
Cascades	and	Spectra	of	Elastic	Turbulence	
in	2D:	Spinodal Decomposition &	MHD

Xiang	Fan1,	P	H	Diamond1,	Luis	Chacon2
1 University	of	California,	San	Diego
2 Los	Alamos	National	Laboratory	

APS DPP 2016

10/28/16 1APS DPP 2016

This	research	was	supported	by	the	U.S.	Department	of	Energy,	Office	of	Science,	Office	of	
Fusion	Energy	Sciences,	under	Award	Number	DE-FG02-04ER54738	and	CMTFO.	



What	Is	Spinodal	Decomposition
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• Spinodal decomposition	is a 2nd order phase transition for
binary fluid mixture.

• Miscible	phase	-> Immiscible	phase

• For example, at high enough temperature, water and oil can
form a single thermodynamic phase, and when it’s cooled
down, the separation of oil-rich and water-rich phases
occurs.

• The order parameter: the	local relative concentration	field:

𝜓 𝑟, 𝑡 ≝ [𝜌) 𝑟, 𝑡 − 𝜌+ 𝑟, 𝑡 ]/𝜌

• 𝜓 = −1means A-rich, 𝜓 = 1means B-rich.
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Why Care?
• This is not a traditional study on transport	in	confined	
plasma. It is about the	fundamental	physics	of	memory	
and	cascades in elastic turbulence systems. Why
should we care?
• Virtually	all	models	of	drift-Alfven,	EM	ITG,	etc.	
turbulence	are	based	upon	a	vorticity	equation,	Ohm‘s	
Law	and	(usually	multiple)	scalar	advection	equations.	
The	appearance	of	the	Alfven	wave	introduces	a	crucial	
element	of	memory	to	the	dynamics.	Such	
Alfvenization-induced-memory	can	significantly	impact	
structure	formation	and	transport	in	turbulence.	
• In	this	poster,	we	study	the	fundamental	physics	of	
memory	and	cascades	in	very	simple	models such	as	
2D	MHD	and	elastic	turbulence.
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[J.	A.	Boedo et.al. 2003]

Why Care?
• In the edge of Tokamaks, localized
density	fluctuation structure or	
“blobs” flow	together	and	
transport large	amounts	of	edge	
plasma. This phenomenon is called
“blobby” turbulence.

• Blobby turbulence is important to
understand edge physics in
Tokamaks, yet still is not
understood. What is the criterion
for “blobbyness”?
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• Spinodal	decomposition	is	a	naturally	blobby	turbulence	
system.	It	can provide	insight	for	fusion	studies.
ØRole of structure in interaction
ØMultiple cascades of blobs and energy.



Why Care?
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http://astronomy.nju.edu.cn/~lixd/GA/AT4/AT411/HTML/AT41102.htm

Zonal Flow

[Porter 1981]

Spinodal Decomposition• Spinodal decomposition is also related
to zonal flow. ZF can be viewed as a
“spinodal decomposition” of
momentum.

• Pattern formation follows from
negative diffusion/negative viscosity.



Overview
• The	Cahn-Hilliard	Navier-Stokes	(CHNS)	model	for	spinodal	decomposition	
in	2D	symmetric	binary	liquid	mixture	resembles but is not identical to	2D	
Magnetohydrodynamics	(MHD).

• Since	2D	MHD	turbulence	has	been	well	studied,	it	provides	us	with	
potential	insight	and	guidance	for	exploring	the	physics	of	2D	CHNS	
turbulence.	

• We compare and contrast the cascades and spectra of the two systems.
• By	direct	numerical	simulation,	we	find	that	in	the	elastic	range,	the	mean	
square	concentration	spectrum	𝐻1

2 of	the	2D	CHNS	system	exhibits	the	
same	power	law	(−7/3)	as	the	mean	square	magnetic	potential	spectrum	
𝐻1) in the inverse cascade regime of	2D	MHD.	

• The	kinetic	energy	spectrum	of	the	2D	CHNS	system	is	𝐸14~𝑘78 if	forced	at	
large	scale,	suggestive	of	the	direct	enstrophy	cascade	power	law	of	2D	
Navier-Stokes	(NS)	turbulence.	It is different from 2D MHD, and the
difference could be explained by the difference of interface packing fraction.
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The	Cahn-Hilliard	Navier-Stokes	(CHNS)	Equations

• Landau Theory: the free energy functional:

F 𝜓 = :𝑑𝑟(−
1
2𝜓

> +
1
4𝜓

A +
𝜉>

2 |𝛻𝜓|
>)

�

�

• The	equations	for	spinodal	decomposition	are	Cahn-Hilliard	
Navier-Stokes	(CNHS)	Equations:

𝜕H𝜓 + 𝑣⃑ J 𝛻𝜓 = 𝐷𝛻>(−𝜓 + 𝜓8 − 𝜉>𝛻>𝜓)

𝜕H𝜔 + 𝑣⃑ J 𝛻𝜔 =
𝜉>

𝜌 𝐵2 J 𝛻𝛻
>𝜓 + 𝜈𝛻>𝜔

With 𝑣⃑=𝑧P×𝛻𝜙, 𝜔 = 𝛻>𝜙, 𝐵2 = 𝑧P×𝛻𝜓, 𝑗2 = 𝜉>𝛻>𝜓.
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• The	2D	CHNS	Equations:

𝜕H𝜓 + 𝑣⃑ J 𝛻𝜓 = 𝐷𝛻>(−𝜓 + 𝜓8 − 𝜉>𝛻>𝜓)

𝜕H𝜔 + 𝑣⃑ J 𝛻𝜔 =
𝜉>

𝜌 𝐵2 J 𝛻𝛻
>𝜓 + 𝜈𝛻>𝜔

With 𝑣⃑=𝑧P×𝛻𝜙, 𝜔 = 𝛻>𝜙, 𝐵2 = 𝑧P×𝛻𝜓, 𝑗2 = 𝜉>𝛻>𝜓

• The	2D	MHD	Equations:

𝜕H𝐴 + 𝑣⃑ J 𝛻𝐴 = 𝜂𝛻>𝐴

𝜕H𝜔 + 𝑣⃑ J 𝛻𝜔 =
1
𝜇W𝜌

𝐵 J 𝛻𝛻>𝐴 + 𝜈𝛻>𝜔

With 𝑣⃑=𝑧P×𝛻𝜙, 𝜔 = 𝛻>𝜙,	𝐵 = 𝑧P×𝛻𝐴,	𝑗 = X
YZ
𝛻>𝐴

• The force on fluid: [
\

]
𝐵2 J 𝛻𝛻>𝜓

X
YZ]

𝐵 J 𝛻𝛻>𝐴

• Note that the magnetic potential 𝐴 is a scalar in 2D.
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−𝜓:	Negative diffusion term

𝜓8:	Self nonlinear term

−𝜉>𝛻>𝜓	:	Hyper-diffusion term

𝐴:	Simple	diffusion term

Comparison & Contrast: Basic Equations
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• Alfven wave in 2D MHD:

𝜔 𝑘 = ±
1
𝜇W𝜌

�
𝑘×𝐵W −

1
2 𝑖 𝜂 + 𝜈 𝑘

>

• Linear elastic wave in 2D CHNS:

𝜔 𝑘 = ±
𝜉>

𝜌
�

𝑘×𝐵2W −
1
2 𝑖 𝐶𝐷 + 𝜈 𝑘

>

Where
• The	linear elastic wave in 2D CHNS is like a capillary wave:	it only
propagates along the boundary of the two fluids, where the gradient
of concentration 𝐵2 ≠ 0. Surface	tension	generates restoring	force.

• The wave is similar to Alfven wave: they have similar dispersion
relation; they both propagates along 𝐵 field lines; both magnetic
field and surface tension act like an elastic restoring force.

• Important difference:	𝐵 fills the whole space; 𝐵2 is large only in the
interface regions.
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Comparison	&	Contrast:	Linear Elastic Wave

Air

Water

Capillary	Wave:
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Comparison & Contrast:	
Ideal	quadratic	conserved	quantities

• “Ideal”	here	means	𝐷, 𝜂 = 0; 𝜈 = 0.	
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• 2D	CHNS
1.	Energy	
𝐸 = 𝐸4 + 𝐸+ = :(

𝑣>

2 +
𝜉>𝐵2>

2 )𝑑>𝑥
�

�
2.	Mean	Square	
Concentration

𝐻2 = :𝜓>
�

�

𝑑>𝑥

3.	Cross	Helicity
𝐻e = : 𝑣⃑ J 𝐵2

�

�

𝑑>𝑥

• 2D	MHD
1.	Energy	
𝐸 = 𝐸4 + 𝐸+ = :(

𝑣>

2 +
𝐵>

2𝜇W
)𝑑>𝑥

�

�
2.	Mean	Square	Magnetic	
Potential

𝐻) = :𝐴>
�

�

𝑑>𝑥

3.	Cross	Helicity
𝐻e = : 𝑣⃑ J

�

�

𝐵𝑑>𝑥

APS	DPP	2016



Comparison	&	Contrast:	Cascades
• Turbulence	cascade	directions	are	suggested	by	the	absolute	
equilibrium	distributions.

• The	peak	of	the	absolute	equilibrium	distribution	for	each	quadratic	
conserved	quantity	is	a	good	indicator	of	the	corresponding	
cascade	direction.	

• The spectrum is peaked at high k -> excitation relaxes towards high
k -> direct cascade.

• The spectrum is peaked at small k -> excitation relaxes towards
small k -> inverse cascade.

• This	approach	only	depends	on	the	ideal	quadratic	conserved	
quantities	of	the	system, so	we	can	then	obtain	an	indication	of	the	
cascade	directions	in	2D	CHNS	by	changing	the	name	in	variables.
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• The statistically stable blob size is modelled by the Hinze scale.
• Hinze scale: the balance between blob merger and blob breakup
processes, i.e. between turbulent	kinetic	energy	and	surface	tension	
energy.

• In	the	2D	NS	direct	enstrophy	cascade	regime,	the	velocity	
distribution	is	 f

\

1g
~𝜖i

>/8𝑘j78 (It will be explained later why -3). So

𝐿j~(
𝜌
𝜉
)7X/8𝜖i

7>/l

• We define the	scales	between	𝐿j and	dissipation	scale 𝐿m to be the	
elastic	range,	where	the	blob	coalescence	process	dominates.

• Define a dimensionless number: ng
no
= 𝐻𝑑~(]

[
)7X/8𝜈7X/>𝜖i

7X/Xp

• ng
no
= 𝐻𝑑 ≫ 1 is	required	to	form	a	long enough	elastic	range.
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Important	length	scales	and	ranges	

APS	DPP	2016



10/28/16 14

Important	length	scales	and	ranges	
𝐻2 Spectrum

𝐻1
2	

𝑘𝑘rs 𝑘j 𝑘m

Elastic	Range
Hydro-
dynamic	
Range

• In	the	elastic	range	of	the	2D	CHNS	system,	the	blob	coalescence	process	is	
analogous	to	the	magnetic	flux	coalescence	process	in	2D	MHD.

• The	former	leads	to	the	inverse	cascade	of	𝐻2,	and	the	latter	leads	to	the	
inverse	cascade	of	𝐻) .	

• In	the	elastic	range	of	the	2D	CHNS	system,	surface	tension	induces	elasticity	
and	plays	a	major	role	in	defining	a	restoring	force.	Similarly,	in	2D	MHD,	the	
magnetic	field	induces	elasticity	and	make	MHD	different	from	a	pure	NS	fluid.	

• The	2D	CHNS	system	is	more	MHD-like	in	the	elastic	range.	
APS	DPP	2016



Simulation Setup
• The PIXIE2D code [Chacon 2002,	2003] is used to	simulate	the	
system.	PIXIE2D originally solves the 2D MHD equation, and now
is modified to be able to solve the Cahn-Hilliard Navier-Stokes
(CHNS) equations, too.	It	is a Direct Numerical Simulation (DNS)
code that solves the	following	equations	in	real	space:

• Initial	condition:	𝜓 in	each	cell	is assigned	to	1 or	−1 randomly;	
𝜙 = 0 everywhere.

• Boundary	condition:	doubly periodic.
• External	force	for	A and	𝜙:	an	isotropic	homogeneous	force	that	
has	a	wave	number	𝑘rs:
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𝜕H𝜓 + 𝑣⃑ J 𝛻𝜓 = 𝐷𝛻> −𝜓 + 𝜓8 − 𝜉>𝛻>𝜓 + 𝐹2

𝜕H𝜔 + 𝑣⃑ J 𝛻𝜔 =
𝜉>

𝜌 𝐵2 J 𝛻𝛻
>𝜓 + 𝜈𝛻>𝜔 + 𝐹v

With 𝑣⃑=𝑧P×𝛻𝜙, 𝜔 = 𝛻>𝜙, 𝐵2 = 𝑧P×𝛻𝜓, 𝑗2 = 𝜉>𝛻>𝜓
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Benchmark
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• We verified the length scale growth is 𝐿 𝑡 ~𝑡>/8; and the
growth can be arrested. The saturation length scale is
consistent with the Hinze scale (dashed line).
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Spectral	Fluxes
• The	spectral	fluxes	are	negative,	and	this	indicates	inverse	cascade	of	𝐻) and	𝐻2.

• For	the	MHD	case	(left),	an	external	forcing	on	the	magnetic	potential	𝐴 is	
applied	on	k	=	128.	The	small	scale	𝐴 forcing	drives	an	inverse	transfer	of	𝐻).	For	
the	CHNS	case	(right),	no	forcing	on	𝜓 is	necessary	for	the	appearance	of	an	
inverse	transfer	of	𝐻2.	
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MHD

CHNS



𝐻1𝑨/𝐻1
2spectrum power law: -7/3
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CHNS

Inverse cascade of 𝐻) Inverse cascade of 𝐻2

MHD

𝑓)
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𝐻1
2/𝐻1)spectrum power law: -7/3

• The	−7/3	power	is	robust.	It	does	not	change	with	the	
magnitude	of	external	forcing,	as	long	as	the	separation	
between	the	Hinze	scale	and	the	dissipation	scale	is	
maintained,	so	the	elastic	range	is	long	enough.	
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𝑓y

APS	DPP	2016



• Assuming	a	constant	mean	square	magnetic	potential	
dissipation	rate	𝜖j),	according	to	the	Alfvenic
equipartition	(𝜌⟨𝑣>⟩ 	∼ X

YZ
⟨𝐵>⟩	), the time scale for the

decay of 𝐻) (𝜖j)~𝐻)/𝜏) can be estimated by
𝜏~(𝑣𝑘)7X~(𝐵𝑘)7X.
• Define the spectrum to be 𝐻) = ∑ 𝐻1)�

1 ~𝑘𝐻1), so
𝐵~𝑘𝐴~𝑘(𝐻))

�
\~(𝐻1))

�
\𝑘

�
\. Therefore 𝜖j)~ j�

�
~(𝐻1))

\
�𝑘

�
\.

𝐻1)~𝜖j)
>/8𝑘7�/8

• Similarly, we can obtain the 𝐻1
2spectrum by assuming

the elastic equipartition (𝜌⟨𝑣>⟩ 	∼ 𝜉>⟨𝐵2> ⟩):
𝐻1
2~𝜖j2

>/8𝑘7�/8
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𝐻1𝑨/𝐻1
2spectrum power law: -7/3
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• 𝐸14~𝑘78in 2D CHNS turbulence; on the other hand, it is well known that
𝐸14~𝑘78/>in MHD turbulence.

• The -3 power law is consistent with the direct enstrophy cascade in 2D
NS turbulence.

• The -3/2 power law comes from the Alfven effect (Iroshnikov-Kraichnan
Theory).
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Energy Spectrum Power Law

𝑓y 𝑓y
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Energy Spectrum Power Law

• 𝐻1
2~𝑘7�/8 vs. 𝐻1)~𝑘7�/8, the powers are the same.

• 𝐸14~𝑘78 for 2D CHNS; 𝐸14~𝑘78/> for 2D MHD. Why?
Why not -3/2?
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Energy Spectrum Power Law
• This	initially	surprising	result	is	plausible	because	in	the	2D	CHNS	
system,	𝐵2 vanishes	in	most	regions. Back reaction is apparently
limited.

• On the other hand, the	magnetic	fields	in	MHD	are	not	localized	at	
specific	regions,	and	Alfven	waves	can	be	everywhere.	
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MHD CHNS
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• Define	the	interface	packing	fraction	𝑃 to	be	the	
ratio	of	mesh	grid	number	where	|𝐵2| > 𝐵2��� (or |𝐵| >
𝐵���) to	the	total	mesh	grid	number.	
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Energy Spectrum Power Law
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𝜕H𝜔 + 𝑣⃑ J 𝛻𝜔 =
𝜉>

𝜌 𝐵2 J 𝛻𝛻
>𝜓 + 𝜈𝛻>𝜔



Summary

• Comparison:

• Contrast:

10/28/16 25APS	DPP	2016



Conclusion	&	Discussion

• The	study of	elastic	turbulence	gives us useful
lessons.
• The	𝐻1

2spectrum	(inverse	cascade	of mean square
blob density)	is	robust. It is an analogue to
𝐻1)spectrum (inverse	cascade	of	𝐻)) in 2D MHD.
On the other hand, the energy spectrum is NOT so
robust. This implies we must understand multiple
spectra and cascades.
• The	spatial	representations	- i.e.	tracking	contours	
of	bubble	surfaces	– can be a more revealing way of	
representing	the	turbulence than the	traditional	
power	law	spectrum. PDF evolution should also be
pursued.
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