Catalogue 2005

	ifm - The company	Profile Internet service	4- 5
Position sensors	Proximity switches	Inductive sensors Capacitive sensors	$\begin{array}{r} 8-15 \\ 16-17 \end{array}$
	Actuator sensors	Inductive sensors for valves	18-19
	Photoelectric sensors	Infrared / Red light sensors Laser sensors Fibre optics	$\begin{aligned} & 20-23-23 \\ & 24-25 \\ & 26-27 \end{aligned}$
	Incremental and absolute encoders	Solid shafts and hollow shafts	28-29
	Evaluation systems	Pulse processing and display	30-31
	Power supplies	Transformer and switched-mode power supplies	32-33
Fluid sensors and diagnostic systems			
	Level sensors	Continuous and point level measurement	34-35
STEP	Flow sensors	Flow switches and transmitters i-step efector metris leakage monitor	$\begin{aligned} & 36-37 \\ & 38-39 \end{aligned}$
	Pressure sensors	Pressure switches and transmitters	40-43
	Temperature sensors	Temperature switches	44-45
STEP	Diagnostic systems	-step efector rolling element bearing monitor	46-47
Networking	Industrial communication	AS-interface	48-51

Connectors and splitter boxes	Complete ifm product range	$52-55$

Our quality philosophy

fm products stand for highest quality on the world market. We have worked hard for this: From the pro-duction-accompanying quality astesting This gives you as the user testing. This gives you as the user safety for your machines and equip. Our quality awareness is proen by the warranty of up to we grant on standard units.

Visit our website: www.ifm-electronic.com

Familiar with your industry

You are offered standard solutions and concepts specially tailored to the requirements of your industry. This is backed by the knowledge of our engineers who always keep themselves up-to-date for you. Our corporate intranet and our worldwide application know-how are continuously updated.
Our special project service provides support with the creation of tenders and partial project planning.

All products from one supplier ifm stands for position and fluid sensors as well as networking and control systems for automation. More than 8,000 articles guarantee flexibility and compatibility.
They always provide a solution for They always provide a solution for your automation projects - from the accessories to the complete system.

A success story

With our foundation in 1969 the introduction of newly developed proximity switches under the trade proximity switches under the trade stone for the success of the compastone for the success of the compa-
ny. In 2004 ifm electronic achieved a ny. In 2004 ifm electronic achieved a turnover of 300 million euros. With service approx. 65,000 customers worldwide.

We are always in close contact with you
fm is present on all important mar kets - worldwide in over 70 coun tries. Wherever you export - we are always close to you, In Germany alone over 100 engineers in seven branches give advice ifm production sites are located in Germany, Sweden and the USA. We support you with workshops and seminars you wir worldwide training centres in our worldwide training centres and in your plant.

Different connection options using cable, connector or terminals.
Modular efector m units with increased sensing range.
Special application sensors for almost all application areas.
Cylindrical housings with a diameter of 4 to 34 mm and rectangular housings.
Wide range of fixing accessories and sockets.

ntroduction

In all automated processes sensors are absolutely necessary to provide the PLC with information. They supply the necessary signals on positions, limits or serve as pulse pick-ups for counting tasks or for monitoring rotational speed. Inductive and capacitive proximity switches are nowadays indispensable for industrial usage. As compared to mechanical switches they offer ideal conditions: non-contact operation free from any wear and tear, high switdust and moisture Inductive sensors detect all metals without contact, capa citive sensors almost all solid and liquid media such as metal, glass, wood,

Operating principle of inductive proximity switche

Inductive proximity switches take advantage of the physical effect of the change in the quality factor in a resonant circuit caused by eddy current osses in conductive materials. This is how it works: A LC tuned circuit generates a high frequency electromagnetic field. This field is radiated from the active face of the sensor. If a conductive material enters this field, eddy curents will be formed in accordance with the law of inductance which draw energy from the oscillator. This reduces the oscillation amplitude. The change is converted into a switching signal. The operating principle permits detection of all metals irrespective of whether they are moving or not.
The distance to the active face at which an electrically conductive material causes a change of signal in the sensor is called sensing range. The sensing range of an inductive proximity switch is defined by means of a target of mild steel (Fe 360). If the switch is damped by other metals, e.g. aluminium or copper, this is reduced. Using correction factors the user can calculate the attainable sensing ranges.

Typical
application:
Positioning
application:
Positioning sen-
sing in automasing in automa-
tion technology
proximity swit-
ches operate
reliably and
reliably and
without wear.

Modular sensors

A special series of inductive proximity switches are the application sensors efector ${ }_{m}$ ". The feature shared by these proximity switches is an increased sensing range. Due to a universal connection technology the switches can mounting time and ensure utilization of the increased sensing range All units have a permanent laser-etched type label. This allows clear identifica tion of the units even after many years.

Special sensor features
For special applications or application areas ifm electronic
offers proximity switches with special features.
Units for the machine tool industry, resistant to aggressive oils and lubricants aggressive oils and coolants, high moisture, hot chips, strong impacts and vibrations or temperature shocks are only some of the stresses the sensors are exposed to.
ifm modular units of the "coolant" range have been specially developed to co ifm modular units of the "coolant" range have been specially developed to cope
with these high stresses. High quality materials, modular design of completely prefabricated and tested functional components as well as continuous testing during and after production guarantee a maximum degree of reliability and set new standards.

Units for use in electromagnetic fields for welding

Article ID begins with
Electromagnetic fields place very high demands on the sensors. Electromagnetic field immune inductive proximity switches from ifm electronic are specially designed to meet these requirements. Modern circuit technology and a new coil structure
netic field immune inductive proximity switches from ifm electronic are the optimum choice for use in welding systems. During welding these sensors guarantee a reliable function. The active face of these units is made of teflon ${ }^{\ominus}$ to protect them against weld slag. Sensors with a scratch-resistant, anti-adhesive and silicone-free coating of the metal sleeve provide a maximum of reliability.

IFW / IGW I
IIW / IM5
see remark
in headline
Article ID begins with
Increased temperature range $0 . . .100^{\circ} \mathrm{C}$ stainless steel sensors for the food industry

d

IFT / IGT / IIT
see remark
in headline

$K=1$ / units without correction factor

$\mathbf{K}=\mathbf{1} \quad$ No matter whether steel, aluminium, copper or other non-ferrous metals: The new " $K=1$ " sensors from ifm electronic, have the same sensing range on all metals as opposed to conventional proximity switches

K=0 / units with selective metal detection "ferrous-only"

The ferrous-only switches detect only ferrous metals. Aluminium chips which build up on the active face during the process and lead to incorrect switching of conventional sensors are ignored due to this principle. Due to the special design, additional seals as well as a stainless steel cover as sensing face the sensor is resistant to oil and coolants and lubricants.

Setting display for increased sensing range of a proximity switch, can be used in an optimised manner.

Photoelectric proximity switch
Increased The M12 sensor with focussed, invisible light beam, plus a fixed range of 20 mm on almost all materials closes the gap between inductive sensors and photoelectric dif-
standard sensor.
nge of 20 mm is obtained when referred to the shade RAL 9005 (dark Alack, semi-gloss). Referred to the shade "Kodak white" it is 50 mm .

Dimensions ［mm］	$\begin{aligned} & \text { Sensing } \\ & \text { range } \\ & {[\mathrm{mm}]} \end{aligned}$	Material	Electrical design	Output function	$\begin{aligned} & \mathrm{U}_{\mathrm{b}} \\ & \text { [V] } \end{aligned}$	$\begin{gathered} \mathbf{f} \\ {[\mathrm{Hz}]} \end{gathered}$	Connection	Order no.
Threaded tubular metal housing， 3 －wire，DC PNP，normally open or normally closed，connector version								
M5／L＝ 45	0.8 f	V2A	3 －wire	no	10．．．36 DC	2000	M8 connector	IY5036
M5／L＝ 41	1.5 nf	V2A	3 －wire	no	10．．．30 DC	1800	M8 connector	IY5048
$\mathrm{M} 8 \mathrm{~L}=40$	3 f	brass	3－wire	no	$10 . .30 \mathrm{DC}$	1000	M8 connector	$1 E 5338$
M8／L $=40$	5 nf	brass	3 －wire	no	$10 . .30 \mathrm{DC}$	700	M8 connector	$1 E 5340$
M8／L＝ 62	$2 f$	brass	3 －wire	no	$10 . . .36 \mathrm{DC}$	1000	M12 connector	$1 E 5257$
M8／L＝ 62	4 nf	brass	3 －wire	no	10．．．36 DC	300	M12 connector	$1 E 5288$
M12／L $=46$	4 f	brass	3 －wire	no	10．．．36 DC	700	M8 connector	IFS210
M12／L $=51$	7 nf	brass	3 －wire	no	10．．．36 DC	700	M8 connector	IFS211
M12／L＝45	4 f	brass	3 －wire	no	10．．．36 DC	700	M12 connector	IFSS 204
M12／L $=50$	7 nf	brass	3 －wire	no	10．． 36 DC	700	M12 connector	IFS205
M12／L $=70$	4 f	brass	3 －wire	no	10．．．36 DC	700	M12 connector	IFSS212
M12／L $=70$	7 nf	brass	3 －wire	no	10．．．36 DC	700	M12 connector	IFS213
$\mathrm{M} 18 / \mathrm{L}=46$	8 f	brass	3 －wire	no	10．．．36 DC	400	M8 connector	IGS210
$\mathrm{M} 18 / \mathrm{L}=52$	12 nf	brass	3 －wire	no	10．．．36 DC	400	M8 connector	IGS211
M18／L $=46$	8 f	brass	3 －wire	no	10．．．36 DC	400	M12 connector	IGS204
M18／L $=51$	12 nf	brass	3 －wire	no	10．．．36 DC	300	M12 connector	IGS205
M18／L $=70$	8 f	bras	3 －wire	no	10．．．36 DC	400	M12 connector	IGS212
M18／L $=70$	12 nf	brass	3 －wire	no	10．．．36 DC	300	M12 connector	IGS213
M30／L $=50$	15 f	brass	3 －wire	no	10．．．36 DC	100	M12 connector	IIS204
M30／L $=50$	22 nf	brass	3 －wire	no	10．．．36 DC	100	M12 connector	HS205
M30／L $=70$	15 f	V4A	3 －wire	no	10．．．36 DC	100	M12 connector	HS210
M30／L $=70$	22 nf	V4A	3－wire	no	$10 . .36 \mathrm{DC}$	100	M12 connector	IIS211
M12／L $=45$	4 f	brass	3 －wire	nc	10．．．36 DC	700	M12 connector	IFS206
M12／L $=50$	7 nf	brass	3 －wire	nc	10．．．36 DC	700	M12 connector	IFS207
M18／L $=46$	8 f	brass	3 －wire	nc	10．．．36 DC	400	M12 connector	IGS206
$\mathrm{M} 18 / \mathrm{L}=51$	12 nf	brass	3 －wire	nc	10．．．36 DC	300	M12 connector	IGS207

Threaded tubular metal housing，3－wire，DC PNP，normally open，cable version								
M8／L＝ 35	1 f	brass	3 －wire	no	10．．．36 DC	750	cable， 2 m	$1 E 5072$
M8／L＝ 35	3 f	brass	3 －wire	no	10．．．30 DC	1000	cable， 2 m	IE5343
M8／L＝ 35	5 nf	bass	3 －wire	no	10．．30 DC	700	cable， 2 m	IE5345
$\mathrm{M} 12 / \mathrm{L}=35$	2 f	brass	3 －wire	no	10．．．36 DC	1500	cable， 2 m	IF5188
$\mathrm{M} 12 / \mathrm{L}=35$	4 nf	brass	3 －wire	no	10．．．36 DC	1500	cable， 2 m	IF5249
M12／L $=71$	$2 f$	brass	3 －wire	no	10．．．36 DC	800	cable， 2 m	IF5297
M12／L＝ 71	4 nf	brass	3 －wire	no	10．．．36 DC	1500	cable， 2 m	1 IF5329
$\mathrm{M} 18 / \mathrm{L}=38$	$5 f$	brass	3 －wire	no	$18 . .36 \mathrm{DC}$	500	cable， 2 m	1 G 5221
M18／L $=38$	8 nf	brass	3 －wire	no	18．．．36 DC	200	cable， 2 m	IG5285
M18／L $=80$	$5 f$	brass	3 －wire	no	10．．．36 DC	500	cable， 2 m	165397
M18／L $=80$	8 nf	brass	3 －wire	no	10．．．36 DC	300	cable， 2 m	IG5398
M30／L $=45$	10 f	brass	3 －wire	no	$18 . .36 \mathrm{DC}$	300	cable， 2 m	115166
M30／L $=45$	15 nf	brass	3 －wire	no	18．．．36 DC	250	cable， 2 m	115346
M30／L $=81$	10 f	brass	3 －wire	no	10．．．36 DC	250	cable， 2 m	115256
M30／L＝ 81	15 nf	brass	3 －wire	no	10．．．36 DC	250	cable， 2 m	115284
Threaded tubular plastic housing， 3 －wire，DC PNP，normally open，cable version								
M8／L＝ 35	2 nf	plastic	3 －wire	no	10．．．36 DC	800	cable， 2 m	1E5099
$\mathrm{M} 12 / \mathrm{L}=71$	$2 f$	plastic	3 －wire	no	10．．． 55 DC	800	cable， 2 m	1 IF5313
$\mathrm{M} 12 / \mathrm{L}=71$	4 nf	plastic	3 －wire	no	10．．．36 DC	400	cable， 2 m	IF5345
M18／L $=80$	$5 f$	plastic	3 －wire	no	10．．．36 DC	500	cable， 2 m	IG5399
M18／L $=80$	8 nf	plastic	3 －wire	no	10．．．36 DC	300	cable， 2 m	165401
M30／L $=81$	10 f	plastic	3 －wire	no	10．．．36 DC	250	cable， 2 m	115369
M30／L $=81$	15 nf	plastic	3－wire	no	10．．．36 DC	250	cable， 2 m	115300

Dimensions ［mm］	Sensing range ［mm］	Material	Electrical design	Output function	$\begin{aligned} & U_{b} \\ & {[V]} \end{aligned}$	$\begin{gathered} f \\ {[\mathrm{~Hz}]} \end{gathered}$	Connection	Order
Threaded tubular metal housing， 2 －wire，DC PNP／NPN，normally open，connector version								
M12／L $=45$	4 f	brass	2－wire	no	10．．30 DC	700	M12 connector	IFSS200
M12／L $=50$	7 nf	brass	2－wire	no	10．．．30 DC	700	M12 connector	IFS201
M18／L $=46$	8 f	brass	2－wire	no	10．．．30 DC	300	M12 connector	IGS200
$\mathrm{M} 18 / \mathrm{L}=51$	12 nf	brass	2 －wire	no	10．．．30 DC	250	M12 connector	IGS201

（ ${ }^{\text {a }}$ eaded tubular metal housing， 2 －wire，DC PNP／NPN，normally open／normally closed programmable，connector versio								
M8／L＝ 69	1 f	brass	2－wire	no／nc	5．．．36 DC	2700	M12 connector	IE5203
M8／L＝ 69	2 nf	brass	2－wire	no／nc	5．．．36 DC	2000	M12 connector	1E5298
M12／L＝83	2 f	bras	2－wire	o／nc	10．．． 55 DC	1100	M12 connector	IF5598
M12／L $=83$	4 nf	brass	2－wire	no／nc	10．．．55 DC	150	M12 connector	IF5647
M18／L＝70	$5 f$	brass	2－wire	no／nc	10．．． 55 DC	700	M12 connector	IG5595
M18／L＝76	8 nf	brass	2－wire	no／nc	10．．． 55 DC	300	M12 connector	IG559
M30／L $=78$	$10 ¢$	brass	2－wire	no／nc	10．．．55 DC	450	M12 connector	115490
M30／L $=78$	15 nf	brass	2－wire	no／nc	10．．． 55 DC	200	M12 connector	115492

M12／L $=71$	2 f	brass	2 －wire	no／nc	10．．． 55 DC	1100	cable， 2 m	IF5645
M12／L	4 nf	brass	2－wire	no／nc				

M12／L＝71	4 nf	brass	2－wire	no／nc	10．．． 55 DC	1500	cable， 2 m	If6646

		brass	2wrer		1．．．55 DC	，	cabe， 2 m	
M18／L $=80$	8 nf	brass	2－wire	no／nc	$10 . .55 \mathrm{DC}$	300	cable， 2 m	165596
M $30 / \mathrm{L}=81$	10 f	brass	2－wire	no／nc	$10 . . .55 \mathrm{DC}$	450	cable， 2 m	115489

Threaded tubular housing， 2 －wire， $\mathrm{AC} / \mathrm{DC}$ ，normally open

M8／L＝ 80	$5 f$	brass	2 －wire	no	20．．． 250	25／50	cable， 2 m	1 G 0011
M8／L＝80	8 nf	brass	2－wire	no	20．．． 250	25／50	cable， 2 m	IG0012
M30／L $=81$	$10 ¢$	brass	2－wire	no	20．．． 250	25／50	cable， 2 m	10011
M30／L $=81$	15 nf	brass	2－wire	no	20．．． 250	25／50	cable， 2 m	110012
$\mathrm{M} 18 / \mathrm{L}=80$	5 f	plastic	2－wire	\bigcirc	20．．． 250	25／50	cable， 2 m	IG0005
M18／L $=80$	8 nf	plastic	2－wire	no	20．．． 250	25／50	cable， 2 m	IG0006
M30／L $=81$	10 f	plastic	2 －wire	no	20．．． 250	25／50	cable， 2 m	110005
M30／L $=81$	15 nf	plastic	2－wire	no	20．．． 250	25／50	cable， 2 m	110006

Smooth tubular plastic housing， 3 －wire，DC PNP

$\varnothing 20 / L=77$	10 nf	plastic	3 －wire	no	10．．．36 DC	300	cable， 2 m	IA5082
$\varnothing 20 / L=92$	10 nf	plastic	3 －wire	no	10．．．36 DC	300	terminal	IA5062
$\varnothing 20 / L=92$	10 nf	plastic	3 －wire	nc	10．．．36 DC	300	terminal	IA5063
$\varnothing 20 / L=92$	10 nf	plastic	3 －wire	no	10．．．36 DC	300	M12 connector	IA5127
Ø $34 / \mathrm{L}=82$	20 nf	plastic	3 －wire	no	10．．．36 DC	60	cable， 2 m	IB5096
$\varnothing 34 / L=98$	30 nf	plastic	3 －wire	no／nc	10．．36 DC	350	terminal	IB5133
ø $34 / \mathrm{L}=98$	20 nf	plastic	3 －wire	no／nc	10．．．36 DC	350	terminal	IB5063

Tubular plastic housing， 2 －wire，DC PNP／NPN，normally open／normally closed programmable

M8／L $=50$	2 nf	plastic	2－wire	no／nc	5．．．36 DC	2000	cable， 2 m	$1 E 5202$
M12／L＝71	4 nf	plastic	2－wire	no／nc	10．．． 55 DC	1500	cable， 2 m	1 IF5597
M18／L $=80$	8 nf	plastic	2－wire	no／nc	10．．． 55 DC	300	cable， 2 m	165533
M30／L $=81$	15 nf	plastic	2－wire	no／nc	10．．． 55 DC	200	cable， 2 m	115436
$\varnothing 20 / L=92$	10 nf	plastic	2－wire	no／nc	10．．． 55 DC	300	terminal	IA5122
$\varnothing 20 / L=77$	10 nf	plastic	2－wire	no／nc	10．．． 55 DC	300	cable， 2 m	IA5108
$\varnothing 34 / L=98$	20 nf	plastic	2－wire	no／nc	10．．． 55 DC	300	terminal	IB5124

Dimensions ［mm］	Sensing range $[\mathrm{mm}]$	Material	Electrical design	Output function	$\begin{aligned} & \mathrm{U}_{\mathrm{b}} \\ & \text { [V] } \end{aligned}$	$\begin{gathered} \mathbf{f} \\ {[\mathrm{Hz}]} \end{gathered}$	Connection	Order no.
Smooth tubular plastic housing，2－wire， $\mathrm{AC} / \mathrm{DC}$ ，normally open								
ø20／L＝77	10 nf	plastic	2 －wire	no	20．．． 250	25／70	cable， 2 m	IA0004
ø 34／L＝82	20 nf	plastic	2－wire	no	20．．． 250	25／50	cable， 2 m	IB0004
ø 34／L $=82$	30 nf	plastic	2－wire	no	20．．． 250	25／50	cable， 2 m	IB0026
Smooth tubular plastic housing，2－wire，AC／DC，normally open／normally closed programmable								
$\varnothing 20 / L=92$	10 nf	plastic	2－wire	no／nc	20．．． 250	25／70	terminal	IA0032
$\varnothing 34 / \mathrm{L}=98$	20 nf	plastic	2－wire	no／nc	20．．． 250	25／50	terminal	IB0016
Rectangular housing， 3 －wire DC								
$40 \times 12 \times 26$	2 f	plastic	3－wire	no	10．．． 36 DC	1400	cable， 2 m	IN5121
$40 \times 12 \times 26$	4 nf	plastic	3 －wire	no	10．．．36 DC	1300	cable， 2 m	IN5129
$40 \times 12 \times 26$	2 f	plastic	3 －wire	no	10．．． 36 DC	1400	M8 connector	IN5230
$40 \times 12 \times 26$	4 nf	plastic	3 －wire	no	10．．．36 DC	1300	M8 connector	IN5212
$28 \times 10 \times 16$	2 f	plastic	3 －wire	no	10．．．36 DC	800	M8 connector	IS5035
$28 \times 10 \times 16$	4 nf	plastic	3 －wire	no	10．．． 36 DC	2000	M8 connector	IS5071
$28 \times 10 \times 16$	2 f	plastic	3 －wire	no	10．．．36 DC	800	cable， 2 m	IS5001
$28 \times 10 \times 16$	4 nf	plastic	3 －wire	no	10．．． 36 DC	2000	cable， 2 m	IS5070
$60 \times 36 \times 10$	8 nf	plastic	3 －wire	no	10．．．36 DC	300	M8 connector	IW5064
$60 \times 36 \times 10$	$5 \dagger$	plastic	3 －wire	no	10．．． 36 DC	400	cable， 2 m	IW5051
$60 \times 36 \times 10$	8 nf	plastic	3 －wire	no	10．．．36 DC	300	cable， 2 m	IW5058
$40 \times 40 \times 66$	15 f	plastic	3 －wire	no	$10 . .36 \mathrm{DC}$	300	M12 connector	IM5057
$40 \times 40 \times 66$	35 nf	plastic	3 －wire	no	10．．．36 DC	100	M12 connector	IM5053
$40 \times 40 \times 66$	$20 \mathrm{f}, \mathrm{K}=1$	plastic	4 －wire	no + nc	10．．．36 DC	200	M12 connector	IM5067
$40 \times 40 \times 66$	20 f	plastic	4－wire	no＋nc	10．．．36 DC	100	M12 connector	IM5068
$40 \times 40 \times 66$	35 nf	plastic	4 －wire	$\mathrm{no}+\mathrm{nc}$	10．．．36 DC	100	M12 connector	IM5066
$40 \times 40 \times 120$	15 f	plastic	3 －wire	no／nc	10．．． 36 DC	350	terminal block	IM5020
$40 \times 40 \times 120$	20 nf	plastic	3 －wire	no／nc	10．．．36 DC	350	terminal block	IM5019
$40 \times 40 \times 120$	30 nf	plastic	3 －wire	no／nc	10．．． 36 DC	100	terminal block	IM5046
$90 \times 60 \times 40$	40 nf	plastic	3 －wire	no／nc	10．．．36 DC	15	terminal block	IC5005
$105 \times 80 \times 40$	60 nf	plastic	3 －wire	no／nc	10．．． 36 DC	4	terminal block	ID5005
$92 \times 80 \times 40$	50 f	plastic	3 －wire	no	10．．．36 DC	70	M12 connector	ID5055
$105 \times 80 \times 40$	60 nf	plastic	3 －wire	no	10．．．36 DC	4	M12 connector	ID5046
92×8040	50 f	plastic	4 －wire	$\mathrm{no}+\mathrm{nc}$	10．．． 36 DC	70	M12 connector	ID5058

Rectangular plastic housing， 2 －wire，DC PNP／NPN，normally open／normally closed programmable								
$28 \times 10 \times 16$	$2 f$	plastic	2－wire	no／nc	5．．． 36	2000	cable， 2 m	155026
$40 \times 12 \times 26$	$2 f$	plastic	2－wire	no／nc	10．．．55 DC	1300	cable， 2 m	IN5207
$40 \times 12 \times 26$	4 nf	plastic	2－wire	no／nc	$10 . . .55 \mathrm{DC}$	1200	cable， 2 m	IN5208
$40 \times 40 \times 121$	$15 ¢$	plastic	2－wire	no／nc	10．．．55 DC	350	terminal	IM5037
$40 \times 40 \times 121$	20 nf	plastic	2－wire	no／nc	10．．．55 DC	300	terminal	IM5038
Rectangular housing，2－wire AC／DC								
$40 \times 12 \times 26$	2 f	plastic	2－wire	no	20．．．250	25／50	cable， 2 m	IN0073
$40 \times 12 \times 26$	4 nf	plastic	2－wire	no	20．．．250	25／50	cable， 2 m	IN0081
$40 \times 40 \times 120$	15 f	plastic	2－wire	no／nc	20．．．250	$20 / 55$	terminal block	IM0011
$40 \times 40 \times 120$	20 nf	plastic	2－wire	no／nc	20．．．250	$20 / 55$	terminal block	Ім0010
$90 \times 60 \times 40$	40 nf	plastic	2－wire	no／nc	20．．．250	10	terminal block	IC0003
$105 \times 80 \times 40$	60 nf	plastic	2－wire	no／nc	20．．．250	4	terminal block	ID0013
$120 \times 80 \times 30$	50 nf	plastic	2－wire	no	20．．． 250	25／35	able	ID001

Dimensions ［mm］	Sensing range ［mm］	Material	Electrical design	Output function	$\begin{aligned} & \mathrm{U}_{\mathrm{b}} \\ & {[\mathrm{~V}]} \end{aligned}$	$\begin{gathered} \mathbf{f} \\ {[H z]} \end{gathered}$	Connection	Order no.
efector m ＂ C ＂－series resistant against agressive oils and coolants Threaded tubular metal housing，3－wire DC PNP，IP 68，connector version								
M12／L $=45$	$2 f$	brass	3 －wire	no	10．．．36 DC	700	M12 connector	IFC239
M12／L $=60$	$2 f$	bras	3 －wire	no	10．．．36 DC	700	M12 connector	IFC243
M12／L $=70$	$2 f$	brass	3 －wire	no	10．．．36 DC	700	M12 connector	IFC241
M12／L $=45$	4 f	brass	3 －wire	no	10．．．36 DC	700	M12 connector	IFC204
M12／L $=60$	4 f	brass	3 －wire	no	10．．36 DC	700	M12 connector	IFC229
M12／L＝70	4 f	brass	3－wire	no	10．．．36 DC	700	M12 connector	IFC237
M12／L $=50$	4 nf	brass	3 －wire	no	10．．．36 DC	700	M12 connector	IFC240
M12／L＝60	4 nf	brass	3 －wire	no	10．．．36 DC	700	M12 connector	IFC244
M12／L $=70$	4 nf	brass	3 －wire	no	10．．．36 DC	700	M12 connector	IFC242
M12／L $=50$	7 nf	brass	3 －wire	no	10．．．36 DC	700	M12 connector	IFC205
M12／L $=60$	7 nf	brass	3 －wire	no	10．．．36 DC	700	M12 connector	IFC230
M12／L $=70$	7 nf	brass	3 －wire	no	10．．．36 DC	700	M12 connector	IFC238
M18／L $=46$	$5 f$	brass	3 －wire	no	10．．．36 DC	400	M12 connector	IGC226
M18／L $=60$	$5 f$	brass	3 －wire	no	10．．．36 DC	400	M12 connector	IGC230
M18／L $=70$	$5 f$	brass	3 －wire	no	10．．．36 DC	400	M12 connector	IGC228
M18／L $=46$	8 f	brass	3 －wire	no	10．．．36 DC	400	M12 connector	IGC204
M18／L $=60$	8 f	brass	3 －wire	no	10．．．36 DC	400	M12 connector	IGC221
M18／L $=70$	8 f	brass	3 －wire	no	10．．．36 DC	400	M12 connector	IGC224
M18／L $=51$	8 nf	brass	3－wire	no	10．．．36 DC	300	M12 connector	IGC227
M18／L $=60$	8 nf	brass	3 －wire	no	10．．．36 DC	300	M12 connector	IGC231
M18／L $=70$	8 nf	brass	3 －wire	no	10．．．36 DC	300	M12 connector	IGC229
M18／L $=51$	12 nf	brass	3 －wire	no	10．．．36 DC	300	M12 connector	IGC205
M18／L $=60$	12 nf	brass	3 －wire	no	10．．36 DC	300	M12 connector	IGC220
M18／L＝70	12 nf	brass	3 －wire	no	10．．．36 DC	300	M12 connector	IGC225
M30／L $=50$	10 f	V4A	3 －wire	no	10．．．36 DC	100	M12 connector	IIC212
M30／L $=60$	10 f	V4A	3 －wire	no	10．．．36 DC	100	M12 connector	IIC216
M30／L＝ 70	10 f	V4A	3 －wire	no	10．．．36 DC	100	M12 connector	IIC214
M30／L $=50$	15 f	brass	3 －wire	no	10．．．36 DC	100	M12 connector	IIC200
M30／L $=60$	15 f	brass	3 －wire	no	10．．．36 DC	100	M12 connector	IIC206
M30／L $=70$	14 f	V4A	3 －wire	no	10．．．36 DC	100	M12 connector	IIC210
M30／L $=50$	15 nf	V4A	3 －wire	no	10．．．36 DC	100	M12 connector	IIC213
M30／L $=60$	15 nf	V4A	3 －wire	no	10．．．36 DC	100	M12 connector	IIC217
M30／L $=70$	15 nf	V4A	3 －wire	no	10．．．36 DC	100	M12 connector	IIC215
M30／L $=50$	22 nf	brass	3 －wire	no	10．．．36 DC	100	M12 connector	IIC201
M30／L＝ 60	22 nf	brass	3 －wire	no	10．．．36 DC	100	M12 connector	IIC207
M30／L＝ 70	22 nf	V4A	3 －wire	no	10．．．36 DC	100	M12 connector	IIC211
M12／L $=45$	4 f	brass	3 －wire	nc	10．．．36 DC	700	M12 connector	IFC207
M12／L $=50$	7 nf	brass	3 －wire	nc	10．．．36 DC	700	M12 connector	IFC208
M18／L $=46$	8 f	brass	3 －wire	nc	10．．．36 DC	400	M12 connector	IGC207
M18／L $=51$	12 nf	brass	3 －wire	nc	10．．．36 DC	300	M12 connector	IGC208
efector m ＂ C ＂－series resistant against agressive oils and coolants with ceramic sensing face Threaded tubular metal housing， 3 －wire DC PNP normally open，IP 68，connector version								
M12／L $=45$	4 f	brass	3 －wire	no	10．．．36 DC	700	M12 connector	IFC206
M18／L＝46	8 f	brass	3 －wire	no	10．．．36 DC	400	M12 connector	IGC206
efector m＂ C ＂－series resistant against agressive oils and coolants with ceramic sensing face Threaded tubular metal housing，3－wire DC PNP and 2 －wire DC PNP／NPN normally open，IP 68，connector version								
M12／L $=70$	4 f	brass	3／2－wire	no	10．．．36 DC	500	M12 connector	IFC210
M18／L $=70$	8 f	brass	3／2－wire	no	10．．．36 DC	400	M12 connector	IGC210

Dimensions ［mm］	$\begin{aligned} & \text { Sensing } \\ & \text { range } \\ & {[\mathrm{mm}]} \end{aligned}$	Material	Electrical design	Output function	$\begin{aligned} & U_{b} \\ & {[V]} \end{aligned}$	$\underset{[\mathrm{Hz}]}{\mathrm{f}}$	Connection	Order no.
efector m ＂ C ＂－series resistant against agressive oils and coolants Threaded tubular metal housing，2－wire DC PNP／NPN normally open，IP 68，connector version								
M12 $/ \mathrm{L}=45$	4 f	brass	2－wire	no	10．．．30 DC	700	M12 connector	IFC200
M12／L $=50$	7 nf	brass	2－wire	no	10．．30 DC	700	M12 connector	IFC201
M18／L $=46$	8 f	brass	2－wire	no	10．．．30 DC	400	M12 connector	IGC200
$\mathrm{M} 18 / \mathrm{L}=51$	12 nf	brass	2－wire	no	10．．． 30 DC	250	M12 connector	IGC201

efector m＂C＂－series quadronorm，resistant against agressive oils and coolants with optical setting aid（ 2 LED） Threaded tubular metal housing， 2 －wire DC PNP／NPN normally open／normally closed，IP 68 ，connector version

$\begin{array}{llllllllll}\mathrm{M} 12 / \mathrm{L}=60 & 4 \mathrm{f} & \text { brass } & \text { 2－wire } & \mathrm{no} / \mathrm{nc} & 10 \ldots 36 \mathrm{DC} & 700 & \text { M12 connector } & \text { IFC234 }\end{array}$

efector m＂C＂－series ferrous only，resistant against agressive oils and coolants
Threaded tubular metal housing， 3 －wire DC PNP，IP 68 ，connector version，detects only ferrous materials（ $\mathrm{K}=0$ ）

$\mathrm{M} 12 / \mathrm{L}=70$	3 f	brass	3 －wire	no	$10 . .30 \mathrm{DC}$	25	M12 connector	IFC211
$\mathrm{M} 18 / \mathrm{L}=70$	$5 f$	brass	3 －wire	no	10．．．30 DC	25	M12 connector	IGC211
$\mathrm{M} 12 / \mathrm{L}=70$	3 f	brass	3 －wire	nc	$10 . .30 \mathrm{DC}$	25	M12 connector	IFC213
$\mathrm{M} 18 / \mathrm{L}=70$	$5 \dagger$	brass	3－wire	nc	$10 . .30 \mathrm{DC}$	25	M12 connector	IGC215

Threaded tubular metal housing， $\mathbf{3}$－wire DC PNP，IP 67 ，connector version，weld field immune

$\mathrm{M} 12 / \mathrm{L}=60$	$2 f$	brass	3－wire	no	10．．．36 DC	1000	M12 connector	IF5670
M12／L $=60$	4 nf	brass	3 －wire	no	10．．．36 DC	1000	M12 connector	IF5675
$\mathrm{M} 18 / \mathrm{L}=60$	5 f	brass	3 －wire	no	10．．．36 DC	700	M12 connector	IG5667
M $30 / \mathrm{L}=60$	10 f	brass	3 －wire	no	10．．．36 DC	250	M12 connector	115503

M12／L $=60$	$2 f$	brass	3 －wire	no	10． 36 DC	1000	M12 connector	
M12／L $=60$	4 nf	brass	3 －wire	no	10．．．36 DC	1000	M12 connector	IF5751
$\mathrm{M} 18 / \mathrm{L}=60$	$5 f$	bras	3 －wire	no	10．．． 36 DC	700	M12 connector	IG5647
M $30 / \mathrm{L}=60$	10 f	brass	3 －wire	no	10．．．36 DC	250	M12 connector	115711

Rectangular plastic housing，4－wire DC PNP，IP 67，connector version，weld field immune								
$40 \times 40 \times 66$	20 f	plastic	4－wire	no +nc	10．．．36 DC	200	M12 connector	IM5067
$40 \times 40 \times 66$	35 nf	plastic	4 －wire	no + nc	10．．．36 DC	250	M12 connector	IM5097

Rectangular teflon coated plastic housing，4－wire DC PNP，IP 67，weld field immune，correction factor＝ 1								
$40 \times 40 \times 66$	$20 f$	plastic	4 －wire	$\mathrm{no}+\mathrm{nc}$	$10 . .36 \mathrm{DC}$	200	M12 connector	IM5073
$40 \times 40 \times 66$	35 nf	plastic	4 －wire	$\mathrm{no}+\mathrm{nc}$	10．．． 36 DC	250	M12 connector	IM5098
efector m ＂W＂－series weld field immune，correction factor $=\mathbf{1}$ ，same sensing range for all metals Threaded tubular teflon coated metal housing， 3 －wire DC PNP，IP 67，normally open，connector version								
M12／L $=65$	$3 f$	brass	3 －wire	no	10．．．30 DC	4000	M12 connector	IFW200
M12／L $=65$	8 nf	brass	3 －wire	no	10．．．30 DC	4000	M12 connector	IFW201
M18／L $=65$	5 f	brass	3 －wire	no	10．．． 30 DC	2000	M12 connector	IGW200
M18／L $=65$	12 nf	brass	3 －wire	no	$10 . .30 \mathrm{DC}$	2000	M12 connector	IGW201
M30／L $=65$	10 f	brass	3 －wire	no	10．．． 30 DC	1000	M12 connector	IIW200
M30／L $=65$	22 nf	brass	3 －wire	no	$10 . .30 \mathrm{DC}$	1000	M12 connector	IIW201

Dimensions ［mm］	Sensing range ［mm］	Material	Electrical design	Output function	$\begin{aligned} & U_{b} \\ & {[V]} \end{aligned}$	$\begin{gathered} \mathbf{f} \\ {[\mathrm{Hz}]} \end{gathered}$	Connection	Order no.
efector m ＂ S ＂－series for industrial applications with optical setting aid（2 LED） Threaded tubular metal housing，3－wire DC PNP or 2－wire DC PNP／NPN，normally open，connector version								
M12／L $=70$	4 f	brass	3／2－wire	no	10．．．30 DC	500	M12 connector	IFS208
M12／L＝ 70	7 nf	brass	3／2－wire	no	10．．．30 DC	500	M12 connector	IFS209
M18／L＝70	$8 f$	brass	3／2－wire	no	10．．．30 DC	400	M12 connector	IGS208
M18／L $=70$	12 nf	brass	3／2－wire	no	10．．． 30 DC	300	M12 connector	IGS209
efector m photoelectric M12 proximity switch with 50 mm sensing range Threaded tubular metal housing， 3 －wire DC PNP，normally open，connector version								
$\mathrm{M} / \mathrm{L}=66$	25 f	brass	3 －wire	no	12．．30 DC	2500	M8 connector	JAC200
M12／L $=63$	50 f	brass	3 －wire	no	10．．30 DC	1600	M12 connector	JAC201
efector m＂ T ＂－series for food and hygienic applications，IP 68 \＆IP 69 K ，temperature range $0 . . .100^{\circ} \mathrm{C}$ Threaded tubular stainless steel housing， 3 －wire DC PNP								
M12／L $=45$	4 f	V4A	3 －wire	no	10．．． 36 DC	700	M12 connector	IfT203
M12／L $=50$	7 nf	V4A	3 －wire	no	10．．．36 DC	700	M12 connector	IFT200
M12／L $=70$	4 f	V4A	3 －wire	no	10．．． 36 DC	700	M12 connector	IFT216
M12／L $=70$	7 nf	V4A	3 －wire	no	10．．．36 DC	700	M12 connector	IFT217
M18／L $=46$	8 f	V4A	3 －wire	no	10．．． 36 DC	500	M12 connector	IGT203
M18／L $=51$	12 nf	V4A	3 －wire	no	10．．．36 DC	300	M12 connector	IGT200
M18／L $=70$	8 f	V4A	3 －wire	no	10．．．36 DC	400	M12 connector	IGT219
M18／L $=70$	12 nf	V4A	3 －wire	no	10．．．36 DC	300	M12 connector	IGT220
M30／L $=50$	14 f	V4A	3 －wire	no	10．．．36 DC	100	M12 connector	117205
M30／L $=50$	22 nf	V4A	3 －wire	no	10．．． 36 DC	100	M12 connector	117200
M30／L $=70$	14 f	V4A	3 －wire	no	10．．．36 DC	100	M12 connector	IIT212
M30／L $=70$	22 nf	V4A	3 －wire	no	10．．． 36 DC	100	M12 connector	117213
M12／L $=56$	3.5 f	V4A	3 －wire	no	10．．．36 DC	700	cable， 6 m	IFT206
M12／L＝61	7 nf	V4A	3 －wire	no	10．．． 36 DC	700	cable， 6 m	IFT208
M18／L $=57$	8 f	V4A	3 －wire	no	10．．．36 DC	400	cable， 6 m	IGT206
M18／L＝ 62	12 nf	V4A	3 －wire	no	10．．．36 DC	300	cable， 6 m	IGT208
M30／L $=59$	14 f	V4A	3 －wire	no	10．．．36 DC	100	cable， 6 m	117209
M30／L $=59$	22 nf	V4A	3 －wire	no	10．．．36 DC	100	cable， 6 m	117207
M12／L $=45$	3.5 f	V4A	3 －wire	nc	10．．． 36 DC	700	M12 connector	IFT204
M12／L $=50$	7 nf	V4A	3 －wire	nc	10．．．36 DC	700	M12 connector	IFT201
M18／L $=46$	8 f	V4A	3 －wire	nc	10．．．36 DC	500	M12 connector	IGT204
M18／L $=51$	12 nf	V4A	3 －wire	nc	10．．．36 DC	300	M12 connector	IGT201
efector m＂ T ＂－series for food and hygienic applications，IP 68 \＆IP 69 K ，temperature range $0 . . .100^{\circ} \mathrm{C}$ Threaded tubular stainless steel housing， 3 －wire DC PNP and 2 －wire DC PNP／NPN normally open with optical setting aid（2 LED）								
M12／L $=70$	$3.5 \dagger$	V4A	3／2－wire	no	10．．．30 DC	500	M12 connector	IfT205
M12／L $=70$	7 nf	V4A	3／2－wire	no	10．．．30 DC	700	M12 connector	IFT202
M18／L $=70$	$5 \dagger$	V4A	3／2－wire	no	10．． 30 DC	500	M12 connector	IGT205
M18／L $=70$	12 nf	V4A	3／2－wire	no	10．．．30 DC	300	M12 connector	IGT202
M30／L $=70$	14 f	V4A	3／2－wire	no	10．．． 36 DC	100	M12 connector	117204
M30／L $=70$	22 nf	V4A	3／2－wire	no	10．．．36 DC	100	M12 connector	117202
efector m＂T＂－series for food and hygienic applications，IP 68 \＆IP 69 K ，temperature range $0 . . .100^{\circ} \mathrm{C}$ Smooth tubular stainless steel housing， 3 －wire DC PNP and 2 －wire DC PNP／NPN，normally open with optical setting aid（2 LED）								
$\varnothing_{12} / L=70$	7 nf	V4A	3／2－wire	no	10．．30 DC	700	M12 connector	IFT210
$\varnothing 12 / L=79$	7 nf	V4A	3／2－wire	no	10．．．30 DC	700	cable， 6 m	IFT211
ø18／L $=70$	12 nf	V4A	3／2－wire	no	10．．．30 DC	300	M12 connector	IGT211
$\varnothing 18 / L=81$	12 nf	V4A	3／2－wire	no	10．．．30 DC	300	cable， 6 m	IGT212
efector m photoelectric M12 proximity switch with 50 mm sensing range，temperature range $0 . . .100^{\circ} \mathrm{C}$ Threaded tubular metal housing，3－wire DC PNP，normally open，connector version								
M12／L $=63$	50 f	V4A	3 －wire	no	10．． 30 DC	1600	M12 connector	JAT201

efector mphotolectric M12 proximity switch with 50 mm sensing range
Threaded tubular metal housing， 3 －wire DC PNP，normally open，connector version

［mm］	$\begin{aligned} & \text { range } \\ & {[\mathrm{mm}]} \end{aligned}$		．		［V］	［Hz］		
efector m＂S＂－series for industrial applications with optical setting aid（2 LED） Threaded tubular metal housing，3－wire DC PNP or 2－wire DC PNP／NPN，normally open，connector version								
$\mathrm{M} 12 / \mathrm{L}=70$	4 f	brass	3／2－wire	no	10．．．30 DC	500	M12 connector	IFS208
$\mathrm{M} 12 / \mathrm{L}=70$	7 nf	brass	3／2－wire	no	$10 . .30 \mathrm{DC}$	500	M12 connector	IFS209
$\mathrm{M} 18 / \mathrm{L}=70$	8 f	brass	3／2－wire	no	10．．．30 DC	400	M12 connector	IGS208
$\mathrm{M} 18 / \mathrm{L}=70$	12 nf	brass	3／2－wire	no	$10 . .30 \mathrm{DC}$	300	M12 connector	IGS209
efector m photoelectric M12 proximity switch with 50 mm sensing range Threaded tubular metal housing， 3 －wire DC PNP，normally open，connector version								
M8／L＝ 66	25	brass	3 －wire	no	$12 . .30 \mathrm{DC}$	2500	M8 connector	JAC200
M12／L $=63$	$50 f$	brass	3 －wire	no	$10 . .30 \mathrm{DC}$	1600	M12 connector	JAC201
efector m ＂ T ＂－series for food and hygienic applications，IP 68 \＆IP 69 K ，temperature range $0 . . .100^{\circ} \mathrm{C}$ Threaded tubular stainless steel housing，3－wire DC PNP								
M12／L $=45$	4 f	V4A	3 －wire	no	10．．．36 DC	700	M12 connector	IfT203
$\mathrm{M} 12 / \mathrm{L}=50$	7 nf	V4A	3 －wire	no	10．．．36 DC	700	M12 connector	IFT200
M12／L $=70$	4 f	V4A	3－wire	no	$10 . . .36 \mathrm{DC}$	700	M12 connector	IFT216
M12／L $=70$	7 nf	V4A	3 －wire	no	10．．．36 DC	700	M12 connector	IFT217
M18／L＝ 46	8 f	V4A	3 －wire	no	10．．．36 DC	500	M12 connector	IGT203
$\mathrm{M} 18 / \mathrm{L}=51$	12 nf	V4A	3 －wire	no	10．．．36 DC	300	M12 connector	IGT200
M18／L $=70$	8 f	V4A	3 －wire	no	$10 . . .36 \mathrm{DC}$	400	M12 connector	IGT219
M18／L $=70$	12 nf	V4A	3 －wire	no	10．．．36 DC	300	M12 connector	IGT220
M30／L $=50$	14 f	V4A	3 －wire	no	10．．．36 DC	100	M12 connector	117205
M30／L $=50$	22 nf	V4A	3 －wire	no	$10 . .36 \mathrm{DC}$	100	M12 connector	117200
M30／L $=70$	14 f	V4A	3 －wire	no	10．．．36 DC	100	M12 connector	117212
M30／L $=70$	22 nf	V4A	3 －wire	no	10．．．36 DC	100	M12 connector	IIT213
M12／L $=56$	3.5 f	V4A	3 －wire	no	10．．．36 DC	700	cable， 6 m	IFT206
M12／L $=61$	7 nf	V4A	3 －wire	no	$10 . .36 \mathrm{DC}$	700	cable， 6 m	IFT208
M18／L $=57$	8 f	V4A	3 －wire	no	10．．．36 DC	400	cable， 6 m	IGT206
M18／L $=62$	12 nf	V4A	3 －wire	no	10．．．36 DC	300	cable， 6 m	IGT208
M30／L $=59$	14 f	V4A	3 －wire	no	10．．．36 DC	100	cable， 6 m	IIT209
M30／L $=59$	22 nf	V4A	3－wire	no	$10 . .36 \mathrm{DC}$	100	cable， 6 m	117207
M12／L $=45$	3.5 f	V4A	3 －wire	nc	10．．．36 DC	700	M12 connector	IFT204
$\mathrm{M} 12 / \mathrm{L}=50$	7 nf	V4A	3 －wire	nc	10．．．36 DC	700	M12 connector	IFT201
M18／L $=46$	8 f	V4A	3 －wire	nc	10．．．36 DC	500	M12 connector	IGT204
M18／L $=51$	12 nf	V4A	3 －wire	nc	10．．．36 DC	300	M12 connector	IGT201
efector m ＂T＂－series for food and hygienic applications，IP 68 \＆IP 69 K ，temperature range $0 . . .100^{\circ} \mathrm{C}$ Threaded tubular stainless steel housing， 3 －wire DC PNP and 2 －wire DC PNP／NPN normally open with optical setting aid（2 LED）								
M12／L $=70$	3.5 f	V4A	3／2－wire	no	10．．．30 DC	500	M12 connector	IFT205
$\mathrm{M} 12 / \mathrm{L}=70$	7 nf	V4A	3／2－wire	no	$10 . .30 \mathrm{DC}$	700	M12 connector	IFT202
$\mathrm{M} 18 / \mathrm{L}=70$	5 f	V4A	3／2－wire	no	$10 . .30 \mathrm{DC}$	500	M12 connector	IGT205
$\mathrm{M} 18 / \mathrm{L}=70$	12 nf	V4A	3／2－wire	no	$10 . .30 \mathrm{DC}$	300	M12 connector	IGT202
M30／L $=70$	14 f	V4A	3／2－wire	no	10．．．36 DC	100	M12 connector	IIT204
M30／L $=70$	22 nf	V4A	3／2－wire	no	10．．．36 DC	100	M12 connector	117202
efector m＂ T ＂－series for food and hygienic applications，IP 68 \＆IP 69 K ，temperature range $0 . . .100^{\circ} \mathrm{C}$ Smooth tubular stainless steel housing， 3 －wire DC PNP and 2 －wire DC PNP／NPN，normally open with optical setting aid（2 LED）								
ø12／L $=70$	7 nf	V4A	3／2－wire	no	10．．．30 DC	700	M12 connector	IFT210
$\varnothing 12 / \mathrm{L}=79$	7 n	V4A	3／2－wire	no	$10 . .30 \mathrm{DC}$	00	cable， 6 m	IFT211
Ø18／L＝ 70	12 nf	V4A	3／2－wire	no	10．．．30 DC	300	M12 connector	IGT211
ø18／L $=81$	12 nf	V4A	3／2－wire	no	10．．．30 DC	300	cable， 6 m	IGT212
efector m photoelectric M12 proximity switch with 50 mm sensing range，temperature range $0 . . .100^{\circ} \mathrm{C}$ Threaded tubular metal housing， 3 －wire DC PNP，normally open，connector version								
$\mathrm{M} 12 / \mathrm{L}=63$	50 f	V4A	3 －wire	no	10．．．30 DC	1600	M12 connector	JAT201

Threaded tubular stainless steel housing， 3 －wire DC PNP

［mm］	range ［mm］				［v］	［ Hz$]$		
efector m＂ S ＂－series for industrial applications with optical setting aid（2 LED） Threaded tubular metal housing， 3 －wire DC PNP or 2－wire DC PNP／NPN，normally open，connector version								
M12／L＝ 70	4 f	brass	3／2－wire	no	10．．．30 DC	500	M12 connector	IFS208
M12／L $=70$	7 nf	brass	3／2－wire	no	$10 . .30 \mathrm{DC}$	500	M12 connector	IFS209
M18／L $=70$	8 f	brass	3／2－wire	no	$10 . .30 \mathrm{DC}$	400	M12 connector	IGS208
M18／L $=70$	12 nf	brass	3／2－wire	no	$10 . .30 \mathrm{DC}$	300	M12 connector	IGS209
efector m photoelectric M12 proximity switch with 50 mm sensing range Threaded tubular metal housing，3－wire DC PNP，normally open，connector version								
M8／L＝ 66	25 f	brass	3 －wire	no	$12 . .30 \mathrm{DC}$	2500	M8 connector	JAC200
M12／L $=63$	$50 f$	brass	3 －wire	no	$10 . .30 \mathrm{DC}$	1600	M12 connector	JAC201
efector m＂T＂－series for food and hygienic applications，IP 68 \＆IP 69 K ，temperature range $0 . . .100^{\circ} \mathrm{C}$ Threaded tubular stainless steel housing， 3 －wire DC PNP								
M12／L $=45$	4 f	V4A	3 －wire	no	10．．．36 DC	700	M12 connector	IfT203
M12／L $=50$	7 nf	V4A	3 －wire	no	10．．．36 DC	700	M12 connector	IFT200
M12／L $=70$	4 f	V4A	3 －wi	no	10．．．36 DC	700	M12 connector	FT216
M12／L $=70$	7 nf	V4A	3 －wire	no	10．．．36 DC	700	M12 connector	IFT217
M18／L $=46$	8 f	V4A	3 －wire	no	10．．． 36 DC	500	M12 connector	IGT203
M18／L＝51	12 nf	V4A	3 －wire	no	10．．．36 DC	300	M12 connector	IGT200
M18／L $=70$	8 f	V4A	3 －wire	no	$10 . . .36 \mathrm{DC}$	400	M12 connector	IGT219
M18／L $=70$	12 nf	V4A	3 －wire	no	10．．．36 DC	300	M12 connector	IGT220
M30／L $=50$	14 f	V4A	3－wire	no	10．．． 36 DC	100	M12 connector	IIT205
M30／L $=50$	22 nf	V4A	3 －wire	no	$10 . .36 \mathrm{DC}$	100	M12 connector	IIT200
M30／L＝ 70	14 f	V4A	3 －wire	no	10．．． 36 DC	100	M12 connector	IIT212
M30／L $=70$	22 nf	V4A	3－wire	no	10．．．36 DC	100	M12 connector	IIT213
M12／L＝56	3.5 f	V4A	3 －wire	no	10．．．36 DC	700	cable， 6 m	IFT206
M12／L＝61	7 nf	V4A	3 －wire	no	$10 . .36 \mathrm{DC}$	700	cable， 6 m	IFT208
M18／L $=57$	8 f	V4A	3 －wire	no	10．．．36 DC	400	cable， 6 m	IGT206
M18／L $=62$	12 nf	V4A	3 －wire	no	10．．．36 DC	300	cable， 6 m	IGT208
M30／L $=59$	14 f	V4A	3 －wire	no	10．．．36 DC	100	cable， 6 m	IIT209
M30／L＝ 59	22 nf	V4A	3 －wire	no	10．．． 36 DC	100	cable， 6 m	IIT207
M12 $/ \mathrm{L}=45$	3.5 f	V4A	3 －wire	nc	10．．．36 DC	700	M12 connector	IFT204
M12／L $=50$	7 nf	V4A	3 －wire	nc	10．．．36 DC	700	M12 connector	IFT201
M18／L $=46$	8 f	V4A	3 －wire	nc	$10 . . .36 \mathrm{DC}$	500	M12 connector	IGT204
M18／L $=51$	12 nf	V4A	3 －wire	nc	10．．． 36 DC	300	M12 connector	IGT201
efector m ＂ T ＂－series for food and hygienic applications，IP 68 \＆IP 69 K ，temperature range $0 . . .100^{\circ} \mathrm{C}$ Threaded tubular stainless steel housing， 3 －wire DC PNP and 2 －wire DC PNP／NPN normally open with optical setting aid（2 LED）								
M12／L $=70$	$3.5 \dagger$	V4A	3／2－wire	no	$10 . . .30 \mathrm{DC}$	500	M12 connector	IfT205
$\mathrm{M} 12 / \mathrm{L}=70$	7 nf	V4A	3／2－wire	no	10．．．30 DC	700	M12 connector	IFT202
M18／L＝70	5 f	V4A	3／2－wire	no	$10 . . .30 \mathrm{DC}$	500	M12 connector	IGT205
M18／L＝70	12 nf	V4A	3／2－wire	no	10．．．30 DC	300	M12 connector	IGT202
M30／L $=70$	14 f	V4A	3／2－wire	no	10．．．36 DC	100	M12 connector	IIT204
M30／L $=70$	22 nf	V4A	3／2－wire	no	10．．．36 DC	100	M12 connector	IIT202
efector m ＂ T ＂－series for food and hygienic applications，IP 68 \＆IP 69 K ，temperature range $0 . . .100^{\circ} \mathrm{C}$ Smooth tubular stainless steel housing，3－wire DC PNP and 2－wire DC PNP／NPN，normally open with optical setting aid（2 LED）								
$\varnothing 12 / L=70$	7 nf	V4A	3／2－wire	no	$10 . . .30 \mathrm{DC}$	700	M12 connector	IFT210
$\varnothing 12 / L=79$	7 nf	V4A	3／2－wire	no	10．．．30 DC	700	cable， 6 m	IFT211
ø18／L $=70$	12 nf	V4A	3／2－wire	no	10．．．30 DC	300	M12 connector	IGT211
$\varnothing 18 / L=81$	12 nf	V4A	3／2－wire	no	10．．．30 DC	300	cable， 6 m	IGT212
efector m photoelectric M12 proximity switch with 50 mm sensing range，temperature range $0 . . .100^{\circ} \mathrm{C}$ Threaded tubular metal housing， 3 －wire DC PNP，normally open，connector version								
M12／L $=63$	50 f	V4A	3 －wire	no	10．．．30 DC	1600	M12 connector	JAT201

efector m＂T＂－series for food and hygienic applications，IP $68 \&$ IP $69 K$ ，temperature range $0 . . .100{ }^{\circ} \mathrm{C}$
Threaded tubular stainless steel housing， 3 －wire DC PNP and 2 －wire DC PNP／NPN normally open with optical setting aid（2 LED）

［mm］	$\begin{aligned} & \text { range } \\ & \text { [mm] } \end{aligned}$		，		［v］	［Hz］		
efector m＂ S ＂－series for industrial applications with optical setting aid（2 LED） Threaded tubular metal housing， 3 －wire DC PNP or 2－wire DC PNP／NPN，normally open，connector version								
$\mathrm{M} 12 / \mathrm{L}=70$	4 f	brass	3／2－wire	no	10．．．30 DC	500	M12 connector	IFS208
M12／L＝70	7 nf	brass	3／2－wire	no	10．．30 DC	500	M12 connector	IFS209
M18／L＝70	8 f	brass	3／2－wire	no	10．．30 DC	400	M12 connector	IGS208
M18／L $=70$	12 nf	bras	3／2－wire	no	10．．．30 DC	300	M12 connector	IGS209
efector m photoelectric M12 proximity switch with 50 mm sensing range Threaded tubular metal housing， 3 －wire DC PNP，normally open，connector version								
M8／L＝ 66	25 f	brass	3 －wire	no	$12 . .30 \mathrm{DC}$	2500	M8 connector	JAC200
M12／L $=63$	50 f	brass	3 －wire	no	10．．．30 DC	1600	M12 connector	JAC201
efector m ＂ T ＂－series for food and hygienic applications，IP 68 \＆IP 69 K ，temperature range $0 . . .100^{\circ} \mathrm{C}$ Threaded tubular stainless steel housing， 3 －wire DC PNP								
M12／L $=45$	4 f	V4A	3 －wire	no	10．．．36 DC	700	M12 connector	IfT203
M12／L $=50$	7 nf	V4A	3 －wire	no	10．．36 DC	700	M12 connector	IFT200
M12／L $=70$	4 f	V4A	3 －wir	no	10．．．36 DC	700	M12 connector	FT216
M12／L $=70$	7 nf	V4A	3 －wire	no	10．．．36 DC	700	M12 connector	IFT217
M18／L $=46$	8 f	V4A	3 －wire	no	10．．．36 DC	500	M12 connector	IGT203
M18／L＝51	12 nf	V4A	3 －wire	no	10．．．36 DC	300	M12 connector	IGT200
M18／L $=70$	8 f	V4A	3 －wire	no	10．．．36 DC	400	M12 connector	IGT219
M18／L $=70$	12 nf	V4A	3 －wire	no	10．．．36 DC	300	M12 connector	IGT220
M30／L $=50$	14 f	V4A	3 －wire	no	10．．．36 DC	100	M12 connector	IIT205
M30／L $=50$	22 nf	V4A	3 －wire	no	10．．．36 DC	100	M12 connector	IIT200
M30／L＝ 70	14 f	V4A	3 －wire	no	10．．．36 DC	100	M12 connector	IT212
M30／L $=70$	22 nf	V4A	3 －wire	no	10．．．36 DC	100	M12 connector	IT213
M12／L $=56$	3.5 f	V4A	3 －wire	no	10．．．36 DC	700	cable， 6 m	IFT206
M12／L＝61	7 nf	V4A	3 －wire	no	10．．．36 DC	700	cable， 6 m	IFT208
M18／L $=57$	8 f	V4A	3 －wire	no	10．．．36 DC	400	cable， 6 m	IGT206
M18／L $=62$	12 nf	V4A	3 －wire	no	10．．．36 DC	300	cable， 6 m	IGT208
M30／L $=59$	14 f	V4A	3 －wire	no	10．．．36 DC	100	cable， 6 m	IT209
M30／L $=59$	22 nf	V4A	3 －wir	no	10．．．36 DC	100	cable， 6 m	IT207
M12／L $=45$	3.5 f	V4A	3 －wire	nc	10．．．36 DC	700	M12 connector	IFT204
M12／L $=50$	7 nf	V4A	3 －wire	nc	10．．．36 DC	700	M12 connector	IFT201
M18／L $=46$	8 f	V4A	3 －wire	nc	10．．．36 DC	500	M12 connector	IGT204
M18／L $=51$	12 nf	V4A	3 －wire	nc	10．．．36 DC	300	M12 connector	IGT201
efector m＂T＂－series for food and hygienic applications，IP 68 \＆IP 69 K ，temperature range $0 . . .100^{\circ} \mathrm{C}$ Threaded tubular stainless steel housing， 3 －wire DC PNP and 2 －wire DC PNP／NPN normally open with optical setting aid（2 LED）								
M12／L $=70$	3.5 f	V4A	3／2－wire	no	10．．．30 DC	500	M12 connector	IFT205
M12／L $=70$	7 nf	V4A	3／2－wire	no	10．．．30 DC	700	M12 connector	IFT202
M18／L＝70	5 f	V4A	3／2－wire	no	10．．30 DC	500	M12 connector	IGT205
M18／L＝70	12 nf	V4A	3／2－wire	no	10．．．30 DC	300	M12 connector	IGT202
M30／L $=70$	14 f	V4A	3／2－wire	no	10．．．36 DC	100	M12 connector	IT204
M30／L $=70$	22 nf	V4A	3／2－wire	no	10．．．36 DC	100	M12 connector	IT202
efector m ＂ T ＂－series for food and hygienic applications，IP 68 \＆IP 69 K ，temperature range $0 . . .100^{\circ} \mathrm{C}$ Smooth tubular stainless steel housing， 3 －wire DC PNP and 2 －wire DC PNP／NPN，normally open with optical setting aid（2 LED）								
$\varnothing 12 / L=70$	7 nf	V4A	3／2－wire	no	10．．．30 DC	700	M12 connector	IfT210
$\varnothing 12 / L=79$	7 nf	V4A	3／2－wire	no	10．．．30 DC	700	cable， 6 m	IFT211
$\varnothing 18 / L=70$	12 nf	V4A	3／2－wire	no	10．．．30 DC	300	M12 connector	IGT211
$\varnothing 18 / L=81$	12 nf	V4A	3／2－wire	no	10．．．30 DC	300	cable， 6 m	IGT212
efector m photoelectric M12 proximity switch with 50 mm sensing range，temperature range $0 . . .100^{\circ} \mathrm{C}$ Threaded tubular metal housing， 3 －wire DC PNP，normally open，connector version								
M12／L $=63$	50 f	V4A	3 －wire	no	10．．．30 DC	1600	M12 connector	JAT201

 efector m＂T＂－series for food and hygienic applications，IP $68 \&$ IP 69 K, temperature range $0 . .100^{\circ} \mathrm{C}$
Smooth tubular stainless steel housing， 3 －wire DC PNP and 2－wire DC PNP／NPN，normally open with optical setting aid（2 LED）

 efector m photoelectric M12 proximity switch with 50 mm sensing range，temperature range $0 . . .100^{\circ} \mathrm{C}$
Threaded tubular metal housing， 3 －wire DC PNP，normally open，connector version
M12／L＝63 50f V4A 3－wire no $10 \ldots 30 \mathrm{DC} 1600$ M12 connector JAT201

High operational reliability due to increased noise immunity．
－Adjustable sensing range up to 15 mm by means of a potentiometer．
Resistant plastic housing for various applications．
Different connection options using cable，connector or terminals．

Types with programmable output

 function available．
ntroduction

Capacitive proximity switches are used for the non－contact detection of any objects．In contrast to inductive switches，which only detect metallic objects， capacitive sensors can also detect non－metallic materials．
Typical applications are in the wood，paper，glass，plastic，food and chemical industries．Capacitive sensors for example monitor that the contents of a cardboard box are complete or check the presence of the non－metallic caps．

Operating principle

The capacitance between the active electrode of the sensor and the electri－ cal earth potential is measured．An approaching object influences the elec－ trical alternating field between these two＂capacitor plates＂．This applies to metallic and non－metallic objects．
In principle，capacitive sensors work with an RC oscillator．A very small change in capacitance is enough to influence the oscillation amplitude．The evaluation electronics converts this into a switched signal．The sensitivity can be set with a potentiometer．

Not only metal： Capacitive sensors
detect almost all detect altest
materiasts，
fere
for example a for example a
\log in a saw mill．

Increased noise immunity

When detecting objects very small changes in capacitance of 0.02 pF （with a basic capacitance of the electrode of 0.2 pF ！）must be reliably converted into useful switched signals．This makes high requirements for the electronics as tracks，input capacitances of the components）can be much higher thus making a precise capacitance measurement much more difficult making a
fm electronic therefore developed a future－oriented solution to this pro－
blem．A new sensor circuit effectively avoids the indicated prober blem．A new sensor circuit effectively avoids the indicated problems of the
RC oscillator with an acceptable level of input．The new circuit concept achieves much better values with respect to all relevant noise parameters． Special attention was given to very common noise sources in practice（fre－ quency inverters，switched－mode power supplies，stepper－motor controllers， etc．）

Dimensions ［mm］	Sensing range ［mm］	Material	Electrical design	$\begin{aligned} & \text { Output } \\ & \text { function } \end{aligned}$	$\begin{aligned} & \mathrm{U}_{\mathrm{b}} \\ & \text { [V] } \end{aligned}$	$\underset{[H z]}{f}$	Connection	Order no．
Threaded tubular plastic housing，3－wire，DC PNP								
M18／L $=84$	8 nf	plastic	3 －wire	no	10．．．36 DC	50	cable， 2 m	KG5043
M18／L $=110$	8 nf	plastic	3 －wire	no	$10 . . .36 \mathrm{DC}$	50	terminal block	KG5041
M30／L $=81$	15 nf	plastic	3 －wire	no	10．．．36 DC	40	cable， 2 m	K15002
M30／L $=81$	15 nf	plastic	3 －wire	nc	10．．．36 DC	40	cable， 2 m	K15001
M30／L $=92$	15 nf	plastic	3 －wire	no／nc	10．．．36 DC	40	DIN 43650 conn．	K15038
M30／L $=125$	15 nf	plastic	3 －wire	no／nc	10．．．55 DC	40	terminal block	K15023
Threaded tubular plastic housing， 3 －wire，DC NPN								
M18／L $=84$	8 nf	plastic	3 －wire	no	10．．．36 DC	50	cable， 2 m	KG5045
M30／L $=81$	15 nf	plastic	3－wire	no	10．．．36 DC	40	cable， 2 m	K15015
Threaded tubular plastic housing，2－wire，DC								
M18／L $=84$	8 nf	plastic	2－wire	no／nc	10．．．55 DC	50	cable， 2 m	KG5047
$\mathrm{M} 18 / \mathrm{L}=110$	8 nf	plastic	2－wire	no／nc	10．．．55 DC	50	terminal block	KG5040
Threaded tubular plastic housing，2－wire，AC／DC								
M18／L $=84$	8 nf	plastic	2－wire	no	20．．．250	25／50	cable， 2 m	KG0009
M18／L $=110$	8 nf	plastic	2－wire	no／nc	20．．． 250	25／50	terminal block	KG0008
M30／L $=81$	15 nf	plastic	2－wire	no	20．．． 250	25／40	cable， 2 m	K10016
M30／L $=81$	15 nf	plastic	2－wire	nc	20．．． 250	25／40	cable， 2 m	K10020
M30／L $=92$	15 nf	plastic	2－wire	no／nc	20．．． 250	25／40	DIN 43650 conn．	K10040
M30／L $=125$	15 nf	plastic	2－wire	no／nc	20．．． 250	25／40	terminal block	K10024
Smooth tubular plastic housing，3－wire，DC PNP								
$\varnothing 34 / \mathrm{L}=81$	20 nf	plastic	3 －wire	no	10．．．36 DC	40	cable， 2 m	KB5004
ø 34／L $=81$	20 nf	plastic	3 －wire	nc	10．．．36 DC	40	cable， 2 m	KB5002
Smooth tubular plastic housing，3－wire，DC NPN								
$\varnothing 34 / \mathrm{L}=81$	20 nf	plastic	3 －wire	no	10．．．36 DC	40	cable， 2 m	KB5001
ø 34／L $=81$	20 nf	plastic	3 －wire	nc	10．．．36 DC	40	cable， 2 m	KB5003
Smooth tubular plastic housing，2－wire，AC／DC								
$\varnothing 34 / \mathrm{L}=81$	20 nf	plastic	2－wire	no	20．．．250	25／40	cable， 2 m	KB0025
$\varnothing 34 / \mathrm{L}=81$	20 nf	plastic	2－wire	nc	20．．． 250	25／40	cable， 2 m	KB0029
Rectangular plastic housing，3－wire，DC PNP								
$120 \times 80 \times 30$	60 nf	plastic	3 －wire	no	10．．．36 DC	10	cable， 2 m	KD5022
$105 \times 80 \times 40$	60 nf	plastic	3 －wire	no／nc	10．．．36 DC	10	cable， 2 m	KD5018
Rectangular plastic housing，2－wire，AC／DC								
$120 \times 80 \times 30$	60 nf	plastic	2－wire	no	20．．． 250	10	cable， 2 m	KD0012
$105 \times 80 \times 40$	60 nf	plastic	2－wire	no／nc	20．．．250	10	terminals	KD0009
Rectangular plastic housing，3－wire，DC PNP，function check output								
$78 \times 36 \times 10$	12 f	plastic	3 －wire	no／nc	10．．．36 DC	40	cable， 2 m	KW5001
$78 \times 36 \times 10$	12 f	plastic	3 －wire	no／nc	10．．．36 DC	40	pigtail with M12	KW5005

oduction

In industrial processes where liquids, air or gases are used valves are needed for dosing and control. There is a wide variety of valve types; butterfly or ball valves being the most common quarter-turn types
These valves are seldom operated manually. Pneumatic valve actuators are normally used for mechanical positioning. The valve position must be monitored electronically.
Mechanical switches are still often used for position feedback on the actuator shaft. For other solutions several proximity switches are used together with a switch target for position detection. Disadvantage: Mounting is mechanically complex. During switch mounting the signal wires can be reversed when they are connected in the top-mounted junction box. Where there are temperature fluctuations condensing humidity leads to corrosion and thus malfunction.

Operating principle

An innovative design eliminates the disadvantages of these conventional solutions. In 1992 ifm electronic developed a standard which is now used by many leading actuator manufacturers. A round switch target, known as a shaft. The screws are located at a different height. A compact dual proximity switch (type IND) with two integral sensors detects the upper or lower metal screw depending on the valve position and thus the two switch positions.
Due to the simple construction the system operates safely with no wear at Due to the simple construction the system operates safely with no wear at
all. It is virtually resistant to external influence and meets the protection all. It is virtually resistant to external influence and meets the protection
rating IP 67 . Under certain conditions the unit can even be self-cleaning. The sensors are also resistant to mechanical stress such as vibration and shock.

Special design AS-i (T5)

An extended design is the series T5. In addition to the inductive dual sensor, the unit provides an integrated connection for the solenoid valve. The connection to the control unit is made via a two-wire AS-i cable. The asset: Up to 30 other units can be connected to this line and separately controlled via the AS-i master.

Dimensions [mm]	Sensing range [mm]	Material	Electrical design	Output function	$\begin{aligned} & \mathrm{U}_{\mathrm{b}} \\ & \text { [V] } \end{aligned}$	$\begin{gathered} \mathbf{f} \\ {[\mathrm{Hz}]} \end{gathered}$	Connection	Order no.
Double sensors for quarter-turn valves, 4-wire DC PNP								
$40 \times 26 \times 26$	4 nf	plastic	4 -wire	$2 \times n 0$	10...36 DC	1300	M12 connector	IN5225
$40 \times 26 \times 26$	4 nf	plastic	4 -wire	$2 \times$ no	10...36 DC	1300	cable, 2 m	IN5251
$40 \times 26 \times 26$	4 nf	plastic	4 -wire	$2 \times$ no	10... 36 DC	1300	M18 connector	IN5285
$40 \times 26 \times 47$	4 nf	plastic	4 -wire	$2 \times$ no	10... 36 DC	1300	M12 V2A conn.	IN5327
Double sensors for quarter-turn valves, 4 -wire DC PNP/NPN								
$40 \times 26 \times 26$	4 nf	plastic	4-wire	$2 \times$ no	10...36 DC	1300	M12 connector	IN5224
Double sensors for quarter-turn valves, 4 -wire AC/DC								
$40 \times 26 \times 40$	4 nf	plastic	4-wire	$2 \times n 0$	20... $250 \mathrm{AC/DC}$	25/50	M18 connector	IN0108
$40 \times 26 \times 40$	4 nf	plastic	4-wire	$2 \times \mathrm{no}$	20... $250 \mathrm{AC/DC}$	26/50	cable, 2 m	IN0110

Double sensors for quarter-turn valves, 4 -wire DC PNP with integrated solenoid valve connection								
$55 \times 78 \times 35$	4 nf	plastic	4-wir	$\begin{aligned} & 2 \times \mathrm{no} \\ & 1 \times \mathrm{SV} \end{aligned}$	10.. 36 DC	1300	Rd $24 \times 1 / 8$	IN53

| Accessories for double sensors | | |
| :---: | :---: | :---: | :---: |
| | Target puck $\varnothing 53 \mathrm{~mm}$ | E10320 |
| | Target puck $\varnothing 65 \mathrm{~mm}$ | E10327 |
| | Target puck $\varnothing 102 \mathrm{~mm}$ | E10328 |
| | Target puck $\varnothing 53 \mathrm{~mm}$, adjustable between 0° and 360° | E10661 |

Visible red light facilitates adjustment．

Variants with metal housing

 for robust use．LED display to check operation switching status and function．
Special functions like background sup－ pression or polarisation filter available．

Wide range of system components for easy and safe mountings．

roduction

Automation technology can no longer be imagined without photoelectric sensors as＂artificial eyes＂．They are used where safe and non－contact de－ ection of the exact position of objects is required．The material of the objects to be detected is of no importance．Compared to proximity switches photoelectric sensors have a much higher sensing zone．

Through－beam sensors

A through－beam sensor is distinguished by a long range．The system consists of two separate components：a transmitter and a receiver．The light only tra－ vels one way（from the transmitter to the receiver）．Adverse effects in the mmediately interfere with the system．This is called a high insensitivity to dirt a high excess gain

Retro－reflective sensors

For a retro－reflective sensor the transmitter and receiver are incorporated into one housing．By means of a reflector the transmitted light is returned to the receiver．An object in the beam path interrupts the beam and triggers a switching operation．Retro－reflective sensors without polarisation filter oper－ ate in the infrared area，systems with polarisation filter with visible red light． ge excess gain．

Diffuse reflection sensors

A diffuse reflection sensor is used for the direct detection of objects．Trans mitter and receiver are incorporated into one housing．The transmitter emits light which is reflected by the object to be detected and seen by the receiver． This system evaluates the reflected light of an object．Reflectors are not necessary for operation

The reflector
reflects the lig reflectst the light
beam：For a retro－
reflective sensor refflective sensor
transmitter and transmitter and
receiver are inte－ receiver are inte
grated into one
housing．

Fixing options

ifm electronic offers a complete component system of easy－to－use moun－ ting sets．The solutions consist of a clamp which is fastened with only one screw，keeps the sensors safely in place and at the same time guarantees
free movement in all axes．

Visit our website：www．ifm－electronic．com

Sensor type	$\begin{aligned} & \text { Sensing } \\ & \text { range } \\ & {[\mathrm{mm}]} \end{aligned}$	Spot Ø at max． range $[\mathrm{mm}]$	Output function	Connection	Order no．
OF series with M12 threaded metal housing， 3 －wire DC					
through－beam transmitter	4000	700	－	cable， 2 m	OF5018
through－beam receiver	4000	－	light on／dark on PNP	cable， 2 m	OF5019
through－beam transmitter	4000	700	－	M12 connector	OF5021
through－beam receiver	4000	－	light on／dark on PNP	M12 connector	OF5022
retro－reflective	50．．．2000	140	light on／dark on PNP	cable， 2 m	OF5014
retro－reflective，pol．－filter	200．．．800	70	light on／dark on PNP	cable， 2 m	OF5024
retro－reflective	50．．．2000	140	light on／dark on PNP	M12 connector	OF5016
retro－reflective，pol．－filter	200．．． 800	70	light on／dark on PNP	M12 connector	OF5025
diffuse－reflective	1．．． 200	92	light on／dark on PNP	cable， 2 m	OF5010
diffuse－reflective，foc．beam	$1 . .400$	185	light on／dark on PNP	cable， 2 m	OF5026
diffuse－reflective	1 1．． 200	92	light on／dark on PNP	M12 connector	OF5012
diffuse－reflective，foc．beam	1．．． 400	185	light on／dark on PNP	M12 connector	OF5027

through－beam transmitter	15000	2000	－	cable， 2 m	OG5040
through－beam receiver	15000	－	light on／dark on PNP	cable， 2 m	OG5041
through－beam transmitter	15000	2000	－	M12 connector	OG5042
through－beam receiver	15000	－	light on／dark on PNP	M12 connector	OG5043
retro－reflective，pol．－filter	3000	262	light on／dark on PNP	cable， 2 m	OG5045
retro－reflective，pol．－filter	3000	262	light on／dark on PNP	M12 connector	OG5046
diffuse－reflective	1．．． 600	169	light on／dark on PNP	cable， 2 m	OG5049
diffuse－reflective	1．．．600	169	light on／dark on PNP	M12 connector	OG5050
diffuse－reflective，backgr－s．	30．．． 130	12	light on／dark on PNP	cable， 2 m	OG5052
diffuse－reflective，backgr－s．	30．．． 130	12	light on／dark on PNP	M12 connector	OG5053

OG series with M18 threaded stainless steel housing，3－wire DC，IP 68 ／IP 69 K

through－beam transmitter	15000	2000	－	cable， 6 m	OG5107
through－beam receiver	15000	－	light on／dark on PNP	cable， 6 m	OG5108
through－beam transmitter	15000	2000	－	M12 connector	OG5116
through－beam receiver	15000	－	light on／dark on PNP	M12 connector	OG5117
retro－reflective，pol．－filter	3000	262	light on／dark on PNP	cable， 6 m	OG5106
retro－reflective，pol．－filter	3000	262	light on／dark on PNP	M12 connector	OG5115
diffuse－reflective	1．．．600	169	light on／dark on PNP	cable， 6 m	OG5113
diffuse－reflective	1．．． 600	169	light on／dark on PNP	M12 connector	OG5114
diffuse－reflective，backgr．－s．	30．．． 130	12	light on／dark on PNP	cable， 6 m	OG5109
diffuse－reflective，backgr－s．	30．．． 130	12	light on／dark on PNP	M12 connector	OG5119

Ol series with M30 threaded plastic housing，3－wire DC
retro－reflective $100 \ldots 4000$

OJ series with rectangular plastic housing， $35 \times 24 \times 11 \mathrm{~mm}$ ，front sensing， 4 －wire DC

through－beam transmitter	10000	1000	－	M8 connector	OJ5008
through－beam receiver	10000	－	light on／dark on PNP	M8 connector	OJ5009
through－beam receiver	10000	－	light on／dark on NPN	M8 connector	0.5010
retro－reflective，pol．filter	2000	64	light on／dark on PNP	M8 connector	OJ5004
retro－reflective，pol．filter	2000	64	light on／dark on NPN	M8 connector	OJ5005
retro－reflective，pol．filter	2000	64	light on／dark on PNP	PUR pigtail M12	055062
retro－reflective，pol．filter	2000	64	light on／dark on PNP	PVC pigtail M12	0.5063

Sensor type	Sensing range ［mm］	$\begin{aligned} & \text { Spot } \varnothing \text { at max. } \\ & \text { range } \\ & {[\mathrm{mm}]} \end{aligned}$	Output function	Connection	Order no．
retro－reflective，pol．filter	2000	64	light on／dark on PNP	PVC cable， 2 m	015006
retro－reflective，PET－detect．	200．．． 1500	64	light on／dark on PNP	M8 connector	OJ5085
diffuse－reflective	1．．．600	60	light on／dark on PNP	M8 connector	0 J 5000
diffuse－reflective	1．．．600	60	light on／dark on NPN	M8 connector	OJ5001
diffuse－reflective	1．．． 600	60	light on／dark on PNP	PUR pigtail M12	OJ5060
diffuse－reflective	1．．． 600	60	light on／dark on PNP	PVC pigtail M12	055061
diffuse－reflective	1．．． 600	60	light on／dark on PNP	PVC cable， 2 m	OJ5002
diffuse－reflective	1．．．1000	150	light on／dark on PNP	M8 connector	OJ5070
diffuse－reflective，backgr．－s．	15．．． 400	18	light on／dark on PNP	PVC cable， 2 m	0.05044
diffuse－reflective，backgr．－s．	15．．． 400	18	light on／dark on PNP	PVC pigtail M12	0.5069
OJ series with rectangular plastic housing， $35 \times 24 \times 11 \mathrm{~mm}$ ，side sensing，4－wire DC					
through－beam transmitter	10000	1000	－	M8 connector	OJ5030
through－beam receiver	10000	－	light on／dark on PNP	M8 connector	OJ5031
through－beam receiver	10000	－	light on／dark on NPN	M8 connector	OJ5032
retro－reflective，pol．filter	2000	64	light on／dark on PNP	M8 connector	0.5026
retro－reflective，pol．filter	2000	64	light on／dark on NPN	M8 connector	035027
retro－reflective，pol．filter	2000	64	light on／dark on PNP	PVC cable， 2 m	015028
retro－reflective，PET－detect．	200．．． 1500	64	light on／dark on PNP	M8 connector	0 J 086
diffuse－reflective	1．．． 600	60	light on／dark on PNP	M8 connector	OJ5022
diffuse－reflective	1．．． 600	60	light on／dark on NPN	M8 connector	0.05023
diffuse－reflective	1．．．600	60	light on／dark on PNP	PVC cable， 2 m	015024
diffuse－reflective	1．．．1000	150	light on／dark on PNP	M8 connector	0.5071
diffuse－reflective，backgr．－s．	15．．． 400	18	light on／dark on PNP	M8 connector	035048
diffuse－reflective，backgr．－s．	15．．． 400	18	light on／dark on PNP	PVC pigtail M12	OJ5078
OL series with rectangular plastic housing， $75 \times 27 \times 62 \mathrm{~mm}, 4$－wire $\mathrm{AC} / \mathrm{DC}$ with relais output					
through－beam transmitter	25000	2500	－	terminals	OL0006
through－beam receiver	25000	－	light on／dark on relais	terminals	OL0007
retro－reflective，pol．－filter	300．．． 5000	250	light on／dark on relais	terminals	OL0004
diffuse－reflective	1．．．1000	300	light on／dark on relais	terminals	OL0005
diffuse－reflective	1 1．． 800	80	light on／dark on relais	terminals	OL0009
OA series with rectangular plastic housing， $85 \times 36 \times 100 \mathrm{~mm}, 5$－wire $\mathrm{AC} / \mathrm{DC}$ with relais output					
through－beam transmitter	50000	1500	－	terminals	OA0101
through－beam receiver	50000	－	light on／dark on relais	terminals	OA0102
retro－reflective	250．．． 10000	250	light on／dark on relais	terminals	OA0104
retro－reflective，pol．－filter	200．．． 8000	420	light on／dark on relais	terminals	OA0106
diffuse－reflective	5．．． 1500	370	light on／dark on relais	terminals	OA0108
OH series with rectangular plastic housing， $25.1 \times 7.6 \times 12.5 \mathrm{~mm}, 3$－wire DC					
through－beam transmitter	1200	10	－	PVC cable， 2 m	ОН5001
through－beam receiver	1200	－	dark on PNP	PVC cable， 2 m	OH5002
through－beam transmitter	1200	10	－	PVC pigtail M8	OH5012
through－beam receiver	1200	－	dark on PNP	PVC pigtail M8	OH5003
retro－reflective	800	10	dark on PNP	PVC cable， 2 m	OH5010
retro－reflective	800	10	dark on PNP	PVC pigtail M8	OH5011
diffuse－reflective	2．．． 50	3.5	light on PNP	PVC cable， 2 m	ОН5004
diffuse－reflective	2．．． 50	3.5	light on PNP	PVC pigtail M8	OH5005
diffuse－reflective，backgr．－s．	1．．．30	4.5	light on PNP	PVC cable， 2 m	OH5006
diffuse－reflective，backgr．－s．	1．．．30	4.5	light on PNP	PVC pigtail M8	OH5007
diffuse－reflective，backgr．－s．	1．．． 15	2.5	light on PNP	PVC cable， 2 m	OH5008
diffuse－reflective，backgr．－s．	1．．． 15	2.5	light on PNP	PVC pigtail M8	OH5009

Detection of minute objects by means of a focussed laser beam．

Clearly visible red light for

 easy setting to the object．Automatic switch point setting by pressing a pushbutton．
Application sensors available for special application areas．

System components available for fine adjustment．

ntroduction

Laser systems are used where detection of small objects or precise posi－ tioning is required．They are available as through－beam sensors，retro－reflec－ tive sensors or diffuse reflection sensors．
Laser light consists of light waves of identical length which have a defined phase relation（coherence）．This results in an important feature of laser systems，that is the almost parallel light beam．Result：Due to the small angle of divergence long ranges of up to 60 metres can be achieved．The laser spot which is also clearly visible at daylight simplifies the alignment of the system． Apart from the advantages some points have to be taken into account for the selection of the suitable optical system．compared to standard sensors the small light spot and the often high ranges the system is more sensitive to the small light spat

Mounting aids

The ifm laser sensors offer a useful function for easier alignment：The laser power is increased during adjustment：This leads to a particularly bright laser spot which enables safe alignment from a distance even at daylight．

How dangerous are laser sensors？

Due to the small angle of divergence laser beams are focussed on a small area．The energy and power density on this area is extremely high．ifm laser sensors comply with the European standard EN60825 or the international standard IEC60825．These standards describe the operation of laser systems． ifm laser sensors are classified in the laser protection class II．Thus the laser power，also in the setting mode with increased power，is max． 1 mW ．When the laser beam hits the human eye，the eyelid is instinctively closed．When cause any damage．

Sensor type	Sensing range ［mm］	Spot \varnothing at max． range ［mm］ ［mm］	Output function	Connection	Order no．
OG series with M18 threaded stainless steel housing，4－wire DC					
through－beam transmitter	2000．．．6000	5	－	M12 connector	OG5060
through－beam receiver	2000	－	light on／dark on PNP	M12 connector	OG5067
through－beam receiver	6000	－	light on／dark on PNP	M12 connector	OG5068
through－beam transmitter	60000	150	－	M12 connector	OG5059
through－beam receiver	60000	－	light on／dark on PNP	M12 connector	OG5058
retro－reflective，pol．filter	200．．． 4000	7	light on／dark on PNP	M12 connector	OG5071
retro－reflective	200．．．13000	25	light on／dark on PNP	M12 connector	OG5061
diffuse－reflective	1．．．150	0.1	light on／dark on PNP	M12 connector	OG5056
OJ series with rectangular plastic housing， $35 \times 24 \times 11 \mathrm{~mm}$ ，front sensing，4－wire DC					
through－beam transmitter	1000	4	－	M8 connector	OJ5019
through－beam receiver	1000	－	light on／dark on PNP	M8 connector	035020
through－beam transmitter	15000	24	－	M8 connector	OJ5016
through－beam receiver	15000	－	light on／dark on PNP	M8 connector	OJ5017
retro－reflective，pol．filter	8000	12	light on／dark on PNP	M8 connector	0.5014
diffuse－reflective，backgr．－s．	15．．． 200	2×1 vertical	light on／dark on PNP	M8 connector	OJ5052
diffuse－reflective，backgr．－s．	15．．． 200	2×1 vertical	light on／dark on NPN	M8 connector	0.5053
diffuse－reflective，backgr．－s．	7．．．150	0.8	light on／dark on PNP	M8 connector	OJ5056

series with rectangular plastic housing， $35 \times 24 \times 11 \mathrm{~mm}$ ，side sensing，4－wire DC					
through－beam transmitter	1000	4	－	M8 connector	015041
through－beam receiver	1000	－	light on／dark on PNP	M8 connector	015042
through－beam transmitter	15000	24	－	M8 connector	015038
through－beam receiver	15000	－	light on／dark on PNP	M8 connector	OJ5039
retro－reflective，pol．filter	8000	12	light on／dark on PNP	M8 connector	015036
diffuse－reflective，backgr．－s．	15．．． 200	2×1 vertical	light on／dark on PNP	M8 connector	OJ5054
diffuse－reflective，backgr．－s．	15．．． 200	2×1 vertical	light on／dark on NPN	M8 connector	0.5055
diffuse－reflective，backgr．－s．	7．．．150	0.8	light on／dark on PNP	M8 conne	OJ5058

through－beam transmitter	60000	150	－	M12 connector	OL5019
through－beam receiver	60000	－	light on／dark on PNP	M12 connector	OL5020
retro－ereflective，pol．filter	200．．． 13000	25	light on／dark on PNP	M12 connector	OL5022
diffuse－reflective	1．．．150	0.1	light on／dark on PNP	M12 connector	OL5024

Mounting set for OG types，free standing，clamp：stainless steel，fixture：stainless steel	E20870
Mounting set for OG types，profile mounting，clamp：diecast zinc，fixture：stainless steel	E20867
OJ front lens mounting set，free standing，clamp：diecast zinc，fixture：stainless steel	E20966
OJ side lens mounting set，free standing，clamp：diecast zinc，fixture：stainless steel	E20968
OJ swivel mount clip，housing：diecast zinc	E20974
OJ front lens fine adjustment and mounting unit，housing：aluminium	E20975
OJ side lens fine adjustment and mounting unit，housing：aluminium	E20976
Prismatic reflector for laser units $50 \times 50 \mathrm{~mm}$	E20722
Prismatic reflector for laser units $30 \times 20 \mathrm{~mm}$	E20994
Prismatic reflector for laser units $\varnothing 19 \mathrm{~mm}$	E20993
Prismatic reflector for laser units $\varnothing 10 \mathrm{~mm}$	

Precise connection of different fibre optics．

Manual or automatic setting by means of＂teach in＂．
LED display to check operation switching stauts and function．
Various glass fibre materials for different applications．

Easy mounting on

 DIN rail possible．
ntroduction

Fully automatic manufacturing machines become more and more compact Fibre optics are used where mounting space for photoelectric standard sen－ sors is confined．Advantages of these systems：The evaluation electronics and the optoelectronic components are located separately from the sensing surface of the system．Fibre optic sensing heads can therefore be mounted in places where access is difficult．Fibre optics are the best choice，in particular or short ranges．

Versions of fibre optic system

Through－beam principle
Transmitting and receiving fibre optics are laid separately．The two ends fibre optic heads）are mounted opposite each other．The light beam inter－ uption is evaluated according to the through－beam principle．The maximum ange is 120 cm ．
Diffuse reflection principle
Transmitting and receiving fibres are in one sheath．The sensing head incor－ porates receiving and transmitting fibre bundles．The ranges of the ifm sen－ sors are max． 70 mm ．

Applications of fibre optic systems：
Confined space
The fibre optic head is directly located where sensing takes place，the mating amplifier where sufficient mounting space is available．
Detection of minute objects
Depending on the type of sensing head and range objects up to 0.5 mm can be detected safely．When the movement of objects is precise，it is possible to detect fine structures，e．g．thread pitches，
High temperatures
Fibre optics with metal sheath can be used up to $290^{\circ} \mathrm{C}$ ，fibre optics with metal silicone sheath up to $150^{\circ} \mathrm{C}$ ．
Chemical resistance
Metal silicone sheathed fibre optics are resistant to many aggressive chemi－ cals．

Minute objects up to 0.5 mm are
detected safely．

Fibre optic
systems can
systems can also
be mounted in
places where

High switching frequencies．
Robust designs．
Programmable encoders．
Special version with integrated Profibus interface．
Hollow shaft encoders for drives with high acceleration．

ntroduction

In many manufacturing and production processes they are indispensable as reliable transducers to ensure precise positioning．They convert rotary move－ ment into digital signals．Linear measurement is also possible in conjunction with rack and pinion or measuring wheels．Encoders use the wear－free photoelectric detection．A pulse disc firmly attached to the shaft ensures this detection．Encoders are basically divided into two types：incremental and absolute encoders．

ncremental encoders

Incremental encoders generate a precisely defined number of pulses per revolution．They are a measure of the angular or linear distance moved．The rent or opaque．An LED emits a parallel－orientated light beam which illumi－ nates all segments of the coded disc．Photo elements receive the modulated light and convert it into two sinusoidal signals．Digitalisation electronics amplify the signals and shape them into square－wave pulse trains which are generated via the line driver in the output．The phase difference between signal A and B，which are phase－shifted by 90 degrees，allows evaluation of the direction of rotation．

Absolute encoders

Absolute encoders provide an absolute numerical value for each angular position．This code value is available immediately after power is applied．This ＂absolute＂value makes a reference procedure like the one required for the incremental encoder unnecessary．Absolute encoders are used wherever angular positions have to be allocated to a certain value and where the detection of the present position is absolutely necessary in the case of a power failure

Singleturn and multiturn

Singleturn encoders divide a mechanical revolution（ 0 to 360 degrees）into a certain number of measuring steps．The measuring values are repeated after one revolution．The maximum resolution is 8192.
Multiturn encoders，however，do not only detect angular positions but also distinguish between multiple revolutions．

> Linear measurement by means of counter module: Rotary movement ictonvoren mint is converted into
digital signals．

Hollow shaft encoolers：
For drives with For drives with
high acceleration． They are also
distinguished by distinguished by
reduced installa－ tion length．

Resolution	$\begin{aligned} & \mathrm{U}_{\mathrm{b}} \\ & {[\mathrm{~V}]} \end{aligned}$	$\begin{gathered} \mathbf{f} \\ {[\mathbf{k H z}]} \end{gathered}$	$\begin{gathered} l_{\text {last }} \\ \text { [mA] } \end{gathered}$	$\begin{aligned} & \text { Shaft } \\ & \text { [mm] } \end{aligned}$	Operating temperatur ［ $\left.{ }^{\circ} \mathrm{C}\right]$	Connection	Order no.
Incremental encoder RB housing ø 36.5 mm ，solid shaft $\varnothing 6 \mathrm{~mm}$ ，cable entry axial and radial							
500	5	300	20	6	－40．．． 100	PUR cable， 2 m	RB1015
10	10．．． 30	160	50	6	－40．．．70	PUR cable， 2 m	RB6001
100	10．．．30	160	50	6	－40．．．70	PUR cable， 2 m	RB6007
360	10．．． 30	160	50	6	－40．．．70	PUR cable， 2 m	RB6013
500	10．．． 30	160	50	6	－40．．．70	PUR cable， 2 m	RB6015
1000	10．．． 30	160	50	6	－40．．．70	PUR cable， 2 m	RB6029
Incremental encoder RC housing ø 58 mm ，solid shaft ø 6 mm							
500	5	300	20	6	－30．．．100	PUR cable， 2 m axial	RC1014
100	10．．． 30	300	50	6	－20．．． 85	PUR cable， 2 m axial	RC6003
360	10．．． 30	300	50	6	－20．．．85	PUR cable， 2 m axial	RC6012
500	10．．． 30	160	50	6	－20．．．85	PUR cable， 2 m axial	RC6014

Incremental encoder RU housing $\varnothing 58 \mathrm{~mm}$ ，solid shaft $\varnothing 6 \mathrm{~mm}$ ，synchro flange

Incremental encoder RV housing $\varnothing \mathbf{5 8} \mathbf{~ m m}$ ，solid shaft $\varnothing 10 \mathrm{~mm}$ ，clamp flange

360	10．．． 30	300	50	10	－30．．．85	PUR cable， 2 m axial	RV6013
500	10．．． 30	300	50	10	－30．．．85	PUR cable， 2 m axial	RV6016
1000	10．．． 30	300	50	10	－30．．．85	PUR cable， 2 m axial	RV6024
1024	10．．． 30	300	50	10	－30．．．85	PUR cable， 2 m axial	RV6025
2000	10．．． 30	300	50	10	－30．．．85	PUR cable， 2 m axial	RV6033
2048	10．．． 30	300	50	10	－30．．．85	PUR cable， 2 m axial	RV6034
2500	10．．． 30	300	50	10	－30．．．85	PUR cable， 2 m axial	RV6036
3600	10．．． 30	300	50	10	－30．．．85	PUR cable， 2 m axial	RV6040
5000	10．．． 30	300	50	10	－30．．．85	PUR cable， 2 m axial	RV6100

360	$10 \ldots . \ldots 30$	300	20	12	$-30 \ldots 85$	PUR cable， 1 m radial	RO6343
500	$10 \ldots 30$	300	20	12	$-30 . \ldots 55$	PUR cable， 1 m radial	RO6344
1024	$10 \ldots 30$	300	20	12	$-30 \ldots 85$	PUR cable， 1 m radial	RO6345

Absolute multiturn encoder with serial interface，RM housing $\varnothing 58 \mathrm{~mm}$ ，solid shaft $\varnothing \mathbf{6 / 1 0} \mathrm{mm}$							
8192	10．．． 30	－	－	6	－20．．．85	PUR cable， 1 m radial	RM6101
8192	10．．． 30	－	－	10	－20．．． 85	PUR cable， 1 m radial	RM6104

8192	$10 . .30$	-	-	6	$-20 \ldots 60$	terminal strip	RM3001
8192	10.30	-	-	10	-20.60	termal	

Easy setting or programming.

Different outputs
(relay, transistor).
Multifunction: Several functions in one unit.

Adjustable output function.

Easy rail mounting.

ntroduction

Although PLC applications in industrial automation are becoming more and more versatile there are still numerous processes in practice which require decentralised monitoring
For this ifm electronic offers a number of pulse evaluation systems in the product group "ecomat 200". The application area ranges from simple standstill monitoring or blockage protection of a conveyor belt, maximum speed monitoring in wind power stations, slip monitoring of couplings through to direction monitoring, e.g. twin pumps with non-return valves. Different units for rail mounting and compact designs in M30 metal housings are available. They include processor-controlled units for control panel mounting to indicate rotational speeds, speeds, processing times, quantities and electronic preset counters for the detection of quantities or linear measurement as well as electronic timer relays.
All units are distinguished by a high reliability and easy handling. Independent of the PLC they indicate operating states or signal faults. This helps to reduce downtimes and production loss.
fm electronic offers the following evaluation systems:

- Speed monitor

Standstill monitor
Slip- / synchronisation monitor
Direction monitor
Frequency-to-current converter
D Displays
Counters
SSI controller
Switching amplifie
Multifunction rela
 Electronic timer
relays. Depending on the scope
of functions they functions they
can solve easy can solve tass
control tasks.

The monitor FS-1
for rotational for rotational
speed monitoring.

Compliance with EN 50081 (noise emission) and EN 50082 (noise immunity).

Wide input voltage range.

Output protected against
short circuits and overload
Good power reserves.

Robust metal housing
for secure mounting.

ntroduction

They may be unglamorous and unobtrusive, but without them it would not be possible to operate an electronic system. Power supplies are essential. ifm offers low-cost transformer power supplies but also powerful switchedmode power supplies for different applications.

Transformer power supplies

Transformer power supplies provide a low voltage, normally 24 V DC. A transformer according to DIN 0551 ensures a safe electrical separation from mains voltage and low voltage. The output voltage can be regulated ($\pm 5 \%$) or smoothed by means of capacitors. The different designs and output

Switched-mode power supplies

Primary switched-mode power supplies are a compact and economical solution to supply sensors and actuators. As opposed to conventional transformer power supplies with regulated output voltage they need no heavy transdistinguished by a very high degree of efficiency of up to 92%. Due to the operating principle by means of high frequency transformers switchedmode power supplies are much smaller and lighter than transformer power supplies with identical power. Nevertheless they guarantee an electrical separation. Furthermore, they offer a wide input voltage range as standard for worldwide use.

Power reserves

Mains fluctuations up to $\pm 15 \%$ and mains interference are compensated for. Even mains voltage dips of a few milliseconds are compensated for, the output voltage is completely maintained. An active inrush current limitation reduces the inrush current by means of a fixed resistor which is bridged after start up. The outputs are protected against short circuits and overload. Special output characteristics allow a current which can be up to 1.7 higher than the nominal current without switch-off with the voltage being reduced at higher output current for a short time. This power reserve is provided by all power supplies as from 2.5 A for a period of one minute. At an operating temperature of up to $45^{\circ} \mathrm{C}$ this power is available continuously.

Suitable for
the application the application
ifm provides
power supplies power supplies
in different power classes.

Output current [A]	Output voltage [V]	Nominal voltage [V]	$\begin{aligned} & \text { Efficiency } \\ & \text { typ. } \\ & \text { [\%] } \end{aligned}$	$\begin{aligned} & \text { Order } \\ & \text { no. } \end{aligned}$
Power supplies single-phase				
1	24 DC (+/-3\%)	115/230 AC	84	DN2010
1.3	24... 28 DC (+/-2\%)	115/230 AC	87.5	DN1020
2.1	24... 28 DC (+/- 2 \%)	115/230 AC	88.5	DN1021
2.5	$24 \mathrm{DC}(+5 \% /-1 \%)$	115/230 AC	87.5	DN2011
3	12..15 DC (+/-2 \%)	115/230 AC	87	DN2021
4	$24 \mathrm{DC}(+5 \% /-1 \%)$	115/230 AC	90	DN2112
4.1	24... 28 DC (+/- 2%)	115/230 AC	90	DN1022
5	24 DC (+5\% /-1 \%)	115/230 AC	90	DN2012
10	24... 28 DC (+/- 2 \%)	115/230 AC	90	DN2013
20	24... 28 DC (+/-2\%)	230 AC	91	DN2014
20	24... 28 DC (+/-2\%)	115/230 AC	90	DN2114
Power supplies 3-phase				
5	24... 28 DC (+/- 2 \%)	$3 \times 400 . . .500 \mathrm{AC}$	89	DN2032
10	24... 28 DC (+/-2\%)	$3 \times 400 . . .500 \mathrm{AC}$	90	DN2033
20	24... 28 DC (+/-2\%)	$3 \times 400 \mathrm{AC}$	92	DN2034
20	24... 28 DC (+/-2\%)	$3 \times 400 . . .500 \mathrm{AC}$	92	DN2134
30	24... 28 DC (+/- 2%)	$3 \times 400 . . .500 \mathrm{AC}$	93	DN2036
40	24... 28 DC (+/-2 \%)	$3 \times 400 . . .500 \mathrm{AC}$	92.5	DN2035
Current [A]	Output voltage [V]	Nominal voltage [V]	Output	Order no.
Switching amplifier 1-channel				
max. 100 mA	$24 \mathrm{DC}(+/-5 \%)$	230 AC	relay	DN0001
max. 100 mA	24 DC (+/-5 \%)	110 AC	relay	DN0012
Switching amplifier 2-channel				
max. 300 mA	$24 \mathrm{DC}(+/-2 \%)$	110... 240 AC	2 relays	DN0200
Switching amplifier 1-channel with timer function				
max. 40 mA	24 DC (+/-5\%)	$230 \mathrm{AC} ; 24 \mathrm{DC}$	relay	DT0001

High reliability due to the elimination of mechanical components.
Easy "teach in" via pushbutton.
Analogue and switching outputs.

The integrated LED display provides direct read-out of the current level.

Suitable for measurements

 in aggressive media.
ntroduction

In industrial applications where industrial fluids or bulk material are used, storage tanks or silos are used for processing or storing of media. Tanks are filled and emptied almost automatically. Sensors are used to detect the level. Even critical process states such as an empty hydraulic tank and the resulting unning dry of the pump or the unintentional overspill of a tank are permanently monitored by level sensors.

Advantages of electronic sensors

Level measurement distinguishes between direct measurement in the medium and the indirect detection from the outside (for example through
the tank wall by means of capacitive sensors). Deposits and wear and tear ften lead to failures in particular if mechanical switches are in contact with the medium. The electronic ifm sensors however can do without any mechanical component. This makes the sensors especially robust and reliable. The suitable electronic sensors work without any problem even in aggressive media, such as lubricants and coolants.
Another advantage of electronic sensors is the local indication of the level or the easy setting of the switching threshold simply by pressing a button as offered for some types.
There are two basic types of level detection in tanks: continuous measurement and the detection of defined limits.

continuous level measuremen

For continuous level measurement the level is detected continuously, converted into an electrical signal and indicated. The units have freely pro grammable switching outputs or an analogue output for further processing Continuous level sensors from ifm electronic use two physical measuring principles. For the capacitive measurement the tank and the material form an electrical capacitor. The capacity changes analogously to the level and is converted into a measure for the level by means of a microprocessor. For hydrostatic level measurement a ceramic measuring cell detects the hydrostatic pressure of the material. Here the pressure change is a measure for the level.

Measurement in
the medium:
the medium:
The LK probe is
directly immersed directly immersed
in the medium to in the medium to
be monitored.

For special applications:
Capacitive probe for monitoring
oils and coolants.

Probe [mm]	Active range [mm]	Inactive range [mm]	$\begin{aligned} & \mathrm{U}_{\mathrm{b}} \\ & {[\mathrm{~V}]} \end{aligned}$	Output function	Connection	Order no.
Electronic level sensor with integrated display, DC PNP, outputs: $1 \times$ analogue \& $1 \times \mathrm{nc}$ (overflow)						
264	195	53	18...30 DC	$1 \times$ analogue, $1 \times \mathrm{nc}$	M12 connector	LK3122
472	390	53	$18 . .30 \mathrm{DC}$	$1 \times$ analogue, $1 \times \mathrm{nc}$	M12 connector	LK3123
728	585	102	18...30 DC	$1 \times$ analogue, $1 \times \mathrm{nc}$	M12 connector	LK3124
Electronic level sensor with integrated display, DC PNP, outputs: $1 \times \mathrm{no} / \mathrm{nc}$ programmable, $1 \times \mathrm{nc}$ (overflow) output						
264	195	53	$12 . .30 \mathrm{DC}$	$1 \times \mathrm{no} / \mathrm{nc}$ prog., $1 \times \mathrm{nc}$	M12 connector	LK1022
472	390	53	$12 . .30 \mathrm{DC}$	$1 \times \mathrm{no} / \mathrm{nc}$ prog., $1 \times \mathrm{nc}$	M12 connector	LK1023
728	585	102	12...30 DC	$1 \times \mathrm{no} / \mathrm{nc}$ prog., $1 \times \mathrm{nc}$	M12 connector	LK1024
264	195	53	18...30 DC	$3 \times \mathrm{no} / \mathrm{nc}$ prog., $1 \times \mathrm{nc}$	M12 connector	LK8122
472	390	53	$18 . .30 \mathrm{DC}$	$3 \times \mathrm{no} / \mathrm{nc}$ prog., $1 \times \mathrm{nc}$	M12 connector	LK8123
728	585	102	18...30 DC	$3 \times \mathrm{no} / \mathrm{nc}$ prog., $1 \times \mathrm{nc}$	M12 connector	LK8124
Probe Length [mm]			$\begin{aligned} & \mathrm{U}_{\mathrm{b}} \\ & \text { [V] } \end{aligned}$	Output function	Connection	Order no.

Binary electronic level sensors without display, DC PNP, output: $1 \times$ normally open / normally closed programmable

			10...36 DC	$1 \times \mathrm{no} / \mathrm{nc}$ prog.	M12 connector	L15041
132273			10...36 DC	$1 \times \mathrm{no} / \mathrm{nc}$ prog.	M12 connector	L15042
273			10... 36 DC	$1 \times \mathrm{no} / \mathrm{nc}$ prog.	M12 connector	L15043
737			10...36 DC	$1 \times \mathrm{no} / \mathrm{nc}$ prog.	M12 connector	$\underline{15044}$
Dimensions [mm]	mounting	Electrical design	$\begin{aligned} & U_{b} \\ & {[\mathrm{~V}]} \end{aligned}$	Output function	Connection	Order no.

Capacitive level switches for dry bulk material and liquids detection through container wall						
M30/L = 100	flush	PNP	10...36 DC	no / nc programmable	M12 connector	N5100
M30/L = 100	non flush	PNP	10...36 DC	no / nc programmable	M12 connector	KN5101
M30/L $=100$	flush	NPN	10...36 DC	no / nc programmable	M12 connector	KN5102
M30/L = 100	non flush	NPN	10...36 DC	no / nc programmable	M12 connector	KN5103
M18/L $=84$	non flush	PNP	10...36 DC	no / nc programmable	M12 connector	KN5113
M18/L $=76.5$	non flush	PNP	10...36 DC	no / nc programmable	cable, 2 m	KN5115
$78 \times 36 \times 10$	non flush	PNP	10...36 DC	no / nc programmable	M8 connector	KN5107
$72 \times 36 \times 10$	non flush	PNP	10...36 DC	no / nc programmable	cable, 2 m	KN5105
$78 \times 36 \times 10$	non flush	NPN	10...36 DC	no / nc programmable	M8 connector	KN5106
$72 \times 36 \times 10$	non flush	N	10... 36 DC	no / nc programmable	cable, 2 m	KN5104

Capacitive level switches for hot dry plastic granulates detection through container wall						
M30 / $L=92.5$	non flush	PNP	10... 36 DC	no / nc programmable	M12 connector	KN5120
M30/L = 92.5	non flush	NPN	10... 36 DC	no/ nc programmable	M12 connector	KN5122
M30/L $=92.5$	non flush	2-wire AC	30...250 AC	no/ nc programmable	1/2" connector	KN0004
M30/L $=92.5$	non flush	2-wire AC	30...250 AC	no	1/2" connector	KN0005
$30 / \mathrm{L}=92.5$	flu	-wir	30. 250 AC		12"	NOO

 Temperatures ranges: sensor $-15 \ldots 230^{\circ} \mathrm{C}$, electronics $-25 \ldots 70^{\circ} \mathrm{C}$

Wear-free due to calorimetric measuring principle.
For liquids and gases.
Optional fittings for variable process connection.
Special variants for hazardous areas.

Local LED display.

Introduction

In almost all fields of process and plant engineering liquids or gases are used for coolant and lubricant supply of machines and units, ventilation of installations and buildings and the processing of products. In case of no flow of hese media considerable damage and downtime may result. Thus it is very important to monitor that these media are at the right place at the right time and in sufficient quantities. In modern installations electronic flow monitors are used for this purpose. They work without wear and tear and without difficult media over a long period.

Operating principle

Electronic flow monitors operate on the basis of the calorimetric principle. They use the physical effect that a flowing medium absorbs heat energy and conducts it away. The sensor tip contains two temperature-dependent resisrise in the medium which is detected by one of the PTCs. If the medium flows, energy is conducted away from the heat source, i.e. it is cooled. The resulting temperature change is an indication of flow.
To avoid a falsification of the result of the measurement by a change in the medium temperature, a second PTC is used for temperature compensation. As these systems work without any mechanically moved parts the user can mount them independent of mounting position and flow direction. For certain applications and environments preferred positions are recommended.

Monitoring very
small flow rates: small flow rates:
Flow monitor with flow adap-
ter.

Electronic sensor: Wear-free
monitoring
monitoring
of flow.

Operating range for liquids / gases [cm/s]	Greatest sensitivity for liquids / gases [cm/s]	Response time [sec]	Output [v]	Connection	Order no.
Electronic flow monitor with LED bar graph display for visual indication of flow					
3...300/200... 3000	3...60/200... 800	1... 10	1x no/nc PNP	M12 connector	S11000
3...300/200...3000	3...60/200...800	1... 10	$2 \times \mathrm{no} / \mathrm{nc}$ PNP	M12 connector	S11002
3..300/200...3000	3..60 / $200 . .800$	1... 10	$1 \times \mathrm{no} / \mathrm{nc}$, relay	1/2" UNF connector	S11006
Medium temperature ran					
Electronic flow monitor with LED bar graph display for visual indication of flow					
3...300/200...3.000	3...60/200... 800	1... 10	$1 \times \mathrm{no} / \mathrm{nc}$ PNP	M12 connector	S11100
Sl1 100: sensor material titanium, high resistance against agressive media					
Electronic flow monitor with LED bar graph display for visual indication of flow					
3...300/-	3...60/-	1...2	$1 \times \mathrm{no} / \mathrm{nc}$ PNP	M12 connector	S11010
SI1010: short response time for monitoring flow of coolants / oils in machine tools					
Electronic flow sensor with LED bar graph display for visual indication of flow and analogue output					
3...300 /-	3...60/-	1... 10	4... 20 Ma	M12 connector	S1004
Electronic flow monitor with LED bar graph display for visual indication of flow and 2 outputs: $1 \times$ flow / $1 \times$ temperature					
3..300/200...3000	3...60 / 200... 800	1... 10	$2 \times \mathrm{no} / \mathrm{nc}$	M12 connector	S11007
Temperature setting range $0 . .80^{\circ} \mathrm{C}$					
Electronic flow monitor with LED bar graph display for visual indication of flow for hygienic applications					
3...300/200...3000	3...60/200... 800	1... 10	$1 \times \mathrm{no} / \mathrm{nc}$ PNP	M12 connector	S12000
3...300/200...3000	3...60/200... 800	1... 10	$1 \times \mathrm{no} / \mathrm{nc}$ PNP	M12 connector	S12100
3...300 / 200... 3000	3...60/200...800	1... 10	$1 \times \mathrm{no} / \mathrm{nc}$ PNP	M12 connector	S12200
Medium temperature range: $-25 . . .95^{\circ} \mathrm{C}, 120^{\circ} \mathrm{C}$ max. 1 hr					
Different probe length: SI2000: $55 \mathrm{~mm}, \mathrm{SI2100}: 20 \mathrm{~mm}, \mathrm{SI2200}: 38 \mathrm{~mm}$					
Electronic airflow monitor					
-/100... 1000	-/ 100... 400	80... $250 \mathrm{AC} / \mathrm{DC}$	$1 \times$ relay	cable, 2 m	SL0101
-/100... 1000	-/ 100... 400	24 AC	$1 \times$ relay	cable, 2 m	SL0201
-/100... 1000	-/ 100... 400	24 DC	$1 \times$ relay	cable, 2 m	SL5101
Operating range for liquids / gases [cm/s]	Greatest sensitivity	Response time [sec]	$\begin{gathered} \text { Medium } \\ \text { temperature } \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	Connection	Order no.
Electronic flow sensors for separate amplifiers					
3...300/200...3000	3...60/200...800	1... 10	-25...80	M12 connector	SF5200
3...300/200... 3000	3..60/200... 800	1... 10	-25...80	PUR cable, 6 m	SF5350
3...300/200...3000	3...60/200... 800	1... 10	0... 120 / $0 . .100$	cable, 6 m	SF5300
3...300/200...3000	3..60/200...800	1... 10	-25...80	M12 connector	SF5700
3...300 / 200... 3000	3...60/200...800	1... 10	0...120 / $0 . .100$	cable, 6 m	SF5800
Sensor material: SF5200, SF5350, SF5300 stainless steel, SF5700, SF5800 titanium for agressive media					
Suppy voltage [V] Tolerance [\%]	Output	$\begin{aligned} & \text { Response } \\ & \text { time } \\ & \text { [sec] } \end{aligned}$	Output when flow is present	Output when wire is broken	Order no.
Control monitor for connecting SF flow sensors					
24 DC / +/-10 \%	DC PNP	1... 10	switched on	switched off	SR0127
230 AC	relay	1... 10	relay energized	-	SN0100
$110 \mathrm{AC} /+$ +- 10 \%	relay	1... 10	relay energized	-	SY0100
24 DC / +/-10 \%	relay	1... 10	relay energized	-	SR0100
24 DC / +/-10 \%	$2 \times$ relay	1... 10	relay energized	relay de-energized	SR0120

EFECLOR metris

Checking compressed air consumption and leakage monitoring.
Compressed air meter with display and totaliser function.
Wide measuring range, detection of minute leaks.

Integrated pipe length: easy mounting, high accuracy.
Alphanumeric display, analogue, switching and pulse outputs.

Thermal compressed air mete

Much success has recently been achieved as regards saving of energy, production costs and processes. It has been possible to use electricity, water, coolants and other process materials more efficiently and at reduced costs. Against this background, industry has focused in the past few years on the cost reduction as regards the use and consumption of compressed air. As it is one of the most expensive media for transferring energy used in industry, considerable cost savings and less strain on the environment are possible when it is used efficiently
In order to find points where savings can be made the user has to know where too much energy is used and where expensively generated energy is lost due to leakages. efector metris provides a low-cost solution for the measurement of the compressed air used as well as the possibility of detec

Operating principle

The compressed air meter efector metris works according to the calorimetric principle.
As a thermal measuring method it is especially suited for the measurement of volumetric flow of gaseous media. An additional correction of the meastemperature of the medium is detected by means of two PT elements positioned in the air flow one of which serves as reference The other probe which is heated additionally, is maintained at the same heat level depending on the heat loss caused by the medium flowing past it. The electrical energy needed to maintain the constant heat level is proportional to the volumetric flow of the gaseous media. The mechanical design of the measuring elements in a defined measuring pipe allows high measuring dynamics, fast response times and high sensitivity. The measured data is processed by means of state-of-the-art microprocessor technology with a variety of possibilities for signal processing. The measured data which is displayed and provided refers to standard cubic metres to DIN / ISO 2533 ($1013 \mathrm{hPa}, 15^{\circ} \mathrm{C}$, 0 \% relative air humidity)

| Measuring range
 [Norm litre/min / Norm m${ }^{3}$ /h] | Setting range
 [Norm litre/min / Norm m ${ }^{3}$ /h] | Pressure rating [bar] | Medium temperature $\left[{ }^{\circ} \mathrm{C}\right]$ | Process connection | U [V] | Order no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | Compressed air consumption meter with integrated pipe length and 4-digit alphanumerical LED display

4...1250/0.25...75.0	6...1250 / 0.4...75.0	16	0...60	DN15	19...30 DC	SD6000
12.5...3750/0.75...225.0	19...3750/1.1...225.0	16	0... 60	DN25	19...30 DC	SD8000
22.2...6830 / 1.3...410.0	30...6830/2.0...410.0	16	0... 60	DN40	$19 . . .30 \mathrm{DC}$	SD9000
39...11670 / 2.3... 700	60...11670 / $4 \ldots 700$	16	0... 60	DN50	19...30 DC	SD200

Measuring range [bar]	Permissible overload pressure	Burst pressure limit	Setpoint [bar]	Reset point [bar]	Resolution steps of [bar]	Output	Order no.
Electronic pressure sensors PP, M12 connector, U_{b} : 9.6 ... 30 V DC, PNP/NPN, programmable via EPS interface							
$0 . .400$	600	1000	4... 400	2... 398	1	$2 \times \mathrm{no} / \mathrm{nc}$	PP7020
$0 . .250$	400	850	3... 250	2... 249	1	$2 \times \mathrm{no} / \mathrm{nc}$	PP7021
0...100	300	650	1...99.9	0.5...99.5	0.1	$2 \times \mathrm{no} / \mathrm{nc}$	PP7022
0... 25	100	350	0.3... 25	0.2...24.9	0.1	$2 \times \mathrm{no} / \mathrm{nc}$	PP7023
0... 10	50	150	0.1...9.99	0.05...9.94	0.01	$2 \times \mathrm{no} / \mathrm{nc}$	PP7024
0...2.5	20	50	0.03...2.5	0.02...2.49	0.01	$2 \times \mathrm{no} / \mathrm{nc}$	PP7026
Programming and display unit for EPS sensors							PP2000
Teach button for EPS sensors							E30051
Service system for programming and reading PP sensors							zzooso

Electronic pressure sensors PN with 4-digit LED display, M12 connector, U_{b} : $18 \ldots . .36 \mathrm{~V}$ DC, PNP, process connection $\mathbf{G} \mathbf{1 / 4 1}$ PN5000

0... 400	600	1000	4... 400	2...398	2	$1 \times \mathrm{no} / \mathrm{nc}$	PN5000
0... 250	400	850	2.. 250	1... 249	1	$1 \times \mathrm{no} / \mathrm{nc}$	PN5001
0...100	300	650	1... 100	0.5...99.5	0.5	$1 \times \mathrm{no} / \mathrm{nc}$	PN5002
$0 . .25$	150	350	0.2... 25	0.1..24.9	0.1	$1 \times \mathrm{no} / \mathrm{nc}$	PN5003
0... 10	75	150	0.1...10	0.05...9.95	0.05	$1 \times \mathrm{no} / \mathrm{nc}$	PN5004
0...2.5	20	50	0.02...2.5	0.01..2.49	0.01	$1 \times \mathrm{no} / \mathrm{nc}$	PN5006
0...1	10	30	0.01...1	0.005...0.995	0.005	$1 \times \mathrm{no} / \mathrm{nc}$	PN500

Electronic pressure sensors PN with 4-digit LED display, $1 / \mathbf{2}^{\prime \prime}$ UNF connector, U_{b} : $85 \ldots . .265 \mathrm{~V} \mathrm{AC}$, Triac-Outp., process con. $\mathbf{1 / 4}$ NPT

0... 400	600	1000	4... 400	2...398	1	$1 \times \mathrm{no} / \mathrm{nc}$	PN4220
0...250	400	850	2... 250	1... 249	1	$1 \times \mathrm{no} / \mathrm{nc}$	PN4221
0...100	300	650	1...99.9	0.5...99.5	0.1	$1 \times \mathrm{no} / \mathrm{nc}$	PN4222
0... 25	100	350	0.2... 25	0.1...24.9	0.1	$1 \times \mathrm{no} / \mathrm{nc}$	PN4223
0... 10	50	150	0.1...9.99	0.05...9.95	0.01	$1 \times \mathrm{no} / \mathrm{nc}$	PN4224
0...2.5	20	50	0.02...2.5	0.01..2.49	0.01	$1 \times \mathrm{no} / \mathrm{nc}$	PN4226
0...1	10	30	0.01...0.999	0.005...0.994	0.001	$1 \times \mathrm{no} / \mathrm{nc}$	PN4227
Electronic pressure sensor PK with two complementary normally open / normally closed outputs, switchpoint setting via two setting rings, M12 connector, U_{b} : $9.6 \ldots . .32 \mathrm{~V}$ DC, process connection $\mathrm{G} 1 / 4 \mathrm{~A}$							
11... 400	600	1600	20... 400	12... 392	-	$2 \times \mathrm{no} / \mathrm{nc}$ compl.	PK6520
0... 250	400	1000	12.5... 250	7.5... 245	-	$2 \times \mathrm{no} / \mathrm{nc}$ compl.	PK6521
0... 100	200	1000	5... 100	3... 98	-	$2 \times \mathrm{no} / \mathrm{nc}$ compl.	PK6522
0... 10	25	300	0.5...10	0.3...9.8	-	$2 \times \mathrm{no} / \mathrm{nc}$ compl.	PK6524

Electronic pressure sensor PK with two normally open outputs and fixed 1% hysteresis
switchpoint setting via two setting rings, M12 connector, Ub: $9.6 . .32$ V DC, process connection G $1 / 4 \mathrm{~A}$

11... 400	600	1600	20...400	-	-	$2 \times$ no	PK7520
0... 250	400	1000	12.5...250	-	-	$2 \times \mathrm{no}$	PK7521
0...100	200	1000	5... 100	-	-	$2 \times$ no	PK7522
0... 10	25	300	0.5...10	-	-	$2 \times \mathrm{no}$	PK752

Measuring [bar] [bar]	Permissible overload pressure	$\begin{aligned} & \text { Burst } \\ & \text { pressure } \\ & \text { limit } \end{aligned}$	$\begin{gathered} \text { Setpoint } \\ {[\mathrm{mAl}]} \\ {[\text { bar] }} \end{gathered}$	$\begin{aligned} & \text { Reset } \\ & \text { point } \\ & \text { [bar] } \end{aligned}$	Resolution steps of [bar]	Output	Order no.
Electronic pressure transmitter PA with $4 \ldots . .20 \mathrm{~mA}$ analogue output, M12 connector, U_{b} : $10.8 . . .30 \mathrm{~V} \mathrm{DC}$, process connection $\mathrm{G} 1 / 4 \mathrm{I}$							
$0 . . .400$	600	1000	-	-	-	4... 20 mA	PA3020
0... 250	400	850	-	-	-	4... 20 mA	PA3021
0... 100	300	650	-	-	-	4... 20 mA	PA3022
0... 25	100	350	-	-	-	4... 20 mA	PA3023
0... 10	50	150	-	-	-	4... 20 mA	PA3024
0...2.5	20	50	-	-	-	4... 20 mA	PA3026
$0 . .1$	10	30	-	-	-	4... 20 mA	PA3027
-1... 0	10	30	-	-	-	4... 20 mA	PA3029
Electronic pressure transmitter PA with $0 . . .10 \mathrm{~V}$ analogue output, M12 connector, U_{b} : $16 \ldots . .30 \mathrm{~V} \mathrm{DC}$, process connection $\mathrm{G} 1 / 4 \mathrm{l}$							
$0 . . .400$	600	1000	-	-	-	$0 . .10 \mathrm{~V}$	PA9020
0... 250	400	850	-	-	-	$0 . .10 \mathrm{~V}$	PA9021
0...100	300	650	-	-	-	$0 . .10 \mathrm{~V}$	PA9022
0... 25	100	350	-	-	-	0...10 V	PA9023
0... 10	50	150	-	-	-	0...10 V	PA9024
0...2.5	20	50	-	-	-	$0 . .10 \mathrm{~V}$	PA9026
$0 . . .1$	10	30	-	-	-	0... 10 V	PA9027

Electronic pressure sensor PN with analogue and switching output and LED display, M12 connector, U_{b} : $20 \ldots 30 \mathrm{~V} \mathrm{DC}, \mathrm{PNP}$, process connection $\mathrm{G} 1 / 4 \mathrm{I}$

0...600	800	1200	6... 600	3... 597	3	$0 . . .10 \mathrm{~V} / 4 . .20 \mathrm{~mA}$	PN3060
0... 400	600	1000	$4 . .400$	2...398	2	0... $10 \mathrm{~V} / 4 . .20 \mathrm{~mA}$	PN3000
0...250	400	850	2... 250	$1 . . .249$	1	$0 . . .10 \mathrm{~V} / 4 . .20 \mathrm{~mA}$	PN3001
0... 100	300	650	1... 100	0.5...99.5	0.5	0...10V/4... 20 mA	PN3002
$0 . .25$	150	350	0.2... 25	0.1...24.9	0.1	$0 . . .10 \mathrm{~V} / 4 . .20 \mathrm{~mA}$	PN3003
-1...10	75	150	-0.9...10	0.955...9.95	0.05	0...10V/4... 20 mA	PN3004
0...2.5	20	50	0.02...2.5	0.01...2.49	0.01	0...10V/4... 20 mA	PN3006
$0 . .1$	10	30	0.01...1	0.005...0.995	0.005	0...10V/4.. 20 mA	PN3007
1.1	20	50	-0.96. 1	-0.98...0.98	0.02	0...10V/4.. 20 mA	PN3009

Electronic pressure sensor PN with analogue and switching output and IED display, M12 conner
Electronic pressure sensor PN with analogue and switching output and LED display, M12 connector, U_{b} : $20 \ldots 30 \mathrm{VDC}$, PNP/NPN,
process connection $\mathrm{G} 1 / 4 \mathrm{I}$,

$0 . . .400$	600	1000	4... 400	2... 398	1	$0 . . .10 \mathrm{~V} / 4 . .20 \mathrm{~mA}$	PN2020
0... 250	400	850	2... 250	1... 249	0.5	$0 . .10 \mathrm{~V} / 4 . .20 \mathrm{~mA}$	PN2021
0...100	300	650	0.8... 100	0.4...99.6	0.2	$0 . . .10 \mathrm{~V} / 4 . .20 \mathrm{~mA}$	PN2022
-1...25	100	350	-0.8...25	-0.9...24.9	0.05	$0 \ldots .10 \mathrm{~V} / 4 . .20 \mathrm{~mA}$	PN2023
-1...10	50	150	-0.88...10	-0.94...9.94	0.02	$0 . .10 \mathrm{~V} / 4 . .20 \mathrm{~mA}$	PN2024
-0.13...2.5	20	50	-0.11...2.5	-0.1...2.49	0.01	$0 \ldots .10 \mathrm{~V} / 4 . .20 \mathrm{~mA}$	PN2026
-0.05... 1	10	30	$-0.046 . .1$	-0.05...0.996	0.002	0...10V/4..20 mA	PN2027
-0.0125 ...0.25	10	30	-0.01055...0.25	-0.0115...0.249	0.0005	$0 \ldots .10 \mathrm{~V} / 4 . .20 \mathrm{~mA}$	PN2028

Precise temperature measurement by Pt1000 sensor element.

- Integrated or separate control monitors selectable.

Modular concept - tailor-made for every application.
Optional fittings for variable process connection.
Robust mechanics with high resistance to vibration and shock.

ntroduction

The controlling and monitoring of temperatures are amongst the most important measuring tasks in automation and process technology. In process technology for example the right temperature is decisive for the quality and efficiency of the process. In automation technology an exact temperature detection is very important for monitoring installations and as protection against dangerous states. In heating and air conditioning economic and easy operation is not possible without temperature measurement and control.

Operating principle

The temperature sensors of ifm electronic are based on a Pt1000 resistor. The measured temperature value corresponds to a change in resistance and is converted into an electrical analogue signal.
The microprocessor and the display make process adjustment much easier. The user can set the values for the switch points, hysteresis and measuring ture being applied. This enables installation and setup of the system within a few minutes.
Film technology is used for the electronic circuitry. A flexible, temperatureresistant and extremely resistant polyimide film is used as carrier of the SMD components. Together with a special potting method an extreme shock and vibration resistance is achieved.

From sensor to system

A complete temperature measurement system usually consists of several components. The temperature in a medium is detected by a sensor and is converted into an electrical measured signal. The mechanical design and the dimensions of the sensors must vary to enable use for different media and measuring points. ifm electronic offers a selection of robust probe sensors or types with connection cables. To indicate and process the measured value the sensor is connected to a separate control monitor.
for further processing, freely programmable switching or analogue outputs are available.

Local display of the current temperature

Imperative: Temperarative.
detection in heating and air
conditioning.

Measuring range $\underset{\left[{ }^{\circ} \mathrm{C}\right]}{\mathrm{range}}$	Setpoint [${ }^{\circ} \mathrm{C}$]	$\begin{aligned} & \text { Reset } \\ & \text { point } \\ & {\left[{ }^{\circ} \mathrm{C}\right]} \end{aligned}$	Resolution in steps of [$\left.{ }^{\circ} \mathrm{C}\right]$	Switching output	Analogue output	$\begin{gathered} \mathrm{U}_{\mathrm{b}} \\ {[\mathrm{~V}]} \end{gathered}$	Order no.
Temperature transmitter TA with integrated G 1/2" thread, M12 connector							
0...140	-	-	-	-	4... 20 mA	$10 . .30 \mathrm{DC}$	TA3430
-10... 150	-	-	-	-	4... 20 mA	10...30 DC	TA3431
Temperature sensor TN with integrated control monitor and LED display, M12 connector							
-40... 125	-39.5... 125	-40...124.5	0.5	$2 \times \mathrm{no} / \mathrm{nc}$	-	18...30 DC	TN7530
-40... 125	-39.5... 125	-40...124.5	0.5	$1 \times \mathrm{no} / \mathrm{nc}$	$0 . . .10 \mathrm{~V} / 4 . . .20 \mathrm{~mA}$	20...30 DC	TN2530
Temperature monitor TR with LED display for temperature sensors TS / TT, M12 connector							
-40...300	-39.8...300	-40...299.8	0.1	$1 \times \mathrm{no} / \mathrm{nc}$	$0 . .10 \mathrm{~V} / 4 . . .20 \mathrm{~mA}$	20..30 DC	TR2432
-40... 150	-39.5... 150	-40...149.5	0.5	$2 \times \mathrm{no} / \mathrm{nc}$	-	18...30 DC	TR7430
-40... 150	-39.8... 150	-40...149.8	0.2	$4 \times \mathrm{no} / \mathrm{nc}$	-	$18 . . .28 \mathrm{DC}$	TR8430
Measuring range [$\left.{ }^{\circ} \mathrm{C}\right]$	Probe length [mm]	Total length $[\mathrm{mm}]$	Probe diamete [mm] [mis	Cable length $[\mathrm{mm}]$	Dynamic response T05 / T09	Connector	Order no.

Temperature sensor for connection with temperature control monitors TR (probe version for industrial applications)

-40...150	160	182	$\varnothing 10$	-	6/25 sec.	M12	TT1050
-40...150	260	282	$\varnothing 10$	-	6/25 sec.	M12	TT2050
-40...150	360	382	¢ 10	-	6/25 sec.	M12	тT3050
-40...150	560	582	¢ 10	-	6/25 sec.	M12	TT5050
-40...150	160	182	$\varnothing 8$	-	6/25 sec.	M12	TT1150
-40...150	260	282	$\varnothing 8$	-	6/25 sec.	M12	TT2150
-40...150	360	382	$\varnothing 8$	-	6/25 sec.	M12	TT3150
-40...150	160	182	$\varnothing 6$	-	6/25 sec.	M12	TT1250
-40...150	260	282	$\varnothing 6$	-	6/25 sec.	M12	TT2250
-40...150	360	382	$\varnothing 6$	-	6/25 sec.	M12	TT3250
Progressive ring fitting for temperature sensors $\varnothing 10 \mathrm{~mm}-\mathrm{G} 1 / 2$							E30016
Mounting set for direct adaption of temperature sensors $T T$ to control monitors $T R$							E30017

Low－cost permanent vibration monitoring．

Reliable measuring principle by acoustic emission detection．
Predictive maintenance increases machine uptime．

Easy parameter setting and setup．

Direct local reading of the bearing condi－ tion，programmable switching outputs．

ntroduction

The rolling element bearing is a standard element for the construction of machinery and equipment．The correct function of this force－transmitting and moving component is critical for uptime of machinery and equipment． Due to the high dynamic and static loads during operation as well as design imitations the rolling element bearing is often the Achilles＇heel with regard o lifetime．Thus unforeseen damage to the bearing often leads to produc－ ment quarings is presently restricted to the intermittent measurement with handheld measuring instruments and to expensive central measuring systems which due to their enormous acquisition costs only make sense economically which due to their enormous acquisition costs only make sense economically

nnovative technology

With the efector octavis ifm brings the first vibration sensor with integrated rolling element bearing diagnosis based on frequency analysis on the mar－ ket．Due to the implementation of a proprietary diagnostic algorithm several different rolling element bearings can be monitored separately and their condition can be displayed via a＂green－yellow－red＂logic．Monitoring and diagnosis are performed in real time．Thus vibration measurement technolo－ gy is integrated into automation technology so that expensive expert know－ how for a reliable bearing diagnosis is not required．Therefore permanent monitoring of small machines and components is possible for the first time without losing the diagnostic quality of expensive systems．

Easy parameter setting

For the easy parameter setting of the rolling element bearing monitor，it is only necessary to take the relevant bearing data from the rolling element bearing database．For variable speed drives information on speed must be provided．The speed can either be provided by an analogue signal or a pulse generator connected
36 mm ．

Parameter setting
of efector octavis
Parameter setin
of efector o
is simply
is simply done
RS－232 interface．

Measuring range	Frequency range ［ Hz ］	Monitoring range $[\mathrm{rpm}$ ［rpm］	$\begin{aligned} & \mathrm{U}_{\mathrm{b}} \\ & \text { [V] } \end{aligned}$	$\begin{gathered} \text { Current } \\ \text { consumption } \\ {[\mathrm{mA}]} \end{gathered}$	Order no．
Application：Rolling element bearing diagnosis－Diagnosis of up to 2 different rolling element bearings Design：Micromechanical acceleration sensor，capacitive measuring principle，one measurement axis					
$\pm 25 \mathrm{~g}$	3．．．6000	500．．．6000	$10 . .32 \mathrm{VDC}$	100	VB1001
Application：Vibration diagnosis．Diagnosis of up to 20 frequencies in the spectrum，freely selectable Design：Micromechanical acceleration sensor，capacitive measuring principle，one measurement axis					
$\pm 25 \mathrm{~g}$	3．．．6000	100．．． 12000	$10 . .32 \mathrm{VDC}$	100	VE1001
$\pm 25 \mathrm{~g}$	0．125．．． 500	10．．．2500	10．．． 32 VDC	100	VE1002

Parameter setting software for rolling element bearing monitor	VBS001	
	Expert software for vibration diagnostic unit	VES001
	SubD9 cable， 3 m PUR	E11572
Power supply，24	E30080	
Pulse generator	E30082	

Sockets		
	2 m PUR，M12 straight，without LED	E10966
	5 m PUR，M12 straight，without LED	E10967
	2 mPVC M12 straight，without LED	E10954
	10 mPVC, M12 straight，without LED	E10955

$10 \mathrm{mPVC}, \mathrm{M} 12$ straight，without LED E10955

Y connection cable

Support of the AS－i standard 2.1 for extended functionality．

Powerful controllers with

 easy－to－use graphic display．＂Safety at Work＂for safety－related applications．

Wide range of modules for

 control cabinets and field applications．Intelligent system solutions for special tasks．

ntroduction

The actuator－sensor interface（AS－i）sets new technological standards in the design and automation of instaliations．This leads to economic advantages for the OEM and the user for project management，commissioning and maintenance of machines．In contrast to conventional fieldbuses AS－i has a finely granulated structure and can therefore be integrated even into proxim－ ity switches
AS－i considerably reduces wiring complexity since conventional parallel wiring of each sensor or actuator to the controller is no longer necessary． This saves the user a great number of terminals，splitter boxes，input／output cards and cable lines．

Wide selection of connection options

Via its field connections AS－i allows low－cost connection of conventional devices．Up to 248 binary sensors and 186 actuators can be connected per AS－i line it is also possible to integrate sensors with bus be connected per system at any time．These sensors with integrated AS－interface supply more information to the controller without the need of additional wiring There－ fore this latest sensor generation is also referred to as intelligent sensors．

Voltage supply and data via one cable

Voltage supply and data communication of all sensors are normally perform－ ed via a（yellow）AS－i cable．For some modules actuators can also be sup－ plied via this cable．If a higher output current or emergency stop switch－off is required，actuators are supplied via a second black flat cable with a sepa－ rate 24 V auxiliary voltage．

AS－i in the automation pyramid

AS－interface has established itself at the lowest automation level，it is locat－ ed below the fieldbuses．The strengths of AS－I are its simple structure speed，quick wiring and price／performance ratio．It can be used as a feeder bus for higher bus systems，they in turn then ensure a non time critical trans－ mission of the data over longer distances to the host controller

Safety at Work is Sasety
designed for safe－
ty－relate ty－rlated applica－
tions．Here an tions．Here an E－
stop implemented with AS－i．

One AS－i flat
cable instead of
many parallel many
cables：
In a brew
In a brewery the
interface serves to
transfer the sen－
then sor signals to the
higher－level higher－level
controller．

AS－i controller／Gateway with housing for DIN rail mounting

AS－i Controller Estand alone，freely programmable，with graphic display， 1 AS－i master $2.1+3.0$
AS－i Controller Estand alone，freely programmable，w
AS－i Controler E with Ethernet gateway and graphic display 1 AS．i．Aster $2.1+3.0$
AS－i Controller E with Ethernet gateway and graphic display， 2 AS－i master $21+3.0$ AC1310
AS－i Controller E with Profibus DP gateway and graphic display，1 AS－i master $2.1+3.0 \quad$ AC1305
AS－i Controller E with Profibus DP geway and graphic display， 2 AS ．master $2.1+3.0$
AS－i Controle E．in Devis gineway and graphic dsplay， 2 AS－i master $2.1+3.0$
AS－i Co
Smartion Asi Den gat

SmartLink AS－i Controller with Profibus DP gateway， 2 AS－i master $2.1+3.0$
AS－i repeater for DIN rail mounting，operating voltage： $18.5 . . .31 .6 \mathrm{DC}$ ，consumption $2 \times 100 \mathrm{~mA}$
AS－i repeater for field mounting，operating voltage： $18.5 \ldots . .31 .6 \mathrm{DC}$ ，consumption $2 \times 100 \mathrm{~mA}$

AS－i power supply SilverLine $115 / 230 \mathrm{VAC}$ ，output current 2.8 A ，output voltage $29.5 . .31 .6 \mathrm{~V} \mathrm{DC}$

AS－i power supply $115 / 230 \mathrm{~V} \mathrm{AC}$ ，output current 2.8 A ，output voltage $29.5 \ldots 31.6 \mathrm{~V} \mathrm{DC}$
AS－i power supply $115 / 230 \mathrm{~V} \mathrm{AC}$ ，output current $2 \times 4 \mathrm{~A}$ ，output voltage 29.5 .31 .6 V DC
AS－i power supply 24 V DC ，output current 2.8 A ，output voltage 29.5 ．．． 31.6 VDC
AS－i power supply $115 / 230 \mathrm{~V} \mathrm{AC}$ ，output current $2.8 \& 6 \mathrm{~A}$ ，output voltage $29.5 . .31 .6 \& 26 \mathrm{~V} \mathrm{DC}$

AS－i power supply with integrated earth fault monitor

AS－i power supply SilverLine $115 / 230 \mathrm{VAC}$ ，output current 4 A ，output voltage $29.5 \ldots . .31 .6 \mathrm{~V} D \mathrm{C} \quad$ AC1224
AS－i power decoupler 26．5．．．31．6 V DC，output current 0.3 A ，output voltage $24 \mathrm{VDC}+1-20 \%$

Number of inputs	Number of outputs	Input voltage from AS-i	Output voltage according to PELV	Max. input current [mA]	Output current /channel \& total [A]	$\begin{gathered} \text { AS-i } \\ \text { profile S- } \end{gathered}$	Total current consumpt. from AS-i [mA]	Order no.
SmartLine control cabinet modules as single slave with extended address mode								
4 DI	-	yes	-	200	-	0.A.E	<250	AC2250
4 DI	4 DOT	yes	yes	200	1 (4)	7.0.E	<250	AC2251
-	4 DOT	-	yes	-	2 (4)	8.0.E	< 50	AC2252
4 DI	-	-	-	500	-	0.A.E	< 50	AC2254
4 DI	2 DOR	-	-	500	1.5 (6)	7.A.E	< 50	AC2255
4 DI	4 DOT	yes	yes	500	1 (4)	7.0.E	< 50	AC2257
4 DI	4 DOR	yes	-	200	6	7.0.E	<250	AC2258
SmartLine control cabinet modules as single slave with extended address mode								
4 AIC	-	yes	-	< 500	-	7.3.E	<180	AC2216
	4 AOC		yes	-	< 0.5	7.3.G	< 180	AC2218
4 PT100	-	yes	-	< 80	-	7.3.E	< 80	AC2220
CompactLines field modules with digital inputs and outputs and M12 $\mathbf{1}$ sockets								
4 DI	-	yes	-	200	-	0.0.E	<250	AC2410
$4 \mathrm{DI-Y}$	-	yes	-	200	-	0.A.E	<250	AC2457
-	4 DOT	-	yes	-	2 (4)	8.0	<75	AC2417
2 DI	2 DOT	yes	yes	100	2 (4)	3.0.E	< 150	AC2411
4 DI	4 DOT	yes	yes	200	2 (4)	7.0.E	<250	AC2412
$2 \mathrm{DI-Y}$	2 DOT	yes	yes	200	2 (4)	3.f.E	<250	AC2458
$4 \mathrm{DI}-\mathrm{Y}$	4 DOT	yes	yes	200	2 (4)	7.F.E	<250	AC2459

CompactLines field modules with digital inputs and outputs and M12 $\mathbf{x} 1$ sockets in high-grade stainless steel

4 DI	-	yes	-	200	-	0.0.E	<250	AC2451
4 DI	4 DOT	yes	yes	200	2 (4)	7.0.E	<250	AC2452
Classicline field modules with digital inputs and outputs and M12 1 sockets								
4 DI	-	yes	-	200	-	0.0.E	<240	AC2505
-	4 DOT	-	yes	-	1 (2)	8.0.E	< 50	AC2508
4 DI	4 DOT	yes	yes	200	1 (2)	7.0.E	<250	AC2509
2 DI	2 DOT	yes	yes	100	1 (2)	3.0.E	< 150	AC2507
Classicline field modules with digital inputs and outputs and M12 $\times 1$ sockets, $2.1 \mathrm{~A} / \mathrm{B}$ slaves								
$2 \mathrm{DI-Y}$	2 DOT-Y	yes	yes	100	1 (2)	B.A.E	< 150	AC2514
$4 \mathrm{DI-Y}$	3 DOT	yes	yes	100	1 (2)	7.A.E	< 180	AC2504
$4 \mathrm{DI-Y}$	-	yes	-	100	-	0.A.E	<150	AC2515

Illuminated push-button field module in ClassicLine housing, AC2018 red/green, AC2026 selectable								
2 BI	2 LO	yes	-	-	-	3.F	<55	AC2018

2 BI	2 LO	yes	-	-		3.F	< 55	AC2018
2 BI	2 LO	yes	-	-	-	3.F	< 55	AC2026
Universal field modules with digital inputs and outputs and unit connection via lateral cable glands and cage clamps								
4 DI	-	yes	-	160	-	0.0	<200	AC2032
4 DI	4 DOT	yes	yes	200	2 (4)	7.F	<260	AC2035
Processline field modules with digital I/O and M12 sockets, 2.1 A/B slaves, high-grade stainless steel, IP 69 K								

| 4 DI 3 DOT | yes | yes 200 | $0.7(2.1)$ | $7 . A . E$ | <240 | AC2904 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

ProcessLine accessories, made of high-grade stainless steel, IP 69K protection	
Passive AS-i splitter box for the connection of 8 intelligent sensors/actuators	AC2900
T-splitter for the connection of AC2900/AC2904 to AS-i flat cable	E70354

ntroduction

With a wide variety of different sensor designs ifm electronic offers a wide range of high quality connectors. The choice of types covers common M8, M12, M18 types through to solenoid connectors.
In addition to the sockets the basic range covers connection cables (jumpers) and splitter boxes. The M12 design in particular has become firmly established on the sensor market for many years and is therefore the preferred choice for extremely harsh applications.
To be able to meet the different application requirements three product series have been developed.

M12 series with cable for factory automation

The ifm standard series for industrial use. Halogen-free PUR cable with high resistance to alternate bending stress, PUR housing material, gold-plated contacts and protection rating IP 68 guarantee long life in an oily and greaarcepted anywhere in the world market.

M12 series with cable for the food industry

This series is specially designed for hygienic areas in food manufacture. High quality PVC cable and housing materials, coupling nuts of high-grade stainess steel (316S12) as well as gold-plated contacts are ideal features for use pressure steam cleaning. They are chemically resistant to most common cleaning agents. The UL / CSA approval is a matter of course for these units.

M12 series with cable for welding

Specially for use in automated welding systems, several product reliability eatures must be met. This includes a long-term resistance to weld spatter. Irradiated, halogen-free PUR cables provide an especially efficient protection. This prevents weld slag from burning into the cable material thus damaging it. Teflon coated coupling nuts prevent the connector from being welded to the sensor. A special polyester fleece strip foil in the cable ensures a long life even in case of high torsional stress, for example in robot arms.

Complete range: Plugs/sockets, jumpers and splitter boxes.

plug	M12 connector	IP 68	4	-	-	E11504	E11505	-
plug	M12 connector	IP 68	5	-	-	E11506	E11507	-
socket	M8 connector	IP 68	-	3	2 mPUR	E11486	E11489	E11492
socket	M8 connector	IP 68	-	3	5 mPUR	E11487	E11490	E11493
socket	M8 connector	IP 68	-	3	10 mPUR	E11488	E11491	E11494
socket	M8 connector	IP 68	-	4	2 mPUR	E11196	E11199	-
socket	M8 connector	IP 68	-	4	5 mPUR	E11197	E11200	-
socket	M8 connector	IP 68	-	4	10 m PUR	E11198	E11201	-
				4				
socket	M12 connector	IP 68	-	4	-	E11508	E11509	E11510
socket	M12 connector	IP 68	-	5	-	E11511	E11512	-
socket	M12 connector	IP 68 /IP 69 K	-	4	2 mPUR	E10906	E10900	E10903
socket	M12 connector	IP 68 /P 69 K	-	4	5 mPUR	E10907	E10901	E10904
socket	M12 connector	IP 68 /P 69 K	-	4	10 mPUR	E10908	E10902	E10905
socket	M12 connector	IP 68	-	5	2 mPUR	E10966	E10963	-
socket	M12 connector	IP 68	-	5	5 mPUR	E10967	E10964	-
socket	M12 connector	IP 68	-	5	10 mPUR	E10968	E10965	-
jumper	M8 straight / M8	IP 68	3	3	0.3 m PUR	E11319	E11324	E11329
jumper	M8 straight / M8	IP 68	3	3	0.6 mPUR	E11320	E11325	E11330
jumper	M8 straight/M8	IP 68	3	3	1 mPUR	E11321	E11326	E11331
jumper	M8 straight / M8	IP 68	3	3	2 mPUR	E11322	E11327	E11332
jumper	M8 straight / M8	IP 68	3	3	5 mPUR	E11323	E11328	E11333
jumper	M8 straight/M8	IP 68	3	4	0.3 m PUR	E11334	E11337	-
jumper	M8 straight / M8	IP 68	3	4	0.6 mPUR	E11335	E11338	-
jumper	M8 straight/M8	IP 68	3	4	1 mPUR	E11202	E11204	-
jumper	M8 straight / M8	IP 68	3	4	2 mPUR	E11203	E11205	-
jumper	M8 straight/M8	IP 68	3	4	5 mPUR	E11336	E11339	-
jumper	M8 straight / M8	IP 68	4	3	0.3 mPUR	E11351	E11354	-
jumper	M8 straight / M8	IP 68	4	3	0.6 mPUR	E11352	E11355	-
jumper	M8 straight / M8	IP 68	4	3	1 mPUR	E11267	E11356	-
jumper	M8 straight / M8	IP 68	4	3	2 mPUR	E11268	E11357	-
jumper	M8 straight/M8	IP 68	4	3	5 mPUR	E11353	E11358	-
jumper	M8 straight / M8	IP 68	4	4	0.3 mPUR	E11359	E11362	-
jumper	M8 straight / M8	IP 68	4	4	0.6 mPUR	E11360	E11363	-
jumper	M8 straight/M8	IP 68	4	4	1 mPUR	E11206	E11208	-
jumper	M8 straight / M8	IP 68	4	4	2 mPUR	E11207	E11209	-
jumper	M8 straight/M8	IP 68	4	4	5 mPUR	E11361	E11364	-
jumper	M8 straight / M12	IP 68	3	3	0.3 m PUR	E11340	E11343	E11346
jumper	M8 straight / M12	IP 68	3	3	0.6 mPUR	E11341	E11344	E11347
jumper	M8 straight / M12	IP 68	3	3	1 mPUR	E11263	E11265	E11348
jumper	M8 straight/M12	IP 68	3	3	2 mPUR	E11264	E11266	E11349
jumper	M8 straight / M12	IP 68	3	3	5 mPUR	E11342	E11345	E11350
jumper	M8 straight/M12	IP 68	4	4	0.3 mPUR	E11365	E11368	E11371
jumper	M8 straight / M12	IP 68	4	4	0.6 mPUR	E11366	E11369	E11372
jumper	M8 straight/ M12	IP 68	4	4	1 mPUR	E11259	E11261	E11373
jumper	M8 straight / M12	IP 68	4	4	2 mPUR	E11260	E11262	E11374

ifm plug and
socket connec-
tions: The right
tions: The right
connection for every application.
 different applications.
High quality materials, reliable under difficult conditions.

Cable lengths up to 10 m .

Integrated LEDs for easy diagnosis

Design	Number of poles		Cable	Order no.			
	Plug	Socket			Straight	Angled	Angled LED
Products for industrial applications							

jumper	M12 / valve plug	IP 67	$2+\mathrm{PE}$	$2+\mathrm{PE}$	0.3 m PUR	E11416	-
jumper	M12 / valve plug	IP 67	$2+\mathrm{PE}$	$2+\mathrm{PE}$	0.6 mPUR	E11417	-
jumper	M12 / valve plug	\|P 67	$2+\mathrm{PE}$	$2+\mathrm{PE}$	1 m PUR	E11418	-
jumper	M12 / valve plug	IP 67	$2+\mathrm{PE}$	$2+\mathrm{PE}$	2 mPUR	E11419	-
jumper	M12 / valve plug	IP 67	$2+$ PE	$2+\mathrm{PE}$	5 mPUR	E11420	-
Design			Number of poles		Cable	Order no.	
			Plug	Socket	[m]	DIN-B	Industrial standard type B

jumper	M12 / valve plug	IP 67	$2+$ PE	$2+\mathrm{PE}$	0.3 mPUR	E11421	E11431
jumper	M12 / valve plug	IP 67	$2+\mathrm{PE}$	$2+\mathrm{PE}$	0.6 mPUR	E11422	E11432
jumper	M12 / valve plug	IP 67	$2+\mathrm{PE}$	$2+\mathrm{PE}$	1 mPUR	E11423	E11433
jumper	M12 / valve plug	1P 67	$2+\mathrm{PE}$	$2+\mathrm{PE}$	2 mPUR	E11424	E11434
jumper	M12 / valve plug	IP 67	$2+$ PE	$2+\mathrm{PE}$	5 mPUR	E11425	E11435

jumper	M12 / valve plug	IP 65 /IP 67	$2+\mathrm{PE}$	$2+\mathrm{PE}$	0.3 m PUR	E11426	E11436	
jumper	M12 / valve plug	IP 65 /IP 67	$2+\mathrm{PE}$	$2+\mathrm{PE}$	0.6 mPUR	E11427	E11437	
jumper	M12 / valve plug	IP 65 /IP 67	$2+\mathrm{PE}$	$2+$ PE	1 mPUR	E11428	E11438	
jumper	M12 / valve plug	IP 65 /IP 67	$2+\mathrm{PE}$	$2+\mathrm{PE}$	2 mPUR	E11429	E11439	
jumper	M12 / valve plug	IP 65 /IP 67	$2+\mathrm{PE}$	$2+\mathrm{PE}$	5 mPUR	E11430	E11440	
Design			Number of poles		Cable	Order no.		
			Plug	Socket	[m]	Straight	Angled	$\begin{gathered} \text { Angled } \\ \text { LED } \end{gathered}$

Products for hygienic applications

socket	M8 connector	IP 68	-	3	5 mPVC	E11495	E11498	E11501
socket	M8 connector	IP 68	-	3	10 mPVC	E11496	E11499	E11502
socket	M8 connector	IP 68	-	3	25 mPVC	E11497	E11500	E11503
socket	M8 connector	IP 68	-	4	5 mPVC	E11223	E11220	-
socket	M8 connector	IP 68	-	4	10 mPVC	E11224	E11221	-
socket	M8 connector	IP 68	-	4	25 mPVC	E11225	E11222	-
socket	M12 connector	IP 68 /P 69 K	-	4	5 mPVC	E10662	E10700	E10702
socket	M12 connector	IP 68 /PP 69 K	-	4	10 mPVC	E10663	E10701	E10703
socket	M12 connector	IP 68 /P 69 K	-	4	25 mPVC	E10899	E10800	E10773
socket	M12 connector	IP 68	-	5	5 mPVC	E10954	E10704	-
socket	M12 connector	IP 68	-	5	10 mPVC	E10955	E10705	-
socket	M12 connector	\|P 68	-	5	25 mPVC	E10956	E10953	

Products for oils and coolants

socket	M12 connector	IP 68 /P 69 K	-	4	2 mPUR	E10906	E10900	E10903
socket	M12 connector	IP $68 / \mathrm{IP}$ 69K	-	4	5 mPUR	E10907	E10901	E10904
socket	M12 connector	1P 68 /P 69 K	-	4	10 mPUR	E10908	E10902	E10905
socket	M12 connector	IP 68	-	5	2 mPUR	E10966	E10963	-
socket	M12 connector	IP 68	-	5	5 mPUR	E10967	E10964	-
socket	M12 connector	\|P 68	-	5	10 mPUR	E10968	E10965	-
Products for welding applications								
socket	M12 connector	IP 68	-	4	2 mPUR	E10915	E10909	E10912
socket	M12 connector	IP 68	-	4	5 mPUR	E10916	E10910	E10913
socket	M12 connector	IP 68	-	4	10 mPUR	E10917	E10911	E10914
socket	M12 connector	IP 68	-	5	2 mPUR	E10960	E10957	-
socket	M12 connector	IP 68	-	5	5 mPUR	E10961	E10958	-
socket	M12 connector	\|P 68	-	5	10 mPUR	E10962	E10959	-

Products for hazardous NAMUR areas

socket	M12 connector	IP 67	-	4	2 mPUR	E10357	E10355	-
socket	M12 connector	\|P 67	-	4	5 mPUR	E10358	E10356	-

Position sensors

Proximity
switches

Actuator
sensors

Photoelectric
sensors

Photoelectric systems

Incremental and absolute encoders

Evaluation systems

Power
supplies

Inductive
sensors
for valves

Level sensors

Flow sensors
라문ํ폼ㅁ

Pressure

sensors

Vacuum
sensors

Temperature
sensors

Diagnostic
systems

Control
systems
Rロாாロルーロロா

Over 70 locations worldwide－ at a glance at www．ifm－electronic．com

