

CDCl3) δ 1.45 (t, J = 7.6 Hz, 3H), 3.21 (q, J = 7.7 Hz, 2H), 5.33 (s, 2H), 7.57-7.65 (m, 2H), 7.76 

(dd, J = 2.7 Hz, 9.9 Hz, 1H), 7.87 (dt, J = 1.5 Hz, 8.6 Hz, 1H), 8.12 (d, J = 8.2 Hz, 1H), 8.45 (dd, 

J = 1.2 Hz, 8.0 Hz, 1H), 8.50 (dd, J = 5.6 Hz, 9.3 Hz, 1H); LCMS [Rt = 17.6 min; 332 (M + H)]. 

Copies of 1H NMR spectrum and LCMS data can be found in the appendix section. 

 

10-Trifluoromethylluotonin A (130{a, 3}): 

    

N
N

N

OF3C

 

Following general procedure 6B, quinazolinone 121 (11 mg, 0.043 mmol) was reacted with p-

trifluoromethylphenyl isonitrile (1 M in benzene, 0.22 mL, 0.22 mmol) and hexamethylditin (25 

µL, 0.065 mmol) in benzene (0.72 mL) to afford 130{a, 3} (11 mg, 71%): 1H NMR (300 MHz, 

CDCl3) δ 5.41 (s, 2H), 7.62 (t, J = 7.2 Hz, 1H), 7.89 (dt, J = 1.4 Hz, 8.4 Hz, 1H), 8.03 (dd, J = 

1.8 Hz, 8.9 Hz, 1H), 8.14 (d, J = 8.1 Hz, 1H), 8.30 (s, 1H), 8.46 (dd, J = 1.3 Hz, 8.0 Hz, 1H), 

8.58 (s, 1H), 8.61 (d, J = 9.1 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 47.3, 121.4, 125.4, 126.4, 

126.5, 127.7, 127.9, 128.9, 130.6, 131.9, 132.7, 135.0, 149.2, 150.3, 152.0, 153.5, 160.5; IR 
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(CH2Cl2, NaCl, cm-1) 2914, 2842, 2351, 1680, 1629, 1362, 1280, 1122; HRMS (EI) m/z calcd for 

C19H10F3N3O (M+) 353.0776, found 353.0779; LRMS (EI) m/z 353 (M+, 100), 325 (10), 284 (8), 

140 (6), 77(25); LCMS [Rt = 17.9 min; 354 (M + H)]. Copies of 1H NMR spectrum and LCMS 

data can be found in the appendix section. 

 

8-Ethyl-10-trifluoromethylluotonin A (130{c, 3}): 

    

N
N

N

OF3C

 

Following general procedure 6B, quinazolinone 129{c} (13 mg, 0.045 mmol) was reacted with p-

trifluoromethylphenyl isonitrile (1 M in benzene, 0.23 mL, 0.23 mmol) and hexamethylditin (26 

µL, 0.068 mmol) in benzene (0.76 mL) to afford 130{c, 3} (11 mg, 62%): 1H NMR (300 MHz, 

CDCl3) δ 1.49 (t, J = 7.7 Hz, 3H), 3.32 (q, J = 7.7 Hz, 2H), 5.37 (s, 2H), 7.63 (t, J = 8.0 Hz, 1H), 

7.89 (dt, J = 1.5 Hz, 8.3 Hz, 1H), 8.02 (dd, J = 1.8 Hz, 8.9 Hz, 1H), 8.15 (d, J = 8.3 Hz, 1H), 

8.46 (s, 1H), 8.47 (dd, J = 1.5 Hz, 7.9 Hz, 1H), 8.62 (d, J = 8.8 Hz, 1H); LCMS [Rt = 20.4 min; 

382 (M + H)]. 

 

10-Methylluotonin A (130{a, 4}): 

    

N
N

N

OH3C

 

Following general procedure 6B, quinazolinone 121 (11 mg, 0.041 mmol) was reacted with p-

methylphenyl isonitrile (1 M in benzene, 0.21 mL, 0.21 mmol) and hexamethylditin (24 µL, 
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0.062 mmol) in benzene (0.68 mL) to afford 130{a, 4} (7.0 mg, 57%): 1H NMR (300 MHz, 

CDCl3) δ 3.05 (s, 3H), 5.36 (s, 2H), 7.57-7.63 (m, 2H), 7.72 (d, J = 7.0 Hz, 1H), 7.82 (d, J = 8.2 

Hz, 1H), 7.87 (dt, J = 1.4 Hz, 8.4 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 8.44-8.47 (m, 2H); 13C NMR 

(75 MHz, CDCl3) δ 20.1, 50.7, 129.5, 134.5, 135.0, 136.0, 137.1, 137.5, 137.6, 137.7, 138.0, 

139.6, 140.6, 143.5, 148.5, 159.4; IR (CH2Cl2, NaCl, cm-1) 3272, 2919, 2852, 1680, 1629, 1598, 

1460, 1311, 1096; HRMS (EI) m/z calcd for C19H13N3O (M+) 299.1059, found 299.1053; LRMS 

(EI) m/z 299 (M+, 100), 150 (6), 77 (5); LCMS [Rt = 16.8 min; 300 (M + H)]. Copies of 1H 

NMR spectrum and LCMS data can be found in the appendix section. 

 

8-Ethyl-10-methylluotonin A (130{c, 4}): 

    

N
N

N

OH3C

 

Following general procedure 6B, quinazolinone 129{c} (11 mg, 0.037 mmol) was reacted with p-

methylphenyl isonitrile (1 M in benzene, 0.18 mL, 0.18 mmol) and hexamethylditin (21 µL, 

0.055 mmol) in benzene (0.61 mL) to afford 130{c, 4} (4.0 mg, 33%): 1H NMR (300 MHz, 

CDCl3) δ 1.45 (t, J = 7.6 Hz, 3H), 3.05 (s, 3H), 3.25 (q, J = 7.7 Hz, 2H), 5.32 (s, 2H), 7.55-7.64 

(m, 2H), 7.70 (d, J = 5.8 Hz, 1H), 7.87 (ddd, J = 1.5 Hz, 7.1 Hz, 8.4 Hz, 1H), 8.03 (d, J = 8.3 Hz, 

1H), 8.10 (d, J = 8.3 Hz, 1H), 8.46 (dd, J = 1.2 Hz, 7.9 Hz, 1H); LCMS [Rt = 20.0 min; 328 (M 

+ H)]. 
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10-Methoxyluotonin A (130{a, 5}): 

    

N
N

N

OMeO

 

Following general procedure 6B, quinazolinone 121 (12 mg, 0.046 mmol) was reacted with p-

methoxyphenyl isonitrile (1 M in benzene, 0.23 mL, 0.23 mmol) and hexamethylditin (26 µL, 

0.068 mmol) in benzene (0.76 mL) to afford 130{a, 5} (9.1 mg, 63%): 1H NMR (300 MHz, 

CDCl3) δ 4.00 (s, 3H), 5.34 (s, 2H), 7.20 (d, J = 2.6 Hz, 3H), 7.51 (dd, J = 2.7 Hz, 9.4 Hz, 1H), 

7.58 (t, J = 7.9 Hz, 1H), 7.85 (dt, J = 1.4 Hz, 8.3 Hz, 1H), 8.11 (d, J = 8.3 Hz, 1H), 8.33 (s, 1H), 

8.38 (d, J = 9.4 Hz, 1H), 8.44 (d, J = 8.0 Hz, 1H); LCMS [Rt = 14.3 min; 316 (M + H)]. 

 

8-Ethyl-10-methoxyluotonin A (130{c, 5}): 

    

N
N

N

OMeO

 

Following general procedure 6B, quinazolinone 129{c} (14 mg, 0.048 mmol) was reacted with p-

methoxyphenyl isonitrile (1 M in benzene, 0.24 mL, 0.24 mmol) and hexamethylditin (30 µL, 

0.072 mmol) in benzene (0.80 mL) to afford 130{c, 5} (14 mg, 86%): 1H NMR (300 MHz, 

CDCl3) δ 1.44 (t, J = 7.7 Hz, 3H), 3.19 (q, J = 7.7 Hz, 2H), 4.00 (s, 3H), 5.27 (s, 2H), 7.31 (d, J 

= 2.6 Hz, 1H), 7.49 (dd, J = 2.7 Hz, 9.3 Hz, 1H), 7.56 (dt, J = 1.1 Hz, 8.1 Hz, 1H), 7.85 (ddd, J = 

1.5 Hz, 7.2 Hz, 8.5 Hz, 1H), 8.10 (d, J = 8.2 Hz, 1H), 8.37 (d, J = 9.3 Hz, 1H), 8.42 (dd, J = 1.3 

Hz, 8.0 Hz, 1H); LCMS [Rt = 17.6 min; 344 (M + H)]. 
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8-Trimethylsilylethyl-10-methoxyluotonin A (130{d, 5}): 

    

N
N

N

OMeO

TMS

 

Following general procedure 6B, quinazolinone 129{d} (12 mg, 0.033 mmol) was reacted with 

p-methoxyphenyl isonitrile (1 M in benzene, 0.16 mL, 0.16 mmol) and hexamethylditin (19 µL, 

0.050 mmol) in benzene (0.55 mL) to afford 130{d, 5} (10 mg, 74%): 1H NMR (300 MHz, 

CDCl3) δ 0.21 (s, 9H), 0.95-1.01 (m, 2H), 3.07-3.13 (m, 2H), 4.00 (s, 3H), 5.28 (s, 2H), 7.35 (d, 

J = 2.6 Hz, 1H), 7.50 (dt, J = 2.8 Hz, 9.3 Hz, 1H), 7.58 (dt, J = 1.0 Hz, 8.0 Hz, 1H), 7.85 (ddd, J 

= 1.5 Hz, 7.2 Hz, 8.5 Hz, 1H), 8.11 (d, J = 7.9 Hz, 1H), 8.38 (dd, J = 3.3 Hz, 9.3 Hz, 1H), 8.45 

(d, J = 8.0 Hz, 1H); LCMS [Rt = 25.3 min; 416 (M + H)]. 

 

10-Acetoxyluotonin A (130{a, 6}): 

    

N
N

N

OAcO

 

Following general procedure 6B, quinazolinone 121 (15 mg, 0.056 mmol) was reacted with p-

acetoxyphenyl isonitrile (1 M in benzene, 0.34 mL, 0.34 mmol) and hexamethylditin (33 µL, 

0.084 mmol) in benzene (0.94 mL) to afford 130{a, 6} (12 mg, 62%): 1H NMR (300 MHz, 

CDCl3) δ 2.42 (s, 3H), 5.37 (s, 2H), 7.58-7.63 (m, 2H), 7.76 (d, J = 2.5 Hz, 1H), 7.88 (ddd, J = 

1.5 Hz, 7.2 Hz, 8.5 Hz, 1H), 8.14 (d, J = 7.9 Hz, 1H), 8.44 (s, 1H), 8.46 (dd, J = 1.3 Hz, 8.0 Hz, 
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1H), 8.51 (d, J = 9.2 Hz, 1H); LCMS [Rt = 13.6 min; 344 (M + H)]. Copies of 1H NMR 

spectrum and LCMS data can be found in the appendix section. 

 

10-Acetoxy-8-ethylluotonin A (130{c, 6}): 

    

N
N

N

OAcO

 

Following general procedure 6B, quinazolinone 129{c} (14 mg, 0.047 mmol) was reacted with p-

acetoxyphenyl isonitrile (1 M in benzene, 0.28 mL, 0.28 mmol) and hexamethylditin (27 µL, 

0.070 mmol) in benzene (0.78 mL) to afford 130{c, 6} (6.7 mg, 39%): 1H NMR (300 MHz, 

CDCl3) δ 1.45 (t, J = 7.6 Hz, 3H), 2.43 (s, 3H), 3.22 (d, J = 7.6 Hz, 2H), 5.33 (s, 2H), 7.57-7.62 

(m, 2H), 7.84-7.90 (m, 2H), 8.13 (d, J = 8.2 Hz, 1H), 8.46 (dd, J = 1.3 Hz, 8.0 Hz, 1H), 8.51 (d, J 

= 9.2 Hz, 1H); LCMS [Rt = 16.2 min; 372 (M + H)]. Copies of 1H NMR spectrum and LCMS 

data can be found in the appendix section. 

 

10-tert-Butyloxycarbonylaminoluotonin A (130{a, 7}): 

    

N
N

N

OBocHN

 

Following general procedure 6B, quinazolinone 121 (16 mg, 0.059 mmol) was reacted with p-

tert-butyloxycarbonylaminophenyl isonitrile (65 mg, 0.30 mmol) and hexamethylditin (34 µL, 

0.089 mmol) in benzene (0.99 mL) to afford 130{a, 7} (12 mg, 52%): 1H NMR (300 MHz, 

CDCl3) δ 1.59 (s, 9H), 5.34 (s, 2H), 6.83 (br s, 1H), 7.54-7.61 (m, 2H), 7.86 (dt, J = 1.5 Hz, 8.5 
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Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 8.31-8.40 (m, 3H), 8.45 (d, J = 7.9 Hz, 1H); LCMS [Rt = 18.1 

min; 401 (M + H)]. Copies of 1H NMR spectrum and LCMS data can be found in the appendix 

section. 

 

8-tert-Butyldimethylsilyl-10-tert-butyloxycarbonylaminoluotonin A (130{b, 7}): 

    

N
N

N

OBocHN
TBS

 

Following general procedure 6B, quinazolinone 129{b} (13 mg, 0.033 mmol) was reacted with 

p-tert-butyloxycarbonylaminophenyl isonitrile (36 mg, 0.17 mmol) and hexamethylditin (20 µL, 

0.050 mmol) in benzene (0.56 mL) to afford 130{b, 7} (5.3 mg, 31%): 1H NMR (300 MHz, 

CDCl3) δ 0.77 (s, 6H), 1.03 (s, 9H), 1.58 (s, 9H), 5.36 (s, 2H), 6.73 (br s, 1H), 7.47 (dd, J = 2.2 

Hz, 9.0 Hz, 1H), 7.57 (t, J = 7.2 Hz, 1H), 7.85 (dt, J = 1.4 Hz, 8.4 Hz, 1H), 8.12 (d, J = 8.1 Hz, 

1H), 8.38 (d, J = 9.1 Hz, 1H), 8.45 (dd, J = 1.3 Hz, 8.0 Hz, 1H), 8.78 (d, J = 1.5 Hz, 1H); LCMS 

[Rt = 28.1 min; 515 (M + H)]. Copies of 1H NMR spectrum and LCMS data can be found in the 

appendix section. 

 

10-tert-Butyloxycarbonylamino-8-ethylluotonin A (130{c, 7}): 

    

N
N

N

OBocHN

 

Following general procedure 6B, quinazolinone 129{c} (12 mg, 0.041 mmol) was reacted with p-

tert-butyloxycarbonylaminophenyl isonitrile (45 mg, 0.21 mmol) and hexamethylditin (24 µL, 
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0.062 mmol) in benzene (0.69 mL) to afford 130{c, 7} (17 mg, 94%): 1H NMR (300 MHz, 

CDCl3) δ 1.46 (t, J = 7.6 Hz, 3H), 1.59 (s, 9H), 3.23 (d, J = 7.4 Hz, 2H), 5.31 (s, 2H), 6.83 (br s, 

1H), 7.58-7.62 (m, 2H), 7.86 (dt, J = 1.5 Hz, 8.4 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 8.38-8.47 (m, 

3H); LCMS [Rt = 20.5 min; 429 (M + H)]. 

 

10-tert-Butyloxycarbonylamino-8-trimethylsilylethylluotonin A (130{d, 7}): 

    

N
N

N

OBocHN

TMS

 

Following general procedure 6B, quinazolinone 129{d} (21 mg, 0.056 mmol) was reacted with 

p-tert-butyloxycarbonylaminophenyl isonitrile (62 mg, 0.28 mmol) and hexamethylditin (33 µL, 

0.085 mmol) in benzene (0.94 mL) to afford 130{d, 7} (10 mg, 37%): 1H NMR (300 MHz, 

CDCl3) δ 0.22 (s, 9H), 0.95-1.01 (m, 2H), 1.58 (s, 9H), 3.09-3.15 (m, 2H), 5.28 (s, 2H), 6.80 (br 

s, 1H), 7.55-7.62 (m, 2H), 7.85 (dt, J = 1.4 Hz, 8.4 Hz, 1H), 8.11 (d, J = 8.1 Hz, 1H), 8.36-8.40 

(m, 2H), 8.44 (dd, J = 1.4 Hz, 8.0 Hz, 1H); LCMS [Rt = 27.9 min; 501 (M + H)]. Copies of 1H 

NMR spectrum and LCMS data can be found in the appendix section. 

 

8-Ethyl-9,10-ethylenedioxyluotonin A and 8-Ethyl-10,11-ethylenedioxyluotonin A (130{c, 

8}): 

Following general procedure 6B, quinazolinone 129{c} (18 mg, 0.063 mmol) was reacted with 

3,4-ethylenedioxyphenyl isonitrile (50 mg, 0.31 mmol) and hexamethylditin (36 µL, 0.094 

mmol) in benzene (1.0 mL) to afford a 2.5:1 mixture of 9,10- and 10,11-ethylenedioxy isomers 
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130{c, 8} (20 mg, 86%) which was separated using HPLC with a semipreparative column under 

the same conditions as described in the general procedure 6B: 

    

N
N

N

O

O
O

 

1H NMR (300 MHz, CDCl3) δ 1.39 (t, J = 7.3 Hz, 3H), 3.39 (q, J = 7.4 Hz, 2H), 4.45 (s, 4H), 

5.29 (s, 2H), 7.41 (d, J = 9.2 Hz, 1H), 7.57 (t, J = 7.2 Hz, 1H), 7.84 (dt, J = 1.3 Hz, 8.4 Hz, 1H), 

8.02 (d, J = 9.2 Hz, 1H), 8.10 (d, J = 8.2 Hz, 1H), 8.43 (d, J = 7.9 Hz, 1H); LCMS [Rt = 17.1 

min; 372 (M + H)]. 

    

N
N

N

OO

O

 

1H NMR (300 MHz, CDCl3) δ 1.41 (t, J = 7.6 Hz, 3H), 3.14 (q, J = 7.6 Hz, 2H), 4.45 (s, 4H), 

5.26 (s, 2H), 7.51 (s, 1H), 7.57 (t, J = 7.3 Hz, 1H), 7.85 (dt, J = 1.4 Hz, 8.5 Hz, 1H), 7.91 (s, 1H), 

8.10 (d, J = 8.2 Hz, 1H), 8.43 (dd, J = 1.2 Hz, 7.9 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 13.9, 

22.9, 46.6, 64.5, 108.0, 109.5, 116.0, 121.2, 124.1, 126.2, 126.4, 127.1, 128.6, 134.5, 146.7, 

149.5, 150.1, 160.8; IR (CH2Cl2, NaCl, cm-1) 2919, 2873, 2361, 2340, 1675, 1618, 1501, 1460, 

1285, 1060; HRMS (EI) m/z calcd for C22H17N3O3 (M+) 371.1270, found 371.1267; LRMS (EI) 

m/z 371 (M+, 100), 342 (20), 177 (26), 105 (43), 77 (58); LCMS [Rt = 17.1 min; 372 (M + H)]. 
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9,10-Ethylenedioxy-8-trimethylsilylethylluotonin A and 10,11-Ethylenedioxy-8-

trimethylsilylethylluotonin A (130{d, 8}): 

Following general procedure 6B, quinazolinone 129{d} (15 mg, 0.041 mmol) was reacted with 

3,4-ethylenedioxyphenyl isonitrile (33 mg, 0.21 mmol) and hexamethylditin (24 µL, 0.062 

mmol) in benzene (0.69 mL) to afford a 1:1 mixture of 9,10- and 10,11-ethylenedioxy isomers 

130{d, 8} (17 mg, 94%) which was separated using HPLC with a semipreparative column under 

the same conditions as described in the general procedure 6B: 

    

N
N

N

O

O
O

TMS

 

1H NMR (300 MHz, CDCl3) δ 0.16 (s, 9H), 0.91-0.97 (m, 2H), 3.29-3.34 (m, 2H), 4.44 (s, 4H), 

5.26 (s, 2H), 7.41 (d, J = 9.2 Hz, 1H), 7.57 (dt, J = 0.7 Hz, 7.0 Hz, 1H), 7.85 (ddd, J = 1.5 Hz, 

7.4 Hz, 8.4 Hz, 1H), 8.02 (d, J = 9.2 Hz, 1H), 8.10 (d, J = 8.1 Hz, 1H), 8.45 (dd, J = 1.2 Hz, 7.9 

Hz, 1H); LCMS [Rt = 25.7 min; 444 (M + H)]. 

    

N
N

N

OO

O

TMS

 

1H NMR (300 MHz, CDCl3) δ 0.19 (s, 9H), 0.91-0.97 (m, 2H), 3.01-3.07 (m, 2H), 4.45 (s, 4H), 

5.24 (s, 2H), 7.43 (s, 1H), 7.57 (dt, J = 1.1 Hz, 8.0 Hz, 1H), 7.85 (dt, J = 1.4 Hz, 8.5 Hz, 1H), 

7.91 (s, 1H), 8.11 (d, J = 8.3 Hz, 1H), 8.44 (dd, J = 1.2 Hz, 8.0 Hz, 1H); LCMS [Rt = 24.7 min; 
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444 (M + H)]. Copies of 1H NMR spectrum and LCMS data can be found in the appendix 

section. 

 

10-Amino-8-trimethylsilylethylluotonin A (132{d}): 

    

N
N

N

OH2N

TMS

 

TFA (0.30 mL) was added to a solution of 130{d, 7} (5.0 mg, 0.010 mmol) in CH2Cl2 (0.60 mL) 

at room temperature. After stirring for 12 h, the reaction mixture was concentrated under reduced 

pressure and the residue was purified by flash column chromatography (1:9 

acetone/dichloromethane) to afford 132{d} as a light brown solid (3.4 mg, 85%): 1H NMR (300 

MHz, CDCl3) δ 0.19 (s, 9H), 0.92-0.98 (m, 2H), 2.99-3.05 (m, 2H), 4.22 (br s, 2H), 5.23 (s, 2H), 

7.05 (d, J = 2.4 Hz, 1H), 7.23-7.24 (m, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.84 (dt, J = 1.3 Hz, 8.3 Hz, 

1H), 8.09 (d, J = 8.1 Hz, 1H), 8.28 (d, J = 9.0 Hz, 1H), 8.44 (d, J = 8.0 Hz, 1H); LCMS [Rt = 

20.9 min; 401 (M + H)]. 
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NMR and LCMS Data of Representative Compounds 
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Figure A-1: 1H and 13C NMR spectra of compound 33a 
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Figure A-2: 1H and 13C NMR spectra of compound (R)-19 
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Figure A-3: 1H and 13C NMR spectra of compound “esterified 87” 
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Figure A-4: 1H and 13C NMR spectra of compound 91a 
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Figure A-5: 1H and 13C NMR spectra of compound 91b 
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Figure A-6: 1H and 13C NMR spectra of compound 94a 
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Figure A-7: 1H and 13C NMR spectra of compound 94b 
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Figure A-8: 1H and 13C NMR spectra of compound 92a 
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Figure A-9: 1H and 13C NMR spectra of compound 92d 
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Figure A-10: 1H and 13C NMR spectra of compound 95a 

 

N
N

O

O

O

N
N

O

O

O

170 



 

Figure A-11: 1H and 13C NMR spectra of compound 95d 
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Figure A-12: 1H and 13C NMR spectra of compound 96 
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Figure A-13: 1H and 13C NMR spectra of compound 99 
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Figure A-14: 1H and 13C NMR spectra of compound 102 
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Figure A-15: 1H and 13C NMR spectra of compound (S)-116 
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Figure A-16: 1H and 13C NMR spectra of compound (S)-109 

 

N

O

O

I O

F

N

O

O

I O

F

176 



 

 
Figure A-17: 1H and 13C NMR spectra of compound (R)-107 
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Figure A-18: HMBC spectrum of compound (R)-107 

 

N
N

O

O O
F

 
 

178 



 

 
Figure A-19: 1H NMR spectra of compounds 111b and 111c 

 

N
N

O

O

O
F

O
O

N
N

O

O

O
F

O

O

179 



 

Figure A-20: 1H and 13C NMR spectra of compound 121 
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Figure A-21: 1H and 13C NMR spectra of compound 120 
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Figure A-22: 1H and 13C NMR spectra of compound 129{b} 
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Figure A-23: 1H and 13C NMR spectra of compound 129{c} 
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Figure A-24: 1H and 13C NMR spectra of compound 129{d} 
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Figure A-25: 1H spectrum of compound 122 
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Figure A-26: LCMS data of compound 122 
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Figure A-27: 1H spectrum of compound 130{c,2} 
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Figure A-28: LCMS data of compound 130{c,2} 
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Figure A-29: 1H spectrum of compound 130{a,3} 
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Figure A-30: LCMS data of compound 130{a,3} 
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Figure A-31: 1H spectrum of compound 130{a,4} 
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Figure A-32: LCMS data of compound 130{a,4} 
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Figure A-33: 1H spectrum of compound 130{a,6} 
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Figure A-34: LCMS data of compound 130{a,6} 
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Figure A-35: 1H spectrum of compound 130{c,6} 
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Figure A-36: LCMS data of compound 130{c,6} 
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Figure A-37: 1H spectrum of compound 130{a,7} 
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Figure A-38: LCMS data of compound 130{a,7} 
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Figure A-39: 1H spectrum of compound 130{b,7} 

 

N
N N

O
Bo

cH
N

TB
S

 
 
 

199 



 

Figure A-40: LCMS data of compound 130{b,7} 
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Figure A-41: 1H spectrum of compound 130{d,7} 
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Figure A-42: LCMS data of compound 130{d,7} 
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Figure A-43: 1H spectrum of compound 130{d,8} (9,10 isomer) 
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Figure A-44: LCMS data of compound 130{d,8} (9,10 isomer) 
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Figure A-45: 1H spectrum of compound 130{d,8} (10,11 isomer) 
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Figure A-46: LCMS data of compound 130{d,8} (10,11 isomer) 
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