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for Real-Time Strategy Games
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Abstract Creating Al for complex computer games requires a great deal of tech-
nical knowledge as well as engineering effort on the part of game developers. This
paper focuses on techniques that enable end-users to create Al for games without
requiring technical knowledge by using case-based reasoning techniques. Al cre-
ation for computer games typically involves two steps: a) generating a first version
of the Al b) debugging and adapting it via experimentation. We will use the domain
of real-time strategy games to illustrate how case-based reasoning can address both
steps.

1 Introduction

Over the last thirty years computer games have become much more complex, offer-
ing incredibly realistic simulations of the real world. As the realism of the virtual
worlds that these games simulate improves, players also expect the characters in-
habiting these worlds to behave in a more realistic way. Thus, game developers are
increasingly focusing on developing the intelligence of these characters. However,
creating (Al) for modern computer games is both a theoretical and engineering chal-
lenge. For this reason, it is hard for end-users to customize the Al of games in the
same way they currently customize graphics, sound, maps or avatars.

This chapter focuses on techniques to achieve , i.e. on techniques which would
enable end-users to author Al for games. This is a complex task, since modern com-
puter games are very complex. For example, () games (which will be the focus of
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this chapter) require complex strategic reasoning which includes resource handling,
terrain analysis or long-term planning under severe real-time constraints and with-
out having complete information. Because of all of these reasons, programming Al
for RTS games is a hard problem. Thus, we would like to allow end-users to create
Al without programming.

When a user wants to create an Al, the most natural way to describe the de-
sired behavior is by demonstration. Just let the user play a game demonstrating the
desired behavior of the Al Therefore, a promising solution to this problem are
(LfD) techniques. However, LfD techniques have their own limitations, and, given
the complexity of RTS games and the lack of strong domain theories, it is not pos-
sible to generate an Al by of a few human demonstrations.

The first key idea presented in this chapter is to use (CBR) [1, 9] approaches for
learning from demonstration. While it is hard to completely generalize an Al from
a set of traces, it is possible to break demonstrations into smaller pieces, which con-
tain specific instances of how the user wants the Al to behave in different situations.
For instance, from a demonstration, the sequence of actions the user has used in a
specific scenario to destroy an enemy tower can be extracted. These pieces corre-
spond to what in CBR are called cases, i.e. concrete problem solving episodes. Each
case contains the actions the user wants the Al to perform in a concrete specific situ-
ation. Moreover, it is also possible to adapt cases to similar situations. Using a CBR
approach to learning from demonstration, we do not need to completely generalize
a demonstration. It is enough with being able to adapt pieces of it to similar situ-
ations. Moreover, as we will see, classic CBR frameworks need to be extended in
order to deal with this problem. In order to illustrate these ideas, we will introduce
a system called Darmok 2, which is capable of learning how to play RTS games
through learning from demonstration.

The second key idea presented in this chapter is that when creating Als, either
using learning from demonstration or directly coding them, it is very hard to achieve
the desired result in the first attempt. Thus, by using self-adaptation techniques,
given a particular Al, it can be automatically adapted fixing some issues it might
contain, or making it ready for an unforeseen situation. Again, self-adaptation is a
hard problem because of two main reasons: first, how to detect that something needs
to be fixed, and second, once an issue has been identified, how to fix it. We will see
how this problem can again be addressed by using CBR ideas, and specifically we
will present a approach inspired in CBR that addresses this problem. The main idea
is to define a collection of failure-patterns (which could be seen as cases in a CBR
system), that capture which failures to look for and how to fix them. In order to
illustrate this idea, we will introduce the Meta-Darmok system, which uses meta-
reasoning in order to improve its performance at playing RTS games.

In summary, the main idea of this chapter is the following. Authoring Al typi-
cally requires two processes: a) creating an initial version of the Al, and b) debug-
ging it. Learning from demonstration is a natural way to help end-users with a),
and self-adaptation techniques can help users with b). Moreover, both learning from
demonstration and self-adaptation are challenging problems with many open ques-
tions. CBR can be used to address many of these open questions and thus, make both
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Fig. 1 The case-based reasoning cycle.

learning from demonstration and self-adaptation feasible in the domain of complex
computer games such as RTS games.

The remainder of this chapter is organized as follows. Section 2 very briefly
introduces CBR. Sections 3 and 4 contain the main technical content of the chap-
ter. Section 3 focuses on CBR techniques for learning from demonstration in RTS
games, and Section 4 focuses on CBR-inspired meta-reasoning techniques for self-
adaptation. Section 5 concludes the paper and outlines open problems to achieve
user-generated Al.

2 Case-Based Reasoning

[1, 9] is a problem solving methodology based on reutilizing specific knowledge
of previously experienced and concrete problem situations (cases). Given a new
problem to solve, instead of trying to solve the problem from scratch, a CBR system
will look for similar and relevant cases in its case base, and then adapt the solutions
in these cases to the problem at hand. A typical in a CBR system consists of a triple:
problem, solution and outcome. Where the outcome represents the result of applying
a particular solution to a particular problem.

The activity of a case-based reasoning system can be summarized in the CBR
cycle, shown in Figure 1, which consists of four stages: Retrieve, Reuse, Revise and
Retain. In the Retrieve stage, the system selects a subset of cases from the case
base that are relevant to the current problem. The Reuse stage adapts the solution of
the cases selected in the retrieve stage to the current problem. In the Revise stage,
the obtained solution is examined by an oracle, which gives the correct solution (as



4 Santiago Ontafién and Ashwin Ram

in supervised learning). Finally, in the Retain stage, the system decides whether to
incorporate the new solved case into the case base or not.

While inductive techniques learn from sets of examples by constructing a global
model (a decision tree, a linear discrimination function, etc.) and then forgetting
the examples, CBR systems do not attempt to generalize the cases they learn. CBR
aligns with the ideas of [2] in machine learning, where all kind of is performed
at problem solving time (during the Reuse stage). Thus, CBR systems only need
to perform the minimum amount of generalization required to solve the problem at
hand. As we will see, this is an important feature, since, for complex tasks like RTS
games, attempting to learn a complete model of how to play the game by generaliz-
ing from a set of examples might be unfeasible.

3 Generating AI by Demonstration

A promising technology to achieve is learning from demonstration [20]. The goal
of LfD is to learn how to perform a task by observing an expert. In this section
we will first introduce the main ideas of LfD, with a special emphasis on case-based
approaches. Then we will explain how can they be applied to achieve user-generated
Al by explaining how this is solved in the Darmok 2 system, which has been used
to power a social gaming website, Make ME Play ME, based around the idea of
user-generated Al.

3.1 Background

Learning from demonstration (also known as programming by demonstration or
programming by example) has been widely studied in artificial intelligence since
early times [4] and specially in robotics [11] where lots of robotics-specific algo-
rithms for learning movements from human demonstrations have been devised [14].
The main motivation behind LfD approaches is that learning a task from scratch,
without any prior knowledge is a very hard problem. When humans learn new tasks
they extract initial biases from instructors or by observing other humans. LfD tech-
niques aim at imitating this process. However, LfD also poses many theoretical chal-
lenges.

LfD techniques typically attempt at learning a policy for a dynamic environment.
This task cannot be addressed directly with inductive techniques because of several
reasons: first, the performance metric might not be defined at the action level (i.e. we
cannot create examples to learn using supervised learning); and second, we have the
temporal blame assignment problem (it’s hard to know which actions to blame or
reward in case of failure or success). Without background knowledge, as evidenced
by research in reinforcement learning, there is a prohibitively large space to explore.
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In the same way as for supervised learning, we can divide the approaches to learn-
ing from demonstration in two large groups: eager approaches and lazy approaches,
although work on LfD has focused on eager approaches [10, 4, 15, 20] except for a
handful of exceptions like [8]. Eager methods aim at synthesizing a strategy, policy
or program, where as lazy approaches simply store the demonstrations (maybe with
some pre-processing), and only attempt to generalize when facing a new problem.
Let us present some representative work of L{D.

Tinker [10] is a programming by demonstration system, which could write arbi-
trary Lisp programs (containing even conditionals and recursion). The user provides
examples as input/output pairs, where the output is a sequence of actions, and Tin-
ker generalizes those examples to construct generic programs. Tinker allows the user
to build incrementally, providing first simple examples and then move on to more
complex examples. When Tinker needs to distinguish in between two situations, it
prompts the user to provide a predicate that would distinguish them. Tinker is a clas-
sic example of an eager approach to LfD, where the system is trying to completely
synthesize a program from the examples. Other eager approaches to LfD have been
developed both in abstract Al domains [4], as well as in robotics domains [15].

In Tinker, we can already see one of the recurring elements in LfD systems:
traces. A is the computer representation of a demonstration. It usually contains the
sequence of actions that the user executed to solve a given problem. Thus, a pair
problem/trace constitutes a demonstration, which is equivalent to a training example
in supervised learning.

Schaal [20] studied the benefits of LfD in the context of . He showed that under
certain circumstances, the Q-value matrix can be primed using the data from the
demonstration and achieved better results than a standard approach. This priming of
the value matrix is a way to use the knowledge in the demonstrations to bias subse-
quent learning, and thus avoid blind search of the search space of policies. However,
not all reinforcement learning approaches benefited from using the knowledge in the
demonstrations. Notice, moreover, that reinforcement learning also falls into the ea-
ger LfD approaches category, since it tries to obtain a complete policy.

Schaal’s work evidences another of the important aspects in learning from
demonstration: not all machine learning techniques easily benefit from the knowl-
edge contained in the demonstrations.

In this chapter, however, we will focus on lazy approaches to LfD, based on
(CBR). Which are characterized for not attempting to learn a general algorithm
or strategy from demonstration, but at storing the demonstrations in some mini-
mally generalized form to then adapt them in order to solve new problems. Other
researchers have pursued similar ideas, like the work of Floyd et al. [8], which fo-
cuses on learning to imitate RoboCup players. Lazy approaches to LfD are interest-
ing, since they can potentially avoid the expensive exploration of the large search
space of programs or strategies. While the central problem of eager LfD approaches
is how to generalize a demonstration to form a program, the central problem of lazy
LfD approaches becomes how to adapt a demonstration to a new problem.

In order to apply learning from demonstration to a given task, several prob-
lems have to be addressed: how to generate demonstrations, how to represent each
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[Episode 1]

GOAL:
Wood>300

STATE:
<gamestate>
<entity id="E14" type = “Player”>
<gold>1200</gold>
----3% Train(E4, peasant”) <wood>1000</wood>
<owner>player1</owner>
</entity>
<entity id="E15" type = “Player”>
<gold>1200</gold>
<wood>1000</wood>
<owner>player2</owner>
</entity>
<entity id="E4" type = “Townhall">
<x>B6</x>
<y>0</y>
<owner>player1</owner>
Harvest(E5,(17,18)) <hitpoints>2400</hitpoints>
</entity>

Status(E5)=="harvest"

</gamestate>

OUTCOME:
ooreome}—, |

Fig. 2 A case in D2 consisting of a snippet and an episode. The snippet contains two actions, and
the episode says that this snippet succeeded in achieving the goal Wood > 300 in the specified
game state. The game state representation is not fully included due to space limitations.

demonstration (), how to segment demonstrations (which parts demonstrate which
tasks and subtasks), which information to extract from the demonstrations, and how
this information will be used by the learning algorithm. The remainder of this sec-
tion will focus on a lazy LfD approach to learn Al in the context of computer games,
and on how to address the issues mentioned above.

3.2 Learning from Demonstration in Darmok 2

Darmok 2 (D2) [16] is a real-time [21] system designed to play RTS games. D2
implements the on-line case-based planning cycle (OLCBP) as introduced in [17].
The OLCBP cycle attempts to provide a high-level framework to develop case-
based planning systems that operate on-line, i.e. that interleave planning and exe-
cution in real-time domains. The OLCBP cycle extends the traditional CBR cycle
by adding two additional processes, namely plan expansion and plan execution. The
main focus of D2 is to explore learning from unannotated human demonstrations,
and the use of adversarial planning techniques. In this section we will focus on the
former.
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3.2.1 Representing Demonstrations, Plans and Cases

A in D2 is represented as a list of triples [{(t1,G1,A1), ..., (t1,Gn,An)], Where each
triple contains a time stamp #; game state G; and a set of actions A; (that can be
empty). The set of triples represent the evolution of the game and the actions exe-
cuted by each of the players at different time intervals. The set of actions A; represent
actions that were issued at #; by any of the players in the game. The game state is
stored using an object oriented representation that captures all the information in the
state: map, players and other entities (entities include all the units a player controls
in an RTS game: e.g. tanks).

Unlike in traditional STRIPS [7], actions in RTS games may not always succeed,
they may have non-deterministic effects, and they might not have an immediate
effect, but be durative. Moreover, in a system like D2 it is necessary to be able
to monitor executing actions for progress and check whether they are succeeding
or failing. Thus, a typical representation of preconditions and postconditions is not
enough. An action « is defined in D2 as a tuple containing 7 elements including
success conditions and failure conditions [16]. However, for the purposes of learning
from demonstration, precondition and postcondition suffice.

Plans in D2 are represented as hierarchical . Petri nets [13] offer an expres-
sive formalism for representing plans that include conditionals, loops or parallel se-
quences of actions. In short, a petri net is a graph consisting of two types of nodes:
transitions and states. Transitions contain conditions, and link states to each other.
Each state might contain tokens, which are required to fire transitions. The flow of
tokens in a petri net represents it’s status. In D2, the plans that will be learned by ob-
serving demonstrations consist of hierarchical petri nets, where some states will be
associated with sub plans, which can be primitive actions or sub-goals. The left hand
side of Figure 2 shows an example of a petri net representing a plan consisting of two
actions to be executed in sequence: Train(E4, “peasant”) and Harvest(ES5,(17,18)).
Notice that the handling of preconditions, postconditions, etc. is handled by the petri
net, making the execution module of D2 is a simple petri net simulation component.

When D2 learns plans from demonstrations, each plans is stored as a . Cases in
D2 are represented like cases in the Darmok system [17], consisting of a collection
of plan snippets with episodes associated to them. As shown in Figure 2, a snippet
is a petri-net, and an episode is a structure storing the outcome obtained when a
particular snippet was executed in a particular game state intending to achieve a
particular goal. The outcome is a real number in the interval [0, 1] representing how
well the goal was achieved: O represents total failure, and 1 total success.

3.2.2 Learning Plans and Cases from Demonstration

D2’s case base is populated by learning both snippets and episodes from human
demonstrations. The input to the learning algorithm is one demonstration D (of
length n), a player p (D2 will learn only from the actions of player p in the demon-
stration D), and a set of goals G for which to look for plans. The output is a collection
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|Demonstration|g1 |g2 |g3 |84 |85|
(11,G1,A1)

{t10,G10,A10)
(t11,G11,A11)
(t12,G12,A12) |V

Table 1 Goal matrix for a set of five goals {g1,g2,83,84,¢5} and for a small trace consisting of
only 12 entries (corresponding to the actions shown in Figure 3, Aj» = 0).

<[«[]8 ][
NERRRR
NERRRRR
NERR

of snippets and episodes. The set of goals G can be fixed beforehand for every partic-
ular domain, and is equivalent to the list of tasks in the framework (thus, the inputs
are the same as for the HTN-Maker algorithm). The learning process of D2 can be
divided in four main stages: goal matrix generation, generation, and hierarchical
composition.

The first step is to generate the goal matrix. The goal matrix M is a boolean
matrix, where each row represents a triplet in the demonstration D, and each column
represents one of the goals in G. M; ; is true if the goal g; is satisfied at time ¢#; in the
demonstration. An example goal matrix can be seen in Table 1.

Once the goal matrix is constructed, a set of raw plans P are extracted from it in
the following way:

1. For each goal g; € G do

a. For each 0 <i <n such that M; j A—M; 1 ; do
i. Find the largest 0 </ < i such that ~-M; ;A (I =1V M;_; ;)
ii. Generate a raw plan from the actions executed by player p in the set A; U
Aj+1U...UA;_1 and add it to P

For example, five plans could be generated from the goal matrix in Table 1. One
for g1 with actions A;U...UA12, one for g, with actions A; U... UAg, one for g3 with
actions A; U...UA7, one for g4 with actions A;U... UAg, and one for gs with actions
A;U...UAy. Notice that the intuition behind this process is just to look at sequences
of actions that happened before a particular goal was satisfied, since those actions
are a plan to reach that goal. Many more plans could be generated by selecting sub-
sets of those plans, but since D2 works under tight real-time constraints, currently it
learns only a small subset of plans from each demonstration.

Notice that this process is enough to learn a set of raw plans for the goals in G.
The snippets will be constructed from the aforementioned sets of actions, and the
episode will be generated by taking the game state in which the earliest action in a
particular plan was executed. Notice that all plans extracted using this method are
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Plan

1.- Harvest(U2,(0,16))

2.- Train(U4,"peasant”)

3.- Harvest(U3,(17,23))

4.- Train(U4,"peasant”)

5.- Build(U5,”LumberMill”,(4,23))
6.- Build(U5,”Barracks”,(8,22))
7.- Train(U6,”archer”)

8.- Build(U5,"tower”)

9.- Train(U6,”archer”)

10.- Attack(U7,EU1)

11.- Attack(U8,EU2)
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Fig. 3 An example dependency graph constructed from a plan consisting of 11 actions in an RTS
game.

plans that succeeded, thus all episodes have outcome equal to 1. However, these raw
plans might contain unnecessary actions and would be monolithic, i.e. they will not
be decomposable hierarchically into subgoals. Dependency graph generation and
hierarchical composition are used to solve both problems.

Given a plan consisting of a partially ordered collection of actions, a [24] is a di-
rected graph where each node represents one action in the plan, and edges represent
dependencies among actions. Such a graph is used by D2 to remove unnecessary
actions from the learned plans.

Such a graph is easily constructed by checking each pair of actions a; and a; in
the plan, and checking first of all, if there is any order restriction between a; and a;.
Only those pairs for which a; can happen before a; will be considered. Next, if one
of the postconditions of a; matches any precondition of a;, and there is no action
ay that has to happen after ag; that also matches with that precondition, then an edge
is drawn from q; to a; in the dependency graph, annotating it with which is the
pair of postcondition/precondition that matched. Figure 3 shows an example (where
the labels in the edges have been omitted for clarity). The plan shown in the figure
shows how each action is dependent on each other, and it is useful to determine
which actions contribute to the achievement of particular goals.

D2 constructs a dependency graph of the plan resulting from using the complete
set of actions that a player p executed in a demonstration D. This dependency graph
will be used to remove unnecessary actions from the smaller raw plans learned from
the goal matrix in the following way:

1. For each plan p € P do

a. Extract the subgraph of the dependency graph containing only the actions in
p-

b. Detect which is the subset of actions A from the actions in p such that their
postconditions match with the goal of plan p.
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Fig. 4 The nodes greyed out in the left dependency graph correspond to the actions in the plan
learned from a goal g5, after substituting those actions by a single subgoal, the resulting plan graph
looks like the one on the right.

c. Remove from p all actions that, according to the subgraph do not contribute
directly or indirectly to any of the actions in A.

Moreover, the plan graph provides additional internal structure to the plan, indi-
cating which actions can be executed in parallel, and which ones have to be executed
in a sequence. All this information is exploited when generating the petri net corre-
sponding to the plan.

Finally, D2 analyzes the set of plans P resulting from the previous step using the
dependency graph to see if any of those plans are a sub-plan of another plan. Given
two plans p;, p; € P, if the set of actions in p; is a subset of the set of actions in p,
D2 assumes that p; is a sub-plan of p;, and all the actions in p; also contained in
p; are substituted by a single sub-goal in p;. Converting flat plans into hierarchical
ones is important in D2, since it allows D2 to combine plans learned from one
demonstration with plans learned from another at run time, increasing its flexibility.

Figure 4 shows an example of this process taking the plan graph of the plan
learned for goal g; in Table 1, and substituting some of its actions by a single sub-
goal g,. The actions marked in grey in the left hand side of Figure 4 correspond to
the actions in the plan learned for g;.

Notice that the order in which we attempt to substitute actions by subgoals in
plans will result in different final plans. Currently, D2 uses the heuristic of attempt-
ing first to substitute larger plans first. However, this issue is a subject of our ongoing
research effort. Let us explain how can D2 be used for achieving user-generated Al.

Finally, it is worth to remark that D2’s goal is not to learn how to play the game
in an optimal way, but to learn the player’s strategy. In this sense, it differs from
other LfD strategies. For example, the techniques presented by Schaal [20], used
LfD only to bias the learning process, which would proceed then to optimize the
strategy using standard reinforcement learning.
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Fig. 5 The game selection page of Make ME Play ME.

3.3 Using Darmok 2 for User-Generated AI: Make ME Play ME

Make ME Play ME (MMPM)' is a project to build a social gaming website (see
Figure 5) based on the idea of and powered by D2. In MMPM, users do not just
play games, they create their own Als, called MEs (Mind Engines). Users train their
own MEs, which can play the different games available in the website, and compete
against the MEs created by other players. MMPM is not the first web or game where
users can create their own Als and make them compete with others, but it is the first
one where users can create their own Als by demonstration: users do not require
programming knowledge, they just have to play a series of games demonstrating the
strategy they want their ME to use.

In order to make user-generated Al a reality, many user interaction problems
need to be addressed in addition to the technical problems concerning learning
from demonstration explained in the previous section. For instance, how to generate
demonstrations, or how to visualize the result of learning. In our work on MMPM,
we focused on the first of these problems. The latter is still subject of our future
work.

The user flow works as follows:

1. Play demonstration games: The user selects a game, configures it (selecting num-
ber of players, opponents, map, etc.), and then simply plays. The user can repeat

U http://www.makemeplayme.com
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this process as many times as desired. For each game played, a will be automati-
cally saved by MMPM.

2. Create a ME: To create a ME, the user first selects which games does he wants
to create a ME. Then MMPM lists the set of all available traces for that game
(generated in the previous step). The user simply selects a subset of them (which
will constitute the set of demonstrations) and the ME is created automatically,
without further user intervention.

3. Play with the ME: at this point the user can already wither play against its own
ME, or make the ME play with other users’ MEs. MMPM lets users challenge
other users’ MEs. For each ME, a chess-like ELO score is computed, creating a
leader-board of MEs. The users are thus motivated to create better MEs, which
can climb up the leader boards.

Thanks to the technology developed in D2, the learning process is completely
transparent to the user, who only needs to play games. There are no parameters that
need to be set by the user. In order to achieve that, all the game-specific parameters
of D2 are set before hand. When a new game is added to MMPM, the game cre-
ator is the responsible for defining the goal ontology, and for specifying any other
parameter that D2 needs to know about the game (e.g. whether the game is turn-
based or real-time). Currently, MMPM hosts three different games, but more are
on preparation, and it even has the functionality to allow users to upload their own
games.

3.4 Discussion

MMPM and D2 allow users to author Als simply by demonstrations. For instance,
in previous work, we showed how it is easy to author an Al for the game Wargus (a
clone of WARCRAFT II) by demonstration which can defeat the built-in AI [17].
Moreover, the resulting Als clearly use the strategies demonstrated by the users. The
learning process of D2 is efficient and learning doesn’t take any perceptible time.
Moreover, the planning algorithms of D2 are also efficient enough to work on real
time in the set of games available in MMPM.

However, MMPM and D2 still display a number of limitations, some of which
clearly correspond to open problems in learning from demonstration.

e First of all, the approach of D2 is suitable for some kind of games (like RTS
games), but breaks when the game becomes more reactive than deliberative. For
example, one of the games in MMPM (BattleCity) is a purely reactive game,
for which learning plans doesn’t make much sense and where a more reactive
approach like that in [8] should work much better.

e In addition to demonstrations, some learning from demonstration approaches
also allow the user to provide feedback when the system performs the learned
strategies in order to continue learning. In the context of D2 and computer games,
it would be very valuable to allow such feedback, since it will enable the user to
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fine tune the demonstrated strategies. However, this raises both technical and
user-interface problems. The main technical problem is related to the delayed
blame assignment problem: if the user provides a negative feedback, which of
the previous decisions is to blame? Additionally, there would be user interface
problems that need to be solved about how can the user provide feedback on the
actions being executed by the Al Specially in RTS games where a large number
of actions is executed per second.

e Another issue, subject for our future research and common to all lazy learning
approaches, is how to visualize the result of learning. Eager LfD techniques learn
a policy or a program which can be displayed to the user in some form. But lazy
LfD techniques do not. The only thing that could be displayed are the set of plans
being learned. But that can be a potentially very large number of plans, and which
does not include the procedure for selecting which plan to select in each situation
(which is performed at run-time).

e C(learly, the biggest problem in LfD is how to generalize from a demonstration
to a general strategy. Specifically, D2 is based on case-based planning and this
problem is translated into how can plans be adapted to new situations. This is a
well known problem in the case-based planning community [21], and has been
widely studied. In D2 we used an approach with a collection of simplification
assumptions which allow D2 to be able to adapt plans in real time [24]. However,
those assumption have been designed with RTS games in mind. Finding general
ways to adapt plans in an efficient way for other game genres is still an open
research issue.

4 Self-Adaptive AI Through Meta-reasoning

Last section focused on techniques to easily generate Al for games. In this section
we are going to turn our attention to the complementary problem of how can Al
self-adapt to fix any flaws that might have occurred during the learning process,
or to adapt the Al to novel situations. This is known as the adaptive-Al problem
in game Al This section will provide a brief overview of the problem, and then
focus on a solution which combines with , specifically designed for the problem of
achieving in games.

4.1 Background

The most widely used techniques for authoring Al in commercial games are scripts
[5] and finite-state machines [19] (and recently, behavior trees [18]). These tech-
niques share one feature: once they have been authored, the behavior of the Al will
be static: i.e. it will always be the same game after game (ignoring the trivial dif-
ferences which can be introduced adding randomness). Static behavior can lead to
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suboptimal user experience, since, for instance, users might find a hole in the Al and
exploit it continuously, or there might be an unpredicted situation or player strategy
to which the Al does not know how to react. Trying to address this issue is known
as achieving adaptive game Al [23].

Basically, adaptive game Al aims at developing techniques which allow for au-
tomatic self-modification of the game AI. A potential benefit is for fixing potential
failures of the Al, but other uses have been explored, like using self-adaptation for
automatically adjusting the difficulty level of games [22]. In this section we are
interested in the former, and specifically, in developing techniques which ease user-
generated Al. Algorithms which enable Al would enable the users to create Al in an
easier way, since some errors in their Al could be automatically fixed by the adap-
tive Al Before presenting how CBR can be used to address this issue, let us briefly
introduce some brief background and existing work.

Spronck et al. [23] identified a collection of requirements for adaptive game
Al Four are computational requirements: speed, effectiveness, robustness and effi-
ciency; and four are functional requirements: clarity, variety, consistency and scala-
bility. Some of those eight properties, however, apply only to on-line techniques for
self-adaptation. Our interest in self-adaptive Al concerns allowing user-generated
Al, and thus, off-line adaptive Al techniques are also interesting. The most basic
elements required to define adaptive Al are:

e Representation of the Al: a script, a collection of rules, a set of cases, etc.

e Performance criteria: if the Al has to be adapted, it is in order to improve in some
measure. For instance we might want to make the Al better, or better exhibit a
particular strategy, or better adjust to the skill level of the player.

e Allowed modifications: which adaptations are allowed? some times, adaptation
simply means selecting among a set of given rule sets, some times, the rules or
scripts can be actually adapted. This defines the space of possible adaptations.

e Adaptation strategy: which machine learning technique to use.

The most common approach to adaptive Al is letting the user define a collec-
tion of scripts or rules that define the behavior of the Al, and then learn which of
those scripts, or which subset of rules work better for each particular game situation
according to a predefined performance criteria. This approach has been attempted
both using reinforcement learning [23] and case-based reasoning [3].

Let us now present a technique which can be combined to the learning from
demonstration techniques presented in the previous section, in order to ease the job
of a user who wants to create an Al

4.2 Automatic Plan Adaptation in Meta-Darmok

Meta-Darmok [12] is a system based on the Darmok system [17], which is a pre-
decessor to the D2 system described in the previous section. Meta-Darmok learns
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plans from expert demonstrations and then uses them to play games using case-
based planning. Meta-Darmok is designed to play Wargus, and specially to auto-
matically adapt Darmok’s learned plans over time. The performance of Darmok, as
well as D2, highly depends on the quality of the demonstrations provided by the
user. If the demonstrations are poor, Darmok’s behavior will be poor. If the expert
that Darmok learnt from made a mistake in one of the plans, Darmok will repeat that
mistake again and again each time Darmok retrieves that plan. The meta-reasoning
approach presented in this section provides Darmok exactly with that capability,
resulting in a system called Meta-Darmok, shown in Figure 6.

Meta-Darmok’s adaptation approach is based on the following idea: instead of
fixing the plans one by one a user can fix a collection of plans by defining a set
of typical failures, and associating a fix with them. Meta-Darmok’s meta-reasoning
layer constantly monitors the plans being executed to see if any of the user-defined
failures is happening. If failures occur, Meta-Darmok will execute the appropri-
ate fixes. Moreover, Meta-Darmok’s plan fixing happens off-line, after a game has
been played. Notice that this approach is radically different from approaches like
reinforcement-learning, where the behavior of is optimized by trial an error.

Specifically Meta-Darmok’s approach consists of four parts: Trace Recording,
Failure Detection, Plan Modification, and the Daemon Manager. During trace
recording, a holding important events happening during the game is recorded. Fail-
ure detection involves analyzing the execution trace to find issues with the executing
plans by using a set of [26]. These failure patterns capture the set of user-defined
prototypical failures. Once a set of failures has been identified, the failed conditions
can be resolved by appropriately revising the plans using a set of plan modification
routines. These plan modification routines are created using a combination of basic
modification operators (called modops, as explained later). Specifically, in Meta-
Darmok, the modifications are inserted as daemons, which monitor for failure con-
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ditions to happen during execution when Darmok retrieves some particular plans,
but in general, they could be implemented in a different way. A daemon manager
triggers the execution of such daemons when required.

4.2.1 Trace Recording

While Meta-Darmok is playing a game, the trace recording module records an exe-
cution trace, which contains information related to basic events including the name
of the plan that was being executed, the corresponding game state when the event
occurred, the time at which the plan started, failed or succeeded, and the delay from
the moment the plan became ready for execution to the time when it actually started
executing. The execution trace provides a considerable advantage in performing
plan adaptation with respect to only analyzing the instant in which the failure oc-
curred, since the trace can help localize past events that could possibly have been
responsible for the failure.

Once a game finishes, an abstracted trace is created from the execution trace
that Darmok generates. While the execution trace contains all the information con-
cerning plan execution during the game, the abstracted trace contains only some
key pieces of information: those needed to determine whether any failure pattern
occurred during the game. The information included in the abstracted trace depends
on which conditions are used in the failure patterns. For instance, for the set of pat-
terns used in Meta-Darmok, information about hit points, location, actions being
executed by the units, and in which cycles were units created or killed is included.

4.2.2 Failure Detection

Failure detection involves localizing the failures in the trace. Traces can be ex-
tremely large, especially in the case of complex RTS games on which the system
may spend a lot of effort attempting to achieve a particular goal. In order to avoid
the potentially very expensive search process of finding which actions are respon-
sible for failures, the set of user-provided failure patterns can be used [6]. Failure
patterns can be seen as a case-based approach to failure detection, and they gretly
simplify the blame-assignment process into a search for instances of the particular
problematic patterns.

Failure patterns are defined as finite state machines (FSMs) that look for generic
patterns in the abstracted trace. An example of a represented as FSM is Very Close
Resource Gathering Location failure (VCRGLfail) (shown in Figure 7) that detects
whether a peasant is gathering resources at a location that is too close to the enemy.
This could lead to an opening for enemy units to attack early. Other examples of
failure patterns and their corresponding plan modification operators are given in Ta-
ble 2. Each failure pattern is associated with modification routines. When a failure
pattern generates a match in the abstracted trace, an instantiation of the failure pat-
tern is created. Each instantiation contains which were the particular events in the
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Fig. 7 FSM corresponding to the failure pattern VCRGLfail. This pattern detects a failure if the
FSM ends in the Fail state. When a unit is ordered to start harvesting, the FSM moves to state 1, if
the unit stops harvesting, it will move to state 2, and only when the unit gets in range of an enemy
unit while harvesting, the FSM will end in the Fail state.

Failure Pattern Plan Modification Operator

Resource Idle failure (e.g., resource like Utilize the resource in a more productive man-
peasant, building, enemy units could be idle) |ner (for example, send peasant to gather more
resources or use the peasant to create a build-
ing that could be needed later on)

Very Close Resource Gathering Location Change the location for resource gathering to

Failure a more appropriate one

Inappropriate Enemy Attacked failure Direct the attack towards the more dangerous
enemy unit

Inappropriate Attack Location failure Change the attack location to a more appropri-
ate one

Basic Operator failure Adding a basic action that fixes the failed con-
dition

Table 2 Some example failure patterns and their associated plan modification operators.

abstracted trace that matched with the pattern. This is used to instantiate particular
plan modification routines that are targeted to the particular plans that were to blame
for the failure.

4.2.3 Plan Modification

Once the cause of the failure is identified, it needs to be addressed through the appro-
priate modifications (modops). Modops can take the form of inserting or removing
steps at the correct position in the failed plan, or changing some parameter of an
executing plan. Each failure pattern has a sequence of modops associated with it.
This sequence is called a plan modification routine.

Once the failure patterns are detected from the execution trace, the corresponding
plan modification routines and the failed conditions are inserted as daemons for the
plan in which these failed conditions are detected. The daemons act as a meta-level
reactive plan that operates over the executing plan at runtime. The conditions for the
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failure pattern become the preconditions of the daemon and the plan modification
routine consisting of basic modops become the steps to execute when the daemon
executes. The daemons operate over the executing plan, monitor their execution,
detect whether a failure is about to happen and repair the plan according to the
defined plan modification routines.

Notice that Meta-Darmok does not directly modify the plans in the case base
of Darmok, but reactively modifies those plans when Darmok is executing them.
In the current system, we have defined 20 failure patterns and plan modification
routines for Wargus. The way Meta-Darmok improves over time is by accumulating
the daemons that the meta-reasoner generates (which are associated to particular
maps). Thus, over time, Meta-Darmok improves performance by learning which
combination of daemons improves the performance of Darmok for each map. Using
this approach we managed to multiply by two the win-ratio of Darmok against the
built-in Al of Wargus [12].

The adaptation system can be easily extended by writing other patterns of failure
(as described in [25]) that could be detected from the abstracted trace and the ap-
propriate plan modifications to the corresponding plans that need to be carried out
in order to correct the failed situation.

4.3 Using Meta-Darmok for User-Generated Al

In order to use Meta-Darmok for , we integrated Meta-Darmok into a behavior au-
thoring environment, which we call an intelligent IDE (iIDE). Specifically, we inte-
grated authoring by demonstration, visualization of the behavior execution, and self-
adaptation through meta-reasoning. The iIDE allows the game developer to specify
initial versions of the required Al by demonstration them instead of having to explic-
itly code the AI. The iIDE observes these demonstrations and automatically learns
plans (that we will call behaviors in this section) from them. Then, at runtime, the
system monitors the performance of these learned behaviors that are executed. The
system allows the author to define new failure patterns on the executed behavior set,
checks for pre-defined failure patterns and suggests appropriate revisions to correct
failed behaviors. This approach to allow definition of possible failures with the be-
haviors, detecting them at run-time and proposing and allowing a fix selection for
the failed conditions, enables the author to define potential failures within the learnt
behaviors and revise them in response to things that went wrong during execution.

Here we will focus only on how meta-reasoning is integrated into the iIDE (for
more details about the iIDE reported here, see [25]). In order to integrate Meta-
Darmok into the iIDE, we added to functionalities:

e Behavior Execution Visualization and Debugging: The iIDE presents the results
of the executing behaviors in a graphical format, where the author can view their
progress and change them. The author can also pause and fast-forward the game
to whichever point he chooses while running the behaviors, make a change in
the behaviors if required and start it up again with the new behaviors to see the



Case-Based Reasoning and User-Generated Al for Real-Time Strategy Games 19

COBCRE

u
Toene [0 170 | Edor Frame]

Bl

L

Fig. 8 A screenshot of the iIDE, showing the behavior execution visualization interface.

performance of the revised behaviors. The capability of the iIDE to fast forward
and start from a particular point, further allows the author to easily replicate a
possible bug late in the game execution and debug it. Figure 8 shows a screenshot
of the execution visualization view in the iIDE, showing an executing behavior
(including the current state of all the sub-goals and actions).

o Failure Detection and Fixing: The iIDE authoring tool allows the author to visu-
alize relevant chronological events from a game execution trace. The data allows
the author define new failure patterns by defining combinations of these basic
events and pre-existing failure conditions. Each failure pattern is associated with
a possible fix. A fix is basically a proposed modification for a behavior that fixes
the error detected by the failure pattern. When a failure pattern is detected, the
iIDE suggests a list of possible fixes, from which the author can select an appro-
priate one to correct the failed behavior. These techniques were also previously
developed by us in the context of believable characters [26].

Figure 9 shows an overview of how all the components fit together to allow the
author to edit a proper behavior set for the game. The iIDE controls Meta-Darmok
by sending the behaviors that the author is creating. Meta-Darmok then, runs the
behaviors in the game, and generates a trace of what happened during execution.
This trace is sent back to the iIDE so that proper information can be shown to the
author. Basically, the iIDE makes the functionality of Meta-Darmok (learning from
demonstration and self-adaptation through meta-reasoning) accessible to the user to
allow easy behavior authoring.

We evaluated this iIDE with a small set of users and the conclusions found that
users felt authoring by demonstration was more convenient than writing our behav-
iors through coding. Notice that it took no more than 25 minutes to generate behav-
iors to play Wargus (that includes the time to generate the demonstration playing
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Fig. 9 Overview of how the iIDE interacts with the author and the game.

plus trace annotation). However, since Meta-Darmok is based on the old Darmok
system, which required trace annotation, users felt that annotation was difficult,
since it was difficult to remember the actions they had performed.

Concerning self-adapting behaviors using meta-reasoning, users felt it was a very
useful feature. However, they had problems with our specific implementation be-
cause the requirement that a failure pattern should occur inside the game in order
to be able to define it was a setback. Users could think of simple failure patterns
which they would like to add without having to even run the game. However, de-
spite of these problems, users were able to successfully define failure patterns. A
more comprehensive explanation of the evaluation results can be found at [25].

4.4 Discussion

The techniques presented in this section successfully allow a system to detect prob-
lems in the behaviors being executed by the Al and fix them. However, we do so at
the expense of letting the user be the one who specifies the sets of failures to look
for, in the form of failure patterns.

Clearly, the problem of self-adapting Al contains two problems: detecting that
something has to be changed, and change it. Both of them are, as of today, open
problems. In our approach, we used a domain-knowledge intensive approach for
detecting that something has to be changed, by letting the user specify domain de-
pendent failure-patterns. Which, for the purposes of user-generated Al worked ad-
equately, but at the expense of making the user having to manipulate concepts like
conditions, actions, etc. when defining the failure patterns.
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However, detecting that something has to be changed is a challenging problem.
For example, in techniques such as dynamic scripting [23], we need to define a
performance metric. In case the goal is just to adapt an Al to make it stronger or
weaker, a performance metric is easy to define (percentage of wins, or some related
measure should suffice). However, when the goal is to adapt an Al to better behave
the way the user wants, this is harder, and interfaces to allow the user to provide
feedback are required.

In general, for behavior creation, as we explained above, LfD is an intuitive way
in which a user can provide domain knowledge. The iIDE presented in this section is
an attempt to achieve the same thing for the problem of adapting an already created
behavior. Other strategies which can be used are direct positive or negative rein-
forcement from the user when behaviors are being executed. Although this requires
the user to constantly provide feedback, where as failure patterns can be given once
and be reused multiple times.

5 Conclusions

This chapter has focused on techniques to achieve user-generated AI. We have
presented two complementary techniques, learning from demonstration and self-
adaptation, which combined can help the task of an end-user who wants to author
Al without programming. In particular, the learning from demonstration technique
presented in this chapter has been used to power the social gaming website Make
ME Play ME, in which users compete to create good Als by demonstration.

The work presented in this chapter indicates that enable user-generated Al, we
need to address both technical and user-interface problems. D2 and Meta-Darmok
are attempts at addressing the technical challenges, and Make ME Play ME and the
iIDE are attempts at addressing the user-interface problems.

Moreover, although the techniques presented in this paper are useful for achiev-
ing user-generated Al, we have listed a number of open problems that need to be
solved before they can be applied to a broad variety of games by end-users. In
the case of learning from demonstration, the two main open problems of the ap-
proaches presented here are how to present the learned strategies to the user in a
human-understandable way, and how to achieve generic and efficient plan adapta-
tion (for adapting learned plans to new situations). Concerning self-adaptation, the
main problems of a failure-pattern-based approach are enabling the easy definition
of failure patterns for end-users in an intuitive way.
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